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Abstract: To improve the energy harvesting efficiency of the piezoelectric device, a stack units-based
structure was developed and verified. Factors such as stress distribution, load resistance, loads, and
loading times influencing the piezoelectric properties were investigated using theoretical analysis
and experimental tests. The results show that the unit number has a negative relationship with
the generated energy and the stress distribution has no influence on the power generation of the
piezoelectric unit array. However, with a small stress difference, units in a parallel connection can
obtain high energy conversion efficiency. Additionally, loaded with the matched impedance of
275.0 kΩ at 10.0 kN and 10.0 Hz, the proposed device reached a maximum output power of 84.3 mW,
which is enough to supply the low-power sensors. Moreover, the indoor load test illustrates that the
electrical performance of the piezoelectric device was positively correlated with the simulated loads
when loaded with matched resistance. Furthermore, the electrical property remained stable after
the fatigue test of 100,000 cyclic loads. Subsequently, the field study confirmed that the developed
piezoelectric device had novel piezoelectric properties with an open-circuit voltage of 190 V under
an actual tire load, and the traffic parameters can be extracted from the voltage waveform.

Keywords: pavement engineering; energy harvesting; piezoelectric device; stacked piezoelectric
unit; piezoelectric properties; roadway application

1. Introduction

With increasingly prominent energy shortages and environmental pollution problems,
the development and utilization of clean and renewable energy have been receiving in-
creasing attention. Energy harvesting technologies, such as solar, geothermal, wind, and
vibration energy harvesting, have been developing rapidly in recent years [1,2]. Among
them, piezoelectric energy harvesters are extensively used in mechanical energy harvesting
because of their high electrical conversion coefficient and stable structural performance [3].
If this technology can be utilized widely in road engineering, it could alleviate the current
energy and environmental problems to a certain extent. In addition, piezoelectricity gen-
erated from traffic loads through these widely distributed piezoelectric devices could be
applied to power electronics, such as signals, lights, and IoT systems, thus providing a new
power solution for functional and intelligent roads [4,5].

The piezoelectric materials and structures significantly affect electricity conversion
efficiency, structural strength, and durability [6]. Researchers have conducted theoretical
analysis, numerical simulation, and experimental tests to investigate the mechanical and
electrical performance of piezoelectric transducers. Varying kinds of structures are proposed,
tested, and evaluated, such as cymbal type [7], bridge type [8], stacked type [9], and can-
tilever beam type [10]. The bridge and cymbal structures enhance the electrical properties
by the angular amplification effect [11]. However, due to the stiffness difference between
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the piezoelectric ceramic and end-cap metal materials, the interface is prone to shear dam-
age due to stress concentration, which seriously shortens the service life. Although the
geometry and components of the cantilever structures can be optimized to resonate with
the pavement, they still have the difficulty in mechanical resonance under the random
impact of vehicle loads [12]. In contrast, the stack and pile structures have the advantages
of high electromechanical conversion efficiency, high bearing capacity, and high durability,
inducing a good prospect for pavement application [13,14]. Yang developed the stacked
piezoelectric transducer and evaluated the factors’ influences on the electrical performance
by a laboratory accelerated pavement testing system [9,15,16]. Wang proposed the optimal
preparation process for the application of the stacked piezoelectric unit and investigated the
electromechanical conversion performance and structural strength by indoor testing [17,18].
Li studied the electrical properties of piezoelectric units under different structural param-
eters, resistance, and traffic loads by laboratory tests, and given the attenuation law of
piezoelectric properties under ultimate compression and cyclic loads [19].

Existing studies have shown that piezoelectric units installed in pavement suffer
structural damages, such as interfacial shear failure, corner breaks, and electrode detach-
ment [20,21]. Recent research has been shifted to assemble the piezoelectric transducers
into arrays and fabricated them into a protective package to improve the energy conversion
efficiency, structural strength, and service performance [22,23]. Roshani conducted uniaxial
compression tests on piezoelectric devices and found that the number and arrangement of
piezoelectric units influenced the output power [24]. Zhao proposed the use of a piezoelec-
tric device based on an arch transducer array and discussed the synergistic performance
between the device and asphalt pavement [25,26]. Jasim investigated the energy harvesting
performance of a piezoelectric module in asphalt pavement through laboratory testing and
multi-physics-based simulation [27]. Wang designed and assessed the stacked piezoelectric
devices for pavements. In his research, the proposed device could harvest 11.67 mW at
0.7 MPa and 15 Hz with the corresponding optimum load of 10 kΩ [23]. In addition, Yang
and Liu conducted experimental and simulation methods to optimize the structure of
piezoelectric devices and analyzed the electrical and mechanical properties of the piezo-
electric devices [22,28,29]. This research has provided useful references for the study of
piezoelectric energy harvesters for roadway applications.

