

Delft University of Technology

Selective Edge Computing for Mobile Analytics

Galanopoulos, Apostolos; Iosifidis, George; Salonidis, Theodoros; Leith, Douglas J.

DOI
10.1109/TNSM.2022.3174776
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Network and Service Management

Citation (APA)
Galanopoulos, A., Iosifidis, G., Salonidis, T., & Leith, D. J. (2022). Selective Edge Computing for Mobile
Analytics. IEEE Transactions on Network and Service Management, 19(3), 3090-3104. Article 9773284.
https://doi.org/10.1109/TNSM.2022.3174776

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNSM.2022.3174776
https://doi.org/10.1109/TNSM.2022.3174776

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

3090 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Selective Edge Computing for Mobile Analytics
Apostolos Galanopoulos , George Iosifidis , Theodoros Salonidis, Senior Member, IEEE,

and Douglas J. Leith , Senior Member, IEEE

Abstract—An increasing number of mobile applications rely on
Machine Learning (ML) routines for analyzing data. Executing
such tasks at the user devices saves the energy spent on transmit-
ting and processing large data volumes at distant cloud-deployed
servers. However, due to memory and computing limitations,
the devices often cannot support the required resource-intensive
routines and fail to accurately execute such tasks. In this work,
we address the problem of edge-assisted analytics in resource-
constrained systems by proposing and evaluating a rigorous
selective offloading framework. The devices execute their tasks
locally and outsource them to cloudlet servers only when they
predict a significant performance improvement. We consider
the practical scenario where the offloading gains and resource
costs are time-varying; and propose an online optimization algo-
rithm that maximizes the service performance without requiring
to know this information. Our approach relies on an approxi-
mate dual subgradient method combined with a primal-averaging
scheme, and works under minimal assumptions about the system
stochasticity. We fully implement the proposed algorithm in a
wireless testbed and evaluate its performance using a state-of-the-
art image recognition application, finding significant performance
gains and cost savings.

Index Terms—Edge computing, data analytics, network
optimization, resource allocation, subgradient method.

I. INTRODUCTION

A. Background and Motivation

THE RECENT demand for mobile machine learning (ML)
analytic applications, such as image recognition, natural

language translation and health monitoring, has been unprece-
dented [2]. These services collect data streams generated by
hand-held or other Internet of Things (IoT) devices, and ana-
lyze them locally or at cloud servers. The challenge with
such services is that they are both resource intensive and
delay sensitive. On the one hand, the cloud offers power-
ful ML models and abundant compute resources, but requires

Manuscript received 5 November 2021; revised 2 March 2022 and
7 May 2022; accepted 8 May 2022. Date of publication 12 May 2022; date
of current version 12 October 2022. This publication has emanated from
research conducted with the financial support of the European Commission
through Grant No. 101017109 (DAEMON). Part of this work appeared in the
Proceedings of IEEE ICC 2020 [1] [DOI: 10.1109/ICC40277.2020.9148811].
The associate editor coordinating the review of this article and approving it for
publication was Z. Zhu. (Corresponding author: Apostolos Galanopoulos.)

Apostolos Galanopoulos is with Genesys, Galway, Ireland (e-mail:
galanopa@tcd.ie).

George Iosifidis is with the Software Technology Department, Delft
University of Technology, 2600 AA Delft, The Netherlands.

Theodoros Salonidis is with the Automated Machine Learning and Data
Science (AMLDS), IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598 USA.

Douglas J. Leith is with the School of Computer Science and Statistics,
Trinity College Dublin, Dublin 2, D02 PN40, Ireland.

Digital Object Identifier 10.1109/TNSM.2022.3174776

data transfers which consume network bandwidth and device
power, as well as induce significant delays, e.g., due to
intermittent connectivity [3]. On the other hand, executing
these services directly at the devices, as in [4], economizes
network bandwidth but degrades their performance due to the
devices’ limited resources. For example, these nodes may have
insufficient memory to support accurate deep-learning neural
networks.

A promising approach to tackle this problem is to follow
a middle-ground solution where the devices outsource their
tasks to nearby cloudlets [5]. These edge servers are typ-
ically deployed in locations close to cellular base stations
or Wi-Fi access points, and hence are in proximity with the
users. Therefore, they can increase the service performance by
augmenting the devices’ ML components with more accurate
models, while offering tolerable communication and execu-
tion delay. Nevertheless, the success of such solutions requires
intelligent decision algorithms for selecting which tasks from
each device will be outsourced in order to maximize the aggre-
gate accuracy. This is a new problem that raises intricate
challenges for the network and the involved computing nodes.

Namely, the cloudlets, unlike the cloud, have limited com-
puting capacity and hence cannot support the requests from
all devices. If overloaded, they will eventually become unre-
sponsive. At the same time, task execution often involves the
transfer of large data volumes. This calls for prudent trans-
mission decisions in order to avoid wasting the energy of
devices and congesting the network when link bandwidth is
also a bottleneck. Furthermore, unlike general computation
offloading solutions [6], in ML analytics it is imperative to
identify and outsource only the tasks which can significantly
benefit from cloudlet execution. Otherwise, the system will
spend resources only to gain marginal performance improve-
ments. Finally, these decisions need to be made in a dynamic
fashion accounting for the time-varying network conditions,
user requests and cloudlet availability; while the statisti-
cal properties of these random parameters are unknown in
practice.

Our goal is to design and evaluate an online decision frame-
work that supports edge-augmented mobile analytic services.
While prior works have studied the problem of offload-
ing computation-intensive tasks and others proposed system
architectures for mobile analytics, see, Section VII, we lack
an analytical framework for maximizing the performance of
such services under resource (un)availability, and time-varying
network conditions. Our solution works under such practical
limitations (which we measure experimentally) and is general
enough to be applied to different architectures and services.

1932-4537 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3359-1922
https://orcid.org/0000-0003-1001-2323
https://orcid.org/0000-0003-4056-4014

GALANOPOULOS et al.: SELECTIVE EDGE COMPUTING FOR MOBILE ANALYTICS 3091

B. Methodology and Contributions

In detail, we consider a service where a cloudlet improves
upon request the execution quality of data analytic tasks that
are generated by small user devices. We use as an exemplary
service the processing of image frames captured by nodes
such as wireless IoT cameras or small robots, that need to
be processed for classifying objects of interest. Each device
has a low-precision classifier, while the cloudlet can possibly
execute the task with higher precision. The devices classify
the received objects upon arrival and decide whether to trans-
mit them to the cloudlet for further processing. This decision
requires an assessment of the potential performance gains,
which are measured in terms of accuracy improvement. To
this end, we propose the usage of a predictor that is installed
at each device and leverages the local classification results.

In terms of resource constraints, we focus on power con-
sumption, a bottleneck issue in small devices; and the comput-
ing capacity of the cloudlet which - unlike the cloud - is finite.
The former couples the decisions of each device across time,
while the latter ties the decisions of all devices sharing the
cloudlet. We consider the practical case where resource avail-
ability is unknown and possibly time-varying and we observe
their instantaneous values. We aim to design an algorithm
that enables the coordination of devices and dictates the task
outsourcing policy by carefully tuning the trade-off between
maximizing the aggregate analytics accuracy and constraining
resource consumption.

We formulate the system operation as an optimization
program with unknown parameters appearing both in the
objective (performance gains) and constraints (power and
capacity), which are learned in an online fashion. This pro-
gram is decomposed via Lagrange relaxation to device-specific
problems and this enables its distributed solution through
an approximate – due to the unknown parameters – dual
ascent method. Leveraging the ε-(sub)gradient information
that is produced in the dual space by each device, we cal-
culate primal solutions which are applied in real time. Our
approach is inspired by primal averaging schemes for static
problems [7], [8], and yields a tunable optimality bound
compared to the hypothetical benchmark policy that has
access to an oracle. The designed algorithm is lightweight
in terms of communication overheads and adapts to resource
availability and user requests. Importantly, it offers determin-
istic performance bounds (i.e., for each sample path) and
works under minimal assumptions for the stochastic per-
turbations of the resources and task requests. This is in
contrast with extensively-used stochastic optimization tool-
boxes which presume i.i.d. or Markov-modulated perturbations
and offer only average guarantees; see [9] and references
therein.

Finally, the framework is extended for when the bot-
tleneck is the wireless link capacity and for services that
optimize jointly the accuracy and execution delay. Other
scenario-specific amendments are also possible, e.g., consid-
ering multi-stage services, multiple cloudlets, or other related
constraints such as the cloudlet energy budget. Given that this
is a new problem, we investigate experimentally its properties

in a wireless testbed; and assess our algorithm using real
datasets [10], [11] and carefully selected benchmarks. Hence,
the contributions of this work are the following.

• Edge-Augmented Analytics: We introduce the novel
problem of augmenting the performance of mobile ana-
lytics using edge infrastructure (e.g., cloudlets), which
is increasingly important for mobile computing services
and IoT networks. Our model can be tailored to differ-
ent system architectures, types of analytic services, and
resource constraints.

• Decision Framework: A task outsourcing policy is
proposed that achieves near-optimal performance while
being oblivious to the system’s statistics. We fully charac-
terize the performance of the algorithm, i.e., its optimality
gap, as a function of the system parameters, perturba-
tions and the employed step rule. To the best of our
knowledge, our algorithm is the first to offer determinis-
tic performance bounds with discrete actions, under such
general conditions; and this is a result of independent
interest.

• Implementation & Evaluation: The solution is evaluated
in a wireless testbed with a typical ML service and real
datasets. We show that our algorithm can be implemented
as a lightweight protocol, increasing task accuracy (up
to 15%) and reducing the energy costs (down to 50%)
compared to carefully selected greedy benchmarks.

Concluding, this work proposes a new problem, designs a
novel optimization algorithm which is tailored to its needs,
and uses a fully-fledged implementation in a wireless testbed
in order to evaluate the proposal.

