
A machine learning ap-
proach for optimisation
in railway planning

Lu Dai

Te
ch

ni
sc
he

U
ni
ve

rs
ite

it
D
el
ft

A machine learning approach for
optimisation in railway planning

by

Lu Dai

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Science

at the Delft University of Technology,
to be defended publicly on Monday March 12, 2018 at 10:00 AM.

Supervisor:

Thesis committee: TU Delft
TU Delft
TU Delft
Nedtrain

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Dr. Sicco Verwer
Dr. Wan-Jui Lee
Dr. Mathijs de Weerdt,
Dr. Sicco Verwer,
Dr. David Tax,
Dr. Wan-Jui Lee,

http://repository.tudelft.nl/

CONTENTS

Summary v

Preface vii

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 3
1.3 Research questions . 4
1.4 Research scope . 4
1.5 Research relevance . 5
1.6 Reading guide. 5

2 Literature Study 7
2.1 Machine learning . 7
2.2 Machine learning in railway systems . 8
2.3 Machine learning in scheduling & planning. 10
2.4 Machine learning in Local Search . 12
2.5 Feature extraction in scheduling problems 13
2.6 Imbalanced learning . 14

3 Data Set & Feature Engineering 17
3.1 Dataset Introduction& Feature Set Definition 17

3.1.1 Dataset Introduction. 17
3.1.2 Feature Set Definition . 21

3.2 Solution Status & Label sets . 24
3.3 Feature Calculation & Visualization . 26

3.3.1 Instance Features . 26
3.3.2 Initial Solution Features . 30

3.4 Discussion . 36

4 Training System 39
4.1 Framework . 39
4.2 Imbalanced Learning . 40
4.3 Instance Learning . 42

4.3.1 Solution Probability Classification 42
4.3.2 Instance Difficulty Classification 43
4.3.3 Results Analysis . 47

4.4 Initial Solution Learning . 48
4.4.1 Results . 48
4.4.2 Result Analysis . 54

iii

iv CONTENTS

5 Testing 57
5.1 Testing Method . 57
5.2 Testing Set . 58
5.3 Initial Solution Level Analysis . 60
5.4 Instance Level Analysis . 61

5.4.1 Comparing with Training Dataset 61
5.4.2 Comparing With Random Selection Situation 62

5.5 Discussion . 65
5.5.1 Conclusions . 65
5.5.2 Limitation . 66

6 Discussion & Future Work 67
6.1 Reasearch Work Recap . 67

6.1.1 Dataset collection . 67
6.1.2 Feature Calculation . 68
6.1.3 Classifier Training . 68
6.1.4 Testing & Evaluation . 68

6.2 Discussion . 69
6.3 Conslusion . 69

6.3.1 Research Question 1 . 69
6.3.2 Research Question 2 . 70
6.3.3 Research Question 3 . 70
6.3.4 Practical Use . 70

6.4 Future Work. 71
6.4.1 Exploring More About Features 71
6.4.2 Exploring Testing Methods. 71
6.4.3 Exploring Deep Learning Method 71
6.4.4 Exploring Dispatching Rules . 72
6.4.5 Exploring Improvements for Practical Use 72

References . 73

ABSTRACT

Planning and scheduling problem is a hard problem, especially in real life cases. The
time and space complexity increase quickly along with the increase of problem size. In
transportation systems, such problems exist a lot. The automation of transportation sys-
tems depends a lot on the improvements of developing planning and scheduling algo-
rithm. Nowadays, machine learning, as modern technology, has been adopted in every
field. The power of machine learning is its ability to obtain useful information from large
datasets. Considering problem instance information and corresponding solution status
as data and label respectively, there is the possibility that the solvable instances hold pat-
terns in common. This is where machine learning comes into the stage.
This research is focusing on how to combine machine learning with traditional plan-
ning and scheduling algorithm based on the Dutch Railway System. Specifically, making
use of a large amount of stored instance and solution details to improve the service site
planning process is our purpose. Combing machine learning and traditional scheduling
system is a new and hard topic. In this work, we implement a machine learning system
adapting to the scheduling algorithm content. We define and collect dataset matching
our research goals. A framework is designed according to the imbalanced characteristics
of our datasets. To explore the nature of algorithms, we choose to calculate features from
the problem instances and scheduling process directly. Besides, we perform a high vol-
ume of experiments to select the based machine learning techniques to adopt. What’s
more, we also design a test framework to evaluate our machine learning systems. Im-
provements are observed in our work. Additionally, we would like to explore the features
and machine learning techniques to improve the performance in the future work.

Keywords Planning & scheduling algorithm, Machine learning, Local search algorithm,
Imbalanced learning, Feature extraction

v

PREFACE

This thesis is the final work of my master study in Computer Science at TU Delft. The
thesis project is performed at Nedtrain as a one-year internship. The process of produc-
tion of my thesis work is quite interesting and enjoyable.

I would like to express my gratitude to the following people for their help in the pro-
duction of my thesis project. My dear supervisors Sicco Verwer and Wan-Jui Lee, without
their professional guidance and suggestions, I could not produce so much wonderful
work in this project. Dr. Mathijs de Weerdt, who is so nice helping with my graduation
process and helping me a lot with my thesis writing. Dr. Davide Tax, who is kind to be
my committee member. My boss Bob Huisman, who provides me with my first intern-
ship opportunity in a foreign country. His attitude of research encourages me a lot. And
my colleague Demian de Ruijter, one of the kindest people I have met here. Without his
assistance and support, the performing of my thesis work would be much difficult.

I would also like to thank my dear friends, Yuxuan Kang, Shiwei Bao, the Sun Liang
Dai family. Their support and their accompany makes my life much more fun. Espe-
cially, thank them for treating me with dinners a lot of times. Besides, I would like to give
my thanks to my best friend, Chenfu Huang. With her encouragements and additional
supervisions, I feel supported all the time.

Last but not least, I would like to express many thanks to my dear parents, who sup-
port me all the time and always give their best wishes to my life!

Lu Dai
Delft, March 2018

vii

1
INTRODUCTION

1.1. BACKGROUND
This study is based on the service site scheduling problem in the Dutch railway network.
The Dutch railway system is one of the busiest railway systems in Europe. Every day,
around a million of passengers are transported. Thus, keeping trains in a good condi-
tion and clean state is the key to perform transportation tasks well and serve the cus-
tomer comfortably. NS, the biggest railway operator in the Netherlands, is responsible
for Dutch railway transportation. In the meanwhile, Nedtrain as a subdepartment of NS
operates inspection, maintenance and cleaning missions etc. Usually, large opertions
are performed at maintenance depots. Daily tasks are processed at service sites, which
are connected to the local stations by tracks. This study focuses on the latter one. These
service sites consist of a number of tracks and special facilities alongside some of the
tracks, see Fig.1.1 as an example. As fewer trains are in demand during the off-peak time,
the service sites usually function during these hours especially overnight. The main tasks
include inspection, maintenance, cleaning, recombining, parking etc.

Figure 1.1: An example of service site

1

1

2 1. INTRODUCTION

Considering the above, the incoming and outgoing traffic of service sites primarily
take place during late evening and early morning respectively. A service site problem
can be regarded as in a twenty-four hour period circumstance, during which a group of
trains arrives during late evening with a set of service and parking tasks to be solved by
a proper plan, in order to satisfy the next early morning’s departure requirements with
proper-served and recombined trains for scheduled timetable. To be more specific, the
arrival and departure time are fixed, the plan needs to describe the order of tasks and
on which tracks tasks are processed, every exact movement of trains, the composition of
trains, the matching between arrival and departure trains, and the tracks trains parked
on. Until now, the plans are manually created by Nedtrain and making a feasible plan
can be hard and time-consuming.
For fulfilling the daily service process, methods for planning and scheduling the activi-
ties in service sites are necessary. The researchers at Nedtrain is putting effort into au-
tomating the plan generation process. The most recent progress is an initial software
program, which has been under testing already for a while, see Fig.1.2 for the software
structure. The algorithm component is the core code of finding plans for service site
problems. In real life situations, plans are expected to be produced as soon as possible
upon trains’ arrivals in order to take action immediately. To balance the trade-off be-
tween performance and time cost, a local search algorithm with adjustable time limit
settings is adopted. During the testing procedure, the time limit is set to two minutes,
meaning the software will stop when time ran off even if the problem is still being solv-
ing. The roles of other components are quite intuitive as suggested by their names. In-
stance generator and instance checker generate instances based on the simulated data
and check if the instances are reasonable respectively. The simulation data is generated
according to the experienced planners at Nedtrain. The planners provide every detailed
non-trivial data that can happen in the whole process such as task norm time, move-
on-track time, recombined time, arrival and departure meantime and other details that
might be needed. Then the algorithm component computes plans for the instances. Af-
ter plans generated, the constraint checker adjudicates the plans to be feasible or not by
checking if the resource and track constraints are satisfied. The Pareto front analyzer fo-
cuses on the solution status for each problem size, where size can be simply represented
by the number of train units involved. A Pareto case is defined as one testing of instances
holding the same number of trainunits. Each Pareto case explores the desired probabil-
ity of getting feasible solutions for different problem size. The instance information and
solution details are stored in the database.

1.2. PROBLEM STATEMENT

1

3

Figure 1.2: Software Framework

The purpose of automated plan generations contains both short-term needs and
long-term visions. For practical needs, such an algorithm will support the decision mak-
ing process during the planning procedure. Well-developed algorithms make plans much
quicker than human. Even a generated infeasible solution with only a few human ad-
justments can become applicable. Time is the key in the service sites as complicated
and flexible situations tend to happen frequently. Efficiency of these plans can affect the
railway system performance. Because of the rapid increase of passengers, over time the
demand for trains will increase. More trains bring much more stress to the transporta-
tion and service sites. As service sites are in the center of high-density urban areas, they
have limited resources and capacity. With more trains on the railway, it will soon be-
come important whether the facility and capacity of the service sites will be enough for
handling daily services, especially considering that expanding service site can be hard
and expensive. The capacity of a service site is the largest number of train units that can
be feasibly planned. The algorithm along with the pareto front analyzer helps not only
solving a lot of different problems but also defining the capacity of service sites.

1.2. PROBLEM STATEMENT

The most recent research focuses on the service site scheduling algorithm design and
implementation. The research results with a developed local search approach and a
runnable system for testing and analyzing. A large number of instances are tested and
stored together with their solutions, it provides a basis for a new research area on this
problem, the machine learning aspects. Nowadays, machine learning has been used in
every field, due to its ability to obtain useful information from large sets of data. Consid-
ering instance information and corresponding solution status as data and label respec-
tively, there is the possibility that the solvable instances hold patterns in common. This
research is focusing on how to make use of the stored instance and solution details to
improve the service site planning process. Specifically, knowing whether instances can
be solved in advance is the main research purpose. The benefits lay in exploring patterns
among the feasible and infeasible instances and avoiding wasting time on the infeasible
ones. Furthermore, only the instances that are predicted as feasible will be computed,
which largely decreases the testing time for each Pareto. This can fasten the process of
exploring the maximum work package of the service sites.

1

4 1. INTRODUCTION

1.3. RESEARCH QUESTIONS
There are many ways of applying machine learning techniques. To structure this re-
search and choose the directions to proceed, several research questions are set up and
will be answered based on the experiment results. To make use the advantage of local
search, when gathering research data, every instance is run for six times. Each instance
with six initializations and six final solutions are all stored.
After consideration, three research questions are defined.

• Can we predict the difficulty level of the instances?
The difficulty level of an instance can be defined by the solution status of its six
solutions’ status. Predicting the difficulty level of instances can be used for adjust-
ing the solving process. For instance, setting different time limit in the software
according to the level of instances, or defining the number of initializations nec-
essary to increase the chance of a good starting point.

• Can we identify the optimal areas of the initial solution space as starting points?
The tiny time cost of initialization brings more benefits to predict if an initializa-
tion is a good enough start point to reach a feasible final solution. Researching the
relationship between initialization and final solutions directly provide the ideas to
continue or stop further search action. In addition, it guides the solving process by
generating different initializations and continuing with the most promising one.
This is the main research objective and is tested by live instances later on.

• Which are the dominant features in the above classification process for scheduling
and planning problem?
This research provides a new way of using machine learning techniques for schedul-
ing and planning process. On the one hand, determining and then using a good
feature set has a significant influence on the experimental results. On the other
hand, it provides insights both on the relationship between problems and solu-
tion status and future research directions.

In summary, the research questions aim at exploring a way for combining machine learn-
ing techniques in scheduling and planning problems. In the meanwhile, analyzing im-
portant patterns and features existing in a traditional railway planning system and pro-
viding visions on how to enhance the automated process with modern techniques are
the goals of this research.

1.4. RESEARCH SCOPE
This research will include three main areas. The first part is data engineering on the raw
data including collection, cleaning, feature calculation and label creation. The second
part lays on classification system training by applying common-used machine learn-
ing algorithms, imbalanced learning techniques etc. The third part contains the experi-
ments methods discussion and results analysis to conclude the research questions. The
most important part is the feature calculation section as it is both the most difficult prob-
lem and the most dominant factor in the experiments.

1.5. RESEARCH RELEVANCE

1

5

In this research, we analyze every aspect of the stored instance and initial solution infor-
mation and calculated a comprehensive set of features out of that. As this is the initial
step of a researching method on machine learning and optimization problem, only con-
ventional machine learning techniques are discussed, where deep learning and other
recently developed methods are not adopted in this study. However, considerable time
is used for training different classifiers and adjusting the settings to get the best perfor-
mance. What’s more, the live test is carried out to evaluate the method, and it takes days
to complete. Thorough result analysis is provided.

1.5. RESEARCH RELEVANCE
In most traditional industry, many processes involve a significant amount of human ef-
fort. However, some of the work is hard and time-consuming, which definitely exists
a way for computer techniques to solve. The railway service site scheduling problem is
such an example. This kind of optimization problems are always hard and can be contin-
uously improved by new techniques. It usually stucks in the balance between time cost
and performance. To make use of the capability of the computer and large amounts of
stored information, machine learning seems a good choice to provide guidance for help-
ing the decision problems. It is hard for human to analyze the large amount of historical
problems and solutions while it is much faster for computers to compute and analyze
patterns out of that. The service site problem is complicated and highly dynamic every
day. An intelligent and continuously learning system will provide huge benefits for solv-
ing more problems and reaching the business goals better and quicker.
Although this research is based on the railway system, similar situations also exist in
other transportation systems such as airway and waterway. Besides, scheduling and
planning are also frequently needed in logistics industries. The approach discussed in
this research can be extended to those areas as well. Primarily, local search is commonly
used in a lot of optimization processes. This research also provides a way on how to build
a machine learning framework based on a local search model, which benefits the similar
optimization processes.

1.6. READING GUIDE
In the next chapter, a review of research related to machine learning in the railway sys-
tem and optimization is provided. An introduction to the dataset and the calculation of
feature set are discussed in detail in Chapter 3. In Chapter 4 we introduce our training
system with machine learning algorithms, techniques adopted and classification results.
Real life instances testing framework and the results are presented in Chapter 5. Finally,
the conclusions of this research and topics for future studies are discussed in Chapter 6.

2
LITERATURE STUDY

This chapter provides a review of research on the railway system and how machine learn-
ing techniques are proposed and used in this area. We introduce a variety of research
to depict how machine learning helps in traditional industries. Especially, we present
articles aim at combining machine learning and scheduling problems to introduce the
advantages, give insights of the methods implemented and indicate the knowledge gap
in this area of study.
The chapter is organized into six sections as follows. The first section introduces ma-
chine learning and the supervised learning algorithms that are relevant to our study. The
second section brings in concepts of how machine learning techniques are combined
with railway systems. We introduce research for utilizing machine learning techniques
to achieve different objectives in the railway systems. The following two sections dis-
cuss literature with the similar background to this study. The third section introduces
the existing work of combining machine learning and scheduling problems. Especially,
the next section focus on the modern learning methods on the local search algorithms,
which is also the research content in our work. The fifth section explores feature extrac-
tion process that is beneficial for our case. This last section gives insights of the tackling
the technic issues for our work, focusing on imbalanced learning.