In summary, previous studies have conducted theoretical analysis, numerical simula-
tion, and laboratory tests to promote the development of piezoelectric energy harvesting.
However, the structural optimization design and efficiency improvement methods of the
piezoelectric device are still in the exploratory stage and the influence of stress distribution,
load resistance, vehicle load, and loading times on the electrical properties should be
investigated further. Furthermore, the structural design and performance evaluation of the
piezoelectric device still lacks on-site tests under actual road conditions.

To further improve the energy harvesting efficiency and compatibility in the pavement,
this study proposed and fabricated a stack units-based piezoelectric device in the laboratory.
To overcome the barriers of practical application, the influences of stress distribution,
load resistance, vehicle load, and loading times on the piezoelectric performance were
investigated using theoretical analysis and experimental testing. In addition, an on-site
performance evaluation was also conducted to validate the actual piezoelectric properties in
the actual road conditions. This study can further guide the optimization of the piezoelectric
device structure and contribute to the application for roadways.

2. Piezoelectric Energy Harvesting Theory

Piezoelectric transducers can generate electricity under the traffic load based on the
positive piezoelectric effect, which can be expressed by the constitutive equation consisting of
mechanical parameters and electrical parameters. These piezoelectric units embedded in the
pavement are mainly subjected to the vertical force, indicating a free mechanical boundary
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condition and open-circuit electrical boundary condition [30]. Here, the strain-voltage form is
chosen for electromechanical conversion analysis, as shown in Equation (1) [23]:{

S = sDT + gtD
E = −gT + βTD

(1)

where S is the strain, SD is the elastic compliance constant, T is the stress, g is the voltage
constant, gt is the transposed g, E is the electrical field, βT is the free dielectric isolation rate,
and D is the electric displacement.

This paper chooses a stacked piezoelectric unit with a d33 mode (the electric field E and
the stress T have the same direction) to obtain high energy conversion efficiency under
a low-frequency state. Under the axial force, the open-circuit voltage Uoc and generated
energy W of a piezoelectric unit can be calculated by the following Equations (2) and (3):

Uoc = −g33T3h (2)

W =
1
2

CpU2
oc =

1
2

Cpg33
2T3

2h2 (3)

where d33 is the piezoelectric coefficient, h is the thickness of the unit, and Cp is the internal
equivalent capacitance.

When the piezoelectric unit is acted on by the sinusoidal load and connected with
load resistance RL, then D, T, E, and S are sinusoidal functions of time t and have the same
frequency [23]. The output voltage Uout(t) and output power Pout(t) can be described by
Equations (4) and (5):

Uout (t) =
UocRL

Rp + RL
= −g33T0h

RL

Rp + RL
sin(ωt) (4)

Pout (t) =
U2

out
RL

= [g33T0h sin(ωt)]2
RL(

Rp + RL
)2 (5)

where ω is the angular velocity, Rp is the internal equivalent resistance, and T0 is the
stress magnitude.

By integration of the load time and the voltage, the output electric energy Wout and the
output power Pout under one sinusoidal excitation can be seen in Equations (6) and (7) [15]:

Wout =
π

ω
(g33T0h)2 RL(

Rp + RL
)2 (6)

Pout =
1
2
(g33T0h)2 RL(

Rp + RL
)2 (7)

According to the equations above, it is clear that the electric energy is correlated
with the material parameters and thickness of the piezoelectric unit and the traffic loads.
The load resistance also has a significant influence on the energy generation, and the
maximum output energy can be obtained at the matched impedance (RL = Rp) referring
to [31]. Therefore, strategies such as piezoelectric material optimization, geometric design
optimization, and impedance matching can be adopted to improve the energy conversion
efficiency of the piezoelectric unit.