Organization: Section II introduces the model and problem,
Section III presents the algorithm and Section IV analyzes its
performance. We discuss practical extensions in Section V and
Section VI presents the system implementation, a series of
experiments and trace-driven simulations. We discuss related
work in Section VII and conclude in Section VIII. The
proofs of the various lemmas can be found in the Appendix,
Section VIII.

II. MODEL AND PROBLEM FORMULATION

We introduce the system model, the problem and the
respective mathematical program. Table I summarizes the key
notation we use throughout the paper. We use calligraphic cap-
ital letters for sets, bold typeface letters for vectors, and ‖ · ‖
denotes the Euclidean norm.

A. Task Model

Time is slotted and we index the slots. There is a set C
of C disjoint object classes and a set N of N devices. Each
device n may receive at slot t an object snt ∈ S for classi-
fication, where S is the set of possible objects, e.g., images
captured by its camera. In case a device n does not produce
an image in slot t (no task), we set snt = ∅. Every device n is
equipped with a local classifier Jn which outputs the inferred
class Jn (snt) ∈ C of object snt and a normalized accuracy (or,

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

3092 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

TABLE I
KEY PARAMETERS AND VARIABLES

confidence) value dn (snt) ∈ [0, 1] for that inference.1 There is
also a classifier J0 at the cloudlet which can classify any object
snt ∈ S with confidence d0(snt). The local classifiers may
have different performance, e.g., due to possibly different ML
components or training datasets, while the cloudlet classifier
has the highest accuracy, i.e., d0(snt) ≥ dn(snt), ∀snt ∈ S .
Parameter φnt ∈ [0, 1] denotes the accuracy improvement
when the cloudlet classifier is used:

φnt (snt) = d0(snt)− dn (snt), ∀ snt ∈ S.

It is worth stressing that several services, e.g., see
YOLO [12], provide in real-time feedback on the confidence
about the accuracy of inferences, without requiring labeled
data, which exhibit indeed strong correlation with the actual
accuracy [13]. Finally, every device is also equipped with a
predictor2 that is trained with the outcomes of the local and
cloudlet classifiers. This predictor can estimate the cloudlet’s
improvement φ̃n (snt) for each object snt , where this assess-
ment might not be exact, i.e., φ̃n(snt) �= φnt (snt); and
we denote with σnt (snt) ∈ [0, 1] the normalized predictor
confidence.

B. Wireless System

The devices access the cloudlet through high-capacity cellu-
lar or Wi-Fi links, see Fig. 1, that do not impose data transfer
constraints (we relax this assumption in Section V). Each
device n has an average power budget of Bn Watts that it can
spend on transmitting the images to cloudlet.3 Average power
consumption is a key limitation in such systems [15], because:
the devices might have a small energy budget to spend; their
small form-factor imposes power consumption limitations;
there are protocol-induced transmission constraints; or users
might impose constraints on the power cost of this service.
Similarly, the cloudlet has an average processing capacity of H
cycles/sec. This resource is shared by all devices and when the
total load exceeds H the task delay increases fast, eventually
rendering the system non-responsive.

1The classifier might output only the class with the highest confidence or
a vector with the confidence for each class and allow the user to decide –
typically selecting the more likely class. Our analysis works for both cases.

2This can be a model-based or model-free solution, e.g., a regressor or a
neural-network; our analysis and framework work for any of these solutions.
In the implementation we used a mixed-effects regressor [14].

3Local classifications can induce non-negligible energy costs to devices
but these are not considered for Bn since every object undergoes local
classification anyway.

Fig. 1. System model including the local/cloudlet classifiers and predictors.
Each device is constrained by its average power budget, and the cloudlet has
a limited computation capacity.

When an image is transmitted in slot t from device n to
cloudlet, it consumes ont Watts of the device’s power bud-
get. This quantity might change across slots due to channel
conditions variations, shadowing effects, interference from
other transmission, and so on; and follows a random process
{ont}∞t=1, where ont ∈ O = {o1, . . . ,O|O|} is drawn from
a set of possible values. Also, each transmitted image snt
requires a number of cloudlet processing cycles hnt , which
might vary with time, e.g., due to different image sizes, and
possibly stems from a random process {hnt}∞t=1, with hnt ∈
H = {h1, . . . , h|H|}. We also define ot = (ont , n ∈ N) and
h t = (hnt ≤, n ∈ N). Our model is general as the requests,
power and computing costs per request can be arbitrarily
time-varying and with unknown statistics.

The devices wish to involve the cloudlet only when they
expect high classification precision gain with high confi-
dence. When the cloudlet does not offer high-enough gains
or, even worse, lower accuracy, the devices need to refrain
from offloading their tasks. Otherwise, they risk consuming
the cloudlet’s capacity and their own power without signif-
icant benefits. Therefore, the outsourcing decision for each
object snt is based on the weighted improvement gain4:

wnt (snt) = φ̃(snt)− vnσnt (snt), (1)

where vn ≥ 0 a risk aversion parameter set by the system
designer or each user. For example, assuming normal distri-
bution for the outputs of the predictor we could set vn = 1 and
use a threshold rule of 1 standard deviation. The improvement
gains follow an unknown random process {wnt}∞t=1, where5

wnt ∈ W = {w1, . . . ,w|W|}.

4Whenever the cloudlet has lower expected accuracy from the device, then
we set wnt = 0, and decide not to offload.

5We note that most systems use such quantized values for the prediction
gains, and the number of possible values depends on the granularity.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

GALANOPOULOS et al.: SELECTIVE EDGE COMPUTING FOR MOBILE ANALYTICS 3093

C. Problem Definition and Assumptions

Our goal is to maximize the long-term accuracy improve-
ment gains for all devices while satisfying the average capacity
constraints. Let us first define the set of possible system states

J = ON ×HN ×WN ,

and introduce parameter πt ∈ J that indicates the system state
at slot t. We assume the system operation can be described by
the stationary probability distribution ρ = (ρj , j = 1, . . . ,M),
where M = |J |. We introduce variables y jn ∈ [0, 1], ∀n ∈ N ,
j ∈ J that indicate the outsourcing probability of objects from
each device n when the system is in state j. We also define
the vector y = (y

j
n :n = 1, . . . ,N , j = 1, . . . ,M) and the set

Y = [0, 1]NM . Henceforth we use superscript j to indicate the
values of the random variables when πt = j .

Putting the above together, our overall (i.e., long-term)
optimization goal can be expressed with the following pro-
gram:

P1: maximize
y∈Y

M∑

j=1

N∑

n=1

w j
ny

j
nρ

j (2)

s.t.

M∑

j=1

y jno
j
nρ

j ≤ Bn , n ∈ N , (3)

M∑

j=1

N∑

n=1

y jnh
j
nρ

j ≤ H . (4)

Constraints (3) impose the average power budget6 of each
device and (4) bounds the cloudlet utilization. Additional con-
straints can be included if needed; and we can also replace the
linear objective with any other convex function. For instance,
we might wish to enforce a fairness criterion by using α-fair
functions [16] or an objective that maximizes accuracy while
minimizing the total delay. We elaborate on these extensions
in Section V. Finally, P1 can also account for time vary-
ing capacities as we can replace Bn with the time average
term

∑
j B

j
nρ

j , and similarly for parameter H; it suffices to
augment the state space J accordingly.

An important comment is in place here. If one knew in
advance the value of ρ, then we could solve P1 to obtain
the optimal offloading solution y�. This solution can then
be implemented as a randomized policy to maximize the
performance of the service. Namely, in each slot t we observe
the state πt and decide to offload or not based on the respec-
tive element of y�. Nevertheless, in practice one does not have
access to ρ and hence cannot devise that optimal static pol-
icy, i.e., cannot solve problem P1. In line with the standard
approach in stochastic optimization, cf. [9], we will use the
unknown solution of P1 as the performance benchmark that
our online algorithm aims to meet while being oblivious to
the task statistics and the system parameters.

6To capture the total power consumption we should add a term related to the
computation energy cost at the LHS of (3). However, this term is independent
of the decision variable y

j
n , since the local classifier is used either way and

thus it is omitted.

III. DECISION FRAMEWORK AND ONLINE ALGORITHM

Our solution approach is the following: we replace the
unknown parameters in P1 with their running averages, which
we calculate in runtime; and we solve the modified problem
with approximate gradient ascent in the dual space and per-
form primal averaging. This gives us an online policy that can
be implemented in real time. More importantly, we will prove
that this policy ensures asymptotically optimal performance
and constraint satisfaction; a desirable result that cannot be
achieved by greedy or other heuristic approaches.

A. Problem Decomposition and Algorithm

To streamline presentation we define the functions:

f (y) = −
N∑

n=1

M∑

j=1

y jnw
j
nρ

j ,

gn (y) =
M∑

j=1

y jno
j
nρ

j − Bn , ∀n ∈ N ,

gN+1(y) =
N∑

n=1

M∑

j=1

y jnh
j
nρ

j − H ,

that appear in problem P1, and we further collect all con-
straints in function g(y) : RNM → R

N+1. Since we can only
observe the current system state, we define the respective t-slot
functions that aggregate this information up to t:

ft (y t) = −
N∑

n=1

M∑

j=1

y jntw
j
nρ

j
t ,

gnt (y t) =

M∑

j=1

y
j
nto

j
nρ

j
t − Bn ,

gN+1,t (y t) =

N∑

n=1

M∑

j=1

y jnth
j
nρ

j
t − H

where ρjt = 1/t
∑t

τ=1 1{πτ=j} measures the relative occur-
rences of state j up to slot t and serves as a prediction for the
respective ρj parameter. Our goal is to use the above proxy
functions in order to find a dynamic policy {y t}Tt=1 such that
the realized performance

∑T
t=1 f (y t)/T approaches f (y�),

and similarly the induced constraint violation
∑T

t=1 g(y t)/T
approaches g(y�)
 0, for any value of time horizon T.

