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Numerical Simulation of Turbulent Heat Transfer Close to
the Critical Point

B.J. Boersma, R. Pecnik, H. Nemati and J. Peeters

Department of Process & Energy, Delft University of Technology, Leeghwaterstraat 39, 2628 CA Delft, The
Netherlands

Abstract. In this paper we discuss the effect of sharp property variations on the turbulent heat transfer in fluids close the
critical point. The governing equations for this flow regime are discussed, a short description of the numerical tools that
have been developed to study these flows is given. Finally, some results for supercritical heat transfer in developing
turbulent pipe flow are presented.
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INTRODUCTION

Turbulence and turbulence enhanced heat transfer with slowly varying properties as a function of temperature
has been studied intensively in the past, e.g. for Helium systems [1]. Recently, pushed by possible technical
applications, there is a growing interest in fluid behaviour with strongly varying thermodynamic properties. Here we
want to investigate the effect of large changes in material properties on heat transfer in three dimensional turbulent
flows for technically relevant fluids, such as water-steam and carbon-dioxide. The large variation of thermodynamic
properties near the critical point leads to large root-mean-square density fluctuations (up to 60% of the local mean
density) and buoyancy induced flow phenomena, which affects laminarization, and can lead to deterioration or
enhancement of heat transfer. This change in heat transfer is shown in Figure 1, which is taken from [2] where the
heat transfer coefficient /2 for a carbon-dioxide system near the critical point is plotted as a function of the
temperature.
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FIGURE 1. The experimentally observed heat transfer coefficient of a turbulent CO2 flow in a cylindrical pipe, for different
orientations of the gravity, as a function of the temperature, from [2]. Note the very strong increase of the heat transfer coefficient
in the vicinity of the critical point (Tcrit=31.1°C).

Depending on the direction of gravity, a large change of the heat transfer coefficient can be observed close to the
critical point (Tcrit=31.1C). The large influence of the direction of gravity on the heat transfer coefficient shows
how important buoyancy effects are in these flows. Furthermore, it should be stressed that the heat transfer
coefficient is an average value: the effects can be much larger locally. To give an idea of the change in magnitude of
the material properties of fluids we have plotted the heat capacity, density and dynamic viscosity of water/steam at a
constant pressure of 25 MPa (slightly higher than the critical pressure) over the temperature range 300-500°C.The
density and viscosity show moderate changes, while the changes in the heat capacity are extremely large.
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FIGURE 2. The values the dynamic viscosity, density and specific heat capacity of water/steam at a constant pressure of 25MPa
as a function of temperature (from the IAWCS-IF97 formulation [3]). Note that the pseudo critical temperature (the temperature
fore with the heat capacity has its highest value) is slightly higher than the critical temperature.

As it can be observed from Figure 2, also physical properties such as the fluid viscosity and density vary
considerably. Especially the (expected) local strong increase in turbulent transport could lead to damage of the heat
exchangers or in case the effect is known it could be used in a beneficial way. In the present research effortwe want
to study the effect of strongly changing thermodynamic properties on the turbulent flow and heat transfer in a wall
bounded flow, with a specific focus on the local effect of buoyancy forces, flow laminarization and deterioration or
enhancement of heat transfer. In this short paper we will discuss the numerical model and give only a few results for
developing turbulent pipe flow.

Governing Equations and Numerical Model

As starting point for the modeling of supercritical flows we will use the fully compressible Navier-Stokes
equations and simplify these equations for low Mach numbers. The compressible Navier Stokes equations read (see,
e.g. [4])
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In these equations p denotes the fluids density, #; the fluids velocity vector, p the pressure, T the Newtonian

stress tensor, /1 the enthalpy, g the heat flux, K the thermal conductivity, T the temperature and g the viscosity. In

most supercritical heat transfer cases the fluid velocity is small compared the speed of sound, i.e. the Mach number
is small. This observation can be used to simplify the governing equations. First the governing equations are made
non dimensional with help of the following non-dimensional variables indicated with an asterisk:
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Where L,U are characteristic length and velocity scale, the subscript o0 denotes reference values of the

properties, ¢, is the heat capacity at constant pressure and ¢ is the speed of sound. Note that the velocity is scaled

with a characteristic fluid velocity scale,U , and the pressure, temperature and enthalpy (the thermodynamic

variables) are scaled with the acoustic velocity scale ¢. Where it should be noted that it is assumed that U [] c.
Applying these scaling parameters to the momentum equations gives:
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At this stage it will be useful to introduce the following series expansion for the pressure in terms of the Mach
number, which is assumed to be small (Ma<<1) :

p* =p; Jr(Ma)1 pl* +(Ma)2 p; +...

From the momentum equation it now follows that p; is spatially constant and the value of the constant depends
only on time. The pressure p; balances the velocity fluctuations. p; can be interpreted as the thermodynamic
pressure and p; as the hydrodynamic pressure. With this observations the last term in the energy equation (the

term between brackets) is order Ma® and the energy equation reduces to a simple transport equation for the
enthalpy. The hydrodynamic pressure depends now only on the velocity field and becomes and elliptic quantity.
Therefore we can solve the equations as an incompressible fluid system. The thermodynamic properties like
viscosity, heat capacity, density and thermal conductivity follow from a thermodynamic relation, e,g [3],

M = u(p,h) which in the case of constant thermodynamic pressure simply reduces to 1 = 1(p,,T).

The equations above or discretized on a three dimensional staggered grid, with scalar quantities the cell centers
and the velocity components at the cell faces, see [5]. The spatial derivatives in the momentum equations are
approximated with 2™ order central differences or 6™ order compact finite differences.. Time advancement is done
with the pressure correction method. To stabilize the calculations for large density gradients we use the predictor
corrector method of [6]. The thermodynamic relations are computationally very expensive. Therefore first
polynomial functions are generated from the thermodynamic relations over the range of interest. Subsequently the
polynomials are used for the runtime evaluation of the thermodynamic properties.
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Flow Domain and Some Results

The flow geometry we study is sketched in Figure 3. Isothermal incompressible turbulent flow with a
temperature slightly below the pseudo-critical temperature is generated in a small cylindrical domain with periodic
in and outflow conditions. The isothermal flow is fed into a domain with constant wall heating. The temperature of
the fluid will slowly increase and at a certain point the flow will reach the pseudo critical temperature. The
Reynolds number based on the bulk velocity at the inlet of the developing pipe is equal to 5300 the total number of
grid points is approximately 20 million. In Figure 4 we show a contour plot of the so-called Q-criterion at critical
conditions and subcritical conditions. Cleary the property variations have a very large effect on the turbulence and
the associated heat transfer.
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FIGURE 3. A sketch of the flow geometry. Inflow conditions for the developing pipe section are generated by the inflow
generator in which we solve the isothermal 3D Navier Stokes equations with periodic boundary conditions.
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FIGURE 4. Turbulent pipe flow simulation for the case with constant (lower part) and strongly varying properties (upper part),
along the dashed line the temperature is equal to the pseudo-critical temperature. Left: The Q-criterion (positive values
correspond to vorticity dominated regions while negative values correspond to shear dominated regions. Right the streamwize
velocity in the pipe.
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