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 A B S T R A C T

Power-to-hydrogen systems, particularly the most mature alkaline electrolyzers (AELs), are increasingly de-
ployed in modern energy systems due to their pivotal role in green hydrogen production and decarbonization. 
Proper modeling is vital for optimizing AEL lifecycle decisions, including design, operation, and investment. 
Despite numerous proposed models, a review focusing on their applications in system-level decision-making 
(e.g., operation and planning) remains lacking. This paper bridges this gap by reviewing over 100 peer-
reviewed articles to offer an in-depth overview of AEL models employed in system-level decision-making. 
Followed by clarifying modeling requirements across different levels of AEL system analysis, three types 
of AEL models are classified in system-level decision-making: linear electricity–hydrogen (LEHM), nonlinear 
electricity–hydrogen (NEHM), and integrated electricity-heat-hydrogen models (IEHHM). This classification is 
based on representing the AEL with different levels of multi-physics detail and energy conversion assumptions. 
LEHM assumes a constant electricity-to-hydrogen conversion efficiency of typically about 60%–70%, while 
NEHM and IEHHM allow modeling of dynamic efficiency variations in the typical range of 60%–80%, where 
the IEHHM uniquely integrates thermal dynamics. Their modeling principles, characteristics, strengths, and 
limitations are systematically reviewed, followed by an in-depth overview of their applications and impacts 
across four applications: economic operation, grid services, heat recovery, and capacity planning. It reveals that 
LEHM, NEHM, and IEHHM are employed in 35%, 42%, and 23% of these applications, respectively. Finally, a 
discussion of current modeling limitations and future direction is provided. This paper offers valuable insights 
and guidance for selecting appropriate AEL models in decision-making studies and identifying pathways for 
advancing AEL modeling.
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Nomenclature

Abbreviation

AEL Alkaline Electrolyzer
AEM Anion Exchange Membrane Electrolyzer
BOP Balance of Plant
CE Carbon Emission
DHS District Heating System
EMPC Economic Model Predictive Control
FCR Frequency Containment Reserve
GA Genetic Algorithm
HHV Higher Heat Value
IEHHM Integrated Electricity-Heat-Hydrogen Model
LCOE Levelized Cost of Energy
LCOH Levelized Cost of Hydrogen
LEHM Linear Electricity–Hydrogen Model
LHV Lower Heat Value
LPSP Loss of Power Supply Probability
LP Linear Programming
MILP Mixed-integer Linear Programming
MINLP Mixed Integer Nonlinear Programming
MIQCP Mixed Integer Quadratically Constrained 

Programming
MISOCP Mixed-Integer Second-Order Cone Program-

ming
MPC Model Predictive Control
NEHM Nonlinear Electricity–Hydrogen Model
NPC Net Present Cost
NPV Net Present Value
NP Nonlinear Programming
PEM Proton Exchange Membrane Electrolyzer
PSO Particle Swarm Optimization
PtH2 Power-to-Hydrogen
PWL Piecewise Linearization
QP Quadratic Programming
SOC State of Charge
SOEC Solid Oxide Electrolyzer
UI Voltage-Current

1. Introduction

Conventional fossil fuels, crucially supporting economic growth 
and technological advancements in modern society, face sustainability 
concerns due to depletion and environmental impacts, notably carbon 
dioxide emissions reaching a new high of over 36.8 gigatons [1]. The 
2 
urgent need for sustainable energy solutions drives the growing inte-
gration of renewable energy sources. Global renewable energy capacity 
will soar to about 3700 gigawatts over the next five years, surpassing 
coal as the leading electricity source by 2025, and renewables reaching 
over 42% of global electricity generation by 2028 [2]. However, renew-
ables integration into power systems is accompanied by multifaceted 
challenges, such as power imbalance caused by renewables’ intermit-
tency [3], and system instability due to inertia reduction [4]. Moreover, 
electrification using renewable power encounters limitations in ad-
dressing hard-to-abate sectors which are challenging to decarbonize 
via direct electrification [5], such as heavy transport, steel, aviation, 
chemicals, and shipping. Hydrogen emerges as a promising option for 
addressing these challenges. Hydrogen, especially the green hydrogen 
produced from power-to-hydrogen (PtH2) like water electrolyzers using 
renewable power, represents a green energy carrier and fuel. It has been 
recognized as a pivotal mitigation decarbonization pathway in electric-
ity and even hard-to-abate sectors. Moreover, hydrogen-based solutions 
such as PtH2, hydrogen storage, and fuel cell technologies enable 
flexible energy conversion and storage pathways that help mitigate the 
intermittency of renewable generation. PtH2 systems convert surplus 
renewable electricity into hydrogen during low-demand periods, which 
can then be stored for extended durations and later reconverted into 
electricity via fuel cells. When coordinated with hydrogen storage and 
fuel cell systems, electrolyzers can provide long-duration balancing 
and enhance grid flexibility [6]. Furthermore, electrolyzers can act 
as controllable loads, dynamically adjusting their power consumption 
in response to grid conditions and participating in frequency regu-
lation services [7]. Globally, over 680 large-scale hydrogen projects, 
totaling an investment of $240 billion, reflect widespread adoption 
for decarbonization efforts, particularly in Europe, where hydrogen is 
anticipated to play a significant role across various sectors [8].

