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Tensor Nuclear Norm LPV Subspace Identification
Bilal Gunes , Jan-Willem van Wingerden , Member, IEEE, and Michel Verhaegen , Member, IEEE

Abstract—Linear parameter varying (LPV) subspace identifi-
cation methods suffer from an exponential growth in number
of parameters to estimate. This results in problems with ill-
conditioning. In literature, attempts have been made to address
the ill-conditioning by using regularization. Its effectiveness hinges
on suitable a priori knowledge. In this paper, we propose using
a novel, alternative regularization. That is, we first show that the
LPV sub-Markov parameters can be organized into several tensors
that are multilinear low rank by construction. Namely, their matri-
cization along any mode is a low-rank matrix. Then, we propose
a novel convex method with tensor nuclear norm regularization,
which exploits this low-rank property. Simulation results show that
the novel method can have higher performance than the regularized
LPV-PBSIDopt technique in terms of variance accounted for.

Index Terms—Closed-loop identification, identification, linear
parameter varying (LPV) systems, subspace methods, tensor
regression.

I. INTRODUCTION

Linear parameter varying (LPV) systems have been used in many
applications. Some examples are wind turbines [2], [12], aircraft ap-
plications [1], batteries [27], compressors [14], and wafer stages [34],
[41]. These LPV systems are linear systems whose dynamics vary with
a known time-varying parameter vector. They are suitable for describ-
ing many applications in greater detail than linear time invariant (LTI)
systems can. Just like for LTI systems, there also exists a powerful
control design framework for LPV systems [29], which can guarantee
stability, performance, and robustness. This is generally not the case
for nonlinear systems. Most control design frameworks do require an
LPV state-space model of the system.

This model can be obtained from measurement data using system
identification. There are many LPV identification methods that can be
classified as global and local methods [7], [30], [32]. Local methods
hinge on the property that for constant scheduling parameters the LPV
system behaves as an LTI system. They identify LTI models at several
fixed constant scheduling parameter conditions and then use interpola-
tion techniques to obtain an LPV model. For applications where these
experiments are possible, this can yield good results [7], [25], [28],
[30], [32]. Global methods on the other hand do not have this require-
ment and only use one experiment. In this paper, we focus on global
LPV identification methods.

These methods can be further divided into input–output and sub-
space methods. Input–output methods yield input–output LPV models
and have received considerable attention in the literature [4], [24], [32].
But the preferred model structure for mainstream LPV control design
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methodologies is state-space, and transformation from input–output
to state-space models is problematic in the LPV case [33]. Subspace
methods have also received considerable attention [6], [9], [10], [12],
[23], [36], [37]. They directly produce state-space models, and can deal
naturally with multiple input multiple output and closed-loop systems.
In this paper, we focus on subspace methods. If the scheduling se-
quence has some special structure, for example, is periodic [10], white
noise [9] or piecewise constant [36], then tailored methods can be used.
However, this is not true for all applications. There exist several LPV
subspace methods for this case [6], [13], [37], and they suffer from
the “curse-of-dimensionality” during their first regression step. This
means that the number of LPV sub-Markov parameters to be estimated
can quickly, vastly exceed the number of data points. This results in
ill-conditioned problems, memory and computational cost issues. In
this paper, we focus on the ill-conditioning and continue to deal with
the latter two issues in [16] using dual problems [37]. One way to
tackle ill-condition of the problem is to use regularization. Methods
with Tikhonov regularization [37] and matrix nuclear norms [12] have
been proposed. The former penalizes the magnitude of estimate param-
eters, and the latter exploits the approximate low-rank property of the
state-revealing matrix. In this paper, we propose using an alternative
regularization, which arguably exploits more structure. Namely, we
propose using tensor nuclear norms [31], in order to exploit the exact
multilinear low-rank property of the parameter tensor.

Our proposed method can also be seen as an extension of the method
presented in [21] to the LPV Multiple Input Multiple Output with
tensors case.

