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Abstract

The world of systems and control guides more of our lives than most of us realize. Most
of the products we rely on today are actually systems comprised of mechanical, electrical
or electronic components. Engineering these complex systems is a challenge, as their ever
growing complexity has made the analysis and the design of such systems an ambitious task.
This urged the need to explore new methods to mitigate the complexity and to create sim-
plified models. The answer to these new challenges? Abstractions. An abstraction of the the
continuous dynamics is a symbolic model, where each “symbol” corresponds to an “aggregate”
of states in the continuous model. Symbolic models enable the correct-by-design synthesis of
controllers and the synthesis of controllers for classes of specifications that traditionally have
not been considered in the context of continuous control systems. These include qualitative
specifications formalized using temporal logics, such as Linear Temporal Logic (LTL). Be-
sides addressing qualitative specifications, we are also interested in synthesizing controllers
with quantitative specifications, in order to solve optimal control problems. To date, the use
of symbolic models for solving optimal control problems, is not well explored. This MSc
Thesis presents a new approach towards solving problems of optimal control. Without loss of
generality, such control problems are considered as path-planning problems on finite graphs,
for which we provide two shortest path algorithms; one deterministic Set-Destination Short-
est Path (SDSP) algorithm and one non-deterministic SDSP algorithm, in order to solve
problems with quantitative specifications in both deterministic and non-deterministic sys-
tems. The fact that certain classes of qualitative specifications result in the synthesis of
(maximally-permissive) controllers, enables us to use the SDSP algorithms to also enforce
quantitative specifications. This, however, is not the only path towards our goal of syn-
thesizing controllers with mixed qualitative-quantitative specifications; it is possible to use
the SDSP algorithms directly to synthesize controllers for the same classes of specifications.
Finally, we implement the algorithms as an extension to the MATLAB toolbox Pessoa, using
Binary Decision Diagrams (BDDs) as our main data structure.
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Chapter 1

Introduction

The dynamics of processes found in nature or made by humans are traditionally modeled
using continuous systems, i.e., by a set of differential equations capturing the time evolution
of quantities of interest. Continuous systems are also essential when modeling and designing
dynamical or hybrid control systems. Nevertheless, many problems in systems and control
are NP-hard and, in some cases, undecidable [3, 4]. They require numerical methods, whose
computational complexity often grows rapidly as the state dimension and the number of time
steps increase. This growth in the complexity of dynamical systems poses new challenges
that fall beyond the traditional methods of control theory. To treat such problems, simpler
models can be created that are much easier to analyze and to control, while preserving the
essential characteristics of the original model. Such simplified models are called symbolic or
discrete-abstraction of the original model in the sense of Willems [5, 6].
This approach though, introduces the problem of equivalence of systems, which is of great im-
portance to systems and control theory [7]. For this, the notion of bisimulation is a powerful
mathematical framework for addressing systems abstraction. A bisimulation relation requires
all external behaviors of the simplified system to be equal to the external behaviors of the
original one. In the context of control systems, one can safely assume that the trajectories
of the bisimilar discrete system would include the trajectories of the continuous one. Such a
discrete system is said to simulate the original system. The work of bisimulation originated
in the field of labeled transition systems [8] and was introduced for dynamical and control
systems by Haghverdi et al. [9]. While labeled transition systems are purely discrete, the
dynamical systems in control theory may consist of both continuous and discrete variables.
However, for systems observed over metric spaces, requiring strict equality of observed behav-
iors is often too strong. Only a small class of continuous or hybrid systems admits bisimilar
discrete abstractions [1]. To address this problem, a different approach emerged through the
work of [10, 11, 12, 13], where an approximate version of bisimulation is considered. While
exact bisimulation requires the external behavior of two systems to be identical, the notion of
approximate bisimulation relaxes this condition by allowing observations to be simply within
a desired precision. This relaxation made it possible to extend the class of systems for which
discrete abstractions can be computed, providing a more robust relationship between sys-
tems. Whether using exact or approximate bisimulation relations to abstract a system, the
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2 Introduction

goal remains to construct symbolic models with a finite number of states, which is especially
useful for controller design.

Symbolic models pose another important property: they allow us to use tools, that have
been successfully used by computer scientists in the past decades, for analysis, design and
verification of labeled transition systems. In fact, they are especially well suited for automated
analysis and design which is becoming increasingly important given the size of nowadays
complex control systems. From the analysis point of view, symbolic models provide a unified
framework to describe continuous systems as well as hardware and software interacting with
the physical environment. But most importantly, they enable the synthesis of controllers
for classes of specifications that traditionally have not been considered in the context of
continuous control systems.

These include specifications formalized using regular languages, fairness constraints, temporal
logics, etc. Particularly Linear Temporal Logic (LTL) and Computation Tree Logic (CTL)
[14] are being used as specification languages for complex control systems. Such logics are
appealing because they have well defined syntax and semantics, which can be easily used to
specify complex behavior. In LTL for instance, it is easy to specify persistent tasks, e.g.,
“Visit regions A, then B, and then C, infinitely often. Never enter B unless coming directly
from D.” In addition, off-the-shelf model checking algorithms [14] and temporal logic game
strategies [15] can be used to verify the correctness of system trajectories and to synthesize
provably correct-by-design control strategies [11, 16, 17]. These control strategies basically
enforce safety and liveness constraints or more generally, satisfy qualitative specifications.

The term qualitative refers to the fact that all the desired trajectories are treated as being
equally good, as all undesired trajectories have been precluded from the system. However
in many practical applications, this might not be enough. There might also be the need to
select the “best” of the remaining trajectories. For that, typically, each trajectory is mapped
with a cost stating how good a given trajectory is and defining the quantitative properties
of the controller. The control design problem then requires the removal of the undesirable
trajectories and the selection of the minimum cost trajectory. Although this design objective
is very attractive for solving optimal control problems, it has been less considered within the
context of discrete abstractions [18, 19, 20, 21, 22, 23].

1-1 Motivation and Related Work

To date, the use of discrete abstractions for solving optimal control problems, which is also our
problem of interest, is not well explored. Some early attempts towards solving optimal control
problems by using finite state representations, have been reported by Broucke et al [18]. In
their work, they recast the continuous optimal control problem to a hybrid optimal control
problem. Then they use finite bisimulation relations to transform the (non-linear) hybrid
system into a finite automaton and in turn transform the initial problem into synthesizing
a discrete supervisor, i.e. a scheme for switching between automaton locations, that will
minimize a discrete cost function. The discrete cost function is considered as an approximation
of the continuous one and their problem is equivalent to a shortest path problem on non-
deterministic graph.

In more recent approaches [22, 24], approximately bisimilar abstractions are being used to
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1-2 Thesis Goal and Contribution 3

design sub-optimal controllers for the fixed-bounded horizon optimal control problem. Ap-
proximate (alternating) bisimilar abstractions are especially suited for control problems with
a quantitative performance measure, as they give more flexibility in the abstraction pro-
cess. In particular they have been successfully used, to solve time-optimal control problems
[22, 23, 25]. The key contribution of these approaches is to provide upper and lower bounds
for the time to reach a target, while satisfying liveness and safety constrains. This way, the
resulting approximately time-optimal controllers guarantee certain performance under given
qualitative specifications.

In the latest work of Roo and Mazo Jr. [26] more general optimal control specifications are
being addressed. More precisely, they provide the underlying theory on how to combine the
quantitative properties of a system with the desired qualitative specifications, to solve mixed
qualitative-quantitative optimal control problems. Without loss of generality, such control
problems are being considered as path-planning problems on finite graphs, most of which can
be solved using novel search techniques.

With respect to the aforementioned research, this MSc Thesis aims on providing such tech-
niques, to address the practicality of this matter.

1-2 Thesis Goal and Contribution

The main contribution of this Thesis is to present a novel algorithmic solution for the mixed
qualitative-quantitative optimal control problems discussed in [26] and to illustrate a way on
how to actually synthesize such controllers. As a first step towards solving these problems
is to construct a discrete abstraction of the continuous dynamics of the system and then to
synthesize a controller under given safety and liveness constraints. Although it is possible to
synthesize more than one controller at this point, we (usually) care about synthesizing a con-
troller that is as permissive as possible. These so called minimally-restrictive or equivalently
maximally-permissive controllers [27], allow us, given a state, to choose an input from a set
of possible inputs that are equally good. Hence, we are interested in choosing a sequence of
inputs that yield the best trajectory by means of a cost. To achieve that, a cost value is being
given to each of the states of the controller’s state space. In this way each transition is now
characterized by some cost value and the optimal control problem is reduced to finding the
shortest path on a finite graph. For that, known algorithms are available from the field of
computer science, such as Dijkstra’s algorithm [28] for the Single-Source Shortest Path (SSSP)
problem or Floyd-Warshall algorithm [29] for the All-Pairs Shortest Path (APSP) problem.
But, since we are interested in finding the “all-sources” shortest path to a given set (or the
Set-Destination Shortest Path (SDSP)), we propose a modified version of the Floyd-Warshall
algorithm to solve the optimal control problem. This approach though, is only well suited
for deterministic systems (or graphs) due to the inability of the shortest path algorithms to
handle non-deterministic transitions. For this reason, we also present a non-deterministic
shortest path algorithm to address optimal control problems in non-deterministic systems.

The implementation of the two algorithms is based on a data structure known as Binary
Decision Diagram (BDD) [30] and its extension called Algebraic Decision Diagram (ADD)
[31]. BDDs have been used for years to provide a cogent representation of Boolean functions
and to reduce the amount of space and computation required to verify digital circuits. BDDs
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4 Introduction

represent Boolean functions as a directed acyclic graph - essentially a decision tree with
re-convergent branches and binary terminal nodes. On the other hand, ADDs have real-
valued terminals, and are considered as an efficient mean to represent and perform arithmetic
operations on functions from a factored boolean domain to a real-valued range. It has been
shown, for example, that for any matrix, the ADD representation is no larger than the
corresponding sparse-matrix representation and is often smaller than any other conventional
special-case representation, such as a n × n Walsh matrix [32]. ADDs provide also an ideal
form of storing discrete abstractions of systems by offering great compression, while being
fairly easy to use and manipulate. This space-optimal representation, can then be used to
automatically generate hardware [33] or software [34] implementations of the controller.

To illustrate the feasibility of our proposed approach, we present some simple examples in
chapter 4. These examples show the procedure for synthesizing controllers with mixed quali-
tative and quantitative specifications using our proposed approach. It is important to mention
here that the resulting algorithms, serve as an extension to the freely available MATLAB toolbox
Pessoa [2].

1-3 Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 and 3 contain most of the termi-
nology and notation used in this thesis. More precisely chapter 2 provides the fundamental
knowledge on some concepts of graph theory, upon which the shortest path algorithms are
based and operate. BDDs and ADDs, a special case of directed graphs (digraphs), which
serve also as a data structure in the practical implementation, are also extensively covered in
this chapter. In this chapter we also present two very important shortest path algorithms; the
all-pairs shortest path algorithm of Floyd and Warshall and the single source shortest path al-
gorithm of Dijkstra. Furthermore, chapter 2 covers important notions of systems, simulation
relations and composition of systems. Most importantly, a fixed-point algorithm that is used
to synthesize controllers with liveness constraints is being reviewed. This algorithm provides
a solution to the so called “reachability game” and it is able to handle both deterministic and
non-deterministic systems. In fact, the non-deterministic shortest path algorithm presented
in this thesis is inspired by this particular algorithm. The last section of chapter two, can be
considered as a quick overview on formal languages with a focus on the LTL language, which
is used to formulate qualitative specifications.

Chapter 3 and 4 contain the main contribution of this thesis. In chapter 3 the determin-
istic and non-deterministic set-destination shortest path algorithms are presented. These
algorithms play a key role to the solution of optimal control problems. Chapter 4 explains
which classes of qualitative specifications can be addressed with the SDSP algorithms and
the technique to synthesize controllers with mixed qualitative-quantitative specifications. In
this chapter we provide also some examples to illustrate the feasibility of our approach.

Chapter 5 we present our conclusions and discuss potential future work that may be carried
out. Appendix A provides the ADD implementation of the algorithms presented in this
Thesis.
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Chapter 2

Preliminaries

By making use of discrete abstract models, control problems are converted into path-planning
problems on finite automata or more generally on finite graphs. In fact, the solutions provided
for the optimal control problems in this thesis, are based on finding the shortest path in
finite graphs. In particular, for solving the deterministic and non-deterministic shortest path
problems presented later on, well-known shortest path algorithms, such as Floyd-Warshall
or Dijkstra’s algorithm, have been used as a reference. It is therefore important to review
some key notions and terminologies from the theory of graphs and to show the theoretical
and algorithmic aspects of the two shortest path algorithms.

In this chapter we also cover important notions of systems, simulation relations and com-
position of systems. Most importantly we review the algorithm that provides a solution to
the “reachability game”. The idea behind this algorithm is our key component in the non-
deterministic set-destination shortest path algorithm. In addition to that and since our goal
is to synthesize controllers with mixed qualitative-quantitative specifications, we provide a
quick overview on formal languages and especially on the LTL language.

2-1 Directed graphs

Most of the definitions and concepts in this thesis require the notion of directed graph. Bi-
nary and algebraic decision diagrams are a form of directed graphs, while the shortest path
algorithms used to address optimal control problems, operate on directed graphs.

Definition 2.1 (Directed graph [35]). A directed graph or digraph D is an ordered tuple
(V,A) consisting of a non-empty finite set V of vertices and a finite set A ⊆ V ×V of ordered
pairs of distinct vertices called arcs or directed edges. We call V the vertex set and A the arc
set of D.

The two sets V and A can also be denoted as V (D) and A(D) to emphasize that these are
vertex and edge sets of a particular graph D. Vertices are sometimes called points or nodes
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6 Preliminaries

and arcs are sometimes called lines. For an arc (v1, v2) the first vertex v1 is its tail and the
second vertex v2 is its head. We also say that the arc (v1, v2) leaves v1 and enters v2 and that
v1 is adjacent to v2. The arc (v1, v2) is also denoted by v1v2.

The cardinality of the vertex set of a directed graph D, |V |, is called the order of D and
is commonly denoted by n(D), or more simply by n when the graph under consideration is
clear. The cardinality of the arc set of a graph D, |A|, on the other hand represents the size
of the graph D and is often denoted as m(D) or m. So, a (m,n) graph has size m and order
n.

It is customary to define or describe a directed graph by means of a diagram in which each
vertex is represented by a point and each edge is represented by an "arrow" line or curve
joining adjacent vertices. But, a directed graph can also be described by means of matrices.
One such matrix is the adjacency matrix.

Definition 2.2 (Adjacency matrix [35]). Let D = (V,A) be a directed graph of order n, the
adjacency matrix M of D is the n× n zero-one matrix where,

mij =
{

1 if {vi, vj} ∈ A
0 if {vi, vj} 6∈ A

Thus, the adjacency matrix of a directed graph D is a symmetric (0, 1) matrix having zero
entries along the main diagonal. For a pair X, Y of vertex sets of a digraph D, we define

(X,Y )D = {xy ∈ A(D) : x ∈ X, y ∈ Y }

i.e. (X,Y )D is the set of arcs with tail in X and head in Y . The above definition of a digraph
implies that we allow a digraph to have arcs with the same end-vertices, but we do not allow
it to contain parallel (also called multiple) arcs, that is, pairs of arcs with the same tail and
the same head, or loops (i.e. arcs whose head and tail coincide).

Definition 2.3 (Directed pseudographs and multigraphs [36]). Directed pseudographs are
directed graphs with parallel loops and arcs. Directed pseudographs without loops are called
directed multigraphs.

Given a vertex v, the following definition expresses the connection of v compared with its
adjacent vertices.

Definition 2.4 (Neighbourhood of a vertex [35]). Given a vertex v of a directed (pseudo)graph
D = (V,A) then,

• N+
D (v) = {u ∈ V \ v : vu ∈ A} is the out-neighbourhood of v

• N−D (v) = {w ∈ V \ v : wv ∈ A} is the in-neighbourhood of v

The vertices in N+
D (v), N−D (v) and ND(v) are called the out-neighbors, in-neighbors and

neighbors of v respectively. The set ND(v) = N+
D (v) ∪N−D (v) is called the neighbourhood of

v.

Since it is possible to have multiple arcs in a directed pseudograph, it is also important to
define the number of edges entering and leaving a vertex.
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2-1 Directed graphs 7

Definition 2.5 (Degree of a vertex [35]). Given a vertex v of a directed graph D = (V,A)
then,

• Deg+
D(v) = |(v, V )D| is the out-degree of v

• Deg−D(v) = |(V, v)D| is the in-degree of v

Note that, a loop at a vertex contributes to both the in-degree and the out-degree. In case
of directed multigraphs, the cardinality of N−D (v) and N+

D (v) is the same as the in- and
out-degree respectively.

When one needs to add some weight or cost in the link between two vertices as it is in the
case of the shortest path algorithms, we are referring to weighted directed pseudographs[36].

Definition 2.6 (Weighted directed graph [35, 36]). A weighted directed graph is an ordered
triple D = (V,A, c), consisting of a non-empty finite set V of vertices, a finite set A ⊆ V × V
of directed edges and a map c : A −→ R expressing the weight of the link. If we define the
weight map as c : V −→ R, then the graph is referred to as a vertex-weighted directed graph.

