3D City Models in the Context of Urban Mining A case study based on the CityGML model of Rotterdam Final Presentation

Pablo Ruben – tutors: Rusnė Šileryté and Giorgio Agugiaro Co-reader: Kaixuan Zhou – Delegate: Regina Bokel

Input for circularity strategies

Mapping

ŤUDelft

Case of roofs

"In general, the lifetime of an asphalt shingle roof ranges between approximately 12 to 25 years" (Townsend et al., 2007)

Statistical estimation approach

Accumulation and remaining rate of buildings (left) and material stock over time.

Hyperspectral imagery

Human: 3 molecules

Silver Spinyfin: 38 molecules

Hyperspectral imagery

Priem, Canters, 2016

Hyperspectral imagery

II. Problem & research questions

Salt and pepper effect

A pixel window in a thematic map After the majority filtering

TUDelft

Problem statement

• 1) Need for identifying pixels containing spectral variations.

Gerealiseerd voor de <u>Gemeente Rotterdam</u> | <u>Contact Gemeente Rotterdam</u> Mogelijk gemaakt door <u>FutureInsight BV</u> in samenwerking met <u>virtualcit SYSTEMS Gr</u> Privacy verklaring

CityGML – Levels of detail (LOD)

ŤUDelft

Problem statement

- 1) Need for identifying pixels containing roof material deviations.
- 2) A highly detailed 3D city model (LOD >2) would fulfil such criterion, it is often unavailable.

Proposed approach

ŤUDelft

Point clouds

Light Detection and Ranging (LiDAR)

Proposed approach

ŤUDelft

Semantical enrichment

Research questions

How can a CityGML LOD2 model be semantically enriched in order to improve material classification performed on roof surfaces?

- 1. Which method is suitable to identify 'deviations' of LiDAR point clouds compared to LOD2?
- 2. What are the requirements with regard to CityGML LOD2, LiDAR point clouds and hyperspectral imagery data?
- 3. To which extent does such a method support the identification of clean pixels?

Societal relevance

"How can a CityGML LOD2 model be semantically enriched in order to improve material classification performed on roof surfaces?"

inputs

flows

processes

III. Development of the methods

III.1 Deviation identification

Data inputs

Mathematical tools

Principal components analysis (PCA)

Exploration

Points located at more than 30cm from the main roof surface

Normal vectors, with deviation >8° using PCA on KNN=10

ŤUDelft

Detect points far from roof surface

- Reduce point cloud to roof surface (2D)
- All points from -1m until +20m are taken into account (region of interest)
- The points with a distance >threshold (in m) are labelled as deviation seeds

- Region growing from the seeds:
 - For each seed, find the 10-nearest neighbours
 - Else: calculate the local normal using PCA on vicinity (10-nearest neighbours)
 - If the normal vector is >threshold° different: add point and restart process from that point.
 - Stop once no points can be added and no seeds are left

Legend: distance Region growing 📕 Used as seeds 📑 Added by region growing Identified as distance deviation Not visited

м ТI

Rejected during region growing

Options $p_{p_{1}}$ p_{1} p_{2} p_{6} p_{3} p_{6}	<i>p</i> ₅	4	a)	
+ no settings - overestimation - no holes	Convex	Concave	b) Moreira, Santos 2007	+ minimal surface- no holes/settings
 + allows holes - settings 	Border extraction	Voronoi		+ holes & [1:n]points + no settings - requires all points
Voronoi diagram: infinite lines