It is worth noticing that the t-slot functions can be expressed
as perturbations of the actual unknown functions:

ft (y) = −
M∑

j=1

N∑

n=1

y jnw
j
nρ

j +

M∑

j=1

N∑

n=1

y jnw
j
n

(
ρj − ρjt

)

� f (y) + εt (y),

with εt (y) =
∑M

j=1

∑N
n=1 y

j
nw

j
n(ρ

j − ρjt). Similarly, we
write:

gt(y) = g(y) + δt(y), δt(y) = (δnt(y),n = 1, . . . ,N + 1),

where: δnt(y) =
M∑

j=1

y j
no

j
n

(
ρjt − ρj

)
, ∀n ∈ N ,

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

3094 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

and δN+1,t(y) =
M∑

j=1

N∑

n=1

y j
nh

j
t

(
ρjt − ρj

)
.

Next, we can define a new problem for each slot t:

P2(t): maximize
y∈Y

ft (y) s .t . gt (y)
 0. (5)

And we will use {P2(t)}t to perform a dual ascent and obtain
the {y t}t that applied in real time.

First, we dualize P2(t) and introduce the Lagrangian:

Lt (y ,λ) = ft (y) + λ�gt (y)

where λ = (λ1, λ2, . . . , λN , μ) are the non-negative dual vari-
ables that will be acting as shadow prices for the N + 1
time-average (or, budget) constraints. The dual function is:

Vt (λ) = min
y∈Y

Lt (y ,λ).

The basis of our approach is the application of a dual-ascent
algorithm where the iterations are in sync with the system’s
time slots t. Specifically, in each iteration t we minimize the
Lagrangian by executing:

y j ,�n = arg min
y j
n∈[0,1]

y jn

(
−w j

n + λnto
j
n + μth

j
n

)
ρjt . (6)

This yields the currently optimal offloading policy for each
state j ∈ J , based on which we derive an easy-to-implement
offloading rule. That is, denoting with jt the state at slot t, we
write for the offloading decision of each device n ∈ N :

y jtn =

{
1 if λnto

jt
n + μth

jt
n < w

jt
n

0 otherwise.
(7)

Note that in practice, state jt is not entirely known to each
device n ∈ N , but it rather refers to the partial system state
regarding the device. This is possible since each device knows
its own expected power consumption of the current slot by,
e.g., estimating the channel state and also the expected cloudlet
resource consumption through the image’s file size. Eq. (7)
dictates an offloading when the expected accuracy gain w jt

n

exceeds the weighted resource cost λnto
jt
n +μth

jt
n that is cal-

culated based on the constraint violation which, in turn, is
reflected on the shadow prices.

Then, we improve the current value of Vt (λ) by updating
the dual variables:

λn,t+1 =

⎡

⎣λnt + at

⎛

⎝
M∑

j=1

ojnρ
j
ty

j
n − Bn

⎞

⎠

⎤

⎦
+

, ∀n ∈ N , (8)

μt+1 =

⎡

⎣μt + at

⎛

⎝
N∑

n=1

M∑

j=1

hjnρ
j
ty

j
n − H

⎞

⎠

⎤

⎦
+

(9)

where [u]+ = max{0, u} and at is the dual step.
The online task outsourcing algorithm, henceforth called

OnAlgo, is based on eq. (7)-(9). The details are presented in
Algorithm 1. When each device n receives an object snt in
slot t, it uses its classifier to predict its class and the predictor
to estimate the cloudlet’s classification improvement (Steps 5-
7). Then, the device uses its threshold decision rule (Step 9)

Algorithm 1: OnAlgo
1: Initialization: t = 0, λ0 = 0, ∀ n, j
2: while True do
3: for each device n ∈ N do
4: y

j
nt = 0, ∀j

5: Receive object snt
6: Classify objects and obtain Jn (snt), dn (snt), ∀snt
7: Use classification results on predictor to obtain wnt
8: Observe partial current state jt and send it to cloudlet
9: if λnto

jt
n + μth

jt
n < w

jt
n then

10: y
jt
n ← 1 % Send object to cloudlet

11: end if
12: Receive updated distribution ρ

j
t from the cloudlet

13: λn,t+1 ← [λnt + αt (
∑M

j=1 o
j
nρ

j
t y

j
n − Bn)]

+, ∀n ∈ N
14: end for
15: Cloudlet: Receive partial system states from devices, and

send back ρ
j
t

16: Compute tasks received from all devices
17: μt+1 ← [μt + αt (

∑N
n=1

∑M
j=1 h

j
nρ

j
t y

j
n − H)]+

18: Send μt+1 to devices
19: t ← t + 1
20: end while

that compares the expected benefits for state jt with the out-
sourcing costs for the device and cloudlet. If the cloudlet is not
expected to offer satisfactory gains (or, even worse, has lower
accuracy), the devices refrain from offloading their tasks. The
devices receive the updated state distribution from the cloudlet
(Step 12), and update their local dual variable for the power
constraint (Step 13). The clouldet initially evaluates the cur-
rent system state and sends it to the devices (step 15). Then,
it classifies the received objects and updates its congestion
variable (Step 17), which is sent to devices.

It is interesting to observe that OnAlgo is lightweight in its
computation and communication requirements. The offloading
decision are made simply by using an intuitive threshold rule
that weights the expected performance gains with the expected
costs where the latter are captured in a systematic way via
the dual multipliers. And this rule can be employed by each
device independently. Similarly, the updates of the dual vari-
ables involve summation of scalars and projection onto the
non-negative orthant, i.e., keeping only the positive result or
setting equal to zero otherwise.

IV. PERFORMANCE ANALYSIS

The gist of our approach is that, as time evolves, the
sequence of problems {P2(t)}t that aggregate the statistical
information up to slot t, approaches the original problem P1.
We note that the following analysis is general as it holds for
different functions f (y) and g(y) than the above, as long as they
are convex. We first introduce formally the necessary assump-
tions and then present a set of technical Lemmas that lead to
our main Theorem.

Assumption 1: The constraint functions and objective func-
tions of {P2(t)}t satisfy: |ft (y)| ≤ σf , ‖gt (y)‖ ≤
σg , ∀t , y ∈ Y for some bounded positive parameters σf , σg .

Assumption 2 (Slater Condition): There exists a vector
y s ∈ Y such that gt (y s) ≺ 0, ∀t .

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

GALANOPOULOS et al.: SELECTIVE EDGE COMPUTING FOR MOBILE ANALYTICS 3095

These conditions are mild as they, essentially, require that
the performance gains and costs are bounded; and that there
is an offloading strategy, y s , that satisfies strictly the con-
straints – e.g., transmitting a very small number of images
would satisfy this requirement.

A. Complementary Slackness and Constraint Bounds

Lemma 1 (Complementary Slackness Lower Bound): Under
the dual update (8)-(9) it holds:

−
T∑

t=1

λ�t gt (y t) ≤
σ2g
2

T∑

t=1

at +
1

2

T∑

t=1

‖λt‖2
(

1

at
− 1

at−1

)

− ‖λT+1‖2
2aT

(10)

The next result bounds the constraint violation of OnAlgo.
Lemma 2 (Bounded Constraint Violation): Under the dual

update (8)-(9) it holds:
∥∥∥∥∥
1

T

T∑

t=1

g(y t)

∥∥∥∥∥ ≤ ‖λT+1‖
TaT

+
1

T

T∑

t=1

‖λt‖
(

1

at−1
− 1

at

)

+
1

T

T∑

t=1

‖δt (y t)‖. (11)

B. Approximate Primal Averaging Bounds

The basic idea is that OnAlgo converges to an approxi-
mate saddle point. Approximate complementary slackness then
allows us to bound the performance gap. We use the next
lemma.

Lemma 3 (Approximate Saddle Point): When {y t}t are
selected using (7), the t-slot Lagrangian is bounded by:

1

T

T∑

t=1

Lt (y t ,λt)− f (y�) ≤ 1

T

T∑

t=1

(
εt (z t) + λ�t δt (z t)

)

(12)

where z t ∈ argminy∈Y f (y) + λ�t g(y).
We can now state and prove the main theorem.
Theorem 1 (Performance Bounds): OnAlgo ensures:

(a):
1

T

T∑

t=1

f (y t)− f (y�) ≤ CT +
σ2g
2T

T∑

t=1

at

− ‖λT+1‖2
2TaT

+
1

2T

T∑

t=1

‖λt‖2
(

1

at
− 1

at−1

)

(b):
∥∥∥
1

T

T∑

t=1

g(y t)
∥∥∥ ≤ ‖λT+1‖

TaT
+

1

T

T∑

t=1

‖δt (y t)‖

+
1

T

T∑

t=1

‖λt‖
(

1

at−1
− 1

at

)

where CT =
1

T

T∑

t=1

(
εt (z t)− εt (y t) + λ�t δt (z t)

)
,

with z t ∈ arg min
y∈Y

f (y) + λ�t g(y).

Proof: Replacing the definition of the t-slot Lagrangian,
Lt (y t ,λt) = ft (y t)+λ�t gt (y t), in Lemma 3 and subtracting
(1/T)

∑T
t=1 λ�t gt (y t) from both sides we can write:

1

T

T∑

t=1

ft (y t)− f (y�) ≤ 1

T

T∑

t=1

(
εt (z t) + λ�t δt (z t)

)

− 1

T

T∑

t=1

λ�t gt (y t),

and expanding ft (y t) = f (y t) + εt (y t) and using Lemma 1,
we eventually get:

1

T

T∑

t=1

f (y t)− f
(
y�) ≤ 1

T

T∑

t=1

(
εt (z t)− εt (y t) + λ

�
t δt (z t)

)

+
σ2
g

2T

T∑

t=1

at +
1

2T

T∑

t=1

‖λt‖2
(

1

at
− 1

at−1

)

− ‖λT+1‖2
2TaT

.