If a is an element (i.e. a vertex or an arc) of a weighted directed graph D = (V,A, c), then
c(a) is called the weight or the cost of a. Similarly to the adjacency-matrix used to represent
directed graphs, we might also use a matrix representation for weighted directed graphs.

Definition 2.7 (Cost adjacency matrix). Let D = (V,A, c) be a weighted directed graph of
order n, the cost adjacency matrix M of D is the n× n matrix where,

mij =
{
c({vi, vj}) if{vi, vj} ∈ A
∞ if{vi, vj} 6∈ A

We can also use the cost adjacency matrix to describe vertex-weighted directed graphs. In
this case the matrix is defined as follows:

mij =
{
c(vj) if{vi, vj} ∈ A
∞ if{vi, vj} 6∈ A

This means that the cost of the arc (vi, vj), namely the link between two adjacent vertices,
is defined by the head-vertex vj as c(vj). We use ∞ to denote that there is no connection
between vi and vj in the corresponding graph (Figure 2-1).

Before we can speak about shortest path algorithms, it is important to present the notions of
walk, trail and path in a digraph D.

Definition 2.8 (Walk, trail and path in a digraph [36]). Let D = (V,A) be a directed graph.
A walk in D is an alternating sequence W = v1a1v2a2v3...vk−1ak−1vk of vertices vi and arcs
aj from D such that the tail of ai is vi and the head of ai is vi+1 for every i = 1, 2, ..., k − 1.
We say that W is a walk from v1 to vk or an (v1, vk)-walk. A trail is a walk in which all arcs
are distinct and is called a path if only the vertices are distinct too. For a trail W , if vk = v1,
then W is a cycle.
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Figure 2-1: A weighted directed graph D(V,A, c) (a) and its cost adjacency matrix MD (b).

In this context, whenever we speak about the length of a walk W in a weighted (or vertex-
weighted) directed pseudograph D = (V,A, c), we mean the weight of that walk, with respect
to c. That is, the sum of the weights of the arcs (or vertices) in W . A negative cycle in
a weighted digraph D is a cycle W whose weight is negative. Note also that a vertex y is
reachable from a vertex x if D has an (x, y)-walk.

At this point it is also important to review the concept of connectivity. This notion is of
paramount importance when analyzing the complexity of the shortest path algorithms. Fur-
thermore, it defines the complexity of the BDD data structure.

Definition 2.9 (Strongly connected digraph [36]). Let D = (V,A) be a directed graph. The
digraph D is strongly connected (or, just, strong) if, for every pair x, y of distinct vertices in
D, there exists an (x, y)-walk and a (y, x)-walk. In other words, D is strong if every vertex
of D is reachable from every other vertex of D.

We say that a digraph D is complete if, for every pair (x, y) of distinct vertices of D, both xy
and yx are in D.

2-2 Dijkstra’s algorithm

Dijkstra’s algorithm [28] is one the most well known answer to the single-source shortest path
problem on weighted directed graphs with no negative weights. To compute the shortest
path, Dijkstra proposed a greedy algorithm[37], that relies on the property that a shortest
path between two vertices contains other shortest paths within it. This optimal-substructure
property is the result of the principle of optimality [38]. It states that an optimal path has the
property that whatever the initial conditions and control variables (choices) over some initial
period, the control (or decision variables) chosen over the remaining period must be optimal
for the remaining problem, with the node resulting from the early decisions taken to be the
initial condition.

This optimal-substructure property is a hallmark of the applicability of the greedy method.
The following lemma states the optimal-substructure property of shortest paths more pre-
cisely.

Lemma 2.1 (Subpaths of shortest paths are shortest paths [39]). Given a weighted, directed
graph G = (V,E) with weight function w : E −→ R, let p = 〈v1, v2, ..., vk〉 be a shortest
path from vertex v1 to vertex vk and, for any i and j such that 1 ≤ i ≤ j ≤ k, let pij =
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s
d(s,v)

d(s,v’)

c(v,t)

c(v’,t)P

Q

Figure 2-2: Dijkstra’s Algorithm in terms of the optimal-substructure property.

〈vi, vi+1, ..., vj〉 be the subpath of p from vertex vi to vertex vj . Then, pij is a shortest path
from vi to vj .

If x and y are vertices of a weighted directed graph D(V,A, c), then the distance from x to y
in D, denoted d(x, y), is the minimum length of a (x, y)-walk, if y is reachable from x, and
otherwise d(x, y) = ∞. If D has no cycle of negative weight, it follows that d(x, x) = 0 for
every vertex v ∈ V .

Having the principle of optimality in mind, the shortest path search in a weighted directed
graph D(V,A, c) with non-negative weights, from a source node s to some node t results in:

d(s, t) = min
v∈N−D (t)

{d(s, v) + c(v, t)} (2-1)

In other words, any subpath of an optimal path is itself optimal (otherwise it could be replaced
to yield a shorter path). The equation also suggests that the set V can be thought as the
union of two distinct sets, P and Q. Let P ⊆ V be the set of nodes where the shortest path
has already been computed, i.e. where d(s, v) 6= ∞ for all v ∈ P , and Q = V \ P the set of
the rest of the nodes. For every v ∈ Q the shortest distance of any path from s to v, that
uses only nodes in P is being determined. This procedure is being applied recursively until t
is reached (Figure 2-2). Initially, only the node s belongs to the set P , for which d(s, s) = 0
and an upper bound on d(s, v) for each node v ∈ Q is set to ∞.

In many problems, it is not only important to compute the shortest path, but also to keep
track of it. For this reason we use the map Ẽ : V −→ A. For each newly added node t′ ∈ P ,
Ẽ(t′) = (t′, v), where v ∈ P such that d(s, t′) = d(s, v) + c(v, t′) and v ∈ N−D (t′). Thus, in
order to find the shortest path from s ∈ P to node t′ ∈ P we have to start from node t′ and
trace the path by going backwards. That is, we have to apply the map Ẽ for the node v, which
will bring us one step closer to s. Continuing in the same way, we are able to reconstruct
the shortest path from s to t′. The reason why the edges point backwardly, is because this
way each node would have always one (or no) pointing edge and thus we know exactly which
path to follow to achieve the shortest path. In the other way around, there might exist a
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node, which is considered as an intermediate node for several shortest paths and as a result
we wouldn’t know which way to follow from that state to achieve the shortest path towards
the desired destination.

For the formal description of Dijkstra’s Algorithm, we are using the technique of relaxation
[39]. For each vertex v ∈ V , we maintain an attribute δs(v), which is an upper bound on the
weight of a shortest path from source s to v and is called a shortest-path estimate. The process
of relaxing an edge (u, v) (see Algorithm 1), consists of testing whether one can improve the
shortest path to v (found so far) by going through u and, if so, updating δs(v) and Ẽ(v).
Note that, in Dijkstra’s Algorithm, each edge is relaxed exactly once and δs(v) = d(s, v) for
each v ∈ P when the algorithm terminates. A formal description of Dijkstra’s Algorithm is
listed in Algorithm 2 and an example is shown in Figure 2-3.

Algorithm 1 Dijkstra’s Algorithm - Relax
Description: Relaxes the edge (v, u), i.e. updates δs and Ẽ.
Input: The edge (v, u) to be relaxed.
1: function Relax((v, u))
2: if (δs(v) > δs(u) + c(u, v)) then
3: δs(v) = δs(u) + c(u, v)
4: Ẽ(v) = (v, u)
5: end if
6: end function

Algorithm 2 Dijkstra’s Algorithm
Input: A weighted digraph D = (V,A, c), such that c(a) ≥ 0 for every a ∈ A, and a vertex
s ∈ V .
Output: The shortest distance d(s, v) = δs(v) for every v ∈ V and the pointer map Ẽ.
1: function Dijkstra(D)
2: P = {s}
3: Q = V \ s
4: Ẽ(s) = (s, s)
5: Ẽ(Q) = ∅
6: δs(s) = 0
7: δs(Q) =∞
8:
9: while Q 6= ∅ do

10: u = arg min
v∈Q
{δ(s, v)}

11: Q = Q \ u
12: P = P ∪ u
13: Ẽ = Ẽ ∪ (u, v)
14: for all (v ∈ N−D (u)) do
15: Relax(u, v, c)
16: end for
17: end while
18: end function
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Figure 2-3: An example of Dijkstra’s Algorithm in a weighed directed graph D(V,A, c), where
s ∈ V is the source. The blue vertices are in Q; the light green vertices are in P . The number
below each vertex is the current value of the parameter δs. (a) The initialization of the algorithm.
(b)-(e) The status of the algorithm after each successive iteration. After the termination of the
algorithm d(s, v) = δs(v). (f) The reversed (bold) edges show the set Ẽ. Following these edges
from some end point v ∈ V , we can backtrace the shortest path (s, v).

Although greedy methods do not always yield optimal solutions, they are quite powerful
and work well for a wide range of problems [39]. In fact, the following theorem shows that
Dijkstra’s Algorithm - a greedy algorithm - does indeed produce an optimal solution.

Theorem 2.1 (Correctness of Dijkstra’s algorithm [39]). Dijkstra’s algorithm, run on a
weighted, directed graph D = (V,A, c) with non-negative weight function c and source s,
terminates with d(s, u) = δs(u) for all vertices u ∈ V .

Dijkstra’s algorithm is usually implemented using a priority queue. The priority queue is
basically substituting the operation that returns the node with the minimum δs. Instead of
finding the minimum δs value of all vertices in Q and then return the corresponding vertex,
we can use a min-priority queue. Each time a δs value is being updated through the Relax()
function, it is added/updated in the priority queue as well. This way the first element in
the queue, is the vertex with the smallest δs value. The running time of Dijkstra’s algorithm
depends on how the min-priority queue is implemented. Typically Dijkstra’s algorithm runs
in O(|A|+ |V | log |V |), where V is the set of nodes and A the set of arcs.

2-3 Floyd-Warshall algorithm

The Floyd-Warshall Algorithm is a search algorithm that computes the shortest paths be-
tween all pairs of vertices of a weighed digraph with positive or negative weights, but no
negative cycles. This algorithm is based on dynamic programming and was introduced by
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Figure 2-4: Floyd-Warshall all-pairs shortest path example. (a) Shows the initial state of the
algorithm. (b) Shows all steps of the algorithm. The values in bold are the ones that get updated
in each step.

Floyd [29] and Warshall [40]. Dynamic programming is suitable for problems having optimal
substructure and overlapping sub-problems. It solves problems by combining the solutions to
sub-problems. This approach is also a result of the principle of optimality. Compared to the
greedy method, where the problem is treated top-down, hoping that a locally optimal choice
will lead to a globally optimal solution, dynamic programming formulates the problem in a
bottom-up fashion and is typically applied to optimization problems.
Given a weighted digraph D(V,A, c), where V = {v1, v2, ..., vn} and n being the number of
nodes, we denote Dk

ij , with 0 ≤ k ≤ n, the length of a shortest (i, j)-path in D, that uses
vertices that are only in the set {v1, v2, ..., vk} as indeterminate points. It is obvious that D0

ij

represents only the edge weights of the digraph (cost adjacency matrix). According to the
principle of optimality it holds that:

Dk
ij = min{D(k−1)

ij , D
(k−1)
ik +D

(k−1)
kj }. (2-2)

Observe that a shortest (i, j)-path in D either does not include the vertex vk, in which case
Dk

ij = D
(k−1)
ij , or does include it, in which case Dk

ij = D
(k−1)
ik +D

(k−1)
kj . Note also that Dk

ii = 0
for all k = 1, 2, .., n. Furthermore,

Dk
ik = min{D(k−1)

ik , D
(k−1)
ik +D

(k−1)
kk }

= min{D(k−1)
ik , D

(k−1)
ik + 0}

=D(k−1)
ik
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Algorithm 3 Floyd-Warshall’s Algorithm
Description: This is an improved version based on the observations Dk

ik = D
(k−1)
ik , Dk

kj =
D

(k−1)
kj and therefore it uses a single matrix D for its computations.

Input: The cost adjacency matrix W representing the weights of a digraph D(V,A, c). The
number of nodes is n.
Output: Matrix D containing all-pair shortest distances and the pointer array P .
1: function Floyd-Warshall(W,n)
2: D0 ←W
3: P ← 0
4: for (k = 1 to n) do
5: for (i = 1 to n) do
6: for (j = 1 to n) do
7: if (D[i, j] > D[i, k] +D[k, j]) then
8: D[i, j] = D[i, k] +D[k, i]
9: P [i, j] = k
10: end if
11: end for
12: end for
13: end for
14: end function

which means that a path from i to k will not become shorter by adding k to the allowed
subset of intermediate vertices and

Dk
kj = min{D(k−1)

kj , D
(k−1)
kk +D

(k−1)
kj }

= min{D(k−1)
kj , 0 +D

(k−1)
kj }

=D(k−1)
kj

As in the single source shortest path problem, we are also interested in being able to recon-
struct all existing shortest paths. For this reason, we introduce the n × n pointer matrix
P , which is used to trace back the shortest path in a similar manner as in the Dijkstra’s
algorithm.

Definition 2.10 (Pointer matrix). Let D = (V,A, c) be a weighted directed graph of order
n, for which we want to compute the all-pairs shortest paths using Algorithm 3. To trace
back a (i, j)-path we use the n× n matrix P where,

pij =
{

0 if i and j are adjacent ∨ if the (i, j)-path does not exists
k ∈ R+ if vk is adjacent to j and indermidiate to the (i, j)-path

At first, the pointer matrix is initialized to zero. The procedure to find the shortest path
between node i and j is to look at the matrix element (i, j), which points to the intermediate
node m1 that the path has to contain. The new path now becomes ((i,m1), j). If the path
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(i,m1) has no intermediate node, i.e. if the matrix element (i,m1) is zero, then the path is
(i,m1, j). Otherwise the above procedure is applied recursively until there is only a direct
link between mn and i, where n the number of times the above procedure has been applied,
which corresponds to the number of intermediate nodes between i and j.

Having the above observations in mind, Algorithm 3 illustrates the Floyd-Wharshall all-pair
shortest path algorithm using matrices as a date structure and Figure 2-4 an example of it.
Note that, although it is possible to have more than one path from some node v ∈ V to some
node v′ ∈ V , the pointer array is only capable of keeping the last updated value. Thus, there
might be a case where we discard actual shortest paths.

The running time of the Floyd-Warshall algorithm is determined by the triply nested “for”
loops. Because each execution of the “if” statement takes constant time, the algorithm has
takes a total time of O(n3), where n is the number of vertices.

2-4 Algebraic decision diagrams

The vast increase of complexity of digital functions and systems, has made the use of the
Boolean Algebra in form of boolean equations, Karnaugh maps, etc., not efficient. Many
problems in digital logic design, testing and verification are NP-complete or co-NP-complete.
Consequently, all known approaches to performing these operations require an amount of
computer time that grows rapidly as the size of the problem increases. This makes it difficult
to compare the relative efficiencies of different approaches to representing and manipulating
Boolean functions. A variety of methods have been developed for representing and manipulat-
ing Boolean functions, but either their representation or their manipulation suffered from the
unpleasant property of rapid growth with the number of variables involved. A new approach
to these problems had to be explored.

A data structure that gives a solution to the above problems is a special form of digraphs
and is called Binary Decision Diagram (BDD). The notion of BDDs was first introduced by
Lee [41] and further popularized by Akers [42]. BDDs provide a more efficient method for
representing and manipulating Boolean functions than binary decision trees and truth tables
do. They represent Boolean functions as a rooted directed acyclic graph. Below is a formal
definition of BDDs.

Definition 2.11 (Binary Decision Diagram [42]). A Binary Decision Diagram (BDD) is a
rooted directed acyclic graph (V ∪F∪T,E) representing a set of functions fi : {0, 1}n → {0, 1},
where:

• F is the set of the function nodes, for which Deg−(f) = 0 and Deg+(f) = 1 ∀f ∈ F .

• V is the set of internal nodes, for which Deg−(v) ≥ 1 and Deg+(v) = 2 ∀v ∈ V .

• T is the set of terminal nodes, for which Deg−(t) ≥ 1 and Deg+(t) = 0 ∀t ∈ T .

• E is the set of edges connecting the nodes of the graph.

Each (f, v) edge is called incoming edge. The two outgoing arcs of a node v are labeled then,
if v is one and else, if v is zero.
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Figure 2-5: A ROBDD representation of a Boolean function f . (a) The truth table of the
boolean function f . (b) The ROBDD representation using a < b as a variable ordering. (c)
Shows that ROBDDs are sensitive to variable ordering. Reordered as b < a.

In general, when we speak of BDDs we are actually referring to Reduced Ordered Binary
Decision Diagram (ROBDD) [30]. ROBDDs are a special form of BDDs, where all variables
are ordered on previously known ordering and every path visits variables in an ascending
order. Furthermore, any two nodes of the BDD differ from each other. ROBDDs ensure
the canonical1 representation of a Boolean function and with this property the equality of
functions can be checked without difficulty. Time and space complexity of ROBDDs depend
on variable ordering. A simple reordering of variables alone may have a great impact on
the size of the diagram. Determining the optimal variable ordering is unfortunately a NP
problem. Figure 2-5 shows a BDDs representation of a boolean function and illustrates how
variable reordering affects the BDDs.

