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Abstract: This paper presents an automatic controller synthesis method for nonlinear systems
with reachability and safety specifications. The proposed method consists of genetic program-
ming in combination with an SMT solver, which are used to synthesize both a control Lyapunov
function and the modes of a switched state feedback controller. The resulting controller consists
of a set of analytic expressions and a switching law based on the control Lyapunov function,
which together guarantee the imposed specifications. The effectiveness of the proposed approach
is shown on a 2D pendulum.
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1. INTRODUCTION

Complex controller specifications of modern cyber-physical
systems can often be formulated as (linear) temporal prop-
erties, i.e. propositions that are qualified in terms of time.
In this paper we limit ourselves to a very specific temporal
property, i.e. the reach and stay while stay (RSWS) prop-
erty: all trajectories starting in an initial set I eventually
reach and stay within the goal set G, while always staying
in the safe set S. The aim of this paper is to automate
the synthesis of switched state feedback controllers for
nonlinear systems, such that the RSWS specification is
met.

Two popular correct-by-design controller synthesis ap-
proaches for nonlinear systems with temporal specifica-
tions are 1) abstraction and simulation, and 2) control
Lyapunov functions (CLFs) and control barrier functions
(CBFs). The first approach consists of finding a symbolic
abstraction of the system that (bi)simulates the original
system, for which it is easier to construct and verify a
controller to satisfy temporal logic specifications (Tabuada
(2009)). Tools implementing this methodology for nonlin-
ear systems are e.g. PESSOA (Mazo Jr et al. (2010)),
SCOTS (Rungger and Zamani (2016)), and CoSyMa
(Mouelhi et al. (2013)). Drawbacks of these methods are
that they require a discretization of the state space and the
controllers often take the form of enormous tables, hence
these methods suffer from the curse of dimensionality.

Control Lyapunov functions (CLF) (Artstein (1983)) and
control barrier functions (CBF) (Wieland and Allgöwer
(2007)) are design tools for stabilization and safety re-
spectively. The benefit of these methods is that there is
no need to compute the exact solution of the system.
Attempts to unify CLFs with CBFs can be found in e.g.
Romdlony and Jayawardhana (2016) and Xu et al. (2015).
A popular approach to automatic synthesis of (control)
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Lyapunov functions and (control) barrier functions is to
pose the problem as a sum of squares (SOS) problem,
which reduces it to a convex optimization problem, see
e.g. Papachristodoulou and Prajna (2002). This approach
is restricted to polynomial systems, although extensions
exist such that some non-polynomial functions can be used
by recasting them as polynomials, see e.g. Chesi (2009)
and Hancock and Papachristodoulou (2013). Nevertheless,
polynomial Lyapunov functions can be too restrictive. As
shown in Ahmadi et al. (2011), if a polynomial system
is globally asymptotically stable, there might exist no
polynomial Lyapunov function.

To overcome the limitations of the two discussed ap-
proaches, we propose to use genetic programming (GP).
GP is an evolutionary algorithm capable of evolving en-
coded representations of symbolic functions, until a satis-
factory solution is found (Koza (1992)). The evolution is
driven by a fitness function, which scores solutions on how
well they satisfy desired specifications. GP distinguishes
itself from other optimization methods in that it is able to
search over the function space, rather than over a param-
eter space. Due to this nature, genetic programming (and
variants) have been used to synthesize Lyapunov func-
tions, see e.g. Grosman and Lewin (2009), and controllers,
see e.g. Koza et al. (2003), Sekaj and Perkacz. (2007),
Diveev and Shmalko (2015), and Chen and Lu (2011). In
these works, fitness is based on specific samples and/or
simulations, hence no formal guarantee can be given on
the behavior of the system, other than for the specific test
cases. In this work we propose the combination of genetic
programming and a Satisfiability Modulo Theories (SMT)
solver (Barrett et al. (2009)), which uses a combination
of background theories to determine whether a first-order
logic formula can be satisfied or not. This solver is used to
provide formal guarantees on the behavior of the system.

In our approach, the used control strategy is a switching
law that switches between different controller modes based
on a CLF. Genetic programming is used to automatically
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generate both candidate CLFs and the controller modes.
Subsequently, the candidate solutions are verified using the
SMT solver. In this paper, the SMT solver dReal is used,
which is capable of providing formal guarantees on the
satisfiability of nonlinear inequalities over the real numbers
(Gao et al. (2013)). By using GP, we allow ourselves to
search for solutions that include non-polynomial functions.
Furthermore, as opposed to abstraction methods, the syn-
thesized controllers are expressed as analytic expressions,
that are in general more compact than a binary decision
diagram (BDD) or a lookup table. Finally, the proposed
method provides formal guarantees on stability and safety,
as opposed to previous attempts using GP.

A similar approach is found in Ravanbakhsh and Sankara-
narayanan (2015). Here, counter-example guided synthesis
is used to synthesize a CLF for a switched system with
a reach-while-stay specification. The verification is also
done using dReal. However, only the controller modes are
prefixed and only the CLF is synthesized.