As a critical part of the hydrogen-based decarbonization pathway, 
the hydrogen production process with sufficient decarbonization is 
crucial. Water electrolysis-based PtH2 is one of the critical hydrogen 
production approaches in a green manner that aligns with decar-
bonization objectives. It is reported that 192 power-to-X (X refers to 
various products such as hydrogen, ammonia, methanol, etc.) demon-
stration projects are being constructed across 32 countries, with Europe 
hosting the majority, approximately 154 projects [9]. State-of-the-
art water electrolyzer systems are classified into four types: alkaline 
electrolyzer (AEL), proton exchange membrane electrolyzer (PEM), 
solid oxide electrolyzer (SOEC), and anion exchange membrane elec-
trolyzer (AEM), each outlined with unique technical features in Table 
1 [10–13]. Among these, AEL stands out as the most established and 
commercially viable technology, renowned for its cost-effectiveness, 
extended lifespan, and scalability to larger capacities. Furthermore, 
recent advancements of AELs prove that the enhanced AELs such as 
pressurized AELs also exhibit a favorable dynamic flexibility [14,15] 
as PEMs offer, enabling them to adapt to the fluctuation of renewables 
and even provide grid frequency regulation services [7]. Accordingly, it 
is sparking widespread deployment of AEL projects and generating sig-
nificant research interest in the technology, making AEL technologies 
the central focus of this paper as well.
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Table 1
Comprehensive comparisons of different electrolysis technologies [10–13].
 Characteristic AEL PEM SOEC AEM  
 Temperature [°C] 65–100 70–90 600–900 50–80  
 Pressure [bar] <60 <80 <1 <30  
 Current density [mA/cm2] 200–500 800–2500 260–1000 300–800  
 Stack unit capacity [kW] 5–6000 5–2500 <10 Up to 5  
 Specific energy consumption 
[kWh/m3]

4.2–4.8 4.4–5.0 3.7 4.8–6.9  

 Nominal stack efficiency [%] 63–71 60–68 96 <67  
 Load range [%] 20–100 0–100 −100–100 N/A  
 Start-up time (cold/warm) [min] 60–120/1–5 5–10/<10s >60/<15 N/A  
 Ramping up/down [%/s] 10–50/10 10–90/40.6 0.1–0.3/3 N/A  
 Stack lifetime [kh] 55–120 60–100 8–20 N/A  
 CAPEX cost [e/kW] 800–1500 1400–2100 >2000 N/A  
 Advantages High maturity and 

commercialization; 
low cost; long 
lifetime; large stack 
size

High flexibility; good 
ability to adapt 
renewables; high 
current density

High energy 
efficiency; less 
electricity 
consumption

Low cost; high 
flexibility; good 
ability to adapt 
renewables

 

 Disadvantages Low current density; 
low flexibility; long 
start-up time; 
mixing of gases

High membrane cost; 
short lifetime

High cost; severe 
environment; 
immature

Immature  
Modeling of AEL technologies is a crucial tool for understanding 
their principles, optimizing system design, and enabling effective con-
trol and operation for improving their techno-economic performance. 
Numerous studies have been conducted to develop models for AELs at 
various levels of detail and dimensionality to capture the multi-physics 
and multiscale nature of electrolyzers. However, limited studies provide 
a comprehensive review of thoroughly summarizing and discussing the 
developed models. Only several modeling reviews of AELs [16–18] 
can be found. Specifically, the authors in [16] clarified models for 
both AELs and PEMs according to physical domains. These AEL models 
cover the electrical domain [19,20], electrochemical domain [21,22], 
and thermal domain [23–25]. Moreover, the modeling approaches are 
reviewed including physical law-based analytical modeling [21,22,24] 
and data-driven empirical modeling [23,26]. Furthermore, Ref. [17] 
reviews the existing mathematical modeling of AELs including thermo-
dynamic, electrochemical, thermal, and gas purity models. Compared 
to [16], this review especially updates the advancement of the gas 
purity model considering the gas crossover phenomenon [27–31], along 
with presenting the modeling guideline to connect different submodels, 
summarizing the effects of model’s parameters and operating conditions 
on AEL performance. Moreover, the latest modeling review of AELs 
is presented in [18]. It adds additional information about two-phase 
flow models [32–36] which characterize the interaction of gas bubbles 
and liquid electrolytes and its impact on the consumed electricity for 
producing hydrogen, compared to reviews [16,17].

Table  2 shows a comparative summary of the previous three re-
views for AEL modeling. It indicates that existing reviews have con-
tributed to comprehensively summarizing the model development of 
AELs covering various physical domains, aiming to characterize the 
complex multi-physics within AEL systems. However, a research gap 
still remains. That is, none of the reviews gives a clear summary and 
discussion of AEL model development from the perspective of system-
level decision-making optimization studies involving their operation 
and planning within energy systems. Such studies involve distinguish-
ing requirements of model granularity and physics representation of 
AELs. It is unclear how developed models have been used to represent 
AELs at different granularity in their decision-making optimization 
studies.