BDDs take only terminal values of 0 and 1. Nevertheless, one can expand BDDs to allow
them to have arbitrary integer terminals and more than two terminal nodes. These kind
of BDDs are referred to as Multi-Terminal Binary Decision Diagram (MTBDD) [43]. The
MTBDDs allow the implementation of symbolic algorithms, which are applicable not only to
arithmetic, but also to many algebraic structures. Because of their applicability to different
algebras and their foundation in large Boolean algebra, BDDs with multi-terminals are called
Algebraic Decision Diagrams (ADD) [44, 45].

Definition 2.12 (Algebraic Decision Diagram [44]). An Algebraic Decision Diagram ADD is
a rooted directed acyclic graph (V ∪Φ∪T,E) representing a set of functions fi : {0, 1}n → S,
where:

• Φ is the set of the function nodes, for which Deg−(φ) = 0 and Deg+(φ) = 1 ∀φ ∈ Φ.

• V is the set of internal nodes, for which Deg−(v) ≥ 1 and Deg+(v) = 2 ∀v ∈ V .

• T is the set of terminal nodes, for which Deg−(t) ≥ 1 and Deg+(t) = 0 ∀t ∈ T .

• E is the set of edges connecting the nodes of the graph.

• S is the finite carrier of the algebraic structure over which the ADD is defined.
1BDDs are called canonical when they are unique for a representation of a boolean function given a variable

ordering.
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Each (f, v) edge is called incoming. The two outgoing arcs of a node v are labeled then, if v
is one and else, if v is zero.

The function nodes are in one-to-one correspondence with the fi’s. Every node v ∈ V has
label l(v) ∈ {0, ..., n − 1}, while each terminal node t is labeled with an element of S, s(t).
The label of nodes in E, identifies a variable on which the fi’s depend. The variables of the
ADD are ordered, which means if vj is a descendant of vi, i.e. vivj ∈ E, then l(vi) < l(vj).
An ADD represents a set of boolean functions, one for each function node, defined as follows
[44]:

1. The Boolean function of a terminal node, t, is the constant function s(t). The constant
s(t) is interpreted as an element of a boolean algebra larger than or equal in size to S.

2. The function of a node v ∈ V is given by l(v) · fthen + l(v)′ · felse, where ‘·’ and ‘+’
denote boolean conjunction and disjunction, and fthen and felse are the functions of the
then and else children.

3. The function of φ ∈ Φ is the function of its only child.

2-4-1 ADD for graph and matrix representations

ADDs are a natural symbolic representation of weighted directed graphs, which are in one-
to-one correspondence with square matrices. Suppose we have a weighted digraph G with N
vertices. Firstly we construct its adjacency matrix MG by encoding the nodes of the digraph.
The ADD representation AG(x, y) will have 2n encoding variables, where n = |x| = |y| =
dlog2(N)e; x ∈ {x0, ..., xn} is a row variable and y ∈ {y0, ..., yn} is a column variable. In the
adjacency matrix MG we think of the zero value as a background, denoting no entry, or no
connection in the corresponding graph. Of course, in other applications, different backgrounds
can be used for an efficient ADD representation. An example of an ADD representation of a
weighted digraph can be seen in Figure 2-6. We can see that, when the number of vertices of
the weighted graph G increases linearly, then the number of (ADD) nodes, i.e. the number
of encoding variables in the ADD representation AG(x, y), grows exponentially.

ADDs can also represent bipartite2 graphs which are equivalent to rectangular matrices.
However, it is important that the ADD matrix is a square one. If this is not the case, then
the ADD computations cannot be employed [44]. Therefore, in the case of a rectangular
matrix, the matrix must be “padded” with appropriately valued dummy rows and columns,
to convert the number of rows and columns in order to convert the matrix to a square one.

The ADD matrix representation can now been seen as a special form of a Boolean function
f(x) of n variables, that is, f(x) : {0, 1}n → S, where S the carrier of a Boolean algebra.

As a consequence, all theorems of Boolean algebra can be applied to ADDs. The most
important one, is Boole’s (or Shannon’s) expansion theorem:

2A bipartite graph, also called a bigraph, is a set of graph vertices decomposed into two disjoint sets such
that no two graph vertices within the same set are adjacent.
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Figure 2-6: ADD representation of a weighted digraph. (a) The directed graph and the vertex
encoding. (b) The cost-adjacency matrix. The columns are encoded with the y0y1 variables and
the rows with the x0x1 variables. (c) The resulting ADD that represents the directed graph. The
variable ordering is x0 < y0 < x1 < y1.

Theorem 2.2 (Shannon’s expansion theorem [44]). If f(x) : {0, 1}n → {0, 1} is a Boolean
function, then for all (x1, ..., xn) ∈ {0, 1}n:

f(x1, x2, ..., xn) = x′1 · f(0, x2, ..., xn) + x1 · f(1, x2, ..., xn)

The function resulting when some argument xi of function f is replaced by a constant b ∈
{0, 1} is called restriction of f and is denoted f |xi=b. This notion is also termed as the cofactor
of f , with f |xi=0 = f |x the negative cofactor and f |xi=1 = f |x the positive cofactor.

If the Shannon expansion is carried out recursively, it gives a full binary tree with leafs of
value 0 and 1. Each internal node represents a function, where its left child is its cofactor
with respect to xi for some variable xi, and its right child is its cofactor with respect to xi.
This tree is called a Shannon Tree of f [43] and is represented by the well known minterm
canonical form[46]:

f(x1, ..., xn−1, xn) =f(0, ..., 0, 0)x′1 · · · x′n−1x
′
n + · · ·

+ f(1, ..., 1, 1)x1 · · · xn−1xn

The values f(0, ..., 0, 0), ..., f(1, ..., 1, 1) are elements of S and they are called the discriminants
of the function f ; the elementary products x′1 · · · x′n−1x

′
n, x
′
1 · · · x′n−1xn, ..., x1 · · · xn−1xn are

called the minterms.

We can see the minterms as a set of arguments describing a path in the graph, starting from
the root and the discriminant as the value of the leaf at the end of the path. Therefore,
the Shannon Tree is basically describing each possible path in the graph from the root.
Nevertheless, ADDs have an interesting property, namely canonicity. In this regard, minterms

Master of Science Thesis Athanasios Tasoglou



18 Preliminaries

with the same discriminant are grouped together. In a graph this can be seen as eliminating
redundant vertices and duplicate subgraphs. Therefore, the ADD can be reduced in size
without changing the denoted function so that each boolean function corresponds to a unique
ADD.

F

Fxy´ 

Fx  ́y´ Fx  ́y

Fxy

Fx´ 

Fx

Figure 2-7: Matrix partitioning by cofactoring.

It is now obvious that the cofactors of ADDs play an important role. In figure 2-7 we see an
example of a 4× 4 matrix cofactoring. We begin to partition the matrix, by cofactoring with
respect to the arbitrary selected top variable x0. Although the order of the variable selection
is not predefined, special emphasis is given to top variable cofactoring, since this can be done
in O(n) time. Cofactoring with respect to x0, partitions the matrix in two rectangular sub-
matrices. The first (upper) is represented by the else-child felse = fx′0

and the second by
fthen = fx0 . We continue by selecting the next variable y0 and we end up, in the same way,
with 4 square sub-matrices represented by fx′y′ , fx′y, fxy′ and fxy respectively. At the end
of this recursive “descent”, all row and column variables will have been cofactored, and we
will finish having a partition with a set of 1× 1 matrices. These 1× 1 matrices are basically
representing the constant terminal nodes, i.e. the leafs of the ADD.
Note that during this recursive procedure, some of the ADD function nodes f do not need
to be distinct. In fact recombination, as explained earlier, of identical sub-graphs or nodes,
can lead to great efficiencies. Note also that there are just n = log2N row and n column
variables, so access to any of the non-zero elements can be attained in O(n) operations.

2-5 Discrete abstractions

Although there are many mathematical models that describe a dynamical phenomenon, we
need a model that cuts off the details, while preserving the essential characteristics. Abstrac-
tion provides a mean to represent the dynamics of a system and allows for rigorous analysis.
Model abstraction is furthermore equipped with relationships explaining how different sys-
tems can be related. Different systems might also be combined to create new ones, as in the
case of a plant with a controller. This section will review the notions of systems, simulation
relations, composition of systems, but most importantly the notions of reachability and the
corresponding fixed-point algorithm as an answer to the “reachability games”.

Definition 2.13 (System [1]). A system S is a sextuple (X,X0, U,−→, Y,H) consisting of:

• a set of states X;

• a set of initial states X0 ⊆ X;
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• a set of inputs U ;

• a transition relation −→⊆ X × U ×X;

• a set of outputs Y;

• an output map H : X → Y .

A system is called finite-state if X is a finite set. The notation x u−→ x′ is used to describe the
transition (x, u, x′) ∈−→, which captures the evolution of a system. The state x′ is called the
u-successor, or simply successor, of state x. On the other hand, x is called the u-predecessor,
or predecessor. The set of u-successors is denoted by Postu(x). Note that, since ∅, the empty
set, is a subset of X, there maybe no u-successors. Therefore, we denote U(x) as the set of
inputs u ∈ U , for which Postu(x) 6∈ ∅. The system is called blocking in case there exists a state
x ∈ X such that U(x) = ∅. This means that there are no further possible transitions from that
state. If U(x) 6= ∅ then system is called non-blocking. Of course there might be the case when
a state x ∈ X has more than one u-successors. Such a system is called non-deterministic.
Similarly, in a deterministic system a state x ∈ X has at most one u-successor, which means
that for any state x ∈ X and any input u ∈ U , x u−→ x′ and x u−→ x′′ imply x′ = x′′. If the
function H|X0

3 is one-to-one and for any state x ∈ X and any inputs u, u′ ∈ U , x u−→ x′ and
x

u′−→ x′′ with H(x′) = H(x′′) imply x′ = x′′, then the system is output deterministic.

If we want to explicitly refer to the possible sequences of states and outputs that a system
can generate, we are referring to the so called system behaviors.

Definition 2.14 (Internal behavior [1]). For a system S and given any state x ∈ X, a finite
internal behavior generated from x is a finite sequence of transitions:

x0
u0−→ x1

u1−→ x2
u2−→ ...

un−2−→ xn−1
un−1−→ xn

such that x0 = x and xi
ui−→ xi+1 for all 0 ≤ i < n. A finite internal behavior generated from

x is initialized if x ∈ X0.

An infinite behavior generated from x is an infinite sequence of transitions:

x0
u0−→ x1

u1−→ x2
u2−→ x3

u3−→ ...

that satisfies x0 = x and xi
ui−→ xi+1 for all i ∈ N. An infinite internal behavior generated

from x is initialized if x ∈ X0.

The sequence of outputs that are caused internally are called external behaviors and are
defined as follows.

Definition 2.15 (External behavior [1]). For a system S given a state x, every finite internal
behavior

x0
u0−→ x1

u1−→ x2
u2−→ ...

un−2−→ xn−1
un−1−→ xn

3H|X0 is the function H, but having its domain restricted, meaning that dom(H|X0 ) ⊆ dom(H).
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defines a finite external behavior through the map H:

y0 −→ y1 −→ y2 −→ ... −→ yn−1 −→ yn

with H(xi) = yi ∈ Y for all 0 ≤ i ≤ n. Similarly, every infinite internal behavior defines an
infinite external behavior:

y0 −→ y1 −→ y2 −→ ...

with H(xi) = yi ∈ Y for all i ∈ N. The external behavior is initialized if the corresponding
internal behavior is initialized.

The set of external behaviors that are defined by internal behaviors generated from state x
is denoted by Bx(S) and is called the external behavior from state x. If a behavior y is not
contained as a prefix in any other behavior from the system, then the behavior y is called
maximal.

Definition 2.16 (Finite External Behavior). The finite external behavior generated by a
system S, denoted by B(S), is defined by:

B(S) =
⋃

x∈X0

Bx(S).

The external behavior for an output deterministic system, is defined only by one corresponding
internal behavior.

Definition 2.17 (Infinite External Behavior). The infinite external behavior generated by a
system S, denoted by Bω(S), is defined by:

Bω(S) =
⋃

x∈X0

Bω
x (S).

If a system S is non-blocking, then Bω
x (S) 6∈ ∅. However, Bω

x (S) may be nonempty even if S
is a blocking system.

Until now we have reviewed the definition of a system and some notions that allows us to
have an insight on the characteristics of a system. Another important characteristic that we
are going to review is how a system relates to another one. Bisimulation relation is a powerful
mathematical framework for addressing the equivalence of systems. More precisely, we are
interested in approximate bisimulation relations, as we are able to address a broader class of
systems for which discrete abstraction can be computed.

Definition 2.18 (Approximate Simulation Relation [1]). Consider two metric systems Sa

and Sb with Ya = Yb and let ε ∈ R+
0 . A relation R ⊆ Xa×Xb is an ε-approximate simulation

relation from Sa to Sb if the following three conditions are satisfied:

1. ∀xa0 ∈ Xa0 ∃xb0 ∈ Xb0 with (xa0, xb0) ∈ R;

2. ∀(xa, xb) ∈ R : d(Ha(xa), Hb(xb)) ≤ ε;
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3. ∀(xa, xb) ∈ R : xa
ua−→
a

x′a in Sa implies the existence of xb
ub−→
b

x′b in Sb satisfying
(x′a, x′b) ∈ R.

We say that system Sa is ε-approximately simulated by system Sb or that system Sb ε-
approximately simulates system Sa, denoted by Sa �ε

S Sb, if there exists an ε-approximate
simulation relation from Sa to Sb.

If ε = 0 in definition 2.18, we say that the relation is an exact relation. Exact or approximate
simulation relations describe whether two systems can be considered as equivalent or not in
terms of their external behaviors. Nevertheless, when it comes to control systems, we are also
interested in similarity relationships that capture the effect that different choices of inputs
have on transitions. Such a relation is called approximate alternating simulation relation.

Definition 2.19 (Approximate Alternating Simulation Relation [1]). Let Sa and Sb be two
metric systems with Ya = Yb normed vector spaces, and let ε ∈ R+

0 . A relation R ⊆ Xa×Xb is
an ε-approximate alternating simulation relation from Sa to Sb if the following three conditions
are satisfied:

1. ∀xa0 ∈ Xa0 ∃xb0 ∈ Xb0 with (xa0, xb0) ∈ R;

2. ∀(xa, xb) ∈ R : d(Ha(xa), Hb(xb)) ≤ ε;

3. ∀(xa, xb) ∈ R : ∀ua ∈ Ua(xa) ∃ub ∈ Ub(xb) such that ∀x′b ∈ Postub
(xb) ∃x′a ∈ Postua(xa)

satisfying (x′a, x′b) ∈ R.

We say that system Sa is ε-approximately alternatingly simulated by system Sb or that system
Sb ε-approximately alternatingly simulates system Sa, denoted by Sa �ε

AS Sb, if there exists
an ε-approximate alternating simulation relation from Sa to Sb.

As in the case of approximate simulation relation, if ε = 0 in definition 2.19, then the relation
is exact. Note that the notion of alternating simulation coincides with simulation in the case
of deterministic systems. Also note that every non-deterministic system Sa and its associated
deterministic system Sd(a) satisfy Sa �0

AS Sd(a).

A simulation relation that does not only relate states but also inputs, is the extended alternat-
ing simulation relation. This simulation relation is of paramount importance when addressing
problems of control. In these problems the controller Sc is interconnected with the system Sa

to be controlled, such that the desired specifications Sb can be met. To render this intercon-
nection possible, certain synchronization constraints are needed and the extended alternating
simulation relation is used to describe them. If the interconnection between Sc and Sa is
feasible, then we say that Sc is feedback composable with Sa.

Definition 2.20. (Extended Alternating Simulation Relation [1]). Let R be an alternating
simulation relation from system Sa to system Sb. The extended alternating simulation relation
Re ⊆ Xa ×Xb × Ua × Ub associated with R is defined by all the quadruples (xa, xb, ua, ub) ∈
Xa ×Xb × Ua × Ub satisfying:

1. (xa, xb) ∈ R;
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2. ua ∈ Ua(xa);

3. ub ∈ Ub(xb), and ∀x′b ∈ Postub
(xb) ∃x′a ∈ Postua(xa) satisfying (x′a, x′b) ∈ R.

The notion of approximate feedback composition is now formalized as follows:

Definition 2.21. (Approximate Feedback Composition [1]). Let Sa and Sc be two metric sys-
tems with the same output set Ya = Yc and let R be an ε-approximate alternating simulation
relation from Sc to Sa. The approximate feedback composition of Sc and Sa with intercon-
nection relation F = Rε, denoted by Sc ×ε

F Sa, is the system (XF , XF0, UF ,−→F , YF , HF )
consisting of:

• XF = πX(F) = R;

• XF0 = XF ∩ (Xc0 ×Xa0);

• UF = Uc × Ua;

• (xc, xa) (uc,ua)−−−−→
F

(x′c, x′a) if:

1. (xc, uc, x
′
c) ∈−→c ;

2. (xa, ua, x
′
a) ∈−→

a
;

3. (xc, xa, uc, ua) ∈ F ;

• YF = Yc = Ya;

• HF (xc, xa) = 1
2(Hc(xc) +Ha(xa)).

In the following section we will review how to solve control problems with liveness constraints.
The fixed point algorithm used to solve the so called reachability games is also the source of
inspiration for solving shortest path problems in non-deterministic systems.