To the best knowledge of the authors, this is the first work
combining genetic programming and formal verification
for controller synthesis. Furthermore, a special CLF is
designed for the RSWS specification and such that the
verification is decidable.

2. PROBLEM DEFINITION

Notation: Given a set A, let us denote the boundary
as ∂A and the interior as int(A). The Euclidean norm
is denoted by ‖ · ‖ and the natural logarithm by ln(·).
The temporal logic operators always and eventually are
denoted by � and ♦ respectively. The predicate defining
set A is denoted by φA. A system satisfies �φA if and only
if ∀t ≥ 0, ξ(t) ∈ A and a system satisfies ♦φA if and only
if ∃t ≥ 0, ξ(t) ∈ A.

In this work we consider the class of nonlinear dynamical
systems described by{

ξ̇(t) = f(ξ(t), u(t))
ξ(0) ∈ I

(1)

where I is a compact set and the variables ξ(t) ∈ Rn and
u(t) ∈ Rm denote the state and input respectively.

The controller is designed such that the composition of
the system (1) and control input u(t) for t ≥ 0 results in
a system that satisfies

S1) Reach and stay while stay (RSWS): given a compact
safe set S, all trajectories starting from the compact
initial set I ⊂ int(S) eventually reach and stay in the
compact goal set G ⊂ int(S), while staying within
the safe set S. This corresponds to the temporal logic
formula �φS ∧ ♦�φG.

S2) There occurs no Zeno behavior.

We say a there occurs no Zeno behavior if there are no
infinitely many switches in a finite time interval.

This paper addresses the following problem:

Problem 1. Given the compact sets S, I, G and system
(1), synthesize a control law u(t) such that specifications
S1) and S2) are guaranteed.

−δ

γ + k

k + ζ

G
S

I

Fig. 1. Example of a RSWS CLF.

3. CONTROL STRATEGY

Consider the index set Q = {1, . . . ,M}, controller mode
q ∈ Q and vector fields H = {hq(ξ(t))|q ∈ Q} from Rn to
Rm. In this work, we consider controllers of the form

u(t) = hq(ξ(t)). (2)

A switching law based on a CLF determines the next mode
q(ξ(t+)). The CLF is designed such that in combination
with the switching law the desired safety and reachability
specifications of S1) are enforced. This specific CLF is
referred to as the RSWS CLF.

3.1 RSWS control Lyapunov function

Classical (control) Lyapunov functions satisfy a “tight”
inequality, i.e. (∀x ∈ D)V (x) ≥ 0 and ∃x ∈ D such that
V (x) = 0, where {0} ⊆ D, see e.g. Khalil (2002). Similarly,
the first derivative also satisfies a tight inequality. As
stated in Gao et al. (2012), satisfiability of inequalities
over the reals for transcendental functions is not decidable,
hence they introduced the δ-decision problem, which is
decidable. However, the δ-decision problem can be prob-
lematic for tight inequalities, as will be shown in Section
5. To circumvent the occurrence of tight inequalities, we
introduce a perturbation variable δ in our definition of the
RSWS CLF, yielding a more general CLF-like function,
coined the relaxed RSWS CLF. The term relaxed is used
to indicate that the bounds are picked to be more conser-
vative compared to the nominal RSWS CLF (i.e. δ = 0).

Let us denote the Lie derivative of g(x) along the flow of

f(x, hq(x)) as Lfq = ∂g(x)
∂x f(x, hq(x))).

Definition 2. (Relaxed RSWS control Lyapunov function).
A function V ∈ C2(S,R) is a relaxed RSWS control
Lyapunov function w.r.t. the compact sets (S, I,G) and
system (1), if there exists real numbers α, β, γ, ε, ζ > 0,
and δ ≥ 0, such that

V (x) ≥ k + ζ ∀x ∈ S\G
V (x) ≥ −δ ∀x ∈ G
V (x) > γ + k ∀x ∈ ∂S
V (x) ≤ γ + k ∀x ∈ I

∃q ∈ Q x.t. V̇q(x) ≤ −αV (x) + δ ∀x ∈ S

V̈q(x) ≤ ε ∀q ∈ Q, ∀x ∈ S

(3)

where V̇q(x) = LfqV , V̈q(x) = Lfq V̇q(x) and

k = β +
δ

α
. (4)

Remark 3. Note that the relaxed control Lyapunov func-
tion is not a CLF in the strict sense if δ > 0, as it and
its time derivative are not necessarily positive definite and
negative definite respectively.

To illustrate the first four conditions, an example RSWS
CLF is shown in Figure 1. For the sake of brevity, we use
CLF to refer to the relaxed RSWS CLF throughout this
paper.
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S1) and S2) are guaranteed.

−δ

γ + k

k + ζ

G
S

I

Fig. 1. Example of a RSWS CLF.