A tensor is a multidimensional generalization of a matrix. That is, it
can have more than two dimensions. This multidimensional structure
can be exploited using techniques from the tensor framework such
as tensor nuclear norms [31]. Tensor and matrix nuclear norms have
received considerable attention in literature [20], [26], [31], [38], [39].
Matrix nuclear norms can be used to exploit knowledge that some
matrices are low rank. Tensor nuclear norms can be used to exploit
knowledge that some tensors have low-rank matricizations.

In this paper, we show that the LPV sub-Markov parameters can
be organized into several tensors whose matricizations are all low
rank. Then, this property is exploited through tensor nuclear norm
regularization to obtain a novel convex LPV subspace identification
method.

This paper relates to previous work as follows. In [17], [18], the
problem of having a large number of LPV sub-Markov parameters was
also tackled by using tensor techniques. However, in [17] the LPV sub-
Markov parameters were organized in a single padded tensor and then
a nonlinear (polyadic) decomposition and parametrization was used.
In [18], a tensor train decomposition and parametrization is used. Both
methods do not use multilinear low-rank properties or nuclear norms
and are nonconvex refinement methods. The full LPV sub-Markov
tensors used in this paper can be seen as generalizations of the tensors
presented before in [18], however the decomposition and multilinear
low-rank property are completely novel. The generalization details are
provided later in this paper. Also, the proposed method is a convex
method.
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Before presenting the novel method, first essential background ma-
terial is provided in Section II. Afterwards the LPV sub-Markov pa-
rameter tensors are presented explicitly in Section III and proven to
be of multilinear low rank. Finally the novel method is presented in
Section IV and a comparison with the regularized LPV-PBSIDopt

method of [37] through simulation results are presented in Section V.

II. BACKGROUND

Prior to presenting the novel method, several related topics are re-
viewed in this section. These topics are LPV subspace identification,
tensor decompositions, and matrix and tensor nuclear norms.

A. First Regression Step of LPV Subspace Identification

In this section, a short review of the first regression step of LPV
subspace identification [17], [37] is presented, because the exponential
growth of parameters appears in this step. First define the following
signals:

xk ∈ Rn̂ , uk ∈ Rr , yk ∈ Rl , ek ∈ Rl , μk ∈ Rm (1)

as the state, input, output innovation and scheduling sequence signals
at time instance k. The number n̂ is the system order. In this paper,
it is assumed that μk is known and the LPV system is affine. That is,
μ

(1)
k = 1.
We assume the following predictor-based LPV system as the data-

generating system, such as in [5], [17], [37]:

xk+1 =
m∑

i=1

μ
(i)
k

(
Ã(i)xk + B̄(i)

[
uk

yk

])
(2a)

yk = Cxk + ek (2b)

where Ã(i) ∈ Rn̂×n̂ is A(i) − K (i)C and B̄(i) is [B(i) , K (i) ], the
variables A(i) , B(i) , and C are the appropriately dimensioned state-
space matrices. Notice that an LTI output equation with no direct feed-
through (zero output matrix D̄) is considered for sake of presentation
and simplicity of derivation, similar to [37]. This will not trivialize the
“curse-of-dimensionality”. This representation allows predictor-based
methods to deal with closed-loop data. Notice that the states here are the
observer states. Define the discrete-time time-varying state transition
matrix [37] as follows:

φj,k = Ãk+ j−1 . . . Ãk+1 Ãk , Ãk =
m∑

i=1

μ
(i)
k Ã(i) . (3)

The key approximation of predictor-based methods is that we assume
that the state transition matrix φj,k ≈ 0 ∀ j ≥ p [5], [37]. This approx-
imation is also used in several LTI methods [35]. If the predictor-based
system is uniformly exponentially stable, then the approximation error
can be made arbitrarily small by increasing p [22]. The introduced bias
disappears as p goes to infinity, but is hard to quantify it for finite p [5].
The integer p is also known as the past window. Under this assumption,
the effect of xk−p on yk is negligible. Then the outputs can be described
using past inputs and outputs without the states as follows:

yk+ p ≈ CKpZk+ p + ek+ p (4)

where CKp contains the (scalar) LPV sub-Markov parameters, and
Zk+ p contains the effective data with past inputs and outputs [37].
Define