3. Development and Manufacture of the Piezoelectric Device
3.1. Development of Piezoelectric Unit

The material and structure design of the piezoelectric units determine the conversion
efficiency and structure durability [32]. The lead zirconate titanate piezoelectric (PZT)
ceramics, PZT-5H, was chosen because of its excellent piezoelectric properties with a
high piezoelectric coefficient d33, a high electromechanical coupling factor k33, and a high
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compressive strength under the vertical load. The material parameters of PZT-5H are
shown in Table 1.

Table 1. Material parameters of PZT-5H.

Material Properties Value Material Properties Value

Piezoelectric charge
constants (pC/N)

d33 750
Relative dielectric constants

εT
33,r 4500

d31 −320 εT
31,r 4410

Piezoelectric voltage
constants (10−3 Vm/N)

g33 19 Electro-mechanical coupling factor K33 0.68
g31 −8.2 Elastic Modulus (1010 N/m2) E 6.1

To improve the efficiency and fatigue life of piezoelectric transducers, researchers
optimized the structure of the piezoelectric transducer to layer the bridge type [8], multi-
layer stack type [33], and multilayer cantilever type [34]. However, these structures have
not been widely used due to complex preparation processes and high costs. Therefore, a
stacked piezoelectric unit consisting of several piezoelectric ceramics, electrodes, epoxy
resin adhesive, and protective gasket was proposed and fabricated referring to the author’s
previous work [19]. Figure 1 illustrates the components and structural parameters of the
piezoelectric unit, which is about 20.9 mm in height and formed with eight pieces of piezo-
electric ceramics. Each of the piezoelectric ceramic has the same dimension of 20.0 mm in
diameter and 2.0 mm in thickness. These piezoelectric ceramics are connected in parallel
(as shown in Figure 1) to optimize the voltage and current properties. In addition, two
2.0 mm thick protective gaskets made of bronze are added on both sides. The ultra-thin
epoxy resin acts as the interlayer adhesive to improve the integrity of the unit. The struc-
tural parameters and materials of the other components, such as interlayer electrodes and
copper wire, can also be seen in Figure 1. The stacked piezoelectric units are industrially
manufactured by Zhejiang Jiakang Electronics Co., Ltd., Zhejiang, China to avoid the
influence of assembly accuracy and material variations on the piezoelectric performance.
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3.2. Manufacture of the Piezoelectric Device

The piezoelectric units and conditioning circuits can be damaged by the traffic load
easily without the package structure when being installed in the pavement structure [17].
Additionally, package structures can transfer and amplify the vertical stress acting on the
units through the upper plate. Moreover, it can provide coordinated deformation with
the adjacent pavement structure. As shown in Figure 2, the stack piezoelectric transducer
array consisting of four units was installed inside the device. All the piezoelectric units
are connected to the full-wave rectifier and connected in parallel mode to reduce the
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adverse effects of uneven load and optimize the voltage and current properties under
heavy vehicle load [9,15]. Beyond only these piezoelectric units and full-wave rectifier,
a complete piezoelectric device also includes a high-strength shell, carrier substrate or
positioning plate, and other components which are illustrated in Figure 2. In the load tests,
the size of the piezoelectric device is determined to be 150 mm × 150 mm × 36 mm from
the perspective of stress distribution, tire contact area, and production cost. The bearing
shell is composed of the high-strength upper plate and the lower base with a gap design
between the two components [21], and the two components are connected using the rubber
sealings and bolts. The 150 mm long, 150 mm wide, 6 mm thick upper plate is made
of an aluminum alloy with bolt holes and a fixing slot. These slots are reserved for the
piezoelectric unit installation with a dimension of 20 cm in diameter and 1 mm in height.
Additionally, the lower base and carrier substance were made of nylon 66 with the physical
properties of light weight and high strength. As shown in Figure 2, the carrier substrate
was placed between the upper plate and the lower base to fix piezoelectric units, rectifiers,
and wires. It should be noted that the number of units and the size of the box-like device
can be subsequently optimized according to the traffic volume and loads.
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The manufacturing process is accomplished as follows. Firstly, by installing the carrier
substrate in the lower base. Secondly, by fixing the piezoelectric units and rectifiers in the
carrier substrate and using electronic adhesive to seal the printed circuit board (PCB) of the
rectifiers (Figure 2). Thirdly, by placing the waterproof silicone gasket between the upper
plate and the sidewall of the lower base. Fourthly, by installing and leveling the upper
plate to make its fixing slots and units contact closely. Finally, by using silicone rubber
sealing material to conduct the waterproof treatment.

