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FIGURE 2. The values the dynamic viscosity, density and specific heat capacity of water/steam at a constant pressure of 25MPa 
as a function of temperature (from the IAWCS-IF97  formulation [3]). Note that the pseudo critical temperature (the temperature 
fore with the heat capacity has its highest value)  is slightly higher than the critical temperature.  
 

As it can be observed from Figure 2, also physical properties such as the fluid viscosity and density vary 
considerably. Especially the (expected) local strong increase in turbulent transport could lead to damage of the heat 
exchangers or in case the effect is known it could be used in a beneficial way. In the present research effortwe want 
to study the effect of strongly changing thermodynamic properties on the turbulent flow and heat transfer in a wall 
bounded flow, with a specific focus on the local effect of buoyancy forces, flow laminarization and deterioration or 
enhancement of heat transfer. In this short paper we will discuss the numerical model and give only a few results for 
developing turbulent pipe flow. 

Governing Equations and Numerical Model 

As starting point for the modeling of supercritical flows we will use the fully compressible Navier-Stokes 
equations and simplify these equations for low Mach numbers. The compressible Navier Stokes equations read (see, 
e.g. [4]) 
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In these equations denotes the fluids density, iu  the fluids velocity vector, p the pressure, ij the Newtonian 

stress tensor, h the enthalpy, q the heat flux, the thermal conductivity, T the temperature and the viscosity. In 
most supercritical heat transfer cases the fluid velocity is small compared the speed of sound, i.e. the Mach number 
is small. This observation can be used to simplify the governing equations. First the governing equations are made 
non dimensional with help of the following non-dimensional variables indicated with an asterisk:  
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Where ,L U are characteristic length and velocity scale, the subscript  denotes reference values of the 

properties, pc  is the heat capacity at constant pressure and c  is the speed of sound. Note that  the velocity is scaled 

with a characteristic fluid velocity scale,U , and the pressure, temperature and enthalpy (the thermodynamic 
variables) are scaled with the acoustic velocity scale c .  Where it should be noted that it is   assumed that U c . 
Applying these scaling parameters to the momentum equations gives: 
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At this stage it will be useful to introduce the following series expansion for the pressure in terms of the Mach 
number, which is assumed to be small (Ma<<1) : 

 
1 2* * * *

0 1 2 ...p p Ma p Ma p   
 
From the momentum equation it now follows that *

0p  is spatially constant and the value of the constant depends 

only on time. The pressure *
2p  balances the velocity fluctuations.  *

0p  can be interpreted as the thermodynamic 

pressure and *
2p  as the hydrodynamic pressure.  With this observations the last term in the energy equation (the 

term between brackets) is order 2Ma  and the energy equation reduces to a simple transport equation for the 
enthalpy.  The hydrodynamic pressure  depends now only on the velocity field and becomes and elliptic quantity. 
Therefore we can solve the equations as an incompressible fluid system. The thermodynamic properties like 
viscosity, heat capacity, density and thermal conductivity follow from a thermodynamic relation, e,g [3], 

( , )p h which in the case of constant thermodynamic pressure simply reduces to 0( , )p T .  
The equations above or discretized on a three dimensional staggered grid, with scalar quantities the cell centers 

and the velocity components at the cell faces, see [5]. The spatial derivatives in the momentum equations are 
approximated with 2nd order central differences or 6th order compact finite differences.. Time advancement is done 
with the pressure correction method. To stabilize the calculations for large density gradients we use the predictor 
corrector method of [6].  The thermodynamic relations are computationally very expensive. Therefore first 
polynomial functions are generated from the thermodynamic relations over the range of interest. Subsequently the 
polynomials are used for the runtime evaluation of the thermodynamic properties.  
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Flow Domain and Some Results 
 

The flow geometry we study is sketched in Figure 3. Isothermal incompressible turbulent flow with a 
temperature slightly below the pseudo-critical temperature is generated in a small cylindrical domain with periodic 
in and outflow conditions. The isothermal flow is fed into a domain with constant wall heating. The temperature of 
the fluid will slowly increase and at a certain point the flow will reach the pseudo critical temperature.  The 
Reynolds number based on the bulk velocity at the inlet of the developing pipe is equal to 5300 the total number of 
grid points is approximately 20 million.  In Figure 4 we show a contour plot of the so-called Q-criterion at critical 
conditions and subcritical conditions. Cleary the property variations have a very large effect on the turbulence and 
the associated heat transfer. 

 
 

 
FIGURE 3. A sketch of the flow geometry. Inflow conditions for the developing pipe section are generated by the inflow 
generator in which we solve the isothermal 3D Navier Stokes equations with periodic boundary conditions. 

 

 
FIGURE 4. Turbulent pipe flow simulation for the case with constant (lower part) and strongly varying properties (upper part), 
along the dashed line the temperature is equal to the pseudo-critical temperature. Left: The Q-criterion (positive values 
correspond to vorticity dominated regions while negative values correspond to shear dominated regions. Right the streamwize 
velocity in the pipe. 
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