2.1. MACHINE LEARNING
For data analytics, machine learning is a technique to create models to prediction[1].
The recent survey categories machine learning into three aspects, supervised learning,
unsupervised learning and reinforcement learning. Supervised learning requires labeled
data to train models and make predictions. Unsupervised learning finds patterns from
unlabeled data. Enforcement learning allows learning from feedbacks received from in-
teraction with external environments. We adopt supervised learning in our study. Su-
pervised learning uses training set to fit the parameter of models and predicts labels for
the test set, where the input dataset needs to be the same set of features. This process is
called classification.

7

2

8 2. LITERATURE STUDY

For our feature sets, we do not know which machine learning algorithms are the best
fit. Thus, the commonly-used models are under consideration. A review of the common
supervised learning algorithms is presented[2]. We follow the process of supervised ma-
chine learning as addressed by the authors. We start dealing with the data set by iden-
tifying required data, data pre-processing and then defining training set. The next step
follows the repeat circle of algorithm selection, training, evaluation and parameter ad-
justing to the desired performance. Many classifiers are discussed in work for supporting
algorithm selection procedure. The advantages and disadvantages of the models help us
to make an initial selection to perform experiments. As presented by the authors, LDA
and Naive Bayes provide probabilities an instance belongs to classes. SVM and neural
networks hold a better performance on multidimensional and continuous feature sets.
Naive Bayes classifier is fast as it requires little storage. KNN is sensitive to irrelevant data
and intolerant of noise. Decision tree model has the strong interpretability to support
further analysis on the dataset. The above-addressed aspects such as data quantity, ac-
curacy, dimension, noise, further analysis are essential factors on our feature sets. Thus
these common models are all considered to be tested and select the best satisfy our re-
search needs.
Also, a variation of supervised learning is presented, which is multiple instance learning(MIL)[3].
In MIL, the labels are only assigned to bags of instances. The idea can be borrowed in
our case that packing an optimization problem together with its different initializations
to form training samples. However, the current MIL package limits in predicting 0 or 1
labels, which limits the possibility of defining proper labels and provides less value for
performing analysis in problem level. The method is tested on the dataset where only
two classes existed.

2.2. MACHINE LEARNING IN RAILWAY SYSTEMS
An overview of the railway optimization models for scheduling and routing problems
is given by Cordeau [4]. The authors point out that the development of the optimiza-
tion model is slow in railways compared to air transportation. The reason underlying
is that railway scheduling and routing problems are large and difficult. However, in the
last decades, the railway optimization problems have gained tremendous attention and
with the development of sensor technologies, 5V data (volume, velocity, variety, value,
and veracity) have been acquired in this domain[5]. This provides opportunities for in-
troducing modern techniques such as machine learning to help solve problems more
effectively.
The chances of utilizing AI techniques are increasing together with data. Utilizing ma-
chine learning techniques for decision support, maintenance, and transportation man-
agement is attracting many researchers. The use of machine learning on railway data in
handling the traffic and explaining the usage of mobile phones, smart cards, and com-
puters to predict the traffic and improve operations are presented[6]. Three main aspects
of data are gathered in this research, including GSM data, vehicle data, passenger data. A
three-step approach is designed as firstly analyzing vehicle performance, then the pas-
senger impact, and later the travel time impact. Cost benefits are calculated based on
the analysis for choosing the best strategy. Machine learning is adopted in forecasting

2.2. MACHINE LEARNING IN RAILWAY SYSTEMS

2

9

operations and future ridership in the mentioned analysis. Improvements are achieved
in the optimization of timetable scheduling, suggestions on additional travel time and
corresponding business values. Notably, many pieces of research on machine learning
for maintenance purpose in railways are performed.

General methods that can be applied to facilitate the decision of efficient railway
track maintenance are proposed for railway track condition monitoring, based on the
benchmark axle box acceleration(ABA) measurements in the Dutch tracks[7]. The ABA
system provides measurements based on ultrasonic and eddy current to assess track
conditions. A reduction method for big data processing is proposed to peform different
frequency of monitoring based on the severe degrees of the failures. The general idea
is to plan frequent monitorings for tracks that may cause problems in the near futrue.
Dividing the entire datasets into smaller parts according to the track status can help im-
plement the systems easier. Same idea is used for handling failures in big data. If a
particular type of failure is predictable and the fast evolution for this kind of failures can
be expected, then frequent monitorings are performed on it. If the failures cannot be
predicted successfully, incorporating the data of the failures in an update of the detec-
tion algorithm is performed. In this way, the entire dataset can be divided into smaller
ones regarding different failures. The systems can be easily implemented on the smaller
datasets, which adapts to the processing limits. Manual intervention is also largely de-
creased when only data need to be incorporated. The research provides a way to play
with the large quantity of data instead of specific machine learning models, especially a
way of performing adaptive and self-learning mechanisms. The ideas help in monitor-
ing tracks effectively and continuously. In our study, a significant amount of dataset also
exists. Differentiating from the prediction purpose as in this research, it is not applicable
for us to divide the data according to the prediction classes. However, as the prediction
targets are feasibility and infeasibility of solutions, we can divide the dataset according
to the difficulty level of the problem instances. In this way, we form the original prob-
lems as smaller and repeat subproblems. Also, we can expect better accuracy regarding
each subproblem.

To diving into more specific methods and models in maintenance prediction, we dis-
cuss a study that adopts SVM techniques are adopted on large-scale data to produce
valuable tools for operational sustainability[8]. Alarm prediction, employing distributed
learning and hierarchical analytical approaches are the main aspects addressed in the
research. The authors customize an SVM model by firstly defining a linear model aim-
ing at minimizing the dot product of the hyperplane vector, with constraints of the dot
product of feature vector and hyperplane multiply by the record label is above a param-
eter p. After rewriting the formula by Lagrange method, the authors project the feature
set to a higher dimensional space by a kernel function, which characterizes a notion of
pairwise similarity between instances, to achieve better accuracy. The experiments gain
good results by largely reducing the False Positive Rate(FPR). Although the model is too
specific for our research to study, the analytical approaches in this study provide values
to perform. For instance, for alarm prediction, the authors calculated maximum, 95 per-
centile and mean of bearing temperatures in the historical reading time window, and
the variation and trending of bearing temperatures as features. This kind of time series
analysis provides an idea of calculating features from railway task status in our prob-

2

10 2. LITERATURE STUDY

lem. Furthermore, studies in marketing decision for railway freight [9] and management
of big data in this domain [10] have all been carried out. It is evident that every aspect
of the railway system is starting to involve machine learning techniques and will need
more and more attention to make a better combination. The researchers also addressed
the challenges existed in common, not only regarding the continuously rising big data
but also the temporal-spatial information need to take care of. It is essential to define
representations of feature set and learning rules to success in useful predictions.

In conclusion, the above research gives us insights on various methods in combining
machine learning in the railway sectors. Although the purposes vary a lot, the results
show us the automating progress of this traditional industry and performance improve-
ments of adopting this modern technology properly in the era of big data. The contents
are much beneficial for our study, including the general way of managing data stream to
help in developing artificial systems and the analytical approaches inspire us a lot in the
feature extraction process.

2.3. MACHINE LEARNING IN SCHEDULING & PLANNING
Scheduling and planning problem is a common problem in real life situations, espe-
cially in Flexible Manufacturing systems, Transportation industries, logistics systems,
etc. Such problems involve a lot of activities; an example can be seen in Fig.2.1

Figure 2.1: Planning & scheduling activities in railways, figure by Christopher et al. [11]

On the one hand, scheduling and planning problems can be quite complicated to
solve, due to the randomness characteristic and numerous constraints. On the other
hand, the automation of scheduling and planning is eagerly desired for solving problems
quickly and in scale. These two points make combining machine learning and schedul-
ing and planning quite a hard topic.
In research, these real-life cases are classified as hard problems. Different methods have
been explored to solve scheduling and planning problem. According to [12], analytical,
heuristic, simulation-based and artificial intelligence-based approaches are the most

2.3. MACHINE LEARNING IN SCHEDULING & PLANNING

2

11

frequently studied approaches. We introduce the artificial intelligence approaches here
as it is relevant to this study. The earliest research in artificial intelligence approaches
in scheduling problems starts in the early 1980s [13]. Primarily, a review of combing
machine learning and scheduling are presented[14], including the methods from the
early research. The authors firstly address the importance of AI methods in helping
solve scheduling problem, which is the solving processes need to have learning ability(
be adaptive). This is often based on the expert systems. The expert systems are con-
structed by acquiring knowledge from human experts and then transfer this knowledge
into knowledge representations such as rules, frames, etc. Based on these concepts, dif-
ferent learning methods to improve the expert system are discussed. The learning meth-
ods can be categorized as following,

• Rote learning[15].
The trait of this method is that the problem is solved by dividing it into frames and
selecting the best schedule for a new state from stored frames that are identical or
similar. More specifically, this method represents knowledge with frames. Three
dimensions are constructed, one includes the FMS description, the second is for
part mix, while the last one contains the proposed schedule. Any state in the three
dimensions that solves the problem is saved for future use as references. Thus, for
any point in the three dimensions is previously stored, the expert system select it
as the best schedule. If not, given the information on the first two dimensions, a
simulation system selects the best schedule on several scheduling strategies to use
at that point and also save for further searches. The approach avoids complicated
calculations but is also limited by the initial chosen set and system states existed
in the problem instance.

• Inductive learning[16–18].
Similar to the previous method, this method also saves the system states for future
searches. The difference is that a sequence of expert’s decision is saved, mean-
ing the relationship between anterior-posterior states is considered. The authors
classify the system states into different classes, where each class contains a set of
decision rules. An evaluation system is defined for examing the decision rules’ per-
formance, where thresholds are set up representing expert’s performance. While
determining the next action, all the decision rules in the class are evaluated. The
best rule meeting the expert’s level is selected to perform the corresponding ac-
tion. If no rules perform well, the state is subdivided into smaller classes to repeat
the above process until the schedule is decided.

• Case-based learning[19].
Case-based learning approach also shares something in common with the above
two methods by saving successful problem-solving cases in the past. The distin-
guishing point lays in the searching is based on the case context, e.g., searching
for a previously solved case with similar task sets and priorities. The authors point
out the indexing schemes are inadequate for building case base and subsequential
retrieval due to a large number of constraints in scheduling problems.

• Genetic algorithms[20, 21].

2

12 2. LITERATURE STUDY

Genetic algorithms apply many search operators using simple heuristic strategies.
A classifier system using genetic algorithms learns sequencing heuristics of jobs.
Each prediction represents a heuristic. For instance, comparing the attribute val-
ues of jobs(e.g., processing time, due date, etc.) corresponds to different strategies.
According to the comparison result, job positions are exchanged or remained un-
til all job pairs are compared. This method ensures legal schedules and has the
ability to find the optimal rules.

The experiments show that above methods seem to improve the performance of schedul-
ing systems generally.
In such a system, not only learning approach matters but also the machine learning al-
gorithms themselves make a difference. While little work discusses the machine learn-
ing algorithms, Priore et al[12] introduce commonly used machine learning algorithms
in the above-mentioned approaches, they are the nearest neighbor, back propagation
neural network and decision tree algorithms. The advantage of these algorithms is that
their characteristics matching the decision making rules better. Although a learning sys-
tem automates the scheduling process and largely deduces human efforts, embedding
machine learning techniques do not always guarantee better performance than exact
scheduling algorithms. The reason can be the training examples are subsets or partial
states of the original problem. Plus the selected rules might be useful for the state but
also hold the possibility of causing poor influence over a more extended period.
The literature discussed in this study address different ways of embedding machine learn-
ing in scheduling systems, they emphasize the learning ability in the scheduling pro-
cesses. For example, learning from the past frames or cases uses for the current one,
or learn to select the best rules to apply currently. However, the goal of our work is
to predict whether an instance can be solved in advance, which is different from the
purposes of the above studies. Our work needs more feature analysis on the problems
themselves. The first three methods involve the comparisons among different frames
and cases, where the comparison ways provide insights for feature calculation.

2.4. MACHINE LEARNING IN LOCAL SEARCH
As this study is based on a local search algorithm, we would like to address several pieces
of work on machine learning in local search. Local search is a common method for solv-
ing optimization problems holding the advantage of balancing time and performance.
The search space consists of many candidate solutions. The local search starts with an
initial solution as a starting point and ends at a local optimal or ends when time run-off
as an ending point. It creates a trajectory moving from solution to solution by adjusting
local changes. Update formulas perform local changes. The search stops when local op-
timal is found or time runs off.
Automating optimization processes seems to become a favorite field where different ma-
chine learning approaches are getting involved. The relevant research emphasizes the
core of improvement depends on whether learning system leads to a better trajectory.
Two representative paper are discussed in the following. A recent work [22] points out
that different update formulas are used in various optimization algorithms, where learn-
ing the update formula is the key to learn an optimization algorithm. It proposes to

2.5. FEATURE EXTRACTION IN SCHEDULING PROBLEMS

2

13

model the update formula as a neural net with parameters. The appealing advantage is,
this makes the algorithm expressive. And a whole set of parameter values provides the
capacity of any update formula or their combinations to be selected. Also, it provides
a broad search space for achieving the goals. In this way, the training system trains on
approximately the whole solution space and yields a bigger probability of predicting a
better move.
A different research [23] studies machine learning for global optimization, which pro-
vides a different view. Instead of learning for the update formulas, this research illus-
trates the dependency between the initial solutions(starting points) and outcomes (end-
ing points). The authors first define label +1 and -1 to associate the starting points with
outcomes beneath and beyond the threshold respectively. Those starting points are clas-
sified into two classes according to the labels assigned. The authors propose an SVM
model to explore the pattern between two classes and find the separating hyperplane.
A large number of historical data is used for training the model, and strong relationship
is observed between the starting points and outcomes. This approach brings prediction
value at the beginning of a search algorithm.
In conclusion, the first study focuses on utilizing machine learning to improve the op-
timize process itself to reach better performance. A number of the same kind studies
adopts similar ideas. The improvements in the performance depending on control the
trajectory of the moves. The second work aims at exploring the attractive areas among
the entire search space to increase the chance of finding likely outcomes. The work
proves the possibility of the dependency of initial solutions and outcomes. The idea
is close to our research context. However, this research put more efforts in refining the
SVM model to improve the performance while we put more efforts in extracting useful
features to represent the initial solutions.

2.5. FEATURE EXTRACTION IN SCHEDULING PROBLEMS
In our study, we do not focus on learning of update or evaluation functions in the op-
timizer. Instead, we analyze the dependencies between instances and initial solutions
against outcomes. We propose a way to extract features directly from the problem in-
stances and initial solutions to represent as input. We believe this helps us understand
what the critical factors underlying scheduling problems are. This section discusses the
relevant literature to helping to extract features out of scheduling processes.
For service site scheduling problems, time and space are the crucial factors of a suc-
cessful plan. Features regarding these elements need to be taken account. The service
scheduling problems are too complicated to solve in a short time. To solve problems
quickly and extract useful information out of it, we remove the constraints of resources,
tracks’ length and connectivity, etc., but only keep the information of tasks and available
tracks for processing. The reduced problem is a relaxation of the original problem, which
can be solved similar to the tardiness problem. Briefly, the multiple machine tardiness
problem is considered as the problem of scheduling n jobs on m parallel machines[24].
The goal is to find an optimal schedule of jobs and minimize the total delay. Research
emphasize the tradeoff between the time cost and near-optimal solutions[24–26]. How
to formulate the problem and calculate for acceptable solution quickly are beneficial for
computing our relaxed problems.