🕞 😂 🖄 🗞 블 💟 🖣	, T 🗉 🏘 🔎 🕼 🕼 🗮 🗐 🍭				
roof surface gmlid	mean distance to roof	90th percentile distance to roof		building g	mlid
RCID_0523bf5d-5525	1.2205382795970425	2.992425118027571	ID_0599100000652624		
RCID_0675094a-3a61	0.172333333333333826	0.9554999999970752	ID_0599100000634532		
RCID_0675094a-3a61	0.008499999999761783	0.08789999999972976	ID_0599100000634532		
RCID_0675094a-3a61	0.0705000000021966	0.2195000000019063	ID_0599100000634532		
RCID_0675094a-3a61	1.0023163265277715	2.1425999999975454	ID_0599100000634532		
RCID_0675094a-3a61	0.7101901408437957	2.1372999999985334	ID_0599100000634532		
RCID_074a3be4-b54f	-0.19182035826440114	-0.22802035826440062	ID_0599100010056978		
RCID_074a3be4-b54f	0.18812835968431704	0.24077964173560246	ID_0599100010056978		
RCID_074a3be4-b54f	-0.1828203582644008	-0.27822035826440084	ID_0599100010056978		
RCID_074a3be4-b54f	-0.1982489296929728	-0.2522203582644025	ID_0599100010056978		
RCID_078a3a40-0676	-0.24699067797208507	0.06306607130546837	ID_0599100010056978		
RCID_08f38eb7-2112	0.17520361797670392	0.5347973504784584	ID_0599100000634532		
RCID_0a891b09-35c3	-0.08109852063611672	0.043064315256821285	ID_0599100100004134		
RCID_0c874e23-98c0	-0.42931823560303084	-0.8840943870002356	ID_0599100010056978		
RCID_0c98a539-652c	-0.4489519774378633	0.06361311228410764	ID_0599100010056978		
RCID_0d765dde-3294	5.588548826005052	19.571884974338342	ID_0599100000359215		
			m		

III.3 Fusion with imagery

APEX imagery of Rotterdam (2014) Red = 399-413 nm, Green = 1145-1155 nm, Blue = 2423-2432 nm

Aerial/Hyperspectral imagery acquisition

Airborne Prism Experiment - APEX (380-2500 nm, up to 532 bands)

June 143 Source: https://twitter.com/APEX_RSL/status/450568985386303488, https://directory.eoportal.org/web/eoportal/airborne-sensors/content/-/article/apex

Sensor technology: line scanner

Sensors:

SWIR (940-2500 nm): CMOS - 1000*199 pixels VNIR (380-970 nm): CCD - 1000*334 pixels

Spectral dimension:

199 (SWIR) or 334 (VNIR) pixels

From pixel to mesh

Q pixels_0.2_0.9994_ID_0599100000422432 :: Features Total: 48, Filtered: 48, Selected: 0

. . .

percentage of cell in roof	percentage of deviations	cell area	col in apex data	row in apex data	apex flight line	roof surface gmlid	building gmlid
1	0	16.22245119043678	293	6635	south	RCID_416cbefe-454c-4b74-83be-f771a47e95cd	15 ID_0599100000422432
1	0.011441388693947827	16.24232918001429	292	6635	south	RCID_416cbefe-454c-4b74-83be-f771a47e95cd	16 ID_0599100000422432
1	0.0008884657367186167	16.215841452350	295	6635	south	RCID_416cbefe-454c-4b74-83be-f771a47e95cd	17 ID_0599100000422432
1	0.0004227979504107229	16.219142055361	294	6635	south	RCID_416cbefe-454c-4b74-83be-f771a47e95cd	18 ID_0599100000422432
0.9275544544333543	0.246804580589202	15.253126894845	291	6634	south	RCID_416cbefe-454c-4b74-83be-f771a47e95cd	19 ID_0599100000422432
0.999443417862267	0.24199628905864154	15.288348170030	290	6634	south	RCID_416cbefe-454c-4b74-83be-f771a47e95cd	20 ID_0599100000422432
0.834973894219926	0.3062960587334088	16.24565884514373	291	6635	south	RCID_416cbefe-454c-4b74-83be-f771a47e95cd	21 ID_0599100000422432
0.8051249834000523	0.259972733289827	15.249817381654	292	6634	south	RCID_416cbefe-454c-4b74-83be-f771a47e95cd	22 ID_0599100000422432
1	0.1416679848044938	16.23913213314852	288	6635	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	23 ID_0599100000422432
1	0.02782443552942295	16.242492668019	287	6635	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	24 ID_0599100000422432
0.9853216827648248	0.18893176817091717	16.305097851228	288	6636	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	25 ID_0599100000422432
1.0000000000000000000000000000000000000	0.0523484418981879	16.309124957902	287	6636	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	26 ID_0599100000422432
0.9455267374467047	0.25449862643529675	15.318402141568	286	6634	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	27 ID_0599100000422432
0.7474938510561642	0.31892393076620695	16.212549400503	296	6635	south	RCID_416cbefe-454c-4b74-83be-f771a47e95cd	28 ID_0599100000422432
0.8988928567266443	0.383443159895518	15.29554931764578	288	6634	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	29 ID_0599100000422432
1	0.0010693754828837807	15.29916221256968	287	6634	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	30 ID_0599100000422432
1.0000000000000000000000000000000000000	0.024945794063467294	14.335818835706	289	6639	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	31 ID_0599100000422432
1	0.17155123723252663	16.07770587344237	289	6638	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	32 ID_0599100000422432
0.870184833107257	0.21897873445585644	16.738973672388	290	6640	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	33 ID_0599100000422432
0.7101994084037123	0.306504829538554	16.561445723163	289	6640	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	34 ID_0599100000422432
0.9999999999999999999	0	17.605116002197	288	6637	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	35 ID_0599100000422432
0.7745981073477008	0.3193616884693755	17.6104585216051	287	6637	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	36 ID_0599100000422432
0.9770337101024849	0.5352957748956251	16.08278441055711	288	6638	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	37 ID_0599100000422432
0.7689971277413774	0.26746259412850204	17.5997833447767	289	6637	south	RCID_28845666-21bc-40c5-8f6b-a7b746baa1a5	38 ID_0599100000422432
0.9038385214757328	0.27010374574896373	16.218508029249	292	6641	south	RCID_b7ad193e-b9b6-43c6-a263-3b6d24d143b8	39 ID_0599100000422432