4. Analysis on Factors Influencing Piezoelectric Properties
4.1. Effect of Stress Distribution

According to Equations (6) and (7), the output electrical energy is related to the vertical
stress acting on these units. However, the vertical stress on each unit can fluctuate due to
fabrication inaccuracy, geometric variations, and wheel wandering. This can cause varying
electrical properties and difficulty in energy collection. Therefore, it is necessary to clarify
the influence of stress distribution on power generation. Based on the theoretical analysis
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above, the output energy Wparallel and voltage Uparallel generated by n piles of piezoelectric
units in parallel connection are shown in Equations (8) and (9):

Uparallel =
1
n

n

∑
i=1

Ui =
1
n

g33h
n

∑
i=1

Ti (8)

Wparallel =
1
2

nCpU2
parallel =

1
2n

Cpg33
2h2

(
n

∑
i=1

Ti

)2

(9)

The vertical stresses acting on these units are transferred from the tire load applied
to the upper plate of the piezoelectric device, so that the total stress is constant. Based
on Equation (9), the increase in the unit number will cause a decrease in the electrical
energy under open-circuit conditions with the same unit and tire load. However, the stress
distribution of units will not affect the generated energy when the unit array is connected
in a parallel connection. To further investigate the influence of the nonuniform stress
of the units on the output energy, the vertical compressive stresses on the selected two
piezoelectric units are set as TA and TB respectively, and TA ≥ TB. The electrical energy
WA and WAIIB can be calculated in Equations (10) and (11):

WA =
1
2

cpg33
2h2T2

A (10)

WA‖B =
1
4

cpg33
2h2(TA + TB)

2 (11)

where WA is the electrical energy generated by unit A and WAIIB is the electrical energy
generated by units A and B connected in parallel mode.

According to Yang’s analysis on the effect of nonuniform stress [15], α is introduced
to describe the stress difference of the two units and β is adopted to illustrate the ratio of
WAIIB and WA:

α =
TB

TA
(12)

β =
WA‖B
WA

=
1
2
(TA + TB)

2

TA
2 =

1
2
(1 + α)2 (13)

It can be seen from Equations (12) and (13) that the result of β has a positive quadratic
relationship with the value of α. If α belongs to (

√
2−1, 1], which is under a small nonuni-

form stress state, the electrical energy generated by the units in parallel connection will be
larger than that of a single unit. This indicates that (1) when the stress difference between
piezoelectric units is large, e.g., α belongs to (0,

√
2−1], these piezoelectric units should be

rectified and output individually [23] and (2) when the stress difference between piezoelec-
tric units is small, e.g., α belongs to (

√
2−1, 1], these piezoelectric units should be rectified

and connected in parallel connection to improve the energy conversion efficiency [15].

4.2. Effect of Load Impedance

Equation (7) indicates that with the matched impedance, the developed piezoelectric
device can obtain the maximum power generation. As a result, the mechanical testing
and simulation system was performed in the laboratory to investigate the effect of load
resistance on the electrical performance, as shown in Figure 3. The test system consisted
of the loading simulation equipment and the loading resistance and electrical properties
monitoring equipment. The loading simulation equipment used is the 810 Material Test
System (MTS). It is able to provide loads with specific load frequency and load magnitude
to simulate the vehicle load. Waveforms such as sinusoidal form, half-wave sinusoidal
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form, and haversine form can be chosen [35,36]. In this case, the vehicle load was simplified
as a sinusoidal wave [22], which can be calculated by Equation (14):

F(t) = F0 sin(2π f t) + Fm (14)

where F(t) is the function of the sin wave, F0 is the load magnitude, f is the load frequency,
and Fm is the mean load.
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The electrical properties monitoring equipment used is the Tektronix DPO 2024 os-
cilloscope, which has the feature of four analog channels, 200.0 MHz bandwidth, and
sample rates up to 1.0 GS/s. A high-voltage probe GENTEK G3100 was used to measure
the voltage of the potentiometers connected with the rectifier circuit board. Then, the
output power of the circuit was calculated by the integration of the response time and the
measured voltage in the voltage waveform. The actual voltage waveform at 10.0 kN and
10.0 Hz can be seen in Figure 3 and the output power can be determined in Equation (15):

PL =
W
t

=

∫ ∆t
0

U2
L

RL
d(t)

∆t
(15)

where PL is the output power of the circuit, UL is the measured output voltage, and ∆t is
the accumulated time of output voltage waveform.