CKp = C
[Lp . . . L1

]
(5a)

L1 =
[
B̄(1) . . . B̄(m )

]
(5b)

Li+1 =
[
Ã(1)Li . . . Ã(m )Li

]
. (5c)

The number of LPV sub-Markov parameters q, or number of ele-
ments (or entries) of CKp , scales polynomially with m and exponen-
tially with p

q = l(l + r)
p∑

j=1

mj . (6)

The large size of CKp is inherent to LPV predictor-based methods
and requires special care. It can result in ill-conditioned problems,
memory and computational cost issues. In this paper, we focus on the
ill-conditioning and continue to deal with the latter two issues in [16]
using dual problems [37].

The “effective data matrix” Zk (4) is constructed from the input–
output data and the scheduling sequence

Zk = Np
k−p Zk (7)

where Zk only contains input–output data

Zk =

⎡

⎢⎢⎣

zk−p

...

zk−1

⎤

⎥⎥⎦ , zk =

[
uk

yk

]
(8)

and Np
k−p is a function of the scheduling sequence

Np
k =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

P̃p |k 0 · · · 0

0 P̃p−1 |k+1 · · · 0

...
...

. . .
...

0 0 · · · P̃1 |k+ p−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(9a)

P̃p |k = μk+ p−1 ⊗ · · · ⊗ μk ⊗ Ir+ l (9b)

where the operator ⊗ is the Kronecker product [3]. Define the data
matrix and output matrix with all samples as

Z =
[Zp+1 . . . ZN

]
(10a)

Y =
[
yp+1 . . . yN

]
. (10b)

With these results, an estimate of the LPV state-space matrices can
be obtained as follows. First the matrix CKp is estimated in the first
regression step. For example, this can be done by solving

minC Kp ||Y − CKpZ||2F . (11)

In this paper, we are mainly interested in the first regression step, be-
cause CKp can be large. Afterwards, this estimate is used to form
a rank-revealing matrix. This allows choosing a model order with
the assistance of a singular value decomposition (SVD). Then the state
sequence is reconstructed. With this state sequence the state-space ma-
trices can be readily estimated, see for example [37].

In the following section, we introduce several tensor-related
definitions.
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B. General Tensor-Related Definitions

In this section, some general tensor-related definitions are presented.
These definitions are needed in the next section in order to present a
tensor perspective on the LPV subspace identification problem.

We formally define a tensor and its sizes as follows:
Definition 2.1: Consider a tensor T. Let D be the number of di-

mensions. Denote the size of the i-th dimension as Ji . Then the tensor
is in RJ 1 ×···×JD . Or in other words, the size of the tensor is J1 -by-. . . -
by-JD and contains real values. In this paper, we use bold upper case
characters to denote tensors.

We define how we access entries from vectors and matrices:
Definition 2.2: Consider a matrix M and a vector v. Define [M ]i ,j

as the entry of M at row i and column j. Let [M ]:,j and [M ]i , :
respectively be the jth column and ith row vector. For a two×two
matrix M this means

M =

[
[M ]1 ,1 [M ]1 ,2

[M ]2 ,1 [M ]2 ,2

]
=

[
[M ]1 , :

[M ]2 , :

]
=

[
[M ]:,1 [M ]:,2

]
(12)

For row and column vectors, define [v]i as the ith entry of v.
In the following section, tensor nuclear norms are reviewed.

C. Matrix Nuclear Norm and the Tensor Nuclear Norm

In this section the matrix nuclear norm [26] and the tensor nuclear
norm [31] are reviewed. They can be used to exploit a priori knowledge
on low-rank properties of matrices and matricizations of tensors. These
norms will play a key role in the method proposed in this paper.

