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Abstract

Extensive electrification of the inland shipping sector is necessary to achieve the EU goals to be climate
neutral and increase inland shipping by 50% by 2050. This requires a thoughtful and large-scale roll-
out of new charging stations layouts, for ships with relatively high and largely varying energy demands.
Current approaches for optimal charging station placement, mostly neglect temporal demand fluctua-
tions and cannot cope with varying charging demands. Therefore, we aimed to develop a method that
combined a capacitated flow-capturing approach and an agent-based simulation. Moreover, the result-
ing method was applied to the Dutch inland waterway freight transport sector in a case study. Results
indicated that a large-scale transition to battery-electric propulsion is technically possible, but is likely
economically unfeasible. The case study can be used to support decision-making towards renewable
shipping. In addition, the newly designed may also be used to site energy hubs. Forthcoming, meth-
ods to come to efficient charging station layouts will be needed to stimulate the uptake of electrified
transportation and avoid lock-ins to inefficient investments.
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Management summary
This research set off to design a new method to determine the optimal locations and capacities of
charging stations for ships from a network perspective. Moreover, the goal was to apply this method
to the Dutch inland freight shipping sector in a case study. To the author’s best knowledge, optimal
charging stations for ships had not been assessed from a network perspective before for ships in sci-
entific literature. In contrast, optimal charging station placement along road networks for vehicles has
been extensively studied in the past. Situating charging stations for vehicles with a limited range is
fundamentally different compared to locating conventional refuelling stations, as a limited range and
a significant recharging time have to be considered. Two key system characteristics which set apart
battery-electric shipping from the more frequently studied battery-electric road transportation were iden-
tified: a relatively high absolute energy demand and highly varying energy demands between various
types of ships.

Based on these characteristics, three factors which could be included in a model were found to be of
increased importance:

1. Expected waiting times
2. Appropriate charging station sizing
3. The effects on the electricity grid

As such, the goal was to establish a method to guide decision-making regarding the optimal locations
of charging stations for ships, which included these factors. To this end, two modelling methods were
selected, which were found to complement each other well. The capacitated flow-refuelling model by
Upchurch et al. (2009) and an agent-based simulation model (Epstein, 1999). These models were
not earlier combined to the author’s best knowledge. The capacitated flow-refueling model is a flow-
capturing model, that can be applied to distribute a certain number of charging stations over a prede-
termined set of potential charging-station locations, based on trip-based origin-destination data. An
agent-based model, on the other hand, is a simulation model which can be used to simulate the perfor-
mance of a charging station layout.

Nevertheless, the capacitated flow-refueling model was designed to locate alternative refuelling sta-
tions for vehicles with a limited range. Not for battery-electric ships with highly varying energy demands.
Hence, a modified version of the capacitated flow-refueling location model was established. This ver-
sion of the flow-refueling model had several new features, to increase the suitability and determine
optimal locations of charging stations for ships. Most importantly, it allowed for optimising the locations
of charging stations considering the varying energy demands of various ships at the same time. An
iterative method to guide decision-making regarding the optimal locations of charging stations was pro-
posed and applied to the Dutch inland waterway shipping network. The first step of this method entailed
applying the modified version of the capacitated flow-refueling model considering various potential ship
ranges and roll-out strategies. This resulted in the optimal charging station layouts for these scenarios.
Hereafter, the agent-based simulation was then applied to simulate these charging station layouts.

Before the method was applied to the case study, an actor analysis was established. Three aggregated
actors were identified:

• Government agencies and other investors
• Shipping companies
• Port operators, land owners and grid operators

First off, government agencies and other investors can be seen as decision-makers regarding the ac-
tual realisation of charging stations. While maximum utilisation of charging stations leads to both the
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highest profits and the highest possible CO2 reductions, they have the same interests and goals. As
such, the method for decision-making regarding the optimal locations and capacities of charging sta-
tions along waterways is established for mainly these actors. Besides, shipping companies are the
ones who decided whether they want to switch to battery-electric propulsion systems. Finally, port
operators, landowners and grid operators are actors which are crucial for enabling the realisation of
any charging stations for ships. Of course, these actors can also benefit from battery-electric shipping.
Based on the actor analysis, the average charging station utilisation and the average waiting time of
ships were identified as the main model metrics to assess any charging station layout. Following this,
the proposed method was applied to the case study.

Results indicated that neglecting temporal demand fluctuations may lead to infeasible designs and high
waiting times. Moreover, a clear trade-off between the charging station utilisation and resulting waiting
times was found. An increased utilisation always led to higher waiting times. Locating fewer, more
powerful charging stations was found to lead to the best results in all studied experiments. Remark-
ably, considering a higher ship range and incorporating more potential charging station locations in the
optimisation model, enabled more efficient charging station placement. In conclusion, it was success-
fully demonstrated that an agent-based simulation model can be used to simulate and complement a
capacitated flow-refueling location model.

Forthcoming, the established method may be extended to study the optimal locations for energy hubs,
by including multiple systems, such as shared mobility solutions, taxis, and busses. As for the case
study, the range of a ship was identified as the most important uncertainty of the method. The range
namely highly influences the possibilities for electrification of the Dutch inland freight shipping sector.
Moreover, a large-scale transition of the Dutch inland shipping sector to battery-electric propulsion was
found to be attainable, looking solely at the charging technologies and the expected developments.
However, it is likely not economically feasible, because of the high number of required additional charg-
ing stops.
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1. Introduction
Recently, the EU sharpened its CO2 reduction goal and now aims to reduce emissions by 55% by
2035. By 2050, the EU even wants to be completely climate neutral (European Commission, 2021).
Currently, the transportation sector is responsible for a fifth of the greenhouse gas emissions, and the
urge to switch to renewable fuels intensifies (EEA, 2022). The application of renewable fuels, such
as electricity, hydrogen or bio-diesel, often results in a limited range. This is because of the lower
energy density of the concerned energy carriers (Varga et al., 2019). A vehicle may have to refuel mul-
tiple times, depending on where the refuelling stations are situated along the route (Kuby & Lim, 2005).
This is illustrated in figure 1.1 for the round-trip between an origin (O) and destination (D). A vehicle can
always reach the destination considering the range of 700 kilometres. However, in the first situation, a
vehicle will run out of fuel travelling from B to A on its way back. If a refuelling station is located at the
station at B, round-trips are feasible if vehicles refuel there twice. Also, the round-trip may be feasible
with a refuelling station at A and an additional charging station. Though again, it matters where this
additional refuelling station is located.

Figure 1.1: One or more refuelling stations may be needed to facilitate round-trips on the sample network considering a limited
range. As illustrated, this heavily depends on their location.

In conclusion, the feasibility of a round-trip considering a limited range depends on the selected loca-
tions to site refuelling stations. Moreover, the needed number of refuelling stations may also depend
on the selected locations. By contrast, methods designed to locate refuelling stations for 0conventional
vehicles always assumed that a vehicle had to refuel at most once during a trip. Hence, situating refu-
elling stations for any means of transportation with a limited range is fundamentally different, compared
to situating conventional refuelling stations. Battery-electric systems are currently seen as the most fea-
sible technology to realise zero emission transport in the short- and middle-term (Stančin et al., 2020).
Meanwhile, the required charging structure infrastructure which is needed to enable a large-scale tran-
sition is still in its infancy at most places and sometimes needs to be designed entirely from scratch.
Therefore, methods are needed to determine the optimal locations of charging stations in a coordinated
manner from a network perspective.

1.1. Complexity
Besides battery-electric systems, hydrogen-electric systems are expected to play an important role in
the energy transition. Nevertheless, hydrogen is also needed for many other applications, so its avail-

1



1.2. Inland shipping 2

ability for transport over short distances is likely to be limited. Especially as battery-electric systems
offer a good alternative in this case (Stančin et al., 2020). Moreover, hydrogen’s power-to-gas-to-
power energy conversion efficiency is still only 15-40%, and wide-scale hydrogen production is yet to
be realised (Egeland-Eriksen et al., 2021). Thus, using electricity to charge batteries is much more
attractive from a sustainability perspective, and battery-electric systems will likely stay relevant within
current prospects. Notably, previous research regarding the location problem for charging stations,
almost solely considered road transport, particularly light-weight private electric vehicles (EVs). How-
ever, also in the energy-intensive inland shipping sector, battery-electric systems are seen as the most
suitable technology to realise zero-emission transport in the short- and medium-term (Trahey et al.,
2020; van der Geest & Menist, 2019; Varga et al., 2019).

1.2. Inland shipping
Inland shipping is considered a relatively clean form of transport because the emissions to transport a
ton of freight over one kilometre are much lower than road transport (see figure 1.2. That is why the
European Union (EU) aims to increase the shares of inland waterway and short-sea transport by 25%
in 2030 and by 50% in 2050. However, at the same time electrification of the energy-intensive shipping
industry is inevitable to achieve the sharpened European CO2 reduction goal to be climate neutral by
2050 (European Commission, 2021; Kumar et al., 2019). As of now, multiple battery-electric ferries
and inland vessels are already in service (Karimi et al., 2020; NOS, 2021). Forthcoming, charging
infrastructures will be needed along various inland shipping networks. Most of these will have to be
designed largely from scratch. Hence, this study aimed to develop a method to determine the optimal
charging station along waterways for ships.

Figure 1.2: WTW (well-to-wheel for road and rail transport and well-to-wake for shipping) CO2 transport emissions of
bulk/packaged goods (left) and containers (right) to transport a ton over a distance of a kilometre adapted from Anne Klein et al.
(2021). The WTW value includes all emissions which arise from fuel combusting during vehicle use, and all emissions which
occur during the extraction, refinery, and transport of fuels or during electric power transmission and generation (Anne Klein

et al., 2021).

Furthermore, the Dutch inland waterway freight transport network was selected as a case study to
apply the method. The Dutch inland waterway freight transport network is the largest in Europe and
transported 42.7 % of all Dutch freight in 2019 (Eurostat, 2021). The Dutch inland shipping sector is
characterised by a large number of independent contractors which own one ship and some shipping
companies which exploit several ships. As such, 4,100 companies were operating in the sector by the
end of 2020, with around 4,500 ships (CBS, n.d.). Hence, it is unlikely that shipowners themselves will
invest in costly battery swapping or charging stations. Thus, there is a clear chicken and egg problem
here: shipowners will not switch to a battery-electric system if there are no charging stations, and no
commercial parties will invest if there are no operational battery-electric ships. To cut through this,
a Dutch national growth fund recently invested 50 million to electrify 45 ships and build 14 docking
stations and 75 battery containers. Finally, the goal is to realise 150 battery-electric ships in 2030 and
400 battery-electric ships in 2050 (Klimaat, 2022).
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1.3. Scope
Forthcoming, additional similar investments will likely be needed to achieve large-scale electrification
in the Dutch inland freight shipping sector. Therefore, this research focused on developing a method
to guide decision-making regarding the optimal siting and sizing of charging stations along an inland
water transport network. To this end, existing approaches to optimally site charging stations on a
transport network were assessed in a literature review. Notably, this problem is related to two separate
physical networks, the electricity grid and the waterway network. This research aimed to determine the
optimal locations of charging stations along the waterway network, explicit inclusion of the electricity
grid was not within the scope of this research. Also, the construction costs at individual sites were not
incorporated, a charging station at each location was assumed to incur the same costs.

1.4. Applications for decision-making
Remarkably, both private and public parties pursue the same goal when it comes to investments in
charging infrastructure: maximum utilisation of the installed facilities. Doing so namely ensures both
the maximum achievable CO2 reduction and the maximum achievable profit. Thus, the proposed
method to support the decision-making regarding the optimal placement of charging stations along
transport networks may be useful to guide both public and private decision-making. In particular, the
proposed method may be used to guide capital-intensive long-term strategic investment decisions, and
ensure the optimal use of funds. Even though the method was specifically designed to place charging
stations along waterways, the method may also be applied to other transport networks or other types of
alternative fuel stations. To do so, the relevant case-specific assumptions will need to be incorporated
into the model.

1.5. Outline
First, core concepts and state-of-the-art literature are discussed in a literature review in chapter 2.
Based on this literature review, a literature gap and research questions are formulated. Hereafter, the
case study is introduced in detail and a conceptualisation is established based on the case study in
3. Then an iterative method is developed in chapter 4, after the two selected modelling methods are
introduced. Finally, the results are presented in chapter 6, and the main implications of the results are
discussed in chapter 7.



2. Literature review
The goal of this research was to develop a method to aid decision-making to optimally locate charging
stations along a waterway network for battery-electric inland shipping in a coordinated manner. This
chapter aims to provide an overview of the core concepts and state-of-the-art literature regarding the
optimal placement of charging stations. Afterwards, a literature gap and research questions are pre-
sented. The literature review was conducted using the table search method, a detailed description of
this process can be found in Appendix F.

2.1. Optimal charging station placement along waterways
Optimal and coordinated charging station placement alongwaterway networks to support battery-electric
inland shipping has rarely been assessed in scientific publications. Piña Rodriguez (2021) earlier
looked at the optimal places for battery swapping locations considering five different ships, sailing on 4
different routes in the Netherlands in her master thesis. Furthermore, Man Jiang et al. (n.d.) assessed
corridor scale planning of bunker infrastructure for zero-emission energy sources in inland waterway
transport in a still-to-be-published paper, as part of an ongoing PhD project. Also, various exploratory
reports regarding the possibilities for battery-electric shipping in the Netherlands have been published
(Abma et al., 2019; Poiesz et al., 2020; Rotteveel & de Boer, 2019; van der Geest & Menist, 2019).
These reports mainly focused on the technical and financial feasibility and did not investigate optimal
locations for battery charging stations for multiple routes. Besides, no specific scientific peer-reviewed
research was conducted regarding optimal charging station placement to support inland shipping to
the author’s best knowledge.

In contrast, optimal charging station placement along road networks for vehicles has been extensively
studied in the past. Situating charging stations for vehicles with a limited range is fundamentally different
compared to locating conventional refuelling stations, as a limited range and a significant recharging
time have to be considered (Kuby & Lim, 2005). Because of this limited range, a vehicle may have to
charge multiple times, depending on where the charging stations are situated along the route. Lam et al.
(2014) proved that the location problem for charging stations in a city is non-deterministic polynomial-
time (NP) hard, meaning it is computationally impossible to find an exact solution within a reasonable
amount of time. Hence, solutions must be approximated using heuristic methods, so-called location
methods. Various location methods have been designed for road networks, which may also be feasible
to apply to an inland waterway network. Therefore, literature regarding battery-electric shipping was
reviewed to determine how battery-electric shipping on waterway networks differs from battery-electric
road transport on road networks. Following, the main characteristics which should be incorporated in
a model to determine the optimal locations for charging stations along waterways were determined.

2.2. Battery-electric shipping
To determine the main differences and similarities between battery-electric shipping and road trans-
port, various reports which assessed the feasibility of battery-electric shipping were reviewed. Table
2.1 shows that in 2019, the volumetric energy density of batteries used in ships was more than 100
times lower than that of diesel, which they mostly replaced. Hence, just as with battery-electric vehi-
cles, the limited range of a ship seems to be the most important factor which should be considered to
optimally place charging stations. Also, studies regarding the possibilities for electrification of inland
shipping in The Netherlands identified a clear trade-off between the battery size and the number of
required stops on a route. Moreover, a larger battery also entails more investment costs, and comes
at the cost of transport capacity, room for the engine, or accommodation (Abma et al., 2019; Rotteveel
& de Boer, 2019).

In general, the charging station location problem for ships is highly comparable to the charging station
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location problem for vehicles. Drawing from the literature, the main difference is the relatively high
energy demand per travelled kilometre of ships (Abma et al., 2019; Poiesz et al., 2020; Rotteveel &
de Boer, 2019; van der Geest & Menist, 2019). This results in relatively high required battery capacities
and charging times. In addition, the energy demand of different kinds of ships is alsomuchmore diverse,
which cannot be neglected when locating charging stations. Finally, environmental variables such as
river discharge may have a large influence which depends on the direction of travel. In conclusion,
existing methods designed to optimally locate charging stations for vehicles may have to be adapted,
but can likely also be applied to locate charging stations along an inland shipping network.

MJ/L MJ/kg
Batteries 0.4 0.3
Compressed hydrogen 3.8 9.0
Synthetic methanol 14.0 17.0
Organically bound hydrogen 5.5 5.2
Diesel 31.0 31.0

Table 2.1: Energy density of Batteries, other alternative fuels and Diesel compared (Rotteveel & de Boer, 2019).

2.3. Scope
As the placement of charging stations along water networks for vessels was found to be comparable
to the placement of charging stations along road networks for vehicles, literature from the latter cat-
egory has also been included in this review. Besides, the main difference appeared to be the high
energy demand between shipping and road transport. Of particular interest for this literature review
were publications that assessed suitable station size, power grid or expected waiting times. Many
older publications focused on the optimal locations of alternative refuelling stations for limited-range
vehicles in general. Only relatively recently, when the driving range of electric vehicles increased sig-
nificantly, research also focused on the location problem for charging stations in particular. Although
more factors such as the power grid and significant charging times play a role in the charging station
location problem, a vehicle’s limited driving range remains the most important factor in determining op-
timal charging station locations. Many charging station location methods thus build on older alternative
fuel station location models. Therefore, the more general literature on the location problem for vehicles
with limited range was also included in this literature review.