To address the identified research gap, this paper, by reviewing 
over 100 peer-reviewed articles related to system-level AEL modeling, 
offers a comprehensive overview of alternative AEL model development 
and provides a detailed summary of their utilization in optimizing 
decision-making for AEL systems. Overall, this work serves as a valu-
able guideline for both experienced modelers and beginners in selecting 
3 
Table 2
Comparative summary among prior modeling reviews of AELs.
 Modeling Review [16] Review [17] Review [18] 
 Electrochemical models √ √ √  
 Electrical models √

5 5  
 Thermal models √ √ √  
 Mass transfer models 5

√ √  
 Two-phase models 5 5

√  
 Models for operation and planning 
decision-making optimizationa

5 5 5  

a This term refers to a comprehensive summary of AEL models in diverse operation and 
planning decision-making optimization applications, which is the unique contribution 
of this paper.

suitable AEL models for such decision-making optimizations. Addition-
ally, it sheds light on the future trajectory of model advancement, 
particularly concerning the optimal integration of AELs into integrated 
energy systems. The key novel contributions of this study are as follows:

(1) Provide a holistic analysis of hierarchical AEL research, re-
vealing the research focus and corresponding model granularities and 
timeframes across different levels of AEL system analysis.

(2) Systematically sort and summarize the current state of AEL mod-
eling in system-level decision-making optimization, categorized into 
three types: linear electricity–hydrogen model, nonlinear electricity–
hydrogen model, integrated electricity-heat-hydrogen model.

(3) Provide a review of AEL system-level decision-making studies 
from the perspective of how AELs are modeled and represented in 
operation and planning optimization, including four specific applica-
tions: economic operation, grid service, heat recovery management, 
and capacity planning.

(4) Summarize in detail the utilization, features, and impact of AEL 
models, as well as optimization techniques development, on addressing 
system-level optimization.

(5) Critically discuss the advantages and disadvantages of existing 
models and offer insights into future directions for modeling efforts.

The rest of the paper is organized as follows: Section 2 provides a 
foundational understanding of AELs, including their basic principles, 
system structure, and a holistic overview of hierarchical analysis and 
modeling needs in AEL research. Section 3 offers an overview of 
AEL models tailored explicitly for system-level decision-making opti-
mization studies, while Section 4 reviews examples of such studies, 
discussing the application of these models. Section 5 critically dis-
cusses and summarizes AEL models and their applications, while also 
analyzing existing deficiencies in AEL modeling and proposing future 
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Fig. 1. Electrolyzer cell structure and electrolysis principle.

advancements. Specifically, Sections 3 to 5 constitute the core review 
content, offering a multi-layered assessment of AEL models, from their 
modeling granularity (Section 3), to their practical applications in 
decision-making optimization (Section 4), and finally to critical eval-
uations and future research pathways (Section 5). Finally, Section 6 
concludes the key findings, and suggests potential directions for future 
research and development in AEL models.

2. Foundational understanding and modeling of alkaline elec-
trolyzers

2.1. Basic principle and system structure

The principle behind AEL systems is to utilize electricity for the 
water electrolysis, resulting in the separation of hydrogen and oxygen 
gases. At the heart of the AEL system lies the electrolyzer cell, where the 
electrolysis reaction occurs. This cell comprises key components such 
as electrodes (including cathode and anode electrodes), a membrane, 
and alkaline electrolyte, as depicted in Fig.  1. Within the electrolyzer, 
an alkaline electrolyte solution fills the compartments divided by the 
membrane into cathode and anode sections. The electrolysis process, 
described by Eqs. (1)–(3) [23], involves the application of a direct-
current (DC) to prompt electrons to flow toward the cathode, where 
they combine with hydrogen ions, yielding hydrogen gas. Meanwhile, 
hydroxide ions migrate to the anode, releasing electrons and generating 
oxygen gas. The electrons complete the circuit by returning to the 
positive pole of the power supply. Macroscopically, Fig.  2 illustrates 
the mass and energy flow within AEL systems, where water serves 
as the feedstock, leading to the main products of hydrogen gas and 
oxygen gas. Additionally, waste heat released during electrolysis is 
another valuable product, which can be recovered and utilized for heat 
supply. The energy required for this process is DC electricity, which can 
be converted from alternating-current (AC) using converters in power 
systems. 

𝐴𝑛𝑜𝑑𝑒 ∶ 2OH−(𝑎𝑞) → 1
2
O2(𝑔) + H2O(𝑙) + 2𝑒− (1)

𝐶𝑎𝑡ℎ𝑜𝑑𝑒 ∶ 2H2O(𝑙) + 2𝑒− → H2(𝑔) + 2H−(𝑎𝑞) (2)

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 ∶ H2O(𝑙) → H2(𝑔) +
1
2
O2(𝑔) (3)

In addition to the core component, i.e. electrolyzer cell, there are 
other auxiliary units within AEL systems for supporting the sustainable 
electrolysis process and obtaining high-purity hydrogen. Fig.  3 depicts 
a generalized AEL system schematic comprising the stack, balance of 
plant (BOP), and converter. The stack consists of multiple electrolyzer 
cells, where the electrolysis reaction takes place. The BOP plays a crit-
ical role in maintaining optimal conditions for electrolysis, including 
4 
temperature, pressure, and electrolyte circulation, while facilitating gas 
product extraction and purification. Coordination among various BOP 
components (such as heat exchangers, pumps, gas-liquid separators, 
condensers, and purification systems) is essential for these functions. 
Converters aim to transform AC power into DC power for the stack and 
other BOP devices.