2

14 2. LITERATURE STUDY

However, we observe the computed solutions and stored initial solutions are strongly
related to time. We would like to computer features along with these timelines. Some
studies provide knowledge on the state supervision in the context of the rail system mon-
itoring. The authors model the scheduling states by curves[27–29]. The curves are ac-
quired by continuously observing condition measurements along with time. These re-
search adopt regression models on the curve data, which is not interested in this study.
We put our references on how the curve data is handled. A general way is to separate
curves into pieces, where its mean and variance characterizes each piece. A broad cat-
egory of how to deal with time series data can be found in book[30]. The time window
manner to scan the curves seems to be a good fit for extracting features from our dataset.
These studies share characteristics in common with the service site scheduling in our
case. They are all dynamic in time, state and space. Although curve data is not directly
saved, the timestamps along with trains, tasks, and tracks are stored in the database. We
can obtain the curve data related to trains, tasks and tracks state by writing a simple al-
gorithm. Based on a similar idea, those data can be summarized in a way to represent
their characteristics as part of the feature set. For example, calculating statistic values in
each time window on the curves values can help us approximate the entire curve.

2.6. IMBALANCED LEARNING
The imbalanced learning problem is concerned with the performance of learning algo-
rithms in the presence of underrepresented data and severe class distribution skews[31].
This is a practical issue exist in our study. From the dataset we collected, imbalances exist
in most of the datasets. The complexity of the problems mainly causes this, e.g., bigger
size problems are rarely easy to be solved resulting in significant amount in the infea-
sible class. The critical issue is to gain a delight performance on the imbalanced data
sets. Following the research in this field, several techniques can be utilized in our study
to tackle imbalances.

• Assessment Metrics[31].
The commonly used assessment metrics are precision, recall, F1 score, roc curves,
AUC, etc. As well known, accuracy is the most straightforward metric to exam-
ine the performance. However, this metric is highly sensitive to the dataset. In
a dataset with high imbalance, classifying the entire dataset to the majority class
will have good accuracy. Thus, it risks in causing misunderstandings about the
predictions in highly imbalanced case. For imbalanced feature sets in our case,
we can introduce precision, recall, F1 score, ROC curves and AUC. Precision as-
sesses the exactness of the classification results, i.e., the proportion of correctly
positive-labeled samples among all the positive-labeled samples. Recall measures
the completeness, i.e., the proportion of correctly positive-labeled samples among
the entire actual positive samples. The F1 score combines precision and Recall to
tell the effectiveness of the classification. ROC curve plots the true positive rate
(TPR) against the false positive rate (FPR) at various discrimination thresholds. It
helps us find the best model settings. AUC provides a direct value for the ROC

2.6. IMBALANCED LEARNING

2

15

curve that can be used to compare easier.

• Resampling techniques[31, 32].
Random oversampling and undersampling are commonly used methods. The meth-
ods are quite simple by adding or removing a randomly selected set of samples
from the minority class or the majority class. In this way, the number of samples
in the two classes can be balanced. These two methods both have drawbacks.
The oversampling method can lead to overfitting in the minority class while the
undersampling can cause the potential loss in the majority class. Another effec-
tive undersampling method is Tomek link. AS described by its name, Tomek links
represent the pairs of nearest neighbors from opposite classes. The algorithm re-
moves the links until the nearest neighbor pairs are from the same classes. Quite
intuitively, this method helps a lot in removing the overlaps among classes. ENN
shares the same idea with Tomek link; the difference is that ENN removes the sam-
ple from opposite class to the majority of its N neighbors.

• Generating Synthetic Samples[33–35].
Instead of creating copies, the synthetic methods generate new data. Regarding
this kind, SMOTE and ADSYN are worth discussing. SMOTE method generates
synthetic data based on the similarity between samples in the minority class. This
algorithm does not consider the neighboring samples, thus has the risk of increas-
ing overlapping. ADASYN algorithm considers the above issue, it creates samples
by creating new data according to their class distribution. It works by adaptively
changing the weights of samples in the minority class to avoid overlapping. Be-
sides, integrations of SMOTE and ENN or TOMEK link are common to use. The
integrations help in decreasing the drawbacks from different methods and achieve
better distribution.

• Cost matrices[31].
The research shows a strong relationship between cost matrices and imbalanced
datasets. An alternative to the resampling techniques is the cost matrices, which
targets the classification process and provides a way to set up the costs for mis-
classifications. The high weights on the minority class shifting the boundaries to
the desired direction to achieve goals.

The techniques mentioned above are the frequently used methods, where their princi-
ples and drawbacks are discussed above. They cover broad categories regarding dataset,
learning process, and evaluation metrics. The experiments from the research have proven
the increase in the performance by a right imbalance learning technique. The charac-
teristics of these methods bring us insights on how to choose methods when performing
tests. As the distributions of our data vary from one to the other, we should set up dif-
ferent settings for each dataset. For highly imbalanced dataset, we do not try to large
decrease or increase the majority or minority classes. Instead, we test with different
costs to improve the performance. For overlapped dataset, we try the combination with
SMOTE and ENN or Tomek Links to test the performance. In addition, we also control
the sampling proportion in combination with cost-sensitive learning. ntrol the sampling
proportion in combination with cost sensitive learning.

3
DATA SET & FEATURE

ENGINEERING

In this chapter, we primarily present our work in extracting features in scheduling prob-
lems. Finding good representations for feature set is not easy in this case. We explore
different aspects from the saved information to define proper representations. A large
number of visualizations are drawn on the feature set to discuss the hidden patterns and
values. In conclusion, we aim at presenting our approach in analyzing the structure and
valuable information in the context of scheduling problems in railway sector.
This chapter is mainly organized as in four sections. The first section introduces the raw
dataset collected at N.S, the cleaning process and the final format of the dataset. Impor-
tantly, it defines the entire feature set to be calculated. The second section introduces
the classes defined for instance learning and initial solution learning. Particularly, two
sets of features and labels are created for experimental needs. The third section pro-
vides additional information on computing features and the visualization of the feature
set. Whether patterns exist is discussed based on the visualizations. The last section
concludes our work in feature engineering, pointing out the further work on the feature
engineering in scheduling problems.

3.1. DATASET INTRODUCTION& FEATURE SET DEFINITION

3.1.1. DATASET INTRODUCTION
The raw dataset used in this research is provided by Nedtrain, generated by the simu-
lation software program during the last few months. The dataset consists of four main
aspects of data, depicted below. We reintroduce the problem and the sloving approach
again to illustrate information recorded and relavant terms.

• Infrastrucuture information.
This research is service site-specific. The distribution of tracks, the tracks’ prefer-

17

3

18 3. DATA SET & FEATURE ENGINEERING

ence on task, avaible resources are the important components for solving prob-
lems. A thourough information of the infrastructure are stored.

• Problem instances information.
The scheduling problem involves a set of trains arriving at the service site in the
evening, with various tasks to be solved. The necessary parkings and executions
of tasks need to be arranged at the service site during the night to satisfy the next
morning’s departure. A set of trains departure according to the timetable in the
next morning. Each train is composed of one or more specific train units with de-
sired length and materials. The arrival trains and departure trains are composed
of the same set of train units but may have different combinations. Each task is de-
fined on the train unit level. The trains can be splited and combined at the service
site either due to train units’ maintenance or to satisfy later departure require-
ment. All of the above information is recorded in a time dimension. A movement
refers to the move of trains on one track to another track. The location of train
or train unit is the track they are on at a certain time. A track is said to be occu-
pied when one or more trains are on the track. Two statuses of a train unit exist:
whether the train unit is in task exclusion or not.

• The intial solutions information.
The scheduling is solved by a local search algorithm, three factors support the
analysis of initial solutions. First, every local search starts with an initial solution.
Second, local search does not start from or end in the same position, meaning it
generates different initial solutions and final solutions even in the same instance.
Third, generating an initial solution takes little time. Thus, six initial solutions re-
garding to the same instance are recorded in the database.

• Final solutions inforamtion.
The data structure of final solution information is identical to the structure of ini-
tial solution information.

The dataset is well-structured and stored in an SQL database, shown in Fig.3.1. The
TA tables contain information about the infrastructure of the service site such as avail-
able tracks, facilities, etc. The TI tables store problem instances including the tasks to
solve, the exact arrival and departure time of the trains, the compositions of trains, etc.
The TO and TOPGo tables are have the same structure where TO tables store the initial
solutions, and TOPGo tables store the final solutions. In the TO and TOPGo tables, every
train composition, movement and track status are recorded in detail. Each combination,
split, location, and status of train units can be tracked for a given time.

3.1. DATASET INTRODUCTION& FEATURE SET DEFINITION

3

19

Figure 3.1: Database Tables

Figure 3.2: Track Connectivity

Briefly, Fig.3.2 describes connectivity situation of the forty-four tracks. On average,
each track is directly connected with two or three other tracks. The track connectivity
largely influences the complexity of arranging routes for shunting trains. Fig.3.3a de-
picts the infrastructure information in the chosen service site, including the availability

3

20 3. DATA SET & FEATURE ENGINEERING

of materials, tracks, tasks, switches, facilities and facility resources. A train usually con-
sists of one or more train units, where six material types of train units are available in
this case. The material type matters when performing specific tasks or doing recombi-
nations to form new trains. The service site contains forty-four tracks and five different
kinds of tasks. Priorities exist among tasks. Some tasks can only be executed on spe-
cific tracks. Fig.3.3b gives the number of available tracks corresponding to certain tasks.
Together with number of tracks and resources for each shown in Fig.3.3c and Fig.3.3d,
these factors determine the parallelism capability of task excutions.

(a) Infrastrucuture In the Service Site (b) Tasks

(c) Facilities (d) Facility vs. Tracks

Figure 3.3: Task & Facility Availability

In real life, the timetable and routes of daily-functioned trains in the everyday trans-
portation system are settled in advance and remain relatively fixed. To make sure the
transportation systems function well and satisfy passengers daily, regular train services
(e.g., cleanings), inspection and maintenance are essential to keep. On top of this, other
unpredictable situations such as weather resulting in delays, out-of-blue break-ups of
trains, all together make service site scheduling problems different every day and quite
complicated. Intuitively, instances with more train units often indicate more compli-

3.1. DATASET INTRODUCTION& FEATURE SET DEFINITION

3

21

cated situations, for which it is harder to find the solutions. Therefore, we refer the size
of problem instances by the total number of train units in them. For a thorough analysis,
instances in different sizes are generated and analyzed.
Given the nature of local search algorithm, the starting point and the ending point of
the local seach’s solution space are seldom to be the same even for the same problem
instance. If one single solution is generated for each instance, the analysis can be tricky.
For instance, a single solution can not provide label for an instance’s solving feasibility.
It is possible that an instance is solved nine times out of ten runs, but it is stored along
with an infeasible solution that happens to occur when collecting data. This brings in-
accurate labels and may cause poor performance in the learning system.
To decrease the bad influence in machine learning process, we try to collect more data
on solutions. The data generation process is set up follwing. When the instance genera-
tor generates one instance, the instance gets six runs by the scheduling algorithm. Each
of the six runs generates one initial solution and one final solution. The instance, the six
initial solutions and the six final outcomes are all stored in the database. Thus the num-
ber of initializations and final solutions are both six times of the number of instances.
The exact number of instances and solutions are shown in Table.3.1.1 and Fig.3.4 in the
category of problem sizes. The number of instances for each category is not the same.
This is because we consider a thousand instances as enough samples for each problem
size, but the exact number is not controlled when generating instances.

Trainunits Instances Solutions
16 7077 42462
17 4789 28734
18 3261 19566
19 1467 8802
20 3012 18072
21 1658 9948
22 9544 57264
23 3067 18402
24 3422 20532
25 2077 12462

Table 3.1: Instance & Solutions
Figure 3.4: Instance & Solutions Number vs. Instance Size

A visualization of the table on the left.

3.1.2. FEATURE SET DEFINITION

Since detailed data is necessary for storing exhaustive information for scheduling and
planning problems and their solutions, the raw dataset from Nedtrain is formatted reg-
ular, relational and thorough. Those kinds of data have less representation power for
instance or solution. A large number of calculations need to be performed on the raw
dataset to extract features. The purpose of feature engineering in this study is to define
more distinguishing information to identify objects from different classes and format
this data as machine learning algorithm input.
After manual analysis of the structure of the original dataset, feature calculation can be
carried out in the following aspects. The features describing the instances include train

3

22 3. DATA SET & FEATURE ENGINEERING

analysis, tasks analysis and the feature set for the initial solution are extracted from the
initial solution graph including task analysis, time analysis, and track analysis, etc.

Instance Feature Set The relevant information for problem instance mainly focus on
the trains arrival & departure, tasks. We define a set of features out of these two aspects
of data to be calculated.

Train Model

• Arrival Trains: the total number of trains arrive at the service site in one instance.

• Departure Trains: the total number of trains departure from the service site in one
instance.

• Arrival Time: average arrival time of the arrival trains in an instance.

• Departure Time: average departure time of departure trains in an instancce.

• Arrival Time Interval: the average intervals among all anteroposteriorly arrival
trains.

• Arrival Time Interval Std: the variance of the arrival time intervals among all an-
teroposteriorly arrival trains.

• Departure Time Interval: the average intervals among all anteroposteriorly depar-
ture trains.

• Departure Time Interval Std: the variance of the departure time intervals among
all anteroposteriorly departure trains.

Task Model

• Task Number: the total number of tasks on all train units in an instance.

• Task Arrival Density: average of tasks between two successively-arrived trains per
minute.

• Task Departure Density: average of tasks between two successively-departured
trains per minute.

• Task Density: average of non-executed tasks in the service site per minute

• Task Peak: max number of non-excluded tasks during the shunting process

• Task Process Period: the total time that are under task execution.

• Task Waiting Time: the total time tasks wait to be processed.

• Track Spare Time: the total time track is not occupied.

3.1. DATASET INTRODUCTION& FEATURE SET DEFINITION

3

23

• Task parallelism: the average of tasks that are processed simultaneously.

• Task Process Time Efficiency: the average of task wait time to the task process pe-
riod.

Initial Solution Feature Set From the data, initial solution seems to contain more in-
formation than the problem instance. More aspects can be analyzed in this situation, for
instance, the tasks, the tracks and the graph model.

Statistics

• Shunt Time: the active time of the service site from the first train arrives until the
last train departures.

• Movements: the total movements of trains in the shunting process.

• Paths: the toal number of paths trans take.

• Shunt Moves: the number of movement with a specific shunting purpose such as
to execute tasks.

• Recombined trains: the number of new trains generated by split or combination
in the shunting process.

Task Process Efficiency

• Task Process Time Total: the total time used for processing tasks.

• Task Wait Time Total: the total wait time of tasks to be executed in one instance.

• Task Process Time Overlap: the total time overlap of tasks that are simultaneously
under processing.

• Task Process Interval: the total time of the intervals between dealing with two suc-
cessively tasks.

• Parallelism of Tasks: the total pairs of tasks that share any part of processing pe-
riod.

Track Utilization

• Track Occupation Time Total: the total time that tracks are occupied with trains.

• Occupated Track Number: the number of tracks that have been occupied in one
instance.

• Track Occupation Time Average: the average occupation time of each track.

• On Track Time per Train unit: the average time that each train unit spends on
tracks.

3

24 3. DATA SET & FEATURE ENGINEERING

Graph Model

• Crossings: the number of crossings of trains’ routes happen in one initial solution.

• Arrival Delay: the number of arrival delays in one initial solution.

• Arrival Delay Sum: the sum of time of arrival delays.

• Combines on Departure: the number of combinations of trains on the departure
track.

• Track Length Violation: the number of tracks that the length is not enough for
trains that are on them.

• Track Length Violation Legnth: the length that the tracks need more to contain the
trains properly.

• Track Length Violaition Duration: the time period of tracks are occupied with
longer trains.

• Overal Cost: the over coast is a weighted linear combination of the above men-
tioned features.

Both of the feature sets require large computations to get the feature values out of
thousands of instances and initializations. More aspects can be analyzed in the initial
solutions than in instances. This is because the solutions contain the thourough plans,
where more information exist. We define our feature with repspect to general statistics,
time and space. We believe the feature sets along with these factors have certain repre-
sentation ability and classification power. We provide a section on visulizing the features
later in this chapter to discuss patterns and necessarity of the features.