Furthermore, most research regarding optimal charging infrastructure planning considers either only
the transport network or only the electricity distribution network (Deb et al., 2018). In the latter case, the
optimal situation of charging stations in the distribution network is the main focus, considering voltage
or thermal limits Shareef et al. (2016). While this was not within the scope of this study, these studies
were not reviewed. On the other hand, methods which only consider the transport network was the
main focus of this research. A small fraction of the research focused on planning methods to optimally
locate charging stations considering both networks. Explicit incorporation of both the transport network
and the distribution network involves incorporating the interaction of these two separate networks, this
was also not within the scope of this research (Unterluggauer et al., 2022; Xiang et al., 2016). However,
these methods were also considered for this literature review, as they may be of added value.

2.4. Optimal charging station placement along networks
Location models that mainly focus on the placement of charging stations on the transport network, can
be subdivided into three categories: node-based, path-based and tour-based approaches (Deb et al.,
2018; Metais et al., 2022). First off, the difference between these various approaches is explained
based on the required input data. Secondly, a modelling framework which may be used to analyse re-
search is introduced and an overview of the reviewed literature is presented. Then, the most adopted
location methods for each of the three approaches are discussed in detail. Finally, the different ap-
proaches are compared with each other.
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2.4.1. Input data
All three modelling approaches require a network with predefined potential charging station locations,
which may be equal to all of the nodes in the network. In addition, node-based approaches only require
the demand at certain nodes, which may be derived based on demographic data and (expected) EV
adoption rates (Y.-W. Wang & Lin, 2013). Node-based approaches model the charging station location
problem as a simple facility location problem, the goal is to spread facilities over nodes, to optimally
meet the demand at nodes (Deb et al., 2018). On the other hand, path-based approaches require
historic trip data between origins and destinations on the network (Hodgson, 1990). The goal is then
to place charging stations in such a manner, to make as much of the historic flow feasible with battery-
electric drive while considering the other included constraints (Hodgson, 1990; Kuby & Lim, 2005). Flow
is usually defined as the number of charged EVs or the number of travelled kilometres (Deb et al., 2018;
Metais et al., 2022). Finally, tour-based approaches (also named activity-based approaches) require
the full consecutive historic trip data of each vehicle on the transport network during a certain period
and aim to optimize for the daily routines of vehicles.

2.4.2. Modelling framework
Deb et al. (2018) established the framework in figure 2.1 for charging infrastructure planning models
which only explicitly consider the transport network. All of the literature regarding location methods
which were included in this literature review was analysed using this framework, the results are pre-
sented in table 2.2. First off, each research considered a specific transport network, based on the use
case. Previous research mostly focused on road networks in combination with private EVs, but elec-
tric buses, taxi fleets and even autonomous fleets have also been assessed. Secondly, an objective
function should be chosen based on the considered road network. The objective is usually to minimize
costs or to maximize the number of served EVs. In addition, other approaches aimed to minimize wait-
ing times, maximise the charger’s utilisation, or minimise failed trips.

Finally, various aspects can be considered during the optimisation of all approaches. Three of these
aspects were found to be the most relevant considering the identified high energy demands of the ship-
ping sector: appropriate station sizing, the influence on the electricity grid and the expected waiting
times. Whether these aspects were assessed in a publication, was also included in table 2.2. Re-
markably, quite some of the research did not consider appropriate station sizing, and thus neglected
the maximum capacity of the charging station. Some of these methods were designed for alternative
fuel stations in general instead, but also methods which specifically considered charging stations did
not always incorporate station sizing. Furthermore, the electricity grid was rarely considered. If it was
included, it was in most cases incorporated as a constraint. Only in a single case, a grid-related model
parameter was included. Whenever waiting time was included in a publication, it was usually only re-
flected upon, and not directly considered during the optimisation. In conclusion, none of the identified
publications considered all three aspects during the optimisation.

2.4.3. Location methods to find optimal solutions
An overview of the main identified generally applicable location methods for each of the approaches
is visualised in figure 2.2. First off, the main node-based approaches to determine optimal locations
for charging stations are the set covering location model (SCLM) by Church and Revelle (1974), the
maximum covering location model (MCLM) by Toregas et al. (1971) and the p-median model by Hakimi
(1964). The MCLM aims to maximize the number of locations covered for a given number of stations.
On other hand, the SLCM aims to minimize the number of facilities to cover all the demand. Lastly,
the p-median model aims to minimize the distance between demand and stations for a given number
of stations. S. Y. He et al. (2016) used all three location models to estimate charging demand based
on socio-demographic data in Beijing and found that the p-median model outperformed the other two
models, and gave more stable solutions.

On the other hand, path-based approaches to locate charging stations are based on the flow-capturing
location model (FCLM) by Hodgson (1990) or the similar flow-intercepting location model by Berman
et al. (1992). The FCLM assumes that service demand along networks is correlated with traffic flows,
the goal of this method is to serve as many flows as possible with p facilities. The FCLM assumes
that each flow only has to be served once, while vehicles with a limited range, may have to charge
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Figure 2.1: Framework for charging infrastructure planning model considering only the transport network (Deb et al., 2018)

Figure 2.2: Various general location methods by approach adapted from Metais et al. (2022)

multiple times to complete a trip. Therefore, Kuby and Lim (2005) introduced an adapted version of the
FCML for vehicles with a limited range, which they named the flow-refueling location model (FRLM).
They formulated the FRLM using a two-stage approach: in the first stage all possible combinations
of locations capable of facilitating a round trip on each route are determined, and then p facilities are
located to maximize the flow refuelled given the feasible combinations created in the first stage.
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Publication Approach Use case Objective Station
sizing

Electricity
grid

Waiting
time

Y.-W. Wang and
Lin (2013)

Node-based
(various)

Private EVs Maximise number
of charged EVs

Yes No No

Sadeghi-
Barzani et al.
(2014)

Node-based Private EVs Minimize infrastruc-
ture to meet de-
mand

Yes Yes
(parameter)

No

S. Y. He et al.
(2016)

Node-based Private EVs Maximise number
of charged EVs

Yes Yes
(constraint)

No

Upchurch and
Kuby (2010)

Node- and path-
based

private AFVs Maximise feasible
trips

No No No

Kuby and Lim
(2005)

Path-based
(FRLM)

Private AVFs Maximize number
of charged Evs

No No No

Kuby and Lim
(2007)

Path-based
(FRLM)

Private AVFs Maximise number
of charged EVs

No No No

Upchurch et al.
(2009)

Path-based
(CFRLM)

Private AVFs Maximise number
of charged EVs

Yes No No

H. Zhang et al.
(2018)

Path-based
(CFRLM)

Private AVFs Maximise number
of charged EVs

Yes Yes
(constraint)

No

A. Zhang et al.
(2017)

Path-based
(CFRLM)

Private EVs Maximise number
of charged EVs

Yes No Yes

Y. He et al.
(2019)

Path-based
(FRLM)

Private EVs Maximise number
of charged EVs

No No No

Chung and
Kwon (2015)

Path-based
(FRLM)

Private EVs Maximise number
of charged EVs

No No No

X. Wang et al.
(2017)

Tour-based Electric busses Minimise costs of
infrastructure for
given demand

No No No

(Xylia et al.,
2017)

Tour-based Electric busses Minimise costs and
energy consump-
tion

No No No

Cai et al. (2014) Tour-based PHEV taxi fleet Maximize the
charger’s utilization

Yes No No

Tu et al. (2016) Tour-based EV taxi fleet Minimise waiting
time at station

No No Yes

Asamer et al.
(2016)

Tour-based EV taxi fleet Maximise feasible
trips

No No Yes

Shahraki et al.
(2015)

Tour-based PHEV taxi fleet Maximise distance
travelled

No No No

Table 2.2: Overview of all of the included research regarding location methods and the adopted approach and focus.

Following, various extensions of the original FRLM have been developed. Kuby and Lim (2007) ex-
tended the model by introducing methods to add candidate sites along arcs. Hereafter, Upchurch et al.
(2009) came up with a capacitated flow-refueling location model (CFRLM), which limits the average
number of vehicles served by a station in a given period. Later, Kim and Kuby (2012) adapted the orig-
inal model to assess likely path deviations to refuel, considering a maximum allowable deviation and
a penalty function. The difference between the FCLM, the FRLM and the CFRLM is illustrated using a
sample network with three O-D pairs in figure 2.3. The FCLM, only places one station, as it only aims
to intercept all of the flows. The FRLM, also places a second charging station, to make sure all of the
O-D pairs can be completed using a battery electric drive. Lastly, the CFRLM places two stations at the
intersection of all flows, while the combined demand of all O-D pairs exceeds the capacity of a single
station.

2.4.4. Comparison of the different approaches
In conclusion, node-based approaches are the least advanced methods. Their main advantage is that
they have the lowest data requirements. If demographic data is used for node-based approaches, their
application may lead to good results. However, node-based approaches do not allow assessing issues
that emerge from traffic flows, such as mutual competition of charging points (Hodgson, 1990; Kuby &
Lim, 2005; Upchurch & Kuby, 2010). Especially if trip data is used to generate the required input data
for node-based approaches, this may lead to skewed results. Certain flows may only be feasible for
battery-electric drive with multiple intermediate stops, and some charging stations may compete with
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Figure 2.3: The functioning of the three path-based approaches compared, given a vehicle can travel at most 2 links before
running out of fuel.

each other. To this end, flow-based approaches have been developed, which require more detailed
data. Upchurch and Kuby (2010) found that flow-based approaches are more stable if the number of re-
quired charging stations increases. Therefore, most recent studies that apply a node-based approach,
also explicitly include the effects of flows if this data is available. These path-based approaches are par-
ticularly well-suited to site charging stations along highways, based on anonymous low-resolution data.

Nevertheless, path-based approaches do not perform well in urban environments, as vehicles can be
expected to make multiple consecutive trips, and may take a variety of routes. Lastly, tour-based meth-
ods are even more advanced than path-based methods and require the most detailed data. While tours
instead of trips are observed, this approach allows us to determine the initial battery level at the start
and the end of each trip. Moreover, a tour-based approach enables to only include the trips of vehicles
or ships of which all trips would be feasible with battery-electric drive. Hence, tour-based methods
require fewer assumptions and theoretically provide the best results in most environments. Only when
highway systems are considered, less detailed path-based methods provide better results. However,
the high data requirements may raise privacy issues, so they are mainly applied to commercial vehicles
such as taxis and buses (Cai et al., 2014; Tu et al., 2016). All of the discussed aspects are visualized
in table 2.3, which was adapted from the literature review of modelling options to plan for charging
infrastructure by Metais et al. (2022).

Criteria Method
Node-based Path-based Tour-based

Urban territory + – ++
Highways - ++ +
Representation of charging needs -/+ + ++
User behavior - -/+ ++
Data requirements Very low Low Very high

Table 2.3: Comparison of the location methods on key points

2.5. Agent-based modelling
In addition to the previously discussed location methods, agent-based models have been used to evalu-
ate and compare the real-world performance of charging station placement policies and location model
outcomes Chen et al. (2016), Sheppard et al. (2016), Sweda and Klabjan (2011), and Wolbertus et al.
(2021). In an agent-based model (ABM), all entities are interacting in parallel, and all possible interac-
tions are observed (Epstein, 1999). As such, ABMsmay be used to observe waiting times and charging
station utilisation rates, if they are used to simulate the real-world performance of a certain charging
station layout. To this end, an ABM requires at least a charging station layout and the expected battery-
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electric flow on the network. Each trip may be seen as an individual trip, after which the vehicle is
removed from the network.

Notably, this may require assumptions regarding the initial battery level of a vehicle. Alternatively,
a limited set of vehicles which conduct subsequent trips may be considered. Besides, agent-based
models may also be employed to find optimal charging station locations. For example, Pagani et al.
(2019) utilized an ABM to evaluate 2500 scenarios of the transition to electric mobility in a mid-sized city.
They used a sub-model to optimize the placement of EV public charging infrastructure that aimed to
maximise the load factor of public chargers. Chargers were initially installed on all considered locations
and were removed if the load factor was less than 1h/day, and replaced with fast chargers if the demand
exceeded more than 20 vehicles/day. In conclusion, ABMs have proven to be well suited to assess
charging station layouts and have also been used to iteratively improve them.

2.6. Temporal demand fluctuations
By design, flow-based approaches usually make estimations based on averages and do not consider
likely fluctuations during certain periods in time. Shahraki et al. (2015) for example, acknowledged
that their tour-based approach to locating charging infrastructures for taxis did not consider situations
in which demand could not be met because all charging stations were occupied. In a similar vein, H.
Zhang et al. (2018) indicated that their modelling approach to site fast-charging stations for plug-in
electric vehicles only used peak demands and did not consider dynamic flows. Additionally, Y. He et al.
(2019) pointed out that their research regarding optimal charging station locations for long-distance
trips in the US did not assess charging station time of use or include station capacity restrictions re-
garding the number of vehicles that could charge at the same time.

On the other hand, Bae and Kwasinski (2012) was one of the first to assess spatial and temporal
charging demand for a rapid charging station located near a highway exit. To this end, they combined
a flow-based model with M/M/s queuing theory. However, they did not actually determine optimal
charging station locations in the end. Later on, Tu et al. (2016) also investigated spatial and temporal
demand coverage for a taxi network. They extracted taxi travel demand from a GPS dataset and used
this as an input for a spatial-temporal demand coverage location model, which they solved with the
help of a genetic algorithm. But, they did not consider the simultaneous presence of different types
of charging stations and vehicles with different ranges. Finally, González et al. (2014) investigated
cumulative charging demands during the day using an activity-based approach for EVs in Flanders.
Nevertheless, they only specified the charging demand at certain places, they did not assess the optimal
charging station locations.

2.7. Research gap
The inland shipping sector is characterized by high absolute energy demands and strongly varying
energy demands. Therefore, the capacity of charging stations, the effects on the electricity grid, and
temporal demand fluctuations are of special importance. However, in most of the reviewed literature
these factors are often not assessed. Besides, the optimal placement of charging stations for the in-
land shipping sector has not been assessed before to the author’s best knowledge. The flow-refueling
location model has been found to outperform node-based methods to place refuelling stations for ve-
hicles with a limited range. Moreover, flow-refueling approaches have been found to be the best for
highway systems. A waterway network is the most comparable to such a system. Hence, capacitated
flow-refueling location model may be well-suited to apply to a waterway network. Nonetheless, the
ability of a found charging station layout to cope with fluctuating demands cannot be considered with a
flow-refueling location model. On the other hand, an ABM approach has proven to be useful to assess
the real-world performance of charging station layouts.

2.8. Research goal
Therefore, this research will aim to develop a method to support decision-making toward the placement
of charging stations along inland shipping networks, that combines an capacitated flow-refueling loca-
tion model with an agent-based model. ABMs have only been combined with node-based approaches
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in the past to the author’s best knowledge, and not with superior flow-based approaches. Based on
the agent-based simulation, the input parameters of the first stage optimization can be adjusted itera-
tively, to optimize real-world performance. Moreover, the agent-based simulation may be used to make
trade-offs between the number of stations to place, the coverage, the expected waiting times, and utili-
sation rates. The method to support decision-making toward the placement of charging stations will be
optimized for and applied to the Dutch inland freight shipping network.

2.9. Research questions
The following main research question was established: “How may a flow-refueling model be iteratively
combined with an agent-based simulation to optimally site charging stations along an inland waterway
transport network?”
Besides, the following sub-questions were derived:

1. Which characteristics of inland shipping should be considered to optimally site charging stations
along waterways?

2. Which constraints should be considered to optimally site charging stations along the waterways?
3. How may the flow-refueling model be applied to the case study considering the input data, char-

acteristics, and constraints?
4. Which assessment criteria should be considered to evaluate the charging station layouts to elec-

trify inland freight shipping?
5. How may the flow-based model constraints be adjusted based on the output of the agent-based

simulation?
6. Which policy recommendations for decision-makers that aim to reduce greenhouse gas emissions

may be formulated based on the results of the iterative method?



3. Case study
The goal of this research was to establish a method to site charging stations, which iteratively combines
a capacitated flow-refueling location model (CFRLM) with an agent-based simulation (ABM). Hereafter,
the method was applied to the Dutch inland waterway freight transport network in a case study. In this
chapter, the current inland waterway freight transport system is introduced. Also, currently prevalent
and expected installed battery capacities, corresponding battery-electric ranges, and charging speeds
are discussed. Then, a conceptualisation of the location problem for the Dutch waterway freight trans-
port network is presented.

3.1. The waterway network
The Dutch waterway network consists of several rivers and canals as visualized in figure 3.1, which are
all connected and cover most parts of the country. The main transport axis spans from the ports of Rot-
terdam and Amsterdam towards Germany and Belgium. Furthermore, other ongoing waterways lead
to the North and the South of the country. In addition, other main waterways and national waterways
connect many other industrial areas to the waterway network. The dimensions of the waterways differ,
so not all of the ships can navigate over each waterway. To ensure the interoperability of large nav-
igable waterways within West Europe, normative ship sizes were determined during the Conférence
Européenne des Ministres des Transports (CEMT) in 1954. These so-called CEMT-classes were last
revised in 1992, and are currently used to categorize ships and waterways. The CEMT-classification
of a waterway refers to the largest normative ship that can navigate over a waterway. Hence ships
with a different CEMT-classification may have to take different routes travelling from the same origin
to the same destination on the waterway network (“Resolution No. 92/2 on new classification of inland
waterways”, 1992; Rijkwaterstaat, 2020).