2.2. Hierarchical analysis and modeling needs in AEL research

Striving to advance the frontiers of AEL technology consistently 
requires addressing diverse levels. Drawing upon the universal frame-
work of process control and optimization in manufacturing [37], a 
graphical overview of hierarchical AEL studies spanning multiple time-
frames can be established, as depicted in Fig.  4. It portrays the hi-
erarchical levels of research in AEL technology involving six levels 
with distinguished timeframes. From the lowest Level 1 to the highest 
Level 6, the studied objects extend from a single device (e.g., sensor 
units and control valves) within AEL systems to the whole system, 
along with increasing time resolutions from high-resolution (such as 
seconds) to lower-resolution (such as weeks or years), and reduced 
model granularity from fine-grained to coarse-grained. To provide a 
clearer structure, the AEL research hierarchy can be categorized into 
three primary layers: Basic Layer, Control Layer, and Optimization 
Layer:

(1) Basic Layer (Level 1 and Level 2): focuses on ensuring accu-
rate data acquisition and basic equipment protection. This layer deals 
with real-time (e.g. no more than one second) operations like sensor 
validation, actuator functioning, and safety mechanisms, ensuring the 
immediate protection and correct functioning of hardware components. 
Given its focus on measurement and protection, the modeling require-
ments for the layer are minimal and generally straightforward. The 
primary concern here is the reliability and accuracy of sensor data 
rather than the detailed dynamics of the AEL processes. Thus, while 
this layer is fundamental for the real-time operation of AEL systems, 
it does not necessitate detailed process modeling. Its emphasis is more 
on robust and reliable hardware functioning rather than on extensive 
computational modeling.

(2) Control Layer (Level 3 and Level 4): deals with component-
level control within AEL systems in timeframes from seconds up to 
days, ensuring their successful operation by focusing on dynamic pro-
cess control within a single AEL system. This layer includes tasks 
related to basic control such as PID control for a single process variable 
(e.g., electrolyte flow rate), as well as more advanced multivariable 
and constraint control to handle complex interdependencies within the 
system (e.g., temperature, pressure, and electrolyte flow rate). This 
layer ensures the successful and efficient operation of AEL systems 
through dynamic and component-level process control. Given the needs 
of dealing with component-level control, the model must capture in-
tricate details of various process dynamics, particularly the temporal 
variations of system operating parameters such as temperature, pres-
sure, gas production, and supplied current/voltage. This extent of detail 
is crucial for designing stable and accurate controllers to regulate 
parameters to their desired values. Accordingly, fine-grained models 
with small timeframes are usually employed at this level to ensure the 
successful and efficient operation of AEL systems through dynamic and 
component-level process control.

(3) Optimization Layer (Level 5 and Level 6): addresses system-
level decision-making optimization on operation and planning aspects 
of single and multiple AEL systems when integrated into energy sys-
tems. This layer involves activities such as economic scheduling and 
strategic planning to align with long-term goals. The focus here shifts 
to maximizing operational efficiency and economic benefits over ex-
tended periods (hours to months), covering the entire AEL system or 
AEL-integrated energy systems. In this layer, the models employed 
here usually focus on longer timeframes in which system parame-
ters already reach their steady-state, thereby ignoring fast process 
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Fig. 2. Mass and energy flow within AEL systems.
Fig. 3. Schematic of an electrolyzer system.
dynamics. To avoid a large computational burden in solving opti-
mization models for operation and planning, using complex models 
representing many details of AEL is undesirable. Thus, the operation 
and planning of AEL systems use relatively coarse-grained models. 
These models usually represent high-level characteristics like the rela-
tionship between consumed electricity and obtained hydrogen produc-
tion while simplifying or overlooking many details of process dynam-
ics.

In summary, research into AEL technology includes multiple levels 
and layers, where model granularity and complexity exhibit signifi-
cant variation. The basic layer focuses on accurate measurements and 
safety mechanisms, requiring minimal modeling efforts. The control 
layer demands highly detailed models for dynamic process control, 
and the optimization layer utilizes more abstracted models to facil-
itate long-term planning and system-level decisions. This paper will 
primarily focus on the modeling requirements and analysis within the 
optimization layer study. The reason for this focus is that system-
level decision-making optimization plays a crucial role in integrating 
AEL systems into broader energy networks, improving overall system 
efficiency, and reducing operational costs. By understanding and op-
timizing these higher-level interactions and planning strategies, we 
can significantly enhance the feasibility and economic viability of 
implementing AEL technologies on a large scale.
5 
3. Overview of AEL models in decision-making optimization stud-
ies

Various AEL models have been developed over the past several 
decades, aiming to capture complex multi-physics of AEL systems 
across different aspects. Fig.  5 shows the distribution of AEL modeling 
publications focusing on different electrolyzer model categories since 
1990. The horizontal bars show the percentage of studies that investi-
gate the corresponding model. These models can be divided into five 
categories for characterizing different phenomena, including electro-
chemical [16,17,21–23,26,29,31,38–53], gas crossover [28–31,54–56], 
thermal [21,23,24,41,57,58], two-phase flow models [32–36,59–63], 
and thermodynamic models [21,23]. Notably, many efforts are put 
into electrochemical models in order to capture the key characteristics 
of AELs (including polarization curve, hydrogen production rate, and 
system efficiency) and their dependency on operation parameters.