The second claim of the Theorem follows from Lemma 2.
Theorem 1 characterizes the optimality gap and time-

average constraint violation for any time horizon T. And we
see that in the long run we are guaranteed to approach the
(unknown) optimal solution and ensure that the constraints
will be respected, i.e., we will not exceed the devices’ power
budget, nor the cloudlet’s capacity. The steps can be constant,
e.g., at = a as in [7] or diminishing, e.g., at = a/tβ , with
β ∈ (0, 1). Also, the theorem reveals how the error terms of
the proxy functions affect the convergence; and it is valid even
if one uses other types of estimators, e.g., employing Gaussian
Processes to approximate the objective and constraints.

C. Convergence Analysis

The final step of our analysis is to study the convergence
of the proposed algorithm. First, it is important to see that
Theorem 1 provides a full characterization of the performance
gap, and demonstrates how this depends on the time hori-
zon, the system parameters (e.g., σg), the system perturbations
(errors), and the update steps {at}t . The convergence rate
depends on all these factors. We start by proving that λt is
bounded ∀t , which is a technical requirement for our analysis.

1) Boundedness of Multipliers: For λt to remain bounded
we need gt (y t) to converge to 0 sufficiently quickly or to be
negative sufficiently often. We start with the following result:

Lemma 4 (Bounded level set): Under Assumptions 1-2 and
defining q := mint qt with qt = minn{−gnt (y s)} > 0, it
holds:

N+1∑

n=1

λn ≤ (
σf − v

)
/q , ∀λ ∈ Qv := {λ � 0 | Vt (λ) ≥ v}.

Lemma 5 (Dual vector bound): Under Assumptions 1-2, the
dual update (8)-(9) ensures ‖λt‖ is uniformly bounded.

Obtaining an upper bound for the norm ‖λt‖ ensures that
the respective terms ‖λT ‖/T appearing on the bounds of
Theorem 1, are guaranteed to diminish with time.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

3096 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

2) Error Terms: Finally, we characterize the aggregate
error terms that are induced by the employed approximate
dual method, and which affect the bounds of Theorem 1. We
write:

T∑

t=1

εt (z t)− εt (y t)

=

T∑

t=1

M∑

j=1

N∑

n=1

w j
n

(
z
j
nt − y

j
nt

)(
ρ
j
t − ρj

)
(13)

and similarly the other error-related terms of the performance
and constraint bounds:

T∑

t=1

λ�t δt (z t) =

T∑

t=1

M∑

j=1

N∑

n=1

ojnλnt z
j
nt

(
ρ
j
t − ρj

)

+
T∑

t=1

M∑

j=1

hjnμt z
j
nt

(
ρjt − ρj

)
,

T∑

t=1

δt (y t) =

T∑

t=1

M∑

j=1

N∑

n=1

ojny
j
nt

(
ρ
j
t − ρj

)

+
T∑

t=1

M∑

j=1

hjny
j
nt

(
ρjt − ρj

)
.

Now, we can upper bound the above terms by their norms
and observe that, since parameters w j

n , ∀n, j and the offload-
ing variables are uniformly bounded, their overall behavior
depends on terms |ρjt − ρj |, ∀j ∈ J . Hence, as long as the
running average of the realizations for each state j converge
to the respective mean value, the errors gradually diminish
to zero. The conditions that ensure this convergence range
from the random variables {1{πt=j}}t ,j being i.i.d. where the
Law of Large Numbers applies; to more general settings where
they are independent and we can use Hoeffding’s inequality
[59, Th. 1] to obtain:

Prob
(∣∣∣ρjt − ρj

∣∣∣ > κ
)
<

1

e2κ
2t
. (14)

And one can further relax the assumptions regarding the
system state statistics, e.g., to allow for a martingale-type
weakly dependence across successive states, and employ the
Azuma inequality for a similar bound. These conditions gen-
eralize the stricter requirements of i.i.d. statistics that other
network optimization frameworks require [9].

Concluding, it is interesting to consider some special cases
in order to shed light on the favorable convergence properties
of our algorithm. Namely, for the case where we use the step
at = a/

√
t , Theorem 1(a) shows that the average gap closes

at a rate of O(1/
√
T). To see this, first note that it holds:

σ2g
2T

T∑

t=1

at ≤
σ2g
2T

T∑

t=1

a√
t
≤ σ2g

2T
2a

√
T =

2aσ2g√
T

= O
(
T−1/2

)

We can also bound the next term:

1

2T

T∑

t=1

‖λt‖2
(

1

at
− 1

at−1

)

=
1

2aT

T∑

t=1

‖λt‖2
(√

t −√
t − 1

)

(a)
≤ ‖λmax‖2

2aT

T∑

t=1

(√
t −√

t − 1
)
=

‖λmax‖2
2a

√
T

= O
(
T−1/2

)

where (a) follows from Lemma 5 (dual vectors uniformly
bounded). And similarly we can bound the last RHS term in
Theorem 1(a) by O(T−1/2). Now it remains to bound CT .
Indeed, when the perturbations are i.i.d. the gap between the
running average of the state probabilities (ρjt) and their mean
values (ρj) diminishes at the rate of O(T−1/2). Hence, using
the fact that

∑T
t=1 1/

√
t ≤ 2

√
T , and that all variables are

bounded in [0, 1] the error term in (13) diminishes with rate
O(1/

√
T) as well. Finally, it is easy to see that with a sim-

ilar argument we find that the constraint violation diminishes
with rate O(1/

√
T) in this case. Hence, overall the algorithm

converges with that rate, both w.r.t. the optimality gap and the
constraint violation.

V. MODEL AND ALGORITHM EXTENSIONS

We extend our framework by jointly optimizing prediction
accuracy and total execution delay, since the latter can also
be crucial for many edge services. Then, we explain how
it can cope with massive demand scenarios where the wire-
less bandwidth becomes a bottleneck or the cloudlet’s energy
cost is significant; and finally we elaborate on alternative
designs/usages of the predictor.

Joint Accuracy and Delay Optimization: We extend our
model to capture both the accuracy gains and the impact of
offloading decisions on delay. We do so by adding the total
delay for processing the tasks of all users in the objective
function and using a scaling parameter ζ ∈ [0, 1] to balance
between the two objectives. In detail, we can express the total
delay as:

Dtot (y) =
N∑

n=1

M∑

j=1

(
1− y jn

)
Dpr
n + y jn

(
Dpr
n +D

pr
0 +D tr

n

)
,

where Dpr
n , Dpr

0 are the delays for processing images at device
n or the cloudlet, respectively; and D tr

n the delay for transmit-
ting images to cloudlet. These quantities can vary with time,
similarly to the other system parameters, because each image
has different size or the wireless medium changes. The pro-
cessing delays can be modeled with linear functions as we
enforce the processing capacity constraints. That is, we can
write D

pr
n = kn/Hd ,n , where kn is the number of CPU cycles

required for processing the images of device n, and Hd ,n is the
processing speed of device n (cycles/sec). Similarly, we can
define the processing delay at the cloudlet as D

pr
0 = kn/H

which may vary with time; we refer the reader also to [17]
and references therein.

Regarding the transmission delay, this depends on the
actual system architecture. For example, if different chan-
nels are employed for the users, we can express it as D tr

n =

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

GALANOPOULOS et al.: SELECTIVE EDGE COMPUTING FOR MOBILE ANALYTICS 3097

n/(rnW), where
n is the size of each image, rn the chan-
nel gain for user n, and W the link bandwidth. If there
is a CSMA-type network where users need to share their
links, we need to replace W with the actual airtime Wn

that user n receives; and in the case we have a fair round-
robin (vanilla version of CSMA) we can approximate this with
Wn =

∑M
j=1 y

j
n/

∑N
n=1

∑M
j=1 y

j
n . This model has been used

extensively in Wi-Fi service allocation, see [18], and in mobile
code offloading, e.g., in [17].

Following the analysis in Section II we can replace in P1

the new objective function f (y) =
∑M

j=1

∑N
n=1 w

j
ny

j
nρ

j −
ζDtot (y), and by following the same process obtain the
offloading rule:

y jtnt =

{
1 if λnto

jt
n + μth

jt
n < w

jt
n − ζ

(
D tr
nt +D

pr
0t

)

0 otherwise,
(15)

where we observe that the device execution delay is nulli-
fied since it is independent of the offloading decision, and the
condition in line 10 of Algorithm 1 will be replaced by (15).

Wireless Bandwidth and Energy Cost Constraints: We
have assumed the system operation is constrained by the
devices’ power budget and the computing capacity of the
cloudlet. Indeed, most often these are the bottleneck resources
[5], [6], [20]. However, in scenarios of massive demand the
wireless link capacity might also be a bottleneck constraint.
Our analysis can be readily extended for this case. If we denote
with {Wt}∞t=1 the link capacity process (uniformly bounded;
well-defined mean value W) assuming a wireless link shared
by all devices,7 we can add to P1 the constraint:

N∑

n=1

M∑

j=1

y jnρ
j
n ≤ W . (16)

Eq. (16) can be handled as the computing constraint (4) and
will only affect the convergence bounds. Similarly, we can
include other constraints that couple the actions of all devices,
such as the energy cost at the cloudlet which increases with the
aggregated offloaded tasks from all devices and might depend
on time-varying energy prices.

Alternative System Architectures: A different mechanism
is possible, where the devices send objects to the cloudlet
before using their own classifier. This approach can reduce
the consumed energy, since it avoids low-accuracy local clas-
sifications. However, it requires a different type of a predictor,
namely one that can estimate the expected accuracy gain using
some basic features of the object (e.g., its file size), and
without requiring input from the local classifier. In this case,
modeling the power consumption of the devices would modify
constraint (3) of P1 as:

M∑

j=1

(
y jnρ

j on +
(
1− y jn

)
ρj νn

)
≤ Bn , ∀n ∈ N ,

where the second term indicates the power νn consumed
by each device when only local classification is performed.
OnAlgo can be extended to this case by changing the predictor.

7This can be either an OFDM-based cellular link or a coordinated access
WiFi link; in the case we have a CSMA-type of mechanism, one needs to
account for the additional bandwidth loss due to collisions, etc.