2-6 Reachability games

Some controller designs are forced to satisfy certain specifications, in order to achieve a
desirable behavior of the system. A common specification needed in applications, is the one
that requires the trajectories of the controlled system to enter some target set W , which
corresponds to some target setW of outputs, in finite time. This reachability control problem
can been seen as a game, in which the controller Sc must eliminate all states (and only these
states) that do not guarantee that the controlled system will eventually enter the target set
W .

Definition 2.22 (Reachability games [1]). Let Sa be a system satisfying Ya = Xa and
Ha = 1Xa , and let W ⊆ Xa be a set of states. The reachability game for system Sa and
specification set W asks for the existence of a controller Sc such that:

• Sc is feedback composable with Sa;
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• for every maximal behavior y ∈ B(Sc ×F Sa) ∪ Bω(Sc ×F Sa) there exists k ∈ N0 such
that y(k) = yk ∈W .

A reachability game is considered to be solvable when Sc exists.

The above definition states that the only goal of the composed system is to simply reach the
desired set W . That is, in finitely many steps in case of a any finite behavior y0y1..., and in
case of any finite behavior y0y1...yk to visit W before or when reaching a blocking state.

To solve the reachability problem the following fixed-point operator is used [1]:

GW : 2Xa −→ 2Xa

for any specification set W ⊆ Xa. A fixed-point of a function f : X −→ X is an element
x ∈ X satisfying f(x) = x. The GW operator is defined by:

GW (Z) = {xa ∈ Xa | xa ∈Wor∃ua ∈ Ua(xa),∅ 6= Postua(xa) ⊆ Z}. (2-3)

The fixed-points of the above operator form a minimal set of states xa ∈ Z, which ensure that
the controlled system will reach the desirable stateW , if Z∩Xa0 6= ∅. Note that the inclusion
Z ⊆ Z ′ implies GW (Z) ⊆ GW (Z ′) for any W ⊆ Xa and thus guaranteeing the existence of a
unique minimal fixed-point of GW .

Among the several possible solutions, the following maximally permissive controller is con-
sidered [1]:

Sc = (Xc, Xc0, Ua,−→
c

) (2-4)

defined as:

• Xc = Z;

• Xc0Z ∩Xa0;

• xc
ua−→
c
x′c if there exists a k ∈ N such that xc 6∈ Gk

W (∅) and ∅ 6= Postua(xc) ⊆ Gk
W (∅)},

and where Postua(xc) refers to the ua-successors in Sa. Moreover, one can easily verify that
the relation defined by all the pairs (xc, xa) ∈ Xc×Xa with xc = xa is an alternating simulation
relation from Sc to Sa. The solution of reachability games can be fully characterized in terms
of the fixed-points of GW .

Theorem 2.3 ([1]). Let Sa be a system with Ya = Xa and Xa = 1Xa, and let W ⊆ Xa be a
set of states. The reachability game for Sa and specification set W is solvable iff the minimal
fixed-point Z of the operator GW satisfies Z ∩Xa0 6= ∅. Moreover, Z can be obtained as[1]:

Z = lim
i→∞

Gi
W (∅)

When Z ∩Xa0 6= ∅, a solution to the reachability game is given by the controller (2-4).
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Figure 2-8: The figure illustrates an example of a reachability game for system Sa in (a). The
specification set is W = {xa4} and {xa0, xa5} ∈ X0. The stages of computing the fixed-point
set Z using the operator GW are illustrated in (b). The resulting controller Sc is depicted in (c).
Source [1].
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start

(a)

start

(b)

Figure 2-9: Typical models of time of temporal logics. (a) Linear structure. (b) Branching
structure.

The computation of the fixed-point Z begins with the empty set and by applying the operator
Gi

W (∅) for i = 1. In this first step, all the states that belong to the Reach-set are being col-
lected, and thus Z = G1

W (∅) = W . The process then works backwards from the specification
set, by adding states xa ∈ Xa to Z such that ∃ua ∈ Ua(xa) where ∅ 6= Postua(xa) ⊆ Z, until
all states have been covered. Of course if Z ∩ Xa0 = ∅ for i → ∞, the reachability game is
not solvable. Figure 2-8 illustrates how the image of GW is constructed.

Theorem 2.3 can be generalized to the case where the initial states of Sa cannot be initialized
by the controller. This generalization consists in replacing Z ∩ Xa0 6= ∅ with the stronger
condition Xa0 ⊆ Z guaranteeing that no initial state of Sa is eliminated in the composition
with the controller [1].

2-7 Linear temporal logic

Temporal logic formulae describe orderings of events in time without introducing time ex-
plicitly. They are often classified according to whether time is assumed to have a linear or
a branching structure (Figure 2-9). The meaning of a temporal logic formula is determined
with respect to a labeled state transition graph or a Kripke structure.

Definition 2.21 (Kripke Structure [14]). Let P = {p0, p1, . . .} be a set of atomic proposi-
tions4. A Kripke structure M over P is a four tuple M = (S, S0, R, L) where

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• R ⊆ S×S is a transition relation that must be total, that is for every state s ∈ S, there
is a state s′ ∈ S such that R(s, s′).

• L : S → 2P is a function that labels each state with the set of atomic propositions true
in that state.

4In logic, an atomic proposition is a type of declarative sentence which is either true or false and cannot be
broken down into other simpler sentences.
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A relation R is total when for all a, b ∈ X, aRb ∨ bRa. Then R is left-total iff for each s ∈ S
there exists t ∈ T such that (s, t) ∈ R. That is, iff every element of S relates to some element
of T . A path in the Kripke structure M from a state s is an infinite sequence (since R is total)
of states π = s0s1s2... such that s0 = s and R(si, si+1) holds for all i ≥ 0. The word on the
path π is the sequence of sets of the atomic propositions w = L(s1)L(s2)L(s3), ..., which is an
ω −word over alphabet 2P . Since R is left-total, it is always possible to construct an infinite
path through the Kripke structure. A deadlock state can be modeled by a single outgoing
edge back to itself. The set of all atomic propositions that are true in s ∈ S is L(s).

Linear Temporal Logic (LTL) is a subset of the powerful logic called CTL* [47]. It was first
introduced by Pnueli in 1977 [48], and it is a logic for specifying temporal properties for
reactive and concurrent systems. In LTL, formulas are composed of temporal operators and
logical operators [14]. The alphabet of LTL is defined as follows:

Definition 2.22 (The alphabet of LTL [14]). The alphabet of LTL is composed of:

• Atomic proposition symbols, such as p, q, r,...etc.

• Logical connectives: ∨ (or) and ¬ (not)

• Temporal connectives: X or "©" and U or U

The set of LTL formulae is defined as follows:

Definition 2.23 (The syntax of LTL [48]). Let P be the set of atomic proposition names.
The syntax of path formulas is given by the following rules:

• if p ∈ P , then p is a path formula

• if φ and ψ are path formulas, then ¬φ, φ ∨ ψ, Xφ and φUψ are path formulas.

We define the semantics of LTL with respect to a Kripke structure M . We will use πi to
denote the path that starts from state si.

Definition 2.24 (The semantics of LTL [48]).

• M, i |= p ⇐⇒ p ∈ L(π(i))

• M, i |= ¬φ ⇐⇒ M, i 6|= φ

• M, i |= φ ∨ ψ ⇐⇒ M, i |= φ or M, i |= ψ

• M, i |=©φ ⇐⇒ M, i+ 1 |= φ

• M, i |= φUψ ⇐⇒ ∃k ∈ N : M,k |= ψ and M, j |= φ ∀j : i ≤ j < k

If φ is a path formula, the notation M, i |= φ means that “φ is true at time instant i in the
Kripke structureM”. Since the modalities we have defined only talk about future time-points
within a Kripke structure, it is not difficult to argue that a formula is satisfiable iff in some
Kripke structure it is satisfied at the initial point.
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Text Symbol Explanation Diagram

Unary Operators

Xφ ©φ neXt: φ has to hold at the next state
φ

Gφ �φ Always: φ has to hold on the entire
subsequent path. φ φ φ φ

Fφ ♦φ Eventually: φ has to hold (somewhere
on the subsequent path). φ

Binary Operators

ψUφ ψUφ
Until: ψ has to hold at least until φ,
which holds at the current or a
future position. ψ ψ ψ φ

ψRφ ψRφ
Release: φ has to be true until and
including the point where ψ first be-
comes true; if ψ never becomes true,
φ must remain true forever.

φ φ φ φ,ψ

φ φ φ φ

Table 2-1: LTL Syntax illustrated.

Proposition 2.1. Let φ be a path formula. Then φ is satisfiable iff there exists a Kripke
structure M such that M, 0 |= φ.

As usual, we introduce constants > and ⊥ representing “true” and “false”. We can write >
as, for instance, p0 ∨ ¬p0, where p0 ∈ P and ⊥ as ¬>. We can also generate normal Boolean
connectives like ∧ (“and”), → (“implication”) and ≡ (“equivalence”) from the connectives ¬
and ∨ in the usual way - for instance, φ→ ψ = ¬φ ∨ ψ.
We also introduce two derived modalities based on φUψ. We write ♦φ for >Uφ and �φ for
¬♦φ. The modality ♦ is read as “eventually” while the modality � is read as “always” or
“globally”. It is not difficult to verify the following facts:

• M, i |= ♦φ ⇐⇒ ∃k ≥ i : M, i |= φ.

• M, i |= �φ ⇐⇒ ∃k ≥ i : M, i |= φ.

Less formally, the semantics of the temporal operators are explained bellow and illustrated
in Table 2-1.

• X or “©” (“next time”) requires that a property holds in the second state of the path.

• F or “♦” (“eventually” or “in the future”) is used to assert that a property will hold at
some state on the path.

• G or “�” (“always” or “globally”) specifies that a property holds at every state on the
path.
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• U or U (“until”) is used to combine two properties: First, it holds if there is a state on
the path where the second property holds, and second at every preceding state on the
path, the first property holds.

• R or R (“release”) is the logical dual of the U operator. It requires that the second
property holds along the path up to and including the first state where the first property
holds. However, the first property is not required to hold eventually.

By combining the above operators new temporal modalities can be obtained, such as “�♦”
for “infinitely often” or “♦�” for “eventually always”.

LTL is especially suited for expressing and verifying important properties of symbolic con-
trollers, such as safety and reachability [22, 25, 23, 26]. In a transition system, such as a
symbolic controller, a state is called reachable if there is a computation path from a defined
initial state leading to this state. Reachability is one of the most important properties of
transition systems in connection with safety properties. Suppose that u is a formula which
expresses an undesirable property of a transition system. States satisfying u are usually called
unsafe or bad. Naturally, one would like to know whether the system is safe. Reachability
of a state satisfying u can be expressed as the existence of a path satisfying ♦u. Then the
safety of the system can be expressed as non-reachability of a state satisfying u, i.e. �¬u.
The transition system is safe if this property is held on all computation paths.
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Chapter 3

Set-destination shortest path problems

The algorithms we reviewed in the previous chapter for solving shortest path problems are not
well-suited for our task. In particular, we are interested in finding the shortest path from all
vertices to a destination-set of vertices, or the so called Set-Destination Shortest Path (SDSP),
for both deterministic and non-deterministic systems. In the case of deterministic systems,
we will present an algorithm that uses the outcome of the Floyd-Warshall algorithm as an
intermediate step to compute the set-destination shortest path. Unfortunately none of the
well known shortest path algorithms is able to handle non-deterministic systems. For that, we
will present an algorithm that is inspired by the Dijkstra’s algorithm and based on reachability
fixed-point algorithm.
Before we can present these algorithms, it is important to update the definition of a system,
in order to include a cost map, that will allow us to define the cost of each transition.

Definition 3.1 (System). A system S is a septuple (X,X0, U,−→, Y,H,C) consisting of:

• a set of states X;

• a set of initial states X0 ⊆ X;

• a set of inputs U ;

• a transition relation −→⊆ X × U ×X;

• a set of outputs Y;

• an output map H : X → Y .

• a cost map C : X → R ∪ {+∞}.

We can now define the cost of a transition as:

Definition 3.2 (Transition Cost). Let S(X,X0, U,−→, Y,H,C) be a system, the cost of a
transition is given by the operator CT : X ×X −→ R ∪ {+∞} defined as:

CT (x, x′) = C(x′) iff ∃u ∈ U : (x, u, x′) ∈−→

Master of Science Thesis Athanasios Tasoglou



30 Set-destination shortest path problems

The above definition implies that the transition cost is only defined by a state x and its
u-successor x′. If (x, u, x′) ∈−→ and (x, u′, x′) ∈−→ are two transitions, then the transition
cost is the same, namely CT (x, x′) = C(x′). We do not care about the input, as long as
there is a transition in −→. Having this in mind, we can treat our system as a vertex-
weighted directed graph D(X,−→, C). In fact our complete algorithmic solution to the optimal
control problems, treat the systems as vertex-weighted directed graphs. Nevertheless, the
deterministic SDSP algorithm operates on any weighted-directed graph, that has no negative
cycle and the non-deterministic SDSP algorithm operates on any weighted-directed graph,
that has no negative weight.

3-1 Deterministic systems

The problem in which, given a deterministic system S(X,X0, U,−→, Y,H,C), we want to find
the shortest path from any initial state x ∈ X to some set W ⊆ X, can been seen as a special
case of the all-pairs shortest path problem. Therefore, in our approach we will first apply the
Floyd-Warshall algorithm and then solve the set-destination shortest path problem.

To be concise with the definition of the system and any other following definition, we will
assume that the cost-adjacency matrix and the outcome of the Floyd-Warshall algorithm is
not expressed in terms of matrices but in terms of maps. Note that R+

0 is the set of all positive
real numbers including zero.

Definition 3.3 (Cost of adjacent states). Let S(X,X0, U,−→, Y,H,C) be a finite determin-
istic system. The map Ac : X ×X −→ R ∪ {+∞} denotes the cost of a transition.

• Ac(x, x′) ∈ R iff x′ ∈ Postu(x) or

• Ac(x, x′) ∈ {+∞} otherwise.

The shortest path cost and the pointer array are now treated as:

Definition 3.4 (Shortest path cost). Let S(X,X0, U,−→, Y,H,C) be a finite deterministic
system. The map CF W : X ×X −→ R+

0 ∪ {+∞} denotes the shortest path cost between two
states of the system.

• CF W (x, x′) ∈ R+
0 iff there exists a path from x to x′ or

• CF W (x, x′) ∈ {+∞} otherwise.

Note that the Floyd-Warshall algorithm does not support negative cycles.

Definition 3.5 (Shortest path pointer map). Let S(X,X0, U,−→, Y,H,C) be a finite deter-
ministic system. The map PF W : X ×X −→ X ∪ {∅} denotes the shortest path cost pointer
map.

• PF W (x, x′) = y ∈ X implies that y is adjacent to x′ and intermediate in the (x, x′)-path
and
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• PF W (x, x′) = ∅ iff x′ ∈ Postu(x) or CF W (x, x′) = +∞.

We will start by assuming that the Floyd-Warshall algorithm has already been applied. We
consider the set-destination shortest path as the tuple (X, dW ), where X is the set of the
states of the system S and dW : X −→ R the map representing the shortest path cost to the
set W ⊆ X. We can now define dW as:

dW (x) = min
w∈W
{CF W (x,w)} (3-1)

where x ∈ X and w ∈W . The above definition states that, in order to find the shortest path
from an initial state x ∈ X to the target set W , one has to pick the minimum shortest path
cost value CF W , defined by state x and all w ∈W . In other words, since there might be more
than one path from state x to the target set W , we are interested in the one, that has the
minimum cost CF W .

We are also interested in knowing for which w ∈W we acquire the minimum cost. For that,
we define the operator PW : X −→ 2W ∪ {∅}, also referred to as “pointer map”, as:

PW (x) = {w|w ∈W : +∞ 6= CF W (x,w) = dW (x)} (3-2)

The above definition states that, if there exists a shortest path from a state x ∈ X to the
target set W , then there exists w ∈ PW (x), such that CF W (x,w) = dW (x). Otherwise
PW (x) = ∅. Note also that, given a state x ∈ X there might be more than one w ∈ PW (x)
such that CF W (x,w) = dW (x). Figure 3-1 illustrates the special case of the all-pair shortest
path problem.

x0

3

x1

1
x2

1

x3

3

CF W =


4 1 2 3
3 4 1 3
∞ ∞ 4 3
∞ ∞ 1 4


dW = {2, 1, 3, 1}

PW (x) = {{x2}, {x2}, {x3}, {x2}}

Figure 3-1: Example of the deterministic SDSP algorithm (Algorithm 4), where W = {x2, x3}
is the target set. We assume that the Floyd-Warshall algorithm has already been applied.

The pointer map PW is different than the pointer map PF W used in Floyd-Warshall algorithm,
as it cannot be used as a guide to reconstruct the desired shortest path, but rather as a way
of knowing which destination, i.e. which w ∈ W , results in the shortest path. For example,
node x1 in Figure 3-1 has a transition to all the nodes in the target set W , but only state
PW (x1) = x2 ∈W results in the shortest path. To to be able to reconstruct the shortest path
using both PF W and PW consider the following operator N : X ×X −→ X ∪ {∅}, which is
defined as:

N(x, y) =


N(x, PF W (x, y)) if PF W (x, y) 6∈ ∅ ∧ CF W (x, y) ∈ R+

0
y if PF W (x, y) ∈ ∅ ∧ CF W (x, y) ∈ R+

0
∅ if PF W (x, y) ∈ ∅ ∧ CF W (x, y) = +∞

(3-3)
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If (x, PW (x)) is a path, the operator N(x, PW (x)) will return the state x′ ∈ Postu(x), i.e.
the adjacent state to x. If we apply N for all states x ∈ X we will construct a system whose
states will only have transitions that lead towards the target set W .