First we review the matrix nuclear norm. The matrix nuclear norm
has received considerable attention in the literature [26], [39], [42].
It can be used in a regularization term in order to exploit low-rank
properties in a convex manner [26]. The matrix nuclear norm of a
matrix is the largest convex lower bound of the rank of that matrix [26]
as follows:

||M ||∗ ≤ rank(M ), ||M ||2 ≤ 1 (13)

where ||M ||∗ is the nuclear norm of M , and M has been normalized.
The matrix nuclear norm itself is defined as the sum of singular values.

Next we review the tensor nuclear norm. The tensor nuclear norm of
a tensor relates to the multilinear rank of a tensor [31]. The multilinear
rank of a tensor is a tuple of numbers. Each number is the matrix rank of
a different matricization of the tensor. We formally define the n-mode
matricization of a tensor as follows:

Definition 2.3: Consider a tensor T (Definition 2.1) of size
RJ 1 ×J 2 ×. . .×JD . This tensor is of Dth order. Let n be a integer
∈ {1, . . . , D} and represent the mode number at hand. Then the n-
mode matricization of T is denoted T< n > and can be constructed
as follows. First rearrange the dimensions of the tensor in the or-
dering [n, n + 1, . . . , D, 1, 2, . . . , n − 1]. The entry of T at position
(i1 , i2 , . . . , iD ) is now put on position (in , in +1 , . . . , in−1 ). Then re-
shape the result into a matrix with Jn rows. The resulting matrix is the
n-mode matricization or tensor unfolding (with forward cycling). This
n-mode matricization can be transformed back into the original tensor
by performing the two operations in reverse.

Define also the n-mode product:
Definition 2.4: The n-mode product of a tensor T with a matrix M

is T •n M and can be computed using

[T •n M ]< n > = MT< n > (14)

where the right hand side requires a matricization and a matrix multi-
plication. Returning to T •n M can be done using Definition 2.3. This

and other tensor operations can also be computed using the TensorLab
toolbox [40].

Also define
Definition 2.5: The n-rank of a tensor is defined as the rank of the

n-mode matricization of that tensor:

rankn (T) = rank(T< n > ) (15)

Now it is possible to define the multilinear rank explicitly:
Definition 2.6: The multilinear rank of a tensor is the D-tuple of

all n-ranks of that tensor.
The multilinear rank notion is computationally attractive because it

is a tuple of matrix ranks. For contrast, the polyadic rank is NP-hard to
determine [19]. This multilinear rank relates to the tensor nuclear norm
as defined in [31]. In this paper, we use the definition of [31] and not
the different one of [11], because the former is computationally much
cheaper to compute. Both have received considerable attention in the
literature [11], [20], [38]. The tensor nuclear norm is defined as

||T||∗ =
1
D

D∑

n =1

||T< n > ||∗ (16)

and has the property

||T||∗ ≤ 1
D

D∑

n =1

rankn (T), ||T< n > ||2 ≤ 1 ∀n (17)

however it is not proven to be the best convex heuristic. Just like
the matrix nuclear norm, the tensor nuclear norm can be used as a
regularization term.

In the following section, the multilinear SVD of a tensor is reviewed.

D. Multi-Linear Singular Value Decomposition (MLSVD)

In this section, we review the SVD for matrices and the MLSVD
for tensors, to be able to prove the multilinear low-rank property of the
parameter tensors in the next section.

First we present the more simple matrix SVD for illustration. The
SVD [15] of a real matrix can be seen as a decomposition with special
properties

M = UΣV T (18)

where U and V are unitary and Σ contains the (nonnegative) singular
values of M along its diagonal in descending order. Notice that the
matrix M is low rank if and only if some singular values are zero.
Suppose only r̄ singular values are nonzero. Then this allows truncating
without error, to

M = UΣV T = Ū Σ̄V̄ T (19)

where Ū and V̄ are the first r̄ columns of U and V and Σ̄ is the top-left
r̄-by-r̄ sub-matrix of Σ. Notice that Σ̄ is smaller than M for low rank
M .