The magnitude and frequency of sinusoidal load were set as 10.0 kN and 10.0 Hz
in the load test. The output voltage and power with different load resistance are shown
in Figure 4. As can be seen from Figure 4, the output voltage of the piezoelectric device
increased with the load impedance increase. When the resistance value was larger than
3.0 MΩ, the voltage was stable around 240 V and the circuit changed to an open-circuit state.
In addition, the profile of output power presented a unimodal distribution. Under this
testing condition, the maximum output power was 84.3 mW and loaded with a 275.0 kΩ
resistance, which was enough to supply the low-power sensor [31]. Moreover, the increase
of load impedance from this optimal resistance to 3.0 MΩ caused the output power to
decrease significantly. This may be due to the reason that an increase in load resistance
resulted in the output voltage increase, inducing the increase in output power accordingly.
However, when the resistance value exceeded a specific value, the output voltage increased
slowly and the output current decreases rapidly, ultimately resulting in a decrease in output
power. As shown in the waveform of Figure 4, to obtain an excellent electrical performance
of the piezoelectric device, the load impedance should be controlled to 100–1000 kΩ for the
piezoelectric device developed in this paper.
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4.3. Effect of Vehicle Load

The mechanical testing and simulation system was performed to further investigate
the effects of load magnitude and speed on the piezoelectric performance. The load
magnitudes applied by the MTS were set to 3.0 kN, 5.0 kN, 10.0 kN, 15.0 kN, 20.0 kN, and
25.0 kN at a fixed load frequency of 10.0 Hz. The load frequency was performed to simulate
the load speed of vehicles, and were set from 2.0 Hz to 14.0 Hz with an interval of 2.0 Hz
at the fixed load magnitude of 10.0 kN. The output voltage and power of the circuit were
measured and calculated on all load conditions.

4.3.1. Effect of Load Magnitude

The output voltage and power of the piezoelectric device from each load at 10.0 Hz are
shown in Figure 5a. In Figure 5a, the output voltage increases linearly with the load magni-
tudes. However, the relationship between the output voltage and the applied load did not
follow the rule of Equation (2). Without considering the unit of each parameter, the regression
equation is determined by Equation (16) with a coefficient of determination of 0.9986:

UL = 18.85 × Fi − 34.91 (16)

where Fi is the different load magnitude at 10.0 Hz.
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Figure 5. Electrical properties of the piezoelectric device with different load conditions: (a) effect of load magnitude at
10 Hz, (b) effect of load frequency at 10 kN.

Equation (16) indicated that when the vertical load acted on the device, the package
structure will undertake the load as well, weakening the electrical properties of the device.
Furthermore, the output power had a positive quadratic polynomial relationship with the
load increases, which was consistent with the piezoelectric theory. The output power can
be calculated by Equation (17) and the coefficient of determination is 0.9999:

PL = 37.82 × Fi
2 − 110.79 × Fi + 78.60 (17)

As for a truck wheel load of 25.0 kN, the output voltage and power can reach 440.0 V
and 774.4 mW, which shows that the proposed piezoelectric device can have high piezo-
electric performance when subjected to heavy traffic loads.
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4.3.2. Effect of Load Frequency

With the load magnitude set at 10.0 kN, the measured voltages and calculated powers
under each load frequency were shown in Figure 5b. As can be seen from Figure 5b, the
output voltage and power increased gradually with the increase in load frequency at the
initial stage, but the increasing tendency slowed down and fluctuate around 86.0 mW
when the frequency was greater than 8.0 Hz. According to the field study of the actual
vehicle load, the frequency of 8.0 Hz has the corresponding vehicle speed of 30.0 km/h. It
indicated that the proposed piezoelectric device held a stable piezoelectric performance
when installed in the roadways. More load conditions need to be conducted by indoor and
field tests to verify the electrical properties in future studies.