Algorithm 4 presents a formal description of the algorithm that solves the set-destination
shortest path problem for deterministic systems. To compute the running time of the SDSP
algorithm we will assume that the operations on sets, such as addition, subtraction or com-
parison, take constant time and that n is the number of states. The update of the pointer
map PW in line 4, is of constant time. If we assume that the target set has all states x ∈ X,
to compute the minimum value of all w ∈ W (line 3) we would need n comparisons. Since
we are seeking the minimum for all x ∈ X (line 2), Algorithm 4 takes O(n2) time. Of course,
before we apply Algorithm 4, we compute the Floyd-Warshall algorithm that has a running
time of O(n3). Thus, we conclude that the deterministic SDSP algorithm takes a total time
of O(n3), in the worst case. Note here that the complexity of the deterministic SDSP may
vary, depending on the underlying data structures.

Algorithm 4 Deterministic SDSP Algorithm
Description: Given a system S(X,X0, U,−→, Y,H,C) and a desired target set W , this
algorithm computes the set-destination shortest path. It assumes that the operator CF W is
already defined by running the Floyd-Warshall algorithm.
Input: The system S, the operator CF W and the target set W ⊆ X.
Output: The vector dW (x) for all x ∈ X containing the shortest path cost value and the
pointer map PW .
1: function D-SDSP(S,CF W ,W )
2: for all (x ∈ X) do
3: dW (x) = min

w∈W
{CF W (x,w)}

4: PW (x) = {w|w ∈W : CF W (x,w) = dW (x)}
5: end for
6: end function

3-2 Non-deterministic systems

As in the case of deterministic systems, we seek the shortest path from all states to a target set
W ⊆ X. Since, the solution applied in deterministic systems cannot be used as it is, we use a
different approach, in which the shortest path problem can be considered as a combination of
the reachability game problem [1] (see section 2-6) and the single-source shortest path problem
described by Dijkstra [28] (see section 2-2). This means that for the non-deterministic case,
we first extract the set R ⊆ X which guarantees that, the target set W we will be eventually
reached, and then we find the shortest-pessimistic path from all x ∈ R to W using a variation
of Dijkstra’s algorithm.

The term “pessimistic” refers to the fact that, given a state with only non-deterministic
transitions, we consider the one that yields the maximum-shortest path distance. If a state
has also deterministic transitions, then we pick the minimum distance of all deterministic
transitions to compare it with the maximum distance of all non-deterministic transition, in
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order to find the shortest path distance. This way, we guarantee that the shortest path
distance is upper-bounded.

Let S(X,X0, U,−→, Y,H,C) be a non-deterministic system with no negative weights, i.e.
C ≥ 0 only. To make our approach more generically applicable, we consider the function
c : X × U × X −→ R+

0 instead of C, to describe the cost of a transition x
u−→ x′, where

(x, u, x′) ∈−→.

Each state of the system can have one or more deterministic transitions, one or more non-
deterministic transitions or a combination of the two. If some or all of these transitions end
up in a target set A ⊆ X, we consider the set USA

(x) ⊆ U(x) as the set of all possible inputs
that guarantee the transition to the set A. This state then belongs to the set XSA

(x) ⊆ X,
which represents the states that guarantee that if u ∈ USA

(x) implies Postu(x) ⊆ A. The
fixed point operator XS : X −→ 2X that is used to construct the set XSA

(X) is defined as:

XSA
(x) = {x ∈ X | ∃u ∈ U(x) : ∅ 6= Postu(x) ⊆ A} (3-4)

This operator is almost the same as one that solves the reachability game [1]. The only
difference is that the target set W has no effect on the choice of states. We are interested in
finding the set of nodes that are directly connected to the set A. The operator US : X −→ 2U

is defined as:

USA
(x) = {u ∈ U(x) | x ∈ XSA

: ∅ 6= Postu(x) ⊆ A} (3-5)

which is a way of filtering the “in-valid” inputs, i.e. the inputs that do not enable a transition
to the target set A. We shall call every transition that is forced by an input u ∈ U(x) as a
u-transition.

The complete solution of the non-deterministic shortest path problem requires the computa-
tion of the shortest path cost map dW : X −→ R+

0 ∪ {+∞} defined as:

dW (x) =
{
c ∈ R+

0 if there exists a shortest path from x to the set W
+∞ if does not exists a shortest path from x to the set W

(3-6)

and the pointer map PW : X −→ 2U ∪ ∅, defined as:

PW (x) =
{
UW ⊆ U(x) if dW (x) ∈ (0,∞)
∅ if dW (x) = 0 ∨ dW (x) = +∞

(3-7)

which is used to trace back the shortest path. If dW (x) = +∞ for some x ∈ X \W , then
there exists no shortest from x to W and PW (x) = ∅. In case that x ∈ W , then dW (x) = 0
and PW (x) = ∅. In any other case, dW (x) ∈ (0,∞) and PW (x) 6∈ ∅, pointing to the “valid”
input(s) UW to be used in order to reach the target set W .

Algorithm 5 describes the procedure for finding the shortest path value dW and construct-
ing the pointer map PW for a given target set W . This implementation is based on the
Dijkstra’s single-source shortest path algorithm. The key differences are two; firstly the non-
deterministic transitions are taken into account and secondly the algorithm starts from the
end point, namely the target set W and propagates backwardly. If the set R represents the
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set where the shortest path has been already computed, the algorithm terminates if all states
have been treated, i.e. if Q = ∅,. Note that, states that cannot be added to the R set, do not
belong to the reach-set, i.e. are not part of the reachability game solution. Initially the set
R is empty.

The set R, PW (X) and the cost function dW (X) are initialized at the beginning of the
algorithm. Then the algorithm uses the fixed point operator XSR

to extract the states from
which the transition to the set R is certain. These states form the XR ⊂ X set. Of all the
x ∈ XR, the state with the minimum shortest-path estimate is being selected. For this state,
the relaxation process, Relax(), updates the costs of the states, x ∈ XR, in the case that the
estimate of the shortest path from x toW is improved. The procedure of “relaxing” is similar
to the definition used in [39].

The different part is the special treatment of the non-deterministic transitions. If given a
state x ∈ XR and an input u ∈ USR

(x), more than one u-successors exist, then the worst
case scenario is taken into account. That is, the shortest distance estimate from x is updated
with the maximum cost of all u-transitions. The complete solution of the non-deterministic
shortest path problem is described in Algorithm 5.

Algorithm 5 Non-Deterministic SDSP Algorithm
Description: Given a non-deterministic (or deterministic) system S(X,X0, U,−→, Y,H,C)
and a desired target set W , this algorithm computes the set-destination shortest path.
Input: The system S and the target set W .
Output: The shortest path value dW (x) and the pointer set PW (x) ∀x ∈ X.
1: function ND-SDSP(S,W )
2: dW (W ) = 0
3: PW (X) = ∅
4: R = ∅
5: Q = X
6: while (Q 6= ∅) do
7: x = min{dW (x) | x ∈ Q}
8: if (dW (x) 6=∞) then
9: R = R ∪ x

10: end if
11: XR = XSR

(Q)
12: if (XR 6= ∅) then
13: for all (x ∈ XR) do
14: Relax(x)
15: end for
16: end if
17: Q = Q \ x
18: end while
19: return dW ,PW

20: end function

Algorithm 5 is considered a greedy algorithm. Although greedy strategies do not always
yield optimal results, the following theorem shows that the non-deterministic set-destination
shortest path algorithm does indeed compute the optimal result.
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Algorithm 6 Relax
Description: The process of updating the shortest path estimate dW (x) and the pointer set
PW of the input state.
Input: The state x to be relaxed.
1: function Relax(x)
2: Ptemp = ∅
3: for all (u ∈ USR

(x)) do
. Deterministic case.

4: if (|Postu(x)| == 1) then
5: if (dW (x) ≥ dW (x′) + c(x, u, x′)) then
6: dW (x) = dW (x′) + c(x, u, x′)
7: utemp = u
8: end if

. Non-deterministic case.
9: else

10: max_cost = max{dW (x′) + c(x, u, x′) | x′ ∈ Postu(x)}
11: if (dW (x) ≥ max_cost) then
12: dW (x) = max_cost
13: utemp = u
14: end if
15: end if
16: . Update the pointer set.
17: if (Ptemp = ∅) then Ptemp = utemp

. More than one input can give the same cost.
18: else
19: Ptemp = Ptemp ∪ utemp

20: end if
21: end for
22: PW (x) = Ptemp

23: end function
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Figure 3-2: Example of the non-deterministic SDSP algorithm. The set W = {x3, x4} is the
target set. (a) Depicts the system Sa. The numbers below the states represent the cost of
each state. (b)-(g) These are the steps of the non-deterministic SDSP algorithm. The numbers
represent the dW value of each state now. The states in orange are the states that are being
relaxed. The green states belong to the resolved set R, i.e. to the set where the SDSP has
already been computed, and the green inputs to the PW pointer set.
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Theorem 3.6 (Correctness of Algorithm 5). Let S(X,X0, U,−→, Y,H,C) be a system and
let W ⊆ X be a set of states. Algorithm 5 for system S and specification set W gives the
optimal solution to the non-deterministic set-destination shortest path problem.

Proof. The proof is similar to the proof of the correctness of Dijkstra’s algorithm. First,
we note the following fact about the states in R, which is an immediate consequence of the
reachability game: we know that there exists a path from each x ∈ R to the target set W and
the algorithm takes only these states into consideration to solve the shortest path problem.

Now, we only need to prove that the algorithm returns the optimal path in terms of the
minimum (pessimistic) cost. If all the states had - only - deterministic transitions then by
the proof of Dijkstra’s algorithm, the values of dW (x) are the shortest path distances to
W . Therefore, we may think of a state x with non-deterministic transitions as a state with
only deterministic transitions, if for all possible u-successors xi = Postui(x), of each non-
deterministic transition, we only consider one u-successor xi = Postui(x) for which dW +
c(x, ui, xi) is maximum.

By the above argument, one can reduce the proof to the standard proof of Dijkstra’s algorithm
[39].

The running time of the non-deterministic SDSP algorithm, depends on the choice of the
data structures. We will assume that the operations on sets, such as addition, subtraction or
comparison, take constant time and that n is the number of states. To compute the minimum
in each iteration, for all x ∈ Q (line 7), we would need in the worst case, i.e. when Q = X,
n operations. In total though, since we iterate over all x ∈ X, we would need n(n − 1)/2
operations and thus the min operator needs O(n2) time. In the same sense, the operator XSR

in line 11 takes the same time. Continuing with the “for” loop in line 13, we can consider
that in the worst case the set W consists only of one state and at each iteration the operator
XSR

is returning the maximum possible states. In other words we assume that the operator
will return (n − 1), (n − 2), . . . , 1 states respectively in each iteration. This means that the
“for” loop in line 13 needs n(n− 1)/2−n operations, which correspond to a O(n2) time. The
rest of the operations are of constant time (O(1)) and thus the total operations needed for
Algorithm 5 are:

n(n− 1)
2 + n(n− 1)

2 +
(
n(n− 1)

2 − n
)
∗ TRelax (3-8)

Continuing on with the Relax() function (Algorithm 6), the “for” loop of the function will
repeat it self in the worst case n−1 times and that is when |R| = n−1. In that case, the max
operation in line 5 might need up to n− 1 operations, if we consider that the last remaining
state would have only non-deterministic transitions. The rest of the operations take constant
time. It is obvious now that the Relax() function takes O(n2) time and as a result of this,
the SDSP is runs in O(n4) total time.

To provide a more realistic estimation on the running time of the SDSP algorithm, we will
consider the degree of a weighted directed graph. More precisely, if k is the maximum out-
degree of some state, then the “for” loop of the Relax() function will have a maximum of
k iterations. The same holds also for the max operator. Thus, the total running time of
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the SDSP Algorithm is now O(n2k2). Note that this running time depends directly on the
connectivity of the graph representing the discrete abstraction. A strong connectivity results
in a higher running time and a complete graph result in a running time of O(n4).

Notes

Since the deterministic systems can been seen as a subset of the non-deterministic ones,
Algorithm 5 can been used to solve the shortest path problem for systems with deterministic
behavior. Nevertheless, there is an important difference between the approach used in the
deterministic systems and the approach used in the non-deterministic systems.

In the case of deterministic systems, we are computing the shortest path from all states to
all states, using the Floyd-Warshall Algorithm and then we apply the operator (3-2) to get
the set-destination shortest path. By keeping the result of the Floyd-Warshall Algorithm,
if we want to compute the shortest path to a new set W ′, we only have to apply operator
(3-2). Thus, this method enables us to compute the shortest path for different target sets,
with higher computational efficiency.

However, this is not the case for Algorithm 5, since it is dependent of the target set W ; if W
changes, we have to apply Algorithm 5 again, in order to get the shortest paths for the new
set.
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Chapter 4

Optimal control problems

In this section we present the complete algorithmic approach for solving control problems
with mixed qualitative-quantitative specifications. Our initial idea is to exploit the fact that,
there are more than one “good” trajectories available when synthesizing maximally-permissive
controllers, which allows us to address also quantitative specifications. Nevertheless, we will
show that it is possible to aim directly for a controller with mixed qualitative-quantitative
specifications, using merely the shortest path algorithms of the previous section.

4-1 Shortest path algorithms for mixed qualitative-quantitative spec-
ifications

At first, we show that the set-destination shortest path algorithms can be used successfully
to enforce both liveness and safety constraints, while satisfying quantitative specifications.
There are several kinds of qualitative specifications that can be enforced using only the SDSP
algorithms. Below, we define five kinds of qualitative specifications:

1. Stay: trajectories start in the target set W and remain in W . This specification
corresponds to the LTL formula �φW , where φW is the predicate defining the set W .

2. Reach: trajectories enter the target setW in finite time. This specification corresponds
to the LTL formula ♦φW .

3. Reach and Stay: trajectories enter the target set W in finite time and remain within
W thereafter. This specification corresponds to the LTL formula ♦�φW .

4. Reach while Stay: trajectories enter the target set W in finite time while always re-
maining within the constraint set Z. This specification corresponds to the LTL formula
♦φW ∧�φZ , where φZ is the predicate defining the set Z.
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5. Reach and Stay while Stay: trajectories enter the target set W in finite time and
remain within W thereafter while always remaining within the constraint set Z. This
specification corresponds to the LTL formula ♦�φW ∧�φZ .

It is important to mention here, that we assume that W ⊂ Z. In fact, this assumption holds
for every definition and theorem in this chapter. Table 4-1 shows which of these specifications
can be enforced by the corresponding deterministic or non-deterministic SDSP algorithm.

The deterministic SDSP algorithm (Algorithm 4) is capable of addressing “Reach” and “Reach
while Stay” specifications as is, assuming that we provide the proper costs to each state of
the system. The non-deterministic SDSP algorithm (Algorithm 5) on the other hand, is
only capable of delivering “Reach” specifications (see Figure 3-2g). However, with a small
modification to the initial algorithm we will be able to address “Reach and Stay” and “Reach
and Stay while Stay” specifications, as we will show later. Recall that the SDSP algorithms
are used as a mean to synthesize controllers and cannot be used directly for that purpose.
We are only using the outcome of the algorithms, i.e. the shortest path cost and the pointer
map, to synthesize the controllers. At this point it is important to distinguish the controllers
with respect to the algorithm that has been used to synthesize them.

Definition 4.1 (Deterministic SDSP controller). Let Sa(Xa, Xa0, Ua,−→
a
, Ya, Ha, Ca) and

W ⊆ X. If there exists a solution to the shortest path problem, i.e. if there exists xa0 ∈ Xa0
such that dW (xa) 6=∞ we define the deterministic SDSP controller Sc(Xc, Xc0, Uc,−→

c
) as:

• Xc = {xa ∈ Xa | dW (x) 6= +∞}

• Xc0 = Xa0 ∩Xc

• xc
ua−→
c
x′c such that x′c = N(xc, PW (xc)) if PW (xc) 6= ∅

Definition 4.2 (Non-deterministic SDSP controller). Let Sa(Xa, Xa0, Ua,−→
a
, Ya, Ha, Ca)

and W ⊆ X. If there exists a solution to the shortest path problem, i.e. Xa0 ∩ R 6= ∅, we
define the non-deterministic SDSP controller Sc(Xc, Xc0, Uc,−→

c
) as:

• Xc = R

• Xc0 = Xa0 ∩Xc

• xc
ua−→
c
x′c such that ua ∈ PW (xc)

Definitions 4.1 and 4.2 imply that the corresponding composed controller is the initial system
Sa, but with the undesired states and inputs removed. Note that the relation defined by all
the pairs (xc, xa) ∈ Xc×Xa with xc = xa is an alternating simulation relation from Sc to Sa.
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SDSP Controller Qualitative Specification
Deterministic “Reach”

“Reach while Stay”
Deterministic - Revised “Reach and Stay”

“Reach and Stay while Stay”
Non-Deterministic “Reach”
Non-Deterministic - Revised “Reach and Stay”

“Reach and Stay while Stay”

Table 4-1: SDSP controller qualitative specifications overview.