The MLSVD [8] can be seen as an extension of the SVD to tensors.
It decomposes a tensor as follows:

T = S •1 U (1) •2 U (2) •3 · · · •D U (D ) (20)

where the n-mode product •n is defined in Definition 2.4, S is the
all-orthogonal core tensor with ordered multilinear singular values and
the matrices U (∗) have orthonormal columns. The conditions for mul-
tilinear low rankness of a tensor are

Definition 2.7: A tensor is multilinear low rank if and only if all its
n-mode matricizations are low rank.

or alternatively

Authorized licensed use limited to: TU Delft Library. Downloaded on September 18,2020 at 08:13:49 UTC from IEEE Xplore.  Restrictions apply. 
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Definition 2.8: A tensor is multilinear low rank if the core tensor of
its MLSVD (20) is smaller than the full tensor in all dimensions. More
specifically, the multilinear rank of a tensor is the minimal size of its
core tensor.

In fact, there is no need for an MLSVD to prove multilinear low rank-
ness. A multilinear decomposition is sufficient to prove some tensor to
be multilinear low rank. This decomposition is defined as follows:

T = A •1 M (1) •2 M (2) •3 · · · •D M (D ) (21)

where A is a Dth order tensor and M are matrices with corresponding
sizes. With this decomposition the multilinear rank of the tensor is
entrywise bounded from above by the size of A. This is because A and
M (∗) can be normalized to obtain an MLSVD with the same sizes [40].

In the following section, it will be proven that the parameter tensor
is multilinear low rank.

III. MULTILINEAR LOW-RANK PARAMETER TENSORS

In this section, we show that the LPV sub-Markov parameters can
be organized into several multilinear low-rank tensors. That is, all
their matricizations are low rank. This property is proven using the
multilinear decompositions discussed in Section II-D. This low-rank
property will be exploited by the novel method in the next section.

First we present a three-dimensional example to illustrate the param-
eter tensors for a simple case. Consider an LPV state-space system (2)
with m = 2. Let this system be single-input single-output output-error
with LTI input matrix. Furthermore we choose the size of the parame-
ter tensor to be 3-×-3-×-3, such that it contains all LPV sub-Markov
parameters to be estimated for p = 4. Then, the parameter tensor for
this example system is as follows:

Notice that this tensor contains the LPV sub-Markov parameters and
has some similarities with Hankel matrices. For example, the front slice
is exactly a Hankel matrix. Also, the LTI variant would be exactly a
Hankel tensor. More specifically, this tensor has some block-Hankel
tensor structure. Later in this section we will show that we can make
statements about its multilinear ranks.

Next we present the parameter tensors in multilinear decomposition
form for the general case. This decomposition will also prove (an upper
bound on) the multilinear rank (Section II-D). The parameter tensors
are denoted Ho ,κ and are defined per output o and column of B̄(κ). The
dimensions of a parameter tensor are all equal. Let the scalar t be this
dimension (value), and D the number of dimensions. Both variables
are user-chosen and will be defined explicitly later in this section. The
relation of the two variables with the past window is discussed at the

end of this section. First we present their multilinear decomposition

Ho ,κ = AH •1 Fo •2 F •3 · · · •D−1 F •D Fκ ∈ Rt×. . .×t (22)

where the tensor AH and matrices Fo , F and Fκ will be defined next.
The matrix Fo contains the output matrix and products of Ã(∗) and is

Fo =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[C ]o , :

[C ]o , :Ã
(1)

...

[C ]o , :Ã
(m )

[C ]o , :Ã
(1) Ã(1)

[C ]o , :Ã
(2) Ã(1)

...

[C ]o , :Ã
(m ) Ã(m )

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rt×n̂ (23)

where we let t be the height of this matrix, and the brackets with
subscript are defined in Definition 2.2. Notice that t is (by definition)
also the size of the first dimension of Ho ,κ . The matrix F contains
products of Ã(∗) in a vectorized form as follows:

F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(In̂ )T

vec(Ã(1) )T

...

vec(Ã(m ) )T

vec(Ã(1) Ã(1) )T

vec(Ã(2) Ã(1) )T

...

vec(Ã(m ) Ã(m ) )T

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rt×n̂ 2
. (24)

Notice that the width of F is n̂2 , but this will be dealt with in
the definition of AH . The matrix Fκ contains the matrix B̄ and is
defined as:

Fκ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

([B̄]:,κ )T

(Ã(1) [B̄]:,κ )T

...