3.2. SOLUTION STATUS & LABEL SETS
Knowing number of instances and solutions, the table below gives more detailed infor-
mation on solution status and feasible solution existence in the different problem sizes.
In the table, the solution with status field shows the exact number of infeasible (0) and
feasible (1) solutions among all final solutions for each size of problems. The instances
with feasible solution probability field shows the number of instance with correspond-
ing solution probability. The feasible solution probability stands for the probability of
getting a feasible solution for an instance, calculated as number o f f easi ble soluti on

6 . As
each instance can hold zero to six feasible solution(s), seven classes are generated corre-
spondingly.

To compare the situation in each dataset. Fig.3.5 emphasizes the percentage of in-
stances and solutions from Table.3.2, categorizd by different problem sizes. It holds that
smaller instances are yielding higher feasible solution percentage, which addresses the
hugely imbalanced datasets for feasible and infeasible classes, especially for small and
big size instances. Two phenomenen pop up in the figure below, which proves that the
service site scheduling algorithm generates different solutions for the same instance.
More importantly, the solvability level varies from instance size - for small and big sizes

3.2. SOLUTION STATUS & LABEL SETS

3

25

Table 3.2: Dataset

Size
Solutions with Status Instances with Feasible Solution Probability

0 1 0% 16.7% 33.3% 50% 66.7% 83.3% 100%
16 25 42437 1 0 0 1 5 6 7064
17 163 28571 1 1 0 7 16 99 4665
18 284 19282 0 2 2 5 38 175 3039
19 540 8262 1 7 8 23 80 238 1110
20 3652 14420 19 57 131 285 521 832 1167
21 5488 4460 141 270 360 389 255 175 59
22 50825 6439 5305 2703 1025 382 106 22 1
23 18004 398 2719 305 38 3 2 0 0
24 20418 3316 99 6 1 0 0 0 0
25 12451 11 2067 9 1 0 0 0 0

(with sixteen to eighteen or twenty-three to twenty-five train units) the vast majority of
instances hold similar solution probabilities while for middle size instances (with nine-
teen to twenty-two train units), solution status varies a lot. Due to time and storage limit,
we can’t calculate more solutions for each instance.

(a) Instance Percentage in Problem Size vs.
Solution Probability

(b) Problem Size vs. Feasible/Infeasible
Solutions

Figure 3.5: Dataset Overview

From the above information, two sets of labels are defined. At instance level, the
whole dataset can be mapped to seven classes corresponding to the seven feasible so-
lution probabilities. At solution level, two classes exist as solution status zero and one.
These labels are used for the training system later-on. In the following section, feature
sets are introduced and visualized at both instance level and solution level to check if

3

26 3. DATA SET & FEATURE ENGINEERING

these feature representations hold any apparent patterns among different classes.

3.3. FEATURE CALCULATION & VISUALIZATION

In the field of public transportation, feature engineering desires more domain knowl-
edge for creating a helpful feature set to support machine learning systems to work. In
this case, two purposes of machine learning exist.

• Predict the solvability of an instance in advance.
There are some possible reasons underlying instance solvability. The first is the
complexity of the instance situation.Some cases can be solved easily while other
instances themselves can be too hard to be solved. The second is the local search
differences in the final solutions’ status, indicating that the initial solution can also
decide the instances solvability. That is to say, instances with more excellent initial
solutions tend to be solved better.

• Predict the feasibility of an initialization in advance.
For thousands of initialization and final solution pairs, there is possibility that
some parts on the entire search space have bigger potential to lead to a good out-
come. This means starting point of search can be essential. To figure out if there
is strong dependency on the initializations and final outcomes, we train model to
predict the promising initial solutions.

As defined previously, the following content introduces necessary feature computation
process and feature visualizations on corresponding labels. Time series and approxima-
tion techniques are involved in the calculation process.

3.3.1. INSTANCE FEATURES

Train Model Train unit is the elemental composition of the railway system, and the
train is the basic functional unit for the passengers. Trains arrived at and departed
from the service site are not always the same both in number and composition. From
ti_trains,ti_train_composition,ti_movements tables, train number, compositions and
arrival and departure time can be calculated.

3.3. FEATURE CALCULATION & VISUALIZATION

3

27

Figure 3.6: Arrival & Departure Train Num vs. Problem Size

Fig.3.6 shows the number of arrival trains and departure trains at the current service
site. The number seem to be fixed for each problem size, and larger instances always
have more trains participated in. Recombinations are detected in the number difference
of arrival trains and departure trains. We calculate features about the trains’ arrival &
departure time, the average interval among trains’ arrivals and departures in every in-
stance, etc. The features are elaborated in more figures below.
Fig.3.7 describes the hitogram of average arrival and departure time of all trains in every
instance categorizing by solution probability. Obviously, instances with solution proba-
bility 100% and 0% take a significant proportion and fit well for Gaussian distributions
with similar mean value and slightly different std value. This feature does not represent
much information as it proves that the average arrival and departure time is generated
based on the settled mean values.

Figure 3.7: Arrival & Departure Time With Solution Probability

The time intervals of arrivals and departures of trains in one instance are more distin-
guishing. Fig.3.8a and Fig.3.8b depict the average and std value of time intervals among
trains in each instance respectively. Intuitively, shorter arrival and departure intervals in

3

28 3. DATA SET & FEATURE ENGINEERING

an instance usually result in a more complicated situation for scheduling. The figures
prove the trend that instances with higher solution probability holds longer arrival and
departure interval and bigger std values, and for instances with shorter intervals, it is
harder to find solutions. However, different degree of overlap exists among classes.

(a) Arrival & Departure Time Interval Avg (b) Arrival & Departure Time Interval Std

Figure 3.8: Arrival & Departure Time Interval Avg & Std With Solution Probability

Tasks Model For most instances, trains arrive with multiple tasks. Tasks are defined on
train unit level. Tasks is an essential factor that dominates the complexity of situations.
Two groups of task-related features are extracted. The first group is to represent task situ-
ations during the whole shunt process including task number, task arrival/departure fre-
quency, the density of unfinished tasks and the maximum number of incomplete tasks
in the entire process. The corresponding features are calculated as follows:

• Task Number:

t ask_num =
mX

i=0
t asks(tr ai n_uni ti)

• Task Arrival Density : same calculation applies for task departure density

t ask_ar r i val s =
Pn

i=0
t asks(tr ai ni+1)+t asks(tr ai ni)

ar r i val_t i me(tr ai ni+1)°ar r i val_t i me(tr ai ni)

n °1

• Task Density :

t ask_densi t y =
Pt

i=0 wei g hti £ t asks(t i mei)
Pt

i=0 wei g hti

• Task Peak :

t ask_peak = max(t asks(t i mei))

3.3. FEATURE CALCULATION & VISUALIZATION

3

29

(a) Number of Tasks vs. Density (b) Number of Tasks vs. Arrivals (c) Number of Tasks vs. Peak

(d) Task Density vs. Arrivals (e) Task Density vs. Peak (f) Task Arrivals vs. Peak

Figure 3.9: Task features Joint distribution with feasible solution probability classes
Color blue, red, grey, yellow, purple, orange, green stands for class 100% to 0% respectively.

Fig.3.9 draws joint distributions among these features in the seven classes. From the
subgraphs, it can be easily observed that task peak has no great importance in classify-
ing feature set. The reason can be that task peak number only represents the maximum
number tasks during shunting process and remains in several fixed values. The same
values can be easily reached in instances from different classes. In the remaining joint
distributions, class 100% is naturally separated from the other classes while the other
classes have substantial overlap. One possible reason can be that the number of sam-
ples for class 16.7% to 83.3% are too little to be separated. Another possible reason is
that no matter which class is, the instances in the largely-overlapped area has at least
one infeasible final solution, resulting in the common values in the features. This anal-
ysis inspires the idea to merge classes that are less in quantity and similar in patterns.
Furthur experiments are provided on this.

The second group of task-related features aims at estimating the optimal task pro-
cess situation, including total process period, task waiting time, track spare time, task
parallelism and task process time efficiency. For extracting that information in a short
time, we calculate a relaxation of the original service site problem. We remove other con-
straints but only consider the tasks and the availability of tracks. In this way, we treat the
relaxed problem as similar to the multiple machine tardiness problem. Define: C (i , t , j)
as completion time of task j of train unit i on track t , A(i , t , j) as available time of task j
of train unit i arrives on track t , Tr ack(j) as tracks for processing task j , T i met as cur-
rent time of track t , S(i , t , j) as the start time of task j for train unit i , which is the max
of previous task j °1 completion time on track j and the arrival time of task j on track
t , aka max(C (i , t , j °1), A(i , t , j)). The completion time equals start time plus task dura-
tion. For arranging a task to a proper track, it could Mi ni mi ze maxT i menum_o f _tr acks

t=0 .

3

30 3. DATA SET & FEATURE ENGINEERING

So the schedule can be acquired by inserting task to available tracks and getting its previ-
ous task’s finishing time. Then selecting out the best track with minS(i , t , j), t 2 Tr ack(j)
, inserting the task into the track and sorting the task by A(i , t , j). After getting the sched-
ule on each track, the features as mentioned above can easily be calculated in the time
series manner.
Fig.3.10 illustrates the task process features’ behaviours among different instance class.
Obvious increasing and decreasing trends can be detected along the classes, proving a
good criterion for separating different classes.

(a) (b) (c)

(d) (e)

Figure 3.10: Task Process Features

3.3.2. INITIAL SOLUTION FEATURES
As discussed beforehead, good starting points increase the chance for solving problems.
Extracting features from initial solutions are of great use. Two reasons can support initial
solution analysis. Firstly, the instance information provided is limited, and the calcula-
tion of functional instance features are complicated and time-consuming. Besides, the
variation in the final solutions may cause undesired learning results if the learning sys-
tem only trains on instance features. Secondly, one production of initial solutions take
little time; this provides feasibility for extracting initial solutions features. The below
paragraphs introduce the calculated initial solution features in detail. These features are
mapped on the two classes(feasible and infeasible), demonstrating their correlation sta-
tus. The objective of analyzing initial solutions is extracting distinguishing features for
identifying whether it is an optimistic start position to continue searching. For thou-
sands of instances in the database, none of the initial solutions is feasible. However, this
is a typical situation, and there must be promising areas in the solution space pointing
at the right directions to solve the instances.

In general, we first calculate the active time of the service site for each problem in-

3.3. FEATURE CALCULATION & VISUALIZATION

3

31

stance, see Fig.3.11. The feasible class holds slightly smaller shunt time than the infea-
sible class. Briefly, this shows that better initializations carry shorter shunting process,
which is potentially caused by more train units in infeasible class on average.

Figure 3.11: Service Site Active Time

Path & Movement Analysis Then we analyze the trajectory of trains in the initializa-
tions, which can be a big reason for costing time and causing complex situations. The
trajectories largely depend on track structures in the service site. Ideally, a fully-connected
and resource-rich track structure could help scheduling much more comfortable. While
in more difficult track distributions, trains have to take much more complicated routes.
The following figure.3.12 presents statistics of movements of trains, nodes that trains
passed, paths and shunt movements in the initial solutions. Significant distinctions be-
tween two classes show up in their self-correlations while considerable overlaps exist on
the joint distribution among different features. This may indicate that it is easy to classify
between very good and dangerous initializations, but hard to distinguish the rest.

3

32 3. DATA SET & FEATURE ENGINEERING

Figure 3.12: Path & Movement Statistics & Correlation

(a) (b)

Figure 3.13: Movement Time & Move Time Proportion Joint Grid
(a) stands for the infeasible class;(b) for the feasible class; Move time proportion is calculated as movement time divied by service site active time

Besides, how much time the movement consumes is taken into consideration. The
figure below contains the information of movement time and proportion of movement
time to service site’s active time. These features give some insights on time used in the
shunting process. For feasible cases, the range of movement time is from 300 minutes
to 750 minutes, concentrates on around 450 minutes and the portion of movement time
shows a normal distribution with a mean value of 0.55. While, for infeasible cases, move-

3.3. FEATURE CALCULATION & VISUALIZATION

3

33

ment time varies from 350 minutes to 900 minutes approximately, with a mean value of
650 minutes. The mean value of portion is also normally distributed, from 0.5 to 0.7, a
mean value of 0.6 can be obtained from the graph. In a comparison of these two con-
ditions, the overlap of movement time proportion is bigger. This information indicates
that the movement time and the total shunt time have similar behaviors.

Combined & Splitted Trains From the solution information stored in the database,
we also notice that many splits and combination of new trains happen during the shunt-
ing process. Those are the shunt trains. This action is mainly caused by the limitation of
track length and requirements of departure trains. The following figure counts the shunt
trains in different classes, where fewer shunt trains exist in the feasible class.

Figure 3.14: Recombined Trains in Shunt Process

Task Process Efficiency The next analysis focuses on the task analysis, as the infor-
mation concerning the exclusions of tasks is available in initializations. Task process
efficiency analyzes time usage while performing the tasks. Different aspects of task pro-
cess are calculated, including the time for processing tasks, the time that tasks wait to
process, the parallelized process time among various tasks, etc. Part of the features has
been visualized in Fig.3.15. For bringing convenience to observe the two classes, the
infeasible class is drawn on the top, and the feasible class is drawn at the bottom. An
explanation of depicted features is as follows,

• Subfigure 3.15a presents the total task process time, where clear boundary exists
in two classes. Feasible cases have lower mean values compared with infeasible
cases.

• Subfigure 3.15b is the sum of wait time for tasks from their arrivals at service site
until their exclusion starting moment. A similar trend is observed as the previous
one.

• Subfigure 3.15c demonstrates task process time overlap, meaning the common pe-
riod between every two tasks that are currently under process, providing a mea-
sure of good use of time.

• Subfigure 3.15d gives information about time waste during the task process pe-
riod.

3

34 3. DATA SET & FEATURE ENGINEERING

• Subfigure 3.15e describes the number of tasks can be processed in parallel, where
parallelism is identified once two tasks the time overlap without considering the
overlap period length.

The features show similar distributions with different size of overlapped areas. As the
following figures suggest, some features get close mean value the mean values of task
process, which might not be of use of classifications especially for middle size instances.

(a) Task Process Time Total

(b) Task Wait Time Total

(c) Task Process Time Overlap

(d) Task Process Interval

(e) Parallel Task on Process

Figure 3.15: Task Process Efficiency

Track Utilization Except for the efficiency of task exclusion procedures, the effective-
ness of track usage is also carried out. These features address the time and the number of
occupied tracks. For total occupation time of tracks, there is a clear boundary appearing
in Fig.3.16a, which may be a helpful potential criterion. The number of tracks occupied

3.3. FEATURE CALCULATION & VISUALIZATION

3

35

in Fig.3.16b holds no important differences. The remaining two features in Fig.3.16c and
Fig.3.16d represent the occupied time per track and per train unit respectively. Again,
similar trends show up between the two classes.

(a) Track Occupation Time Total

(b) Occupated Track Number

(c) Track occupy time average (d) On Track Time per Trainunit

Figure 3.16: Track Occupation

Graph Model In addition, the local search algorithm models the scheduling problem
with graph and provides an estimation of the initial solutions. This estimation informa-
tion can be directly extracted from the algorithm process. Below, we provide a visual-
ization of the features we store directly from the solving process. Observing all the sub-
figures in Fig.3.17, the mean values differentiate between feasible and infeasible classes.
Some features show a relatively big difference, which holds the ability to classify classes
to some extent.

3

36 3. DATA SET & FEATURE ENGINEERING

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.17: Graph Features vs. Solution Status

3.4. DISCUSSION
In conclusion, the feature sets are broad, which contain the most aspects exist in the in-
formation stored in the database. The instance features are less than the initial solution
features, as the instance information is less thorough than the initial solution instances.
Besides, the calculation of instance feature involves of manually defined approximation
algorithms. In practice, we want to keep the time for computing features as less as pos-
sible. The trade-off between feature set and time cost is also an important factor to be
considered.
Some of the extra computed features are not included, such as the analysis on one spe-
cific task which appears most frequent but with fewer resources than other tasks. How-
ever, its feature values do not show proper patterns. Also, the differences in train com-
positions, train unit type, and materials have been studied. The results do not indicate
potential values on this kind of information. Also, we compute a lot of features in a times-
tamp manner, such as the features regarding tasks. We use time window and mean value
to approximate the timestamp curves to summarize as a single feature value. This might
decrease the potential value hidden in the feature curves. A more in-depth dig of values
of features should be performed. For example, further adjustings with time window sizes
and better summarize methods could be adopted to get the feature values holding the
most apparent patterns.
From the visualization of features on the class labels, lots of features show certain pat-

3.4. DISCUSSION

3

37

terns that can be separated among classes, especially the features regarding tasks. How-
ever, the visualization is based on the entire feature set, which is not for each problem
size. Separate visualizations for each problem size can eliminate the obvious patterns
we observe from above. This can somehow explain why the classification performance
in the later chapter do not match with expections as the clear pattern we see.