4-1-1 Deterministic SDSP controller

With the help of the above definitions, the following theorems show that the deterministic
SDSP controller is able to satisfy “Reach” and “Reach while Stay” specifications. For the
latter, we have to define the cost adjacency matrix (or the map Ac) in a special way to achieve
the desired result, as Theorem 4.2 shows.

Theorem 4.1. Let Sa(Xa, Xa0, Ua,−→
a
, Ya, Ha, Ca) be a finite deterministic system andW ⊆

Xa the target set. The deterministic SDSP controller Sc is non-blocking and satisfies the LTL
formula ♦φW in finite time, where φW is the predicate defining the set W , if Sc is finite and
non-empty.

Proof. Let Sc be a finite non-empty controller. It holds from definition 4.1 that there exists
a path from all xc ∈ Xc to the target set W , since dW (xc) 6= +∞ for all xc ∈ Xc. This means
that the controller will eventually steer the system to the target set W in finite time. Since
there is always a path from a state xc ∈ Xc, Sc is considered as non-blocking.

Theorem 4.2. Let Sa(Xa, Xa0, Ua,−→
a
, Ya, Ha, Ca) be a finite deterministic system, Z ⊂ Xa

the constrain set, W ⊂ Z the target set and Q = Xa \ Z the set of unsafe states. The
deterministic SDSP controller Sc is non-blocking and satisfies the LTL formula ♦φW ∧ �φZ

in finite time, where φW is the predicate defining the set W and φZ is the predicate defining
the set Z, if:

1. C(q) = +∞ and Ac(q,Xa) = +∞ for all q ∈ Q and

2. Sc is finite and non-empty.

Proof. Let Sc be a finite non-empty controller. It holds from theorem 4.1 that the LTL
formulae ♦φW is satisfiable.

If C(q) = +∞ for all q ∈ Q, then all states in Q are precluded as intermediate states to the
SDSP problem and thus we guarantee that all shortest paths will not go through the set Q.
This however, will not satisfy the LTL formulae �φZ , since there might exist a transition
(q, uc, xc) ∈−→

c
, where q ∈ Q and xc ∈ Xc. Thus, to preclude the states in Q from being

considered as initial states, we define Ac(q,Xa) = +∞ for all q ∈ Q. As a result of the
previous actions, dW (q) = +∞ for all q ∈ Q, which means that all the transitions from the
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states in Q have been eliminated. From definition 4.1 it holds inductively that Q ∩ Xc = ∅
or Z ∩Xc = Xc and thus the LTL formulae ♦φW ∧�φZ is satisfiable. Finally, since there is
always a path from a state xc ∈ Xc, Sc is considered as non-blocking.

x0

3
x1

1
x2

3

x3

1
CF W =


∞ 1 4 5
∞ 5 3 4
∞ 2 3 1
∞ 1 4 5


dW = {1, 3, 2, 1}

PW (x) = {{x1}, {x2}, {x1}, {x1}}

Figure 4-1: An example illustrating a case where the deterministic SDSP algorithm (Algorithm
4) fails to satisfy “Stay” specifications. W = {x1, x2} is the target set. From state x2 there is
only a transition outside W .

In general, we can consider that the deterministic SDSP algorithm is able of solving reacha-
bility and safety games1. In fact, one can safely assume that all shortest path algorithms can
provide solutions to the reachability games. Unfortunately, the deterministic SDSP controller
is not able to deliver “Stay” and in turn also “Reach and Stay while Stay” specifications as
Figure 4-1 shows. However, a solution to this problem exists, if we consider the fixed point
operator FW : 2X −→ 2X used to solve safety games [1]. If Z ⊆ W is specification set, then
the FW operator is defined as [1]:

FW (Z) = {x ∈ Z | x ∈W and ∃u ∈ U(x) : ∅ 6= Postu(x) ⊆ Z} (4-1)

This operator will help us construct the set WS ⊆ W , for which we guarantee that for all
x ∈ WS , there exists u ∈ U(x) such that Postu(x) ∈ W . The set WS can be obtained by
iterating FW as [1]:

WS = lim
i→∞

F i
W (W ), (4-2)

where the set W is also our specification set. It is now obvious, that the image of FW

contains all states that guarantee a transition inside WS . This however, does not assure us,
that there are - only - transitions inside WS . In fact, there might also exist an input for
which Postu(x) 6∈ W . As a result of the above we consider the revised deterministic SDSP
controller:

Definition 4.3 (Deterministic SDSP controller - Revised). Let Sa(Xa, Xa0, Ua,−→
a
, Ya, Ha, Ca)

be a finite system; W ⊆ X the target set and WS ⊆W the the image of FW for specification
set W . If there exists a solution to the shortest path problem, i.e. if there exists xa0 ∈ Xa0
such that dWS

(xa) 6=∞, we define the deterministic SDSP controller Sc(Xc, Xc0, Uc,−→
c

) as:

• Xc = {xa ∈ Xa | dWS
(xa) 6= +∞}

• Xc0 = Xa0 ∩Xc

1Control problems enforcing safety specifications are also termed safety games, since the controller arises
as the solution of a game played against an opponent that tries to prevent the composed system from being
safe [1].
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• xc
ua−→
c
x′c such that:

a) ua ∈ PWS
(xc) if xc ∈ (X \WS) or

b) ∅ 6= Postua(xc) ⊆WS if xc ∈WS

Note that the above definition implies that the set WS is first constructed using the FW

operator and then the SDSP algorithm is applied using the new target set WS as input. The
following theorem shows now, that the revised deterministic SDSP controller is capable of
enforcing also “Reach and Stay” and “Reach and Stay while Stay” specifications.
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∞
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dW(X) = {3, 1,∞, 1, 2,∞} P(X) = {{x5}, {x5}, {∅}, {x5}, {x4}, {∅}}

(d)
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Figure 4-2: Optimal controller synthesis of a deterministic system S, based on the revised SDSP
controller. The set WS = {x4, x5} is the target set and the set Z = {x1, x2, x4, x5, x6} is the
constraint set. (a) Depicts the system S, where the numbers under the states represent the cost
of each state. (b) The cost-adjacency matrix; used as input for the Floyd-Warshall algorithm. (c)
The result of the Floyd-Warshall algorithm. (d) The result of the SDSP algorithm 4. (e) The final
controller satisfying qualitative (“Reach and Stay while Stay”) and quantitative specifications.
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Theorem 4.3. Let Sa(Xa, Xa0, Ua,−→
a
, Ya, Ha, Ca) be a finite deterministic system; Z ⊂ Xa

the constrain set; W ⊂ Z the target set and Q = Xa \ Z the set of unsafe states. The
deterministic SDSP controller Sc is non-blocking and satisfies the LTL formulas ♦�φW and
♦�φW ∧ �φZ in finite time, where φW is the predicate defining the set WS and φZ is the
predicate defining the set Z, if:

1. C(q) = +∞ and Ac(q,Xa) = +∞ for all q ∈ Q and

2. Sc is finite and non-empty.

Proof. Let Sc be a finite non-empty controller. It holds from theorems 4.1, 4.2 that the LTL
formulas ♦φW and �φZ respectively are satisfied. It is also obvious from definition 4.3, that
for all xc ∈ WS , Postuc(xc) ∈ W since Sc is non-blocking and there exists (only) inputs
uc ∈ U(xc) for which (xc, uc, Postuc(xc)) ∈−→

c
. From all the above, ♦�φW and ♦�φW ∧�φZ

are satisfiable.

4-1-2 Non-deterministic SDSP controller

In the case of the non-deterministic SDSP controller, only “Reach” specifications can be
addressed, as we discussed earlier. To overcome this inefficiency, we provide a modified
version of Algorithm 5 and as in the case of deterministic systems we also provide a revised
version of the non-deterministic SDSP controller.

Definition 4.4 (Non-deterministic SDSP controller - Revised).
Let Sa(Xa, Xa0, Ua,−→

a
, Ya, Ha, Ca) be a finite system; W ⊆ Xa the target set and WS ⊆ W

the image of FW for specification setW . If there exists a solution to the shortest path problem,
i.e. Xa0∩R 6= ∅, we define the revised non-deterministic SDSP controller Sc(Xc, Xc0, Uc,−→

c
)

as:

• Xc = R

• Xc0 = Xa0 ∩Xc

• xc
ua−→
c
x′c such that ua ∈ PWS

(xc)

The modified version of Algorithm 5 is illustrated formally in Algorithm 7. One difference
when comparing this algorithm with the original one, is the decision to - only - relax states
whose cost value is not infinity, i.e. C(x) 6= ∞. For the states with a cost of +∞, namely
the states in Q = X \Z, it holds that PW (q) = ∅ for all q ∈ Q. Another difference lies in the
initialization of the algorithm, where we keep all the inputs from the states x ∈WS such that
Postu(x) ∈WS . As stated in the previous section, we are applying the algorithm for the new
set WS and not for the initial target set W .

Theorem 4.5. Let Sa(Xa, Xa0, Ua,−→
a
, Ya, Ha, Ca) be a finite system andW ⊆ Xa the target

set. The non-deterministic SDSP controller Sc satisfies the LTL formula ♦�φW in finite time,
where φW is the predicate defining the set W , if Sc is finite and non-blocking.
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Algorithm 7 Non-Deterministic SDSP Algorithm - Revised
Description: This algorithm is a revised version of Algorithm 5 in order to also solve “Reach
and Stay" and “Reach and Stay while Stay” specifications. Given a system S(X,X0, U,−→
, Y,H,C) and the set WS , this algorithm computes the set-destination shortest path.
Input: The system S and the target set WS .
Output: The shortest path value dWS

(x) and the pointer set PWS
(x) ∀x ∈ X.

1: function ND-SDSP(S,WS)
2: dW (X \WS) = +∞
3: dWS

(WS) = 0
4: R = ∅
5: Q = X
6: for all (x ∈ X) do
7: if (x ∈WS) then
8: PWS

(x) = {u ∈ U(x) | Postu(x) ∈WS}
9: else

10: PWS
(x) = ∅

11: end if
12: end for
13: while (Q 6= ∅) do
14: x = min{dWS

(x) | x ∈ Q}
15: if (dWS

(x) 6=∞) then
16: R = R ∪ x
17: end if
18: XR = XSR

(Q)
19: if (XR 6= ∅) then
20: for all (x ∈ XR) do
21: if (C(x) 6=∞) then
22: Relax(x)
23: end if
24: end for
25: end if
26: Q = Q \ x
27: end while
28: return dWS

,PWS

29: end function

Master of Science Thesis Athanasios Tasoglou



46 Optimal control problems

Proof. Let Sc be a finite non-blocking and non-empty controller. Initially, we consider all
states xc ∈ R for which dW (xc) 6= 0, i.e. all xc ∈ (R \W ). We know that for all xc ∈ R,
dW (xc) 6= +∞ and thus, for all these states there exists a path to W and ♦φW is true for all
xc ∈ (R \W ). This means that the controller will eventually steer the system to the target
set W in finite time.

From the definition 4.4 it holds that for all w ∈ W , Postuc(w) ∈ W . For the purpose of
contradiction, suppose that there exists a transition (w, uc, xc) ∈−→

c
, such that w ∈ WS and

xc ∈ (Xc \W ). From definition 4.4 it holds that if (w, uc, xc) ∈−→
c
, then xc ∈ WS , which

violates our assumption. Furthermore, it holds that Postuc(w) 6= ∅ for all w ∈ WS , since Sc

is non-blocking and non-empty. Thus, for all w ∈ W , Postuc(w) ∈ W and �φW is true for
all w ∈W .

We can now safely assume that the LTL formulae ♦�φW is satisfiable.

Theorem 4.6. Let Sa(Xa, Xa0, Ua,−→
a
, Ya, Ha, Ca) be a finite deterministic system, Z ⊂ Xa

the constrain set, W ⊂ Z the target set and Q = Xa \ Z the set of unsafe states. The
non-deterministic SDSP controller Sc satisfies the LTL formula ♦�φW ∧�φZ in finite time,
where φW is the predicate defining the set W and φZ is the predicate defining the set Z, if:

1. C(q) = +∞ for all q ∈ Q and

2. Sc is finite, non-blocking and non-empty.

Proof. We only have to show that the LTL formulae �φZ holds everywhere, since we know
from Theorem 4.5 that ♦�φW is true. This proof is similar to the proof of Theorem 4.2.

Let Sc be a finite non-blocking and non-empty controller. If C(q) = +∞ for all q ∈ Q, then all
states in Q are precluded as intermediate states to the set-destination shortest path problem
and thus we guarantee that all shortest paths will not go through the set Q. Furthermore,
from the revised SDSP algorithm (Algorithm 7), it holds that for all xa ∈ Xa such that
dWS

(xa) = +∞, the maps dWS
(xa) and PWS

(xa) are never being updated, since the Relax(xa)
function is never being called. It is obvious now that, for all q ∈ Q, dWS

(q) = +∞ and Q 6∈ R.
Thus, from definition 4.2 it holds inductively that Q ∩Xc = ∅ or Z ∩Xc = Xc and thus the
LTL formulae �φZ is satisfiable.

We can now safely assume that the LTL formulae ♦�φW ∧�φZ is satisfiable.

Figure 4-3 illustrates the flexibility of the revised non-deterministic SDSP algorithm to address
qualitative and quantitative specifications.

The question is now, what is the is shortest path to a computationally more efficient solution?
Aiming for a maximally-permissive controller and then apply the SDSP algorithms or apply
directly the SDSP algorithms to synthesize controllers with mixed qualitative-quantitative
specifications?

Athanasios Tasoglou Master of Science Thesis



4-1 Shortest path algorithms for mixed qualitative-quantitative specifications 47

x0

5

x1

2
x3

2

x2
∞

x4

1

x5

5
u0

u1

u1

u2 u1 u2

u4

u1
u3

u0
u0

u2

(a)

x0
∞

x1
∞

x3

0

x2
∞

x4

0

x5
∞

u0

u1

u1

u2 u1 u2

u4

u1
u3

u0
u1

u2

(b)

x0
∞

x1
∞

x3

0

x2
∞

x4

0

x5
∞

u0

u1

u1

u2 u1 u2

u4

u1
u3

u0
u1

u2

(c)

x0
∞

x1

2
x3

0

x2
∞

x4

0

x5
∞

u0

u1

u1

u2 u1 u2

u4

u1
u3

u0
u1

u2

(d)

x0

4

x1

2
x3

0

x2
∞

x4

0

x5
∞

u0

u1

u1

u2 u1 u2

u4

u1
u3

u0
u1

u2

(e)

x0

4

x1

2
x3

0

x2
∞

x4

0

x5
∞

u0

u1

u1

u2 u1 u2

u4

u1
u3

u0
u0

u2

(f)

x0

4

x1

2
x3

0

x4

0

u0

u1

u1 u2

u4

u0

(g)

Figure 4-3: Optimal controller synthesis of a non-deterministic system S. The setW = {x3, x4}
is the target set and the set Z = {x0, x1, x3, x4, x5} is the constraint set. (a) Depicts the system
S. The numbers represent the cost of each state. (b)-(f) These are the steps of the non-
deterministic SDSP algorithm. The numbers represent the dW value of each state now. The
states in orange are the states that are being relaxed. The green states belong to the resolved set
R, i.e. to the set where the SDSP has already been computed. (g) The final controller satisfying
qualitative (“Reach and Stay while Stay”) and quantitative specifications.
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4-2 Solving optimal control problems

In this section, we present the complete algorithmic approach for solving control problems with
mixed qualitative-quantitative specifications. We have shown that it is possible to follow two
different directions towards our goal. One option is to first synthesize a maximally-permisive
controller with qualitative specifications and then use the shortest path algorithms to refine
the controller in order to enforce also quantitative specifications. The other option is to
directly synthesize a controller with mixed qualitative-quantitative specifications using only
the shortest path algorithms.

Below, we present the typical sequence of steps needed to synthesize a controller with mixed
qualitative-quantitative specifications.

1. Construct only the discrete abstraction Sa of the continuous system or synthesize a
maximally-permissive controller Sc with the desired qualitative specifications (details
here [1, 26]).

2. Define the cost of each state of the system Sa or the controller Sc. This can be achieved
through the corresponding characteristic functions.

3. Apply the corresponding set-destination shortest path algorithm:

• In case of deterministic systems:
(a) Create the cost-adjacency matrix of the system.
(b) Apply the Floyd-Warshall algorithm.
(c) Apply the deterministic SDSP (Algorithm 4).

• In case of non-deterministic systems: Apply the desired non-deterministic SDSP
(Algorithm 5 or Algorithm 7).

4. Synthesize a controller or refine the controller, based on the results of the SDSP algo-
rithm.

The “refinement” of the controller, which is mentioned in step (4) is basically the process where
we assume the system2 that satisfies our qualitative specifications, witch we then use it as
input to the SDSP algorithm to synthesize the final controller that enforces also quantitative
specifications.

Beyond the problems of optimal controls that have been covered in this thesis, in the latest
work of Roo and Mazo Jr. [26] more general optimal control problems are addressed. These
include mixed qualitative-quantitative problems, where the qualitative specifications are given
by a formulae in the form of φ ∧ ♦P , where P ⊆ H(W ) is the set of outputs that correspond
to a specification set W and φ is a formula in the safe-LTL fragment of LTL [49].