3.2. Current shipping
The waterway network is sailed by motor vessels, barges and push convoys of various CEMT-classes.
All ships have vastly varying dimensions, transport capacities, and engines. As seen in table 3.1,
the ships of the three largest categories make up 48% of the total ships and transport 78% of the
total weight. Three broad categories of freight are distinguished dry bulk goods, wet bulk goods and
containers. In 2021, the total transported weight consisted of mainly dry bulk goods (%52.0), followed
by wet bulk goods (%33.6) and containers (%14.4). Almost all operating ships are Diesel-powered,
except for some ships that use LNG and some battery-electric ships. The Diesel is supplied by bunker
stations and bunker ships, which are strategically located along busy waterways, mostly near harbours.
Usually, a ship can sail for weeks on a full tank and can be refuelled within an hour. This sometimes
happens while a ship is at berth, but frequently also by a bunker ship sailing along. Thus, refuelling is
currently not an activity which takes a significant amount of time given the day-to-day schedule of an
inland freight ship.

3.2.1. Battery-electric shipping
In contrast, battery-electric ships require refuelling much more often, as the volumetric energy density
of batteries is still at least 100 times lower (see table 2.1). As such, a battery-electric ship may have
to make additional intermediate battery-swapping stops to complete a trip. Moreover, recharging a
battery-electric ship takes a significant amount of time, because of the high energy demand. Therefore,
battery-electric shipping is fundamentally different, as charging will be a significant activity. Also, the
current positions of bunker stations for conventional ships, we not found to be relevant for a potential
charging station layout.

Battery-electric shipping in the Netherlands
ZES is currently the only company which has provides energy to inland ships in the Netherlands. The
company operates battery swapping stations for battery-electric ships in the Netherlands. They solely
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Figure 3.1: The Dutch inland waterway network, adapted from Rijkwaterstaat (2020)

serve container ships with exchangeable batteries, the batteries are exchanged and then charged af-
terwards. The batteries with a gross capacity of 2 MWh are located in containers, and are exchanged
for full ones during the regular loading and unloading process(Poiesz et al., 2020; van der Geest &
Menist, 2019; ZES, 2022). A ship may carry multiple containers, which have a guaranteed usable bat-
tery capacity of 1.2 MWh during their lifetime (Abma et al., 2019). Logically, a ship can only carry a
limited number of battery containers, because they come at the cost of freight. When off the ship, two
containers can be charged in parallel using a 2 MW docking station in 2 hours (van der Geest & Menist,
2019). Loading and unloading a container ship takes a significant amount of time. This depends on
the terminal and the ship but generally takes 4-6 hours for a container ship(Poiesz et al., 2020). Hence,
charging batteries during loading and unloading, may technically also be an option.



3.2. Current shipping 14

Motor vessels Barges Push convoys

Total ships Loading
capacity [kton] Total ships Loading

capacity [kton] Total ships Loading
capacity [kton]

CEMT 0 395 60
CEMT I 101 37 87 4 4 2
CEMT II 442 238 77 11
CEMT III 921 855 105 47
CEMT IV 667 1,023 111 119 24 40
CEMT V 857 2,378 386 815 86 442
CEMT VI 183 859 12 175 15 149
Total 3566 5,449 778 1,171 129 632

Table 3.1: All active ships and their loading capacity by ship kind and type in 2018 (van der Geest & Menist, 2019).

Foreign battery-electric shipping and expected developments
To get an overview of the technological possibilities, battery-electric shipping abroad was also assessed.
Kumar et al. (2019) established a list of recent plug-in marine vessels, which consisted of various hybrid-
electric and all-electric ferries and passenger ships. The battery capacity of the ships built after 2015
ranged between 1MWh till 5MWh. These ships were charged with capacities between 1 MW and 10.5
MW. In 2020, Corvus Energy installed a 10 MWh battery in the AIDA Perla, at the time this was the
largest battery to be ever installed in a ship (“AIDA Perla”, 2020). Armand et al. (2020) estimated that
the capacity of economically viable lithium-ion battery packs with a relatively high energy density would
increase from 90-180 Wh/kg in 2020, to 190-230 Wh/kg in 2030, and >250 Wh/kg in 2050. Besides,
they predicted that the typical fast charging time (20-80%) will decrease from 15-30 min in 2020, to
10-15 minutes in 2030 in under 10 minutes in 2050. In conclusion, an increase of approximately 33%
at the top of the range in capacity can be expected and charging speeds may increase by 33-100%.

3.2.2. Possibilities to switch to battery-electric propulsion
Remarkably, commercial freight ships in the Netherlands usually operate for up to 60 years but have to
replace their engine every 15-20 years Poiesz et al. (2020). Nowadays, ship owners may also choose
battery- or hybrid-electric systems, instead of a new conventional Diesel system. Opting for a hybrid-
or battery-electric system may provide several significant advantages over conventional diesel propul-
sion, such as reduced fuel consumption, superior dynamics and lower vibrations (Cupelli et al., 2015;
Geertsma et al., 2017). Of course, a battery-electric system is only an option if charging stations or
battery-swapping stations are available, or if enough funds to realise these are available. Moreover, a
battery-electric system will result in a highly limited range. Technically, any ship is feasible for electri-
fication if the batteries can provide the maximum power needed for manoeuvrability. However, many
additional stops and charging stations may be needed to complete trips, which may make battery-
electric propulsion unfeasible.

Whether a ship is feasible for electrification without changing its usual travel pattern, depends upon
its sailing profile (van der Geest & Menist, 2019). The sailing profile indicates how heavily the main
engine is loaded during a given period. Considering the limited range, a ship is more feasible for a
battery-electric system if it sails relatively short distances, between a limited set of harbours. Currently,
battery-electric systems have not been installed in dry- and wet-bulk ships, because exchanging the
battery would be harder. Furthermore, electrification of these ships is arguably harder because of their
more varying travel patterns (Poiesz et al., 2020; van der Geest & Menist, 2019). Nevertheless, these
ships make up the majority of the ships, and will also have to switch to renewable fuels to achieve
EU emission reduction goals. Especially as battery-electric shipping is considered the fastest way to
realise zero emission shipping, it is important to also consider these ships for electrification to achieve
the EU emission reduction goals Sustainable and Smart Mobility Strategy – putting European transport
on track for the future, 2020. Therefore, this study considered charging instead of battery swapping
and considered all inland ships for electrification.
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3.3. Actor analysis
Three aggregated actors which should be considered to achieve large-scale adoption of battery-electric
systems in the Dutch inland-shipping sector were identified (Abma et al., 2019; Poiesz et al., 2020;
Rotteveel & de Boer, 2019; van der Geest & Menist, 2019):

• Government agencies and other investors
• Shipping companies
• Port operators, land owners and grid operators

Notably, this is not a fully comprehensive list of all of the involved actors. However, these three aggre-
gated actors are the main actors which are expected to be involved in the roll-out of potential charging
stations for battery-electric shipping and may benefit from the proposed method to support decision-
making. In the following sections, their objectives and corresponding main questions are presented.
Following, the extent to which this research aims to add to their decision-making is discussed.

3.3.1. Government agencies and other investors
First off, government agencies and other investors can be seen as decision-makers regarding the ac-
tual realisation of charging stations. As such, the method for decision-making regarding the optimal
locations and capacities of charging stations along waterways is established for mainly these actors.
All of these actors benefit from the highest possible charging station utilisation. This namely results in
the highest possible charging station utilisation rates and CO2 emission reduction. Their main question
is what the optimal number of charging stations is and where these should be placed. Placing addi-
tional charging stations, may make additional ships feasible for electrification and reduce waiting times.
Also if additional charging stations no longer increase the covered area, they may be needed to reduce
waiting times. Remarkably, in this case, additional charging stations will always reduce the average
utilisation rate.

Therefore, investors in charging station facilities may face a trade-off between utilisation rates and
expected waiting times, when making decisions regarding the number of charging stations to be built
for a given area and demand. Though in the end, they do not make any direct decisions regarding the
actual electrification of ships. The actual decision for a certain form of propulsion is periodically made by
shipping companies. The extent to which inland vessels switch to battery electric vessels is ultimately
the most important factor influencing the profitability of charging station investments. Therefore, the
considerations of inland shipping companies have also been considered, although not the main focus
of this study.

3.3.2. Shipping companies
The Dutch inland shipping sector is characterised by a large number of independent contractors which
own one ship and some shipping companies which exploit several ships. The main goal of these ship
owners is profitable shipping, which can be translated into sub-goals as visualised in figure 3.2. All
of the goals in figure 3.2 play a role when ship owners have to decide on a new propulsion system.
Whenever battery-electric propulsion is considered, there is one main trade-off. On the one hand, a
larger battery will decrease the number of forced stops and increase the serviceable area, given a set
of available charging stations. On the other hand, a larger battery will also reduce the freight capacity
and increase investment costs.

However, the available space for batteries is likely depending on the size of the ship and the required
engine power. Therefore, this research assumed that range of all ships is always the same. The optimal
battery capacity is not within the scope of this research. On the contrary, this research aims to develop a
method to advise decision-makers regarding the optimal placement of charging stations. To do so, the
previously described trade-offs may be incorporated as model parameters or constraints. For instance,
a certain trip may only be deemed feasible for electrification if the ship has to make at most a certain
number of refuelling stops given the assumed range. Also, the optimal location for various ship ranges
may be explored.
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Figure 3.2: Goal and sub-goals of a shipowner

3.3.3. Port operators, land owners and grid operators
Finally, port operators, landowners and grid operators are actors which are crucial for enabling the
realisation of any charging stations for ships. Of course, these actors can also benefit from battery-
electric shipping. The main goal of port and grid operators is to facilitate the energy transition and
remain a key player. Furthermore, landowners may see opportunities to valorise their strategically
located land. Therefore, all of these actors can benefit from insights regarding the expected demand in
their areas. Forthcoming, port operators and landowners may lobby to bring profitable business to their
region. Besides, grid operators may use these insights to anticipate on the required grid capacity. Just
as shipping companies, landowners, port, and grid operators are not the main focus of this research.
However, the findings may still be relevant for them and point out opportunities.

3.4. Conceptualisation
Based on the established overview of the Dutch inland-shipping system and the actor analysis, a con-
ceptualisation was established. First, logical potential charging station locations are discussed. Then,
the assumptions which were made regarding the potential charging station locations, battery capac-
ity and range of ships are presented. Finally, the most important design choices for decision-makers
regarding the placement of charging stations are outlined.

3.4.1. Potential charging station locations
Currently, most of the ships sailing the Dutch waterway network are Diesel-powered. The range of
Diesel-powered ships is usually enough to sail for over a month and conventional refuelling is currently
not a significant activity. For battery electric ships, this would be fundamentally different as they have
a very limited range. So limited that they have to recharge after almost every trip. Moreover, recharg-
ing a battery takes a significant amount of time. Hence, current conventional refuelling is significantly
different compared to recharging. It, therefore, makes no sense to look at the current position of con-
ventional refuelling stations to determine the position of recharging stations. Ships generally only idle
for a significant time during loading and unloading. Hence, it was chosen to include all points of origin
and destination as possible charging locations.

Furthermore, additional charging locations may be needed along the ongoing waterways for interme-
diate charging stops. However, it is not logical to assume that ships will make an unlimited number
of stops if necessary. If more than a certain number of additional stops are required, ship owners will
likely never opt for a battery-electric propulsion system. Therefore, a maximum of four refuelling stops
was considered, including the origin and the destination. As such, a trip was only assumed to be feasi-
ble for battery-electric propulsion if it could be completed using at most four potential charging station
locations on the shortest path.

3.4.2. Battery capacity and range
Logically, a larger ship can carry more batteries, because the room for batteries is likely relative to the
size of the ship. Also, a large ship has a larger engine, which will consumemore power and thus require
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more batteries to achieve the same range as a small ship. Therefore, it was assumed that all of the
ships have the same range, given their travel speed and average engine power, the battery size was
then calculated using the formula 3.1 below. As ships have an incentive to always transport as much
load as possible, the loaded speed was used to calculate the energy consumption. In formula 3.1, the
range of a ship (r) in kilometres is divided by the speed (va) in kilometres/hour, which gives the time
that a ship should be able to sail in hours. Multiplying this with average engine output Pa in kW, thus
gives the assumed battery capacity in c in kWh.

Ba =
rPa

va
∀a ∈ A (3.1)

where:
A = set of all considered ship types
a = ship type, a ∈ A
Ba = average battery capacity [kWh] of a ship of type a, a ∈ A
Pa = average power output [kW] of a ship of type a, a ∈ A
va = average speed [km/h] of a ship of type a, a ∈ A
r = range [km] of a ship

3.4.3. Main design choices for decision-makers
Up until now, only container ships have been considered for battery-electric propulsion. However,
battery-electric shipping is seen as the best option to realise zero-emission shipping in the middle long
term (Sustainable and Smart Mobility Strategy – putting European transport on track for the future,
2020; van der Geest & Menist, 2019). Therefore, this research considered all ships for battery-electric
propulsion. The aim was to develop a method to enable network-wide electrification. The number of
required charging stations likely depends on the capacity of a charging station and the range of a ship.
Given that the Netherlands’ climate and energy minister is already forced to make choices on how to
allocate scarce grid capacity and the relatively high powers at which existing ships are charged, the
grid likely limits the number of charging stations which may be placed at a single location (Algemene
Rekenkamer, 2022). Furthermore, limitations regarding the available space or other site-specific vari-
ables are likely at play. As such, the following aspects were identified as the main design choices:

• The total number of stations to realise
• The maximum number of charging stations to place at a location
• The capacity of a charging station

Choices regarding the realisation of charging stations will influence each other in practice. Because
of network constraints, a higher charging capacity may lead to a lower maximum number of charging
stations at a location. Likewise, a higher charging capacity may require fewer individual stations to
serve all ships. Furthermore, the expected range of a ship also influences the number of required
charging stations to cover a certain area. A ship with a lower range will require more intermediate
stops to complete an average trip, and will thus require more charging stations. Therefore, the range
of battery-electric ships was identified as the main uncertainty.

3.5. Conclusion
The Dutch waterway network is sailed by multiple types of ships with largely varying energy demands.
Most of these are Diesel-powered ships, though battery-electric ships are becoming more prevalent.
For Diesel-powered ships, refuelling is currently not a significant activity, in contrast to battery-electric
ships. Ship owners have to replace their propulsion system every 15-20 years. If they nowadays opt
for a battery electric system, they may have to make additional charging stops depending on their
range and sailing profile. More charging stations along waterways have to be realised to foster the
uptake of battery-electric ships. This involves multiple parties, among which are government agencies
and investors. In the first place, this research aimed to design a method to guide decision-making
regarding the optimal locations and capacities for these charging stations. In addition, the outcomes
may also provide relevant insights for port operators, land owners and grid operators. In this chapter,
an overview of the current Dutch inland-shipping system was presented and a conceptualisation of the
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problem was established. Following, the methods will be developed based on this conceptualisation in
the next chapter.



4. Methods
In this chapter, the two modelling methods which were selected in chapter 2 are discussed, flow-
refueling location modelling and agent-based modelling and simulation. First, these methods and the
established models are presented. Then, the last section elaborates on the proposed combination of
the two established models.

4.1. Flow-refueling location modelling
All flow-refueling location modelling approaches stem from the flow-refueling location model (FRLM) by
Kuby and Lim (2005). This is a path-based static optimisation model. It was designed to distribute a
fixed number of refuelling facilities over pre-determined potential refuelling locations on a road network,
for vehicles with a limited range. Considering a limited vehicle range means that multiple refuelling sta-
tions may be needed to complete a single trip, depending on the location of these refuelling stations. A
flow-refuelling modelling approach requires at least the number of vehicles that travelled on a network
in a specific period, on origin-destination (O-D) pairs. To determine this value, all vehicles are assumed
to use the shortest path to travel between all of the O-D pairs. All trips in both directions between the
two points of the O-D pair are summed, to determine a value for each O-D pair. In addition, most
flow-refuelling approaches assume that each trip is a round-trip.

Then, the objective of any flow-refueling location model is to make as much historic traffic flow on
a network feasible considering the limited range. Remarkably, it is thus assumed that vehicles with a
limited range will not change their travel patterns and can only refuel at the selected refuelling locations.
To achieve the objective of maximal flow-capturing, flow-refuelling location models aim to optimally
distribute a pre-defined number of refuelling stations over predefined potential refuelling station nodes.
A trip is deemed to be feasible if a round trip via the shortest path can be completed, considering the
range of a vehicle and the selected refuelling locations. In addition, various other constraints related
to the electricity grid or the availability of space may be considered during the optimisation Deb et
al. (2018) and Metais et al. (2022). Previously, the flow has been defined as the number of trips or
the distance travelled by vehicles with a limited range in most cases (see table 2.2). The main input
parameter of a flow-refueling location model is the maximum number of refuelling stations to place in
total. Besides, the approach requires at least a network with some potential refuelling station locations
and a set of origin-destination (O-D) pairs with corresponding flow values.