Similarly, it is possible to have services that are executed
in multiple stages, e.g., a video stream is compressed, then
frames of interest are selected, and objects are identified on
each frame. In this case, the devices might decide to outsource
some of the tasks in the first stage, some others after the second
stage, and so on. Again, our optimization algorithms can be
extended to include these decisions, by defining a separate set
of variables for each stage while accounting for the costs and
properties (e.g., data volumes) in each case. In specific, (3)
would be transformed to:

M∑

j=1

(
y jnρ

j on +
(
1− y jn

)
ρj νcln

)
≤ Bn , ∀n ∈ N ,

where νcln is the classification computing cost, which is sig-
nificantly smaller than νn . Observe that the computing load
of stage 1, i.e., feature extraction, is not accounted for since
it is again induced regardless of the offloading decision.

VI. IMPLEMENTATION AND EVALUATION

We have implemented the proposed architecture in a small
wireless testbed using 4 Raspberry Pis, which we also lever-
aged to create synthetic traces so as to run additional larger-
scale simulations. The evaluation of OnAlgo was conducted
using images from two publicly-available datasets of images,
and compared against benchmarks from previous works – to
which we provide pointers. Our evaluation plan has four goals:
(i) investigate the accuracy performance of well-known clas-
sifiers for different sizes of training datasets, hence revealing
why edge augmentation is needed; (ii) Measure the energy and
computing costs of image classification tasks; (iii) Perform a
parameter-sensitivity analysis of OnALgo; and (iv) Compare
OnALgo with several benchmark algorithms.

A. Experiments Setup

1) Testbed and Measurements: We used 4 Raspberry Pis
(RPs) as end-nodes, and a cloudlet with specs as in [21], see
Fig. 2a. The RPs are placed in different distances from the
cloudlet, and all plots are using data from at least 50 experi-
ments. We measured energy using a Monsoon Power Monitor,
and used Python libraries and TensorFlow for the classifiers.
We have used vanilla versions of libraries and classifiers so
as to facilitate observation of the results.8

We measured the average power consumption when a RP
transmits with different rates, Fig. 2b. Then we fitted a linear
regression model that estimates the consumed power (Watts)
as a function of the rate r, p(r) = −0.00037r2 + 0.0214r +
0.1277. This result is used by OnAlgo to estimate the energy
cost for each image, given the data rate in each slot (which
might differ for the RPs). Also, we measured the average
computing cost (cycles/task) for the classification task for a
convolutional neural network (CNN) in the RPs and cloudlet.
Since the images have different sizes, we observed that the
computation load varies, with a mean of 441 Mcycles and

8For instance, the memory footprint of NNs can be made smaller [27], [28]
but such actions possibly affect their performance. Our analysis is orthogonal
to such interventions.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

3098 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 2. (a): Testbed: 4 RPs and a cloudlet (laptop). (b): Transmit power consumption measurements and the fitted curve for the RPs. (c) CDF of computing
cycles per task for the cloudlet. (d) Increasing the number of layers in CNN increases the model size (MB) up to 100%.

std. 90 Mcycles for the cloudlet (see Fig. 2c), and a mean
of 3044 Mcycles and std. 173 Mcycles for RPs. Regarding
the delays, we measured device and cloudlet average process-
ing and transmission delays and found that D

pr
n = 2.537,

Dpr
0 = 0.191 and D tr

n = 0.157 ms . This result suggests that
local processing is about 10 times slower than offloading in
our system. Hence, it is possible that the extra offloading delay
experienced by the devices can be worth trading off for the
enhanced accuracy of the cloudlet.

2) Data Sets and Classifiers: We focus on image clas-
sification, a widely employed analytic task, and use two
well-known data sets: (i) MNIST which consists of 28 × 28
pixel handwritten digits, and includes 60K training and 10K
test examples; (ii) CIFAR-10 that consists of 50K training
and 10K test examples of 32 × 32 color images of 10 classes.
We used two very different classifiers: the normalized-distance
weighted k-nearest neighbors (KNN) algorithm [22], and the
more sophisticated Convolutional Neural Network (CNN),
implemented with TensorFlow [23]. Both classifiers output
a vector where each coordinate represents the probability
that the object belongs to the respective class. These clas-
sifiers differ substantially in their performance and resource
requirements, hence allowing us to build diverse experiment
scenarios. Our goal is to evaluate both and determine which
one is more suitable depending on other system parameters
like the number of available training samples at each location.

The predictors are trained with labeled images and the out-
puts of the local (dn (snt)) and cloudlet (d0(snt)) classifiers.
We implemented an ordinary least squares regressor and a
model-free random forest that estimate φnt (dependent vari-
ables) based on the classifier outputs (independent variables).
Recall that the dependent variables are calculated using (1).
We have used training sets of different sizes and two different
regressors: (i) a general model, where the prediction does not
consider the locally inferred class as an independent variable;
and (ii) a class specific model that is based on the output of
the local classifier.

3) Benchmark Algorithms: We compare OnAlgo with three
different algorithms:

• Accuracy-Threshold Offloading (ATO), where a task is
offloaded when the confidence of the local classifier is
below a threshold, without considering the resource con-
sumption. This is basically the non-distributed version
of [24], where if the local result is not sufficiently reliable,
further CNN layers in the edge or cloud are invoked.

• Resource-Consumption Offloading (RCO), where a task
is offloaded when there is enough energy, without consid-
ering the expected classification improvement. This is a
type of sophisticated greedy algorithm that takes myopic
decisions in each slot.

• Online Code Offloading and Scheduling (OCOS) [25],
where the devices always try to exploit the cloudlet’s clas-
sifier, and the cloudlet tries to schedule as many tasks as
possible in each slot, given its available resources. That
is, the cloudlet follows a greed strategy.

B. Initial Measurements

1) Limitations of Mobile Devices: We used our testbed to
verify these small resource-footprint devices require the assis-
tance of a cloudlet. These findings are in line with previous
studies, e.g., [24], [26]. The performance of a CNN model
increases with the number of layers (as we will show next),
but so does the model size, see Fig. 2d. We find that, even
with 4 layers, a CNN trained for CIFAR has 1GB size and
hence cannot be stored in the RPs (e.g., even more so in a
smaller IoT node). Similar conclusions hold for the KNN clas-
sifier, the accuracy of which is directly linked to the number
of labeled local data (KNN needs the training data available
locally). Clearly, despite the efforts to reduce the size of ML
models by using, for instance, compression [27] or residual
learning [28], the increasing complexity of analytics and the
small form-factor of devices will continue to raise the local
versus cloudlet execution trade off.

2) Classifier and Predictor Assessment: Here we evaluate
the different classifier and predictor designs towards build-
ing a more efficient system. This provides interesting insights
on how these system elements work in practice. In detail, in
Fig. 3a we see that the accuracy (defined as the ratio of correct
predictions over the sum of all predictions) of the KNN classi-
fier improves with the size Kn of labeled data when applied to
MNIST. Figure 3b depicts the accuracy improvement for CNN
as more hidden layers are added. The performance increase is
higher for the digits that are more difficult to recognize (e.g.,
4 and 5), up to about 20%. Notice, that the performance of the
CNN classifier is superior to KNN, when we use fewer lay-
ers, or samples respectively. In addition, we present the CNN
performance on CIFAR, for 1, 2 and 4 hidden layers in Fig. 3c.
CIFAR is more complex than MNIST due to the properties of
its objects (colored images, etc.), and this results in lower accu-
racy. Overall, we see that the classifier performance depends

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

GALANOPOULOS et al.: SELECTIVE EDGE COMPUTING FOR MOBILE ANALYTICS 3099

Fig. 3. Per class Accuracy of MNIST and CIFAR-10 for KNN and CNN classifiers of various labeled data sizes and hidden layers. For details of training
and validation see Section V-A.

Fig. 4. Predictor assessment.

on the algorithm (KNN, CNN, etc.), the settings (datasets,
layers, etc.), and differ also for each object class. Hence, an
algorithm is required that can adapt to all these parameters
(as OnAlgo does). Since we have verified the superiority of
CNN classifiers, we continue our evaluation using only these,
instead of KNN.

Finally, we studied the training dataset impact on the pre-
dictor’s error, using both general and class-specific (i) linear
regressors and (ii) random forests. In Fig. 4, we plot the
prediction error of the accuracy improvement for both cases
of general and class-specific predictors for CNN local device
and cloudlet classifiers. We observe that the random forest is
superior to the simpler linear regressor only when the num-
ber of samples is small. Moreover, random forests display an
inconsistency when comparing general to class-based models
as the number of training samples varies. The class specific
regressor for 5K samples achieves the lowest average absolute
error, thus it is used throughout the following experiments,
while its error is rapidly decreasing from 35% for 100 points
to 12.3% for 5K points on the CIFAR dataset.

C. Performance Evaluation

Next, we evaluate the performance of OnAlgo in terms
of achieved accuracy, offloading frequency and resource con-
sumption. First, we evaluate OnAlgo for different values of
the power consumption constraint Bn . Then, we use a vari-
able non-i.i.d. traffic load to compare its performance against
the competitors, by considering these different criteria. The
traffic load is an exponentially distributed sequence of task
bursts, with a uniform duration of 5-10 seconds. This way we
emulate the real-world scenario of sensor-activated cameras
that generate images for short time periods.

Fig. 5. Accuracy and offloading percentage of OnAlgo for various resource
constraints, on MNIST and CIFAR-10.

1) Resource Availability: We evaluate OnAlgo, by using a
1-layer CNN for the RPs and a 4-layer CNN for the cloudlet.
In Fig. 5 we show the average accuracy achieved by the four
devices, as well as the fraction of requests offloaded to the
cloudlet when we vary the devices’ power budget Bn , for
MNIST and CIFAR. Evidently, as Bn increases there are more
opportunities for exploiting the cloudlet and obtaining a better
result than the local classifier. Furthermore, some interesting
remarks can be made by comparing the two datasets. As
shown in Fig. 3(b–c), MNIST is easier to classify and the
gain of using a better classifier is not as important as on
the CIFAR dataset. In particular, with MNIST the gains are
about 6% in accuracy as the resources (and thus the offloaded
tasks) increase. With CIFAR, on the other hand, the potential
performance gain when using the cloudlet is higher; and as
Bn increases, the accuracy gains are up to 15%. These two
experiments demonstrate the agility of our algorithm, which
assesses the potential accuracy gains and shapes accordingly
the offloading strategy, based on resource availability.