It is important at this point to mention that all the algorithms for solving optimal control
problem are offered as an extension (Figure 4-4) to the freely available MATLAB toolbox Pessoa
[2]. Pessoa currently supports the synthesis of controllers enforcing “Stay”, “Reach”, “Reach
and Stay” and “Reach and Stay while Stay” specifications.

2Sc×F Sa, where Sc is some maximally permissive controller enforcing the desired qualitative specifications
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Figure 4-4: MATLAB toobox Pessoa for synthesizing symbolic controllers. The figure illustrates
the current features of Pessoa [2]. More info at Pessoa’s website (https://sites.google.
com/a/cyphylab.ee.ucla.edu/pessoa/home).

Although simple, the above specifications already allow Pessoa to solve non-trivial synthesis
problems that frequently arise in applications. Pessoa also provides the possibility to simulate
the closed-loop behavior in Simulink. For this purpose, Pessoa comes with a Simulink
block, implementing a refinement of any synthesized controller. Pessoa together with source
code of the SDSP algorithms can be downloaded freely (Open Source Project) from http:
//code.google.com/p/pessoa/.
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Chapter 5

Conclusions and future work

In this thesis we have presented a novel approach on the automatic synthesis of controllers
with mixed qualitative-quantitative specifications. To achieve that, the discrete abstraction of
the continuous model is considered. Discrete abstractions not only provide correct-by-design
control strategies, but also enable the synthesis of controllers for classes of specifications that
traditionally have not been considered in the context of continuous control systems. These
include specifications formalized using regular languages, fairness constraints, temporal logics,
etc. We are particularly interested in the Linear Temporal Logic. LTL is very appealing, as
it allows us to easily specify qualitative specifications. Our goal is however, to design and
synthesize controllers that also enforce quantitative specifications.

Towards our goal we have proposed two approaches. In the first one, we suggest synthesizing
a maximally-permissive controller under given safety and liveness constraints. Then apply the
corresponding set-destination shortest path algorithm and use the outcome as information to
refine the controller, such that it also satisfies the desired quantitative specifications. In the
second approach, we suggest using the SDSP algorithms directly, to synthesize controllers with
mixed qualitative-quantitative specifications. But, the question is, if it is computationally
more efficient to apply directly the SDSP algorithms to solve control problems with mixed
qualitative-quantitative specifications or not. Unfortunately we cannot directly provide such
an answer, since it is first necessary to analyze the complexity of the techniques used to
synthesize controllers with qualitative specifications. Due to time constraints such an attempt
was not made.

Regardless which approach we choose follow, our problem can be treated as a path-finding
problem on a finite graph. To solve such problems, we have presented two shortest path
algorithms that allows us to find the shortest path in the case of deterministic and non-
deterministic systems. Since non-deterministic systems can been seen as a superset of deter-
ministic ones, the solution provided for non-deterministic systems can also be applied for both
types. However, in the case of deterministic systems, if we want to apply the SDSP algorithm
again for a different target set, the deterministic SDSP algorithm is more efficient compared
to the non-deterministic SDSP algorithm, as we do not have to re-apply the Floyd-Warshall
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Figure 5-1: An example to illustrate when the worst case complexity of an ADD can occur. The
ADD data structure is not offering any compression in this case. Operations on the ADD would
take also more time compared to the array data structure. (a) A complete directed graph and the
vertex encoding. (b) The cost-adjacency matrix, where all values are different. (c) The resulting
ADD that represents the directed graph. The variable ordering is x < y.

algorithm. Note also that the deterministic SDSP algorithm runs in O(n3), while the non-
deterministic SDSP algorithm in O(n2k2). It is clear now, that when we are dealing with
deterministic systems, it is preferable to use the deterministic SDSP algorithm, in order to
achieve better computation times. But, whether applying the non-deterministic SDSP or the
deterministic SDSP algorithm, the computation time is greatly affected by the connectivity
of the digraph representing the discrete abstraction and by the number of different weight
values. More precisely, the non-deterministic SDSP algorithm and the ADD data structure
are directly affected by this, as the complexity of the former depends on the maximum out-
degree of the digraph and the complexity of the latter rises with the level of connectivity and
the variance in the weights. A comparison of the two shortest path algorithms is presented
in Table 5-1.

Besides providing a theoretical framework on solving optimal control problems, our goal was
also to implement the algorithms, in order to investigate and to illustrate the practicality and
feasibility of our approach. The key component in our implementation was the use of the
BDD/ADD data structure. ADD’s provide an ideal form of storing discrete abstractions by
offering great data compression, while being fairly easy to use and manipulate. However, if
the cost adjacency matrix or the all-pairs shortest path cost matrix has a high density1, the
use of ADDs can drastically affect the performance of the SDSP algorithms when compared
to other data structures, such as array data structures. Note that the density of the cost
adjacency matrix correlates with the connectivity of the weighted directed graph that is used
to represent the discrete abstraction. The stronger a graph is connected, the higher the
complexity of the ADD structure tends to be, if of course the matrix-elements have values
that differ from each other (Figure 5-1). Higher complexity in the ADD structure, results
in higher computation times, as simple operations on ADDs need more time to complete.

1When a highly large number of elements differ from each other.
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SPDP Algorithms
Deterministic Non-Deterministic
If the target set W changes we do not need
to compute Floyd-Warshall algorithm again

If the target set W changes we need to apply
it again.

Can be used only for deterministic systems Can be used also for deterministic systems
O(n3), n: number of states O(n4) or O(n2k2), k: max out-degree
Can be used to enforce:

1. “Reach”

2. “Reach and Stay”

3. “Reach and Stay while Stay”

qualitative specifications

Can be used to enforce:

1. “Reach”

2. “Reach and Stay”

3. “Reach and Stay while Stay”

qualitative specifications

Table 5-1: SDSP Algorithms comparison.

Unfortunately, this is the “Achilles’ heel” of the ADD data structure and has to be taken into
consideration. In fact, we believe that the ADD data structure might not be a good choice
for the implementation of the SDSP algorithms. However, this should not be considered as a
concrete conclusion, as it needs further investigation.

5-1 Future work

By now, it is clear that our main focus in this thesis is the theoretical foundation of the SDSP
algorithms and their implementation using ADDs, with our ultimate goal to synthesize con-
trollers with mixed qualitative-quantitative specifications. Although this goal was achieved,
due to time constraints the techniques we have presented have not been analyzed to determine
their limitations and their performance. Nevertheless, some limitations have been more or
less revealed to us.

We have seen that a system S(X,X0, U,−→, Y,H,C), can be treated as a vertex-weighted
directed graph. This means that each node is assigned with a cost and thus the cost of each
transition is determined by the head node, i.e. the cost of (x, u, x′) ∈−→ is C(x′). As a result
of this, for all x ∈ X such that Postu(x) = x′ the transition cost is the same, namely C(x′).
In other words the input has no impact on the cost of a transition. Consequently, to make the
cost map more flexible, one can also consider the input to determine the cost of a transition.

Another limitation in our approach, is the inability of the native Floyd-Warshall algorithm
to capture transitions that yield the same shortest path cost. This affects directly the deter-
ministic SDSP algorithm and as an immediate consequence, multiple trajectories that yield
the same cost are not taken into consideration. This however, is not the only drawback of
the Floyd-Warshall algorithm. The algorithm is not the optimal all-pairs shortest path algo-
rithm to date with respect to time-complexity. It has a time complexity of O(n3), while other
approaches as the one of Pettie [50] has a time-complexity of O(mn + n2 log logn), where
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n is the number of vertices and m the number of edges. Of course, an even more efficient
approach is to implement the all-pairs shortest path algorithm in parallel, for which known
algorithms already exist [51]. In general, we might say that there is room for optimization
in every algorithm presented in this thesis. The implementation of parallel algorithms would
have a great impact on the computation time when solving optimal control problems.

Optimization can also be considered with respect to the ADD (or BDD) data structure.
ADDs have to be evaluated and compared with simpler data structures, such as array data
structures, to check whether they are suitable for our purpose or not. The sole purpose of
the ADD data structure is its characteristic to offer great compression when storing discrete
abstractions and to accelerate simple operations if the underlying boolean function is not
dense2. Unfortunately, this characteristic may fade out in the case of the SDSP algorithms,
where the matrices that represent the shortest path costs tend to become dense with a great
variance in the values that they store.

Beyond the performance optimizations, one can also think about optimizations in terms of
expanding the classes of qualitative specifications that can be addressed. We have seen that we
can use the SDSP algorithms to synthesize controllers that enforce “Stay”, “Reach”, “Reach
and Stay” and “Reach and Stay while Stay” specifications. Although simple, the above
specifications are a very important class of specifications, as such specifications are required
in many applications. Even so, one might wish for more complex specifications. Discrete
abstractions offer such a possibility, but the algorithms presented in this thesis are not able
to provide solutions. Towards that direction, one can start seeking answers in [26].

2A boolean function is not dense if log2 N � n, if f : D −→ {0, 1} is of n and N = |D| [52].
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Appendix A

ADD Implementation

As we have seen, the algorithms for solving shortest path problems, presented in previous
sections, are used to help us solve optimal control problems. Besides constructing a theo-
retical framework, we also care in investigating how these algorithms can be implemented to
solve actual control problems and in turn illustrate the feasibility of our approach. BDDs
(and ADDs) are being used as the main data structure for storing discrete abstractions and
symbolic controllers. Below we present an implementation of the algorithms presented in this
thesis using BDDs.

A-1 Floyd-Warshall Algorithm

We have seen that the ADD data structure provides an efficient way to reduce the data size
of matrices, especially when it comes to sparse matrices. Nevertheless, the Floyd-Wharshall
all-pair shortest path algorithm operates on raw matrices and cannot be applied directly to
graphs that are represented as ADDs. The boolean, arithmetic and abstraction operations
on ADDs, allows us to transform the Floyd-Wharshall algorithm so that it can be applied on
an ADD [44].

The key step for that is to express equation (2-2) using the corresponding ADD operations.
So, considering a digraph D(V,A, c), for every k ∈ {1, 2, .., |V |}, we want to compute the
min(W k(x, y), ck(x) + rk(y)), where W 1(x, y) is the cost adjacency matrix, ck(x) and rk(y)
the k’th column and row respectively. This equation can be expanded to a recursive definition
using the outer of min(W k(x, y), ck(x) + rk(y)) and the top variable between W (x, y), rk(y)
and ck(x):

min(W k(x, y), ck(x) + rk(y)) =v ·min(W k
v (x, y), ck

v(x) + rk
v (y))

+v′ ·min(W k
v′(x, y), ck

v′(x) + rk
v′(y))

This shows that the above procedure iterates over every vertex (or every element of the cost
adjacency matrix) in order to find the min(W k(x, y), ck(x) + rk(y)). Algorithm 9 describes
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the procedure for computing the outer sum and Algorithm 8 illustrates the complete Floyd-
Wharshall algorithm using ADDs.

Algorithm 8 Floyd-Warshall’s Algorithm using ADDs
Input: The cost adjacency matrix W as an ADD, representing the weights of a digraph
D(V,E, c).
Output: Matrix D containing all-pair shortest distances and the pointer array P . Both
represented as ADDs.
1: function Floyd-Warshall(W )
2: D ←W
3: P ← 0
4: for (k = 1 to k = |V |) do
5: R = Extract_Row(D, k)
6: C = Extract_Column(D, k)
7: S = Outer_Sum(D,R,C)
8: D = S[0]
9: P = S[1]

10: end for
11: return D,P
12: end function

Deterministic Set-destination Shortest Path Algorithm

The BDD-implementation of Algorithm 4, which is used for deterministic systems, is pretty
straightforward. The only difference when compared to the theoretical approach, is the way
we construct the n × 1 pointer array PW . For the shake of simplicity we follow a slightly
different approach.
Let S(X,X0, U,−→, Y,H) be a system and W ⊆ V the target set for which we want to find
the set-destination shortest path. While the map PW (see Definition 3-2) is used to point the
state w = PW (x) of the target set W , for which the path x,w) is the shortest one, the pointer
array PW does not explicitly store this information for all nodes, but rather for the nodes for
which the element (x,w) in the array P returns zero.
More precisely, letX ′ ⊆ X be the set of nodes that are adjacent to some nodes of w′ ∈W ′ ⊆W
and for which each (x′, w′)-path is the shortest path in the all-pairs shortest path problem.
In this case, the pointer array P will have the zero value for all (x′, w′) elements. Recall that
the zero value for some element (i, j) of P states that i and j are adjacent or that there is no
(i, j)-path. It is now clear that we have to update all (x′, w′) elements of the pointer array P ,
now denoted as PW , to point to the corresponding node w′ ∈ W ′ for which the (v′, w′)-path
is the shortest one (in the set-destination shortest path problem). For the rest of the nodes
x ∈ X \X ′, if there exists a node w ∈ W such that dW (x) 6= ∞, the elements (x, 1) of PW

either get the value of the corresponding (x,w) elements of the P array or zero otherwise.
Figure 3-1 illustrates how the pointer array PW is constructed. A formal description of the
BBD-implementation of Algorithm 4 is presented in Algorithm 10.
The Replace_Zero() function in Algorithm 10 is simple function that substitutes the zero-
valued terminal node of a given ADD with the corresponding k-valued terminal node. This
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Algorithm 9 Outer Sum procedure
Input: The cost adjacency matrix W as an ADD, representing the weights of a digraph
D(V,E, c).
Output: Matrix D containing all-pair shortest distances and the pointer array P . Both
represented as ADDs.
1: function Floyd-Warshall(W )
2: if (r ==∞) or (c ==∞) then
3: R = D
4: P = 0
5: return R,P
6: end if
7:
8: if (IsConstant(c) and IsConstant(r)) then
9: R = c+ r

10: if IsConstant(D) then
11: if R < M then
12: P = k
13: else
14: R = D
15: P = 0
16: end if
17: else
18: M = Apply(R,D,min)
19: R = M [0]
20: P = M [1]
21: end if
22: return R,P
23: end if
24:
25: R = CacheLookup(Outer_Sum_tag,D, r, c)
26: P = CacheLookup(Pointer_Array_tag,D, r, c)
27:
28: v = Top_V ar(D, r, c)
29: M = Outer_Sum(Dv, rv, cv, k)
30: Rv = M [0]
31: Pv = M [1]
32: M = Outer_Sum(Dv′ , rv′ , cv′ , k)
33: Rv′ = M [0]
34: Pv′ = M [1]
35: R = Find_or_Create(Rv, Rv′)
36: P = Find_or_Create(Pv, Pv′)
37:
38: return R,P
39: end function
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Algorithm 10 Deterministic SDSP Algorithm - BDD Implementation
Input: The all-pairs shortest path cost array CF W and pointer array PF W of a system
S(X,X0, U,−→, Y,H) and the target set W ⊆ X.
Output: The vector dW containing the shortest path cost value for all x ∈ X and the pointer
array PW .
1: function D-SDSP(CF W , PF W ,W )
2: dW ←∞
3: PW ← 0
4: for k = 1 to k = |W | do
5: CAP SP = Extract_Column(CF W , wk)
6: CP = Extract_Column(PF W , wk)
7: CP = Replace_Zero(CP , k)
8:
9: Rslt = Apply_Min2(dW , CAP SP , PW , CP )
10: dW = Rslt.min
11: PW = Rslt.P
12: end for
13: return dW , PW

14: end function

way, we make sure to point to the node w ∈ W for which we get the shortest path. Indeed,
given a wk and for every x ∈ X, if dW (x) 6= ∞ and P (x,wk) = 0, then Pw(x, 1) = k. The
Apply_Min2() function also presented in Algorithm 11 is nothing more than the Apply()
function with the minimum operator [44], but with a small alteration in order to update the
pointer array. In each iteration, we compare two columns to compute the shortest path cost.
The first column is the k-th column of the CF W array and the second column is the transpose
of the current dW vector. To compute the “minimum” we are basically comparing each row
of the first column with the corresponding row of the second column. For each row, if the
minimum value originates from the k-th column of the CF W array, we pick the pointer from
the k-th column of P . Otherwise, the pointer originates from the corresponding row of the
PW transpose vector, i.e. from itself.