49

\$1114(E)

Validation sample

Legend:

- Used for all 4 validations incl. cells partially outside roof
- Used only for validations with cells 100% inside roof (A&B)
- Only used for level A (cell number bias)

```
1500 m
```

Ground 'truth'

Variable impact

Level A (nominal & building level -cells 100% inside)

Comm. error 'clean' for 41 buildings (cells 100% inside)

Level B (nominal & cells 100% inside roof)

Comm. error class 'clean' for 831 cells 100% inside roof

56

Level C (nominal & cells ≥70% inside roof)

KHAT evolution for cells 100%, [90-100[% and [70-90[% inside a roof surface

- KHAT for cells 100% inside roof surface
- KHAT for cells [90-100[% inside roof surface
- KHAT for cells [70-90[% inside roof surface

Commission error class 'clean' for cells 100%, [90-100[% and [70-90[% inside a roof surface

- commission error class 'clean' for cells 100% inside roof surface
- commission error class 'clean' for cells [90-100[% inside roof surface
- KHAT for cells [70-90[% inside roof surface

Outcome

	Approach 1: 'geographer'	Approach 2: 'goldminer'
Aim	Quantify materials	Identify material presence
Strategy	Maximum overall accuracy/khat	Avoid commission errors
Recommendation	Loose settings (e.g. 40cm)	Strict settings (e.g 20cm, 2°)
Limitation	Not suited for small quantities	Small surfaces might be missed

Level D (rational & cells ≥70% inside roof)

KHAT for nominal and rational data types, cells [70-100]% inside roof surface

Nominal: KHAT [70-100]% inside roof surface

Rational: KHAT [70-100]% inside roof surface

[20cm, 2 degrees] accuracy of deviation cleanliness in %							
	truth						
	100% [90-100[%	[70-90[%	s <70%		total		
100%	30	9	2	0	41		
[90-100[%	25	48	11	0	84		
[70-90[%	9	62	54	3	128		
<70%	16	5	32	22	75		
total	80	124	99	25	328		

Research questions

1. Which method is suitable to 'identify' deviations of LiDAR point clouds compared to LOD2?

Research questions

2. What are the requirements with regard to CityGML LOD2, LiDAR point clouds and hyperspectral imagery data?

Research questions

3. To which extent does such a method support the identification of clean pixels?

- Validation: 40%<KHAT<70% 'moderate' agreement
- Commission errors: as low as 10%
- Limitations: sample, ground 'truth'

Main research question

How can a CityGML LOD2 model be semantically enriched in order to improve material classification performed on roof surfaces?

- 'Semantic' enrichment, thus 2D projection in LOD2 is sufficient
- Potential is present, but improvements possible
- Variant: count points in cell directly
- Focus was on overall 'completeness' & clean cells
- Out of scope: shadowed pixel identification, orthocorrection

Relevance

Recommendations to data suppliers

- LiDAR point clouds:
 - provide more **metadata** on classification algorithms

- CityGML Standard
 - roof edges
 - storage of materials

Recommendations to data suppliers

- 3D model of Rotterdam
 - make specifications open
 - accuracy indicators (e.g. 'flatness' tolerance)

- quality information (e.g. detail coherence)

Future research

- Automated quality checks
- Shadow estimation and solar potential
- LOD3 model production

"Don't reinvent the wheel, but shuffle the puzzle!"