3. CONTROL STRATEGY

Consider the index set Q = {1, . . . ,M}, controller mode
q ∈ Q and vector fields H = {hq(ξ(t))|q ∈ Q} from Rn to
Rm. In this work, we consider controllers of the form

u(t) = hq(ξ(t)). (2)

A switching law based on a CLF determines the next mode
q(ξ(t+)). The CLF is designed such that in combination
with the switching law the desired safety and reachability
specifications of S1) are enforced. This specific CLF is
referred to as the RSWS CLF.

3.1 RSWS control Lyapunov function

Classical (control) Lyapunov functions satisfy a “tight”
inequality, i.e. (∀x ∈ D)V (x) ≥ 0 and ∃x ∈ D such that
V (x) = 0, where {0} ⊆ D, see e.g. Khalil (2002). Similarly,
the first derivative also satisfies a tight inequality. As
stated in Gao et al. (2012), satisfiability of inequalities
over the reals for transcendental functions is not decidable,
hence they introduced the δ-decision problem, which is
decidable. However, the δ-decision problem can be prob-
lematic for tight inequalities, as will be shown in Section
5. To circumvent the occurrence of tight inequalities, we
introduce a perturbation variable δ in our definition of the
RSWS CLF, yielding a more general CLF-like function,
coined the relaxed RSWS CLF. The term relaxed is used
to indicate that the bounds are picked to be more conser-
vative compared to the nominal RSWS CLF (i.e. δ = 0).

Let us denote the Lie derivative of g(x) along the flow of

f(x, hq(x)) as Lfq = ∂g(x)
∂x f(x, hq(x))).

Definition 2. (Relaxed RSWS control Lyapunov function).
A function V ∈ C2(S,R) is a relaxed RSWS control
Lyapunov function w.r.t. the compact sets (S, I,G) and
system (1), if there exists real numbers α, β, γ, ε, ζ > 0,
and δ ≥ 0, such that

V (x) ≥ k + ζ ∀x ∈ S\G
V (x) ≥ −δ ∀x ∈ G
V (x) > γ + k ∀x ∈ ∂S
V (x) ≤ γ + k ∀x ∈ I

∃q ∈ Q x.t. V̇q(x) ≤ −αV (x) + δ ∀x ∈ S

V̈q(x) ≤ ε ∀q ∈ Q, ∀x ∈ S

(3)

where V̇q(x) = LfqV , V̈q(x) = Lfq V̇q(x) and

k = β +
δ

α
. (4)

Remark 3. Note that the relaxed control Lyapunov func-
tion is not a CLF in the strict sense if δ > 0, as it and
its time derivative are not necessarily positive definite and
negative definite respectively.

To illustrate the first four conditions, an example RSWS
CLF is shown in Figure 1. For the sake of brevity, we use
CLF to refer to the relaxed RSWS CLF throughout this
paper.
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3.2 Switching law

Let us consider the switching law:

q(t+) :=





argmin
q∈Q

V̇q(ξ(t)) if V̇q(t)(ξ(t)) ≥
− αV (ξ(t)) + αβ + δ

q(t) otherwise

(5)

where q(t) ∈ Q and q(t+) ∈ Q denote the current and next
controller mode respectively. As shown in the next lemma,
this switching law in combination with a CLF in (3) results
in a minimal dwell time between controller modes, i.e.
the controller mode can only switch after a fixed nonzero
period of time.

Lemma 4. Given the switching law in (5) and a function
V ∈ C2(S,R) satisfying (3), then for each q(t) ∈ Q,

ξ(t) ∈ S and 0 ≤ ti ≤ ti+1 s.t. V̇q(ξ(ti)) ≤ −αV (ξ(ti)) + δ

and V̇q(ξ(ti+1)) = −αV (ξ(ti+1)) + αβ + δ, there exists a
minimal dwell time τd > 0 such that ti+1 − ti ≥ τd.

Proof. Without loss of generality, let us consider a con-
troller mode q∗, initial time ti = 0 and the first time at
which a switch would occur ti+1 = ti + τd, such that

V̇q∗(ξ(0)) ≤ −αV (ξ(0)) + δ, (6)

V̇q∗(ξ(τd)) = −αV (ξ(τd)) + αβ + δ. (7)

Consider the following equality:

V̇q∗(ξ(τd)) = V̇q∗(ξ(0)) +

∫ τd

0

V̈q∗(ξ(τ))dτ. (8)

Substituting (6) and (7) into (8) and using the bound on

V̈q∗(x) from (3) yields:

−αV (ξ(τd)) + αβ ≤ −αV (ξ(0)) + ετd. (9)

Furthermore, we have for all t ∈ [0, τd] that

V̇q∗(ξ(t)) ≤ −αV (ξ(t)) + αβ + δ ≤ ∆, (10)

with ∆ = αδ + αβ + δ. It directly follows that

V (ξ(τd)) = V (ξ(0)) +

∫ τd

0

V̇q∗(ξ(τ))dτ ≤ V (ξ(0)) + ∆τd,

and thus −αV (ξ(τd)) ≥ −αV (ξ(0)) − α∆τd. Substituting
this in (9) yields

−αV (ξ(0))− α∆τd + αβ ≤ −αV (ξ(0)) + ετd.