4.1.1. The capacitated flow-refueling location model
To establish a locationmodel to situate charging stations alongwaterway networks, an extended version
of the original FRLM was selected as a basis, the capacitated flow-refueling location model (CFRLM)
by Upchurch et al. (2009). Whereas the original FRLM assumes that the capacity of a refuelling station
is infinite, the CFRLM allows optimising considering a limited average capacity of a refuelling station
during a certain period. Multiple refuelling stations may be placed at each potential refuelling location.
Just like the original FRLM, the CFRLM was designed to locate refuelling stations for vehicles with a
limited range in general, and all vehicles were expected to have the same energy demand whenever
they refuelled. As such, the maximum capacity of a refuelling station was defined as the maximum
number of vehicles that could be served during a given period because of a limited total on-site bunking
or production capacity. The CFRLM consists of two stages as illustrated in figure 4.1, the first stage
involves the pre-generation of all feasible combinations for each O-D pair. Subsequently, the actual
optimisation is performed during the second stage.

The first stage: pre-generation of feasible combinations
The first stage pre-generation of the feasible refuelling station combinations for all of the considered
O-D pairs can be computed using the algorithm by (Kuby & Lim, 2005). The functioning of this algo-
rithm is illustrated for a simple sample network in figure 4.2 and requires the observed O-D pairs, the
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Figure 4.1: The two stages of the CFRLM by Upchurch et al. (2009)
.

set of potential refuelling locations, and the network. The sample network consists of an origin (O) and
a destination (D), which are 500 km apart. Besides, there are two additional nodes, A (100 km from O)
and B (250 km from O). Let us consider all of these four nodes as potential refuelling station locations
and a limited vehicle range (r) of 700km. The first step is to determine the shortest path for each O-D
pair. In this case, the shortest path is O, A, B, D. Secondly, all possible combinations of refuelling
stations on the shortest paths have to be computed. For the sample network, this results in the 15
combinations consisting of 1-4 potential refuelling locations presented in figure 4.2.

Following, their feasibility is evaluated in the third step, using the algorithm presented on the right side
of figure 4.2. This algorithm is used to simulate a round-trip using each of the refuelling station combi-
nations. The maximum range of a vehicle is defined as r and the current range at any time during the
trip is defined as rc. If a refuelling station is present at the origin, the tank is assumed to be full upon
departure (rc = r). Otherwise, the tank is assumed to be only half full (rc = 1

2r). This is done, as this
guarantees that a round trip is feasible. After all, if the vehicle has previously made a round trip and
refuelled at the last refuelling station before the point of departure, the tank must be at least half-full to
reach that same filling station again.

Then, a round-trip on the shortest path for the observed O-D pair is simulated, one sub-trip at a time.
The range is reduced after every sub-trip and if at some point the range becomes negative, the O-D
pair is unfeasible. If there is a charging station present at a sub-destination and the range was still
positive upon arrival, a vehicle is assumed to fully refuel (rc = r). If the destination is reached and there
is a refuelling station present there, a trip is also considered to be feasible, while the range will always
be sufficient to reach the previous refuelling station. If there is no refuelling station present, the route
is only feasible if the vehicle can double back to the origin.

Finally, all super sets are removed from the set of feasible combinations and the data is properly struc-
tured for optimisation. If the range would have been sufficient to complete a round trip, the set of
feasible combinations would be equal to each of the potential refuelling stations on the shortest path.
However, considering a range of 700km, B is the only single charging station location that can support
round trips on its own. All combinations which contain B and another node, are thus super sets. No-
tably, no feasible combinations would have been found at all, if the range would have been smaller
than 250km. A range of 250km, would require a refuelling station at ’D’, ’B’, and ’O’ or at ’D’, ’B’ and
’A’. In conclusion, the range heavily influences the number of required charging stations to support a
route and the number of unique feasible combinations which can support a route.



4.1. Flow-refueling location modelling 21

Figure 4.2: The full algorithm by Kuby and Lim (2005) to determine all feasible refuelling station combinations for each
Origin-Destination (O-D) pair (left) and route evaluation which is performed for each route and combination (right)

The second stage: optimisation
Subsequently, the actual optimization is executed during the second stage using the generated feasible
combinations of the first stage, the network, the O-D pairs and the corresponding flow values, and the
total number of refuelling modules that should be placed. In addition, compared to the original FRLM,
the CFRLM also considers a limited capacity of a single refuelling station during the optimization. The
optimization returns the optimal number of refuelling stations that should be placed at each location
and the share of each flow that should be captured by each combination of charging stations in the
optimal situation. As the model considers a limited capacity for each station, some flows may be split
over unique sets of refuelling stations. Moreover, only part of a flow may be captured in total, meaning
only part of the vehicles could be served in the found optimal situation given the potential refuelling
station locations and the constraints.

Upchurch et al. (2009) proposed two objective functions, which defined the flow as either the total
number of trips or as the total number of travelled kilometres on the network. The second objective
was selected for this study, as the main purpose of electrifying shipping is to reduce greenhouse gas
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emissions, which are likely directly related to the number of travelled kilometers. Let us consider a round
trip flow of 1 between O and D on the sample network in figure 4.2 and a refuelling station capacity of 1.
During a round trip, O and D are visited once, and the other stations are visited twice. Therefore, two
refuelling stations at B are needed to support all of the flow in this situation. Alternatively, two single
stations may be placed at O and D to support all of the flow. No more than 2 stations are needed to
support all of the flow, thus placing more stations is not efficient. Moreover, placing just 1 station in total
would mean that only half of the flow can be refuelled. Logically, this station should then be placed at
B.

Mathematical formulation
The objective function of the CFRLM is presented in formula 4.1 and aims to maximise the number of
travelled kilometres on the network:

Max Z =
∑
q ∈Q

fqsq
∑

h∈H|bqh=1

yqh (4.1)

Subject to: ∑
q ∈Q

fqeq
∑

h∈H|bqh=1

gqhkyqh ≤ cxk ∀k ∈ K (4.2)

∑
k∈K

xk = p (4.3)

∑
h∈H|bqh=1

yqh ≤ 1, ∀q ∈ Q (4.4)

yqh ≥ 0, ∀q ∈ Q, h ∈ H (4.5)

xk ∈ N, ∀k ∈ K (4.6)

where:
Decision variables
yqh = portion [-] of fq, q ∈ Q, being refuelled by facility combination h, h ∈ H
xk = number of modules [#] located at site k, k ∈ K

Model parameters
r = range [km] of a vehicle
p = total number of refuelling modules [#] to be located
c = maximum average flow [# vehicles] which can be refuelled by a single charging station in the same
time period as fq

Other model variables
Q = set of all O-D pairs q, q ∈ Q q = O-D pair, q ∈ Q K = set of all potential facility locations k, k ∈ K
k = potential facility location, k ∈ K
H = set of all potential facility combinations of k, k ∈ K
h = combination of facilities, h ∈ H
fq = average total flow volume [kWh] on the shortest path for O–D pair q, q ∈ Q (in the same time
period as c)
sq = absolute shortest round trip path length [km] for O-D pair q, q ∈ Q
bqh = coefficient equal to 1 if facility combination h, h ∈ H can refuel OD pair q, q ∈ Q and 0 otherwise
eq = average fraction round trips [#] (if more than 1) which can be completed on O-D pair q before
refuelling is required (see formula 4.7)
gqhk = average number of times [#] a vehicle on path q stops and refuels at facility k in combination h

The coefficient gqhk is equal to:

• 0 if facility k is not in combination h that can refuel path q;
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• 1 if facility k is in combination h and at the origin or the destination;
• 2 if facility k is in combination h but not at the origin or destination, meaning the vehicle must stop
at the station to refuel in both directions.

eq =
1

max(1, int( 1
sq
))
, ∀q ∈ Q (4.7)

4.1.2. A model to place charging stations for ships along waterways
The original CFRLM by Upchurch et al. (2009) which was designed to site alternative fuel stations for
vehicles, was adapted to establish a model to place charging stations along waterway networks for
battery-electric ships. The first-stage pre-generation in which the feasible combinations of charging
stations for each O-D pair are determined was not changed. Based on the literature review in chapter
2 and the case study analysis in chapter 3 four changes were made to the second stage of the original
CFRLM:

1. The flow (f∗
q ) on each O-D pair which is maximised by the model, was redefined as the average

total energy demand in kWh to travel over the shortest path (see formula 4.8). Remarkably, this
also ensured the maximal reduction of CO2 emissions considering various types of ships.

2. Accordingly, the capacity constraint (4.10) was also adjusted to be related to the total energy
which can be supplied by a single charging station of a certain capacity during the considered
period. Demand assigned to a specific combination of charging stations was assumed to be
equally spread over all stations in the combination.

3. Also, an additional constraint (4.14) was introduced to cap the number of charging stations which
may be placed at every potential charging station location. This was done to prevent unrealistic
outcomes, as the maximum number of charging stations that can be placed at a certain location
is in reality likely also constrained by either the electricity grid or the available space.

4. Finally, the assumption that ships only conducted round trips on one specific O-D pair was dropped,
as it was not found to be realistic and it was no longer necessary. The original CFRLM assumed
this, to estimate the refuelling demand based on the number of round trips that could be conducted
on a full tank. However, redefining the flow as the total energy demand on an O-D pair allows us
to estimate the energy demand of charging stations in more detail. This led to an adaptation in
the capacity constraint (4.10).

Flow calculation
In addition to the changes to the second stage, a new method was developed to determine the rede-
fined flow values f∗

q for the energy demand on paths based on historic trip-based O-D data of ships.
Using previously derived formula 3.1 and considering the number of ships of each type that travel on
a path (nqa), formula 4.8 could be derived for the average total energy demand on a path (f∗

q ), which
is logically independent of the range of a ship. The energy demand for one trip of an agent of type a
simplifies to the fraction in formula 4.8, hence the total energy demand of all of the agents of a certain
type a travelling on a path is calculated by multiplying this fraction with nqa. Finally, the average total
flow on a path (fq), was calculated by summing up all of the total energy demands for each agent type
a. Whereas the shortest path for an O-D pair q may be agent specific, sqa is defined as the round
trip distance associated with the shortest path for agent type a travelling O-D pair q. yqh was defined
as the portion of fq being refuelled by facility combination h. bqh is an coefficient equal to 1 if facility
combination h can refuel OD pair q and 0 otherwise.

fq∗ =
∑
a∈A

Pa · sqa
va

· nqa, ∀q ∈ Q (4.8)

where:
Q = set of all O-D pairs
q = O-D pair, q ∈ Q
f∗
q = average total flow [kWh/day] on O-D pair q, q ∈ Q
A = set of all distinguished agent types
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a = agent type, a ∈ A
nqa = average number of trips [#/day] on path q, q ∈ Q, by agents of type a, a ∈ A
sqa = absolute shortest path length [km] for an agent of type a, a ∈ A, and for O-D pair q, q ∈ Q
Pa = average power [kW] of an agent of type a, a ∈ A
va = average speed [km/h] of an agent of type a, a ∈ A, (travelling at average power Pa, a ∈ A)

Mathematical formulation
Compared to the original CFRLM, the objective function (4.9) and the capacity constraint (4.10) were
modified. Furthermore, 4.14 was introduced as a new constraint to maximise the number of charging
stations at each location. The objective function (4.9) of the established flow-refueling location model
to place charging stations for ships along waterways, aims to maximise the energy which is used for
battery-electric shipping:

Max Z =
∑
q ∈Q

f∗
q

∑
h∈H|bqh=1

yqh (4.9)

Subject to: ∑
q ∈Q

f∗
q

∑
h∈H|bqh=1

1

|h|
· yqh ≤ c · o · xk, ∀k ∈ K (4.10)

∑
k∈K

xk = p (4.11)

∑
h∈H|bqh=1

yqh ≤ 1, ∀q ∈ Q (4.12)

yqh ≥ 0, ∀q ∈ Q, h ∈ H (4.13)

xk ≤ xm, ∀k ∈ K (4.14)

xk ∈ N, ∀k ∈ K (4.15)

where:
Decision variables
yqh = portion of fq, q ∈ Q, being refueled by facility combination h, h ∈ H
xk = number of modules located at site k

Model parameters
r = range [km] of an agent
m = maximum number of modules [#] that can be located at any single site
p = total number of charging modules [#] to be located
c = average charging capacity [kWh] of a single charging module
o = average operational time [hours] of a charging station (in the same time period as fq)

Other model variables
Q = set of all O-D pairs q, q ∈ Q
q = all O-D pairs q, q ∈ Q
K = set of all potential facility locations
k = potential facility location, k ∈ K
H = set of all potential facility combinations of k, k ∈ K
h = combination of facilities, h ∈ H
fq∗ = average total flow volume [kWh] on the shortest path for O–D pair q, q ∈ Q (in the same time
period as c)
sq = absolute shortest path length [km] for O-D pair q, q ∈ Q
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bqh = coefficient equal to 1 if facility combination h, h ∈ H can refuel OD pair q, q ∈ Q and 0 otherwise

Key metrics
Besides, some useful metrics were defined to assess the system. First off, formula 4.16, was derived
to calculate the fraction of the total flow which is captured by the model.

u =

∑
q ∈Q f∗

q

∑
h∈H|bqh=1 yqh∑

q ∈Q f∗
q

, ∀h ∈ H, ∀q ∈ Q (4.16)

where:
u = fraction [-] captured of total

In addition, some key model metrics were derived based on the conceptualisation in chapter 3. First off,
the main objective of decision-makers regarding a charging station layout is high expected utilisation.
The average utilisation is maximised by the model. Utilisation was defined as the fraction of the time
during which the station is used. To calculate the utilisation, formula 4.17 was derived based on formula
4.9 and formula 4.10.

E =

∑
q ∈Q f∗

q

∑
h∈H|bqh=1 yqh

p · c · o
, ∀h ∈ H, ∀q ∈ Q (4.17)

where:
E = expected occupation [-]

Lastly, another model metric was derived based on the output of the first stage of the adapted CFRLM.
The first stage returns all routes that can be served with a potential charging station layout. As such,
the first stage can be used to estimate the fraction of the flow which may be captured if there are no
capacity constraints. This may be of interest, to see whether adding more charging stations may be
helpful. Based on the flows on these paths, the serviceable fraction was defined in formula 4.18.

ϵ =

∑
q ∈Q f∗

q

∑
h∈H bqh∑

q ∈Q

, ∀h ∈ H, ∀q ∈ Q (4.18)

where:
ϵ = serviceable fraction [-]

4.1.3. Methods to determine additional potential charging station locations
Because of computational constraints, not all of the nodes in the network could be considered potential
charging station locations. The origin and destination nodes were earlier identified as the most logical
locations for site charging stations. Besides, intermediate charging station locations may be needed
to make trips feasible with a limited range. Therefore, two heuristics were established to determine
additional potential charging station locations on the network. The first heuristic aimed to determine
additional charging station nodes on the longest arcs in the network. The second heuristic was designed
to determine intersections in the network which are expected to add the most to the potential network
coverage.

Heuristic 1: additional nodes on arcs
Earlier, Kuby and Lim (2007) investigated multiple heuristics to determine additional potential refuelling
locations. They found that applying Added-Node Dispersion Problem (ANDP)-based approaches by
Kuby et al. (2005) generally led to the best results. Based on the ANDP, they developed theMaxSumMin
heuristic to split links by inserting a certain number of additional nodes. The MaxSumMin seeks to
maximise the sum of the smallest subarcs while splitting up links by inserting nodes. Kuby et al. (2005)
proved that if the longest subarc is an arc that was split p times before, to equally spread the p + 1
nodes over the original link. By doing so, the sum of the longest subarcs is minimized. The functioning
of this heuristic is illustrated in figure 4.3. This heuristic was applied to the Dutch waterway network
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to insert a fixed number of nodes. Alternatively, the heuristic may be applied until a certain minimum
maximum sub-arc length is achieved. While it was not deemed (economically) feasible, links crossing
open water were not considered to insert additional potential charging station nodes.

Figure 4.3: Functioning of the MinSumMax method adapted from Kuby and Lim (2007)

Heuristic 2: including intersections
The second heuristic was designed to select the intersections which were most likely to make additional
routes feasible if a charging station was placed there. To this end, an iterative method was established.
A substantial number of these nodes had a degree of 1, meaning that a charging station here could
only support trips from and to this harbour. Each time the heuristic determined the intersection node
which was the furthest away from all other potential charging station nodes with a degree larger than
1. Similarly as while applying the first heuristic, intersections situated in open water were excluded
from the set of intersections to select potential charging station locations. The method kept including
intersections until a certain number of intersections was added to the set of potential charging station
locations. Each time an intersection was selected, the distance to the nearest charging station was
redetermined for all of the intersections which were not incorporated yet, considering the previously
selected nodes as potential charging station locations as well. The application of the heuristic to add
two nodes to a sample network is visualized in figure 4.4.

4.1.4. The optimal number of charging stations
The adapted CFRLM aimed to maximise the share of the total flow that could be electrified with a
given number of charging stations. If more charging stations than strictly necessary to capture all
of the flow were placed, this did not lead to optimal results. Therefore, first, the maximal number of
effective charging stations should be computed. This may be done by evaluating the CFRLM to locate
an increasing number of charging stations. At some point, placing more charging stations barely has
any effect. At that point, the optimal number of charging stations is found. It is assumed that this point
is reached if, a charging station layout can support at least 99.9% of the captured flow.
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Figure 4.4: Application of the second heuristic to a sample network.