Thank you very much!

Picture credits

<u>#2</u>	
•	https://en.wikipedia.org/wiki/Hashima_Island#/media/File:Nagasaki_Hashima_01.png
<u>#3</u>	
•	https://upload.wikimedia.org/wikipedia/commons/f/f8/Erasmusbrug_seen_from_Euromast.jpg
#6	
•	https://upload.wikimedia.org/wikipedia/commons/f/f4/Bitumen-Schwei%C3%9FbahnenFl%C3%A4mmenAufbringen_03.jpg
<u>#7</u>	
•	Tanikawa, H., & Hashimoto, S. (2009). Urban stock over time: spatial material stock analysis using 4d-GIS. Building Research & Information, 37(5-6), 483-502.
<u>#8</u>	
•	https://en.wikipedia.org/wiki/Human_eye#/media/File:Human_eye_with_blood_vessels.jpg
•	https://en.wikipedia.org/wiki/Spectral_sensitivity#/media/File:Cones_SMJ2_E.svg
•	https://commons.wikimedia.org/wiki/File:Diretmus_argenteus2.jpg
•	Musilova, Z., Cortesi, F., Matschiner, M., Davies, W. I., Patel, J. S., Stieb, S. M., & Mountford, J. K. (2019). Vision using multiple distinct rod opsins in deep-sea fishes. <i>Science</i> , <i>364</i> (6440), 588-592.
<u>#9</u>	
•	https://www.gfz-potsdam.de/en/section/remote-sensing-and-geoinformatics/projects/enmap/enmap-requirements-and-technical-outline/
<u>#10</u>	
•	Heiden, U., Segl, K., Roessner, S., & Kaufmann, H. (2007). Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. <i>Remote Sensing of Environment</i> , 111(4), 537-552.

- <u>#11, 13, 43</u>
- APEX flight above Rotterdam

Picture credits

<u>#15</u>

• <u>h</u>	https://www.goodfree	photos.com/albums/netherland	ls/rotterdam/city-view	v-of-rotterdam-netherlands.jr	bg
------------	----------------------	------------------------------	------------------------	-------------------------------	----

<u>#16</u>

<u>https://www.flickr.com/photos/victortsu/5175960711/in/photostream/</u>

<u>#17</u>

<u>https://3drotterdam.nl/#/</u>

<u>#18</u>

• Gröger, G., Kolbe, T. H., Nagel, C., & Häfele, K. H. (2012). OGC city geography markup language (CityGML) encoding standard.

<u>#22</u>

https://www.tern.org.au/Newsletter-2014-Jun-Airborne-Infrastructure-pg29230.html

<u>#24</u>

<u>https://commons.wikimedia.org/wiki/File:Chimney_red.jpg</u>

<u>#28</u>

<u>https://3drotterdam.nl/#/</u>

#39,40,45-48, 51, 52

PDOK luchtfotos

<u>#50</u>

Google earth

<u>#69</u>

• <u>https://www.maxpixel.net/Unfinished-Puzzle-Unresolved-Chaos-Mess-55877</u>

TUDelft

3D City Models in the context of Urban Mining

Final Presentation

Pablo Ruben – tutors: Rusnė Šileryté and Giorgio Agugiaro Co-reader: Kaixuan Zhou – Delegate: Regina Bokel

Roof edges

Taxonomy of point cloud segmentation

Edge-based "Boundaries first – surfaces second"

Model-based "Check if a plane, cylinder or sphere fits"

Graph-based "Generate neighbourhoods and identify weak connections"

Attribute-based "Compute attributes from data dimensions - use them to classify"

Region-based "Points with similar neighbours belong together"

ŤUDelft

Wang & Shan 2009; https://3d.bk.tudelft.nl/courses/geo1015/hw/04/ http://pointclouds.org/documentation/tutorials/normal_estimation.php Vosselman et al. 2004;https://www.sciencedirect.com/science/article/pii/S0924271615000544#f0085

Wang & Shan 2009

