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Abstract 

Stratified two phase flow is one of the flow regimes that is of importance in 

multiphase flow transport through pipelines, such as used for example in the oil 

and gas industry. Its application also extends to chemical production, energy 

conversion and food processing. The phenomenon of turbulence further 

complicates the stratified flow behaviour. Having a simulation tool that 

accurately predicts the pressure gradient and liquid level in a turbulent channel 

or pipe flow can lead to better designs of multiphase flow systems.  

The common RANS turbulence models (such as 𝑘 − 𝜔  and 𝑘 − 𝜀)  artificially 

produce too much turbulence at the liquid-gas interface. Therefore, these 

models need to be modified such that turbulent viscosity is sufficiently damped 

at the interface. To ensure this, in the present study the specific dissipation rate 

(𝜔) is imposed at the interface. Here 𝜔 is an appropriate function of the surface 

roughness factor (𝑘𝑠), which represents the effect of interface waves. 

The present work is a follow up to a previous research project where a 

MATLAB tool was developed for the prediction of stratified flow in channels. 

The first and main objective of the present thesis is to find and test a model for 

𝑘𝑠 and to apply that to obtain a modified version of the Standard 𝑘 − 𝜔 (SKW) 

turbulence model and the Shear Stress Transport (SST) model.  MATLAB can 

be used to find solutions for the channel flow. The simulation results are 

compared with experimental data. The second objective is to compare the 

results obtained using the turbulence models in the MATLAB model with 

predictions using similar models in Fluent. The third objective is to extend this 

study to a 3D setup of a two phase pipe flow where only the liquid phase is 

simulated. This is a so-called Segregated Liquid Phase (SLP) simulation. RANS 

predictions in Fluent are compared with experiments and DNS data. The main 

conclusions are: 

 The calculation of 𝑘𝑠 has been automated. 

 The predictions of the flow rates for the experimental case by Fabre et al. 

are better than those for the experimental case by Akai et al. 

 MATLAB predictions of the flow rates for the experimental cases are 

better than those of Fluent. This is because it is difficult to correctly 

impose an interface condition in Fluent, whereas this is straightforward in 

MATLAB. 

Key Words: Channel Flow, Fluent, MATLAB, Pipe Flow, Stratified Flow, 

Turbulence Models, Liquid-Gas Interface  
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1  
INTRODUCTION 

1.1 Multiphase Flow 

Multiphase flow can be defined as the presence of multiple immiscible phases, 

having different chemical and physical properties, which are flowing together in 

a system. For example, water and gas or water and oil in two-phase flow or 

water, oil and gas in a three-phase flow. Solid particles can also be considered 

as one of the phases. For horizontal pipes/channels multiphase flows are broadly 

classified in various flow regimes: stratified flow, slug flow, annular flow and 

bubbly flow. The underlying phenomena that distinguish them from single 

phase flow are primarily related to the interfacial interactions that each phase 

experiences. Hence, multiphase flow is more complex than a single phase flow.  

The prevailing flow regime in a pipe or a channel depends on a number of 

parameters such as, the volumetric flow rates of gas and liquid, the orientation 

of the pipe, the pipe diameter and the pressure level. The hatched areas that are 

shown in the example flow pattern map in Figure 1.1 give an approximation to 

where the flow patterns changes, and the solid lines are theoretical predictions. 

Since this thesis focuses on stratified flow in horizontal (or nearly horizontal) 

channels and pipes (i.e. without/with slight inclination) the discussion will only 

focus on that flow regime. As shown in Figure 1.1, stratified flow is found for 

low gas and liquid flow rates. 

Stratified flow is important in many industrial applications. An example is 

multiphase flow transport of gas, oil and water in offshore and onshore 

pipelines as used in the oil and gas industry. The stratified flow is characterised 

by a sharp interface between the phases. The pressure drop along the pipe drives 

the flow, and this pressure drop needs to be sufficient to balance both the wall 

friction force and the gravity force. For the proper design of multiphase flows 

there is a need to accurately predict the pressure drop and the amount of liquid 

(so-called holdup) in the system.  
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Figure 1.1: Typical flow pattern map of horizontal flow (Weisman, 1983). 

1.2 Nature of the Flow 

Fluid flow can either be laminar or turbulent, depending on the value of the 

Reynolds number, which marks the ratio of the inertial force to the viscous 

force. If the viscous forces dominate the flow, the flow will be laminar. On the 

other hand, if the inertial forces dominate the flow, the flow will be turbulent.  

Laminar flow is a smooth streamlined flow where the fluid layers pass over one 

another like a deck of playing cards. It is characterised by diffusion and a low 

value of convection. Laminar flow, for specific cases, can be solved as an exact 

solution of the Navier Stokes equations. A clear example is blood flow through 

capillaries, where the velocity is very low and viscosity dominates the flow.  

Turbulent flow, on the other hand, is highly irregular and often called ‘chaotic’. 

For some given initial conditions it is difficult to predict what the flow will be 

after a stipulated period of time. The longer the time period the more inaccurate 

the prediction will be. This is exactly why weather prediction is subject to 

uncertainty. Even with the most powerful supercomputers of today it is 

impossible to accurately predict turbulent flow for a large scale with a high 

enough resolution. This is because of the nonlinearity of the advection terms in 

the Navier Stokes equations. 
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Figure 1.2(a) shows the onset of turbulence as smoke rises from a cigarette. It 

starts in the laminar regime but shifts rapidly towards an irregular and chaotic 

turbulent flow. Figure 1.2(b) is a picture of the volcanic eruption of Mt. 

Cleveland. All the volcanic ash and gases expelled are highly turbulent. Figure 

1.2(c) is the formation of turbulent vortices behind an airplane wing. 

 

Figure 1.2: (a). Smoke from a cigarette (Source: Christine Daniloff). (b). Turbulent gases from Mt. 

Cleveland (Source: Johnson Space Center). (c). Turbulent wingtip vortices (Source: Steve Morris, NY 

Times). 

How can one predict turbulence? To answer this question, it is necessary to 

understand what causes turbulence. Turbulence is characterised by turbulent 

eddies which exist in the macro scale and the micro (Kolmogorov) scale. The 

large scale eddies are of the width of the channel and the small scale eddies are 

of the Kolmogorov scale. The large scale eddies pass their kinetic energy to the 

smaller scale eddies (without loss of energy), all the way down to the 

Kolmogorov scale where the energy is released as heat due to viscous 

dissipation. This is known as the phenomenon of energy cascading as described 

by Lewis F. Richardson in 1922. Figure 1.3 is a cartoon showing the energy 

cascading. 

Turbulence can be described by the 3-D Navier Stokes equations as a 

fluctuation of the flow variables. The fluctuation of the velocity (𝑢𝑘
′ ) is the 

difference of the total value (𝑢𝑘) and the mean value (𝑢̅𝑘), where 𝑢𝑘 is the 

characteristic flow velocity in any dimension: 

𝑢𝑘
′ = 𝑢𝑘 − 𝑢̅𝑘 
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When the fluctuation term replaces the velocity in the nonlinear advection term 

of the Navier Stokes equations a new term, called the turbulent shear stress 

term, is added. This is a fourth order tensor and closing this requires many 

simplifications.  

 

Figure 1.3: Energy cascading (Davidson, 2004, page 19). 

The closure of the turbulent shear stress is covered by turbulence modelling. A 

less accurate, albeit computationally less intensive, method of approximation is 

based on solving the so-called Reynolds Averaged Navier Stokes (RANS) 

equations. The RANS equations contain mean values of the Navier Stokes 

equations and the additional turbulent shear stress tensor. Researchers such as 

Prandtl, Wilcox, Menter and many others proposed different approximation 

models for the RANS equations.  

The present thesis focuses on the combination of stratified two phase flow and 

turbulence modelling.  

1.3 Research Objectives 

An in-house 1D code for the stratified two phase flow has been developed by a 

previous Master’s student Gabriele Chinello (Chinello, 2015) at the University 

of Pisa in collaboration with TU Delft. This code can calculate the pressure drop 

and the liquid level of a two phase stratified channel flow for given values of 

the gas and liquid bulk flow rates or vice versa. The standard 𝑘 − 𝜔 turbulence 

equations are solved iteratively and closure coefficients are chosen for the low 

Reynolds number case. Initially, for a given pressure drop and liquid level the 
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volumetric flow rates for gas were severely under predicted, and the specific 

dissipation rate was under predicted in the freestream and near the interface, 

while it was reasonably accurate near the walls. To overcome this, the slightly-

rough Wilcox surface boundary condition was employed at the gas-liquid 

interface (Wilcox, 2006). Basically a Dirichlet boundary condition for 𝜔 was 

applied. This value was a function of the surface roughness 𝑘𝑠, where surface 

roughness or sand grain roughness defines how smooth or wavy/rough the 

interface is. 

The results obtained by Chinello (2015) after this interfacial 𝜔 boundary 

condition was imposed were in close agreement with the experimental data 

from Fabre et al. (1987) as shown in Table 1.1. However, the value for the 𝑘𝑠 
was tuned manually for each of the experimental runs. This is a clear 

shortcoming of the method.  

The addition of the interface condition improved the resulting predictions for 

the gas and liquid flow rates significantly, when using the experimental values 

for the pressure drop and liquid level as input. Table 1.1 shows the comparison 

of the model predictions before and after the addition of the interfacial boundary 

condition (Modified 𝑘 − 𝜔). The predictions are compared with the 

experiments of Fabre et al. While the liquid flow rates are almost the same for 

all cases, the gas flow rates are under predicted for the standard 𝑘 − 𝜔 case. 

However, the gas flow rates are over predicted by a maximum of 20%. 

 

Table 1.1: 𝑘 − 𝜔 vs. Modified 𝑘 − 𝜔 (results taken from Chinello (2015), compared with the channel 

experiments by Fabre et al. (1987). 

 Experimental 
Data 

Simulation Input Standard 𝒌 − 𝝎 Modified 𝒌 − 𝝎 

 

Gas 
Flow 
Rate 
(𝑚3/𝑠) 

Liquid 
Flow 
Rate 
(𝑚3/𝑠) 

Pressure 
Drop 
(𝑃𝑎/𝑚) 

Liquid 
Level 
(𝑚) 

Gas 
Flow 
Rate 
(𝑚3/𝑠) 

Liquid Flow 
Rate 
(𝑚3/𝑠) 

Gas Flow 
Rate 
(𝑚3/𝑠) 

Liquid 
Flow 
Rate 
(𝑚3/𝑠) 

Run 
250 

0.0454 0.003 2.1 0.038 0.012 0.003 0.054 0.003 

Run 
400 

0.0754 0.003 6.7 0.0315 0.021 0.003 0.078 0.0035 

Run 
600 

0.118 0.003 14.8 0.0215 0.0367 0.003 0.116 0.003 

 

To obtain this value of 𝜔, however, the simulation model required a value of the 

surface roughness 𝑘𝑠 that was tuned from case to case. The user needs to know 

beforehand whether the interface is smooth or wavy. This is a major drawback 
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of this approach. Therefore obtaining a value of 𝑘𝑠 without ad-hoc tuning is the 

first (and main) objective of this research. 

The second objective is to improve the accuracy of the results by comparing 

them with other turbulence models and with results obtained with the CFD tool 

Fluent. This will be done for the channel configuration.  

To extend this study to a realistic scale, modelling must go from 2D to 3D. 

Therefore the third objective is to create a 3D model in Fluent for a pipe flow 

and to compare it with relevant experiments. An interesting way to model the 

liquid phase of a two phase flow would be to segregate the phases and impose 

the effects of the gas phase at the interface onto the liquid phase. In this way the 

concept of the Segregated Liquid Phase (SLP) model can be applied.  

In summary, this research covers the following tasks for the modelling of two 

phase stratified liquid-gas flows in channels and pipes: 

1. Derive and test a model for interfacial effective roughness (representing 

the waves) that does not require case-by-case tuning.  

2. Implement various turbulence models in the MATLAB code solving the 

1D equations in a channel. 

3. Compare MATLAB and Fluent results. 

4. Compare the model predictions for the channel with experimental data 

from Akai et al. (1980) and Fabre et al. (1987).  

5. Calculate the Segregated Liquid Phase for a pipe in Fluent and compare 

the predictions with experimental data of Birvalski et al. (2014). 

 

1.4 Research Approach 

The software tools used for the 2D channel comparison are MATLAB version 

2014(b) and ANSYS Fluent version 16.2. The modelling of 𝑘𝑠 can be 

automated by using surface roughness and wave amplitude correlations 

available in the literature. Implementing these improvements and validating 

them with the experimental cases of Akai et al. (1980) and Fabre et al. (1987) is 

the following step.  

To validate the 3D segregated liquid flow case, experimental data from 

Birvalski et al. (2014) and DNS data from the study of Mehdi Niazi (2014) is 

taken.  



INTRODUCTION 

7 
 

1.5 Research Outline 

Chapter 2 discusses the relevant literature and the experiments. Chapter 3 looks 

into the theory and the model equations for stratified two phase flows and 

turbulence. Chapter 4 explores the modelling aspects and the simulation setup. 

Chapter 5 reports the channel and pipe flow results. Chapter 6 provides the 

conclusions and recommendations.  
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2 
LITERATURE REVIEW 

This chapter is divided into three subsections which deal with: 

1. A short description of the relevant literature 

2. The channel flow experiments 

3. The pipe flow experiments 

2.1 Literature Review 

The literature available for stratified two phase flows can be split into 

experimental and modelling studies.  

2.1.1 Experiments 

A first important experimental study for two phase stratified flow was conducted by 

Akai et al. (1980).  The two fluids are air and mercury flowing in a channel with an 18 

mm height. The volumetric flow rates of the two phases were controlled and the 

resulting pressure drop and liquid level were measured. In the numerical simulations 

described in the same papers, the turbulence was modelled with a modified version of 

the low Reynolds number 𝑘 − 𝜖 model by Jones & Launder (1972, 1973). The liquid 

holdup was imposed in the model by using an empirical correlation for the 

experimental data, using the Reynolds number of the gas layer. This empirical 

correlation was tuned to the specific experimental values of the gas and liquid phase 

Reynolds numbers:  

Δℎ

2
= 7.38 ∗ 10−2 − 9.94 ∗ 10−6ReG + 7.38 ∗ 10

−10ReG
2  (𝑐𝑚) 

ReL = 8.04 ∗ 10
−3, 5 ∗ 10−3 < ReG < 1.6 ∗ 10

−4 

Where the Reynolds numbers are based on the height and mean velocity of each 

phase. Such a correlation cannot be generalised to other flow conditions, which 

thus is a serious limitation. Another shortcoming of the model used by Akai et 

al. (1980) is mentioned by Issa (1988): the boundary condition for the 

dissipation rate at the interface is the same for both smooth and wavy 
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conditions. This is somewhat doubtful since the values at the interface must be 

different for the two conditions. 

Fabre et al. (1987) also conducted experiments for stratified two phase channel 

flow. The phases used here were air and water. Results for three cases were 

reported, referred to as Runs 250, 400 & 600, each having a different gas flow 

rate and the same liquid flow rate. The interface for Run 250 is smooth, while 

the interface for Runs 400 and 600 is slightly wavy and completely wavy, 

respectively.  