4
TRAINING SYSTEM

4.1. FRAMEWORK

In the previous chapter, we introduce two sets of features and classes. The learning pro-
cesses are carried out on the two aspects, earning on the instances and learning on the
initializations. The first part of work is to predict solution probability out of the instance
features. Due to the imbalance in classes, classes are appropriately merged when train-
ing. The second part is to train a system on the initialization features. We use the system
to directly predict whether an initialization is good enough to search on. In this training
process, different preprocessing techniques are involved. The results are estimated with
multiple metrics.

39

4

40 4. TRAINING SYSTEM

Figure 4.1: Machine Learning System

The contents mentioned above of machine learning system are depicted in Fig.4.1.
Following the diagram, the whole process starts with data cleaning to remove untidy
dataset, for example, drop instances with generation error or with less than six solutions,
etc. Then generating features in the feature generation systems. After that, the training
system takes over. An additional test system is designed for analyzing and testing the
training system in the next chapter.

4.2. IMBALANCED LEARNING
Traditional machine learning algorithms aim at improving the overal accuracy. How-
ever, these algorithms often generates misleading results on imbalanced datasets. Im-
balanced learning techniques need to be adopted in the research. As addressed in the
last chapter, different levels of imbalance exist in the datasets. For instances-level train-
ing, instances with size 16 to 19 tend to overfit with the class holding 100% solution
probability. While instances with size 23 to 25 overfit the class holding 0% solution prob-
ability. For datasets of instances with size 20 to 22, the situation is relatively much bet-
ter. The same situation holds for initialization learning between feasible and infeasible
classes. For initial solutions generated from instances with size 21, the dataset is almost
balanced. Other than that dataset, the rest sets either overfit in the feasible class or the

4.2. IMBALANCED LEARNING

4

41

infeasible class. For tackling this issue to achieve a good machine learning system for
real use, several techniques for imbalanced learn will be used later in the experiments.
As collecting more data is not helpful with the situation, we perform the experiments
on the dataset we have. The python package of imbalance learning is used. The used
strategies are as following,

• Initial training on a broad range of algorithms.
At this moment, we do not know the structure of the patterns in the feature set
clearly. There are a large number of machine learning algorithms available. In or-
der to not stuck in our favorite algorithm, a broad check on the common machine
learning algorithms help us to find the best types of algorithms on this problem.

• Multiple estimate metrics.
Various evaluation metrics are used such as accuracy, class accuracy, confusion
matrix, roc curves, AUC, etc. For imbalanced feature set, accuracy is often not
enough but even cause misunderstandings about the prediction results. In the
experiments, we induce various metrics to keep track of the actual performance.
Class accuracy gives us information about the correct prediction probability on
each class, especially for the minority classes. Confusion matrix contains not only
correct classifications but also incorrect classifications, and which classes the in-
correct classifications are assigned. ROC curve plots the true positive rate (TPR)
against the false positive rate (FPR) at various discrimination thresholds. It helps
us find the best model settings. AUC provides a direct value for the ROC curve that
can be used to compare easier.

• Weight & cost adjustments.
Setting weights for each class or costs for misclassifications can help adjusting the
classification surface. This technique often provides us with better accuracy in the
desired way.

• Resampling Methods.
Another nice choice is to increase the minority class or decrease the majority class
to find a good balance feature set. The common approaches for resampling are
oversampling, undersampling and over-under sampling. For oversampling, we
adopt random oversampling, SMOTE, etc. Naive random oversampling gener-
ates new samples by randomly creating copies of samples in the under-presented
classes. It keeps the original information but increases the risk of overfitting. SMOTE
is also a common oversampling method. It works by creating synthetic samples
from the minor class instead of creating copies. However, when generating new
samples for one class, SMOTE does not consider the instances from other class
in the overlapped area. This method avoids overfitting issue but has a chance to
increase the overlap among classes. For undersampling, there are methods such
as random undersampling, such as cluster centroid undersampling, tomeklinks.
As the opposite to random oversampling, random undersampling holds the same
technique but for decreasing the over-presented classes. The disadvantage is ob-
vious that it highly risks in losing valuable information. Cluster centroid under-
sampling reduces the number of samples by K-means centroid. Then each class

4

42 4. TRAINING SYSTEM

is synthesized with the centroids of K-means. This method fastens the training
speed but also risks in losing information. TOMEK links remove unwanted over-
lap between classes by pairing nearest neighbors and removing majority class links
until all pairs are of the same class. The techniques of combining undersampling
and oversampling (such as SMOTETOMEK, SMOTEENN) are also adopted in the
experiments. The principle is to use both oversampling (SMOTE), and undersam-
pling (TOMEK Links, KNN) mentioned above. The advantage is that it balances
the dataset by SMOTE, and decrease the overlap by the undersampling methods
at the same time.

• Classes merge.
In the situation of multiple classes, some classes may have too little data and yield
closer feature space with each other. Merging those classes into a new category
brings benefits for both fixing the imbalance level and restructure clearer patterns.
Oppositely, we could also split the majority classes into smaller classes.

There are many potential factors can affect the learning system in this problem, not
only the problem is hard but also the feature set is not perfect, the algorithms and tech-
niques have their limitations, plus imbalanced learning is hard to manage. We do not yet
know what the best way and algorithm fit for this problem is. Thus, the above-addressed
techniques are broadly tested in the experiments, and then we select out the best setting
and strategies based on the results.

4.3. INSTANCE LEARNING

4.3.1. SOLUTION PROBABILITY CLASSIFICATION
The goal of instance learning is to predict an instance’s solution probability based on
the instance features. Briefly, six solutions are generated resulting in seven labels from
solution probability 0%, 16.7% to 100%. Table.4.1 counts the instances number in each
class of all problem sizes. It can be easily seen that most instance are labeled with 0%
and 100%, and much less data are in the other five classes. This will cause a foreseeable
situation in classification that the accuracy will be high for the two rich classes and low
for the other classes.

Table 4.1: Instance Number Statistics

Instances with Feasible Solution Probability
0% 16.7% 33.3% 50% 66.7% 83.3% 100%

13570 3453 1571 1096 1023 1547 17105

Number of instances for each class among all datasets

This is verified by a general experiment on the whole dataset with five frequently used
classifiers in their default settings, where the results are shown in Fig.4.2. For keeping
the feature set more reasonable, features considering train units, arrival train and depar-
tures are not included as they will highly affect the classification results in the majority
classes. Still, what fit assumptions are that the majority classes have very high accuracy

4.3. INSTANCE LEARNING

4

43

while the minority classes are highly misclassified among each other. Detailed misclas-
sifications information is shown in Table.4.2, represented by the confusion matrix from
decision tree classifier. The green numbers stand for right classification of each class
while the red ones represent the largest number in the misclassifications among other
classes. As the instances in the first four classes hold solution probability smaller than
50%, while the instances in the rest classes have higher chance to be solved. There may
exist some common patterns among the two categories respectively. Plus, the first and
the last classes are the vast majority classes. Thus, it can be the reason why the first four
classes tend to be classified into the first class and why the last three classes tend to be
classified to the last class. However, the high misclassifications in the results do not gen-
erate high practical value. We need to depend on the imbalanced learning techniques to
improve the performance.

(a) Accuracy of Classifiers (b) Class Accuracy of Classifiers

Figure 4.2: A General Test on Instance Learning

Table 4.2: Confusion Matrix - DT

Predicted Class
0% 16.7% 33.3% 50% 66.7% 83.3% 100%

0% 3308 628 239 125 81 55 42
16.7% 547 268 117 75 50 35 48
33.3% 188 122 68 51 24 27 38
50% 101 57 44 38 25 40 57
66.7% 56 33 26 37 44 48 94
83.3% 41 47 20 39 41 75 247

Actual
Class

100% 40 38 33 66 112 248 5108

4.3.2. INSTANCE DIFFICULTY CLASSIFICATION
We concluded from the analysis above, that is not an ideal way to classify into seven
classes. In real life, solution probability does not limit only to these seven layers. If each
instance is tested more than six times, the randomness can be better eliminated, and the
solution probabilities will become more accurate. This will result in more classes. Thus,
setting ranges on the solution probability to classify them into several categories will be
a better and reasonable choice for both experiments and practical use.

4

44 4. TRAINING SYSTEM

Knowing the feature set situation, three classes are defined. Specifically, class 0% to 20%
are merged as hard level instance, 20% to 80% are joined as the middle-level instance and
80% to 100% as the easy level instance. The new classes can be regarded as descriptions
of the difficulty levels of instances. As class 0% and class 100% hold the vast majority
of instances. Classifying into two categories are not helpful for identifying the middle-
level instances. These two categories will hold very good predictions. While merging
into more than three classes have no advantages than merging into three classes. On the
one hand, the instances in the middle-level difficulty are already few. On the other hand,
there are no existing merging rules to make a proper division.
After re-defining classes, the statistics data can be found in the following table. A highly
imbalanced dataset still exists for every problem size. The first version of classification
results are then shown in Fig.4.3. By adjusting higher weights to the middle class, Fig.4.4a
shows a much better performance in each class. While taking a look at Fig.4.4b, small
parts of both easy and hard classes are classified to middle classes. As the middle class is
more flexible especially around its lower and upper bounds, the good point is that easy
and hard classes do not hold high misclassifications among each other.

Size Instances with Difficulty Level
Easy Middle Hard

All 18652 3690 17023
16 7070 6 1
17 4764 23 2
18 3214 45 2
19 1348 111 8
20 1999 937 76
21 234 1004 411
22 23 1513 8008
23 0 43 3024
24 0 7 3415
25 0 1 2076

Table 4.3: Instance Statistics Figure 4.3: Class Accuracy of Classifiers

(a) Classifier Accuracy (b) Classifications in Each Class

Figure 4.4: Decision Tree on Instances

4.3. INSTANCE LEARNING

4

45

As Table.4.3 suggests, training on the whole dataset can be affected by features that
correlate heavily with train units. For example, the majority class in problem size 21 is
the middle-level class. Classifiers can classify most of the instances with 21 train units
into the middle class. In this way, the classifiers have no big prediction ability in separat-
ing instances in the three difficulty levels but separating instances in different problem
size. Although specific related features are already removed, as the number of each class
varies a lot in different problem sizes, this may have a substantial influence on the clas-
sifiers. For getting more accurate results on the performance on each dataset, classifica-
tions will be carried out in subsets in the following experiments.

Trainunit Size 21 Taking instances with size 21 as a concrete example, Table.4.4 gives
the average class accuracy among the five classifiers. Due to the fact that middle class
is the majority class with much more data than other classes, all classifiers hold poor
accuracy for the other two classes. Decision tree classifier is slightly better. By multi-
ple experiments with adjusting settings and using different resampling techniques, LDA
classifier is selected to represent the performance for problem size 21. As we can ob-
serve, improvements of accuracy on the minority classes sacrifice the accuracy of the
majority class. One of the reason is that both easy and hard classes have a large overlap
with the middle class while they are distinguishable from each other easily. Thus the im-
provements in these two classes will definitely decrease the accuracy of the middle class.
Table.4.5 gives the confusion matrix for this classifier. Most misclassifications occurs on
easy class with middle class and hard class with middle class.
In Fig.4.6, we visualize the importance of features provided by random forest classifier.
We can conclude that task-related features have dominant importance in this classifica-
tion. However, we observe that high std values exist in some of the task-related values.
This indicates that these task-related features are good individual criterions. We can say
that different importance orders of these features can be reached following the different
first criterion that choosed.
In conclusion, although the performance is improved by trying various machine learn-
ing techniques, the prediction power is not high enough. During the trade-off of the
performance of the three classes, there are two situations. The middle class can hold
very high accuracy, while the other two classes hold very low accuracy. When the other
two classes are improved to above 50% accuracy, the middle class decreases to under
50% accuracy. Neither of the results is ideal for practical use.

Table 4.4: Test results on size 20 & 21

Class Accuracy - Easy | Middle | Hard
Size 20 21

Classifier

LDA 0.927 | 0.224 | 0.147 0.014 | 0.912 | 0.222
GNB 0.885 | 0.102 | 0.004 0.019 | 0.888 | 0.109
KNN 0.939 | 0.125 | 0.0 0.074 | 0.843 | 0.169
DT 0.677 | 0.370 | 0.062 0.216 | 0.584 | 0.368
RF 0.880 | 0.236 | 0.013 0.085 | 0.836 | 0.232

4

46 4. TRAINING SYSTEM

Figure 4.5: LDA Class Accuracy

Table 4.5: LDA-Confusion Matrix

Predicted Class
Easy Middle Hard

Actual
Class

Easy 135 80 19
Middle 279 472 253
Hard 50 139 222

Figure 4.6: RF-Feature Importance

Other Trainunit Size For the problem size 21, the performance is slightly over random
selection. While for other problem sizes, we do not train each feature set separately.
Observing from Table.4.3, instance with train units 16 to 19 have the same imbalance
trends. Notably, the samples in the middle class and the hard class are remarkably few.
Thus, classifier training is performed on these datasets together. Considering the sam-
ple number shown in the below table, the performance seems to have good classifica-
tion ability. The same way is applied to feature sets of problem size 22 to 25. Again, as
the smallest class have too few data, we consider the performance is good enough to
separate the middle class and the hard class.

4.3. INSTANCE LEARNING

4

47

Table 4.6: Classification results in Easy | Middle | Hard classes

Class Accuracy Sample Number Classifier

Size
20 0.53 | 0.55 | 0.53 1999 | 937| 76 LDA (Priors=[0.31,0.30,0.39])
16-19 0.76 | 0.56 | 0.47 16396 | 185| 13 GNB (Priors=[0.15,0.45,0.4])
22-25 0.17 | 0.64 | 0.73 23 | 1564 | 16523 LDA (Priors = [0.25,0.35,0.4])

4.3.3. RESULTS ANALYSIS
For instance learning, a large number of experiments have been performed in order to
figure out the best way to do classification and the best classifiers. As the results sug-
gest, for different problem size, the perfomance varies a lot. Notebly, the results for more
balanced datasets (problem size 20 and 21), the accuracy is between good and bad. For
the others, the performance is acceptable for practical use. From the view of the three
classes, the accuracy seems optimmistic for the majority classes While the accuracy for
the extreme-minority classes are generally low. However, it is often hard to improve the
accuracy of the extreme-minority class in machine learning. In addition, different imbal-
anced learning techniques can not balance the perfromance over the classes perfectly.
This is caused by the existance of overlap especially among the middle class with other
two classes.
In conclusion, from the current feature set, predicting the difficulty of instances is not ac-
curate. Further improvements need to be done to generate classifiers for practical use.
There are two possible ways to improve the accuracy. One is to calculate features which
share less value in common. The other is to try different ways of merging the classes and
finding the best combination.

4

48 4. TRAINING SYSTEM

4.4. INITIAL SOLUTION LEARNING

Initial solution analysis aims at predicting in advance whether an initialization is likely to
lead to a feasible solution. As mentioned previously, different levels of imbalance exists
in every dataset. The training process is in high volume, where both popular classifiers,
different parameter settings and imbalance learning techniques are involved. During
the experiments, different settings and methods are crucial for getting a good perfor-
mance. The training procedure follows a set of steps. Firstly, preprocessing the feature
set. The methods include scaling, feature selection, feature extraction and resampling.
The method with the best performance is chosen. Then a set of machine learning algo-
rithms will be performed on the processed feature set, followed by different evaluation
metrics. The following paragraphs will demonstrate machine learning algorithms’ per-
formance on these datasets. To outline the final choice of machine learning algorithms,
only the critical classifiers and methods are discussed accordingly.