A-2 Non-deterministic Set-destination Shortest Path Algorithm

Algorithm 12 illustrates the ADD-Implementation of the set-destination shortest path algo-
rithm for non-deterministic systems. We initialize the shortest path cost dW and the pointer
map PW according to the algorithm 5, using the internalization function in line 2. The pri-
ority queue, which basically returns in each iteration the state x = min{dW (x) | x ∈ Q}, is
also initialized in the beginning (line 3).
Due to the nature of the data structure we are using, it is convenient to merge the two
operators XS and US into the function operatorXUsr(). This function is basically searching
for all the states that guarantee a transition toR. These states can be considered as “candidate
states” for the set R and are the states for which we apply the Relax() function. Of course,
since operatorXUsr() is also implementing the US operator, we also store the inputs that are
responsible for a transition to R.
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Algorithm 11 Apply −Min Function
Description: Given two pairs of ADDs, this algorithm computes the minimum of the first
pair and constructs a second ADD whose minterms are chosen from a second pair, depending
on the origin of the minimum value.
Input: The ADD-pair F and G and the ADD-pair Pf and Pg.
Output: The minimum of the two ADDs F and G.
1: function Apply-Min(F,G, Pf , Pg)
2: if (F ==∞) then
3: Rslt.min = G
4: Rslt.P = Pg

5: return Rslt
6: end if
7: if (G ==∞) then
8: Rslt.min = F
9: Rslt.P = Pf

10: return Rslt
11: end if
12: if (F == G) then
13: Rslt.min = F
14: Rslt.P = Pf

15: return Rslt
16: end if
17: if (IsConstant(F ) and IsConstant(G)) then
18: if F < G then
19: Rslt.min = F
20: Rslt.P = Pf

21: else
22: Rslt.min = G
23: Rslt.P = Pg

24: end if
25: return Rslt
26: end if
27: if (Cache_Lookup(min2_tag, (F,G, Pf , Pg), Rslt)) then
28: return Rslt
29: end if
30: v = Top_V ar(F,G, Pf , Pg)
31: Rslt = Apply_Min2(Fv, Gv, Pfv, Pgv)
32: APSPv = Rslt.min
33: Pv = Rslt.P
34: Rslt = Apply_Min2(Fv′ , Gv′ , Pfv′ , Pgv′)
35: APSPv′ = Rslt.min
36: Pv′ = Rslt.P
37: Rslt.APSP = Find_or_Create(APSPv, APSPv′)
38: Rslt.P = Find_or_Create(Pv, Pv′)
39: Cache_Insert(min2_tag, (F,G, Pf , Pg), Rslt)
40: return Rslt
41: end function
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Algorithm 12 Non-deterministic SDSP Algorithm - ADD Implementation
Input: The all-pairs shortest path cost array APSP and pointer array P of a system
S(X,X0, U,−→, Y,H) and the target set WS ⊆ X.
Output: The vector dW containing the shortest path cost value for all x ∈ X and the pointer
array PW .
1: function ND-SDSP(S,WS)
2: Init(dW , PW )
3: Init(PQ)
4:
5: while (Q 6= 0) do
6: x = PQ.pop()
7: if Restrict(CF W , x) ==∞ then
8: R = Apply(R, x, plus)
9: end if
10: Q = Apply(Q, x,minus)
11: XUr = operatorXUsr()
12: Relax(XUSR

)
13: end while
14: return dW , PW

15: end function

More precisely, in line 3, by applying the restrict operator we filter out the states that do
not have a transition to R. This is done by first swapping the variable x and x′ in the BDD
representation of the set R. In the next step (line 7) we filter also the states that belong to
the W set, because these states are not needed.

From line 8 to 11 we expose all states that do not satisfy the reachability game, so that we can
use this information to construct the XUr BDD. Initially we expose all inputs of these states
by computing the intersection of the BDD representing the system with the BDD of line 7.
With the newly created BDD we are able to find which states fail to satisfy the reachability
game. These states are the intersection of the newly created BDD with all the states that are
not in R ∪W . As a result of the above operations, we are able to remove all “bad” x and u
in line 11 and use this outcome to create the XUr BDD (line 12).

After the point where the XUr BDD is constructed, the Relax() function is called, in order
to “relax” all states in XSR

. In line 3 we extract the dW value for all x ∈ Postu(x′) for all
x′ ∈ XSR

and in line 4 we extract the dW for x ∈ XSR
such that Postu(x) ∈W . The operation

in line 5 is nothing more that the ADD that contains the cost c(x, u, x′) for all x ∈ XSR
and

x′ ∈ Postu(x). The ADD is in the form of f(x′, u, x) and thus we have to switch the variables
x and x′ (line 6). In line 8 we are basically computing with this single operation both the
dW value for both the deterministic and non-deterministic transitions. Of course in the case
of the non-deterministic transitions we have to take the maximum dW value and in case of
deterministic transitions the minimum dW value, if more the one exist. To achieve that we
first have to distinguish the deterministic transitions from the non-deterministic ones, which is
done by using the functions getDeterministic(d) and getNonDeterministic(d) respectively.
This functions will not be analyzed, as they are too complex and fall beyond the scope of this
thesis.
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Algorithm 13 operatorXUsr Function
Input: The BDD of the System S, the target set W , the set Q and the set of the resolved
states R.
Output: The BDD containing the set of states XSR

and the set of inputs USR
.

1: function operatorXUsr(S,W,Q,R)
2: Qswpd = SwapV ariables(Q, x, x′)
3: Rswpd = SwapV ariables(R, x, x′)
4: SR = Restrict(S,Rswpd)
5: SxuR = KeepXUvariables(SR)
6:
7: SRnW = Apply(SxuR, Apply(W,not), and)
8: SuRnW = Apply(S, SRnW , and)
9:

10: SRG = Apply(SuRnW , Apply(Rswpd, not), and)
11: SxuRG = KeepXUvariables(SRG)
12: XUSR

= Apply(Apply(SRnW , Apply(SxuRG, not), and), Apply(R,not), and)
13: return XUSR

14: end function

As a next step, we iterate over all states in X to check whether a state belongs to the set
XSR

(lines 17 - 23) and if so, we check whether the state has deterministic and/or “valid”
non-deterministic transitions (line 27). In lines 27 to 47 we check for each u ∈ USR

what is
the minimum dW in case of deterministic transitions and the minimum - maximum dW for
non-deterministic transitions. After we have determined that, we proceed with lines 49 to 69
to compute the actual shortest path estimate dW and update the pointer map PW for all the
states in XSR

.
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Algorithm 14 Relax Function
Input: The BDD containing the set XSR

and USR
.

1: function Relax(XUr)
2: XUsrswpd = SwapV ariables(x, x′)
3: DWx = Apply(XUsr,CF W , and)
4: DWx′ = Apply(XUsrswpd, CF W , and)
5: cswpd = Apply(XUsrswpd, C, and)
6: c = SwapV ariables(x, x′)
7:
8: d = Apply(cswpd, DWx′ )
9: ddet = getDeterministic(d)

10: dndet = getNonDeterministic(d)
11:
12: for (k = 1 to n) do
13: mintermk = createMinterm(x, k)
14: Cdet = Restrict(ddet,mintermk)
15: Cndet = Restrict(dndet,mintermk)
16:
17: if (Cdet ==∞) then
18: deterministic← false
19: end if
20: if (Cndet ==∞) then
21: non_deterministic← false
22: end if
23: if (!deterministic and !non_deterministic) then
24: continue
25: end if
26:
27: if (deterministic and non_deterministic) then
28: Cdetmin = FindMin(Cdet)
29: Cndetmax = FindMax(Cndet)
30: if (Cdetmin < Cndetmax) then
31: DCW = Cdetmin

32: else if (Cdetmin == Cndetmax) then
33: DCW = Cdetmin

34: ndet_input← true
35: else
36: DCW = Cndetmax

37: ndet_input← true
38: deterministic← false
39: end if
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Algorithm 13 Relax Function (continued)
40: else if (non_deterministic) then
41: ndet_input← true
42: Cndetmax = FindMax(Cndet)
43: DCW = Cndetmax

44: else
45: Cdetmin = FindMin(Cdet)
46: DCW = Cdetmin

47: end if
48:
49: if (Restrict(DWx ,mintermk) ≥ DCW ) then
50: if (deterministic) then
51: validInput = getTransitionFromV alue(Cdet, Cdetmin)
52: validTransition = Ite(mintermx, validInput, bddzero)
53: DW = Apply(DW , Apply(mintermx, DCW , times), plus)
54: PW = Apply(PW , validTransition, plus)
55: end if
56: if (non_deterministic and ndet_input) then
57: validInput = getTransitionFromV alue(Cndet, Cndetmax)
58: validTransition = Ite(mintermx, validInput, bddzero)
59: if (!deterministic) then
60: DW = Apply(DW , Apply(mintermx, not), and)
61: PW = Apply(PW , Apply(mintermx, not), and)
62: DW = Apply(DW , Apply(mintermx, DCW , times), plus)
63: end if
64: PW = Apply(PW , validTransition, plus)
65: end if
66: deterministic← false
67: non_deterministic← false
68: ndet_input← false
69: end if
70: end for
71: return
72: end function

Master of Science Thesis Athanasios Tasoglou



64 ADD Implementation

Athanasios Tasoglou Master of Science Thesis



Bibliography

[1] P. Tabuada, Verification and control of hybrid systems: a symbolic approach. Springer,
2009.

[2] M. Mazo Jr, A. Davitian, and P. Tabuada, “Pessoa: A tool for embedded controller
synthesis,” in Computer Aided Verification, pp. 566–569, Springer, 2010.

[3] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion planning,” Journal
of the ACM (JACM), vol. 40, no. 5, pp. 1048–1066, 1993.

[4] V. Blondel and J. N. Tsitsiklis, “Np-hardness of some linear control design problems,”
SIAM Journal on Control and Optimization, vol. 35, no. 6, pp. 2118–2127, 1997.

[5] J. C. Willems, “Models for dynamics,” in Dynamics reported, pp. 171–269, Springer,
1989.

[6] J. C. Willems, “Paradigms and puzzles in the theory of dynamical systems,” Automatic
Control, IEEE Transactions on, vol. 36, no. 3, pp. 259–294, 1991.

[7] J. van Schuppen, “Equivalences of discrete-event systems and of hybrid systems,” in
Open problems in mathematical systems and control theory, pp. 251–257, Springer, 1999.

[8] R. Milner, Communication and concurrency. Prentice-Hall, Inc., 1989.

[9] E. Haghverdi, P. Tabuada, and G. Pappas, “Bisimulation relations for dynamical and
control systems,” Electronic Notes in Theoretical Computer Science, vol. 69, pp. 120–136,
2003.

[10] A. Girard and G. J. Pappas, “Approximation metrics for discrete and continuous sys-
tems,” Automatic Control, IEEE Transactions on, vol. 52, no. 5, pp. 782–798, 2007.

[11] P. Tabuada, “An approximate simulation approach to symbolic control,” Automatic Con-
trol, IEEE Transactions on, vol. 53, no. 6, pp. 1406–1418, 2008.

[12] M. Ying and M. Wirsing, “Approximate bisimilarity,” in Algebraic Methodology and
Software Technology, pp. 309–322, Springer, 2000.

Master of Science Thesis Athanasios Tasoglou



66 Bibliography

[13] T. A. Henzinger, R. Majumdar, and V. S. Prabhu, “Quantifying similarities between
timed systems,” in Formal Modeling and Analysis of Timed Systems, pp. 226–241,
Springer, 2005.

[14] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT press, 1999.

[15] N. Piterman, A. Pnueli, and Y. SaâĂŹar, “Synthesis of reactive (1) designs,” in Verifi-
cation, Model Checking, and Abstract Interpretation, pp. 364–380, Springer, 2006.

[16] P. Tabuada and G. J. Pappas, “Linear time logic control of discrete-time linear systems,”
Automatic Control, IEEE Transactions on, vol. 51, no. 12, pp. 1862–1877, 2006.

[17] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta, “Temporal logic control
of discrete-time piecewise affine systems,” Automatic Control, IEEE Transactions on,
vol. 57, no. 6, pp. 1491–1504, 2012.

[18] M. Broucke, M. D. Di Benedetto, S. Di Gennaro, and A. Sangiovanni-Vincentelli, “Theory
of optimal control using bisimulations,” in Hybrid Systems: Computation and Control,
pp. 89–102, Springer, 2000.

[19] M. Broucke, M. D. Di Benedetto, S. Di Gennaro, and A. Sangiovanni-Vincentelli, “Ef-
ficient solution of optimal control problems using hybrid systems,” SIAM journal on
control and optimization, vol. 43, no. 6, pp. 1923–1952, 2005.

[20] L. Grüne and O. Junge, “Global optimal control of perturbed systems,” Journal of
Optimization Theory and Applications, vol. 136, no. 3, pp. 411–429, 2008.

[21] T. Paschedag, M. Fall, and O. Stursberg, “Optimizing hybrid control trajectories by
model abstraction and refinement,” in Analysis and Design of Hybrid Systems, vol. 3,
pp. 298–303, 2009.

[22] Y. Tazaki and J.-i. Imura, “Multiresolution discrete abstraction for optimal control,”
in Decision and Control (CDC), 2010 49th IEEE Conference on, pp. 5905–5910, IEEE,
2010.

[23] M. Mazo Jr and P. Tabuada, “Symbolic approximate time-optimal control,” Systems &
Control Letters, vol. 60, no. 4, pp. 256–263, 2011.

[24] Y. Tazaki and J.-i. Imura, “Finite abstractions of discrete-time linear systems and its
application to optimal control,” in 17th IFAC world congress, pp. 10201–10206, 2008.

[25] A. Girard, “Synthesis using approximately bisimilar abstractions: time-optimal control
problems,” in Decision and Control (CDC), 2010 49th IEEE Conference on, pp. 5893–
5898, IEEE, 2010.

[26] F. de Roo and M. Mazo Jr, “On symbolic optimal control via approximate simulation
relations,” in Conference on Decision and Control (CDC) 2013 (To appear), 2013.

[27] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event
processes,” SIAM journal on control and optimization, vol. 25, no. 1, pp. 206–230, 1987.

[28] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische math-
ematik, vol. 1, no. 1, pp. 269–271, 1959.

Athanasios Tasoglou Master of Science Thesis



67

[29] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM, vol. 5, no. 6,
p. 345, 1962.

[30] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” Computers,
IEEE Transactions on, vol. 100, no. 8, pp. 677–691, 1986.

[31] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi, “Algebric decision diagrams and their applications,” Formal methods in
system design, vol. 10, no. 2-3, pp. 171–206, 1997.

[32] M. Fujita, P. C. McGeer, and J.-Y. Yang, “Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation,” Formal methods in system design,
vol. 10, no. 2-3, pp. 149–169, 1997.

[33] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer, “Specify,
compile, run: Hardware from psl,” Electronic Notes in Theoretical Computer Science,
vol. 190, no. 4, pp. 3–16, 2007.

[34] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A. Sangiovanni-
Vincentelli, E. M. Sentovich, and K. Suzuki, “Synthesis of software programs for embed-
ded control applications,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 18, no. 6, pp. 834–849, 1999.

[35] G. Chartrand, L. Lesniak, and P. Zhang, Graphs and digraphs. CRC Press, 2011.

[36] J. Bang-Jensen and G. Gutin, Digraphs: theory, algorithms and applications. Springer,
2009.

[37] G. Brassard and P. Bratley, Fundamentals of algorithmics, vol. 524. Prentice Hall En-
glewood Cliffs, 1996.

[38] R. Bellman, “Dynamic programming, princeton univ,” Prese Princeton, 19S7, 1957.

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
MIT press, 2001.

[40] S. Warshall, “A theorem on boolean matrices,” Journal of the ACM (JACM), vol. 9,
no. 1, pp. 11–12, 1962.

[41] C.-Y. Lee, “Representation of switching circuits by binary-decision programs,” Bell Sys-
tem Technical Journal, vol. 38, no. 4, pp. 985–999, 1959.

[42] S. B. Akers, “Binary decision diagrams,” Computers, IEEE Transactions on, vol. 100,
no. 6, pp. 509–516, 1978.

[43] E. M. Clarke, M. Fujita, P. C. McGeer, K. McMillan, J. C. Yang, and X. Zhao, “Multi-
terminal binary decision diagrams: An efficient data structure for matrix representation,”
1993.

[44] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi, “Algebraic decision diagrams and their applications,” in Computer-Aided
Design, 1993. ICCAD-93. Digest of Technical Papers., 1993 IEEE/ACM International
Conference on, pp. 188–191, IEEE, 1993.

Master of Science Thesis Athanasios Tasoglou



68 Bibliography

[45] R. Bahar, G. Hachtel, A. Pardo, M. Poncino, and F. Somenzi, “An add-based algorithm
for shortest path back-tracing of large graphs,” in VLSI, 1994. Design Automation of
High Performance VLSI Systems. GLSV’94, Proceedings., Fourth Great Lakes Sympo-
sium on, pp. 248–251, IEEE, 1994.

[46] F. M. Brown, Boolean reasoning: the logic of Boolean equations. Courier Dover Publica-
tions, 2003.

[47] E. A. Emerson and J. Y. Halpern, ““sometimes” and “not never” revisited: on branching
versus linear time temporal logic,” Journal of the ACM (JACM), vol. 33, no. 1, pp. 151–
178, 1986.

[48] A. Pnueli, “The temporal logic of programs,” in Foundations of Computer Science, 1977.,
18th Annual Symposium on, pp. 46–57, IEEE, 1977.

[49] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,” Formal Methods
in System Design, vol. 19, no. 3, pp. 291–314, 2001.

[50] S. Pettie, “A new approach to all-pairs shortest paths on real-weighted graphs,” Theo-
retical Computer Science, vol. 312, no. 1, pp. 47–74, 2004.

[51] Y. Han, V. Pan, and J. Reif, “Efficient parallel algorithms for computing all pair short-
est paths in directed graphs,” in Proceedings of the fourth annual ACM symposium on
Parallel algorithms and architectures, pp. 353–362, ACM, 1992.

[52] S. Jukna, Boolean function complexity: advances and frontiers, vol. 27. Springerverlag
Berlin Heidelberg, 2012.

Athanasios Tasoglou Master of Science Thesis



Glossary

List of Acronyms

BDD Binary Decision Diagram

ADD Algebraic Decision Diagram

ROBDD Reduced Ordered Binary Decision Diagram

MTBDD Multi-Terminal Binary Decision Diagram

SSSP Single-Source Shortest Path

APSP All-Pairs Shortest Path

SDSP Set-Destination Shortest Path

LTL Linear Temporal Logic

CTL Computation Tree Logic
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