4.4. Effect of Loading Times

The fatigue test under dynamic loads was conducted to evaluate the electrical fatigue
property of the developed piezoelectric device. The mechanical testing and simulation
system was the same as that of Section 4.2. Here, a total of 100,000 cyclic loads were applied
by the MTS and the sine load was set to 10.0 kN and 10.0 Hz. The voltage was measured
by an oscilloscope every 10,000 loadings and the output voltage and power are shown in
Figure 6. In Figure 6, during the whole loading process, the voltage and output power of
the circuit varied slightly around 155 V and 86.0 mW, respectively. The difference between
the minimum voltage and the maximum voltage was approximately 6.6%, while that of
the output power was approximately 13.6%. However, no significant electrical attenuation
appeared in the fatigue test, indicating a good electrical fatigue performance. The fatigue
test indicated that the proposed device can meet the cyclic dynamic loading requirement
for pavement energy harvesting.
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5. On-Site Piezoelectric Properties Test

As indicated by the analysis above, the proposed piezoelectric device has a novel
electrical performance under the simulated vehicle load in the indoor test. The on-site
performance evaluation was conducted in Tongji University to test the actual piezoelectric
properties in real road conditions. As shown in Figure 7, the hole and slot were cut in
the asphalt pavement surface using a road cutting machine for installing the piezoelectric
device and wire. The height of the hole was larger than the thickness of the device so
that the hole bottom can be flattened with cementitious mortar. After the installation of
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the device and wire, the interface between the device and surrounding pavement and the
wire slot were treated with high-strength filling materials to avoid damaging the structural
strength and service performance of the pavement [13,37]. Then, the oscilloscope was
connected to the device to record the open-circuit voltage. During the on-site test, a sport
utility vehicle (SUV) with an average single-wheel load of 5 kN was driven to applied
loads on the surface of the upper plate of the piezoelectric device. The open-circuit voltage
waveform with a sample interval of 1250 Hz is illustrated in Figure 8. In Figure 8, the
waveform had two peak voltages around 190 V and 170 V respectively, indicating a high
energy conversion efficiency. According to Section 4.3.1, the front wheel load was larger
than that of the rear load when the tire fully acted on the device. Considering that the
wheelbase is 2.7 m and the time difference ∆T between the two peak voltages is 0.34 s,
the calculated load speed was about 28.6 km/h. It indicates this proposed piezoelectric
device can also be used to detect vehicle speed, number of axles, axle loads, and vehicle
classification [14,30]. The authors will conduct more research on the relationship between
electrical properties and traffic data in the future.
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Figure 7. On-site tests of the piezoelectric device: (a) cutting the pavement surface, (b) installing the PEH, and (c) applying
vehicle load.
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6. Conclusions

The piezoelectric energy harvester for roadway application can alleviate energy short-
ages and environmental problems, and also has bright prospects for functional and intelli-
gent roads. However, the development of this module is still in the exploratory stage. Its
electrical performance needs to be investigated further to improve the power generation
efficiency and compatibility in roadway applications. This paper proposed and fabricated a
high-performance stack units-based piezoelectric device and tested the piezoelectric prop-
erties by indoor and field tests. The influences of stress distribution, load resistance, vehicle
load, and loading times on the piezoelectric performance were analyzed. In addition, the
on-site piezoelectric performance was also validated in the actual road conditions. The
main conclusions are as follows:

(1) The unit number has a negative relationship with the electrical energy under
open-circuit conditions, and the stress distribution of units does not influence the power
generation when the unit array is in a parallel connection mode. However, the optimal
connection mode was affected by the stress difference of units. The smaller the stress
difference is, the higher the obtainable electrical performance of the piezoelectric units in
parallel connection.

(2) The output power of the piezoelectric device with varying resistance has a uni-
modal distribution. It shows the circuit obtained a maximum power of 84.3 mW with
275.0 kΩ resistance at 10.0 kN and 10.0 Hz loading condition. The generated electricity is
enough to supply the low-power sensor.

(3) The electrical performance of the piezoelectric device, loaded with the matched
resistance, was positively correlated with the load magnitude and load frequency. The load
tests indicate that the proposed piezoelectric device had a high and stable piezoelectric
performance. Moreover, good electrical fatigue performance is also found under cyclic
dynamic loadings.

(4) The novel piezoelectric properties of the developed piezoelectric device in real
road conditions were confirmed by the field test, and the voltage waveform can be used to
detect traffic parameters.
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