4.4.1. RESULTS

Problem Size 16 - 18 For datasets with instance size 16,17 and 18, the infeasible class
is the minority, and the feasible class is the majority class. The quantity of data for each
class is hugely different. Fig.4.1 shares a spot check on simple classifiers for the original
feature set without any preprocessing for instance size 16. The classifiers use default
settings without parameter adjusting. As expected, the infeasible class is not correctly
predicted, except for the KNC classifier. Similar results apply for instances in size 17 and
18. By adjusting class priors of the training data, good performance can be achieved.
For all three datasets, LDA shows fast calculation and good results compared to other
classifiers. Fig.4.8 gives precise accuracy, AUC, class accuracy along with different class
priors. For size 16, see Fig.4.8a and Fig.4.8b, the ideal classifier setting for infeasible and
feasible classes is (0.6,0.4). With these class priors, each class has over 85% accuracy.
Observing Fig.4.8c and Fig.4.8d for size 17 problems, the best choice of class priors is
(0.55,0.45) for infeasible and feasible classes. The average accuracy for the two class is
between 70% and 75% respectively. Form Fig.4.8e and Fig.4.8f, class priors (0.55,0.45)
can be selected. The average class accuracy is above 75% for both two classes.

Figure 4.7: (Size 16) Average Class Accuracy with Classifiers in default setting

4.4. INITIAL SOLUTION LEARNING

4

49

(a) (Size 16) LDA - Accuracy & AUC (b) (Size 16) LDA - Class Accuracy

(c) (Size 17) LDA - Accuracy & AUC (d) (Size 17) LDA - Class Accuracy

(e) (Size 18) LDA - Accuracy & AUC (f) (Size 18) LDA - Class Accuracy

Figure 4.8: LDA Performance
Among all the figures, the x-axis represents different infeasible class priors, while the feasible class priors equal 1°cl ass_0_pr i or correspondingly.

20 repeat tests are performed on each setting.
The subfigures plot the evaluation results along with different settings.

Problem Size 19 For problem size 19, the imbalance proportion is slightly better than
the above datasets. The more balanced feature set hold larger overlap areas, which
brings more difficulty to the classification. Thus, several more classifiers are brought
to the stage to find out a good learning result, including svc, mlp, ensembled classifiers
and combined classifiers. By roughly adjusting the class weights according to the im-
balance level in the dataset, Fig.4.9 depicts a sanity check on the performance generally.
Four classifiers seem promising and are selected out to test further. The further results
are stored in Table.4.7. Again, LDA is the final choice with the highlighted results and

4

50 4. TRAINING SYSTEM

parameter settings. The best results and settings are marked green in the table.

Figure 4.9: Average class accuracy for multilple classifiers

Table 4.7: Best performance for problems of size 19

Estimation Metrics
Accuracy Auc Class_0_Accu Class_1_Accu Setting

LDA 0.70338 0.70545 0.70850 0.70239 Priors=[0.52,0.48]

RF 0.66556 0.65266 0.63795 0.66736
Class_weight=20:1
Max_Depth=5

ADB 0.68900 0.68381 0.67790 0.68973
Weights=7:1
n_Estimator=100

VoteClf 0.63695 0.61962 0.59988 0.63937 vote weight = 1:1:1

Size 20 For size 20, each class holds over thousand solutions while the number of fea-
sible solutions is four times the number of infeasible solutions. Fig.4.10a depicts the roc
curves of several classifiers, again the LDA classifier outperforms others, with class accu-
racy beyond 60%. Further adjustments are made in the different class prior settings and
resampling techniques. Among the experiments, the best performance can be reached
as shown in Fig.4.10b, resulting in around 70% class accuracy.

(a) LDA - AUC (b) LDA - AUC

Figure 4.10: Weighted LDA Performance

4.4. INITIAL SOLUTION LEARNING

4

51

Size 21 The most balanced dataset is from instance size 21, the quantity difference be-
tween the two classes is just around a thousand. Thus, this is the most interesting dataset
and it is also the most difficult dataset to achieve nice performance. To achieve good re-
sults, we also apply various preprocessing techniques to the feature set for training the
classifiers. The following four figures demonstrate the results from the different steps. By
applying distinct preprocessing techniques, the overall accuracy and class accuracies are
calculated on a range of classifiers. From the initial tests, the original feature set and LDA
classifiers are selected to process further. Fig.4.11d points out that SMOTENN method
help improving performance. As in this dataset, the two classes can overlap more than in
other feature sets. By firstly oversampling and then undersampling, SMOTEENN method
help to reduce both the overlap and information loss. This is the main reason why this
method saves the performance for LDA classifier.

(a) Classifiers - Accuracy (b) Classifiers - Class Accuracy

(c) LDA - ROC Curve (d) LDA -ROC Curve in Smoteenn

Figure 4.11: Weighted LDA Performance

Size 22 From this size on, problems get much harder to solve. The dataset overfits in
the infeasible class a lot more than the feasible class. The experiment process is similar
to the above dataset. Again, SMOTEENN and LDA prove to be the best to choose. The
rough results are in Fig.4.12 and the roc curve depicts the final choice in Fig.4.13.

4

52 4. TRAINING SYSTEM

(a) LDA - Class Accuracy (b) LDA - Class Accuracy

Figure 4.12: Weighted LDA Performance

Figure 4.13: LDA -ROC Curve in SMOTEENN

Size 23 - 25 For these three datasets, the feasible class becomes the minority class with
much less data than the majority class. The initial tests assigned with different costs
to the two classes are performed. This works fine for the previous datasets but not for
this group. This could indicate the fact that for smaller problems, the feasible class and
infeasible class hold different distributions among features. While for bigger problems,
features for the feasible and infeasible class have no big differences.
For the dataset of size 23, several classifiers show potentials in the initial tests where LDA
is selected as it performs good and fast. Scaling, feature selection, and feature extraction
are applied to the feature set, the performance is shown in Fig.4.14a. The original fea-
ture set turns out to be the best of them. Based on the original feature set, resampling
methods are carried out. As the big difference of data in the two classes, sampling the
minority class as the same quantity of the majority class is quite a significant change
in the original data. In the tests, a reasonable ratio is considered when oversampling
the minority class or undersampling the majority class. Cluster centroid method under-
samples the infeasible class to 5000. Randomoversampler resamples the feasible class to
3000. SMOTE generates synthetic data for feasible class around 3000. A slightly higher
weight for the feasible class is adopted according to the new imbalance ratio. SMO-
TEENN and SMOTETOMEK resample the feature set to a balanced level. From Fig.4.14b,
SMOTEENN outperforms other classifier and is selected for practical testing.

4.4. INITIAL SOLUTION LEARNING

4

53

(a) LDA - Accuracy (b) LDA - Class Accuracy

Figure 4.14: Weighted LDA Performance

For dataset in size 24, the same testing process is used as above, and the results are
demonstrated in the figure below. Again, the further tests are performed with LDA clas-
sifier. In this case, cluster centroid undersampler technique is a good fit for practical
use.

Figure 4.15: (Size 24) LDA Performance with resampling methods

For problem size 25, extremely rare feasible class exists in this dataset. Cross-validation
is used for testing every feasible labeled initial solution. The following figure depicts the
best results among the classifiers, LDA with class priors 0.25 for infeasible class and 0.75
for feasible class. A confusion matrix in Fig.5.3h shows detailed cross validation results.

4

54 4. TRAINING SYSTEM

(a) Size 25) LDA Performance

(b) (Size 25) LDA Confusion Matrix

Figure 4.16: LDA Performance

4.4.2. RESULT ANALYSIS
To overview the performance, we records the best classifiers, their parameter settings
and class accuracies in the following table.

Table 4.8: Machine Learning Results

Classifier
Class Accuracy
(class 0 | 1)

Setting
Sample Number
(class 0 | 1)

Size 16 LDA 88% | 85.7% class priors = [0.60, 0.40] 25 | 42437
17 LDA 73% | 70.4% class priors = [0.55, 0.45] 163 | 28571
18 LDA 74.7% | 74.0% class priors = [0.55, 0.45] 284 | 19282
19 LDA 70.8% | 70.2% class priors = [0.52, 0.48] 540 | 8262

20 LDA 66.3% | 67.8%
SMOTE
class priors = [0.51, 0.49]

3652 | 14420

21 LDA 65.2% | 66.7%
SMOTEENN
class priors = [0.50, 0.50]

5488 | 4460

22 LDA 65.9% | 66.4%
SMOTEENN
class priors = [0.50, 0.50]

50825 | 6439

23 LDA 67.6% | 69.5%
SMOTEENN
class priors = [0.50, 0.50]

18004 | 398

24 LDA 66.8% | 70.3%
ClusterCentroids
class priors = [0.49, 0.51]

20418 | 3316

25 LDA 72.6% | 72.7% class priors = [0.25, 0.75] 12451 | 11

Among all the results, LDA is always the best choice, both for the performance and
training speed. The experiment process provides us with some insights on the results.
For the smaller size of problems (16 to 19), the performance is very good. The reason
underlying can be that the pattern between the infeasible samples and feasible samples
in those datasets are apparent. The features of the two classes yield bigger differences.
There is no need for adopting other machine learning techniques but still generates good
performance.

While for the middle problem size, the accuracies are a bit lower. In the opposite

4.4. INITIAL SOLUTION LEARNING

4

55

situation of the smaller problems, the solution status for the middle problems is more
random, meaning most instances have both feasible and infeasible solutions. Thus, the
datasets are more balanced. As the feature sets are manually defined, it is possible that
we miss analyzing some more aspects in initializations. This situation can decrease the
difference of features, especially for infeasible solutions and feasible solutions from the
same instances. Bigger overlaps show up in these datasets, which decrease the perfor-
mance.

For bigger problem size (23-25), good performance is achieved by adopting imbal-
anced techniques. Instances with solution probability 16.7% produce the most of the
feasible solutions. This means that the feasible solutions are seldom from the same in-
stances. Plus, these problems are more complicated than the above ones. The features
of feasible samples could be in the infeasible feature areas. Making use of resampling
method helps in these situations.

Regarding the resampling methods, we can conclude the following. For relatively
balanced datasets, combing over and under sampling together is the best way to get
better boundaries. In the results about, SMOTENN is a good choice for more balanced
and overlapped datasets. For extremely-imbalanced datasets (e.g. size 16,17,18 25 in
this case), there is no need for adopting resampling. Defining a proper quantity for re-
sampling in this situation is hard. Either information loss or overfitting is a risk in this
case. For the datasets in between, the quantity for each class is not extremely few. The
risks for causing information loss or overfitting is much smaller than the previous kind of
datasets. Adopting undersampling or oversampling to deal with majority or the minority
class seems to work better.

In conclusion, we are satisfied with the performance. The classifiers are considered
useful for practical use. Although the feature set is not perfect yet, the analysis proves
that this feature set holds certain distinguishability between good and poor initializa-
tion. More importantly, the optimistic area among initial solutions space is predictable.
We see potential in this analysis for real-life use.

5
TESTING

This chapter introduces the last part of work for this research - the testing part. The final
testing is an essential component of demonstrating the machine learning work. The
goal is to check whether the proposed approach in our research brings any effect to the
traditional scheduling algorithms and draw conclusions to our research questions. From
the experiment results shown in the last chapter, the results of initial learning part are
much better compared to the results of instance learning. Due to time and storage limit,
the real-life testing is focusing on the initial solution learning this time. The chapter is
structured as follows. First, we introduce the framework design of our testing method.
Second, we write about the classifiers we choose and the testing results. Then we show
our analysis and discussion based on the testing results. In the end, we conclude the
corresponding research question.

5.1. TESTING METHOD
In machine learning work, the final test is a significant demonstration of system per-
formance. At Nedtrain, a software program is developed for researching and testing
scheduling algorithms, which is introduced at the beginning of this thesis. We embed
our machine learning system in the software program to check the performance.
Observing the machine learning results from the last chapter, the performance of classi-
fying instances are not good enough for practical use. Thus, we focus on the test of the
initial solution features. The testing system of this research interacts with the algorithm
module and the database, detailed in Fig.5.1. The process is that when the algorithm
accepts an instance, it generated several initial solutions. Then inputting the initial so-
lutions’ information into the feature generator computes initial solution features. After-
ward, the learning system can immediately output the results of the feature sets using
the pre-trained classifiers. Once an initial solution is classified as feasible, it continues
the calculation to generate a final solution. If not, no further calculation is processed.
The number of initial solutions is adjustable. The ideal number of initial solutions for
testing is unknown. In this test, we use six initial solutions for all problem sizes as our
testing setting.

57

5

58 5. TESTING

Figure 5.1: Testing System

5.2. TESTING SET

From the previous section, LDA is the classifier that yields best performance. However,
in practical use, the LDA package is incompatible with the testing environment in the
company. Gaussian classifiers rank the second among all the classifiers, which yield the
advantage of fast training and classification speed. Thus, we implement the Gaussian
classifiers in this test case.
This test contains a number of instances with six initial solutions for each. The exact
tested instances and initial solution numbers are shown in Table.5.1. At least three hun-
dred instances are tested for each problem size. As the amount is manually controlled,
the number varies a lot, and the data for problem size twenty-four are not gathered prop-
erly. Fig.5.2 gives an overview of the classification results among the initial solutions. The
proportion of positive and negative classifications satisfies the expected trends in differ-
ent instance sizes. A more specific histogram of the positive class probability is shown
in Fig.5.3. The trends for smaller sizes and bigger sizes are more stable, while the mid-
dle size problems hold more averagely distributed positive probability. The proportion
of further calculated initial solution is decreasing along with the increasing of problem
size.

5.2. TESTING SET

5

59

Table 5.1: Test Num per Problem Size

16 17 18 19 20 21 22 23 24 25
instance 2170 416 416 1243 2557 341 1248 1786 3 2145
initial
solution

13020 2496 2496 7458 15342 2046 7488 10716 18 12870

Figure 5.2: Test 1

(a) TU 16 (b) TU 17 (c) TU 18 (d) TU 19 (e) TU 20

(f) TU 21 (g) TU 22 (h) TU 23 (i) TU 25

Figure 5.3: Class 1 Probability Histogram

Fig.5.4 shows how many instances hold positive classified initial solutions. The x-axis
represents the number of initial solutions classified as positive in one instance while
the y-axis tells about the instance distributions along this criteria. As further calcula-
tions only continue on positive-classified initial solutions. The instances with no posi-

5

60 5. TESTING

tive initial solutions stop there. For bigger size problem, there are always more instances
stop calculation at the stage right after generating bad initial solutions. As the classifiers
are not perfect, there are always misclassifications. Especially for the very imbalanced
dataset, the experiments from the last chapter show that the classifiers tend to classify
a bit more initial solutions as negative for very small size problems (e.g.17,18) and a bit
more initial solutions as positive for very large size (e.g.24,25). Thus, for these very im-
balanced datasets, some instances miss calculation for small sized problems, and some
redundant instances are calculated for big size problems. However, if the classifier is
perfect, for instances with none potential initial solutions, this method can save a lot of
time by avoiding calculating on those instances.

(a) TU 16 (b) TU 17 (c) TU 18 (d) TU 19 (e) TU 20

(f) TU 21 (g) TU 22 (h) TU 23 (i) TU 25

Figure 5.4: Instance Num vs. Positive Initial Solution Number
X-axis represents the number of initial solutions classified as positive in an instance. Y-axis represents number of instance along this criteria

5.3. INITIAL SOLUTION LEVEL ANALYSIS
Since only high positive probability (above 0.5) initial solutions are calculated to further,
it helps to save a lot of time, especially for harder instances. The following table shows
the proportion between the num of feasible final solutions and the number of all com-
pletely calculated initial solutions. For comparison, the table consists of two groups of
data. The first group of data is from the dataset we collected for analysis use. The sec-
ond group of data is newly generated data for testing when embedded with machine
learning system. From the results, different level of improvements can be seen in differ-
ent instance sizes. For size 16 and 17, the instances are easy to solve. There is seldom
space remaining for improvements. We observe the increased proportion is from size 18
and the increment is getting bigger along with problem size. Two advantages show up
from the results. One is that calculations on the selected initial solutions avoid spending
time on the unpromising calculations. The other is that these positive classified initial
solutions improve the solution probability.