(Ã(m ) [B̄]:,κ )T

(Ã(1) Ã(1) [B̄]:,κ )T

(Ã(2) Ã(1) [B̄]:,κ )T

...

(Ã(m ) Ã(m ) [B̄]:,κ )T

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rt×n̂ . (25)

These three matrices and the tensor AH together form the LPV sub-
Markov parameters. This tensor AH consists purely of ones and zeros,
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and discards all inadmissible products between elements of the matri-
ces F∗. These inadmissible products appear because instead of matrix
products we have products of the vectorizations of those matrices.
Therefore, this tensor is named here as the admissibility tensor. The
algorithm to generate AH as a function of n̂ and D is given in [16].
Proof of the decomposition follows through straightforward computa-
tions. The size of this tensor AH matches with the widths of F∗ as
shown in (22) and is

[
n̂ n̂2 n̂2 . . . n̂2 n̂

]
. Using the definition of the

multilinear decomposition (Section II-D), we can state that this size is
the upper bound of the multilinear rank of Ho ,κ .

Now that we know the multilinear rank of Ho ,κ , we can state under
which conditions it is multilinear low rank. Using Definition 2.8, this
is the case if AH is smaller than Ho ,κ in all dimensions. Filling in their
sizes gives

Theorem 3.1: The parameter tensor Ho ,κ is multilinear low rank if
t > n̂2 .

Since t is user-chosen, we will implicitly assume throughout this
paper that t > n̂2 .

In this paragraph, we give details on the size of Ho ,κ for complete-
ness. The dimension t is

t =
f̄ −1∑

j=0

mj (26)

where f̄ is named the incremental window. The maximum number of
Ã(∗) in sequence in F∗ is exactly f̄ − 1. It is interesting to note that
for fixed f̄ = 2, the full tensors are similar to the ones in our previous
work [18]. Furthermore, the number of dimensions D of Ho ,κ is also
user-chosen. Together they determine the size of Ho ,κ . For purpose of
simple notation, we omit D and f̄ from the notation of Ho ,κ and other
affected variables. These two also determine which LPV sub-Markov
parameters will appear in Ho ,κ . Let the “order” of an LPV sub-Markov
parameter be the number of Ã(∗) in sequence that it has plus one. Then
the highest order of LPV sub-Markov parameters in Ho ,κ is

h = 1 + (f̄ − 1)D (27)

where h is named the regularization window. A natural choice would
be h = p. However, we keep the option of choosing h open. In the
remainder of this paper we let h ≤ p. The availability of the choice of
h will allow reducing computational load where needed.

We would like to remark that for f̄ = 2 the full tensor equals the
tensor presented before in [18]. The decomposition and multilinear
low-rank property are completely novel.

In the following section, we present the novel method.

IV. PREDICTOR-BASED TENSOR NUCLEAR NORM

REGRESSION (PBTNNR)

Using the results from the previous sections we now have all the
ingredients to derive the new Predictor-Based Tensor Nuclear Norm
Regression method algorithm. The proposed convex LPV subspace
identification method exploits the multilinear low-rank property of the
parameter tensor for improved problem conditioning.

The difference between the proposed method and the method of [37]
and [12] is that they use different regularization terms during the criti-
cal, first regression step. Therefore we only present the first regression
step in this section and refer to Section II-A for details on subsequent
steps. The starting point is the objective function (11)

minθ ||Y − [CKp ](θ)Z||2F (28)

where CKp and Z are defined and motivated in Section II-A. The
proposed method adds tensor nuclear norm regularization terms to this
objective function.