2.1.2 Limitations of two phase turbulence models 

According the Lorencez et al. (1997) the gas flow over the liquid imposes a 

shear stress which consequently results in the formation of the interfacial waves. 

The research also highlighted that turbulent eddies are generated at the wall as 

well as at the interface. This implies that the interface behaves as a rough wall 

for the gas phase and a moving wall for the liquid phase. Do the regular 

turbulence models capture these eddies effectively? 

Holmås et al. (2005) claimed that the regular turbulence models do not 

accurately predict the interfacial effects. In their simulations an upward shift of 

the gas phase velocity was noticed, which was due to an overestimation of the 

turbulence (e.g. reflected by the turbulent viscosity) at the interface. The liquid 

profile resembled that of a Couette flow for the same reason. Note that the lack 

of turbulence damping at the interface gives an asymmetric gas velocity profile, 

due to the fact that the turbulence is damped in the layer along the top wall but 

not in the layer along the interface. This gives a higher velocity close to the top 

wall than close the interface. Their conclusion was that the present turbulence 

models cannot accurately predict the effect that the interface has on turbulence 

for the two phases. Hence there is a need to modify the turbulence models.  

It is known that for the gas phase the liquid-gas interface appears as a rough 

wall and for the liquid phase it appears as a moving wall. Since the turbulence is 

being overpredicted, there is a need to dampen it at the interface. Wilcox (1998) 

has defined a boundary condition for slightly rough fixed walls in his low 

Reynolds 𝑘 − 𝜔 model. 

2.2 Channel Flow Experiments 

The experimental cases that will be used for the validation of the simulations in 

this thesis are Fabre et al. (1987) and Akai et al. (1980). 
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Fabre et al. (1987) performed experiments in a channel that is 12.6 m long, 0.2 

m wide and 0.1 m high and it has an inclination of 0.1%. The length of the 

channel ensures that the flow is fully developed.  

The flow rate of air could be changed, while that of water was kept constant. 

The corresponding pressure drops and interface heights were measured. The 

three test cases or runs are shown in Table 2.1 where the interface is smooth for 

Run 250 and it is rough/wavy for Run 400 and for Run 600. 

The existence of a secondary flow was expected since there was a nonzero 

vertical component of the velocity in the liquid and gas phase. However, this 

secondary flow was prevalent only in the wavy cases. The non-linearity of the 

shear stress profiles then proved the existence of transverse motion. The 

turbulence production was reported to be attenuated near the liquid wall and 

peaks in the gas phase were found very close to the interface.  

The second set of experiments was obtained by Akai et al. (1980), who run 

experiments for a stratified mercury-air case. The channel was 3.6 m in length, 

0.048 m in width and 0.018 m in height. The channel was kept perfectly 

horizontal implying that there was no streamwise effect of gravity. The strength 

of the shear stress at the walls was a third of that of the shear stress at the 

interface. 

The gas flow rate was varied while the liquid flow rate remained constant. The 

pressure drop and liquid level were measured and presented in terms of the 

Lockhart-Martinelli correlation (1949). 

Hanjalic & Launder (1972) conducted experiments for a single phase channel 

flow with a roughened wall at the bottom. The velocity profile experienced an 

upward shift compared to the flow in a channel with smooth walls. The velocity 

profiles in the wavy cases of Fabre et al. and Akai et al. also experienced an 

upward shift. This indicates that the interface acts as a rough wall. 
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Table 2.1: Experimental results from Fabre et al. (1987) and Akai et al. (1980). 

 𝑸𝒈 (
𝒎𝟑

𝒔
) 𝑸𝒈 (

𝒎𝟑

𝒔
) 
𝒅𝒑

𝒅𝒙
 (
𝑷𝒂

𝒎
) 𝒉 (𝒎)  𝑸𝒈 (

𝒎𝟑

𝒔
) 𝑸𝒈 (

𝒎𝟑

𝒔
) 
𝒅𝒑

𝒅𝒙
 (
𝑷𝒂

𝒎
) 𝒉 (𝒎) 

Fabre 
et al. 

Run 250 (Smooth) 

Akai 
et 
al. 

Run 1 (Slightly Wavy) 

0.0454 0.003 2.1 0.038 0.005 4.2*10-5 84.52 0.63 

Run 400 (Slightly Wavy) Run 2 (Wavy) 

0.0754 0.003 6.7 0.0315 0.007  4.2*10-5 154.3 0.54 

Run 600 (Wavy/Rough) Run 3 (Wavy) 

0.1187 0.003 14.8 0.0215 0.01  4.2*10-5 283.652 0.48 

 

2.3 Pipe Flow Experiment 

The pipe flow experiment of Birvalski et al. (2014) is important for this thesis. 

The pipe had an inner diameter of 0.05 m and a length of 10.3 m.  

The two phases were air and water. Several cases were reported by them for the 

pipe flow, with varying roughness of the interface, and varying flow rates. The 

relevant cases are Case B and Case D. Case B is a laminar flow case with a 

smooth interface. Case D is a fully turbulent flow case. The flow rate of the 

liquid is high to ensure a turbulent liquid layer with a non-wavy interface. The 

experimental results of the Reynolds stresses, scaled with the friction velocity, 

compared well with experiments conducted for single phase flow.  

These experiments have been compared with DNS conducted by Mehdi Niazi 

(2014) at the TU Delft. The DNS gave accurate results for the streamwise and 

spanwise velocities, but they showed nonzero values for the time-averaged 

crosswise velocity at the vertical centreline, which is incorrect. This could have 

been avoided if the DNS was run for a longer time period to obtain really fully 

converged statistics for the three velocity components. Note that the spanwise 

velocity is the vertical height direction, and the crosswise velocity is in the 

horizontal width direction. 
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THEORY 

Figure 3.1 shows the two phase flow in a channel; (𝐺) denotes the gas phase 

and (𝐿) the liquid phase. The figure also shows the shear stresses (𝜏) acting on 

the walls (𝑤) and the interface (𝑖). The height of the liquid layer is ℎ and that of 

the channel is 𝐻. The flow for both phases is in the same direction. The pressure 

drop along the channel is balanced by the wall shear stress and gravity force (in 

the presence of an inclination, denoted by 𝜃).  

 

Figure 3.1: Inclined channel flow. 

The relevant theory for this project involves the understanding of stratified two 

phase flow and of turbulence modelling. 
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3.1 Multiphase Flow 

The following quantities are commonly used to describe or model two phase 

flow in channels or pipes: 

1. Holdup fraction (𝛼𝑘) 

2. Superficial velocity (𝑈𝑠𝑘) 

The subscript 𝑠 denotes “superficial” and 𝑘 denotes the phase. The holdup 

fraction denotes the part of the volume that is occupied by each phase.  

The superficial velocity of a phase is defined by: 

𝑈𝑠𝑘 =
𝑉𝑘
𝐴

̇
 

Where, 𝑉𝑘̇ is the volumetric flow rate of the 𝑘𝑡ℎ phase and 𝐴 is cross sectional 

area of the channel or pipe.  

Modelling of the stratified flow can be done by combining the two force 

balances for each phase, i.e. of the gas (𝐺) and of the liquid (𝐿).  

The force balance equations for the gas and liquid phase in a channel are: 

 
−𝛼𝐺

𝑑𝑝

𝑑𝑥
=
𝜏𝑤𝐺
𝐻
+
𝜏𝑖
𝐻
+ 𝛼𝐺𝜌𝐺𝑔 sin θ 

 

(1) 

 
−𝛼𝐿

𝑑𝑝

𝑑𝑥
=
𝜏𝑤𝐿
𝐻
−
𝜏𝑖
𝐻
+ 𝛼𝐿𝜌𝐿𝑔sinθ 

 

(2) 

 

In a 2D flow, 𝛼𝐺 = (𝐻 − ℎ)/𝐻 and 𝛼𝐿 = ℎ/𝐻 . 

Adding both the equations (1) and (2) gives the total pressure gradient across 

the channel 

 
−
𝑑𝑝

𝑑𝑥
=
𝜏𝑤𝐺
𝐻
+
𝜏𝑤𝐿
𝐻
+ (𝜌𝐺𝛼𝐺 + 𝜌𝐿𝛼𝐿)𝑔sinθ 

 

(3) 

Note that the sum of the holdup fractions is 1. This equation implies that the 

driving force along the channel is balanced by the wall shear stresses and by the 

gravitational force. The interfacial shear stresses cancel each other out since 

they are in opposite directions.  

The interfacial shear can be calculated by subtracting equations (1) and (2) 



THEORY 

 

 14  
 

 𝜏𝑤𝐺
𝛼𝐺𝐻

−
𝜏𝑤𝐿
𝛼𝐿𝐻

+ 
𝜏𝑖

𝛼𝐺𝛼𝐿𝐻
− ( 𝜌𝐿 − 𝜌𝐺)𝑔 𝑠𝑖𝑛𝜃 = 0 (4) 

The wall shear stresses can be expressed as  

 
𝜏𝑤𝑘 = 𝜇𝑘

𝜕𝑢𝑘
𝜕𝑦

 

 

(5) 

  

3.2 Turbulence  

The theory behind the phenomenon of turbulence will be explained below, 

starting from the general Navier Stokes equations for single phase flow. 

 
0i

i

u

x





 

(6) 

 

 𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑗
2 + 𝑔𝑖   

(7) 

 

with i, j = 1,2,3 

Any variable (𝜙) can be characterised as the sum of its mean value (𝜙̅) and 

fluctuating value (𝜙′). Replacing all flow variables with the mean term 𝜙 ̅and a 

fluctuating term 𝜙′ in equation (7) gives  

 𝜕𝑢̅𝑖
𝜕𝑡
+ 𝑢𝑗

𝜕𝑢̅𝑖
𝜕𝑥𝑗

=
1

𝜌

𝜕𝑃̅

𝜕𝑥𝑗
+
𝜕

𝜕𝑥𝑗
(
𝜈𝜕𝑢̅𝑖
𝜕𝑥𝑗

− 𝑢′𝑖𝑢′𝑗̅̅ ̅̅ ̅̅ ̅) + 𝑔𝑖 
(8) 

 

Where the extra fluctuating term (𝑢′𝑖𝑢′𝑗̅̅ ̅̅ ̅̅ ̅) is the Reynolds Stress tensor. Equation 

(8) is known as the Reynolds Averaged Navier Stokes equation (RANS). To 

solve the RANS equation closure relations are needed for the Reynolds stresses. 

This is the area of turbulence modelling. Possible models are: 

 Spalart-Allmaras model 

 𝑘 − 𝜖 model 

 𝑘 − 𝜔 model 

 Shear Stress Transport model (SST) 

 Reynolds Stress model 
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Each of these turbulence models has their own benefits and limitations. For this 

thesis the Standard 𝑘 − 𝜔 model (SKW) and the 𝑘 − 𝜔 SST model with low 

Reynolds number corrections are used.  

The SST model is basically a combination of the SKW model and the Standard 

𝑘 − 𝜖 model (SKE). It uses blending functions to switch between either of the 

parent turbulence models. At the walls the 𝑘 − 𝜔 model is switched on and in 

the free stream locations the 𝑘 − 𝜖 model is switched on. Essentially, it reduces 

the drawbacks that both the parent turbulence models have.  The 𝑘 − 𝜔 model 

cannot accurately predict flow separation, while the 𝑘 − 𝜖 model cannot 

accurately predict velocity gradients near a wall.  

3.2.1 Baseline (BSL) Model 

As explained by Menter (1993) the SST model follows from both the parent 

models (9) - (10) as described below. The BSL model is the basic combination 

of the SKW and SKE models. 

Standard 𝒌 −𝝎 model 

The kinetic energy and specific dissipation rate transport equations for the SKW 

are as follows 

 

 *

1

ij i
k t

j j j

Dk u k
k

Dt x x x


    



   
    

    

 

(9) 

 

 

 21
1 1

ij i
t

t j j j

D u

Dt x x x


  
    

 

   
    

    

 

(10) 

 

Standard 𝒌 − 𝝐 model 

The kinetic energy and specific dissipation transport equations for the SKE are 

as follows. Note that actually the dissipation rate 𝜖 in the original equation has 

been replaced by 𝜖 = 𝑘𝜔, such that an equation for the specific dissipation rate 

ω results. 

 𝐷𝑘

𝐷𝑡
=
τij

ρ

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽∗𝜔𝑘 +
𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎𝑘2𝜈𝑡)

𝜕𝑘

𝜕𝑥𝑗
] 

(11) 

 



THEORY 

 

 16  
 

 𝐷𝜔

𝑑𝑡
=
𝛾2
𝜈𝑡

𝜏𝑖𝑗
𝜌

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽2𝜔
2 +

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎𝜔2𝜈𝑡)

𝜕𝜔

𝜕𝑥𝑗
]

+ 2𝜎𝜔2
1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
    

 (12) 

Equations (9) and (10) are multiplied by 𝐹1 and equations (11) and (12) are 

multiplied by 1 − 𝐹1 and added. The resulting 𝑘 and 𝜔 equations are: 

 

 *ij i
k t

j j j

Dk u k
k

Dt x x x


    



   
    

    

 

(13) 

 

 

 2

1 2

1
2(1 )

ij i
t

t j j j j j

D u k
F

Dt x x x x x
 

   
    

  

     
      

      

 

 

(14) 

 

Where, the model constants 𝛾1, 𝛽2… can be represented by 𝜓 with  

 𝜓 = 𝜓 1𝐹1 + 𝜓 2(1 − 𝐹1)  
 

(15) 

 

Equations (13) and (14) form the BSL SST model. The value of the blending 

function 𝐹1 dictates whether the model behaves like 𝑘 − 𝜔 (near wall) or like 

𝑘 − 𝜖 (free stream). Here, 𝐹1 is  

4

1 1tanh( )F   

Where 𝜃 is  

2
1 2 2

500 4
min max ; ;

0.09 k

k k

z z CD z





 


 

  
    

  

 

In this expression 𝑧 is the distance to the nearest wall/surface.  

𝐶𝐷𝑘𝜔 is known as the cross diffusion term and it is expressed as 

20

2

1
max 2 ,10k

j j

k
CD

x x
 







  

     

 

Each of the terms on the RHS of the BSL equations are closed as described 

below. 
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Production Terms 

The production term for the turbulent kinetic energy is 

' ' i
k ij ij

j

u
P u u

x


 


 

Where, 
' '

ij ij iju u    . According to the Boussinesq hypothesis  

2

k tP S  

Where 𝑆 is the modulus of mean strain rate tensor.  

The production term for the specific dissipation rate is  

k

t

P P




  

Dissipation Terms 

For the kinetic energy: 

*

kY k   

For the specific dissipation rate: 

2Y   

Diffusivity Terms 

For the kinetic energy: 

k k t      

For the specific dissipation rate:  

t       

Where 𝜈𝑡 is the turbulent viscosity term that is a given by  

t

k
v


  

 

Model Constants 

For the 𝑘 − 𝜔 model: 
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1 0.5k    1 0.5    1 0.075    
* 0.09   

0.41    

2

1
1 1* *

0.553

 
 

 
    

 

For the 𝑘 − 𝜖 model: 

2 1k    2 0.856   2 0.0828   
* 0.09   

0.41    

2

2
2 2* *

0.44035

 
 

 
    

3.2.2 SST Model 

Menter et al. (2003) have revised the BSL model.  This has changed the 

formulation of the turbulent viscosity, another blending function 𝐹2 was 

introduced, and the original closure coefficients are replaced by low Reynolds 

number corrections. 