2) Comparison With Benchmarks: Next, we compare
OnAlgo to ATO, RCO and OCOS for a varying non-i.i.d. traf-
fic load in Fig. 6 using the criterion of accuracy and power
consumption. Ideally, we would like an algorithm to perform
well in both these dimensions. To ensure a realistic compar-
ison, we set the rule for all algorithms that the cloudlet will
not serve any task if the computing capacity constraint is vio-
lated; while for RCO the availability of energy is determined
by computing the average consumption by each device during
the experiment. We employ two scenarios to demonstrate the
algorithms’ performance and energy costs under different data
sets and resource availability states. The experiments below
reveal the, rather expected, finding of an optimization-based

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

3100 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 6. Comparison of different offloading algorithms w.r.t. their accuracy and energy cost, under different task load conditions.

dynamic algorithm outperforming the respective greedy (or,
myopic) algorithms we use as benchmarks.

Scenario 1: Low accuracy improvement; high resources. In
this case, we set9 Bn = 0.02 mW , H = 2 GHz allowing
the devices to offload many tasks, and the MNIST dataset
(has small improvement between 1 layer and 4 layer CNNs).
We depict the average accuracy achieved by the devices and
the average power consumption versus the task load in bursts
per minute in Fig. 6a and 6b respectively. We observe that
OnAlgo shows a smaller slope in the decrease of accuracy, as
the load increases than all the competitors. The performance
of ATO quickly drops because the cloudlet’s resources are
insufficient for high loads. RCO’s performance is good for the
most part, but it quickly deteriorates for high task loads as the
devices refrain from offloading due to the power constraints. It
is interesting also to note that RCO even outperforms OnAlgo
in terms of accuracy (by approx. 2%) but this happens at
the expense of larger energy cost, namely it spends more
than double the energy of OnAlgo. OCOS performs simi-
larly to RCO since performance degradation is caused by
cloudlet resource exhaustion. The problem with both algo-
rithms is that they do not offload intelligently, based on both
the improvement potential and the availability of resources.
Hence, when considering both performance and energy cost
criteria, and especially in the non-trivial higher load cases they
are significantly outperformed by OnAlgo.

Scenario 2: High accuracy improvement; low resources.
The settings for this scenario are Bn = 0.01 mW , H =
500 MHz not allowing many offloadings and cloudlet clas-
sifications. We used the CIFAR dataset that demonstrates a
substantial performance difference between local and cloudlet
classifiers. We see from Fig. 6c that OnAlgo is up to 12%
more accurate than ATO/RCO for high task load, and in any
case significantly higher than in Scenario 1. OCOS performs
slightly better than ATO/RCO, but at the cost of very high
power consumption. Since the potential of improvement is
higher in Scenario 2, ATO marginally outperforms RCO by
spending up to 50% more power than RCO (see Fig. 6d).
OnAlgo consumes about 50% less power than OCOS since
the latter always tries to offloads tasks but does not leverage
the cloudlet efficiently due to the lack of computing capacity.

9We have explicitly set a small power budget so as to highlight the impact
of power constraints on the system performance; higher power budgets will
still be a bottleneck for higher task request rates or images of larger size.

Fig. 7. Comparison of different key metrics (normalized): (a) OnAlgo for
low, medium and high traffic load. (b) Algorithm comparison for high load
in scenario 2.

Summing up the 2 scenarios above, we see that OnAlgo
achieves a smooth performance across varying traffic loads,
while its competitors struggle, especially as the load increases.
Moreover, it achieves reasonable power consumption regard-
less of the resource availability as opposed to RCO in
Scenario 1, ATO in Scenario 2, and OCOS in both scenar-
ios. Even when in some cases OnAlgo is being outperformed
by some competitor with respect to one criterion (e.g., by RCO
w.r.t. accuracy in Scenario 1), this happens at the expense of
losing at much larger rates w.r.t. the other criterion (power
consumption).

3) Trade-off Analysis: Next we demonstrate the trade-offs
between number of offloadings, accuracy and resource con-
sumption between OnAlgo and the competitor algorithms
using net graphs. Fig. 7a displays the performance of OnAlgo
for low medium and high task load. Observe that as the load
increases, OnAlgo rapidly increases resource consumption to
maintain high accuracy. For instance, comparing low to high
load, we see that performance drops only by about 7% as the
computing and power consumption is increased by 75%. In
Fig. 7b we compare the same metrics for high traffic load,
and the different competitors. Observe that OnAlgo achieves
the highest accuracy, while being (closely) second best (behind
RCO) in terms of computing resource and power consumption.
Moreover it achieves high accuracy despite offloading less fre-
quently than OCOS, due to the intelligent way it makes the
offloading decisions. In summary, OnAlgo achieves the high-
est accuracy between the competitors, and at the same time
has a moderate resource consumption.

Next, in Fig. 8 we explore the accuracy-resource
consumption-delay trade-off when problem (P3) is considered,

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

GALANOPOULOS et al.: SELECTIVE EDGE COMPUTING FOR MOBILE ANALYTICS 3101

Fig. 8. (a) OnAlgo performance for problem (P3). (b) Pareto front between
accuracy and delay efficiency obtained by tuning ζ.

i.e., total delay is jointly optimized with accuracy. Notice in
Fig. 8a, that the increasing traffic load will not only result
in lower accuracy (about 20%) and higher resource consump-
tion, but also in significantly higher delay (up to 25%). Hence,
despite consuming extra resources in high load cases, OnAlgo
still maintains high accuracy standards. Finally, Fig. 8b dis-
plays the Pareto front between accuracy and delay.10 This
shows the effect of parameter ζ (ranging from 0.1 to 0.3)
on the resulted offloading policy and consequently on the
performance of accuracy and delay. For instance, in order to
double the delay efficiency (from 0.1 to 0.2), we would have to
sacrifice roughly 10% accuracy, by offloading less frequently.

VII. RELATED WORK

Edge & Distributed Computing: Most solutions partition
compute-intense mobile applications and offload them to
cloud [29]. This approach cannot support applications with
stringent requirements due to possible large delays in data
transfers [30]. Cloudlets on the other hand, achieve lower delay
by leveraging edge computing [5], [20] but have limited serv-
ing capacity. A different line of work proposes the distribution
of tasks among collaborating nodes [53]–[55] using intuitive
allocation metrics or static optimization models. Hence, there
is need for an intelligent cloudlet offloading strategy and this
idea lies at the core of our proposal which, unlike previous
works: (i) considers the quality of outcome (accuracy) and
resource costs of devices and cloudlet; and (ii) is adaptive and
oblivious to statistics of system parameters and user requests.

Previous works in this area consider simple performance
criteria, such as reducing the computation load and focus
on the architecture design. For example, Misco [31] and
CWC [32] implement frameworks for parallel task execu-
tion on mobile devices; and similarly MobiStreams [33],
Swing [34] and [35], focus on collaborative data stream
computations. These systems either do not optimize the
offloading policy [33] or use heuristics that do not cater for
task accuracy [34], [35]. Instead, OnAlgo ensures optimal
performance, subject to resource availability, even when the
latter is unknown.

System Designs for Mobile Analytics: The increasing impor-
tance of these services has motivated the design of wireless

10In fact delay is inversed (1/s) so that increasing the value towards either
the x-axis or the y-axis yields better performance with respect to the relevant
metric.

systems that can execute such tasks. For instance, [36]–[38]
tailor deep neural networks for execution in mobile devices,
and [39] focuses on how to maximize accuracy in edge-
cloud deployments. These works however, focus either only
on execution delay or accuracy. Glimpse [40] reduces delay
in video tracking applications using an active cache of frames
at the device; Cachier [41] uses edge servers as caches for
image recognition requests so as to minimize latency; and
Precog [42] prefetches trained classifiers on devices to accel-
erate image recognition. In a different approach, [43] selects
in runtime the DNN size, in order to balance accuracy and
resource consumption. Similarly, [44] considers a richer set
of decisions, including model selection; image compression;
and frame rate, aiming to maximize the accuracy of frames.
Finally, [45] minimizes execution time and energy cost for
a single device, for known system parameters and task loads;
while [51] optimizes again delay but through the orchestration
of the edge resources. The plethora of such system proposals
underlines the necessity for an analytical framework for task
outsourcing that can optimize performance.

Optimization of Analytics: Prior analytical works in the con-
text of computation offloading focus on different metrics, such
as the number of served requests, e.g., see [17] and overview
in [6], and hence are not applicable here. In our previous
work [47], we proposed a static optimization framework for a
peer-to-peer collaborative task execution scheme, which does
not employ predictions of gains nor accounts for compu-
tation constraints. The authors of [48] employ a Lyapunov
optimization approach to configure a video analytics applica-
tion towards balancing the accuracy and energy costs, under
i.i.d. requests and system dynamics. In [49], video quality and
computing resources are selected to maximize the approximate
analytics accuracy. FastVA [50] is a video analytics system
that leverages neural processing units at the mobile devices
and proposes a heuristic offloading policy towards maximiz-
ing accuracy. Other works that cater for accuracy either rely on
heuristics or static models and complete knowledge of system
parameters [43], [44], [52].