5.4. INSTANCE LEVEL ANALYSIS

5

61

Table 5.2: Testing Results - Initial Solution Level

Size Training Data Testing Data Proportion
Calculated Feasible Ratio Calculated Feasible Ratio Growth

16 42462 42437 99.9% 10566 10558 99.9% 0%
17 28734 28571 99.4% 1534 1525 99.4% 0%
18 19566 19282 98.5% 1635 1620 99.0% 0.5%
19 8802 8262 93.8% 4612 4457 96.6% 2.9%
20 18072 14420 79.7% 8605 7250 84.2% 5.6%
21 9948 4460 44.8% 975 492 50.4% 11.3%
22 57264 6439 11.2% 3267 455 14.0% 12.5%
23 18402 398 2.1% 3947 138 3.5% 66.7%
25 12462 11 0.08% 2294 5 0.2% 150%

5.4. INSTANCE LEVEL ANALYSIS
Excepting for the improvements on the initial solution level, we interest more in whether
this approach brings benefits in solving more instances.

5.4.1. COMPARING WITH TRAINING DATASET

When collecting data, each instance is calculated six times. Intuitively, more instances
can be solved with multiple tries. In real life, it is impossible for providing enough time
and storage to solve each instance multiple times. To decrease the influence of six calcu-
lations to make the comparison more reasonable. We take the difficulty level of instances
into consideration. We adopt a weighted count on the instances with feasible solutions.
We use

Pnum(i nst ance)
1 Feasi bi l i t yi §Soluti on_pr obabi l i t yi to calculate the number

of instances that have been solved. Table.5.3 shows the situation of solved instances in
the two groups of data. The decreasing trends in size 16 and 17 are trivial. We can eas-
ily observe the ratio growth since size 18. It seems that these positive classified initial
solutions increase the chance for finding solutions for the instances that can be solved.

Table 5.3: My caption

Size Training Data Testing Data Proportion

Calculated
Weighted
Feasible

Ratio Calculated
Weighted
Feasible

Ratio Growth

16 7077 7072.83 99.94% 1984 1982.33 99.92% -0.01%
17 4789 4761.83 99.43% 335 331.60 98.99% -0.04%
18 3261 3213.67 98.55% 368 364.45 99.04% 0.4%
19 1467 1377.00 93.87% 1108 1062.37 95.88% 2.1%
20 3012 2403.33 79.79% 2292 1871.30 81.64% 2.3%
21 1649 734.33 44.53% 242 111.42 46.04% 3.4%
22 9544 1073.17 11.24% 1031 131.30 12.74% 13.3%
23 3067 66.33 2.16% 1353 43.12 3.19% 47.7%
25 2077 1.83 0.08% 1010 1.28 0.13% 62.5 %

5

62 5. TESTING

5.4.2. COMPARING WITH RANDOM SELECTION SITUATION

The tricky point of the above comparison lays on the two groups of instances are not the
same. A good comparison often tries to keep as most part as the data the same. However,
in this software program, it is easy to test on the same instance sets, but not possible to
keep the same initial solutions. Thus, to demonstrate the performance more reasonable,
we perform an analysis on how these promising initial solutions work out feasible final
solutions and contribute to the instances.

In the following figure, we extract the instances with at least one feasible final solu-
tion. The positive class probability ranks the initial solutions. The first feasible solution
for each instance counts for the corresponding rank category. Fig.5.5 demonstrates the
results in each problem sizes. This result aims at showing that how the positive classi-
fied, initial solutions contribute to the corresponding instances. The ideal situation will
be that the initial solution with highest positive probability in one instance lead to a fea-
sible solution. From the figure, we observe it in most problem sizes except for problem
size 25. The trends also indicate that 80% of instances get solved by the top two positive
initial solutions. We consider this as a good sign for digging the value of predicting the
feasibility of initial solutions.

(a) TU 16 (b) TU 17 (c) TU 18 (d) TU 19 (e) TU 20

(f) TU 21 (g) TU 22 (h) TU 23 (i) TU 25

Figure 5.5: Solved Instance Num vs. Initial Solution Rank
The initial solution are ranked by predicred probability as x-axis. The figures show statistics on which initial solution instances are solved.

The figure above shows us the trends visually. For further analysis, we list the specific
numbers in the table below. If we rank the initial solutions by their predicted positive
class probability, we consider the initial solutions ranked 1st as the first stage. The initial
solutions ranked 2nd as second stage, etc. In this way, the below table tells us about on
which stage the instances can be solved.

5.4. INSTANCE LEVEL ANALYSIS

5

63

Table 5.4: Number of Solved Instance vs. Initial Solution Ranking

Initial Solution
Ranking

Size
16 17 18 19 20 21 22 23 25

1 1983 348 381 1072 1911 124 141 55 1
2 0 1 4 26 220 66 83 27 1
3 0 1 0 0 33 21 52 24 1
4 0 0 0 0 4 1 39 9 2
5 1 0 0 0 1 1 17 9 0
6 0 0 0 0 0 0 4 2 0
sum 1984 350 385 1098 2169 213 336 126 5

We define on which stage the instances are solved as a good metric to compare the
performance between before embedding our system and after embedding our system.
To calculate the same metric for the system, we perform the following steps. Firstly, we
calculate the solution probability for each instance and summarize its statistics along
with problem sizes. However, the experimental results from the last chapter show the
predictions on instances’ solution probability are not ideal. We did not perform any
testing using instance learning system. Thus, we choose to calculate the solution proba-
bility using the testing results from this test set. The statistics are shown in the following
table.

Table 5.5: Number of Solved Instance vs. Solution Probability

Solution
Probability

Size
16 17 18 19 20 21 22 23 25

1/6 85 32 31 118 386 65 238 115 5
2/6 73 32 51 141 355 74 79 10 0
3/6 83 34 49 150 423 39 17 1 0
4/6 107 62 56 168 402 17 2 0 0
5/5 166 61 72 191 341 14 0 0 0
6/6 1470 129 126 330 262 4 0 0 0
sum 1984 350 385 1098 2169 213 336 126 5

In Table.5.4, we rank the initial solution probability to see that on which stage, the
instances are solved. This provides us the idea that whether the new system holds bet-
ter ability to solve instances more and quicker. Before embedding our testing framework,
the traditional algorithm generates one initial solution for each instance and tries to find
a solution within the time limit. This equals the situation that the software program ran-
domly selects an initial solution among all the generated initial solutions and continues
processing of the selected one. We wonder about the instance solving the situation on
each stage in this random selection manner. Below we perform an analysis to compare
the two different systems. We define the same metric for the random selection situation
to make the comparison reasonable. We calculate the average number of instances can
be solved in a random selection manner in each stage based on the data in Table.5.5.
The formula is defined as follows. Av g _N (St ag ei) represents the estimated number of

5

64 5. TESTING

instances solved at i th initial solution. N (i nsi) represents the number of instances with
i feasible solutions.
The average number of instances can be solved at 1st stage:

Av g _N (St ag e1) = N (i ns1)§1
6
+N (i ns2)§2

6
+N (i ns3)§3

6
+N (i ns4)§4

6
+N (i ns5)§5

6
+N (i ns6)

The average number of instances can be solved at 2nd stage:

Av g _N (St ag e2) = N (i ns1)§5
6
§1

5
+N (i ns2)§4

6
§2

5
+N (i ns3)§3

6
§3

5
+N (i ns4)§2

6
§4

5
+N (i ns5)§1

6

The average number of instances can be solved at 3r d stage:

Av g _N (St ag e3) = N (i ns1)§5
6
§4

5
§1

4
+N (i ns2)§4

6
§3

5
§2

4
+N (i ns3)§3

6
§2

5
§3

4
+N (i ns4)§2

6
§1

5

The average number of instances can be solved at 4th stage:

Av g _N (St ag e4) = N (i ns1)§ 5
6
§ 4

5
§ 3

4
§ 1

3
+N (i ns2)§ 4

6
§ 3

5
§ 2

4
§ 2

3
+N (i ns3)§ 3

6
§ 2

5
§ 1

4

The average number of instances can be solved at 5th stage:

Av g _N (St ag e5) = N (i ns1)§ 5
6
§ 4

5
§ 3

4
§ 2

3
§ 1

2
+N (i ns2)§ 4

6
§ 3

5
§ 2

4
§ 1

3

The average number of instances can be solved at 6th stage:

Av g _N (St ag e6) = N (i ns1)§ 5
6
§ 4

5
§ 3

4
§ 2

3
§ 1

2

Following this formula, we make the same metric for the two situations need to com-
pare. The results for the random selection situation is shown in the table below.

Table 5.6: Average Number of Solved Instance vs. Stage

Stage
Size

16 17 18 19 20 21 22 23 25

1 1760 254 270 743 1208 82 76 23 0.83

2 115 51 60 179 450 49 66 22 0.83

3 48 21 27 81 226 32 58 21 0.83

4 28 11 14 46 133 23 51 21 0.83

5 19 8 9 29 88 16 45 20 0.83

6 14 5 5 20 64 11 40 19 0.83

sum 1984 350 385 1098 2169 213 336 126 5

5.5. DISCUSSION

5

65

Comparing Table.5.6 with Table.5.4, we observe that our approach always yields more
instances solved on the top-ranked initial solutions than the traditional system. Along
with the increasing of problem size, the differences get even more significant. For bigger
sizes (except for size 25), the number of instances solved at the first stage is reaching one
time more than the ones from the traditional system. This proves the efficiency of our
approach in finding feasible solutions.

5.5. DISCUSSION

5.5.1. CONCLUSIONS

The above analysis demonstrates the improvements brought by embedding the machine
learning system in the traditional scheduling algorithm in our case. We analyze from
both initial solution level and instance level. We perform comparisons between the two
different datasets and also the within the same dataset. We observe different levels of
improvements from the different comparisons.

The analysis results show our approach helps in increasing the probability of finding
feasible solutions and avoiding valueless calculation. The absolute values observed in
Table.5.4 and Table.5.6 demonstrates more instances are solved at early stages with our
approach. For illustrating the results, we compare the ratio of the quantity of instances
solved in our system to the ones in the traditional system. We get the following results by
division of each corresponding field value of Table.5.4 and Table.5.6. The ratio demon-
strates the improvement degree in each problem size. It proves that for harder instances,
our system holds more apparent improvements. Notably, we hold the most significant
improvement in the first stage. Additionally, much fewer instances are solved at later
stages in our system.

Table 5.7

Stage
Size

16 17 18 19 20 21 22 23 25

1 1.13 1.37 1.41 1.44 1.58 1.51 1.86 2.39 1.2

2 0 0.02 0.07 0.15 0.49 1.35 1.26 1.22 1.2

3 0 0.05 0 0 0.15 0.66 0.89 1.14 1.2

4 0 0 0 0 0.03 0.04 0.76 0.42 2.4

5 0.05 0 0 0 0.01 0.06 0.38 0.45 0

6 0 0 0 0 0 0 0.1 0.1 0

We conclude the research question, where predicting the good initial solutions is fea-
sible and useful in tackling the scheduling problem in railway systems.

5

66 5. TESTING

5.5.2. LIMITATION
Despite the improvements we observed, this testing has its limitations. Firstly, the data
for problem size 24 is missing. Thus, we miss this analysis on this subset. Secondly, due
to the time limit, more tests on adjusting the number of initial solutions are not per-
formed. We expect to see the more significant ratio between the number of the solved
instances and the number of all instances by generating more initial solution numbers.
Thirdly, not every instance is calculated in this test. From the testing perspective, we
would like to perform at least one complete calculation on each instance to see if it
brings a bit more solved instances. For practical use, the trained classifiers are not per-
fect. It is better to perform at least one try on the most promising initial solutions for
each instance. Fourthly, this testing is not big enough for problem size. More data could
make the results more stable.

6
DISCUSSION & FUTURE WORK

In this chapter, we conclude our study on embedding machine learning system in tra-
ditional planning & scheduling algorithm. The chapter consists of recall of our main
work, discussion on our methods, outcomes & limitations, conclusions to our research
questions and suggestion on future work.

6.1. REASEARCH WORK RECAP
This research studies the usability of embedding machine learning into traditional plan-
ning & scheduling algorithm. The research is based on the Dutch Railways system. As
this is a new research topic, we have no previous work as a reference. Each part of work
is a fresh exploration in this field.
We design a framework to tackle this problem. In our experiment results, we see posi-
tive results and effects of predicting feasibility on the initializations. Our work consists
of several main parts.

6.1.1. DATASET COLLECTION

The datasets are collected from the existing software program at Nedtrain. The collect-
ing process is time-consuming. One reason is that collecting enough data cost a lot of
time itself. More important is that we continue adjusting the system to collect several
different datasets. Once a new dataset is collected, we carry out the statistical analysis
and initial experiments to understand the structure and check its feasibility to perform
research. This collecting process lasts for three months until we finally decide on the
dataset introduced in the second chapter. We choose the method of performing mul-
tiple runs on each instance and storing each instance with its multiple initial solutions
and final solutions. In this case, six runs are carried out. Spending time on exploring
different datasets helps us a lot in defining and adjusting our research questions in this
new area.

67

6

68 6. DISCUSSION & FUTURE WORK

6.1.2. FEATURE CALCULATION
The next step of our work is the feature calculation part. As machine learning is the main
approach, we would like to combine with the scheduling algorithm, feature set counts
as an important component in this work. The original dataset is large and records ev-
ery detail for instance, initial solution and final solution. However, it is not expressly
and distinguishable to be the input of a machine learning system. We manually define a
broad category of features and perform large amounts of calculations on that. Based on
the dataset we adopted, two feature sets are calculated from instance information and
initial solution information respectively. These feature including statistics information,
original problem’s relaxation’s approximate results, time window calculation outcomes,
etc. More specifically, the feature set covers the extractions of information from tasks,
tracks, trains, time, etc. For example, we calculated on the efficiency of performing tasks
in one instance including the waiting time, the process time, the tasks that are process
simultaneously. Each feature contributes to digging out nature and working ability of
the shunting processes. Around 40 features are saved for machine learning use.

6.1.3. CLASSIFIER TRAINING
The machine learning system also comprises a big part of our work. Starting with no
idea which machine learning methods are good fits for the research, we have tried most
of the commonly used machine learning algorithms and techniques. Imbalanced learn-
ing and multiple instance learning are also involved in the process. During the initial
experiment processes, we gradually draw a framework for performing machine learning
in our work. Two aspects are tested here, learning on instances and learning on initial
solutions. Realizing the imbalance nature in our dataset, we separate the whole dataset
by the problem sizes. In this way, the learning process is more flexible and convincing
where we adopt different methods to tackle each dataset. By continuously calculating
new features and experimenting various machine learning techniques, we improve the
accuracy of 10% to 15% in the initial solution learning part since the beginning. The ex-
periment content is huge, which includes a tremendous amount of repeatable work of
training classifiers by frequently adjusting parameter and adopting various imbalanced
learning techniques. The outcome is not only the good results but also the combination
of techniques we used for different subsets. This also provides us more insights into the
machine learning techniques themselves.

6.1.4. TESTING & EVALUATION
The last part of work is the testing part. We run two weeks of testing on the new software
program with embedded machine learning system to collect our test set. For illustrat-
ing the outcome of our approach, we analyze the test results on both initial solution
level and instance level. We first compare the performance with the training set that we
collected at the beginning. The test dataset shows the ability to improve the solution
probability regarding the entire dataset. Although the training set is large and can repre-
sent certain trends, the instances and initial solutions are different from the testing set.
Thus, we also carry out analysis on the test set itself. To illustrate the performance of old

6.2. DISCUSSION

6

69

and new systems, we consider a random selection as equal to the behavior of the early
program. We define the stage that an instance is solved as the metric for comparison.
The better results are observed from our new system. It helps to demonstrate the ability
of our approach for practical use.