Production Terms 

After numerous calculations Menter et al. (2003) modified the production terms, 

where a production limiter was added to both the production terms of the 

𝑘 and 𝜔 equations. 

The 𝑃𝑘 term changes to 

*min( ,10 )k kP P k   

The 𝑃𝜔 term changes to 

*min( ,10 )P P k     

Viscosity Term 

The expression for the shear stress as resulting from Bradshaw’s assumption is 

shown below. In this assumption the shear stress is taken proportionally to the 

turbulent kinetic energy: 

1a k   
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According to the two equation models, the ratio of the production to the 

dissipation of kinetic energy governs the shear stress in a flow as shown in the 

expression below. 

1
k

k

Production
a k

Dissipation
   

To satisfy Bradshaw’s assumption the ratio of production to dissipation should 

be equal to 1. However, in adverse pressure flows the value of the production is 

much larger the dissipation. This leads to an incorrect behaviour. Therefore, in 

order to satisfy Bradshaw’s assumption, the eddy viscosity should be 

1

1 2max( ; )
t

a k

a F






 

Where the maximum function in the denominator prevents the occurrence of a 

value of 0. The viscosity changes to the eddy viscosity assumption in one case 

and to Bradshaw’s assumption in the other.  

Here 𝑎1 = 0.31,  

Ω = √2ΩijΩ𝑖𝑗 

Where Ω𝑖𝑗 is mean strain rate tensor. 

𝐹2 is the second blending function denoted by  

2

2 2tanh( )F   

Where 𝜃2 is 

2 2

500
max 2 ;

0.09

k

y z




 

 
  

 
 

The same definition of 𝑧 carries over from equation (14). 

The only change to the blending function of 𝐹1 from the BSL to the SST is in 

the expression of its cross diffusion term. In the SST, the second term becomes 

10−10 instead of 10−20 as shown below. 

10

2

1
max 2 ,10k

j j

k
CD

x x
 







  

     
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Boundary Conditions 

Wall 

At a stationary wall, all turbulent quantities become 0, with the exception of the 

boundary condition for 𝜔:  

2

1

6
10

( )z








       at y=0 

Where Δ𝑧 is the distance between the wall and the first inner grid point.  

In the viscous sublayer however, we have: 

2

1

6

z





  

Other Constants 

For the 𝑘 − 𝜔 model: 

1 1.176k    1 2    1 0.075     

𝑎1 = 0.31  1 5 / 9   

 

For the 𝑘 − 𝜖 model: 

2 1k    2 1.168   2 0.0828    

2 0.44     

3.3 Interface Correlations 

Wilcox Low Re k-𝝎 model 

The standard 𝑘 − 𝜖 model (i.e. with low-Reynolds number modifications) 

cannot accurately predict what happens close to the walls, since the turbulent 

kinetic energy goes to zero and the value of 𝜖 tends to infinity. To overcome 

this, wall functions had been proposed by many researchers, like Spalding 

(1961), Shih et al. (1999), Nichols and Nelson (2004) and others. However, 

these wall functions are not always accurate and mostly grid dependent. The 

need to accurately predict turbulence near the walls has led to the introduction 

of 𝑘 − 𝜔 model. Building on the studies of Kolmogorov (1942) and Saffman 

(1970), Wilcox (1998) made the 𝑘 − 𝜔 model robust by adding low Reynolds 



THEORY 

21 
 

number correlations. Also, the advantage that the 𝑘 − 𝜔 equation has over the 

𝑘 − 𝜖 model is that the value of 𝜔 can be arbitrarily specified at the surface. 

Hence, incorporating surface effects like roughness becomes rather easy. 

In his low Reynolds number modification Wilcox proposed that 

𝜔 = 𝑢𝜏𝑖
2
𝑆𝑅
𝜈𝑘
    at  𝑦 = 0 

Where 𝑢𝜏𝑖  is the wall friction velocity and 𝜈𝑘 is the viscosity of the considered 

phase. 𝜔 is the specific dissipation rate and its value at the wall depends on the 

non-dimensionalized surface roughness height 𝑘𝑠
+ which is a function of the 

sand grain roughness or surface roughness 𝑘𝑠: 

𝑘𝑠
+ =

𝑢𝜏𝑖
2 𝑘𝑠

𝜈𝑘
 

𝑆𝑅 = (
200

𝑘𝑠
+)

2

       𝑖𝑓  𝑘𝑠
+ ≤ 5 

𝑆𝑅 =
100

𝑘𝑠
+ + [(

200

𝑘𝑠
+)

2

−
100

𝑘𝑠
+] 𝑒

5−𝑘𝑠
+
     𝑖𝑓  𝑘𝑠

+ > 5 

If 𝑘𝑠
+ ≤ 5 the surface is considered to be almost smooth or slightly rough. 

The boundary condition for slightly rough surfaces proposed by Wilcox (2006) 

is 

 
𝜔 =

40000𝜈𝑘

𝑘𝑠
2      𝑎𝑡   𝑦 = 0 

(16) 

 

Equation (16) was indeed incorporated in the previous MATLAB code of 

Chinello (2015). Here it was also used as a condition at the liquid-gas interface, 

where the “surface wall roughness” now in fact represents the “interface 

waviness”. However, the limitation of this approach is that the value of 𝑘𝑠 needs 

to be specified (estimated) for each case. Moreover, 𝑘𝑠 has an SI unit of metre 

(i.e. it is not dimensionless). To improve its predictability, the code must be able 

to calculate the value of the surface roughness (interface waviness) using 

existing models. These models will be discussed below. 
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3.3.1 Charnock Parameter 

As mentioned by Charnock (1955) the magnitude of roughness of ocean surface 

waves can be defined by a 𝛽 parameter value which is dimensionless: 

 
𝑘𝑠 = 𝛽 ∗

𝑢𝜏𝑖
2

𝑔
 (𝑚) 

(17) 

 

Where 𝛽 is the Charnock Parameter, 𝑔 is the acceleration due to gravity and 𝑢𝜏𝑖 
is the friction velocity at the interface, which is defined as 

𝑢𝜏𝑖 = √
𝜏𝑖𝐺
𝜌𝐺

 

Here, 𝜏𝑖𝐺 is the shear stress at the gas side of the liquid-gas interface which is 

obtained by solving the momentum equation in the gas phase (1).  

𝛽 is a dimensionless quantity and its values ranges from 0.36 to 1.05. According 

to Line et al. (1996) the higher the values of 𝛽, the deeper the ocean waves. 

There are different definitions of 𝛽 given in the literature. For example, Espedal 

(1998) has used an additional factor of 30 which significantly reduces the value 

of 𝛽. Fitreman and Rosant (1981) have tested empirically that the value of 𝛽 in 

formulation (17) for pipe flows ranges from 0.1-0.2 for smooth to wavy flows. 

Although using Equation (17) resolves the issue of having a dimensional input 

parameter, it is left to the user to know beforehand whether the flow is smooth 

or wavy. Hence, in an effort to completely automate our simulation model 

literature from Oliemans (1987), Fernandez-Flores (1984) and Cohen & 

Hanratty (1968) has been studied. 

3.3.2 Models for Surface Roughness 

Taking ideas from the Charnock modification for interfaces, various researchers 

have derived their own definitions of the surface roughness (interface 

waviness), such as Cohen & Hanratty (1968), Fernandez-Flores (1984), 

Fitreman & Rosant (1981), Oliemans (1987), Baker & Gabb (1988) and Srichai 

(1994). 

Cohen & Hanratty (1968) have shown that the surface roughness to mimic the 

interface can be given as a function of the root mean square of wave 

fluctuations, Δℎ:  

𝑘𝑠 = 3 √2Δℎ  (𝑚) 
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Fernandez-Flores (1984) specified another relation for the surface roughness, 

which was dependant on: the root-mean-square (RMS) wave fluctuations, the 

friction velocity at the interface, the gas phase viscosity  𝜈𝑔 and the hydraulic 

diameter  𝐷ℎ𝐺: 

𝑘𝑠 = δ√2 [1 − (
56𝜈𝑔
𝑢𝜏𝑖𝐷ℎ𝐺

)

2

] 

This expression was formulated for pipe flows, but it can also be applied to 

channel flows. 

Another model for stratified wavy flows was proposed by Oliemans (1987) in 

which the surface roughness is specified as 

𝑘𝑠 = 3√2 2δ     , 2δ < ℎl 

𝑘𝑠 = 3√2 ℎ𝑙     , 2δ ≥ ℎ𝑙 

Where δ is the RMS wave amplitude. It is related to the wave amplitude ℎ′  
according to: 

δ =
ℎ′

√2
 

Pots et al. (1988) describe an expression for the wave amplitude obtained by 

fitting the measured amplitude from the experiments carried out by Kordyban 

(1974). The maximum wave amplitude is 5.06 mm. The modelled wave 

amplitude (with the unit m) is dependent on the superficial gas velocity 𝑈𝑆𝑔 and 

the interfacial velocity 𝑈𝑖𝑛𝑡: 

ℎ′ =
0.00506

2
(1 + tanh [

(|𝑈𝑆𝑔 − 𝑈𝑖𝑛𝑡| − 4.572)

1.2192
]) 
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4 
MODELLING 

4.1 MATLAB 

MATLAB 2014b was used to solve the 1D code. The results were compared 

with experimental data from Fabre et al. (1987) and from Akai et al. (1980). 

The flow chart in Figure 4.1 describes the sequential order in which the 

numerical model is solved in MATLAB. 

4.1.1 Sequential Order of the Program 

Before proceeding to give an overview of the MATLAB model, we note that 

there are two ways to solve for the flow profile: 

- Method 1: The gas and liquid flow rates are used as the specified 

conditions. 

- Method 2: The pressure gradient and liquid level are used as the specified 

conditions. 

Method 1 is most natural to simulate industrial applications and lab experiments 

where flow rates are imposed and the pressure gradient and liquid level/holdup 

are measured. MATLAB uses the Newton-Raphson iteration scheme to obtain 

the output. This means that first pressure gradient and liquid level are estimated 

and the flow rates follow as results. The estimate for the pressure gradient and 

liquid level is iteratively updated until the desired flow rates are found (within a 

certain convergence criterion). 

Method 2 is computationally faster than Method 1, because there is no need for 

the root-finding as the values of flow rates are directly obtained as output when 

using the pressure drop and liquid level as the specified input conditions. 
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Figure 4.1: Flow chart of the MATLAB model (Method 1). 

The following steps are part of the solutions procedure of Method 1: 

1. The specified flow parameters are stored and estimated values for the 

pressure gradient and liquid level are used as input parameters to start the 

iteration process 

2. Grid generation 

3. Turbulence constants are defined 

4. Transport equations are solved 

5. Tolerance condition is checked. If the residuals are within the tolerance 

limit, proceed to 6. If not, use new values for the turbulence viscosity and 

solve the transport equations again until the convergence criterion is 

satisfied. 

6. The flow rates obtained from the calculation are compared with the 

specified values. If the percentage difference is under the desired small 

limit the solution is found. If not, change the values for the pressure 

gradient and liquid level (using the Newton-Raphson method) and go 

back to step 2. 

More details on the steps above are given in subsequent sections. 

The flow profile is steady and fully developed; this means that there is no 

velocity component in the y-direction. 

In Figure 4.1 it is assumed that the flow rates are specified. The first stage 

involves entering the input data: flow rates and physical properties of the gas 

and liquid (i.e. density, viscosity), and estimated values for the pressure gradient 
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and liquid level. In the next stage the bi-exponential grid is created; details on 

the grid will be given in section 4.1.2. The transport equations are solved on this 

grid in the following order: velocity 𝑢, turbulent kinetic energy 𝑘 and specific 

dissipation rate 𝜔. The Thomas Algorithm is used to solve the transport 

equations shown in section 4.1.3. 

There are four loops: three inner loops for each transport equation and one outer 

loop to check the tolerance. The inner loops run over all the grid cells. The outer 

loop runs until either the specified maximum value has been reached or the 

residuals are under the pre-set value of the tolerance. Here, the tolerance is set 

as 10−5. If the residuals are less than the tolerance, then the solution output is 

reported. Further details will be given in section 4.1.4. 

Important output quantities include the pressure gradient, the liquid level, the 

profile of the transport variables along the height of the channel, and the value 

of the effective roughness at the liquid-gas interface. 

4.1.2 Grid  

To obtain accurate results at the walls and at the interface there is a need for a 

locally refined grid. Thereto a bi-exponential grid is used. This is a combination 

of two exponential grids: one for each phase. The refinement at each wall can 

be manually altered. Figure 4.2 shows the bi-exponential grid for a channel with 

a height of 0.1 m and an interface located at y= 0.038 m. 

The ratio between two successive grid cells for one phase, say the gas, is equal 

to 

𝑅 =
ℎ𝑗+1
ℎ𝑗

= 𝑒
10
𝑛𝑦
(𝛼𝑚−0.5)

 

Here, 𝑛𝑦 is the total number of grid cells and 𝛼𝑚 is the grid refinement variable 

that has two different values for the upper and lower half of each phase. In this 

way the size of each cell is related to the size of the first cell according to: 

ℎ𝑗 = ℎ1𝑅
𝑗−1 

The total height of the gas layer is therefore given by 

𝐻 − ℎ =∑ℎ𝑗

𝑛𝑦

𝑗=1

 

The height of the gas layer in terms of the first cell is  
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𝐻 − ℎ = ℎ1∑𝑅𝑗−1

𝑛𝑦

𝑗=1

= ℎ1
1 − 𝑅𝑛𝑦

1 − 𝑅
 

(18) 

 

Figure 4.2: Bi-exponential grid. 

The following steps have been implemented to create the grid: 

 The value of 𝑅 is calculated based on the number of cells and of the 

refinement parameter. 

 The height of the first cell is calculated from ℎ1 = (𝐻 − ℎ)
1−𝑅

1−𝑅𝑛𝑦
 

 Subsequent heights of every cell can then be calculated from ℎ𝑗 =

ℎ1𝑅
𝑗−1 

 The cell nodes are then 𝑦𝑗+1 = 𝑦𝑗 + ℎ𝑗  

 The cell centres are 𝑦𝑐,𝑗 = 𝑦𝑗−1 + (𝑦𝑗 − 𝑦𝑗−1)/2  

Similarly, a second exponential grid with a different value of 𝛼𝑚 is created for 

the liquid phase. Both of these grids are combined and therefore form the bi-

exponential grid.  
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4.1.3 Discretisation 

The discretisation scheme that is used is the finite difference method for a non-

equidistant grid. The second order central differencing scheme is adopted. 