Those established models are instrumental in precisely predicting 
the multi-physics phenomena (electricity-heat-hydrogen interactions) 
and interdependent process dynamics (such as hydrogen production 
rate, temperature change, and gas transfer) within AEL systems. Conse-
quently, they play a crucial role in guiding system design optimization 
and facilitating the development of advanced control strategies. How-
ever, given the granularity requirements across different system-level 
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Fig. 4. Hierarchical overview of AEL research (inspired by [37]).
Fig. 5. Distribution of AEL modeling studies since 1990 that focusing on ther-
modynamic, electrochemical, gas crossover, thermal, and two-phase flow modeling, 
respectively [16–18].

decision-making optimization, it remains unclear how these models are 
selected, combined, and simplified in various AEL optimization studies 
to approximately represent the AEL system. Mapping AEL models to 
their system-level decision-making optimization studies needs further 
development.

To address this gap, this review specifically focuses on AEL models 
that are applied in system-level decision-making optimization including 
tasks such as economic dispatch and capacity planning. These applica-
tions typically correspond to Levels 5–6 of the framework shown in 
Fig.  4, which involve daily to hourly time resolutions and prioritize 
computational tractability. Within this scope, AEL models are classified 
into three representative categories according to their level of physical 
accuracy in representing energy conversion processes:

• Linear electricity–hydrogen model (LEHM)
• Nonlinear electricity–hydrogen model (NEHM)
• Integrated electricity-heat-hydrogen model (IEHHM)
These three categories reflect the dominant modeling approaches 

used in system-level optimization studies, and they are selected based 
6 
on how effectively they balance physical accuracy and computational 
complexity in practical optimization formulations. Notably, other mod-
eling approaches, typically dynamic, stochastic, hybrid, and economic-
coupled models, are also used for system-level optimization of AEL-
integrated energy systems. However, these are not treated as standalone 
AEL model types in our classification for the following reasons:

(1) Dynamic models are primarily developed for control applica-
tions and transient simulations at millisecond-to-second time scales. 
Their high temporal resolution and computational demands make them 
unsuitable for long time-horizon system optimization;

(2) Stochastic models typically relate to uncertainty in system-level 
parameters (e.g., wind generation, market prices), and not to the in-
herent structure of AEL models. They apply to the overall optimization 
formulation, not to the electrolyzer model itself;

(3) Hybrid models, such as combining machine learning with physi-
cal models, are often used to enhance prediction accuracy within NEHM 
or IEHHM. However, they do not form a separate structural model class 
at the device level;

(4) Economic-coupled models refer to the energy system’s optimiza-
tion model integrating economic objectives (e.g., revenue maximiza-
tion) and do not affect the physical formulation of AEL devices.

Therefore, these modeling approaches are not treated as separate 
AEL model types in our classification. Instead, this review focuses on 
three representative models (i.e. LEHM, NEHM, and IEHHM) which 
serve as the primary device-level formulations tailored for system-
level decision-making optimization. Thus, the majority of this section 
(Sections 3.1–3.4) will delve into the specific principles, character-
istics, formulations, and comparative insights of these three model 
types. In addition, the relevance between these three AEL models 
and optimization models of AEL-integrated energy systems, such as 
the earlier-mentioned stochastic or economic-coupled model, will be 
clarified in Section 3.5.

3.1. Linear electricity–hydrogen model

The linear electricity–hydrogen model is the simplest one, and it 
assumes that AEL is seen as an energy converter for which electrical 
power is supplied to produce an amount of hydrogen gas. This model 
is essentially a black-box model that only offers a high-level description 
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of the energy conversion relationship of AEL devices rather than pre-
cise characterizations of physical phenomena inside the AEL cell and 
system. The relationship between consumed electrical power 𝑃𝐴𝐸𝐿 and 
hydrogen production rate �̇�H2

 is the core of this model, which can be 
generically expressed by Eq. (4) [64–70]. 

�̇�H2
= 𝐾𝑒𝑐𝑟𝑃𝐴𝐸𝐿 =

𝜂𝑃𝐴𝐸𝐿
𝑄H2

(4)

where 𝐾𝑒𝑐𝑟 denotes the conversion rate from electrical power to hydro-
gen production; 𝜂 is the AEL’s system efficiency; 𝑄H2

 is the heat value 
of hydrogen; either the higher heat value (HHV) [71] or lower heat 
value (LHV) [6] has been used in existing studies.