Therefore, we obtain

τd ≥ αβ

ε+ α(αδ + αβ + δ)
, (11)

with real numbers α, β, γ, ε > 0, δ ≥ 0 and δ ≥ 0. Hence it
follows that there exists a minimal dwell time τd > 0 .

3.3 Closed-loop system

The interconnection of system (1) and the control law
(2), using the switching law in (5) and the CLF in (3),
yields a closed-loop system with the properties stated in
the following theorem.

Theorem 5. Given the compact sets S, I ⊂ int(S), G ⊂
int(S), system (1), controller (2), switching law (5), and a
relaxed CLF satisfying (3), the closed-loop system satisfies
specifications S1) and S2).

Proof. From Lemma 4 it directly follows that for switch-
ing law (5) and a CLF satisfying (3), there exist a min-
imum dwell time strictly larger than zero, hence there

are not infinitely many switches in a finite interval and
therefore S2) is proven.

The initial conditions of the system satisfy ξ(0) ∈ I, where
I ⊂ int(S). From (3) it follows that

V (ξ(0)) ≤ γ + k, ∀ξ(0) ∈ I. (12)

Let us consider a controller mode sequence by Q∗ :=
{qk}k∈N, found by applying the switching law (5). From
(3) and (5) we have for all q∗ ∈ Q∗

V̇q∗(ξ(t)) ≤ −αV (ξ(t)) + αβ + δ, ∀ξ(t) ∈ S. (13)

Using the comparison lemma (see e.g. Khalil (2002)) yields

V (ξ(t)) ≤ (V (ξ(0))− k)e−αt + k, ∀ξ(t) ∈ S, (14)

where k is defined in (4). From (12) it follows that

(V (ξ(0))− k)e−αt + k ≤ γe−αt + k, ∀ξ(0) ∈ I.

Substituting this in (14) yields that for all initial condi-
tions ξ(0) ∈ I and t ≥ 0 we have

V (ξ(t)) ≤ γe−αt + k ≤ γ + k, ∀ξ(t) ∈ S. (15)

Hence, given ξ(0) ∈ I, where I ⊂ int(S), we have
V (ξ(t)) ≤ γ + k while ξ(t) ∈ S. Since for all x ∈ ∂S,
V (x) > γ + k, we have that for all ξ(0) ∈ I, ξ(t) remains
within the interior of S for all t ≥ 0, hence �φS is proven.

To show that eventually all trajectories starting in I reach
and stay in set G, we use the previously found properties
that for all ξ(0) ∈ I and all t ≥ 0, we have ξ(t) ∈ S
and V (ξ(t)) is bounded by V (ξ(t)) ≤ γe−αt + k. From
(3) we have V (x) ≥ k + ζ for all x ∈ S\G, hence for all

t > − 1
α ln( ζγ ) we have ξ(t) ∈ G. Therefore all trajectories

satisfying ξ(0) ∈ I eventually converge and stay in G, i.e.
♦�φG is satisfied.

Now the objective is to find the parameters α, β, γ, ζ, ε
and synthesize both V (x) and the vector fields H such
that V (x) is a CLF, i.e. the conditions in (3) hold.

4. GRAMMAR-GUIDED GENETIC PROGRAMMING

The classical GP algorithm as introduced in Koza (1992)
consists of a population of functions encoded as parse
trees (the genotypes). Based on a fitness function, each
individual within the population is assigned a fitness. With
a probability related to the fitness, solutions are selected
to reproduce and undergo genetic operators to form new
individuals for a new population. By repeating this for
many generations, the underlying assumption is that the
average fitness of the population increases, ultimately
finding a suitable solution.

In this work we use a variant of GP, namely grammar-
guided genetic programming (GGGP), similar to the one
proposed in Whigham et al. (1995). In GGGP, parse trees
are synthesized based on a user-defined grammar. We use
a grammar in Backus-Naur form (BNF) (Naur (1963)),
consisting of the tuple {N ,S,P,P∗}. Here N presents the
set of nonterminals, S ∈ N the start symbol, P the set of
production rules, and P∗ the set of terminal production
rules, which does not contain recursive rules.

Example 6. An example of a simple grammar consisting
of nonterminals for expressions 〈expr〉, monomials 〈mon〉,
and variables 〈var〉 is given by N = {expr,mon, var},
S = 〈expr〉 and the production rules P in Table 1. The

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

7478



7208 C.F. Verdier  et al. / IFAC PapersOnLine 50-1 (2017) 7205–7210

Table 1. Production rules P.
Nonterminal Production rules

〈expr〉 ::= 〈mon〉
| 〈expr〉+ 〈mon〉

〈mon〉 ::= 〈var〉
| 〈var〉 × 〈mon〉

〈var〉 ::= a | b a + ab

expr

mon

a

b

+

×
expr mon

monvar var

vara

ba

a

+

×

Fig. 2. Transformation.

terminal rules P∗ are obtained by removing the recursive
rules from P.