 
(
𝜕𝜙

𝜕𝑦
)
𝑗

=
𝜙𝑗+1 − 𝜙𝑗−1
𝑦𝑗+1 − 𝑦𝑗−1

 

 

(19) 

Here 𝜙 is any flow parameter. Finite differences are also used to discretise the 

diffusion term 𝜁 from (
𝜕

𝜕𝑦
𝜁 (

𝜕𝜙

𝜕𝑦
)):   

 

(
𝜕

𝜕𝑦
𝜁 (
𝜕𝜙

𝜕𝑦
))

𝑗

=

𝜁 (
𝜕𝜙
𝜕𝑦
)
𝑗+
1
2

− 𝜁 (
𝜕𝜙
𝜕𝑦
)
𝑗−
1
2

𝑦
𝑗+
1
2
− 𝑦

𝑗−
1
2

 

(20) 

where 𝑗 denotes the cell centre, and  𝑗 +
1

2
  and 𝑗 −

1

2
 denote nodes. 

Substitution of eq. (19) into eq. (20) gives 

 

(
𝜕

𝜕𝑦
𝜁 (
𝜕𝜙

𝜕𝑦
))

𝑗

=

𝜁
𝑗+
1
2

𝜙𝑗+1 − 𝜙𝑗
𝑦𝑗+1 − 𝑦𝑗

− 𝜁
𝑗−
1
2

𝜙𝑗 − 𝜙𝑗−1
𝑦𝑗 − 𝑦𝑗−1

𝑦
𝑗+
1
2
− 𝑦

𝑗−
1
2

 

(21) 

To iteratively solve the system of equations the Tri Diagonal Matrix Algorithm 

(TDMA), also known as the Thomas Algorithm, is used:  

𝑇𝜙 = 𝑅𝐻𝑆 

Where 𝑇 is the tri-diagonal matrix, 𝜙 is the flow variable and 𝑅𝐻𝑆 is any source 

term or constant term. 

Simplifying (21) results in a system of equations  

 
(
𝜕

𝜕𝑦
𝜁 (
𝜕𝜙

𝜕𝑦
))

𝑗

= 𝑎𝑗𝜙𝑗−1 + 𝑏𝑗𝜙𝑗 + 𝑐𝑖𝜙𝑗+1 
(22) 

where the coefficients are 

𝑎𝑗 =

𝜁
𝑗−
1
2

(𝑦𝑗 − 𝑦𝑗−1)(𝑦𝑗+1
2
− 𝑦

𝑗−
1
2
)
  

 𝑏𝑗 = −𝑎𝑗 − 𝑐𝑗     
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𝑐𝑗 =

𝜁
𝑗+
1
2

(𝑦𝑗+1 − 𝑦𝑗)(𝑦𝑗+1
2
− 𝑦

𝑗−
1
2
) 

 

 

 𝑎𝑗𝜙𝑗−1 + 𝑏𝑗𝜙𝑗 + 𝑐𝑗𝜙𝑗+1 = 𝑅𝐻𝑆𝑗 (23) 

To solve this system a two-step method with forward elimination and backward 

substitution is used.  

Table 4.1 shows the values of each of the coefficients in the SST model. 

Table 4.1: Coefficients and RHS for equation (23). 

𝝓 𝚪 𝒃𝒋
∗ 𝑹𝑯𝑺𝒋 

𝑢 𝜈 + 𝜈𝑡 -𝑎𝑗 − 𝑐𝑗 [
1

𝜌

𝜕𝑝

𝜕𝑥
]
𝑖

 

𝑘 𝜈 + 𝜎∗𝜈𝑡 -𝑎𝑗 − 𝑐𝑗 min [𝜈𝑡 (
𝑢𝑗+1−𝑢𝑗−1

𝑦𝑗+1−𝑦𝑗−1
)
2

, 10𝛽𝑗
∗𝑘𝑗𝜔𝑗]+𝑌𝑘 

𝜔 𝜈 + 𝜎𝜈𝑡 -𝑎𝑗 − 𝑐𝑗 − 𝛽𝑗𝜔𝑗,𝑜𝑙𝑑 𝐶𝐷𝑘𝑤 +min [𝛼𝑗 (
𝑢𝑗+1 − 𝑢𝑗−1

𝑦𝑗+1 − 𝑦𝑗−1
)

2

, 10𝛽𝑗
∗𝑘𝑗𝜔𝑗] 

4.1.4 Boundary Conditions 

The following boundary conditions were included: 

1. Periodic boundary conditions in streamwise direction. 

2. The Wilcox (2006) slightly rough wall boundary condition at the 

interface. 

3. A zero value of the turbulent quantities at the wall except for 𝜔 which is 

𝜔 = 10
6𝜈

𝛽1(Δ𝑧)
2
    at the wall 

𝜔 =
6𝜈

𝛽1𝑧
2
     in the viscous sublayer 

The values for 𝛽1, Δ𝑧 and 𝑧 were given in Chapter 3. 

Note that the 𝑦+ < 5 for all simulations 

4.1.5 Newton-Raphson Scheme 

The Newton-Raphson iterative scheme is commonly considered as the fastest 

iterative root-finding method.  

The convergence criterion that was applied is our study is 
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|𝑄𝐺𝑖𝑛𝑝𝑢𝑡 − 𝑄𝐺|

𝑄𝐺𝑖𝑛𝑝𝑢𝑡
< 0.0005    and    

|𝑄𝐿𝑖𝑛𝑝𝑢𝑡 − 𝑄𝐿|

𝑄𝐿𝑖𝑛𝑝𝑢𝑡
< 0.0005 

The values for the gas and liquid flow rates are: 

 
𝑄𝐺 = 𝑊∫ 𝑢

𝐻−ℎ

ℎ

𝑑𝑦              𝑄𝐿 = 𝑊∫ 𝑢
ℎ

0

𝑑𝑦     
(24) 

Where W is the width of the channel. As long as at least one of the conditions is 

not satisfied, then the estimate of the pressure gradient and of the liquid level is 

updated. This is done through calculating derivatives that are part of the 

Newton-Raphson procedure, which is as follows. First the pressure gradient is 

slightly disturbed according to  

 
(
𝑑𝑝

𝑑𝑥
)
𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑

= (
𝑑𝑝

𝑑𝑥
)
𝑜𝑙𝑑
+ C 

(25) 

   

Where C is a constant with a small value, chosen as 10−3. The flow is solved 

again with this new pressure gradient term, whereas the liquid level remains at 

its old value.  

After the flow is solved the partial derivatives of the flow rates with respect to 

the pressure gradient are stored: 

 𝜕𝑄𝐺
𝜕𝑝

          and        
𝜕𝑄𝐿
𝜕𝑝

 
(26) 

Hereafter the value for the liquid level is disturbed as 

 ℎ𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 = ℎ𝑜𝑙𝑑 + C (27) 

The flow is now recalculated using the disturbed h value and the old pressure 

gradient.  The calculated partial derivatives of the flow rates with respect to the 

liquid level are stored  

 𝜕𝑄𝐺
𝜕ℎ

          and        
𝜕𝑄𝐿
𝜕ℎ

 
(28) 

To obtain the real change in the pressure gradient and liquid level the following 

system of equations is solved 

 

(

 

𝜕𝑄𝐺
𝜕ℎ

       
𝜕𝑄𝐿
𝜕ℎ

𝜕𝑄𝐺
𝜕𝑝

       
𝜕𝑄𝐿
𝜕𝑝 )

 (
𝑑ℎ
𝑑𝑝
) = (

𝑄𝐺𝑖𝑛𝑝𝑢𝑡 − 𝑄𝐺

𝑄𝐿𝑖𝑛𝑝𝑢𝑡 − 𝑄𝐿
) 

    

(29) 

The values of 𝑑ℎ and 𝑑𝑝 are calculated and herewith the old values of pressure 

gradient and liquid level are updated and used in the next iteration of the 
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Newton-Raphson scheme. This iterative process is continued until convergence 

is obtained. The MATLAB code is given in Appendix A. 

4.2 ANSYS Fluent 

The second software tool that is used for the comparisons is ANSYS 

Workbench 16.1. The geometry was constructed with the DesignModeler, the 

meshing was carried out with ANSYS Meshing, and the fluid flow calculations 

were performed with Fluent. Similar to the previous section a brief overview of 

the modelling of the channel flow and the pipe flow will be given here.  

 

Figure 4.3: ANSYS working sequence. 

Figure 4.3 is the workflow that is applicable to all the simulations with ANSYS 

both for the 2D or 3D simulations. Since Fluent is the main module, from now 

on the simulations in ANSYS will be referred to as ‘Fluent’ simulations. 

The modelling for the 2D channel and for the 3D pipe flow will be discussed 

separately. 
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4.2.1 DesignModeler 2D 

The DesignModeler is a convenient software tool to construct simple 

geometries. Using the sketching tool, a 2D channel flow geometry was built. 

Periodic boundary conditions were applied, and therefore the flow depends only 

on the vertical (height) coordinate. For the sake of convenience, the Fabre run 

250 will be taken as an example. Here, the channel height is 0.1 m and the 

channel width is 0.2 m. There is also a very small inclination of -0.0572o.  

The gas and the liquid region are separated at the interface, which was at a 

height of 0.038 m. This can be seen in Figure 4.4. 

 

Figure 4.4: Geometry for Run 250 of Fabre et al.(1987) 

4.2.2 ANSYS Meshing 2D 

The channel grid is constructed with ANSYS meshing. Different grid sizes are 

tested to ensure grid independence of the results. The problem is essentially a 

1D problem, since periodic boundary conditions eliminate the length 

coordinate. Hence, there are only two cells used along the length coordinate. 

The height coordinate has grid cells that are distributed with the bi-exponential 

distribution. This is to ensure an accurate representation of the shear stress at the 

interface and at the walls, while using the 𝑘 − 𝜔 boundary conditions. The 

channel width is not included in the CFD simulation. 

To ensure that the results are accurate, it is necessary to verify the grid 

dependence. Three cases with different grid cells are compared, using 100, 200 

and 300 cells. The number of cells is only changed in the height direction, while 

the number of cells in the streamwise direction remains the same (namely 2).   
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The example case of Run 250 by Fabre et al. is shown in Figure 4.5, where the 

standard 𝑘 − 𝜔 model is used. It is clear that the velocity profiles are in good 

agreement when using 200 and 300 cells. The use of 200 cells is made as a 

default choice for all the simulations since this gives a good accuracy at a fair 

computation time. 

 

Figure 4.5: Velocity profile comparisons for different grid sizes. 

The face meshing scheme and the bi-exponential grid can be seen in Figure 4.6. 

The decreased grid spacing in the figure marks the walls and interface. The 𝑦+ 

values close to the walls are under 5, which is required for the 𝑘 − 𝜔 turbulence 

models to run smoothly. The total flow rates and the 𝑦+ values are also 

compared and they are summarized in Table 4.2. 
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Figure 4.6: Fluent grid. 

Table 4.2: Grid dependence results. 

Number of 
Grid Cells 

Total Flow 
Rate [m3/s] 

y+ at top 
wall 

y+ at bottom 
wall 

100 0.38 4 5 

200 0.31 1.5 3.5 

300 0.32 1.5 4 

4.2.3 Fluent 2D 

The flow calculations are done in Fluent, using the steady-state, pressure-based 

solver. The Fluent results will be compared with the MATLAB simulations. 

The applied model details in Fluent for the 2D simulation are listed in Table 4.3.  

Table 4.3: Fluent parameters for the 2D simulations. 

Simulation Setup Choice 

Solver Steady State, Pressure Based 

Multiphase VOF 

Phases Air & Water 

Turbulence 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑘 − 𝜔 & 𝑆𝑆𝑇 𝑘 − 𝜔  

Boundary Conditions Periodic and Wall boundary 

Discretisation Schemes 
𝑢, 𝑘, 𝜔 

First Order Upwind 

Pressure-Velocity Coupling Simple 

Under Relaxation Factors Low 
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The Volume of Fluid (VOF) method can track the interface with a good 

accuracy. It uses the volume fraction of a phase to identify the location of the 

interface, and the interface is reconstructed using the compressive method.  

Both the turbulence models Standard 𝑘 − 𝜔 and 𝑘 − 𝜔 SST are used. Low 

Reynolds number terms are switched on for a higher accuracy near the walls. 

Even though there is a small inclination of the channel (for the Fabre case) the 

effect of gravity is noticeable. Hence, gravity is switched on. 

The periodic boundary conditions are prescribed at the inlet and the outlet of the 

channel. The pressure gradient is then imposed. When periodic boundary 

conditions are chosen in Fluent, it is not possible to impose flow rates, and 

instead only the pressure gradient and the liquid level can be imposed. This is a 

limitation of Fluent. Besides this, regular wall boundary conditions were 

imposed at the walls, with no slip and zero kinetic energy. 

Since there is no advection there is no need for a second order discretisation 

scheme. At the default setting of the underrelaxation factors (URFs) the 

residuals did no longer reduce after a certain number of iterations, and they 

showed a non-converging oscillating behaviour. To ensure that convergence 

was reached, the URFs for the transport variables had to be reduced by factors 

ranging between 4 and 8.  

Convergence is checked in two ways: 

1. Residuals must be below 10−6 for all variables.  

2. Verification of balance of pressure gradient with wall shear stress and 

gravity  

 𝑑𝑝

𝑑𝑥
=
𝑑𝑝

𝑑𝑥𝑔𝑟𝑎𝑣
+
𝜏𝑤𝑎𝑙𝑙𝑠
𝐻

 
(30) 

 

4.2.4 UDF Description 

The goal is to compare results with Fluent and MATLAB for the two phase 

model with the SKW turbulence model. This requires using the same interface 

condition in Fluent as is used in MATLAB. To enable imposing this interface 

condition in Fluent the UDF functionality needs to be used. 

Any Fluent program can be customised to a certain degree by the user with the 

help of User Defined Functions (UDFs). For our purposes the UDF should 

dampen the turbulent viscosity at the interface. This can be done by adding a 

large 𝜔 source term. Another way might be to tweak the 𝜔 profile. 
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DEFINE_SOURCE can add a source term to the transport equations and 

DEFINE_PROFILE can tweak the profile. Yet another way can be to adjust the 

value of 𝜔𝑖 at the interface at every iteration through using DEFINE_ADJUST. 

Initially all of them seemed to be promising options. However, upon closer 

evaluation the first two had some drawbacks. In the case of DEFINE_SOURCE, 

a source term would be added to the entire domain and not just at the interface. 

The case of DEFINE_PROFILE is incompatible with the application of periodic 

boundary conditions. The definition of DEFINE_PROFILE states that an initial 

entry profile can be described for any of the transport variables. But this turns 

out to be only possible with regular boundary conditions. 

In this thesis the DEFINE_ADJUST UDF is used to impose a value of 𝜔 at the 

interface similar to what MATLAB does. The different locations where the 

UDFs are called in a Fluent program can be seen in Figure 4.7. 

DEFINE_ADJUST is called at every iteration and the flow variables (velocity, 

turbulent kinetic energy etc.) are modified accordingly. The UDF is given in 

Apeendix B 

  

Figure 4.7: Sequential order of UDF execution in Fluent. 

4.3 ANSYS Fluent 3D 

The simulations conducted in Fluent are compared with the experimental cases 

of Birvalski et al. (2014) and DNS results of Mehdi Niazi (2014). The RANS 

simulations with Fluent are only carried out for the liquid layer having a 

prescribed shear stress at the top wall. This is similar to what was done in the 
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DNS simulations of Mehdi Niazi. These simulations are called the segregated 

liquid phase (SLP) simulations. 

What follows is the geometrical and meshing description of the simulation 

setup. 