4.2. Agent-based simulation
In addition to the adapted CFRLM, an agent-based simulation model (ABM) was developed to simulate
any charging station layout and assess its performance. In this simulation, ships were sailing using
battery-electric propulsion on all of the O-D pairs which were feasible in each scenario according to
the CFRLM, acting in parallel. During this simulation, the average and maximum utilisation rates and
waiting lines of all charging stations were recorded. Moreover, the charging time, waiting time, and
time in line were stored for each ship that completed its trip. The ABM was built using Python 3.10 and
the MESA Python package (Masad & Kazil, 2015). The ABM was based on an agent-based transport
simulation model by Yilin Huang, which is first presented. Then, the adaptations to the model are
discussed and the established model ABM is presented.

4.2.1. The original transport simulation model
The ABM which was used as a basis was created by Yilin Huang of the TU Delft and was provided
during the course of Advanced Simulation at the TU Delft. The model was established to observe the
effects of floods on a road transport network in Bangladesh. The transport network was defined as a
networkx graph and consisted of various nodes and links. Each of the nodes and links was of a certain
agent class. The model was generated based on a CSV, that contained information regarding all of the
included infrastructural objects. These were all agents, with specified dynamic behaviour, and a speci-
fied position in Decimal Degrees (DD). The following infrastructure-related classes were distinguished:
Infra, Sink, Source, SinkSource, Link, Bridge, and Intersection. Besides, the network was driven by
trucks, of the Truck agent class. Trucks were generated by objects of the Source class, depending on
a set generation frequency. Then, trucks were assigned to a random node of the Source class in the
network.

Subsequently, all of the trucks were assumed to drive via the shortest path to the sink node and travel
at the same fixed speed. Agents driving from an origin to a destination were always headed for a (sub-
)destination. Once they completed the path to their next destination, they moved to that object. Once
arrived at the sink, they were removed from the model. During their journey, trucks may encounter
objects of various classes. Agents of the Sink, Source and SinkSource class, only interacted with the
trucks if they were either generated or removed. Link and Intersection class agents also did not interact
with the agents either. Bridges, on the other hand, may result in delay times if they were broken. All
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of the bridges had a certain condition attribute. Based on this condition attribute, each bridge had a
probability to break. If a bridge was broken, this resulted in delay times. Until this delay time passed,
trucks that arrived at a bridge had to wait. After this waiting time has passed, they would start driving
to their final destination again.

4.2.2. Model adaptations
The original ABM was adapted to simulate the functioning of a charging station layout for ships sailing
between different harbours. Firstly, the original Truck class was used as a basis for a Vessel class. The
Vessel class was given multiple new attributes, among which a type. This determined the individual
travel speed and the battery size of an agent. Likewise, the SinkSource class was used as a basis
for a Harbour class. The old Bridge class was used to establish a ChargingStation class. This class
was used to represent intermediate charging stations at selected additional intersections or inserted
nodes. The class was adjusted to assign a waiting time to agents if they were assigned to charge at
that charging station.

In addition, a new separate class HarbourChargingStation was established for harbours which had
a charging station. The HarbourChargingStation class had the attributes and functions of both the
Harbour and the ChargingStation classes. Just as in the original model, the links and intersections did
not interact with the ships. The sinks and sources were no longer used, as each harbour had to be able
to generate and remove ships. Furthermore, the model was adapted to incorporate all of the outputs
of CFRLM. As such, the generation of agents was no longer based on a general generation frequency
but depended on the empirical data for a specific O-D pair and time of the day. These adaptations will
be discussed in the next section in detail.

4.2.3. An agent-based model to evaluate charging station layouts
In this section, first, the input data of the agent-based model is discussed. Then, the generation charg-
ing and removal of ships are discussed. Lastly, the data collection is discussed.

Input data
The ABM required the following inputs:

1. The optimal number of charging stations at each potential charging station location.
2. The corresponding optimal flow allocation (which fraction of the flow on each O-D pair should use

which charging station combination).
3. The waterway network, including all additional charging station nodes considered during the

CFRLM.
4. The flow-based origin-destination data for all feasible routes with the charging station layout.
5. The range of a ship and the charging capacity of a single charging module is considered during

the optimisation.
6. Average sailing speed and the corresponding power output of each ship type.

Generation, charging and removal of ships
The ABM was used to simulate and collect data for a period of 7 days considering a time step of 1
minute, data was collected after a warm-up period of 1 day. For each of the 9 scenarios, 100 iterations
of the ABM simulation were run, which resulted in an expected range for all of the output values. Ships
were randomly generated for all of the feasible O-D pairs, based on the trip-based origin-destination
(O-D) data, with a 50% chance to start at either of the two harbours, headed for the other harbour.
For each time step, the chance that a ship departed for each O-D pair, was depending on the total
number of ships that had departed on that route during that year at that specific hour of the day. This
was enforced by drawing a random number between 0 and 1 for each O-D pair at each time step,
if this random number was higher than the total number of ships that had departed at this time of the
day on this route divided by the number of minutes in a year, a ship assumed to depart on that O-D pair.

Subsequently, this ship was only generated in the model if a random number which was drawn, was
higher or equal to the fraction of the total flow on this O-D pair which could be captured according to
the CFRLM, otherwise, this trip was not considered to be feasible using the charging station layout.
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Upon generation each ship was assigned to a certain charging station combination, if there were more
options, a station was drawn. In this case, the probability to draw each feasible charging station com-
bination was equal to the fraction of the ships that were assigned to each facility based on the CFRLM.
Likewise, the ship type was determined, if 20% of the ships at the considered route had departed at this
hour of the day in the dataset were of type A, there was a 20% chance the generated ship would be a
type A ship. Finally, once the type of a ship was determined, the average travel speed and the average
engine power were assigned based on the ship type. In line with the CFRLM, ships were assumed to
depart fully charged if the harbour of origin had a charging station and otherwise half full.

Once on their way, ships were assumed to only charge at the charging stations of the charging station
combination they were assigned to until they were full. Depending on the number of charging stations,
a certain number of ships could be charged in parallel at a charging station location, which could either
be a harbour with a charging station or an additional charging station node. If all stations were occupied
when a ship arrived at a charging station location, this ship joined the queue, ships were assumed to
be served according to the ”first in first out” principle. When ships arrived at their destination, they were
first fully charged if they were assigned to use the charging station at the destination, before they were
ultimately removed from the model. This was in line with the CFRLM and the generation of agents in
the ABM, as it was assumed that each ship was fully charged whenever it departed from a harbour with
a charging station.

Data gathering
When ships were removed from the model after the warm-up period because they arrived at their
destination, their unique id, battery size, the hour of generation, the assigned combination, route, and
time at which they departed were recorded. Moreover, their total travel time, waiting time, and charging
time were also logged. This dataset was kept as a model variable which could be stored after the
run, this was found to be an effective alternative for storing the information of all of the vessels each
time step, which was much more computationally intensive. Furthermore, all of the charging stations
and harbour charging stations kept track of their operational time, the cumulative number of waiting
for ships during all time steps, and the maximum length of the queue. Based on these outputs, the
average and maximum occupation of each charging station could be determined at the agent level for
all the charging stations after the last time step.

4.3. Model verification and validation
To check whether the random generation of ships indeed worked as expected, the distribution of ships
in the simulation was compared with the input data which was used to generate the ships. The dis-
tribution of ships with the data set is plotted on the left in figure 4.5 below. On the right, the average
number of ships which were generated during a simulation period of a week for 100 runs with a unique
seed is plotted. As the distribution is similar, it was concluded that the generation of ships had func-
tioned correctly. Furthermore, the locations of the model which were the busiest visually checked and
compared with the total flow on the network, and the travel times of the ships were compared with the
expected values based on the length of the path. Following the assumptions, each ship had to charge
at least once on each trip. Finally, individual ships were tracked during the simulation, to see whether
they charged correctly and it was checked whether the most frequented routes in the empirical data
were also the most frequented routes in the simulation.

4.4. Iterative combination of the CFRLM and the ABM
The ABM can be used to make a trade-off between charging station utilisation rates and waiting times
as visualized in figure 4.6. Notably, this method requires predetermined thresholds for the minimum ac-
ceptable utilisation rates and the maximum acceptable waiting times. What waiting time is acceptable
may be different in different systems, but the acceptable waiting time is likely depending on the total
duration of the trip, as human drives will have to stop now and then to rest too. Considering that the
ABM results in an expected range for both variables, the average, the maximum or a certain percentile
may be chosen.
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Figure 4.5: Comparison cumulative data average week hour of departure generated data (left) and empirical data (right)

Besides, the maximum number of stops to consider a route feasible also has to be determined, too
many stops are likely unacceptable in most systems for economical reasons. If the ABM indicates that
a certain charging station layout results in too low utilisation rates, the only way to increase utilisation
rates is to place fewer stations or to include more charging station locations. A single additional charg-
ing station node may be able to serve multiple flows if this additional node is located at a section where
the paths of two O-D flows overlap, but which first did not contain any charging station nodes.

Moreover, an additional charging station location may make additional O-D pairs feasible with the same
amount of charging stations, because they can be positioned more efficiently. Nevertheless, only a lim-
ited set of additional potential charging stations can likely be realised from a practical perspective, and
executing the CFRLM while considering many additional nodes also quickly becomes unfeasible. If
including additional potential charging station locations is (no longer) an option, the total number of
charging stations can only be reduced to increase utilisation rates of an optimal charging station layout,
because the model already maximised for the captured flow.

Hereafter, the waiting times may then be evaluated using the ABM. If only certain stretches are un-
acceptably busy, additional constraints may be considered to demand at least 1 additional charging
station on that route, if the goal is to make as much traffic feasible with electric drive with a given num-
ber of charging stations. Then, rerunning the optimisation with this additional constraint will either result
in the model dropping another O-D pair and adding charging stations on that route, or in the fact that the
model prioritizes additional routes. If the goal is to make all of the traffic feasible with the electric drive
or a fixed percentage, the only option to reduce the waiting times is to place more charging stations in
total, if there are still locations available on the network to place charging stations.

Whenever there are no places left to place charging stations on an unacceptably busy route, additional
charging stations on this specific route may be considered as well. Finally, peak hour averages may
be used in the optimisation of the CFRLM instead of daily averages, if a found charging station layout
results in unacceptable waiting times in general. Alternatively, a lower capacity may be considered
by the CFRLM, if the waiting times, in general, are too long. In conclusion, the ABM may be used to
evaluate any optimal charging station on predetermined limits regarding the maximum waiting time and
minimum charging station utilisation.
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Figure 4.6: Iterative combination of the CFRLM and the ABM



5. Data preparation
To apply the adapted capacitated flow-refueling location model (CFRLM) to the Dutch inland shipping
network, extensive data preparation was required. The main steps of this process are presented in
this chapter, and all additional data preparation steps and corresponding assumptions can be found in
appendix C. First, the required input data and parameters are discussed. Then, the selected data sets
are introduced. Hereafter, the experimental setup is presented. Finally, the data sub-setting, aligning,
and reformatting which was required is discussed.

5.1. Input data
The ABM required the same input data as the adapted CFRLM and the outputs of the adapted CFLRM.
Given the model in section 4.1.2, the adapted CFRLM required the following inputs:

• The Dutch waterway network with predetermined potential charging station nodes.
• Aligned trip-based origin-destination (O-D) data, suitable to compute the total flow on a path using
the established method in section 4.1.2.

• The range of a ship
• The number of charging stations to place in total.
• The capacity of a charging station.
• The maximum number of charging stations that may be placed at every location.

5.1.1. The Dutch waterway network
First off, the digital twin of the Dutch fairway system by Jong et al. (2022) was selected to represent
the network. This is a digital twin of the Dutch Waterway network, which also contained information
regarding the largest ship that can travel over each link in the network. This information was needed
to compute the shortest path for each ship type and O-D pair. Remarkably, the network did not contain
detailed information regarding the positions of harbours. This meant that any trip-based O-D data could
only be linked to nodes on the network based on coordinates. Nevertheless, this network was chosen
as it was found to be the most complete network which was available.

5.1.2. Trip-based O-D data
Secondly, trip-based O-D data was needed. The position of inland ships is live-tracked using the Au-
tomatic Identification System (AIS), a system that is meant to enhance the safety of navigation. The
purpose of AIS is to enable good communication between skippers and between skippers and traffic
stations. To this end, an AIS transponder is obliged for all ships longer than 20 metres sailing the
Dutch waterway network (Waterstaat, n.d.). Potentially, historic AIS data would have been well-suited
for this study. Especially if each trip was linked to an individual ship of which the average sailing speed
and power consumption were known. However, historic AIS-data is not publicly available for privacy
reasons and can only be requested for research purposes for a limited area and period. This study
aimed to adopt a network perspective, and incorporate the data for a full year. Therefore, a request for
extraction of this sensitive information was not considered worthwhile.

Instead, a trip-based anonymous O-D dataset for 2021 was extracted from Rijkswaterstaat (2022).
Although less detailed than a full AIS information dataset, this data set included all of the necessary
information to compute flow values using the established method in section 4.1.2. The dataset namely
included the origin, the destination and the CEMT and RWS-type of the ship of trips in 2021. After
the origin and destinations were linked to nodes on the network, the CEMT-class could be used to
determine the shortest path for each ship. The RWS-ship type is a more detailed variant of the CEMT-
class introduced in section 3.1. The average engine power and the average loaded speed were known
for all of the 31 unique RWS-ship types (van Koningsveld & Baart, 2022). As such, all of the required
data to determine the flow values for the O-D pairs using the method in section 4.1.2 were known.

32
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5.1.3. Experimental setup
As earlier noted in chapter 3, all model input parameters likely depend upon each other. Moreover, the
capacity which can be realized at each location is likely constrained. Hence, based on the prevalent
supported charging capacities, ranges, and expected developments which were detailed in chapter
3, an experimental setup was established. Currently, operational battery electric ships in The Nether-
lands have ranges varying between 60-120 kilometres (van der Geest & Menist, 2019). In chapter 3,
an expected increase of %33 was found in the literature. Based on this expectation and current ranges,
three plausible range scenarios were developed. A low-range scenario in which the range was 70 km,
a medium-range scenario in which the range was 110 km and a high-range scenario in which the range
was 150 km.

Furthermore, it was assumed that the maximum capacity which can be realized at a single location
is 10MW. Looking at the previously achieved charging capacities, a single module that delivers this
capacity could be built. Alternatively, multiple facilities that deliver a lower capacity could be realized
in parallel. Three alternative policies were established. In policy 1, a single charging module of 10MW
was considered to place at each location. In policy 2, at most 3 charging stations of 3.33 MW were
placed at a single location. The last policy entails building at most 5 stations of 2 MW at a location.
Together with the three range scenarios, these three policies resulted in the 9 experiments detailed in
5.1. For each of these scenarios, the heuristics could be applied or not. As such, 18 experiments were
evaluated in chapter 6.

Experiment Range of a ship Max stations per location Module capacity
1 70 km 1 10 MW
2 70 km 3 3.3 MW
3 70 km 5 2 MW
4 110 km 1 10 MW
5 110 km 3 3.3 MW
6 110 km 5 2 MW
7 150 km 1 10 MW
8 150 km 3 3.3 MW
9 150 km 5 2 MW

Table 5.1: The experimental setup in which three range values and three policies are combined.

5.1.4. Data sub-setting
The full trip-based origin-destination dataset contained information regarding over 385,000 trips. These
were not solely inland trips but also trips from and to The Netherlands and foreign trips. Only inland trips
fell within the scope of this research, hence all other trips were dropped from the data set. Moreover,
some additional data sub-setting steps were necessary, which can be found in appendix C. Finally, trips
between over 10000 O-D pairs and 600 Dutch harbours were left. Not all of these harbours could be
incorporated into the models, because of computational limitations. Therefore, it was chosen to only
incorporate the 200 O-D pairs with the highest expected flow values. Doing so, resulted in including
52.0% of all trips, 65% of the expected flow on the network and 100 unique harbours. An overview of
all steps can be found in figure 5.1.

5.2. Aligning the network and the trip data
The next step was aligning the network with the trip-based O-D data. This entailed assigning all 100
unique harbours to nodes in the network, based on their coordinates. First off, retrieving the coordinates
of 100 harbours was not straightforward, because of incomplete data. This process is explained in
section C.3 of appendix C. It was assumed that the path in and out of a harbour could be neglected
and that ships passed by a harbour if they passed by the exit. This was done because this made it
easier to consider harbours for intermediate recharging stops. Hence, the objective was to select the
nearest node at an ongoing waterway (green), for each harbour (red) as illustrated in figure 5.2 for
two harbour docks of Lobith. Based on some network attributes, the best nodes at ongoing waterways
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Figure 5.1: Data selection process

were selected for all harbours. This resulted in 97 unique harbour nodes, for the 100 harbours. In most
cases, a node was found within a few kilometres of the determined coordinates for a harbour.