Clearly, these assumptions are invalid for many practical
systems where the expected accuracy improvements, power
availability, wireless channels, and cloudlet resources not only
vary with time, but often do not follow an i.i.d. process. This
renders the application of max-weight type of policies [9] inef-
ficient. Our approach is fundamentally different and leads to
a more robust algorithm that converges as long as the per-
turbations are bounded (in each slot), and have well defined
mean values (which can be unknown). Our methodology is
inspired by dual averaging and primal recovery algorithms for
static problems, see [7], [8], [19]. We have extended here this
idea and succeeded in obtaining deterministic bounds and for
a broad range of perturbations. It is also important that the
employed algorithm is lightweight and amenable to distributed
execution, hence can be implemented as a network protocol.
This is in contrast with other optimization approaches, e.g.,
using Bayesian learning [13], [56], which require a centralized
computation-demanding execution.

Improvement of ML Models: Clearly, despite the efforts to
improve the execution of analytics at small devices, e.g., by

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

3102 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

compressing NN models [27] or using residual learning [28],
the trade off between low-accuracy local and high-accuracy
cloudlet execution is still important due to the increasing num-
ber and complexity of these tasks. This observation has spurred
efforts for designing fast multi-tier deep neural networks [24];
for dynamic model selection [43], [57]; and for threshold-
based task allocation to DNNs [26]; see also discussion in [44].
These works are orthogonal to our approach and can be readily
incorporated in our framework.

VIII. CONCLUSION

This work introduced the idea of augmenting the execu-
tion of data analytics at mobile devices with more accurate
libraries available at nearby cloudlets. The performance eval-
uation showcased particularly high gains, both in terms of
accuracy and energy, when intelligent offloading is imple-
mented. To that end, we designed a dynamic and distributed
algorithm that decides outsourcing the tasks based on the
expected performance improvement, and the available device
and cloudlet resources. It was shown, theoretically and via
experiments, that this joint performance-cost design outper-
forms other proposals that do not cater for the accuracy or
resource availability; and it often improves both criteria. Our
algorithm achieves near-optimal performance (with tunable
gap) in a deterministic fashion, and under minimal assump-
tions about the system behavior; it suffices the perturbations
to be bounded in each slot and have well-defined means. This
makes it ideal for the problem at hand where the stochas-
tic effects (e.g., expected accuracy gains) might not follow
an i.i.d. or a Markov-modulated process. Finally, we note
that the proposed online algorithm is novel as it extends
prior primal-averaging techniques [7], [19], and can optimize
the network operation under more general conditions than
pertinent optimization frameworks, cf. [9]; hence it is of inde-
pendent interest with potential applications beyond this edge
computing.

APPENDIX

Proof of Lemma 1: For any θ ∈ R
N+1
+ we can write:

‖λt+1 − θ‖2 =
∥∥∥[λt + αtgt (y t)]

+ − θ‖2

≤ ‖λt + αtgt (y t)− θ‖2
= ‖λt − θ‖2 + α2

t ‖gt (y t)‖2
+ 2αt (λt − θ)�gt (y t),

where we used the non-expansiveness property of the
Euclidean projection. Rearranging:

‖λt+1 − θ‖2 − ‖λt − θ‖2
≤ α2

t ‖gt (y t)‖2 + 2αt (λt − θ)�gt (y t).

Dividing with at , setting θ = 0, and applying the telescopic
summation we obtain the final result.

Proof of Lemma 2: We have λt+1 = [λt + atgt (y t)]
+ �

λt + atgt (y t), and dividing by at we get:

λt+1

at
− λt

at
� gt (y t).

Summing telescopically for the first T slots and setting λ1 = 0,
we obtain:

T∑

t=1

gt (y t)

λT+1

aT
+

T∑

t=1

λt

(
1

at−1
− 1

at

)
.

Expanding gt (y t) = g(y t) + δt (y t), dividing with T and
taking the norms yields the result.

Proof of Lemma 3: Recall that we defined:

Lt(y , λ)

= ft(y) + λ�gt(y) = f (y) + λ�g(y) + εt(y) + λ�δt(y).
(17)

Next, we bound the t-slot dual function Vt (λt) =
miny∈Y Lt (y ,λt) in terms of the dual function of problem
P, V (λt) = miny∈Y f (y) + λ�t g(y). Since y t ∈
argminy∈Y Lt (y ,λt), we have:

Vt (λt) = f (y t) + λ�t g(y t) + εt (y t) + λ�t δt (y t)

(a)
≤ f (z t) + λ�t g(z t) + εt (z t) + λ�t δt (z t)

= V (λt) + εt (z t) + λ�t δt (z t)

where (a) follows from the minimality of y t . Hence:

f (y�) = V (λ�)
(a)
≥ 1

T

T∑

t=1

V (λt)

≥ 1

T

T∑

t=1

Vt (λt)− εt (z t)− λ�t δt (z t)

(b)
≥ 1

T

T∑

t=1

(
Lt (y t ,λt)− εt (z t)− λ�t δt (z t)

)

where (a) follows from the maximality of λ� and (b) due to
our primal update.

Proof of Lemma 4: ∀λ ∈ Qv we have:

v ≤ Vt (λ) = min
y∈Y

{
ft (y) + λ�gt (y)

}
≤ ft (y s) + λ�gt (y s)

= ft (y s) +
N+1∑

n=1

λngnt (y s)

Hence it holds: −∑N+1
n=1 λngnt (y s) ≤ ft (y s) − v . Since

gnt (y s) < 0, and λn ≥ 0 we get:

min
n

{−gnt (y s)}
N+1∑

n=1

λn ≤ ft (y s)− v ⇒
N+1∑

n=1

λn

≤ ft (y s)− v

qt
.

Using that |ft (y s)| ≤ σf , the definition of q and the fact that
qt > 0, we arrive at the result.

Proof of Lemma 5: We use an induction argument to show:

‖λt − λ‖ ≤ λmax :=
2σf + ‖λ‖σg

q
+

σ2g
2q

+
ε

q
+ ‖λ‖

+ ‖λ1‖+ aσg , ∀λ � 0. (18)

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

GALANOPOULOS et al.: SELECTIVE EDGE COMPUTING FOR MOBILE ANALYTICS 3103

Trivially, ‖λ1 − λ‖ ≤ ‖λ‖ + ‖λ1‖ ≤ λmax , and assume (18)
holds at t. We consider two cases.

Case (i): Vt (λt) < Vt (λ) − atσ2
g

2 . Then we can write:
2at (Vt (λt)−Vt (λ)) < −a2t σ

2
g ⇒ −2at (Vt (λ)−Vt (λt))+

a2t σ
2
g < 0. Hence, we have:

‖λt+1 − λ‖2 ≤ ‖λt + atgt (y t)− λ‖2
≤ ‖λt − λ‖2 + 2atgt (y t)

�(λt − λ) + a2t σ
2
g

(a)
≤ ‖λt − λ‖2 − 2at (Vt (λ)− Vt (λt)) + a2t σ

2
g

(b)
< ‖λt − λ‖2,

where (a) follows from the fact that g t (yt) is a subgradient of
Vt (λt) and (b) from the assumptions of the case considered.
Hence, it holds ‖λt+1 − λ‖ ≤ λmax .

Case (ii): Vt (λt) ≥ Vt (λ)− atσ2
g

2 .

‖λt+1 − λ‖ =
∥∥∥[λt + atgt (y t)]

+ − λ
∥∥∥ ≤ ‖λt + atgt (y t)− λ‖

≤ ‖λt − λ‖+ atσg

≤ ‖λt‖+ ‖λ‖+ atσg ≤
N+1∑

n=1

λnt + ‖λ‖+ atσg

≤ σf − v

q
+ ‖λ‖+ atσg

≤ σf
q
− 1

q

(
σf + ‖λ‖σg − atσ

2
g

2

)
+ ‖λ‖+ atσg

≤ −‖λ‖σg
q

+
atσ

2
g

2q
+ ‖λ‖+ atσg

≤ −‖λ‖σg
q

+
a1σ

2
g

2q
+ ‖λ‖+ a1σg � λmax

where we used that, by Holders inequality, ‖λt‖ ≤∑N+1
n=1 λnt ; and applied Lemma 4 with:

v = Vt (λ)−
atσ

2
g

2
≤ σf + ‖λ‖σg − atσ

2
g

2

and used that α1 ≥ αt , ∀t . It follows that ‖λt − λ‖ ≤ λmax

and so ‖λt‖ ≤ λmax + ‖λ‖.

REFERENCES

[1] A. Galanopoulos, A. G. Tasiopoulos, G. Iosifidis, T. Salonidis, and
D. J. Leith, “Improving IoT analytics through selective edge execution,”
in Proc. IEEE ICC, 2020, pp. 1–7.

[2] E. Siow, T. Tiropanis, and W. Hall, “Analytics for the Internet of Things:
A survey,” ACM Comput. Surveys, vol. 51, no. 4, pp. 1–36, 2019.

[3] “Cisco global cloud index: Forecast and methodology, 2016–2021,”
Cisco, San Jose, CA, USA, Rep. 1513879861264127, 2018.

[4] “Microsoft Hololens.” [Online]: https://www.microsoft.com/en-
i.e.,/hololens (Accessed: May 2020).

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct.-Dec. 2009.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” in IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[7] A. Nedic and A. Ozdaglar, “Approximate primal solutions and rate anal-
ysis for dual subgradient methods,” SIAM J. Optim., vol. 19, no. 4,
pp. 1757–1780, 2009.

[8] K. Kiwiel et al., “Lagrangian Relaxation via Ballstep Subgradient
Methods,” Math. Oper. Res., vol. 32, no. 3, pp. 497–768, 2007.

[9] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Found. Trends� Netw., vol. 1,
no. 1, pp. 1–144, 2006.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[11] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, Rep., 2009.

[12] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[13] A. Galanopoulos, J. A. Ayala-Romero, D. J. Leith, and G. Iosifidis,
“AutoML for video analytics with edge computing,” in Proc. IEEE
INFOCOM, 2021, pp. 1–10.

[14] A. Gelman and J. Hill, Data Analysis Using Regression and Multilevel
Models. Cambridge, U.K.: Cambridge Univ. Press, 2012.

[15] M. Neely, “Energy optimal control for time-varying wireless networks,”
IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 2915–2934, Jul. 2006.