The production rules are used to map nonterminals to a
number of productions that are delimited by ‘|’. For ex-
ample, in Table 1, the nonterminal 〈expr〉 can be mapped
to either the nonterminal 〈mon〉 or the sum of the nonter-
minals 〈expr〉 and 〈mon〉.
A parse tree is synthesized using the BNF grammar as
follows. The tree is initialized with the starting symbol.
Based on this nonterminal, a random corresponding rule
is picked from P. The subtree corresponding to the rule
is put under the starting symbol, forming a new tree.
Nonterminals at the leaf nodes are subsequently expanded
similar to the starting symbol, until all leaf nodes do not
contain nonterminals. If a predefined depth is reached,
the terminal production rules P∗ are used to expand non-
terminals, preventing an infinite depth tree. To translate
genotype into a function, all nonterminals are removed by
replacing them with their underlying subtrees, resulting
in a new parse tree that can be expressed as a function.
Going back to Example 6, a fully grown genotype based on
this grammar and the transformation to the corresponding
function is shown in Figure 2.

Two popular genetic operators in classical GP are crossover
and mutation. In crossover, two random subtrees of two in-
dividuals are interchanged. In mutation, a random subtree
of an individual is replaced by a new randomly generated
subtree. In GGGP the genetic operators crossover and mu-
tation are very similar. Here, for crossover and mutation a
random nonterminal is picked and the branch underneath
is replaced by another tree corresponding to the same type
of nonterminal.

5. AUTOMATIC SYNTHESIS

The inequalities of (3) can be put in the standard form

(∀x ∈ Ci)φi(x) ≥ 0, i = 1, . . . , 6 (16)

with
φ1 = V (x)− k − ζ
φ2 = V (x) + δ
φ3 = V (x)− γ − k + c
φ4 = −V (x) + γ + k

φ5 = −min
q∈Q

V̇q(x)− αV (x) + δ

φ6 = −max
q∈Q

V̈q(x) + ε

(17)

C1 = S\G, C2 = G, C3 = ∂S, C4 = I, C5 = C6 = S,
and c > 0 is an arbitrary small number such that φi(x)−
c ≥ 0 =⇒ φi(x) > 0. Given a function V , controller
u(x, q), and the system f(x, u(x, q)), the conditions in (16)
are used to verify whether V is a relaxed RSWS CLF.
In this work we use an approximation of the satisfiability

based on an error over a finite number of points in Ci and
a formal verification based on an SMT solver. Here the
latter gives a binary answer on the satisfiability and the
former an indication how close an unsatisfied inequality is
to being satisfied.

Given a vector xt,i = [x1, . . . , xn] where xj ∈ Ci for j =
1, . . . , n, we define the error measure w.r.t the inequality
φi(x) ≥ 0 as

eφi(xt,i) = ‖ [min(0, φi(x1)), . . . ,min(0, φi(xn))] ‖. (18)

5.1 SMT solver

We prove a logic formula ψi := (∀x ∈ Ci)φi(x) ≥ 0 is
satisfied, by proving that ¬ψi ≡ (∃x ∈ C)φi(x) < 0 is
unsatisfied. As shown in Gao et al. (2012), these formulae
are equivalent to

ϕ := (∃z ∈ Z)

(∧m

i=1

(∨ki

j=1
gij(x) = 0

))
. (19)

In this work we use the SMT solver dReal, which im-
plements the δ-decision problem for nonlinear functions
over the real numbers, i.e. deciding whether a formula ϕ is
unsatisfiable (unsat) or if its δ-weakening ϕδ is satisfiable
(δ-sat) (Gao et al. (2012)). Here, the δ-weakening of ϕ is
defined as

ϕδ := (∃z ∈ Z)

(∧m

i=1

(∨ki

j=1
|gij(x)| ≤ δSMT

))
, (20)

where δ is a positive rational number. The cases of unsat
and δ-sat can overlap, in which case dReal can return
either answer. Since we aim to find unsat, this overlap
can result in ‘false negatives’. The overlap occurs for tight
inequalities, i.e. ϕ′ = (∀x ∈ C)f(x) ≤ 0 is satisfied and
there exists a x ∈ C such that f(x) = 0. We will briefly
demonstrate this overlap. Taking the negation of ϕ′ and
rewriting it in the form (19) yields:

(∃x ∈ C)f(x) > 0 ≡ (∃x ∈ C, ∃z1 ∈ Z1)f(x)− z1 = 0,

where Z1 = (0,m1], m1 > supx∈C f(x). Now since
supx∈C f(x) = 0, it is obvious that for any rational number
δSMT we satisfy (∃x ∈ C, ∃z1 ∈ Z1)|f(x) − z1| ≤ δSMT.
Hence, ¬ϕ′ is both unsat and δ-sat. To circumvent this
overlap, we introduced the δ relaxation in (3) to relax
potential tight inequality bounds. Here, we pick δ > δSMT.
To demonstrate the effect, consider again the example of
f(x), but now we want to verify (∃x ∈ C)f(x) − δ ≤ 0.
Hence, we have:

ϕ = (∃x ∈ C, ∃z2 ∈ Z2)f(x)− δ − z2 = 0

ϕδ = (∃x ∈ C, ∃z2 ∈ Z2)|f(x)− δ − z2| ≤ δSMT

where Z2 = (0,m2], m2 > supx∈C f(x) − δ = −δ. Since
f(x) ≤ 0, we picked δ > δSMT, and either Z2 = ∅ or
z2 > 0, it is easy to see we have unsat but don’t have
δ-sat. Therefore there is no overlap.

In the case of δ-sat, dReal also returns a domain on
which ϕδ is satisfied. Elements from this set can be used
as counterexamples where the inequalities are potentially
violated.

5.2 Fitness

The fitness value of an individual is given by

ffull(k) =

6∑
i=1

wi(k)fsamp,φi
(k) + fsmt,φi

(k), (21)
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Nonterminal Production rules

〈expr〉 ::= 〈mon〉
| 〈expr〉+ 〈mon〉

〈mon〉 ::= 〈var〉
| 〈var〉 × 〈mon〉
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mon
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terminal rules P∗ are obtained by removing the recursive
rules from P.

The production rules are used to map nonterminals to a
number of productions that are delimited by ‘|’. For ex-
ample, in Table 1, the nonterminal 〈expr〉 can be mapped
to either the nonterminal 〈mon〉 or the sum of the nonter-
minals 〈expr〉 and 〈mon〉.
A parse tree is synthesized using the BNF grammar as
follows. The tree is initialized with the starting symbol.
Based on this nonterminal, a random corresponding rule
is picked from P. The subtree corresponding to the rule
is put under the starting symbol, forming a new tree.
Nonterminals at the leaf nodes are subsequently expanded
similar to the starting symbol, until all leaf nodes do not
contain nonterminals. If a predefined depth is reached,
the terminal production rules P∗ are used to expand non-
terminals, preventing an infinite depth tree. To translate
genotype into a function, all nonterminals are removed by
replacing them with their underlying subtrees, resulting
in a new parse tree that can be expressed as a function.
Going back to Example 6, a fully grown genotype based on
this grammar and the transformation to the corresponding
function is shown in Figure 2.

Two popular genetic operators in classical GP are crossover
and mutation. In crossover, two random subtrees of two in-
dividuals are interchanged. In mutation, a random subtree
of an individual is replaced by a new randomly generated
subtree. In GGGP the genetic operators crossover and mu-
tation are very similar. Here, for crossover and mutation a
random nonterminal is picked and the branch underneath
is replaced by another tree corresponding to the same type
of nonterminal.

5. AUTOMATIC SYNTHESIS

The inequalities of (3) can be put in the standard form

(∀x ∈ Ci)φi(x) ≥ 0, i = 1, . . . , 6 (16)

with
φ1 = V (x)− k − ζ
φ2 = V (x) + δ
φ3 = V (x)− γ − k + c
φ4 = −V (x) + γ + k

φ5 = −min
q∈Q

V̇q(x)− αV (x) + δ

φ6 = −max
q∈Q

V̈q(x) + ε

(17)

C1 = S\G, C2 = G, C3 = ∂S, C4 = I, C5 = C6 = S,
and c > 0 is an arbitrary small number such that φi(x)−
c ≥ 0 =⇒ φi(x) > 0. Given a function V , controller
u(x, q), and the system f(x, u(x, q)), the conditions in (16)
are used to verify whether V is a relaxed RSWS CLF.
In this work we use an approximation of the satisfiability

based on an error over a finite number of points in Ci and
a formal verification based on an SMT solver. Here the
latter gives a binary answer on the satisfiability and the
former an indication how close an unsatisfied inequality is
to being satisfied.

Given a vector xt,i = [x1, . . . , xn] where xj ∈ Ci for j =
1, . . . , n, we define the error measure w.r.t the inequality
φi(x) ≥ 0 as

eφi(xt,i) = ‖ [min(0, φi(x1)), . . . ,min(0, φi(xn))] ‖. (18)

5.1 SMT solver

We prove a logic formula ψi := (∀x ∈ Ci)φi(x) ≥ 0 is
satisfied, by proving that ¬ψi ≡ (∃x ∈ C)φi(x) < 0 is
unsatisfied. As shown in Gao et al. (2012), these formulae
are equivalent to

ϕ := (∃z ∈ Z)

(∧m

i=1

(∨ki

j=1
gij(x) = 0

))
. (19)

In this work we use the SMT solver dReal, which im-
plements the δ-decision problem for nonlinear functions
over the real numbers, i.e. deciding whether a formula ϕ is
unsatisfiable (unsat) or if its δ-weakening ϕδ is satisfiable
(δ-sat) (Gao et al. (2012)). Here, the δ-weakening of ϕ is
defined as