4.3.1 Geometry and Meshing 

In the geometry shown in Figure 4.8 the diameter of the horizontal pipe is 50 

mm and the height of the horizontal SLP section is 18 mm. The structured 

geometry has a similar square as used in the corresponding mesh shown in 

Figure 4.9. This is done using ANSYS Meshing. The streamwise direction in 

Figure 4.8 is the positive z direction. 

 

Figure 4.8: Geometry of 3D cases. 

The magnitude of the dimension in the streamwise direction is not important, 

since periodic boundary conditions are used. 
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Figure 4.9: Meshing for 3D cases. 

4.3.2 Simulation Setup 

The Fluent simulation setup for the 3D case is similar to the Fluent 2D case. 

The specifications for the 3D case are given in Table 4.4.  

Table 4.4: Specification for 3D cases in Fluent. 

Simulation Setup Choice for SLP 

Solver 
Steady State, Pressure 

Based 

Multiphase n/a 

Phase Water 

Turbulence Standard 𝑘 − 𝜔 

Boundary Conditions 
Periodic, Specified Shear & 

Wall boundary 

Discretisation Schemes 
𝑢, 𝑘, 𝜔 

Second Order Upwind 

Pressure-Velocity Coupling Simple 

Under Relaxation Factors Default 

 

Periodic boundary conditions were imposed at the inlet and the outlet, using the   

water flow rate as input for the SLP case. A specified shear stress is included at 

the top boundary of the computational domain. The convergence criterion is set 

to 10−9 for all variables.  
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4.3.3 Segregated Liquid Phase (SLP) Case 

The Segregated Liquid Phase means that the liquid phase is separated from the 

pipe and is simulated by imposing the shear stress. This shear stress is actually 

in balance with the wall shear stress for the gas layer on the top wall of the pipe 

and the pressure gradient along the gas layer. 

Theoretically speaking, for a stratified flow this simulation method for the 

Segregated Liquid Phase should be possible as long as there are no waves at the 

interface. The waves created at the interface move at about the same speed as 

the liquid layer. Therefore, for the liquid layer it appears as if these waves do 

not exist. However, for the gas layer the waves move at a different velocity. 

This is also why a ‘Segregated Gas Phase’ case cannot be simulated in the same 

way. 

Previously, DNS simulations were conducted by a Master Student, Mehdi 

Niazi, (Niazi, 2014), at TU Delft. This simulation considered the SLP case 

mentioned above. These simulations were compared with the experimental 

results of Birvalski et al. (2014). Details of the experimental setup and of other 

related quantities are given below. 

The experimental setup consisted of a pipe that had a radius of 25 mm and the 

height of the liquid layer is 17.31 mm counted from the bottom of the pipe to 

the interface. The cross section of the numerical domain is shown in Figure 

4.10. Here, 𝑎 is the height of the liquid level, 𝑏 is the half the length of interface 

(the top wall of the computational domain), 𝑅 is the radius of the pipe and 𝑥 is 

the horizontal distance counted from the centre of interface (the top wall of the 

computational domain). 
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Figure 4.10: Cross section of the SLP. 

 

The experimental interfacial shear stress as reported by Birvalski et al. (2014) is  

𝜏𝑖 = 0.0107 𝑁/𝑚
2 

Therefore, the shear velocity can be given as follows 

𝑢𝜏𝑖 = √
𝜏𝑖  

𝜌
= 0.00327𝑚/𝑠 

The Reynolds number as used by Niazi is as follows 

𝑅𝑒𝜏 =
𝑎𝑢𝜏𝑖
𝜈
= 54 

Where 𝑎 is the height of the liquid layer and 𝜈 is the kinematic viscosity of 

water.  

The flow rate of the water was 5 lit/min.  

Periodic boundary conditions were imposed at the inlet and outlet, with the 

given flow rate and a guessed value for the pressure gradient.  

The top wall was defined as a moving wall with a shear that is specified as 

follows: 
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(31) 

 

This relation holds for positive 𝑥 values. For negative 𝑥 values 𝑥 should be 

replaced by –𝑥. 

This ensures a constant wall shear stress for most of the interface and a 

parabolically decreasing value when one gets closer to the ends. This shape is 

added to Fluent using a UDF. The UDF is given the Appendix C. 

Some important assumptions to be noted are: 

1. Transfer of momentum across the interface occurs only by means of 

viscous diffusion. 

2. No vertical movement at the interface, i.e.  𝑢𝑦 = 0. 

The model was run with DNS for two cases, namely a laminar case and a 

turbulent case. However, at this 𝑅𝑒𝜏 of 54, the flow is in the transitional regime. 

The turbulence at this Reynolds number was difficult to simulate. Every 

simulation seemed to end up in the fully laminar regime. Therefore, Niazi 

started with a 𝑅𝑒𝜏 of 162, which was completely turbulent, and then reduced the 

𝑅𝑒𝜏 down to 54. This trick ensured that the DNS simulations ended up with 

turbulence.  

This is, however, not of importance to our simulations, as these use the RANS 

equations. This essentially ensures the presence of turbulent eddies at 𝑅𝑒𝜏 of 54. 
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5 
RESULTS 

5.1 Modifications to improve the channel flow results 

As mentioned in Chapter 2, the surface roughness factor is imposed at the 

interface. Note that making this model independent of a user-input value for the 

surface roughness was one of the goals of this thesis. The value of 𝜔𝑖 is 

calculated from the 𝑆𝑅 expression mentioned in Chapter 2. What follows is the 

comparison and testing of different models from the literature, including 

Charnock (1955), Cohen & Hanratty (1968), Fernandez-Flores (1984) and 

Oliemans (1987). 

The experimental cases from Fabre et al. (1987) will be used as the test cases to 

show the improvements in the modelling.  

5.1.1 Surface Roughness Results  

We started with the implementation of the Charnock parameter to calculate the 

value of the surface roughness. The relation of the surface roughness in the 

Charnock parameter is shown below. 

𝑘𝑠 =
𝛽𝑢𝜏𝑖

2

𝑔
(𝑚) 

Where the friction velocity is 𝑢𝜏𝑖 = √
𝜏𝑖𝐺

𝜌𝐺
 . The value of the shear stress at the 

interface is obtained from the pressure drop equation along the pipe, applied to 

the gas layer. 

𝛽 is a dimensionless quantity and its value ranges from 0.36 to 1.05.   

Next, we use the models given by Cohen & Hanratty (1968), Fernandez-Flores 

(1984) and Oliemans (1987) to represent the surface roughness. These models 

are functions of the wave amplitudes. Cohen & Hanratty (1968) and Fernandez-

Flores (1984) obtained their expression through experiments and empirical 
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calculations for channel flows. Oliemans (1987) on the other hand obtained the 

value of the surface roughness through calculations for pipe flows.  

Tables 5.1, 5.2 and 5.3 show the formulae for each of these models for the 

different cases of Fabre et al. (1987). The predictions with the model of 

Charnock (1955) give the closest comparison to the experimental values for the 

pressure drop and liquid level, followed by the Oliemans (1987) model. The 

Fernandez-Flores (1984) model does not give a close comparison, mainly 

because of the large under prediction of the surface roughness for all cases. 

The simulations were carried out with the MATLAB tool using the standard 

𝑘 − 𝜔 model. 

 

Table 5.1: Simulation results compared with Run 250 by Fabre et al.; the prescribed superficial 

velocities are VSL= 0.15 m/s and VSG= 2.27 m/s. 

 Experiment Charnock 
Cohen & 
Hanratty 

Fernandez-Flores Oliemans 

Quantity Run 250 

𝑘𝑠

=
𝛽𝑢𝜏𝑖

2

𝑔
(𝑚) 

𝑘𝑠 = 3√2𝛿 

(𝑚) 

𝑘𝑠

= 𝛿√2 [1 − (
56𝜈𝐺

𝑢𝜏𝑖
∗ 𝐷ℎ𝐺

)

2

] 

(𝑚) 

𝑘𝑠
= 3√2. 2δ 

 2δ < ℎl 

𝑘𝑠
= 3√2. ℎ𝑙  
2δ ≥ ℎ𝑙 
(𝑚) 

Pressure  
Gradient  
(Pa/m) 

2.1 1.54 1.42 1.4 1.43 

Liquid Level  
(m) 

0.038 0.0363 0.0365 0.0363 0.0366 

Surface  
Roughness 
(m) 

5E-4 3.5E-3 3.38E-4 7.8E-5 4.7E-4 
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Table 5.2: Simulation results compared with Run 400 of Fabre et al.; the prescribed superficial 

velocities are VSL= 3.77 m/s and VSG= 0.15 m/s. 

 Experiment Charnock 
Cohen & 
Hanratty 

Fernandez-Flores Oliemans 

Quantity Run 400 

𝑘𝑠

=
𝛽𝑢𝜏𝑖

2

𝑔
(𝑚) 

𝑘𝑠 = 3√2𝛿 

(𝑚) 

𝑘𝑠

= 𝛿√2 [1 − (
56𝜈𝐺

𝑢𝜏𝑖
∗ 𝐷ℎ𝐺

)

2

] 

(𝑚) 

𝑘𝑠
= 3√2. 2δ 

 2δ < ℎl 

𝑘𝑠
= 3√2. ℎ𝑙  
2δ ≥ ℎ𝑙 
(𝑚) 

Pressure  
Gradient  
(Pa/m) 

6.7 5.2 3.4 3.13 3.53 

Liquid Level  
(m) 

0.0315 0.0291 0.0328 0.0335 0.0325 

Surface  
Roughness 
(m) 

0.0154 0.0152 3.1E-3 8E-4 4.2E-3 

 

Table 5.3: Simulation results compared with Run 600 of Fabre et al.; the prescribed superficial 

velocities are VSL= 5.93 m/s and VSG= 0.15 m/s. 

 Experiment Charnock 
Cohen & 
Hanratty 

Fernandez-Flores Oliemans 

Quantity  Run 600 

𝑘𝑠

=
𝛽𝑢𝜏𝑖

2

𝑔
(𝑚) 

𝑘𝑠 = 3√2𝛿 

(𝑚) 

𝑘𝑠

= 𝛿√2 [1 − (
56𝜈𝐺

𝑢𝜏𝑖
∗ 𝐷ℎ𝐺

)

2

] 

(𝑚) 

𝑘𝑠
= 3√2. 2δ 

 2δ < ℎl 

𝑘𝑠
= 3√2. ℎ𝑙   
2δ ≥ ℎ𝑙  
(𝑚) 

Pressure  
Gradient  
(Pa/m) 

14.8 13.08 10.7 7 11.6 

Liquid Level  
(m) 

0.0215 0.0213 0.0233 0.028 0.022 

Surface  
Roughness  

(m) 
0.018 0.0157 0.0126 4E-3 0.0154 

 

The formula for the RMS wave amplitude 𝛿 is obtained from Pots et al. (1988) 

as mentioned in Chapter 3. 
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The values for the pressure drop and liquid level predicted by the model of 

Charnock (1955) are closest to the experiment, but that model applies a value 

for 𝛽 that is user-specified. The three values for 𝛽 were chosen as low, medium 

and high: 0.39, 0.66 & 0.97. Where low, medium and high corresponded to a 

smooth, a slightly wavy and a rough interface Berthelsen & Ytrehus (2005). 

This means that the procedure cannot be automated and it is still left to the user 

to know beforehand whether the interface should be wavy or smooth. Therefore, 

the results obtained from the other three models are more valuable in terms of 

the accuracy of the physics.  

The comparison of the surface roughness for each of these models is shown in 

Figure 5.1. The values shown in the magenta circles represent the experimental 

values of the gas flow rate for each of the Runs 250, 400 & 600. There is a large 

underprediction of the value of surface roughness for all the models for the 

Runs 250 & 400. This results in an underprediction of the gas flow rate as well. 

The predictions for Run 600 are better than for the other runs. This is because 

the surface roughness models are known to give better predictions when the gas 

flow rate increases (see Espedal, 1998). All models give a plateau level for the 

surface roughness (wave height) at high gas flow rates.   

 

Figure 5.1: Surface roughness modelling for the experimental cases by Fabre et al. 

All the models underpredict the amplitude of the interface waves (represented 

as surface roughness). This thus leads to smaller waves in the models than in the 

experiments.  This gives a too low turbulent viscosity and a too high value of 

the specific dissipation rate. This gives a too low pressure drop in the 
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simulations. The inaccurate prediction of the 𝜔𝑖 thus shows why the pressure 

drop is not the same as in the experiments. 

Note that the “MATLAB” & “Fluent” models (SKW & SST) are called 

Modified MATLAB models. Modified means that the Wilcox (2006) 𝜔𝑖 value 

is being imposed at the interface. Henceforth, all Modified Models will be 

prefixed with ‘M’ and all non-modified models will be prefixed with ‘NM’. 

A sensitivity analysis for Run 600 was carried out by varying the value of 𝑘𝑠. 
The predicted velocity profiles are shown in Figure 5.2. The pressure drop and 

liquid level were fixed in Figure 5.2 (a). The gas and liquid flow rates were 

fixed in Figure 5.2 (b). Figure 5.2 (c) is a regular prediction of two phase flow, 

without the Wilcox (1998) modification at the interface. The value of 𝑘𝑠 is 

increased starting from 0.0005 m (blue profile) and ending at 0.0805 m (red 

profile).  The red profiles of 5.2 (a) and (b) look similar to that of 5.2 (c). This 

shows that the NM SKW model produces excess turbulence at the interface and 

results in a wavy/rough interface. The following can be concluded from this 

sensitivity analysis:  

1. For the same pressure drop, an increased wave height at the interface 

gives a smaller gas throughput. This is as expected. Vice versa, a fixed 

gas flow rate will give more pressure drop if the wave height is increased. 

2. The asymmetry in the gas velocity profile increases with increasing 

height of the interface waves. This is shown by the movement of the 

location of the velocity maximum to the upper wall when 𝑘𝑠 is increased. 

This is because the upper wall remains smooth whereas the apparent 

roughness at the interface increases. The boundary conditions thus 

become more and more asymmetric for increasing 𝑘𝑠. 
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(a)                              (b) 

 

(c) 

Figure 5.2: The effect of changing 𝑘𝑠 values on the velocity profiles. (a). Given pressure drop (b). 

Given flow rate (c). Non modified velocity prediction 

The predicted velocity profiles, using various correlations for the wave height at 

the interface (surface roughness) are shown in Figure 5.3. While the predicted 

velocities of the liquid phase are in good agreement with the experiments, the 

velocities of the gas phase show considerable deviations. Since the interface is 

smooth for Run 250 the surface roughness effect is not significant. The gas 

throughput measured in Run 250 is higher than in the simulations. This is 

because of the finite width of the channel which gives higher velocities at the 

centre plane and lower values close to the side walls. For the wavy cases (i.e. 

Run 400 and Run 600) the velocity profiles have a rather gradual shape, while 

the experiments show a clear peak. This difference in shape is due to the 

overprediction of the turbulence at the interface, which is due to a too low 

prediction of the amplitude of the waves at the interface. The relatively larger 

waves in the experiments reduce the gas velocity at the interface side whereas 
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larger velocities are found for the gas along the upper wall. This leads to the 

asymmetric profile with the peak in the experimental velocity profile.   