The linear electricity–hydrogen model assumes a constant conver-
sion rate 𝐾𝑐𝑟 or system efficiency 𝜂 that are not affected by consumed 
power and other operation parameters of AEL such as temperature 
and pressure. Thus, the technical aspects of AELs in this model, are 
considered by enforcing limits on consumed electrical power within a 
certain range and obtaining corresponding hydrogen production rate 
based on a given conversion rate or system efficiency. The process of 
operational mode transition of AELs can be integrated with this model. 
Two operational modes including On (production mode) and Off are 
considered by introducing a binary variable [64,65,67]. Furthermore, 
introducing more binary variables can enable more modes including 
On, Standby, off, as well as their switching process [69,72].

Additionally, a linear electricity–hydrogen model can also be cou-
pled with the state of charge (SOC) description of hydrogen energy 
storage systems, as formulated by Eq. (5). Such a coupled model is usu-
ally employed when conducting co-dispatch and co-planning between 
AELs and other hydrogen facilities in microgrids or power systems [65,
67,69,73]. An example of this coupling is formulated by Eq. (6) which 
characterizes the constraints among electrolyzers, hydrogen tanks, and 
fuel cells, while only considering the On/Off state of AELs.

𝑆𝑂𝐶𝑡+1 = 𝑆𝑂𝐶𝑡 + �̇�H2
𝑇𝑠 − 𝑓 (H2) (5)

𝑆𝑂𝐶𝑡+1 = 𝑆𝑂𝐶𝑡 + 𝛿𝑒𝑙𝑦
𝜂𝑃𝐴𝐸𝐿
𝑄H2

𝑇𝑠 − 𝛿𝑓𝑐
𝑃𝑓𝑐

𝜂𝑓𝑐𝑄H2

𝑇𝑠 (6)

where 𝑇𝑠 is the time-resolution in operation and planning studies; 
𝑓 (H2) represents the hydrogen demand of hydrogen consumers over 𝑇𝑠, 
such as fuel cells and ammonia production industry; 𝜂𝑓𝑐 denotes the 
efficiency of the fuel cell. Binary variables 𝛿𝑒𝑙𝑦, 𝛿𝑓𝑐 identify the On/Off 
state of the AEL and fuel cell.

Due to only focusing on system-level description of energy conver-
sion relation, the linear electricity–hydrogen model is mostly utilized 
for decision-making optimization of AEL operation and planning within 
energy systems. Moreover, owing to the assumption of fixed system 
efficiency, this model exhibits a linear relation between consumed 
power and hydrogen production, This fact drives that optimization 
models of decision-making problems can be directly formulated into 
linear programming (LP) [64] or mixed integer linear programming 
(MILP) [65–67,70] which can be easily solved via commercial solvers 
like Gurobi [74].

3.2. Nonlinear electricity–hydrogen model

The assumption of fixed system efficiency in the linear electricity–
hydrogen model overlooks a real characteristic of AELs, which is that 
efficiency varies with operational parameters such as consumed power, 
temperature, and pressure. This assumption potentially inaccurately 
estimates hydrogen production outputs and states of AEL systems, 
causing the infeasibility of control actions and decision-making solu-
tions. To address this issue, the nonlinear electricity–hydrogen model 
is introduced by considering the efficiency variations.
7 
3.2.1. Efficiency variation
According to Eq. (4), the system efficiency is described as the 

ratio of consumed electrical energy to produced hydrogen energy. It 
is formulated by Eq. (7) where the 𝑄H2

 is set as HHV because the 
HHV of hydrogen is often chosen for the efficiency calculation in low-
temperature electrolyzers [6]. Based on the Faraday law, the hydrogen 
production rate �̇�H2

 is directly proportional to input current 𝐼 , as 
expressed by Eq. (8). The coefficient 𝜂𝐹  is the Faraday efficiency, which 
measures the ratio of actual hydrogen production to its theoretical 
value [6].  Substituting Eq. (8) into Eq. (7), the system efficiency can 
be reformulated by Eq. (9). Particularly, the second term of Eq. (9) 
corresponds to another efficiency metric, voltage efficiency, defined 
in Eq. (10) as the ratio between the thermoneutral voltage (𝑈𝑡𝑛) and 
the actual cell voltage (𝑈𝑐𝑒𝑙𝑙). This metric reflects the magnitude of 
overpotential within electrolyzer cells. The presented voltage efficiency 
formulation is derived in Appendix. Thus, the system efficiency is equal 
to the product of the Faraday efficiency and voltage efficiency, as 
formulated by Eq. (11).Unless otherwise specified, the term ‘‘efficiency’’ 
for AELs in the manuscript refers to the system efficiency.

𝜂 =
�̇�H2

𝐻𝐻𝑉
𝑃𝐴𝐸𝐿

=
�̇�H2

𝐻𝐻𝑉
𝑁𝑐𝑒𝑙𝑙𝑈𝑐𝑒𝑙𝑙𝐼

(7)

�̇�H2
= 𝑁𝑐𝑒𝑙𝑙𝜂𝐹

𝐼
𝑧𝐹

𝑀H2
× 3600 (8)

𝜂 = 𝜂𝐹 ⋅
3600𝑀H2

⋅𝐻𝐻𝑉
𝑧𝐹𝑈𝑐𝑒𝑙𝑙

(9)

𝜂𝑣 =
𝑈𝑡𝑛
𝑈𝑐𝑒𝑙𝑙

(10)

𝜂 = 𝜂𝐹 ⋅ 𝜂𝑣 = 𝜂𝐹 ⋅
𝑈𝑡𝑛
𝑈𝑐𝑒𝑙𝑙

(11)

where 𝑁𝑐𝑒𝑙𝑙 is the number of cells within one stack; 𝑧 is the number 
of transferred electrons per electrolysis reaction; 𝐹  is the Faraday 
constant; 𝑀H2

 is the molar mass of hydrogen; 𝑈𝑡𝑛 is the thermoneutral 
voltage; its calculation is given in Appendix.