ϕδ := (∃z ∈ Z)

(∧m

i=1

(∨ki

j=1
|gij(x)| ≤ δSMT

))
, (20)

where δ is a positive rational number. The cases of unsat
and δ-sat can overlap, in which case dReal can return
either answer. Since we aim to find unsat, this overlap
can result in ‘false negatives’. The overlap occurs for tight
inequalities, i.e. ϕ′ = (∀x ∈ C)f(x) ≤ 0 is satisfied and
there exists a x ∈ C such that f(x) = 0. We will briefly
demonstrate this overlap. Taking the negation of ϕ′ and
rewriting it in the form (19) yields:

(∃x ∈ C)f(x) > 0 ≡ (∃x ∈ C, ∃z1 ∈ Z1)f(x)− z1 = 0,

where Z1 = (0,m1], m1 > supx∈C f(x). Now since
supx∈C f(x) = 0, it is obvious that for any rational number
δSMT we satisfy (∃x ∈ C, ∃z1 ∈ Z1)|f(x) − z1| ≤ δSMT.
Hence, ¬ϕ′ is both unsat and δ-sat. To circumvent this
overlap, we introduced the δ relaxation in (3) to relax
potential tight inequality bounds. Here, we pick δ > δSMT.
To demonstrate the effect, consider again the example of
f(x), but now we want to verify (∃x ∈ C)f(x) − δ ≤ 0.
Hence, we have:

ϕ = (∃x ∈ C, ∃z2 ∈ Z2)f(x)− δ − z2 = 0

ϕδ = (∃x ∈ C, ∃z2 ∈ Z2)|f(x)− δ − z2| ≤ δSMT

where Z2 = (0,m2], m2 > supx∈C f(x) − δ = −δ. Since
f(x) ≤ 0, we picked δ > δSMT, and either Z2 = ∅ or
z2 > 0, it is easy to see we have unsat but don’t have
δ-sat. Therefore there is no overlap.

In the case of δ-sat, dReal also returns a domain on
which ϕδ is satisfied. Elements from this set can be used
as counterexamples where the inequalities are potentially
violated.

5.2 Fitness

The fitness value of an individual is given by

ffull(k) =

6∑
i=1

wi(k)fsamp,φi
(k) + fsmt,φi

(k), (21)
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where k is the current generation, fsamp,φi
(k) ∈ [0, 1] a

fitness based on the error measure eφi
(xt,i) defined in (18),

fsmt ∈ {0, 1} a fitness based on the answer returned by the
SMT solver dReal, and wi(k) gives weight to inequalities
that were harder to satisfy in previous runs.

The fitness fsamp,φi(k) is defined as

fsamp,φi(k) =
1

1 + eφi(xt,i)
. (22)

Here xt,i consists of randomly sampled points in Ci and the
counterexample domains returned by the SMT solver. The
fitness fsmt,φi(k) is defined to be 1 if the negation of (16)
is unsatisfied and 0 otherwise. Let us denote the fitness
of the jth individual as f j

samp,φi
. The ith fitness error of

the best individual is defined as ef,i(k) = 1− f j∗

samp,φi
(k),

where j∗ = argmaxj
∑6

i=1 f
j
samp,φi

(k). To give weight to
inequalities that are farther away from satisfiability, we
define a weight ∆i(k) proportional to the contribution of
ef,i(k) to the sum of all fitness errors:

∆i(k) =




6
ef,i(k)∑6
i=1 ef,i(k)

if
6∑

i=1

ef,i(k) �= 0

1 otherwise

(23)

To prevent strong fluctuation of the weights, we apply
a discrete low-pass filter, yielding the following dynamic
weight wi(k):

wi(k) = λ∆i + (1− λ)wi(k − 1), (24)

where w(0) = 1 and a user-defined λ ∈ [0, 1]. By increasing
the weight of criteria that under-performed in previous
generations, the selection probability of individuals that
perform better on these criteria increases.

5.3 Automatic synthesis

Given a system, sets S, I,G, and δ, the proposed approach
consists of the following steps:

(1) A random population of individuals is constructed
as described in Section 4. Each individual has one
gene for each of the following: the CLF, the controller
modes, and the parameter vector [α, β, γ, ζ, ε].

(2) The fitness (21) is evaluated for all individuals.
(3) The SMT solver is used to generate counterexamples

for the individual with the best fitness and all indi-
viduals with

∑6
i=1 fsamp,φi

= 6.
(4) Elitism: the best individual is copied to the next

generation.
(5) Based on the fitness, individuals are selected using

tournament selection (Koza (1992)) to form new
individuals by means of genetic operators. This step
is repeated until a new full population is created.

(6) Steps 2 to 5 are repeated until all inequalities in (3)
are satisfied or a maximum amount of generations is
met. In the latter case, no guarantees are provided.