As the flow rate increases the model of Oliemans (1987) gives a better 

prediction of the velocity profile. In general, the model of Oliemans (1987) 

gives slightly more accurate results than the other two models and therefore this 

will be considered as the baseline model for the forthcoming simulations. 

 

(a)                                                              (b) 

 

(c) 

Figure 5.3: Predictions for the velocity profile compared with the experiments by Fabre et al. (1987) 

(a). Run 250 (b). Run 400 (c). Run 600. 

In comparison to the previous model of Chinello (2014), the new simulation 

model is now more accurate in terms of calculating the value of the surface 

roughness (amplitude of interface waves). However, there are still remarkable 

differences between the simulations with the standard 𝑘 − 𝜔 model and the 

experiments. This means that there is room for further improvement. Therefore, 

the next step is to test another turbulence model, which is the SST model. 
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5.1.2 Shear Stress Transport Model (SST) 

The SST model combines both of the well-known RANS turbulence models; 

𝑘 − 𝜔 and 𝑘 − 𝜖. It uses the superior capabilities of the 𝑘 − 𝜔 model to predict 

the near wall turbulence and it switches to the 𝑘 − 𝜖 model at the free stream. 

This is done by the use of hyperbolic tan functions, also known as blending 

functions. The value of the blending function depends on the distance to the 

nearest wall. Near the walls it is 1 and in the free stream it is in between 0 and 

1. If this distance from the nearest wall is too high, then the flow is said to be in 

the free stream. According to this, the liquid-gas interface is in the free stream. 

But physically the interface seems to behave as a rough wall for the gas layer. 

Therefore, we require a kind of near wall modelling also close to the interface. 

To impose such near wall modelling at the interface, the values of the blending 

function are set to 1 at the interface.  

The SST is modified by imposing a boundary condition for 𝜔, which depends 

on the roughness / wave amplitude 𝑘𝑠, using the correlation of Oliemans (1987). 

This is similar to what has been used in the modified SKW model. 

The gas and liquid flow rates are chosen as inputs and the resulting predictions 

for the pressure gradient and liquid level are compared in Table 5.4. The 

pressure gradients and liquid levels predicted by the Modified SST model are 

closer to the experimental values than the predictions with the Modified SKW 

model.  

Table 5.4: Predictions with the Modified 𝑘 − 𝜔 model vs the Modified SST model for the channel 

experiments by Fabre et al. (1987). 

Run Experiment Experiment Modified 𝒌 − 𝝎 Modified SST  

 
dp/dx 
(Pa/m) 

h (m) 
dp/dx 
(Pa/m) 

h (m) 
dp/dx 
(Pa/m) 

h (m) 

Run 250 2.1 0.038 1.43 0.0365 1.8 0.036 

Run 400 6.7 0.0315 3.45 0.033 4.2 0.032 

Run 600 14.8 0.0215 11.6 0.0225 14.6 0.021 

 

Using the modified SST model (instead of the modified SKW model) gives a 

considerable improvement in the accuracy of the predictions of the velocity 

profile of the gas phase; see Figure 5.4(b). The velocity profiles are slightly 

different due to the different definition of turbulent viscosity. While the 

turbulent kinetic energy of the liquid layer is almost identical, there is a minor 



RESULTS 

 

 50  
 

variation in the gas layer, both close to the wall and close to the interface. The 

reason for this is that the SST model has an extra production limiter term for the 

transport equation of 𝑘. There is a negligible difference between both models 

for the prediction of the shear stress profiles.  

 

 

                                            (a)                                                                                    (b) 

 

 

                                            (c)                                                                                    (d) 
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                                            (e)                                                                                    (f)  

Figure 5.4: Comparison of various profiles for the liquid and gas phases. (a), (b) Velocity (u), (c), (d) 

Turbulence Kinetic Energy (k) and (e), (f) Shear stress (𝑢′ 𝑣′̅̅ ̅̅ ̅̅ ) . Run 400 from Fabre et al. (1987). 

5.1.3 Fluent versus MATLAB 

For a meaningful comparison between the Fluent and MATLAB results, the 

same interface condition for 𝜔 as applied in MATLAB also needs to be used in 

Fluent. This is possible with the help of the User Defined Functions (UDF). 

UDFs are short C++ programs that use Fluent macros to modify any flow 

variable. Here, we use it to modify the value of 𝜔 at the interface. 

SKW Results 

Obtaining agreement between Fluent and MATLAB is the next vital step in this 

thesis. Fluent, as mentioned by Chinello (2015), cannot accurately predict the 

two phase flow case for the SKW turbulence model. To obtain matching 

profiles, Chinello had to switch on the turbulence damping coefficient, which is 

an option in Fluent. A serious, and in fact unacceptable, limitation of this 

damping coefficient is that it is grid dependent.  

Figures 5.5 and 5.6 show that MATLAB and Fluent give identical profiles for 

the velocity and turbulent kinetic energy when the SKW model is used without 

interface condition in MATLAB and with the turbulence damping switched off 

in Fluent. Essentially, this means that both models are non-Modified. 
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Figure 5.5: Comparison of the velocity profile for Run 400, when using the standard 𝑘 − 𝜔 model 

without modification. 

 

Figure 5.6: Comparison of the turbulent kinetic energy profile for Run 400, when using the standard 

𝑘 − 𝜔 model without modification 
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Imposing the interface condition in Fluent 

For Run 400 the value imposed at the interface according to the output of the 

Modified MATLAB code was 2200 s−1. This value was added to the UDF in 

Fluent. 

Figure 5.7(a) shows for the velocity profile that due to the UDF the turbulence 

at the interface in Fluent is indeed being damped (blue curve) which was not the 

case in the original approach (red curve). This is a considerable improvement. 

However, when comparing the velocity profiles as obtained with the Modified 

SKW model in MATLAB and in Fluent, as shown in Figure 5.7(b), there is a 

clear mismatch between the profiles, even though the imposed value for both is 

the same, namely 2200 s−1. 

 

                                            (a)                                                                                        (b) 

Figure 5.7: (a). Run 400 in Fluent using the SKW model without and with interface condition, (b). Run 

400 using the SKW model in MATLAB and Fluent with interface condition. 

When the output value of 𝜔 at the interface in Fluent is checked, it does not 

have the value of 2200 s−1 as imposed through the UDF, but a lower value of 

1076 s−1. This reduction of the interface value is found for all the considered 

experimental cases in Fluent. The exact reason for this inconsistency is not 

clearly understood, since the Fluent user manual is not very detailed.  

To analyse this issue, it is necessary to understand the definition of 

DEFINE_ADJUST UDF. This function executes the change/modification to the 

selected variable at every iteration, before the transport equations are solved. 

The key word here is ‘before’. A new value of 𝜔𝑖 replaces the previous imposed 

one. This new value is lower than the value that has been imposed. Therefore, 

using the DEFINE_ADJUST UDF does not give improvement. 
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An extra check can be made by imposing the reduced interfacial value for 𝜔𝑖 as 

found with Fluent also in MATLAB. Figures 5.8 and 5.9 show that now the 

profiles obtained with Fluent and MATLAB are almost identical, which is a 

significant improvement to the results shown in Figures 5.5 and 5.6. Here, the 

input value of 𝜔𝑖 for the Modified SKW model in Fluent remains the same, 

namely 2200 𝑠−1, but that of MATLAB is changed to 1076 𝑠−1.  

 

Figure 5.8: Velocity profile with MATLAB and Fluent for Run 400 in the experiments of Fabre et al. 
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Figure 5.9: Turbulent kinetic energy with MATLAB and Fluent for Run 400 in the experiments of Fabre 

et al. 

SST Results 

The two phase SST model in Fluent has some unusual aspects. This model 

seems to have a built-in turbulence damping mechanism, which will be called 

the ‘pseudo damping mechanism’ or PDM. Unfortunately, this is not described 

in the Fluent manual. The PDM damps the turbulence at the interface, which 

leads to an interface value of 𝜔𝑖 of around 600 s−1.  

The effect of this PDM can be seen in Figure 5.10, which shows the results for 

Run 400 in the experiments of Fabre et al. (1987). Note that neither in 

MATLAB nor in Fluent an interface value for 𝜔 was imposed (i.e. the non-

modified version of the SST model is used).  
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Figure 5.10: Velocity profile with the SST model for Run 400. 

The predictions with MATLAB and Fluent are not the same. Difference can 

only be explained if something in Fluent is causing the turbulence to be 

damped. This can be investigated further by examining the profiles of the 

specific dissipation rate 𝜔. Figures 5.11(a) and (b) show the specific dissipation 

rate with the SKW model and with the SST model, respectively. From Figure 

5.11(b) it is clear that Fluent is overpredicting the value of 𝜔 and this is indeed 

causing the damping of the turbulence, leading to a smooth velocity profile.

 

                                                       (a)                                                                                        (b) 

Figure 5.11: (a) 𝜔 for SKW case, (b) 𝜔 for SST case. 
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It is unknown why Fluent has this ‘P DM’ only for the SST model and not for 

the SKW model. There thus is a need to specify an interface condition with a 

UDF for the SKW model but not with the SST model.   

5.2 Channel Flow Results 

From the previous sections the following can be concluded: 

1. The model of Oliemans (1987) gives more accurate results than other 

surface roughness models. 

2. Using MATLAB, the SST turbulence model gives more accurate results 

than the SKW model. 

3. The interface condition can be changed in Fluent by using the User 

Defined Function (UDF). 

Therefore, further simulations will be made with the best performing turbulence 

model which is the modified SST model. The modification means imposing the 

interface boundary condition for ω, using the Oliemans expression for the 

roughness / wave height. This condition is imposed by using the UDF in Fluent. 

That turbulence model will now be applied to an experimental case of Akai et 

al. (1980), see Figure 5.12, and an experimental case of Fabre et al. (1987), see 

Figure 5.12. More precisely, the following two cases will be considered: 

1. Run 2 - Slightly wavy case, of Akai et al. 

2. Run 400 - Wavy case, of Fabre et al. 

In the MATLAB and Fluent simulations, the pressure gradient and the liquid 

level are used as input conditions, and gas and liquid flow rates are calculated as 

output parameters. 

5.2.1 Akai results 

The simulations results will be scaled with the same quantities as used by Akai 

et al. in their experiments. This means that the liquid velocity profile is scaled 

with the liquid velocity at half the height of the liquid layer: 

𝑢

𝑢ℎ=0.003168
 

(32) 

 

 

The gas velocity is scaled with the maximum gas velocity: 

𝑢

𝑢𝑚𝑎𝑥
 

(32) 
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The turbulent kinetic energy is scaled with the local liquid velocity:  

√𝑘

𝑢𝑙𝑜𝑐𝑎𝑙
 

(34) 

The local height coordinate for the liquid and the gas layer are scaled as 

follows:  

𝑦

ℎ
 

(35) 

  
𝑦 − ℎ

𝐻 − ℎ
 

(36) 

Here 𝑦 is the height at any location, ℎ is the liquid level, 𝐶 = 𝑦/ℎ and 𝐻 is the 

height of the channel.   

                                       
(a)                                                                                 (b)

 

                                          (c)                                                                                 (d) 

Figure 5.12: Modified SST model applied to Run 2 in the experiments of Akai et al. (1980). Results for 

the liquid and gas layers. (a), (b) Velocity profiles (c), (d) Turbulent Kinetic Energy. 
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The predictions for the velocity profile of the gas phase are almost identical to 

the experimental data, and the same holds true for the turbulent kinetic energy 

for both phases. The velocity in the liquid layer (as shown for the mid plane of 

the channel) is underpredicted, but only very slightly. Near the wall and the 

interface, the velocity in the liquid layer appears to be underpredicted and 

overpredicted, respectively.  It is important to note that the resulting value for 𝜔 

at the interface is  𝜔𝑖 = 14000s
−1 which resulted from MATLAB and 

subsequently obtained iteratively for Fluent. 

There is good agreement between the predictions by MATLAB and Fluent for 

the velocity profiles in both phases. The agreement for the turbulent kinetic 

energy in the gas phase is less good, while there is good agreement for 𝑘 in the 

liquid layer.  

5.2.2 Fabre results 

The results for the Fabre case were scaled in the same way as the Akai results. 

For MATLAB the interface value for ω is 𝜔𝑖 = 3300 s
−1. In Fluent a higher 

valye of  𝜔𝑖 = 15000 s
−1 has to be imposed at the UDF to find an actual output 

value of 𝜔𝑖 = 2480 s
−1, which was considered to be sufficiently close to the 

MATLAB value. 

The trends in the prediction results for the case from Fabre et al. (1987) are 

similar to those of Akai et al. (1980).  The turbulent kinetic energy in Figure 

5.13(c) (d) is in good agreement with the experiments for both the phases. The 

gas phase velocity profiles in MATLAB and Fluent are almost identical, and 

close to the experiments. Also for the liquid layer the MATLAB and Fluent 

results are close, but there is some deviation for the experimental profile. 
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                                       (a)                                                                                 (b) 

 

                                         (c)                                                                                 (d) 

Figure 5.13: Modified SST model applied to Run 400 in the experiments of Fabre et al. (1987). Results 

for the liquid and gas layers. (a), (b) Velocity profiles (c), (d) Turbulent Kinetic Energy. 

It is important to emphasize that the case of Fabre et al. (1987) is slightly 

downward inclined at an angle of 𝜃 = −0.0572𝑜, while that of Akai et al. 

(1980) is completely horizontal, i.e. 𝜃 = 0. The additional effect of the gravity 

may be a reason for the difference in the accuracy of the predictions for the two 

experiments. The predictions (at least with the model in MATLAB) are close to 

the experimental values of Akai et al. (1980), but there is a less good agreement 

with the experiments of Fabre et al. (1987). The velocity profile in the gas layer 

is steeper in the case of Fabre et al. (1987) than in the case of Akai et al. (1980).  
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Table 5.5: Flow rates (all in the unit m3/s) for the experiments, and as found with MATLAB and Fluent. 

Akai Fabre 

Experiment 
MATLAB -

Modified SST 
Fluent - 

Modified SST  
Experiment 

MATLAB -
Modified SST 

Fluent  -
Modified SST  

QG QL QG QL QG QL QG QL QG QL QG QL 

4.9E-3 4.3E-5 3.5E-3 4.8E-5 3.0E-3 6.9E-5 0.1187 0.003 0.1183 0.0031 0.13 0.004 

 

The quantitative comparison between experimental data and simulation results, 

as given in Table 5.5, shows that the gas flow rate is underpredicted in the case 

of Akai et al. (1980). In the table QG and QL both have the unit m3/s. There is 

almost a 30% underprediction with the model in MATLAB and about 40% 

underprediction with the model in Fluent. It can be that the large density 

difference between the two phases could play an important role here. It is 

possible that the models/software are not able to simulate flows with high 

gravity differences.  

In regions of large normal strain, the two-equation models produce an 

artificially high effective viscosity according to Pope (2000). The large density 

difference between mercury and air also requires a larger damping value at the 

interface, see Sawko (2012).  

The predictions for the flow rates are in good agreement with the experimental 

results by Fabre et al. (1987). In fact, we can conclude that for this case there 

has been a considerable improvement in the robustness and accuracy of 

prediction models.  

The next step now is to assess how Fluent predicts 3D two phase flow. The 3D 

modelling is discussed in the next section. 