Regarding the Faraday efficiency, two different empirical models 
have been developed in existing studies to calculate it, as shown in 
Eq. (12) [23] and Eq. (13) [31]. It indicates the Faraday efficiency 
depends on the input current 𝐼 to the AEL. Additionally, the cell voltage 
𝑈𝑐𝑒𝑙𝑙 is obtained based on the polarization characteristics also known 
as the voltage-current (UI) curve which characterizes the relationship 
between cell voltage and input current. This curve can be mathemati-
cally modeled as Eq. (14). It indicates that the cell voltage consists of a 
few terms including reversible voltage 𝑈𝑟𝑒𝑣, activation overvoltage 𝑈𝑎𝑐𝑡, 
ohmic overvoltage 𝑈𝑜ℎ𝑚, and diffusion overvoltage 𝑈𝑑𝑖𝑓𝑓 .

𝜂𝐹 =
(𝐼∕𝐴)2

𝑓1 + (𝐼∕𝐴)2
𝑓2 (12)

𝜂𝐹 = 𝐵1 + 𝐵2 ⋅ 𝑒
𝐵3+𝐵4𝑇+𝐵5𝑇

2

𝐼 (13)

𝑈𝑐𝑒𝑙𝑙 = 𝑈𝑟𝑒𝑣 + 𝑈𝑎𝑐𝑡 + 𝑈𝑜ℎ𝑚 + 𝑈𝑑𝑖𝑓𝑓 (14)

where 𝑓1, 𝑓2 and 𝐵1∼𝐵5 are fitted parameters for empirical models. 
These coefficients are obtained through empirical regression and do not 
carry explicit physical meaning. The reversible voltage is the theoretical 
minimum cell voltage required for the electrolysis reaction. The later 
three terms in Eq. (14) represented the overpotentials that arise from 
the kinetics of the electronic charge transfer, mass transfer and ohmic 
losses in electrolytes.

A few existing reviews have provided comprehensive summaries of 
various electrochemical modeling approaches proposed in prior liter-
ature to characterize cell voltage, including both physical law derived 
mechanism models and data-driven empirical models [16–18]. Detailed 
explanations of all those models are thus not repeated in this paper. An 
example of such models is presented to illustrate how the cell voltage 
can be calculated, as expressed in Eq. (15), which is a widely utilized 
empirical model proposed in [23]. To obtain the reversible voltage 
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in Eq. (15), several models have been proposed [16–18]. A specific 
model [43,46] can be expressed by Eqs. (16)–(22).

𝑈𝑐𝑒𝑙𝑙 = 𝑈𝑟𝑒𝑣 +
(𝑟1 + 𝑟2 ⋅ 𝑇 )

𝐴
𝐼

+ 𝑠 ⋅ log
((

𝑡1 +
𝑡2
𝑇

+
𝑡3
𝑇 2

)

⋅
𝐼
𝐴

+ 1
)

(15)

𝑈𝑟𝑒𝑣 = 𝑈0
𝑟𝑒𝑣 +

𝑅(𝑇 + 273.15)
𝑧𝐹

ln

(

(𝑃 − 𝑃𝑣,𝐾𝑂𝐻 )1.5

𝛼H2O

)

(16)

𝑈0
𝑟𝑒𝑣 = 1.5184 − 1.5421 × 10−3(𝑇 + 273.15)

+ 9.523 × 10−5(𝑇 + 273.15) ⋅ ln(𝑇 + 273.15)

+ 9.84 × 10−8(𝑇 + 273.15)2 (17)

𝑃𝑣,𝐾𝑂𝐻 = exp
(

2.302𝑎 + 𝑏ln𝑃𝑣,H2O
)

(18)

𝑎 = −0.0151 𝑚 − 1.6788 × 10−3𝑚2 + 2.2588 × 10−5𝑚3 (19)
𝑏 = 1 − 1.2062 × 10−3𝑚 + 5.6024 × 10−4𝑚2

− 7.8228 × 10−6𝑚3 (20)

𝑃𝑣,H2O = exp
(

81.6179 − 7699.68
𝑇 + 273.15

− 10.9⋅

ln(𝑇 + 273.15) + 9.5891 × 10−3(𝑇 + 273.15)
)

(21)
𝛼H2O = exp

(

−0.05192 𝑚 + 0.003302𝑚2

+3.177𝑚 − 2.131𝑚2

𝑇 + 273.15

)

(22)

where 𝑟1, 𝑟2, 𝑠, 𝑡1, 𝑡2, 𝑡3 are fitted coefficients. These coefficients are de-
rived through data-driven fitting techniques to mathematically cap-
ture the polarization characteristics, without implying physical inter-
pretability. 𝑇  and 𝑃  are the operating temperature and pressure of the 
electrolyzer stack; 𝑅 is the gas constant; 𝑚 is the molal concentration 
of the alkaline solution.