Figure 5.2: Nodes on ongoing routes (green) which would be selected for harbour nodes (red) using the designed method.
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5.3. Network simplification
Lastly, the network was simplified for increased computational efficiency and to make the network suit-
able to apply the designed heuristics. First off, the K-means algorithm byMacQueen (1967) was applied
to reduce the number of harbour nodes, as quite some harbour nodes appeared to be right next to each
other. In this manner, the total number of harbour nodes was reduced to 82. Following the shortest
paths for all of the ship types which had sailed the selected O-D pairs were determined. Following, only
the subgraph with the nodes that were in the determined routes was kept. Also, all intermediate nodes
with a degree of 2 were removed from the network. This resulted in the network which is visualized in
figure 5.3. In this figure, the five found routes for various ship types are visualized.

Figure 5.3: Different routes on the cleaned network from IJmuiden to Moerdijk and the corresponding number of ships (n)
which were assumed to take these routes in 2021.



6. Results
The goal of this research was to iteratively combine the newly designed adapted capacitated flow-
refueling location model (CFRLM) with an agent-based simulation model. To do so, an experimental
setup was established in the previous chapter (see table 5.1). In this chapter, all of the experiments
were assessed, with and without considering any additional potential charging station locations. In this
manner, 18 experiments were evaluated. Consecutively, the results of the CFRLM and the ABM will
be presented. A detailed description of how the results were generated can be found in appendix D,
just additional figures.

6.1. The capacitated flow capturing location model
The adapted CFRLM aimed to maximise the share of the total flow that could be electrified with a given
number of charging stations. Based on this objective, three main metrics were determined for the
CFRLM in chapter 4. In this chapter, the model outcomes will be analysed according to these model
metrics. First, the effects of the designed heuristics to determine additional potential charging station
are assessed using the serviceable fraction and fraction of the total flow which can be captured. Then,
the way in which the fraction of the total flow increases if more charging stations are placed for all 18
experiments is discussed. Hereafter, the expected utilisation of charging stations is assessed. Finally,
the cumulative number of charging stations which were placed on the network in all of the experiments
with and without considering additional nodes are presented using a density plot.

6.2. Heuristics for additional potential charging station locations
Two heuristics were established to determine optimal additional charging station locations. The optimal
number of additional nodes added with each heuristic was determined empirically. First, both heuristics
were applied to the case study network considering ship range of 70 kilometres, to an increasing num-
ber of charging stations. A maximum charging station capacity of 2MW and a maximum of 5 charging
stations per location was considered. All possible ways to include the heuristics were tested. The re-
sults when considering an increasing number of charging stations to place in total is visualized in figure
6.1. It was clearly found that first applying the first and then applying the second heuristic yielded the
best results. Henceforth, first applying the second heuristic and then applying the first heuristic was
not considered.

In appendix section D, all heuristics were compared for various ranges as well. After it was found
that both heuristics performed the best for all other ranges, the number of nodes to insert with both of
them had to be determined. To this end, various experiments were performed. In these experiments,
both heuristics were used to determine 5-30 additional charging station nodes. Then, the CFRLM was
applied to locate 40 charging stations on the network considering various ranges, for each of these
experiments. Besides the total fraction of the flow which could be captured in the optimal solutions,
the number of used additional locations was also observed. A detailed overview of this analysis and
the resulting plots can be found in appendix D. In summary, it was found that adding more than 25
additional nodes did not add value in most cases. Therefore it was decided to apply both heuristics
to determine 25 additional locations in the scenario in which additional nodes were considered. The
resulting network with 50 additional potential charging station locations generated by both heuristics is
visualized in figure 6.2.

6.2.1. Captured fraction total flow
The resulting fraction of the total flow that could be captured without considering additional nodes with
an increasing number of stations can be found in figure 6.3. Where the lines stop, 99.9% of the total
flow which could be captured, given the range and the potential locations, is captured. As such, the
points where the lines stop indicate the maximal number of effective charging stations in each of the
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Figure 6.1: The results of all possible heuristics compared when an increasing number of stations is placed on the resulting
network.

experiments. Without additional nodes, only about 10% of the flow could be served by the charging
stations if a range of 70km was considered, in all three experiments. Hence, placing larger stations
was never efficient in these scenarios, except if it would have reduced waiting times.

To the contrary, less, more powerful charging stations could satisfy significantly more flow in themedium
and high range scenarios. Especially if few charging stations are placed in total. Even if just 1 charging
station was placed in total in all experiments, the resulting total fraction of the total flow which could be
captured diverged widely. When more charging stations were placed, these marginal effects of placing
more stations reduced. The maximum fractions of the total flow which could be captured quadrupled
to around 40% when a range of 110 kilometres was assumed. Finally, a range of 150 km resulted in a
maximum captured fraction of the total flow of around 70%.

Remarkably, the maximum fraction which is captured is close to equal for each of experiments con-
sidering the same range. Although the number of charging stations which was required differed. The
differences between the number of stations which are required to support all of the flow when different
station sizes are considered, increased if the range increased. This was expected, while a longer range
may allow to place charging stations more effectively. This also explained why the maximum number
of charging stations which can be placed effectively increased relatively slow with the range, compared
to the maximum fraction which is captured. This points to the fact that charging stations were likely a
lot busier on average in high-range scenarios in reality. Lastly, it was apparent that the fraction of the
total flow which was captured some times went up rather abrupt. This may be explained by the fact
that placing an additional station may make new routes feasible with battery-electric drive. The extend
to which the fraction which is captured increased, depended on the flow value of this route.

Furthermore, the resulting fraction of the total flow that could be captured considering additional nodes
with an increasing number of charging stations, is visualized in figure 6.4. First off, it is apparent that
much higher fractions can be captured in all experiments. When considering a range of 150km, 99% of
all flow could be served. The captured fraction relatively increased the most when additional nodes are
considered in the low range experiments. Remarkably an increasing range, allowed to capture more
flow with fewer stations if additional nodes were considered. This was expected, as the additional
potential charging locations may be on multiple of the shortest paths. Notably, the total number of
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Figure 6.2: The final resulting network with 2 x 25 additional potential charging station locations. The blue points are added
using heuristic 1 and the green points using heuristic 2. The red points are the harbours, which are always considered as

potential charging station locations.

effective charging stations was higher for the low and medium range experiments if additional charging
station locations were considered. The number of effective charging stations for all experiments can of
course be seen in the graphs, but is also visualized using bar charts in D. However, looking at the high
range 1x10MW experiment, the number of effective charging stations is lower if additional potential
charging stations are considered.

6.2.2. Expected utilisation
Next, the expected average station utilisation was determined for all of the experiments with and without
considering additional nodes. The expected utilisation rates increased if smaller stations were placed in
all scenarios. As expected, the utilisation rates were much higher if additional nodes were considered,
especially for the lower and medium range experiments. Furthermore, the overall utilisation increases
with the range of a ship, as more routes become feasible. In general, utilisation rates ranged from just
a few percent till almost 85% in absolute values. In appendix B, these utilisation rates were compared
with the observed utilisation rates in the ABM as a means of validation of both methods.

6.2.3. Density plots
In addition to the previously presented metrics, density plots were made for all experiments. This was
done to indicate which locations were frequently considering the optimal number of charging stations
for each of the 18 experiments. Separate density plots were made for all experiments with and without
additional nodes. All potential charging station nodes were scaled to the cumulative number of stations
which were placed at that location. As such, the results provide insight into the expected demand at
all potential charging station locations across all experiments. The resulting density plot when no ad-
ditional nodes are considered is presented in figure 6.7. Looking at this density plot it is apparent that
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Figure 6.3: Fraction of the total flow captured by the charging station layout when additional nodes are not considered.

Figure 6.4: Fraction of the total flow captured by the charging station layout when additional nodes are considered.

the gravity point is centred around the route between Rotterdam and Amsterdam, as expected.

Furthermore, the density plot considering additional nodes is visualized in figure 6.8. It is clearly visible,
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Figure 6.5: Expected utilisation when additional nodes are not considered.

Figure 6.6: Expected utilisation when additional nodes are considered.

that there were more charging station placed in total, in the experiments in which additional nodes were
considered. As a result of the increased demand, even more stations are placed in the West of the
Netherlands. However, the total number of potential charging stations also increase. Hence, charging
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Figure 6.7: Density plot 9 scenarios without additional charging stations.

stations in some areas were more evenly divided. In general, the density of charging stations was much
higher if additional charging station nodes were considered. In both figures, only at 5 places more than
1 station was placed on average. This meant that the influence of the experiment parameters was
large. Finally, most additional stations were placed where there are relatively few potential charging
station nodes present. This suggests that with the locations and input parameters identified, the flow
on the busy path between Rotterdam and Amsterdam was already covered without additional potential
charging station nodes. Hence, the contribution of additional charging stations was therefore mainly to
enable more routes and not to increase the flow that can be supported on the busy paths.
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Figure 6.8: Density plot 9 scenarios with additional charging stations.

6.3. Results agent-based simulation
The ABM was used to simulate the performance of the optimal found charging station layouts for all
of the 18 experiments. Information regarding the number of iterations for each experiment and the
estimated convergence, can be found in appendix D. First, the average charging station utilisation and
waiting time in each of the scenarios are presented. Following, an overview of the fraction of the time
that ships spent sailing, waiting, and charging is presented for all experiments. Also, D.1 contains
graphs of the absolute charging and sailing times.
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6.3.1. Average station utilisation and waiting times
The found average waiting time and station utilisation rates for the experiments without additional charg-
ing station locations are plotted respectively figure 6.9 and figure 6.10. Remarkably, there is a clear
trade-off between these two KPIs, as ideally high utilisation rates and low waiting times are preferred.
Placing fewer, larger charging stations was found to be the most effective at reducing waiting times
in for all considered ship ranges. However, this also led to much lower utilisation rates. As a result,
with relatively fewer large stations, more traffic could be provided considering a small range. Relatively
seen, the average utilisation increases much more than the waiting time for the 1x10MW scenario at
higher ranges. Looking at the absolute values, the waiting times were ranged between 20-350 minutes
and utilisation rates between 3-63% in the experiments without additional nodes. Arguably, the 3x3.3
policy performed slightly better than the 5x2.0MW policy. After all, the resulting difference in waiting
time between these policies was a lot smaller that difference in usage hours

Figure 6.9: Average waiting time in minutes for each of the experiments without additional potential charging station locations.

Considering additional nodes, led to even higher waiting times and utilisation rates. As the optimal
number of placed charging stations decreased with an increasing range, this was already expected.
In general, larger charging stations performed worse than in the experiments without additional nodes.
This was likely the case because larger charging stations could be placed more efficiently if additional
nodes were considered. Absolute utilisation rates were much higher, and ranged between 12-80%.
Moreover, the waiting times tripled in most scenarios and range between approximately 200-1200 min-
utes.

6.3.2. Relative waiting, charging and sailing time
Also, the relative waiting, charging and sailing times were assessed using the ABM. The results con-
sidering additional charging station locations are presented in figure 6.13. At low ranges the system
performed relatively well. However, as the range increased, the waiting times went up. The relative
charging times went up whenever less powerful charging stations were considered. However, as the
range increased, the relative differences decreased. This was even more prevalent when additional
potential charging stations were considered, as seen in figure 6.14. Remarkably, the fraction of the time
that ships had to wait stayed relatively constant if the medium and high range scenario are compared.
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Figure 6.10: Average station utilisation for each of the experiments without additional potential charging station locations.

Figure 6.11: Average waiting time for each of the experiments with additional potential charging station locations.

6.4. Conclusion
In this chapter, first the optimal number of additional potential charging station locations was determined.
then, the optimal charging station layout for 9 different experiments was determined. It was found that
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Figure 6.12: Average station utilisation for each of the experiments with additional potential charging station locations.

a higher range allowed to place charging stations more efficiently. Moreover, considering additional
potential charging station locations was found to have a similar effect. If additional potential charging
stations were considered, the optimal number of charging stations even decreased with the range.
While more trips were feasible with higher ranges, this resulted in increased utilisation rates. Finally, it
was found that there is a clear trade-off between utilisation rates and waiting times.
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Figure 6.13: Fraction of the time that ships spent charging, inline and driving in each of the 9 experiments without additional
nodes.
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Figure 6.14: Fraction of the time that ships spent charging, inline and driving in each of the 9 experiments with additional
nodes.



7. Discussion
This research aimed to develop a method to guide decision-making regarding the optimal placement
of charging stations on a transport network. To this end, the goal was to combine a capacitated flow-
refueling location model and an agent-based simulation. Moreover, the goal was to apply this method
to the Dutch inland waterway freight transport network. In this chapter, first, the results of the case
study were reflected upon and the underlying assumptions were discussed. Then, the more general
developed method to site charging stations was evaluated, before the suggestions for future research
were presented. A full overview of all assumptions which had to be made can be found in appendix A

7.1. Case study
The goal of this case study was to investigate the large-scale electrification opportunities from a net-
work perspective. To this end, rather optimistic assumptions were made regarding the possibilities for
electrification of ships. Each trip was assumed to be feasible with battery-electric propulsion, based on
just the assumed battery-electric range and the placed charging stations. It was found that the range
of a ship is of great importance for the possibilities for battery-electric shipping. Moreover, additional
charging stops were found to be required in most cases. Various plausible charging station capacities
and ship ranges were evaluated using the designed method. Considering just the observed harbours
as potential charging station locations, only a limited number of ships was feasible for electrification.
To the contrary, 99% of all observed trips on the Dutch waterway were found to be feasible for battery
electric drive, additional potential charging station locations.

However, in reality, all trips are executed by a certain set of ships. Each of these ships is only feasible
for electrification, if all of the trips of the ship are feasible with a given charging station layout. The
approach which was adopted in this research neglected this. Even if the full observed network was
feasible with battery-electric propulsion, a ship may be unfeasible for electrification. This could be the
case, while it was not known whether the ship also sailed in on not observed waterways. Moreover,
no detailed data regarding the ships was known. As such, the assumed average energy consumption
and average speed of a ship were only rough estimates. In future research, this could be overcome
if non-anonymous trip-data is used. Then, all trips of ships that only sailed in a certain area can be
selected. Following, the adapted CFRLM can be used to locate charging stations to make all of these
trips feasible.
Furthermore, the resulting waiting times were assessed for each of the found charging station layouts.
A clear trade-off between charging station utilisation rates and resulting waiting times was identified.
Higher utilisation rates, always led to longer waiting times However, the simulation assumed ships did
not change their usual travel pattern. In reality, the roll-out of a charging station layout will likely come
along with an extensive scheduling system. In any case, the ships still needed to charge for a significant
amount of time. Depending on the chosen charger capacity and considered range, charging took 6-
22% of the total trip time. Loading and unloading a ship takes a significant amount of time, and was
identified as the main charging opportunity. However, in most cases ships also required intermediate
refuelling stops. Moreover, a charging station can only be placed at a single dock. As such, much more
charging stations will be needed if ships only charge during loading and unloading.

7.1.1. Model adaptations
The main feature of inland ships which was included in the modified CFRLM is their varying energy de-
mands, and the ability to estimate the energy demand at a station. As the energy demand significantly
varies between different vessels, the approach of the original CFRLM was not suitable. The original
model assumed that each vehicle always had the same energy demand it it refuelled. The newly
designed approach allowed the incorporation of different types of ships, by including a class-specific
energy demand per travelled kilometre, and an average charging speed for all classes. Also, the max-
imum capacity of a station was redefined as the maximum supplied energy during a given period by a
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charging station. Following these assumptions, the model is more suitable to apply to battery-electric
systems.

Notably, speeds and charging speeds were still assumed to be equal for all classes, and all classes were
assumed to have the same energy demand travelling on any path in any direction. Also, the energy
demand was assumed to be equally divided over all charging stations which were used by a ship to
complete a certain path. This does not necessarily have to the case. Future research may assess the
effects of varying energy demand of for example currents in detail, by considering a different energy
demand for a path, based on the direction in which the path is followed. Now, it was implicitly assumed
that the range of a ship was the minimum range in the worst possible conditions. This assumption
allows the ship to travel at least the assumed range at all times. During this case study, the effects of
environmental variables which affected the energy use were assumed to even each other out, meaning
the net energy demand would stay the same.

7.1.2. Implications
Based on this study, it may be concluded that there are possibilities for large-scale ship electrification
using battery-electric systems in the Netherlands. However, this will likely incur high costs. A relatively
large ship range will have to be realised. In addition, high charging capacities are needed and addi-
tional stops will be required. This will lead to a decreased transport capacity. Furthermore, realising a
lower number of more powerful charging stations was found to be the most effective to reduce waiting
times. However, in reality various charging stations may be placed at the same time, this was not con-
sidered in this research. The current approach assumes multiple charging station at a single location
can only be used for parallel charging. Optionally, various capacities may be included in the adapted
CFRLM by assuming that multiple charging stations at a location can be used to charge a single ship.
In each case, the clearly identified trade-off between charging station utilisation and average waiting
times, stresses that temporal demand fluctuations exist and should be assessed.

In general, only a few large hubs with multiple parallel charging stations were placed by the CFRLM if
small stations were considered. This points to the fact that any system will likely consist of some large
hubs and multiple smaller stations. Remarkably, this could also be a more feasible result considering
the electricity grid than siting less large charging stations too. Considering more additional locations
did not lead to the intensification of the demand in certain areas, but rather to a better distribution of
flows across the network. Large, single stations were found to perform the best at reducing waiting
times, but led to low utilisation rates. Hence, it may be interesting to combine charging stations for
ships with other e-mobility services in an energy hub. In this manner, utilisation of these stations may
be increased while feasible waiting times are maintained at the same time.