The arguments of the tensor nuclear norms are the multilinear low-
rank parameter tensors (22). Every scalar LPV sub-Markov parameter
is parametrized by one optimization parameter. This applies to both
[CKp ](θ) and the parameters tensors Ho ,κ (θ). This also implies that
some optimization parameters (θi ) appear multiple times in Ho ,κ (θ).
For simplicity, all regularization terms are weighed in the objective
function by a single tuning parameter λ. Furthermore, we let h = p (27)
for ease of notation. This results in the following objective function

minθ ||Y − [CKp ](θ)Z||2F + λ

l∑

o=1

m ( l+ r )∑

κ=1

||Ho ,κ (θ)||∗ (29)

which exploits the multilinear low-rank property of the parameter ten-
sors to improve problem conditioning.

In the following section, the simulation results are presented.

V. SIMULATION RESULTS

In this section simulation results are presented in order to compare
the proposed method PBTNNR with the method of [37] in terms of
variance accounted for.

A. Simulation Settings

In this section, the simulation settings and some related definitions
are presented.

For statistical significance, the results presented in this paper are
based on 100 Monte Carlo simulations. For every Monte Carlo simu-
lation a different realization of both the input and the innovation vector
is used. The scheduling sequence is kept the same. All methods use a
model order equal to the system order, and are supplied the information
that D̄ = 0 and that the output equation is LTI. For completeness, the
future window variable for the SVD step is chosen equal to the past
window.

In this section, we compare the novel method with the (Tikhonov)
regularized LPV-PBSIDopt (kernel) method of [37]. We use the kernel
variant of the proposed method presented in [16] to perform simula-
tions. The quality of the estimates is evaluated by investigating the
Variance Accounted For (VAF) on a validation data set which is dif-
ferent from the one used for identification, in the sense that different
realizations of both the input and the innovation vector are used. The
VAF for single-output systems is defined as follows [37]:

VAF(ȳk , ŷk ) = max

{
1 − var(ȳk − ŷk )

var(ȳk )
, 0

}
100%.

The noise-free simulated output of the system is used when evaluating
the VAF, because this allows the VAF to reach 100% when the model
is equal to the true system modulo global state-coordinate transforma-
tions. Notice that this is possible because the data is generated using
simulations. The noise-free simulated output of the system is here de-
noted as ȳk . In similar sense, the noise-free (simulated) model output
is denoted as ŷk . The operator var(∗) denotes the variance of its argu-
ment. The tuning parameter λ of the proposed method has been chosen
as follows. The λ with single significant digit which yields the highest
mean validation VAF is chosen. The computations are performed on
an Intel i7 quad-core processor running at 2.7 GHz with 8 GB RAM.
We provide the computation time both of the proposed method and the
method of [37].

Several cases and their results are presented in the following sections.
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TABLE I
MEAN VAF FOR DIFFERENT METHODS FOR CASE 1

Method VAF

LPV-PBSIDopt (kernel) 96.6
PBTNNR (kernel, f̄ = 2, D = 2) 97.9 with λ = 0.1
PBTR (refinement method) 98.0

Fig. 1. Box-plot of the validation VAF of the 100 Monte Carlo simula-
tions for three methods. Only the first two methods are convex; the last
method is a nonconvex refinement method.

B. Simulation Results Case 1

In this section, simulation results are presented for a case of [17] in
order to compare the proposed method with both the method of [37]
and [17] (PBTR).

This case uses the following LPV state-space system (2):

[
A(1) , A(2)] =

[
4
15

1
15

− 1
6

1
30

∣∣∣∣∣

3
20 − 1

60

− 1
60

3
20

]

[
B(1) , B(2)] =

[
1

0

∣∣∣∣∣
0.2

0.2

]
, C =

[
1 0

]

and D is zero and K is LPV. The matrix K (i) for i = {1, . . . , m} is
obtained from the Discrete Algebraic Ricatti Equation (DARE) with
A(i) , C and identity covariance of the concatenated process and mea-
surement noise. Both the input vector uk and the innovation vector ek

are white noise with unit power. The data size N is chosen as 200. Both
methods are run with past window p equal to 6.

The system is evaluated at the scheduling sequence

μ
(2)
k = cos

(
2πk

20
N

)
/2 + 0.2.