5.2 Pipe Flow Results 

3D modelling of pipe flow is done in Fluent and the data are taken and 

compared with the experimental data from Birvalski et al. (2014). Figure 5.13 

shows the comparison of the mean scaled streamwise velocity profiles for the 

laminar case. The velocity predicted by Fluent is in good agreement with the 

experiment and with the DNS.  

For the turbulent flow case, shown in Figure 5.15, the SKW model is used and 

the velocity profile shows good agreement with the DNS and with experimental 

data. However, towards the top of the channel the velocity profile is slightly 

overpredicted by Fluent.  
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Secondary flow patterns are prevalent in pipes since the depth in the crosswise 

direction changes. As a result of this, in Figure 5.16 a nonzero spanwise 

velocity (i.e. vertical velocity component) is found at the vertical centreline. The 

DNS is in very good agreement with the experiment. The 𝑘 − 𝜔 model, 

however, fails to accurately describe this effect of a secondary flow and predicts 

that the spanwise velocity is 0. It is generally known that two-equation 

turbulence models like 𝑘 − 𝜔  and 𝑘 − 𝜖 cannot describe secondary flows, and 

instead (within the RANS framework) a differential Reynolds stress model 

should be used.  

As a final note, this Fluent program is most faster in simulating this case than 

the DNS. It took around 10 hours on a single core CPU with a 2.5 GHz clock 

frequency to obtain the Fluent result, whereas the DNS simulation had taken a 

month on a computer.  

 

Figure 5.14: Streamwise velocity in the laminar pipe flow case. 
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Figure 5.15: Streamwise velocity in the turbulent pipe flow case. 

 

Figure 5.16: Spanwise velocity in the turbulent pipe flow simulation. 



6 

 

 64  
 

6 
CONCLUSION 

6.1 Conclusions 

Two phase pipe flow has various industrial applications, such as in the oil and 

gas industry, in water disposal systems and in chemical plants. Simulating such 

flows with a CFD approach is not a trivial task. Particularly the available RANS 

models such as 𝑘 − 𝜔 and 𝑘 − 𝜖  have difficulties in handling the turbulence at 

the liquid-gas interface. Therefore, the main aim of this thesis was to improve 

these models, and to demonstrate their performance in predicting two phase 

flows in channels and pipes using MATLAB and Fluent.  

 Automate the calculation of the value of surface roughness.  

- In the previous MATLAB model (as built by Chinello, 2015) it was 

necessary that the user knew beforehand whether the flow at the 

interface was wavy or smooth. Also a correlation for the wave height at 

the interface was missing. We have considered various models for this 

wave height (represented as an effective wall roughness in the 

turbulence model). Among these models, the one of Oliemans (1987) 

gives the best agreement with experiments. The accuracy of the 

prediction improves when the gas flow rate increases. Issa (1998) 

mentions that a relation between the interface and the gas Reynolds 

number is geometry dependent. Akai et al. (1980) use empirical 

correlations to obtain a relationship between the two for their 

geometry. On the other hand, the Wilcox (2006) condition coupled 

with the surface roughness models is geometry independent. 

In addition to the interface modelling, also the type of turbulence model was 

investigated.  

 Improve the predictions of either the pressure gradient and liquid level or 

the flow rates of gas and liquid by changing turbulence models. 
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- The change from the Modified Standard 𝑘 − 𝜔 (SKW) to the 

Modified Shear Stress Transport (SST) model (as implemented in  

MATLAB) considerably increased the accuracy of the results. For 

Run 600, the values for the gas and liquid flow rates, as compared to 

the experimental values of Fabre et al. (1987), has improved from a 

deviation of 12.1% and 62.5% with the modified SKW model to a 

deviation of 0.3% and 50% with the modified SST model.  

 

 Comparison between MATLAB and Fluent predictions 

- MATLAB results are compared with predictions by the commercial 

CFD software package ANSYS Fluent. Fluent accurately predicts 

single phase flows with or without turbulence in complex geometries 

with relative ease. However, when a two phase stratified flow is 

considered the results can be very inaccurate. This is because the 

turbulence at the interface is not damped in the available turbulence 

models. This results in a shift of the location of the maximum gas 

velocity in channel flow towards the top wall. Fluent also has issues 

when simulating two phase flows, with regards to convergence and 

oscillating residuals.  

- There is a discrepancy between the results produced by Fluent with 

the SKW and SST models. There is significant evidence to believe 

that the SST model in Fluent applies a Pseudo Damping Mechanism 

(PDM) to dampen the turbulence at the liquid-gas interface, but this is 

not described in the Fluent user manual. The simulations with the NM 

SST and NM SKW models, as implemented in MATLAB, show 

inaccurate velocity profiles.  

- The Non-Modified SKW model in Fluent is comparable with the 

Non-Modified SKW model in MATLAB. However, to our surprise, 

the results with the Non-Modified SST model in Fluent are 

comparable with the results of the Modified SST model MATLAB. It 

thus seems that Fluent is indeed dampening the turbulence at the 

interface for the SST model (but not for the SKW model). However, 

this is not mentioned or explained in the Fluent manual.  

- A next step in this research was to compare MATLAB and Fluent for 

the Modified SKW and Modified SST models. Thereto the User 

Defined Function (UDF) in Fluent was used. However, Fluent gives 

as output for the interface value 𝜔𝑖 that is different from the imposed 

value. The only way out is to iteratively impose a value at the 

interface (and manually start a new simulation after each update) until 

the desired value appears in the output. 
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- For the Modified SST model, however, the output value of 𝜔𝑖 
increases for a certain input value and decreases for some other input 

values. The trend with the Modified SKW model is always 

decreasing, while that in the Modified SST model is irregular. This 

might be related to the finding that Fluent seems to internally dampen 

the turbulence at the interface for the SST model. 

- Another limitation of Fluent is that the user cannot impose a flow rate 

as an input when there is more than one phase involved. 

 

 Comparison of model predictions with experimental data from Akai et al. 

(1980) and Fabre et al. (1987). 

- Using the suggested improvements for the model in MATLAB and 

Fluent, the channel flow experiments were simulated and discussed. 

The modified SST model was used. The slightly wavy case of Akai et 

al. (1980) is not accurately predicted, neither by the model in 

MATLAB nor by the model in Fluent. For the gas flow rate there is a 

30% underprediction with the model in MATLAB and a 40% 

underprediction in the model in Fluent. The liquid flow rate is 

overpredicted by 14% with the model in MATLAB and by 37% with 

the model in Fluent.  

- The large density difference between the two phases in the Akai et al. 

(1980) experiment may have caused the simulations to be inaccurate. 

A large density difference requires a large damping value imposed at 

the interface according to Sawko (2012). This is to compensate for the 

overprediction of the interface turbulence by the two-equation 

models. 

- The experiment by Fabre et al. (1987) for the wavy interface is 

predicted very accurately by the Modified SST model, both with 

MATLAB and with Fluent. The gas flow rate is overpredicted by 

0.3% with MATLAB and by 9% with Fluent. The liquid flow rate is 

overpredicted by 3% by MATLAB and by 33% with Fluent. 

Although the case of Fabre et al. is affected by gravity (as the pipe is 

slightly downward inclined) and that of Akai et al. is not (their pipe is 

fully horizontal), the predictions for the case of Fabre et al. are far 

better than for the case of Akai et al.  

 Model predictions for the Segregated Liquid Phase (SLP) in the two 

phase pipe flow as measured by Birvalski et al. (2014)  

- The 2D two phase stratified flow case can be considered as a stepping 

stone to the 3D modelling. The 𝑘 − 𝜔 RANS simulations, as carried 

out with Fluent for the segregated liquid phase (SLP) are compared 
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with the experimental data of Birvalski et al. (2014) and with the 

DNS results of Mehdi Niazi (2014). The velocity profile in the 

streamwise direction as predicted by Fluent is almost identical to the 

experimental and DNS results. However, the velocity profile with 

Fluent in the spanwise direction does not show the existence of 

secondary flows and therefore this velocity component is zero. This is 

a shortcoming of the model. The RANS simulation requires far less 

computer time than the DNS. 

6.2 Recommendations 

The surface roughness predictions as carried out with MATLAB are less 

accurate for lower flow rates. It will be valuable to further investigate different 

surface roughness and wave amplitude models for channel flows. A starting 

point for this can be the thesis of Espedal (1998).  

It is recommended to further investigate the encountered turbulence damping 

phenomenon at the liquid-gas interface for the SST model in Fluent. Trying to 

discuss this directly with ANSYS Fluent may help here. Another approach can 

be to attach a DEFINE_PROFILE UDF instead of the DEFINE_ADJUST UDF 

for the 𝜔𝑖. However, this does only work when imposing regular inlet and outlet 

boundary conditions, and it does not work with periodic boundary conditions.  

The simulation results are not in agreement with the experimental results of 

Akai et al. (1980).  There might also be something wrong with the experiment, 

which can only be verified by carrying out a similar experiment. 

The 3D modelling is only done for the liquid phase. Developing a 3D RANS 

model for the entire pipe flow (i.e. liquid layer and gas layer) would be a 

possibility for future research.  

Fluent has shortcomings in the flexibility to impose modified interface 

conditions. Therefore it is recommended to do the same comparison study with 

other CFD packages, such as OpenFoam or STAR CCM+. 

6.3 Final Remark 

The objectives of this thesis have been met. This research has shed light on 

various aspects of RANS models applied to two phase flows. Also the 

possibilities of using third-party CFD tools have been evaluated. It looks like 

there is plenty of room for further investigation before it can be concluded that a 

reliable interface handling in for channel and pipe flow in the context of 𝑘 − 𝜔  

and 𝑘 − 𝜖 models exists.  
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Appendices 

A 

MATLAB Code 

 

Below the MATLAB code is shown. This is for the Run 600 of Fabre. The two 

parts of the program are 

 Intuitive 

 Solver 

The basic structure of the two parts is mentioned here and some pieces of  the 

code are listed as well. 

The Intuitive contains all commands related with (in chronological order) the 

following aspects: 

- Inputs – 𝑄𝐺  and 𝑄𝐿, 𝐻 and the guessed values of 𝑑𝑝/𝑑𝑥 and ℎ 

o Open Loop 

 1st call to the Solver function  

 Convergence check (If converged move to GOTO) 

 Change ℎ 

 2nd call to the Solver function (with new ℎ value) 

 Store the value of the partial derivatives of 𝑄𝐺  and 𝑄𝐿 w.r.t 

ℎ 

 Change 𝑑𝑝/𝑑𝑥  

 3rd call to the Solver function 

 Store the value of the partial derivatives of 𝑄𝐺  and 𝑄𝐿 w.r.t 

𝑑𝑝/𝑑𝑥 

 Solve the equations of partial derivatives to obtain a new 

value of 𝑑𝑝/𝑑𝑥 and ℎ for a new iteration. 

o GOTO 

 Print results  

The Solver contains all commands related with (In chronological order) 

- Grid Generation 

- Initialise Turbulence Closure Coefficients 

o Open Outer Loop 
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 Inner Loop 1: Define turbulence viscosity and other model 

parameters 

 𝑢 – equation  

 𝑅𝐻𝑆𝑗 definition 

 Creating 𝑎𝑗 , 𝑏𝑗  & 𝑐𝑗 arrays 

 Solve with Tridiagonal Matrix Algorithm 

 𝑘 – equation  

 𝑅𝐻𝑆𝑗 definition (Extra Production Limiter Term) 

 Creating 𝑎𝑗 , 𝑏𝑗  and 𝑐𝑗 arrays 

 Solve with Tridiagonal Matrix Algorithm 

 𝜔 – equation 

 Boundary values in first and last 5 nodes 

 𝑅𝐻𝑆𝑗 definition (Production Limiter Term + Cross 

diffusion term) 

 Creating 𝑎𝑗 , 𝑏𝑗  and 𝑐𝑗 arrays 

 Surface Roughness Models – Oliemans (1987) etc. 

 Impose 𝜔 at the interface 

 Solve with Tridiagonal Matrix Algorithm 

o Close Outer Loop 

- Calculate values of Flow Rates and Velocities 

 

INTUITIVE 

clc, clear, close all; 
  
% % INPUT Fabre et al. 1987  
 
% Volumetric flow rates 
 %  Qg_input=0.227;        %RUN 250 smooth case   
 %  Qg_input=0.377;        %RUN 400 wavy case  

Qg_input=0.5935;       %RUN 600 wavy case 
  

Ql_input=0.015; 
  
% Channel height 

H=0.1; 
% Inclination channel 

teta=0.0572; 
  
% Density of the fluids 

rho_G=1.18;  % Air 
rho_LI=998;  % Water 

  
% Viscosity of the fluids 

mu_G=1.85e-5; 
mu_LI=1e-3; 
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% Initial guess liquid height 
h=0.0215; 

% Initial guess pressure drop 
dpdx=14.8;  

  
% Mesh input 

nj_G=123;       %internal nodes gas side 
nj_LI=83;       %internal nodes liquid side  
xmesh1=1.01;    % refinement liquid wall 
xmesh2=-0.01;   % refinement liquid interface 
xmesh3=1.01;    % ref gas interface 
xmesh4=-0.01;      

  

[OPEN LOOP] 
  

%% [1st Solver Call]; 
  

ks_plusiter(LOOP)=ks_plus; 
%break      % Removing comment here will exchange the inputs and outputs 

   

 %% [CONVERGENCE CHECK] 
 

if abs(Qg_input-Qg)/Qg_input*100<0.05 &&  abs(Ql_input-Ql)/Ql_input*100<0.05 
     
      break 
     

else 
  

  

  

Qg_old=Qg; 
Ql_old=Ql; 
h_old=h; 
dpdx_old=dpdx;       

 

    %% [CHANGE h] 
      eps=0.001;  

h=h+eps;    
  
     

  

%% [2nd Solver Call]; 
   

%% [STORE PARTIAL DERIVATIVES] 
 
dQg_h=(Qg-Qg_old)/eps; 
dQl_h=(Ql-Ql_old)/eps; 

  
h=h_old; 
eps=0.001;  
 

%% [CHANGE 𝑑𝑝/𝑑𝑥] 
dpdx=dpdx_old+eps;    

      

%% [3rd Solver Call]; 
 

%% [STORE PARTIAL DERIVATIVES] 
   dQg_dp=(Qg-Qg_old)/eps; 

dQl_dp=(Ql-Ql_old)/eps; 
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%% [SOLVE PARTIAL DERIVATIVES 
A=[dQg_h  dQg_dp; dQl_h dQl_dp]; 

  
B=[Qg_input-Qg_old; Ql_input-Ql_old];  

     
x=A\B; 

  

end 
  

h=h_old+ x(1); 
dpdx=dpdx_old+ x(2); 

  
if h<0  

      h=h_old; 
else 

     
end 

  
end 

 

%% [GOTO] 
%% [PRINT OUTPUTS] 
 
 

SOLVER 

 
function [Inputs]=Solver(Ouputs) 
  
%% Input 
  
%Fluid kinematic viscosities [m^2/s] 

ni_G=mu_G/rho_G; 
ni_LI=mu_LI/rho_LI; 

   
% Inclination 

g=9.81; 
  
% Number of iterations 

niter_max=350; 
%Tolerance for residuals  

TOL = 10e-15; 
  
% Under-relaxation factors 

relax_u= 0.3; 
relax_k= 0.3; 
relax_w= 0.6; 

  
%% Biexponent grid with refinement at the interface 
 

%% [GRID GENERATION] 
%Calculation of the cell nodes 
  

nj=nj_LI+nj_G;  % Total number of internal nodes 
j(1:nj+3)=0;    % Y-coordinate of the nodes  
dj(1:nj+2)=0;   % Distance between nodes 

  
  
%Liquid domain first half 

ninter=(nj_LI+1)/2; % Distance between two nodes  
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xmesh=xmesh1;       % x-parameter  
Ratio=exp((10/ninter)*(xmesh-0.5)); % Ratio  
dj_ini=(h/2)*((1-Ratio)/(1-(Ratio^ninter))); 

  
for i=1:(nj_LI+1)/2 

dj(i)=dj_ini*(Ratio^(i-1)); 
j(i+1)=j(i)+dj(i); 
dist(i)=j(i); 

end 
  
%Liquid domain second half 
 %Similar to above  
 
%Gas domain first half 
 %Similar to above  
 
%Gas domain second half 
 %Similar to above  
  
%% Boundary conditions and initialisation 
  
% Initialise arrays 

u(1:ny+2)=1;        
u(1)=0; 
u(ny+2)=0; 

  
w = ones (1,ny+2); 
k = ones (1,ny+2); 
. 
. 
. 
 