7.2. Reflection upon the developed method
This research extended the capacitated flow-refueling model, to be more suited to locate charging
stations for systems with with various energy demands. Furthermore, a charging station layout was
successfully simulated using an agent-based model, considering various experiments. As anticipated
upon, the CFRLM led to a somewhat sub-optimal situation, with some relativley busy charging stations
which may be improved with additional model constraints. Nevertheless, this would require consider-
ing one scenario at a time and would also require specifying thresholds for acceptable waiting times
and utilisation rates. The main goal of this research, was to develop and illustrate a method to guide
decision-making regaring the optimal locations of charging stations for ships. Optimising for a certain
expected ship range was not within the scope of this study.

Therefore, it was chosen to not apply the model in an iterative manner. This was not considered to
add much value to this case study or to prove the effectiveness of the designed method. Especially,
as the ability of the ABM to make trade-offs between average charging station utilisation rates and
charging times was already successfully demonstrated. Moreover, a combination of smaller and larger
charging stations appears to be the most effective. This was not considered in this research which
only assessed placing one type of charging station at a time. In conclusion, it has been successfully
demonstrated that an ABM may complement a CFRLM to guide decision-making toward the roll-out
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of a feasible charging station layout. Forthcoming, future research may apply a combination of these
models considering the placement of multiple types of charging stations at the same time.

7.3. Future research
Based on the case study, full electrification of Dutch inland shipping seems to be technically achievable
if the electricity grid would allow to site a set of relatively large charging stations. However, this is likely
not the case. Moreover, compromises would be required. The transport capacity of ships will decrease
and their deployability will decrease as well. This study only considered siting a single type of charging
stations at a time, considering placing multiple charging stations at the same time was left for future
research. Also, due to the network perspective adopted throughout this study, many details have been
omitted. Future research regarding this case could focus on these aspects. For instance, the effects
of currents, water levels, temperature and other environmental variables could be incorporated into
scenarios or direction-specific energy consumption for paths. However, first research regarding the
effects on the effects on the average energy demand on a smaller scale is likely needed, in which only
some waterways are considered.

The model could also be applied in a different setting. However, especially transport systems with
varying energy demands are interesting to assess. As such, a network with shared cars, shared scoot-
ers or taxis could be studied. For these networks, the required trip-based O-D data is more likely to
be available. Furthermore, the newly designed method may be extended to consider placing multiple
types of charging stations at the same time. Lastly, the method may be highly feasible to assess the
positioning of energy hubs, when multiple systems are considered. As a single set of users is unlikely
to be able to use all placed charging capacities at all times, this offers to explore opportunities to make
charging sites more profitable and efficient at the same time.
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A. Assumptions
In this appendix, a list of all assumptions is presented, which had to be made to apply the models to
the problem. First of the following assumptions regarding ships were for both models:

• Each inland trip was assumed to be feasible for electrification.
• All ships of a certain class were assumed to always travel at the same average speed based on
their class.

• All ships of a certain class were assumed to always have the same average power consumption
based on their class.

• Ships were assumed to have the same energy consumption travelling in any direction.
• Trips by ships were assumed to be unconnected, whereas, in reality, all trips are executed by a
limited set of ships.

• The range of ships of all types was assumed to be the same. This was motivated by the idea that
the battery capacity is relative to the installed power and ship size.

• Ships were assumed to be able to overtake each other at all times.
• Ships were assumed to be able to enter harbours and charging stations coming from all directions.
• A ship was assumed to be fully charged upon departure if there was a charging station present
at the origin, and otherwise half-full.

• It was assumed that ships always took the absolute shortest path they could take given their size
class.

• It was assumed that ships always travelled at their loaded speed, as they had the incentive to
transport as much freight as possible at all times.

• It was assumed that ships always only refuelled at the assigned charging station combinations.
• Ships were assumed to always charge until they were full.
• In the ABM, ships were assumed to be served according to the ”first in first out” principle.
• In the ABM, ships were assumed to be fully charged at their destination before they were removed
from the model.

Secondly, the following assumptions regarding charging stations were made:

• All placed charging stations in each experiment were assumed to have the same capacity.
• It was assumed that charging speeds were the same at all times and only depended upon the
maximum average charging speed supported by the charging station.

• It was assumed that themaximum capacity that may be realized at a location was 10MWbecause
of constraints caused by the electricity grid, available space, or other external factors.

• The energy demand of a ship refuelling at multiple stations during a trip was assumed to be
equally split over these charging stations.

• A likely fixed time to couple and decouple a ship from a charger was assumed to be neglectable.

Lastly, the adapted CFRLM entailed the following assumptions regarding the nature of flows:

• Each flow was assumed to be indefinitely divisible over sets of charging stations.
• Each flow was assumed to be a uniform flow.
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B. Model verification and validation
To validate the adapted CFRLM, the flow on the network was observed. Then, the effects of an increas-
ing range were observed.

B.1. Total flow on the network
The flow resulting from the conceptualisation was plotted in figure B.1 and compared with other data
sources. It was concluded that the intensities were comparable with the intensities described in the
literature (Rijkwaterstaat, 2020; van der Geest & Menist, 2019).

B.2. Siting a single station with an unlimited capacity considering
an increasing range

As a means of model verification, a single station with an unlimited capacity was placed considering
an increasing ship range. First, a range of 60 kilometres was considered in figure B.2. The station
was then placed near Rotterdam, and only a single short route was could be supported. Then, the
range was increased to 90 kilometres (see figure B.3). Now, multiple short routes could be supported.
Increasing the range to 120 kilometres still did not enable trips on the busiest path of the network (see
figure B.5). Finally, a range of 150 kilometres, allowed the model to capture the busiest route in the
network between Rotterdam and Amsterdam (see figure B.5).
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Figure B.1: Total flow on the network
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Figure B.2: Results single charging station with an unlimited capacity, considering a ship range of 60km
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Figure B.3: Results single charging station with an unlimited capacity, considering a ship range of 90km
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Figure B.4: Results single charging station with an unlimited capacity, considering a ship range of 120km
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Figure B.5: Results single charging station with an unlimited capacity, considering a ship range of 150km



C. Data processing
In this appendix, all details regarding the data and the processing of the data can be found. First, the
input data is discussed. Then, the data selection and reformatting are elaborated up on. Finally, it is
discussed how the data is alligned and simplified.

C.1. Input data
The input data consisted of the Dutch waterway network by Jong et al. (2022) and trip-based origin-
destination (O-D) data which was retrieved from Rijkswaterstaat (2022). Both data sources will be
discussed in detail in this chapter.

C.1.1. Trip-based origin-destination (O-D) data
The full RWS dataset of 2021 contained information on 385,572 trips between origins and destinations
in The Netherlands and neighbouring countries (Rijkswaterstaat, 2022). The data set included the
United Nations Code for Trade and Transport Locations (UN/LOCODE) for the origin and destination,
the date and hour of departure, data regarding the transport capacity and shipload, and the RWS ship
classification code. The RWS ship classification code is based on the properties of a ship and the
CEMT-classification system, which was established to ensure the interoperability of large navigable
waterways within Continental Europe and Russia (“Resolution No. 92/2 on new classification of inland
waterways”, 1992; Rijkswaterstaat, 2022).

Exploratory data analysis
First, some exploratory data analysis (EDA) was conducted. An overview of all data characteristics
can be found in figure C.1. The total number of trips in 2021 was quite constant throughout the year
and is visualized in figure C.2. The same goes for the total amount of transported weight in 2021 (see
figure C.3). Hence it was decided to use the full data set of 2021, as the total trips and the transported
weight seemed to be relatively consistent throughout the year. Remarkably, the number of trips over
time during the day was not constant, as seen in figure C.4.

Figure C.1: Overview of the data characteristics
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Figure C.2: Total amount of trips each month in 2021

Figure C.3: Total amount of transported weight in each month in 2021
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Figure C.4: Overview of the aggregated temporal distribution of departures

C.1.2. Dutch waterway network file
The Dutch waterway network file by Jong et al. (2022) was a detailed version of the network, which also
contained information regarding the largest ship that can travel over each link in the network. Notably,
the network contained 290 nodes which were labelled as a berth. However, the 290 berth nodes did
not contain any further information, meaning they could only be linked to the O-D data based on their
coordinates. Besides, the links also had some additional attributes regarding the dimensions of the
waterway which were not used and a ”Name” attribute, which was used to couple the network with the
O-D data, as it was found that all of the waterways going towards harbours had the same ”Name” label.

C.2. Data selection and reformatting
The data selection process consisted of multiple steps, which are visualised in figure 5.1 below. First,
all of the trips with the same origin and destination were deleted (1.72 %), as these did not result in
flows on the network. Secondly, a small fraction of the trips without an RWS type entry was identified
(0.42%), these values were dropped from the data set since the energy consumption of these ships
could not be estimated. This was also the case for ships of the M0 class (0.33%), a residual class for
the smallest ships in which there is a great deal of variation. Characteristics such as average engine
power and speed were not available for the M0 class, henceforth trips conducted by M0 ships were
deleted. Hereafter, only inland trips were selected with an origin and destination within the Netherlands,
because all other trips do not fall within the scope of this research. To this end, 41484 foreign trips and
an additional 159218 inbound and outbound trips were deleted from the data set, resulting in 175351
trips for 10329 O-D pairs between 612 unique harbours in The Netherlands.

However, not all of the 10329 O-D pairs between the 612 unique harbours, could be incorporated into
the model to maintain computational feasibility. Moreover, including all of the O-D pairs did not make
sense, as many of them were only rarely sailed. Considering the objective to supply as much energy
with a limited number of charging stations, ideally, the routes with the highest energy demands were
selected. Nevertheless, calculating the energy demand of an OD pair given the assumptions required
not just trip-based 0-D data, but also the distance on the shortest path for each O-D pair (see formula
4.8). To be able to determine the shortest paths for all of the O-D pairs, all O-D data had to be aligned
with the network, which was also computationally unfeasible.

Alternatively, just the most frequented routes could have been selected, but this would have neglected
the varying energy consumption of different types of ships. Possibly, this would have led to skewed
results, because larger ships can be expected to undertake fewer individual trips and travel longer dis-
tances on average for economic reasons. Hence, it was decided to select the O-D pairs with the highest
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energy consumption per kilometre. To this end, the passing battery capacity in terms of equivalent M1
ships was determined for each path using the formula 3.1.

Following from formula 3.1, the battery capacity of any ship is relative to its average engine power (Pa),
divided by the corresponding sailing speed (va). Additionally, the average engine power of an M1 ship
was defined as PM1 and its corresponding sailing speed as vM1. The relative battery capacity of any
ship compared to the M1 ship was thus equal to Pa/va divided by PM1/vM1, which simplifies to the
fraction in formula C.1. Formula C.1 determines the flow in terms of M1 ships for each path (αq), by
multiplying the total number of trips (nqa) registered for each ship type (a) on each path (q) with the
factor equal to the relative battery size of this type compared to the M1 class.

αq =
∑
a∈A

Pa · vM1

va · PM1
· nqa ∀q ∈ Q (C.1)

where:

Selection criterion
αq = equivalent number of M1 trips [#] on path q, q ∈ Q

Other variables
A = set of all distinguished ship types
a = ship type, a ∈ A
Pa = average engine power [kWh] of a ship of type a, a ∈ A
va = average speed [km/h] of a ship of type a, a ∈ A
Q = set of all O–D pairs
q = O–D pair, a ∈ A
nqa = number of ships [#] of type a, a ∈ A, travelling on path q, q ∈ Q
PM1 = average engine power [kWh] of a M1 ship
vM1 = average speed [km/h] of a M1 ship

The extent to which the percentage of included trips, M1 equivalent trips, and unique harbours increase
when more O-D pairs are included is visualized in the figure C.5. Finally, the 200 O-D pairs with the
highest M1 equivalent flow were selected for further analysis. As such, 91187 trips (52.0%) between
100 unique harbours (16.3%) were included. Even though only 1.9% of all of the O-D pairs were se-
lected, 65.0% of all M1 equivalent ship flow was covered. Thereby, the least frequented O-D pair was
Vlissingen - Vlaardingen with an equivalent of 1.49 M1 ship trips per day. The 200 selected routes,
contained all of the OD pairs in the top 100 most frequented routes in terms of absolute trips, except
for Nederweerdt-Born. In conclusion, a majority of the both total number of trips and the total flow in
terms of M1 equivalent trips was included in the model.

C.3. Aligning the network and the trip data
After part of the data was selected to include in the model and the conceptualisation was established,
the trip-based O-D data had to be aligned with the network. To do so, a node in the network had to
be determined for all of the 100 unique harbours associated with the selected 200 0-D pairs. The
UN/LOCODE for each of these harbours was known, and a location for part of the harbours could be
found using the corresponding database (Nations, n.d.). The latitude and longitude were found to be
missing for 60% of the harbours, however as the full name for each of the harbours was available, the
missing values could be filled in using the Google Geocoding API (“Overview | Geocoding API”, 2022).
This is a commercial API, but the usage for this project did not exceed the 200 euros/month free al-
lowance each user received by far.

Hereafter, some positions had to be manually corrected, this was the case for Stein, Wageningen,
Geertruidenberg, Terneuzen, Farsum andDelfzijl. Delfzijl was not correctly registered in the UN/LOCODE
dataset, the latitude and longitude corresponding to a location in Germany. Furthermore, the harbour
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Figure C.5: Incorporated trips, flow, and harbours

of Stein could not be found using Google Maps, in most other cases an inland leisure harbour was se-
lected, which was not located anywhere near the main route. Then, a harbour node had to be selected
for each of the found harbour locations, because the nodes in the network were not labelled. To this
end, a method was developed to identify the best node in the network to consider for each harbour. Be-
forehand, all of the links in the network that could only be used by leisure traffic were removed, because
these were not of interest and should not be searched for harbour nodes. The network also contained
some self-loops, and links from a location to the location itself, these links were also removed as they
had no use in this research.

C.3.1. Determining harbour nodes
Next, a harbour node was determined based on the found location and the link attributes of the net-
work. Whereas the nodes in the network had no additional attributes except for their latitude, longitude,
unique ID and degree value that could be determined, the links of the network contained more informa-
tion. All of the links that connected to or were part of harbours, were found to have the specific ”Name”
label ”Vaarwegvak van 0 tot 0 - H”. In addition, each link had a ”GeoType” attribute, which was either
section, lock, structure, bridge, or fareway (only used for links outside of the Netherlands), logically only
sections should be considered as potential charging station locations. Furthermore, almost all of the
harbours were not directly at ongoing routes, but one or a few nodes landed inwards. From a network
perspective, a ship passes a harbour if it passes a harbour exit, which was defined as an intersection
at an ongoing route which ends in a harbour.

Therefore, it was decided to select the harbour exits on ongoing routes as harbour nodes, as a result,
the relatively short fairways between the main waterways and harbours were neglected. Points on
ongoing routes were found to always have a solely numeric unique ID and links connected to harbours
were found to have the harbour as their target. As such, harbour nodes were identified as the sources
with a numeric name, of links with a ”GeoType” section, and with the label ”Vaarwegvak van 0 tot 0 -
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H”, of which the source and target both laid within a given range of the originally found destination for
the harbour.

Initially, all links with a source and a target with a latitude and longitude of 0.04 decimal degrees higher
or lower (corresponding to approximately all points within a radius of 5.2 kilometres) were considered.
If no harbour links were identified within this range, the range was first doubled and if necessary the re-
quirement to have the ”Name” attribute was dropped, as this harbour was then likely not in the network.
A harbour node was found within this range of 10 kilometres for all of the 100 incorporated harbours,
which resulted in 97 unique harbour nodes. As visualized in figure C.6, most of the harbour nodes
were just a few kilometres away from the point which was in the UN/LOCODE data set, or which was
retrieved using the google maps API.

Figure C.6: Distance in kilometres between the selected network node and the initially found harbour location

Hereafter, the found positions of the harbours were visually checked, also harbours with the same
harbour node were checked to make sure these were indeed harbours which were close to each other.
Deest and Wageningen both had the same harbour node, but Deest lies along the Waal, whereas
Wageningen is located along the Maas. However, the Maas and the Waal are not that far apart here,
which explains this situation, the location of the harbour node for Wageningen was manually corrected.
Nightevecht and Weesp and Wormer and Zaandam were found to be correctly assigned to a harbour
node in between both harbours which were close together. Lobith and Spijk were both assigned to a
different harbour node, of which one lay across the border in Germany, they were manually assigned
to the same harbour node in between the found positions.

C.3.2. Application of K-means
Finally, the K-means algorithm by MacQueen (1967) was applied to reduce the number of harbour
nodes, as quite some harbour nodes appeared to be right next to each other. The K-means algorithm
was applied to create K clusters based on the latitude and longitude of the points and assigned each
point to one of the clusters. The clusters are determined in such a way that the total distortion is min-
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imised. The distortion was observed for 60 to 97 clusters using figure C.7, and the visual effect of
clustering was also observed using figure C.8. Then, a cluster size of 81 was found to be optimal, as
smaller clusters led to cluster centres in between different waterways.