We present the VAF of the proposed method, the method of [37]
and the nonconvex refinement method of [17] (PBTR) in Table I, and
a box-plot of the VAF in Fig. 1. We present the computation times for
the convex methods. The average computation times are 6.6 seconds
for the proposed method and 38 milliseconds for the method of [37]
per simulation.

From Table I and Fig. 1 it can be concluded that for this case the
proposed method has higher performance than the method of [37] in
terms of VAF. Additionally, the nonconvex refinement method of [17]
has a higher VAF than the two convex methods.

C. Simulation Results Case 2

In this section, simulation results are presented for a larger past
window with a case which relates to the flapping dynamics of a wind
turbine. This case has been used before in [10], [37].

TABLE II
MEAN VAF FOR DIFFERENT METHODS FOR CASE 2

Method VAF

LPV-PBSIDopt (kernel) 97.0
PBTNNR (kernel, f̄ = 3, D = 3) 98.1 with λ = 0.01

Fig. 2. Box-plot of the validation VAF of the 100 Monte Carlo simula-
tions for two methods.

This case uses the following LPV state-space system (2):

[
A(1) , A(2)] =

[
0 0.0734

−6.5229 −0.4997

∣∣∣∣
−0.0021 0

−0.0138 0.5196

]

[
B(1) , B(2)] =

[−0.7221

−9.6277

∣∣∣∣
0

0

]
, C =

[
1 0

]

and D is zero and K is LPV. The matrix K (i) for i = {1, . . . , m}
is obtained from the DARE with A(i) , C and identity covariance of
the concatenated process and measurement noise. The input vector uk

is white noise with unit power, the innovation vector ek is also white
noise and the signal-to-noise ratio is 40 dB. The data size N is chosen
as 100. Both methods are run with past window p equal to 15.

The system is evaluated at the scheduling sequence

μ
(2)
k = cos

(
2πk

20
N

)
/2 + 0.2.

We present the VAF of both the novel method and the method of [37]
in Table II, and a box-plot of the VAF in Fig. 2. The average computation
times are 23 seconds for the proposed method and 50 milliseconds for
the method of [37] per Monte Carlo simulation.

From Table II and Fig. 2 it can be concluded that for this case the
proposed method has higher performance than the method of [37] in
terms of VAF.

The conclusions are presented in the following section.

VI. CONCLUSION

In this paper, we showed that the LPV sub-Markov parameters can be
organized into several multilinear low-rank tensors. Then we proposed
exploiting this property using a novel tensor nuclear norm regulariza-
tion term. This resulted in a novel convex LPV subspace identification
method. Finally, simulation results showed that the novel method can
have higher performance than the regularized LPV-PBSIDopt technique
in terms of variance accounted for.
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[14] L. Giarré, D. Bauso, P. Falugi, and B. Bamieh, “LPV model identification
for gain scheduling control: An application to rotating stall and surge
control problem,” Control Eng. Pract., vol. 14, no. 4, pp. 351–361, 2006.

[15] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as
a method for choosing a good ridge parameter,” Technometrics, vol. 21,
no. 2, pp. 215–223, 1979.

[16] B. Gunes, J.-W. van Wingerden, and M. Verhaegen, “Kernel
method for tensor nuclear norm LPV subspace identification,” In-
tern. Rep., 2017. [Online]. Available: https://drive.google.com/open?id=
0BxAriINeXhF5UElUX3BOYWotWkE

[17] B. Gunes, J.-W. van Wingerden, and M. Verhaegen, “Predictor-based
tensor regression (PBTR) for LPV subspace identification,” Automatica,
vol. 79, pp. 235–243, 2017.

[18] B. Gunes, J.-W. van Wingerden, and M. Verhaegen, “Tensor networks for
MIMO LPV system identification,” Int. J. Control, submitted to 2017.
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[32] R. Tóth, Modeling and Identification of Linear Parameter-Varying Sys-
tems, vol. 403, New York, NY, USA: Springer, 2010.
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