6.2. DISCUSSION
The system we designed is plantable and can be expanded to other service sites. The
work we have done is initial and service site-specific. Regarding the content recalled in
the last section, the data collection and feature calculation parts are based on the same
service site. However, the system can be planted and expanded. The differences between
the service sites lay in the infrastructure such as track distribution, resource amount and
distribution, etc. This infrastructure information is stored in the database. The software
program at Nedtrain fetch the infrastructure information from the database and use it
to generate data and run the solving process. From data collection, updating only the
infrastructure information in the database can easily gather data from different service
sites. For feature calculation, some of the features regarding the tasks are calculated
with the help of infrastructure information. However, it does not depend much on the
complicated distribution. In the original problem’s relaxation, we remove some of the
constraints from the track distribution. Instead, we keep the resource distribution to
perform the calculation. Thus, a pre-analysis on the availability of resources and the
tracks they distributed on will support our calculation process to work in another ser-
vice site.
Our framework is scalable concerning adding more problem sizes and more features. In
the above work, the sizes of problem instances are manually selected to fit our experi-
ments purpose. In the framework, we distribute each problem size as a separate module
of the entire system. It is easy to add new modules and dataset from different problem
sizes without disturbing the current system. The features are regularized using the basic
vector format as the input of our machine learning system. New features can be directly
expanded in the feature vectors to perform learning process. We believe our system is
also flexible with additional re-combination of separate modules.

6.3. CONSLUSION
To draw conlcusions, we first recall our research question.

• Can we predict the difficulty level of the instances?

• Can we identify the optimal areas of the initial solution space as starting points?
In other words, can we predict the potential of an initial solution for leading to a
feasibible final solution?

• Which are the dominant features in the above classification process for scheduling
and planning problem?

6.3.1. RESEARCH QUESTION 1
The first research question is as following.

6

70 6. DISCUSSION & FUTURE WORK

• Can we predict the difficulty level of the instances?

In the experiments of instance learning, the results show that the expected accuracy is
not yet reached in every class. This means we can not predict the difficulty level of the
instances. As the experimental results suggest, some of the problem sizes hold better ac-
curacy than others. Also, for extreme minority classes, in this case, high accuracy is hard
to achieve. The results are affected by both instance features and recombined training
sets.

6.3.2. RESEARCH QUESTION 2
The second reasearch question is as following. This is also the main research question in
this study.

• Can we identify the optimal areas of the initial solution space as starting points?
In other words, can we predict the potential of an initial solution for leading to a
feasibible final solution?

From both initial solution experiments, the results demonstrate the top classifiers have
the ability in finding good initial solutions. From the testing and evaluation stage, we
have shown the positive effects that these good initial solutions brought to the traditional
algorithm. The evaluation results show the potential of good initial solutions of saving
time and increasing probability of finding a feasible solution.

6.3.3. RESEARCH QUESTION 3
The third research question we discuss here is as following.

• Which are the dominant features in the above classification process for scheduling
and planning problem?

In our work, we choose to directly extract features from the stored instance information
and initial solution information. During the feature visualization and classifier training
processes, we identify task-related features are the most dominant features for schedul-
ing algorithms in this study. For instance features, we calculate the task-related features
from both the instance information and the relaxation problem. Valuable features are
the waiting time for tasks, the arrival density of tasks, the efficiency of time in solving
tasks, etc. For initial solutions, the task features that relate to time are the most valuable
features. We assume that the solving the tasks correctly and in time is a crucial part of
scheduling problems.

6.3.4. PRACTICAL USE
The research value is not the only goal of this work. We also want to generate values for
practical use. From the above conclusion, predicting on instances is not yet ready to be
adopted in real-life cases. Furthur research and experiments are desired at this moment.
Predicting on initial solutions shows its potential for practical use. Although the accuracy
can still be improved, it achieves a useful level for real-life cases. Our first expectation
of adopting this modern technique is to fasten the calculation speed and finding more

6.4. FUTURE WORK

6

71

feasible solutions. The evaluation process indicates the ability of the initial solution pre-
dicting system. Still, a better framework to make the best use of the predictions are need
to be explored.

6.4. FUTURE WORK

6.4.1. EXPLORING MORE ABOUT FEATURES
From the machine learning results, the misclassifications happen a lot in the overlapped
areas. Similar feature values often cause the overlapped areas. From the visualization of
our feature sets, there exist different sizes of such regions. More distinct feature values
are always welcoming in machine learning work.

Our feature set is broad but lack of depth. We suggest on several improvements on
the feature set. Adjusting calculation setting such as weights and window sizes may ac-
quire better features. We use time window for calculating some of the features. However,
the window size and settings are not deeply researched. Providing in-depth research on
the time window setting may generate features with wanted values. The new features
can also be acquired from better representations of feature sequences. For instance,
some of the features are concluded from feature sequences. Mostly, we use average and
standard deviation values to represent the whole feature sequence. This may eliminate
the characteristics existed in the feature sequence. We suggest exploring other metrics
to summarize those feature sequences. A third way can be combining existed features as
new features. Combined features may have more expressive power than single ones.

Besides, calculating features costs time. We would like to address that the tradeoff be-
tween feature performance and extraction complexity should be studied concerning the
software’s performance. As mentioned, practical use is essential for this study. Within
the time constraints of the algorithm, how to divide the time for the software compo-
nents can yield the best overall software performance is valuable to research. We believe
this also varies a lot with different difficulty levels of instances. A flexible model with
different settings according to the instance difficulty can be considered.

6.4.2. EXPLORING TESTING METHODS
Although the testing results we observe is nice, more tests have not been carried out
due to the expensive cost of time. In our testing, the number of initial solutions is the
same for each size. Future tests can be done to trade off the with the amount of initial
solution regarding the difficulty level of instances. Finding the balance point of perfor-
mance and time cost of classifying more initial solutions is also an important work to be
done. Additionally, the classifiers hold certain ratios of misclassifications. Our testing
results indicate that for large size instances, the instances are not always solved with the
best initial solutions predicted by the classifiers. More attention should be the focus on
the harder instances. Future work is necessary for discovering the best way to make the
biggest advantage of predictions for real-life use.

6.4.3. EXPLORING DEEP LEARNING METHOD
Analyzing features directly from scheduling problem is not easy work. Poor analysis af-
fects machine learning results immediately. Graphs often model those scheduling prob-

6

72 6. DISCUSSION & FUTURE WORK

lems in research. To decrease manual analysis of features, future work can be considered
in developing a graph model for representing the state of the situation. Then making use
of deep learning method to learn may be a nice try. Also, it can provide comparisons
with traditional machine learning algorithm.

6.4.4. EXPLORING DISPATCHING RULES
Our approach aims at solving more instances by filtering the initial solution space. How-
ever, the initial solutions are generated randomly. For difficult instances, it may require
much more initial solutions to achieve the goal. Besides, our approach is focused on
the local search manner. It is hard to be planted to other methods tackling scheduling
problems. Existing research work has demonstrated the ability of training with the dis-
patching rules in scheduling problems. In this scheduling algorithms, a number of dis-
patching intuitive exist. Training the dispatching rules also adapts to this background.
We suggest on future work on predicting the optimal dispatching decisions in the opti-
mization process. The time complexity is always an important factor in solving real-life
problems. Predicting the decisions may guide the optimization process and decrease
the computation cost.

6.4.5. EXPLORING IMPROVEMENTS FOR PRACTICAL USE
For practical use, spending time on generating learning data is time-consuming. We
suggest the next step is to develop a self-increasing learning system. For example, when
expanding new service sites using the system, there is no data existed for training clas-
sifiers. It is not ideal and necessary to wait for generating enough data firstly, especially
for each service site. We expect a practical system is having the ability to deal with the
cold start, learn continuously and improve continuously.

REFERENCES 73

REFERENCES
[1] S. Athmaja, M. Hanumanthappa, and V. Kavitha, “A survey of machine learning al-

gorithms for big data analytics,” in 2017 International Conference on Innovations
in Information, Embedded and Communication Systems (ICIIECS), pp. 1–4, March
2017.

[2] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review
of classification techniques,” 2007.

[3] J. Yang, “Review of multi-instance learning and its applications,” Technical report,
School of Computer Science Carnegie Mellon University, 2005.

[4] J.-F. Cordeau, P. Toth, and D. Vigo, “A survey of optimization models for train routing
and scheduling,” Transportation science, vol. 32, no. 4, pp. 380–404, 1998.

[5] A. Thaduri, D. Galar, and U. Kumar, “Railway assets: a potential domain for big data
analytics,” Procedia Computer Science, vol. 53, pp. 457–467, 2015.

[6] N. Van Oort, “Big data opportunities in public transport: Enhancing public trans-
port by itcs,” IT-TRANS, 18-20 February 2014, Karlsruhe, Germany, 2014.

[7] A. Núñez, J. Hendriks, Z. Li, B. De Schutter, and R. Dollevoet, “Facilitating mainte-
nance decisions on the dutch railways using big data: The aba case study,” in Big
Data (Big Data), 2014 IEEE International Conference on, pp. 48–53, IEEE, 2014.

[8] H. Li, D. Parikh, Q. He, B. Qian, Z. Li, D. Fang, and A. Hampapur, “Improving rail
network velocity: A machine learning approach to predictive maintenance,” Trans-
portation Research Part C: Emerging Technologies, vol. 45, pp. 17–26, 2014.

[9] X. Zhang and D. Gong, “Application of big data technology in marketing decisions
for railway freight,” in ICLEM 2014: System Planning, Supply Chain Management,
and Safety, pp. 1136–1141, 2014.

[10] Y. Q. Shao, R. K. Liu, F. T. Wang, and M. D. Chen, “Research on big data management
for high-speed railway equipment,” in Applied Mechanics and Materials, vol. 462,
pp. 405–409, Trans Tech Publ, 2014.

[11] C. Turner, A. Tiwari, A. Starr, and K. Blacktop, “A review of key planning and schedul-
ing in the rail industry in europe and uk,” Proceedings of the Institution of Mechani-
cal Engineers, Part F: Journal of Rail and Rapid Transit, vol. 230, no. 3, pp. 984–998,
2016.

[12] P. Priore, D. de la Fuente, J. Puente, and J. Parreño, “A comparison of machine-
learning algorithms for dynamic scheduling of flexible manufacturing systems,”
Engineering Applications of Artificial Intelligence, vol. 19, no. 3, pp. 247–255, 2006.

[13] S. C. Graves, “A review of production scheduling,” Operations research, vol. 29, no. 4,
pp. 646–675, 1981.

74 REFERENCES

[14] H. Aytug, S. Bhattacharyya, G. J. Koehler, and J. L. Snowdon, “A review of machine
learning in scheduling,” IEEE Transactions on Engineering Management, vol. 41,
pp. 165–171, May 1994.

[15] B. A. W. J. A. Blessing, “Infmss an intelligent fms scheduling system,” World Produc-
tivity Forum and 1987 Ann. Int. Industrial Engineering Conf. Proc., pp. 82–88, 1987.

[16] M. J. Shaw, “Dynamic scheduling in cellular manufacturing systems: a framework
for networked decision making,” Journal of Manufacturing Systems, vol. 7, no. 2,
pp. 83–94, 1988.

[17] M. Shaw, U. Menon, and S. Park, “Machine learning methods for computer-aided
process planning,” Expert Systems and Manufacturing Designs, edited by A. Kusiak,
Society of Manufacturing Engineers Press, Dearborn, MI, 1988.

[18] R. Wysk, D. Wu, and R. Yang, “A multi-pass expert control system (mpecs) for flexible
manufacturing systems,” NBS Special Publication, vol. 724, pp. 251–278, 1986.

[19] S. Piramuthu, N. Raman, M. J. Shaw, and S. C. Park, “Integration of simulation mod-
eling and inductive learning in an adaptive decision support system,” Decision Sup-
port Systems, vol. 9, no. 1, pp. 127–142, 1993.

[20] K. Kempf, “Artificially intelligent tools for manufacturing process planners,” in In-
telligent Manufacturing, Proc. 1st Int. Conf. Expert Systems and the Leading Edge in
Production Planning and Control, pp. 131–163, 1988.

[21] P. Koton, “Smartplan: A case-based resource allocation and scheduling system,” in
Proceedings of the Case-Based Reasoning Workshop, pp. 285–289, 1989.

[22] K. Li and J. Malik, “Learning to optimize,” arXiv preprint arXiv:1606.01885, 2016.

[23] A. Cassioli, D. Di Lorenzo, M. Locatelli, F. Schoen, and M. Sciandrone, “Machine
learning for global optimization,” Computational Optimization and Applications,
vol. 51, no. 1, pp. 279–303, 2012.

[24] D. Biskup and T. E. Cheng, “Multiple-machine scheduling with earliness, tardiness
and completion time penalties,” Computers & Operations Research, vol. 26, no. 1,
pp. 45 – 57, 1999.

[25] E. L. Lawler, “A “pseudopolynomial” algorithm for sequencing jobs to minimize to-
tal tardiness,” Annals of discrete Mathematics, vol. 1, pp. 331–342, 1977.

[26] C. Koulamas, “The single-machine total tardiness scheduling problem: review and
extensions,” European Journal of Operational Research, vol. 202, no. 1, pp. 1–7, 2010.

[27] F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin, “Time series modeling by a
regression approach based on a latent process,” Neural Networks, vol. 22, no. 5,
pp. 593–602, 2009.

REFERENCES 75

[28] F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin, “A hidden process regression
model for functional data description. application to curve discrimination,” Neuro-
computing, vol. 73, no. 7, pp. 1210–1221, 2010.

[29] A. Samé and H. El-Assaad, “A state-space approach to modeling functional time se-
ries application to rail supervision,” in 2014 22nd European Signal Processing Con-
ference (EUSIPCO), pp. 1402–1406, Sept 2014.

[30] R. H. Shumway and D. S. Stoffer, “Time series analysis and its applications,” Studies
In Informatics And Control, vol. 9, no. 4, pp. 375–376, 2000.

[31] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on
knowledge and data engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[32] A. Estabrooks, T. Jo, and N. Japkowicz, “A multiple resampling method for learning
from imbalanced data sets,” Computational intelligence, vol. 20, no. 1, pp. 18–36,
2004.

[33] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-sampling
method in imbalanced data sets learning,” Advances in intelligent computing,
pp. 878–887, 2005.

[34] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling ap-
proach for imbalanced learning,” in Neural Networks, 2008. IJCNN 2008.(IEEE
World Congress on Computational Intelligence). IEEE International Joint Conference
on, pp. 1322–1328, IEEE, 2008.

[35] N. Chawla, A. Lazarevic, L. Hall, and K. Bowyer, “Smoteboost: Improving prediction
of the minority class in boosting,” Knowledge Discovery in Databases: PKDD 2003,
pp. 107–119, 2003.

	Summary
	Preface
	Introduction
	Background
	Problem statement
	Research questions
	Research scope
	Research relevance
	Reading guide

	Literature Study
	Machine learning
	Machine learning in railway systems
	Machine learning in scheduling & planning
	Machine learning in Local Search
	Feature extraction in scheduling problems
	Imbalanced learning

	Data Set & Feature Engineering
	Dataset Introduction& Feature Set Definition
	Dataset Introduction
	Feature Set Definition

	Solution Status & Label sets
	Feature Calculation & Visualization
	Instance Features
	Initial Solution Features

	Discussion

	Training System
	Framework
	Imbalanced Learning
	Instance Learning
	Solution Probability Classification
	Instance Difficulty Classification
	Results Analysis

	Initial Solution Learning
	Results
	Result Analysis

	Testing
	Testing Method
	Testing Set
	Initial Solution Level Analysis
	Instance Level Analysis
	Comparing with Training Dataset
	Comparing With Random Selection Situation

	Discussion
	Conclusions
	Limitation

	Discussion & Future Work
	Reasearch Work Recap
	Dataset collection
	Feature Calculation
	Classifier Training
	Testing & Evaluation

	Discussion
	Conslusion
	Research Question 1
	Research Question 2
	Research Question 3
	Practical Use

	Future Work
	Exploring More About Features
	Exploring Testing Methods
	Exploring Deep Learning Method
	Exploring Dispatching Rules
	Exploring Improvements for Practical Use

	titleReferences