Subsequently, each harbour was assigned to a new harbour node if there was more than 1 node in
the cluster, this was done by selecting the nearest harbour node based on the cluster centre using the
same method as was used to initially assign a harbour node based on a harbour location as previously
explained. Even though this may only seem like a small reduction, the 16 dropped harbour nodes,
significantly decreased the run time of the model. Moreover, only 2403 trips (2.6% of all trips) had to
be removed from the data set as they no longer resulted in a flow on the network. Notably, these trips
of just a few kilometres likely had a very small impact on the total flow anyway. However, the length of
the trips could not be considered when the 200 O-D pairs were selected, because the nodes were not
yet linked to the network at that time.

Figure C.7: Distance in kilometres between the selected network node and the initially found harbour location

C.4. Determining routes for different ship types
After the harbours of the trip-based O-D data were linked to nodes in the network, the routes were de-
termined. Each ship was expected to take the shortest path that it could take based on its dimensions,
to this end the ”Code” attribute of the links was used, which was the largest CEMT-class ship that could
still take a route. To calculate the shortest path, the Dijkstra path was determined using the networkx
package (Hagberg et al., 2008). Considering the CEMT-class for all of the RWS-classes was known,
this was used to determine the shortest path a ship could take when travelling on a certain O-D pair.
Since different ships travel via different routes, different types of ships may also pass different sets of
charging stations.

Therefore the trip-based O-D data was split up whenever the path of the ships took a different route.
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Figure C.8: Visualisation of the original harbour nodes, created clusters and new harbour nodes.

A data frame with a new row for each unique route for each O-D pair and an additional route column
was created, and the total number of trips conducted by each ship type was copied into a row if a
ship type took this route. If a certain ship type did not take a certain route, this meant that 0 ships of
this type took this route. This data reformatting process is visualized in figure C.9 below for the O-D
pair Rotterdam-Amsterdam, the most frequented O-D pair in the RWS-dataset. In conclusion, an O-D
pair was redefined as a unique node sequence to sail between an origin and a destination, which was
assumed to be used by a unique set of ships for which this was the shortest path that they could take
given their dimensions.
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Figure C.9: Reformatting the trip-based O-D data for Rotterdam-Amsterdam given the unique routes

C.5. Network simplification
Following, only the subgraph with the nodes that were in the determined routes was kept, to remove
all of the redundant nodes from the network. Moreover, the network was further simplified to increase
performance and enable application of the two proposed heuristics in subsection 4.1.3. The goal of the
simplification process was to only keep the harbour nodes and the nodes with a degree higher than
2, as all of the other nodes were intermediate nodes which did not add anything to the model. Hence
indirect links between the nodes that had to be kept were replaced with direct links, with a length equal
to the summed lengths of the intermediate nodes. Afterwards, the routes also had to be updated re-
moving all the removed intermediate nodes from each node sequence.

Finally, this resulted in the network visualised in figure 5.3, the five found variants of the route between
IJmuiden and Moerdijk are visualized as well. The smallest ships could take route 1, increasingly larger
ships had to take route variants with a higher route number. Routes 1, 2 and 3 differ, the difference
between route 3 and routes 4 and 5 is not visible as they largely overlap. In conclusion, two vastly
different routes were relevant looking at how often these routes were frequented in 2021. Moreover, a
significantly longer route for the larger ships was found, neglecting different routes for different ships
would thus have led to an underestimation of the energy demand, but also to an overestimation of the
traffic that takes the shortest route and visits any charging station which may be located there.



D. Additional results

D.1. Applicaton of heuristics
The optimal number of additional nodes added with each heuristic was determined empirically. The
main steps are presented in section 6.2. In the main text it was determined that first applying the first
en then applying the second heuristic led to the best results. Hereafter, various variants of the heuris-
tics were applied considering various ranges. The objective was to determine the optimal number of
additional nodes which should be inserted. To this end, the serviceable fraction was observed. The ser-
viceable fraction, was defined as the fraction of the flow which could be supported, if unlimited charging
capacity could be installed at each and every location.

As such, the serviceable fraction was only influenced by the range of a ship and the positions of charg-
ing stations. The individual heuristics were used separately and combined, to insert 5-30 nodes. Then,
the CFRLMwas applied to determine the serviceable fraction, considering various ship ranges between
50 and 150 kilometres. This resulted in the overview presented in figure D.1. In the legend, the first
number indicates the algorithm which was applied. The second number indicates the number of nodes
which were inserted using each applied algorithm. It was concluded, that applying both heuristics out-
performed the other options.

Figure D.1: Theoretically serviceable fraction for various ranges and (combinations of) heuristic variants.

In this section, the chosen number of nodes to insert with both heuristics is argued for. After it was
found that both heuristics performed the best, the number of nodes to insert with both of them had to
be determined. To this end, various experiments were performed. In these experiments, both heuris-
tics were used to determine 5-30 additional charging station nodes. Then, the CFRLM was applied to
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locate 40 charging stations on the network considering various ranges, for each of these experiments.
Furthermore, a charging station capacity of 2MW and a maximum number of 5 charging stations per
location were considered.

The total fraction of the flow which could be captured is visualized in figure D.2. In addition, the number
of used locations is visualized in figure D.3. Remarkably, adding more nodes, does not always lead
to more used additional locations. In the beginning, a higher range leads to less additional nodes.
However, if the range then increases, the number of additional nodes becomes more stable. Finally,
the number of used additional nodes increases again if higher range values are considered. Including
25 additional nodes, was found to lead to almost the same results as including 30 additional nodes.
Only for medium range values, the adding 30 nodes lead to a slightly higher captured fraction. On the
other hand, including 30 nodes resulted in more used additional locations on average. Therefore, it
was decided to apply both heuristics to add 25 nodes.

Figure D.2: The resulting total fraction captured if both heuristics were applied to insert a varying number of nodes (see
legend) considering various ship ranges. All other parameters were kept constant.

D.2. The optimal number of charging stations
If more charging stations than strictly necessary to capture all of the flow were placed, this did not
lead to optimal results. Hence, the optimal number of charging stations for each experiment had to be
determined. Following from the conceptualisation, not all charging station combinations which could
technically support a route were taken into account. Only charging station combinations consisting of
at most 4 nodes were considered. First, the fraction of the total flow on the network which could be
captured if 1-100 charging stations were placed was determined. In all cases, the maximum number
of effective stations was lower than 100. Hence, after up to 100 charging stations were placed for
each scenario the optimal number of charging stations was determined using the method described in
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Figure D.3: Used additional locations if both heuristics were applied to insert a varying number of nodes (see legend)
considering various ship ranges. All other parameters were kept constant.

subsection 4.1.4. As placing more stations was not useful, the with more than the optimal number of
charging stations were removed from the data set. In this section, first the findings regarding the optimal
application of the heuristics to identify additional potential charging station locations are presented. The
resulting number of optimal charging stations in each of the experiments is visualized in figure D.4 and
figure D.5.

D.3. Additional ABM results
In this section, the observed charging times and travel times of ships are presented. The travel times
are presented in figure D.6 and figure D.7. As expected, the average travel time increases with the
range of ships. Moreover, the absolute average charging time also slightly increases, because the
energy consumption of ships of an average trip also increases. Finally, it may be noted that travel
times are longer if additional nodes are considered. Additional nodes result in the fact that longer trips
are feasible, thus this was expected. The travel times are presented in figure D.8 and figure D.9.

D.4. Computational details
To evaluate the models, a 2022 20-core Intel i7-12700H laptop was used, all experiments were run
using all 20 cores. The CFRLM was evaluated in Python for all of the 9 scenarios, with and without
additional nodes, using the PuLP package, the Gurobi solver and the EMA-workbench for parallel
computing. Initially, the CBC solver was used instead of the Gurobi solver, but this solver resulted
in unfeasible solving times. The ABM was evaluated using the MESA package, evaluating a single
scenario took around 13 minutes on average. As such, the ABM was only evaluated for all of the
scenarios considering the additional nodes, for the maximum number of feasible charging stations,
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Figure D.4: Found optimal number of charging stations for the 9 experiments without considering additional nodes.

which was determined using the CFRLM.

D.4.1. Evaluation of the ABM
The convergence of the results of the ABM was assessed by evaluating the ABM for 20 and 100
scenarios for all experiments considering additional nodes. Following the relative difference between
the average sailing, charging and waiting times of ships was assessed for all scenarios. The results
are presented in table D.1 below. It was concluded that convergence was likely achieved at 100 runs.
Therefore, 100 runs were computed for all experiments. This thus resulted in 1800 ABM runs for all
experiments.
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Figure D.5: Found optimal number of charging stations for the 9 experiments considering additional nodes.

Experiment Difference 20 and 100 runs
Fraction charging Fraction inline Fraction sailing

70km_1x10MW -0.0784% 0.7943% -0.7159%
70km_5x2MW -0.4451% 1.6512% -1.2061%
70km_3x3.3MW 0.2847% -0.6760% 0.3912%
110km_1x10MW -0.1211% 2.0283% -1.9073%
110km_5x2MW 0.3147% -1.1052% 0.7905%
110km_3x3.3MW -0.0905% -0.2930% 0.3835%
150km_1x10MW -0.0735% 0.5434% -0.4699%
150km_5x2MW 0.4573% -0.7183% 0.2610%
150km_3x3.3MW 0.3037% -0.5423% 0.2385%
Table D.1: The relative difference between the runs with 20 and 100 iterations for all experiments with additional nodes.



D.4. Computational details 77

Figure D.6: Observed travel time experiments without additional nodes.

Figure D.7: Observed travel time experiments with additional nodes.
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Figure D.8: Observed charging time experiments without additional nodes.

Figure D.9: Observed charging time experiments with additional nodes.



E. Python implementation
In this chapter the steps of the two stages of the established flow refueling location model are outlined.
The first and second stage are presented subsequently.

E.1. first stage capacitated flow-refueling location model
Returns feasible charging station combinations for transport network G for routes in OD, considering
travel range r, assuming that charging stations can be placed on any node of G.

E.1.1. Input variables
The input of the first stage optimisation consists of the following parameters:

• r : (float) range means of transport with full tank.
• G : (networkx.Graph) Must include all origins, destinations and any nodes where a refueling sta-
tion may be placed.

• OD: (dict) This dict contains the travel data within network G, travel data from A-B and from B-A
should be summed up and entered as either one of them. example input:

{(node_1, node_2, route_v1) : flow12_r1, (node_1, node_2, route_v2) :
flow12_r2, (node_1, node_3, route_v1) : flow13_v1}

• paths: (dict) Dictionary that contains all paths between the OD pairs that are in OD. example
input:

{(node_1, node_2, route_v1) : [list of nodes consecutive],
(node_1, node_2, route_v2) :[list of nodes consecutive],
(node_1, node_3, route_v1) : [list of nodes consecutive]}

• path_lengths: (dict) Dictionary that contains all path lengths (in meters) between the OD pairs
that are in OD, with the same keys as OD and paths dicts.

• df_h: (pd.DataFrame) This is a Dataframe as generated in revised_network_cleaning.ipynb, that
contains the data of harbours and the corresponding harbour nodes in G.

• additional_nodes: (list) This is a list that should contain all additional harbour nodes to be consid-
ered, next to the origin and destination harbours.

E.1.2. Pseudo code
For each origin-destination pair:

1. Determine the shortest path and the nodes on the shortest path.
2. Determine all of the potential charging station locations on the shortest path.
3. Determine all possible combinations of these potential charging station locations using itertools.
4. Determine for each of these combinations whether it is a feasible combination for the assigned

route.
5. Evaluate every combination by stimulating a trip using this combination:

(a) Start at the origin
i. Is this node is in the currently evaluated combination?
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A. Yes? Assume the tank is full.
B. No? Assume the tank is half full.

(b) Try to travel to the next node of the related route and update the current range and position.
i. Is the remaining range positive?

A. Yes? This route may be feasible, continue to the next step
B. No? This route is not feasible with the given combination, continue with the next

combination, if there are combinations left for the current O-D pair.
ii. If there is a fuel station at this node, refuel here and reset the range.
iii. Is the final destination reached?

A. Is there a charging station at the destination?
- Yes? This route is feasible.
- No? Double back to the origin by repeating step 4

6. Remove subsets, e.g. if the following feasible combinations are found for a route: [(b), (a, c),
(a,b)], (a,b) is removed because it is a super set of (b).

Hereafter, the feasible combinations are stored in three data frames, which serve as an input for the
second stage optimisation:

1. df_b with all of the b values, with a row for each route (q) and a column for each combination (h).
bqh is equal to:

(a) 1 if route q can be refueled by combination h
(b) 0 otherwise

2. df_g, with a row for each route and corresponding feasible combination (qh) and a column for
each unique potential facility location. The coefficient is equal to:

(a) 0 if facility k is not in combination h that can refuel path q;
(b) 1 if facility k is in combination h and at the origin or the destination;
(c) 2 if facility k is in combination h but not at the origin or destination, meaning the vehicle must

stop at the station to refuel in both directions.

3. df_eq_fq, with a row for each route q, separate columns for the corresponding eq and fq values.

E.2. Second stage capacitated flow-refueling location model
This program optimally sites p charging stations with a max capacity p_c, based on three DataFrames
that are generated by the first_stage_FRLM function. Moreover, r, v, b, o and c are used to calculate
the maximal number base ships that can be served by a charging station per day.

E.2.1. Input variables
This optimisation requires the following inputs:

• r : (int) Range of a ship.
• v : (int) Travel speed resulting in the range.
• b : (int) Power of basis ship [M1].
• p : (int) Charging stations modules to locate on any node of G.
• p_c : (float) Maximum charging capacity of a charging station.
• max_per_loc: (int) Maximum number of charging modules that can be placed at a certain location.
• o: (float) operational hours of a charging station during same time period as c.
• df_g : (pandas.DataFrame) Output of first stage, explanation can be found there.
• df_b : (pandas.DataFrame) Output of first stage, explanation can be found there.
• df_eq_fq : (pandas.DataFrame) Output of first stage, explanation can be found there.
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E.2.2. Pseudo code
[enumerate] To perform the optimisation, the pulp package was used. The following steps were taken
to perform the optimisation:

1. The capacity of a charging station in base vessels/day is calculated using o∗Pc∗v
r∗Pb

2. Declaration of the decision variables:

(a) a flow_allocation variable is declared for each route (q) and corresponding feasible combi-
nation (h), based on the reset index of df_g.
i. Each variable is declared as a continuous variable, as flows are assumed to be indefi-
nitely split able.

ii. The lowBound is set to 0 and the upBound to 1, as each charging station can serve
0-100% of a flow.

(b) facilities_to_build, for each facility in the columns of df_g.
i. Each variable is declared as a integer variable, as charging modules are assumed to be
discrete units.

ii. The lowBound is set to 0 and the upBound to max_per_loc, to make no negative number
of stations is placed somewhere and to enforce the input parameter max per location.

3. Problem definition: the problem is defined as a linear problem and the objective is set to maximise.
4. Objective function: for all q and corresponding h values, the flow_allocation value is multiplied by

the flow and the corresponding b value.
5. Definition of constraints:

(a) Single station capacity constraint. For each facility the capacity constraint is implemented,
regarding the maximum flow a station can serve.

(b) Maximum total modules constraint. The total number of facilities is limited to input variable
p.

(c) Maximum O-D flow constraint. At most 100% of each flow may be served by all of the
charging station combinations.

6. Optimisation of the problem using pulp solver.
7. Preparing outputs:

(a) optimal_flows: (dict) Nested dictionary with the following layout if there are two feasible com-
binations and the flow should be distributed 30/70 over these combinations:

optimal_flows[(origin, destination, route)]={combinations: [combi1, combi2],
flows: [0.3, 0.7]}

The flows are defined as the fractions served by the combinations in the list combinations.
(b) optimal_facilities: (dict) A dictionary with a key for each potential location and the number of

modules that were sited there as a value.
(c) non_zero_flows: (dict) A subset of dictionary optimal_flows with only non-zero flows.
(d) total_flow: (float) The model objective value, total supported flow with corresponding cs

layout.
(e) supported_routes: (int) Total number of routes supported by the optimal charging station

lay-out.



F. The search table method
In this chapter the search table method is presented. The search table was iteratively filled with search
terms to select core concepts and state-of-the-art literature. The columns are filled with the different
aspects that were combined with an AND operator and the rows are filled with different synonyms that
were combined with an OR operator in the search query. Scopus, Scholar, and Web of Science were
used to select literature. Besides, connectedpapers.comwas used to identify related work and contrast-
ing opinions. As charging stations can be seen as a subclass of alternative fuel stations, ”alternative
fuel” was also incorporated in the search query.

F.1. Search table

Search term 1 Search term 2 Search term 3 Search term 4
flow-capturing charg* optim* deploy*
flow-intercepting electri* planning placing
flow-based renewable decision placement
flow-refuel* alternative fuel location problem locat*
agent-based alternative-fuel allocation problem siting
activity-based battery model* sizing
travel data ”charging infrastructure”
heuristic

F.2. Search query
(“flow-capturing” OR “flow-intercepting” OR “flow-based” OR “flow-refuel*” OR “agent-based” OR “activity-
based” OR “travel data” OR “heuristic”) AND (“charg*” OR “electri*” OR “renewable” OR “alternative
fuel” OR “alternative-fuel” OR “battery” OR ”charging infrastructure”) AND (“optim*” OR “planning” OR
“decision” OR “location problem” OR “allocation problem” OR “model*”) AND (“deploy*” OR “placing”
OR “placement” OR “locat*” OR “siting” OR “sizing”)
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