[16] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, “An axiomatic theory
of fairness in network resource allocation,” in Proc. IEEE INFOCOM,
2010, pp. 1343–1351.

[17] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[18] L. Li, M. Pal, and Y. R. Yang, “Proportional fairness in multi-rate
wireless LANs,” in Proc. IEEE INFOCOM, 2008, pp. 1004–1012.

[19] V. Valls and D. Leith, “A convex optimization approach to discrete
optimal control,” IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 35–50,
Jan. 2019.

[20] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang, “Multi-tier fog
computing with large-scale IoT data analytics,” IEEE Internet Things J.,
vol. 5, no. 2, pp. 677–686, Apr. 2018.

[21] Z. Chen et al., “An empirical study of latency in an emerging class of
edge computing applications for wearable cognitive assistance,” in Proc.
IEEE/ACM SEC, 2017, p. 14.

[22] S. A. Dudani, “The distance-weighted k-nearest-neighbor rule,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. SMC-6, no. 4, pp. 325–327,
Apr. 1976.

[23] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. USENIX OSDI, 2016, pp. 265–283.

[24] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in Proc.
IEEE ICDCS, 2017, pp. 328–339.

[25] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “An Online
algorithm for task offloading in heterogeneous mobile clouds,” ACM
Trans. Internet Technol., vol. 18, no. 2, pp. 1–25, 2018.

[26] C. Lo, Y.-Y. Su, C.-Y. Lee, and S.-C. Chang, “A dynamic deep neural
network design for efficient workload allocation in edge computing,” in
Proc. IEEE ICCD, 2017, pp. 273–280.

[27] V. Chandrasekhar et al., “Compression of deep neural networks for
image instance retrieval,” in Proc. IEEE Data Compress. Conf., 2017,
pp. 300–309.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Dec. 2015, arXiv:1512.03385.

[29] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in Proc. ACM
EuroSys, 2011, pp. 301–314.

[30] K. Ha et al., “The impact of mobile multimedia applications on data
center consolidation,” in Proc. IEEE IC2E, 2013, pp. 166–176.

[31] A. J. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikäinen, and
V. H. Tuulos, “Misco: A MapReduce framework for mobile systems,”
in Proc. ACM PETRA, 2010, pp. 1–8.

[32] M. Y. Arslan et al., “Computing while charging: Building a distributed
computing infrastructure using smartphones,” in Proc. ACM CoNEXT,
2012, pp. 193–204.

[33] H. Wang and L.-S. Peh, “MobiStreams: A reliable distributed stream
processing system for mobile devices,” in Proc. IEEE IPDPS, 2014,
pp. 51–60.

[34] S. Fan, T. Salonidis, and B. Lee, “Swing: Swarm computing for mobile
sensing,” in Proc. IEEE ICDCS, 2018, pp. 1107–1117.

[35] D. O’Keefe, T. Salonidis, and P. Pietzuch, “Frontier: Resilient
edge processing for the IoT,” Proc. VLDB Endow., vol. 11, no. 10,
pp. 1178–1191, 2018.

[36] X. Ran, H. Chen, Z. Liu, and J. Chen, “Delivering deep learning to
mobile devices via offloading,” in Proc. ACM VR/AR Netw. Workshop,
2017, pp. 42–47.

[37] N. D. Lane et al., “DeepX: A software accelerator for low-power deep
learning inference on mobile devices,” in Proc. IEEE/ACM IPSN, 2016,
p. 23.

[38] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

3104 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

[39] Y. Wang, W. Wang, D. Liu, X. Jin, J. Jiang, and K. Chen, “Enabling
Edge-cloud video analytics for robotics applications,” in Proc. IEEE
INFOCOM, 2021, pp. 1–10.

[40] T. Chen, H. Balakrishnan, L. Ravindranath, and P. Bahl, “Glimpse:
Continuous, real-time object recognition on mobile devices,” in Proc.
ACM SenSys, 2015, pp. 155–168.

[41] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in Proc. IEEE ICDCS, 2017,
pp. 276–286.

[42] U. Drolia, K. Guo, and P. Narasimhan, “Precog: Prefetching for image
recognition applications at the edge,” in Proc. IEEE/ACM SEC, 2017,
p. 17.

[43] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and
A. Krishnamurthy, “MCDNN: An approximation-based execution
framework for deep stream processing under resource constraints,” in
Proc. ACM Mobisys, 2016, pp. 123–136.

[44] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A
mobile deep learning framework for edge video analytics,” in Proc. IEEE
INFOCOM, 2018, pp. 1421–1429.

[45] Y. Li, Y. Chen, T. Lan, and G. Venkataramani, “MobiQoR: Pushing the
envelope of mobile edge computing via quality-of-result optimization,”
in Proc. IEEE ICDCS, 2017, pp. 1261–1270.

[46] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[47] A. Galanopoulos, T. Salonidis, and G. Iosifidis, “Cooperative edge com-
puting of data analytics for the Internet of Things,” IEEE Trans. Cogn.
Commun. Netw., vol. 6, no. 4, pp. 1166–1179, Dec. 2020.

[48] S. Zhang et al., “Adaptive configuration selection and bandwidth alloca-
tion for edge-based video analytics,” IEEE/ACM Trans. Netw., vol. 30,
no. 1, pp. 285–298, Feb. 2022.

[49] P. Yang, F. Lyu, W. Wu, N. Zhang, L. Yu, and X. S. Shen, “Edge coordi-
nated query configuration for low-latency and accurate video analytics,”
IEEE Trans. Ind. Informat., vol. 16, no. 7, pp. 4855–4864, Jul. 2020.

[50] T. Tan and G. Cao, “Deep learning video analytics through
edge Computing and neural processing units on mobile devices,”
IEEE Trans. Mobile Comput., early access, Aug. 19, 2021,
doi: 10.1109/TMC.2021.3105953.

[51] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-
Edge: Orchestration of real-time vision applications on heterogeneous
edge clouds,” in Proc. IEEE INFOCOM, 2019, pp. 1270–1278.

[52] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Latency-aware
video analytics on edge computing platform,” in Proc. IEEE/ACM Symp.
Edge Comput., 2017, pp. 2573–2574.

[53] J. C. S. Dos Anjos et al., “Data processing model to perform
big data analytics in hybrid infrastructures,” IEEE Access, vol. 8,
pp. 170281–170294, 2020.

[54] A. M. Ghosh and K. Grolinger, “Edge-cloud computing for Internet of
Things data analytics: Embedding intelligence in the edge with deep
learning,” IEEE Trans. Ind. Informat., vol. 17, no. 3, pp. 2191–2200,
Mar. 2021.

[55] H. Jin, L. Jia, and Z. Zhou, “Boosting edge intelligence with collab-
orative cross-edge analytics,” IEEE Internet Things J., vol. 8, no. 4,
pp. 2444–2458, Feb. 2021.

[56] J. Romero-Ayala, A. Garcia-Saavedra, X. Costa-Perez, and G. Iosifidis,
“EdgeBOL: Automating energy savings for mobile edge AI,” in Proc.
ACM CoNEXT, 2021, pp. 397–410.

[57] L. Liu and J. Deng, “Dynamic DNNs: Optimizing accuracy-efficiency
trade-offs by selective execution,” Mar. 2018, arXiv:1701.00299.

[58] H. Uzawa, “Iterative methods in concave programming,” in Studies
in Linear and Nonlinear Programming, K. Arrow, L. Hurwicz, and
H. Uzawa, Eds. Redwood City, CA, USA: Stanford Univ. Press, 1958,
pp. 154–165.

[59] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Amer. Stat. Assoc., vol. 58, no. 301, pp. 13–30, 1963.

Apostolos Galanopoulos received the Diploma and
M.Sc. degrees from the Department of Electrical
and Computer Engineering, University of Thessaly,
Volos, Greece, in 2014 and 2016, respectively,
and the Ph.D. degree from Trinity College Dublin,
Ireland, in 2021. He is currently with Genesys,
Ireland. He has been a Researcher with the Industrial
Systems Institute, Athena Research and Innovation
Center from 2014 to 2016. His research topics of
interest are wireless communications, edge comput-
ing networks, and application of optimization theory

and machine learning in communication networks.

George Iosifidis received the Diploma degree
in electronics and telecommunications engineering
from the Greek Air Force Academy, Athens, in
2000, and the Ph.D. degree from the University of
Thessaly in 2012. He was an Assistant Professor
with Trinity College Dublin from 2016 to 2020.
He is an Assistant Professor with the Delft
University of Technology. His research interests
lie in the broad area of network optimization
and economics; more information can be found at
www.FutureNetworksLab.net.

Theodoros Salonidis (Senior Member, IEEE)
received the Diploma degree in electronic and com-
puter engineering from the Technical University of
Crete, Greece, in 1997, and the M.Sc. and Ph.D.
degrees in electrical engineering from the University
of Maryland, College Park, in 1999 and 2004,
respectively. He was a Postdoctoral Researcher with
Rice University from 2004 to 2006; a Researcher
with Intel Research, Cambridge, U.K., in 2006;
and a Researcher with Thomson/Technicolor, Paris,
France, from 2007 to 2012. He is a Research Staff

Member of IBM Thomas J. Watson Research Center, Yorktown Heights, NY,
USA. His current research interests are in the areas of automated AI, dis-
tributed analytics, machine learning, and performance analysis, design, and
implementation of cloud, edge and mobile computing systems.

Douglas J. Leith (Senior Member, IEEE) gradu-
ated from the University of Glasgow in 1986, and
the Ph.D. degree from the University of Glasgow
in 1989. He moved to the National University of
Ireland, Maynooth, in 2001 to establish the Hamilton
Institute of which he was a Founding Director
from 2001 to 2014. Towards the end of 2014,
he moved to Trinity College Dublin to take up
the Chair in Computer Systems with the School
of Computer Science and Statistics. His current
research interests include wireless networks, conges-

tion control, optimization, and data privacy.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2022 at 07:25:34 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2021.3105953

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