 
% Turbulence model constants and Initialisation 
  
% log- law 

kappa = 0.41; 
Cplus = 5; 

  

%% [INITIALISE TURBULENCE CLOSURE COEFFICIENTS] 
% k-w SST closure coefficients 

R_k=6; 
R_w=2.95; 

 . 
 . 
 .     

 

%% [OPEN OUTER LOOP] 
 

%% Solution 
  

  

for niter=1:niter_max  % Outer For Loop 
  

  %% [OPEN INNER LOOP 1]  
for i=2:ny+1       % Definition of turbulent viscosity and clousure coefficient 
according to k and w previously calculated 

  

%% [MODEL CONSTANTS 𝛼𝑖
∗, 𝛽𝑖, 𝜎𝑘, etc] 

. 

. 
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.  

              

      %% [RANS Terms] 
    %k Dissipation 

       Y_k(i)=beta_star_i(i)*w(i); 
     

    %Omega Dissipation  
       Y_w(i)=beta_i(i)*w(i);  
     

. 

. 

. 
 

  
    % Turbulent Viscosity Definition  

  ni_t(i)=a_1*k(i)*1/(max(a_1*w(i),F_3(i)*Rot_T(i)*F_2(i))); 
     

end 
ni_t(1) = 0;% Turbulent viscosity at walls 
ni_t(ny+2) = 0; 

  

%% [u LOOP] 
 

%% -----------------  u eqn -------------------- %% 

  

 

% Source term and RHS definition  
for i=2:ny+1 

S(i) = (1/rho(i))*dpdx+g*sind(teta) ;  
end 

  

%% [RHS j DEFINITION] 
 

for i=2:ny+1 
RHS(i)= -S(i);  

end   
  

%% [INTERIOR ARRAY DEFINITION] 
 

for i=2:ny+1 
ni_L  = 0.5/rho(i)*(ni_t(i-1)*rho(i-1)+ni_t(i)*rho(i)) + 0.5*(mu(i-
1)+mu(i))/rho(i);     %Sum of kinematic viscosity & kinematic dynamic 
viscosity 
ni_R  = 0.5/rho(i)*(ni_t(i+1)*rho(i+1)+ni_t(i)*rho(i)) + 
0.5*(mu(i+1)+mu(i))/rho(i); 

 
%% [CREATE 𝑎𝑗 , 𝑏𝑗 & 𝑐𝑗 arrays] 

 
a(i) = ni_L/((y(i)-y(i-1))*((j(i)-j(i-1)))); 
c(i) = ni_R/((y(i+1)-y(i))*((j(i)-j(i-1)))); 
b(i) = -a(i)-c(i); 

end 
  
%Calculation to get ustar  

stress_L = mu(2)*(u(2)-u(1))/(y(2)-y(1));  
stress_R =-mu(ny+1)*(u(ny+2)-u(ny+1))/(y(ny+2)-y(ny+1)); 
u_tau_L=sqrt(stress_L/rho(2)); 
u_tau_R=sqrt(stress_R/rho(ny+1)); 
yplus_L  = u_tau_L*y(2)/ni(2); 
yplus_R  = u_tau_R*(H-y(ny+1))/ni(ny+1);       
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% Storing of the old velocity for relaxation purpose 

uold=u; 
  
% Storing coefficient for residuals calculation purpose 

aold=a; 
bold=b; 
cold=c; 
RHSold=RHS; 

  
  

%% [SOLVE THE TDMA] 
 

 for i=2:ny 
            b(i+1)=b(i+1)-(a(i+1)/b(i))*c(i) ; 
            RHS(i+1)=RHS(i+1)-(a(i+1)/b(i))*RHS(i) ; 
         end 
  
         u(ny+1)=RHS(ny+1)/b(ny+1) ; 
  
         for i=ny:-1:2 
            RHS(i)=RHS(i)-c(i)*u(i+1) ; 
            u(i)=RHS(i)/b(i) ; 
 end 
  
     
% Under-relaxation 

u = relax_u*u + (1-relax_u)*uold ;   
   
  
  
%Residuals 
  for  i=2:ny+1 

residual_u(i)=(aold(i)*u(i-1)+bold(i)*u(i)+cold(i)*u(i+1)-RHSold(i)); 
  end 
  residual_umax=max(abs(residual_u)); 
    
  residual_umax_a(niter)=residual_umax; 

  
%% [k LOOP] 
  
 %% -----------------  k eqn ------------------%  
  
%Exact same steps as the u equation, replace u with k. Additionally, Source term S(i) 
= 0 and Production term addition is shown below 

 
%% [RHS j DEFINITION EXTRA PRODUCTION TERM] 

 
for i=2:ny+1 

RHS(i)= -S(i)- min((ni_t(i))*((u(i+1)-u(i-1))/(y(i+1)-y(i-
1)))^2,10*beta_star(i)*k(i)*w(i)) ; 
;  

end   

. 

. 

. 
 
%% [INTERIOR ARRAY DEFINITION] 
. 
. 
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. 
 
%% [CREATE 𝑎𝑗 , 𝑏𝑗 & 𝑐𝑗 arrays] 

. 

. 

. 
 
%% [SOLVE THE TDMA] 
. 
. 
. 
 
%% [𝜔 LOOP]    
%% ------------------  w eqn ------------------- %  
  
 
%% [BOUNDARY VALUES IN FIRST & LAST 5 NODES NEAR WALL]  
% w value at the first 5 nodes near the wall 
  
for i=2:6 
    if i==2 

w(i)  =  6*ni(i)/(beta*abs((dist(i))*(dist(i)))); 
    else 

w(i)  =  10*6*ni(i)/(beta*abs((dist(i+1)-dist(i))*(dist(i+1)-dist(i)))); 
    end 
end 
  
for i=(ny-3):(ny+1) 
    if i==ny+1 

w(i)  =  10*6*ni(i)/(beta*abs((dist(i-1)-dist(i))*(dist(i-1)-dist(i)))); 
    else 

w(i)  =  6*ni(i)/(beta*abs((dist(i))*(dist(i)))); 
    end 
end 
  
  

%% [RHS j DEFINITION EXTRA PRODUCTION TERM + CROSS DIFFUSION TERM] 
 
% Source term and RHS definition 
for i=6:ny-3 

S(i) =D_w(i) ; 
end 
  
 
for i=6:ny-3 

RHS(i) = -S(i) -  min(alpha(i)*((u(i+1)-u(i-1))/(y(i+1)-y(i-
1)))^2,10*beta_star(i)*w(i)*k(i)); 

end 
  
 
  
% Coefficients redefinition at the interface gas side 

stress_i_G= (dpdx+g*rho_G*sind(teta))*(H-h)-stress_R; 
u_tau_i_G=sqrt(stress_i_G/rho_G); 

 
% Pots et. al(1988) 

delta_h=0.00506*(1+tanh((abs(u_G_avg-u(86))-4 .572)/1.2192))/2; 
  
%% [SURFACE ROUGHNESS MODELS OLIEMANS (1987) ETC.] 
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% %Ways to write value of ks 
  
% % Fernandez-Florez (1984) 

% ks=delta_h*sqrt(2*(1-(56*ni_G/(u_tau_i_G*DhG))^2))/sqrt(2); 
  
% %Cohen and Hanratty Model (1968) 

% ks=3*sqrt(2)*delta_h; 
  
% Oliemans Model (1987) 

if 2*delta_h/sqrt(2)<h 
      ks=3*sqrt(2)*2*delta_h/sqrt(2); 

else ks=3*sqrt(2)*h; 
end 

  
% Wilcox simplified Surface Roughness (2006) 

w_w = (40000*ni_G/ks^2); 
 

%% [IMPOSE 𝜔 AT THE INTERFACE] 
a(ny_LI+2)=0; 
b(ny_LI+2)=1; 
c(ny_LI+2)=0; 
RHS(ny_LI+2)=w_w;  

  
% Coefficient definition at the boundary 
  

RHS(7)    = RHS(7)    - a(7)*w(6)  ; 
RHS(ny-4) = RHS(ny-4) - c(ny-4)*w(ny-3)  ; 

  
  
% Storing of the old w for relaxation purpouse 

wold=w; 
  
% Storing coefficient for residuals calculation purpose 

aold=a; 
bold=b; 
cold=c; 
RHSold=RHS; 

  
%% [SOLVE THE TDMA] 
% Gauss elimination of a tridiagonal system   
  for i=7:ny-5 
            b(i+1)=b(i+1)-(a(i+1)/b(i))*c(i) ; 
            RHS(i+1)=RHS(i+1)-(a(i+1)/b(i))*RHS(i) ; 
         end 
  
         w(ny-4)=RHS(ny-4)/b(ny-4); 
  
         for i=ny-5:-1:7 
            RHS(i)=RHS(i)-c(i)*w(i+1) ; 
            w(i)=RHS(i)/b(i) ; 
         end 
    
       
% Under-relaxation 
w = relax_w*w + (1-relax_w)*wold ;   
   
  
   %Residuals 
   for  i=8:ny-5 

residual_w(i)=(aold(i)*w(i-1)+bold(i)*w(i)+cold(i)*w(i+1)-RHSold(i)); 
   end 
   residual_wmax=max(abs(residual_w)); 
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   residual_wmax_a(niter)=residual_wmax; 
    
    
   % Print on monitor number of iteration and store array iteration to plot the 
residuals 
   niter; 
   niter_a(niter)=niter; 
    
    
   % covergence stop  

residual_all_max =[residual_umax; residual_kmax ;residual_wmax]; 
    residual_all_max=max(residual_all_max); 
    if residual_all_max<TOL 
       break 
    end 
  
end 
  

%% Flow rates calculation, mean velocities, Re 
  
for i=1:length(y) 
    if y(i)<h 
        u_L(i)=u(i); 
        y_L(i)=y(i); 
    else 
        u_G(i)=u(i); 
        y_G(i)=y(i); 
    end 
end 

%% [CLOSE OUTER LOOP]  
 

%% [CALCULATE VALUES OF FLOW RATES AND VELOCITIES] 
u_G=u_G(length(u_L+2):length(u_G))   ; 
y_G=y_G(length(y_L+2):length(y_G))   ; 
    
  
  
xx = linspace(h,H,1000); 
yy = spline(y_G,u_G,xx); 
  
pp=spline(y_G,u_G); 
Qg= quad(@(x)ppval(pp,x),h,H);   %Simpson quadrature. 
  
Ubg= Qg/((H-h)); 
  
  
xx = linspace(0,h,1000); 
yy = spline(y_L,u_L,xx); 
 
pp=spline(y_L,u_L); 
Ql= quad(@(x)ppval(pp,x),0,h);   %Simpson quadrature. 
  
Ubl= Ql/(h); 
  
Qg; 
Ql; 
  
Ubl; 
Ubg; 
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B 

Fluent DEFINE_ADJUST UDF 

#include "udf.h" 
DEFINE_ADJUST(adjust_omega, mixture_domain) 
{ 
 int phase_domain_index; 
 cell_t cell, c0; 
 face_t f; 
 Thread *interface_thread; 
 Thread *t0; 
 int zoneid = 2; 
 interface_thread = Lookup_Thread(mixture_domain, zoneid); 
 begin_f_loop(f, interface_thread) 
 { 
  /* c0 and t0 identify the adjacent cell */ 
  c0 = F_C0(f, inteface_thread); 
  t0 = THREAD_T0(interface_thread); 
  /* this loops over all cells adjacent to wall and lets the UDM = 2.0 */ 
  C_O(c0, t0) = 2200; 
 } 
 end_f_loop(f, thread) 
} 

 

For the SKW case of Fluent, Fabre Run 400 (Figures 5.7, 5.8).  The 

DEFINE_ADJUST UDF code is written in a C program, it is called 

‘adjust_omega’. The ‘mixture_domain’ pointer is passed as an argument. It 

contains the pointers to every location on the domain. Faces, Cells and Threads 

are initialised. Lookup_Thread retrieves the thread pointer for a location 

specified in the geometry. Here, it is ‘2’ which is the location of the interface 

and ‘interface_thread’ contains this location.  

A face loop is opened for the interface location and the connectivity macros 

F_C0 & THREAD_T0 contain all the face centroids and cell thread pointers 

respectively.  

Finally, the specific dissipation rate macro – C_O at location (c0, t0) is updated 

with the constant value of 2200𝑠−1. The loop and the program are closed 

shortly after. 
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C 

Fluent DEFINE_PROFILE UDF 

#include "udf.h" 
DEFINE_PROFILE(stresswall, t, i) 
{ 
 face_t f; 
 cell_t c; 
 Thread *tc; 
 real x[ND_ND]; 
 real tau = -0.0107; 
 real y; 
 real abcd; 
 begin_f_loop(f, t) 
 { 
  F_CENTROID(x, f, t); 
  c = F_C0(f, t); 
  tc = THREAD_T0(t); 
  if (-0.024 < x[0] && x[0] < -0.0225) 
  { 
   F_PROFILE(f, t, i) = tau*(-100 * pow((x[0]) / 0.025, 2) - 180 * 
((x[0]) / 0.025) - 80); 
  } 
  else if (0.0225 < x[0] && x[0] < 0.024) 
  { 
   F_PROFILE(f, t, i) = tau*(-100 * pow((x[0]) / 0.025, 2) + 180 * 
((x[0]) / 0.025) - 80); 
  } 
  else 
  { 
   F_PROFILE(f, t, i) = tau; 
 
  } 
 } 
 end_f_loop(f, t) 
} 

 

The wall shear stress function for the 3D SLP case is imposed along the 

streamwise ‘Z’ component. ‘t’ & ‘i’ are the variables passed from Fluent to the 

UDF, where the former is a thread pointer and the latter is hooked onto the 

variable in Fluent. Here, this variable is the ‘Z’ component of the shear stress.  

A face loop is opened where all the values of the shear stress along the face 

centroid are modified accordingly using ‘if – else’ statements.  

 

 