6. EXAMPLE: 2D PENDULUM

In this section we demonstrate our approach on a simple
2D pendulum, which demonstrates the ability to handle
non-polynomial functions. The equations of motion of the
pendulum system are given by:

ẋ1 = x2

ẋ2 = (−bx2 +mlg sin(x1) + u)/J
(25)
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Fig. 3. Phase plot of multiple initial conditions. Black
dashed: initial set, red: goal set.

where u is the input and x1 = 0 corresponds to upper
position of the pendulum. The parameters of the system
are chosen to be m = 1kg, l = 1m, J = 1kg · m2,
g = 9.81m2/s, and b = 0.1kg ·m2/s.

The safe set, initial set, and goal set are given by S =
[−1.5π, 1.5π] × [−10, 10], I = [−π, π] × [−1, 1], and
G = [−0.1, 0.1] × [−0.2, 0.2] respectively. The design
parameters are chosen to be δ = 0.0001, δSMT = 0.00001,
and λ = 0.05. We fixed ζ = δ. The test points in the vector
xt,i consist of 2000 uniformly sampled points from Ci and
an additional maximum 2000 counterexamples obtained
from dReal, where a first-in-first-out principle is used. The
number of individuals is 100 and maximum amount of
generations is set to 2000. The mutation and crossover
chances are picked to be 0.7 and 0.2 respectively. The used
production rules are shown in Table 2, where the start
symbols for the CLF, controller modes, and parameter
vector [α, β, γ, ε] are given by SV = 〈Vexpr〉, Su =
〈mode〉, and Spar = 〈parvec〉 respectively. The terminal
production rules are obtained from the production rules
by omitting all the recursive rules. The GGGP algorithm
is implemented in Mathematica. Running on an Intel Xeon
processor with 6 cores and 3.5GHz, the statistics of 50 runs
are shown in Table 3.

An example of a found solution is

V =38x2
1 − 0.057x1x

3
2 + 6.8x1x2

− 0.0041x1x2 sin(x1) + 8.8x2
2,

H ={6.9x2, 82x1, − 89x1, − 95x2},
α =0.068, β = 0.064, γ = 690, ε = 7.2 · 10−12.

A phase plot of the closed-loop system for the initial
conditions (1.5, 1), (−0.5, 0.8), (0,−0.9), (2,−1), (−2,−1),
(π, 1), and (−π, 1) is shown in Figure 3. It can be seen that
all trajectories reach and stay in the goal set G.

Table 2. Production rules P
Nonterminal Production rules

〈Vexpr〉 ::= 〈Vexpr〉+ 〈Vexpr〉 | 〈pol〉
〈mode〉 ::= {〈lin〉} | {〈lin〉 , 〈lin〉} | . . .

〈parvec〉 ::= [〈par〉 , 〈par〉 , 〈par〉 , 〈par〉]
〈pol〉 ::= 〈pol〉+ 〈pol〉 | 〈const〉 × 〈mon〉
〈lin〉 ::= 〈const〉x1 + 〈const〉x2 | 〈const〉x1

| 〈const〉x2 | 〈const〉+ 〈lin〉
〈mon〉 ::= 〈var〉 | 〈var〉 × 〈mon〉 | x2

1 | x2
2 | x1x2

〈var〉 ::= x1 | x2 | sinx1

〈const〉 ::= 0.1 〈const〉 | 10 〈const〉 | 〈sign〉 × (〈digit〉 〈digit〉)
〈par〉 ::= 0.1 〈par〉 | 10 〈par〉 | (〈digit〉 〈digit〉)
〈sign〉 ::= −1 | 1
〈digit〉 ::= 0 | 1 | . . . | 9
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Table 3. Results for 50 runs.

Legend: tT : total run time, t̄gen: average generation time, # Gen:
number of generations, td: minimum dwell-time, µ: mean, σ:

standard deviation.
Min Max µ σ

tT [min] 3.97 143.61 31.46 32.60
t̄gen[s] 7.83 16.08 10.23 1.68
# Gen 22 756 177 167
τd [s] 3.1 · 10−26 1.1 · 10−9 2.2 · 10−11 1.5 · 10−10

7. DISCUSSION AND CONCLUSION

In this paper we presented an automatic synthesis ap-
proach of both a CLF and switched state feedback con-
troller for nonlinear systems to satisfy both RSWS prop-
erties and no Zeno behavior. Preliminary results have been
shown for a 2D pendulum.

Relying on genetic programming, the proposed methodol-
ogy has as a drawback that there is no guarantee a solution
is found within an arbitrary large number of generations.

In future work, we want to test the approach for multiple
systems and investigate the scalability for higher dimen-
sional systems. In the current framework, parameters and
constants are synthesized using a grammar. We would
like to allow for a separate optimization of parameters
to find better solutions faster. Furthermore, the current
framework imposes a conservative bound on V̈q(x), yield-
ing a very low bound on the minimum-dwell time. Less
conservative bounds, the extension to more general LTL
formulae, and extensions to classes of hybrid systems will
be explored in the future.
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