The combination of Eqs. (7)–(22) forms the nonlinear electricity–
hydrogen model, which can be generally expressed by Eq. (23). No-
tably, substituting Eqs. (12)–(22) into Eq. (11) reveals that 𝜂 is influ-
enced by the input current. Consequently, 𝜂 varies with the consumed 
power of AELs. This dependence is captured by the nonlinear relation-
ship derived in Eq. (23) and visualized in Fig.  6. The figure illustrates 
that, at a fixed temperature of 80°Celsius, both the hydrogen production 
rate and system efficiency change nonlinearly with power input, instead 
of a linear relation (i.e. the black line) captured by LEHM. Thus, this 
figure reveals the limitations of using LEHM for accurately estimating 
the hydrogen production and system efficiency. 
𝜂 = 𝑓 (𝑃𝐴𝐸𝐿), �̇�H2

= 𝑔(𝑃𝐴𝐸𝐿) (23)

where 𝑓 (⋅) and 𝑔(⋅) are nonlinear functions, characterized by Eqs. 
(7)–(22).

3.2.2. Approximation for nonlinear efficiency
Due to the inherent nonlinearity of the AEL model as depicted 

in Eq. (23), the resulting decision-making optimization models are 
typically non-convex and non-linear, posing substantial computational 
challenges. To mitigate these issues, researchers have investigated ap-
proximation methods to fit the nonlinear functions 𝑓 (⋅) and 𝑔(⋅) with a 
low-order representation in good accuracy. The common method is to 
adopt a linearized and quadratic fitted form for Eq. (23).

A linear regression-based simplification of the nonlinearity in (23) 
has been adopted to derive the linear model shown in Eq. (24) [75,76]. 
Similarly, a first-order form, as expressed in Eq. (25), has also been 
utilized to correlate the consumed power with hydrogen production 
rate [77,78]. In contrast, direct linearization of Eq. (23) has been 
proposed to develop both linear and second-order approximations, 
formulated in Eqs. (26) and (27) [15]. These formulations have demon-
strated that linear models are more suitable for large-scale problems 
with strict computational constraints, whereas the second-order models 
8 
Fig. 6. Nonlinear variation of hydrogen production rate and system efficiency with 
consumed power at 80°Celsius. The orange line shows the hydrogen production rate, 
and the blue line shows system efficiency, both derived from the NEHM formulation 
Eq. (23). The black dashed line represents a constant-efficiency (captured by LEHM) 
baseline for comparison. .

provide improved accuracy for detailed estimation of hydrogen produc-
tion in smaller-scale applications. The second-order formulation in Eq. 
(27) has also been adopted and calibrated using empirical hydrogen 
production data under various loading conditions, such as nominal, 
half, and quarter-rated power levels [79]. In addition, piecewise linear 
(PWL) approximation methods have been employed to improve the 
approximation accuracy while maintaining compatibility with com-
mon mathematical solvers (e.g. MILP). These methods approximate the 
nonlinear relationships between hydrogen production and consumed 
power (i.e. �̇�H2

= 𝑓 (𝑃𝐴𝐸𝐿)) or between consumed power and current 
(i.e. 𝑃𝐴𝐸𝐿 = ℎ(𝐼)), using multiple linear segments, as described in Eqs. 
(28) and (29) [80–84]. In addition to linear and PWL approximations, 
a second-order polynomial model has been applied to approximate the 
power-current relationship 𝑃𝐴𝐸𝐿 = ℎ(𝐼), as shown in Eq. (30) [5]. 
Other linearization strategies, including polynomial fitting and seg-
mented PWL, have also been introduced but without providing explicit 
mathematical formulations [85,86].

These approximation techniques enable the reformulation of non-
linear AEL constraints into tractable optimization models. For exam-
ple, MILP formulations have been constructed by applying linear ap-
proximations [15,75,76,86], while QP models are enabled through 
quadratic fitting [79]. The simplified AEL constraints also facilitate 
the application of evolutionary algorithms in multi-objective planning 
studies. In particular, genetic algorithms (GA) [77,78] and particle 
swarm optimization (PSO) [85,87] have been successfully employed for 
coordinated sizing of AELs and other renewable energy technologies.
𝑃𝐴𝐸𝐿 = 𝑘 ⋅ �̇�H2

(24)

𝑃𝐴𝐸𝐿 = 𝑎1 ⋅ �̇�
𝑁
H2

+ 𝑎2 ⋅ �̇�H2
(25)

�̇�H2
= 𝑏1𝑃𝐴𝐸𝐿 + 𝑏2 (26)

�̇�H2
= 𝑐1𝑃

2
𝐴𝐸𝐿 + 𝑐2𝑃𝐴𝐸𝐿 + 𝑐3 (27)

�̇�H2
=

∑

𝑠∈
𝜔𝑠�̇�

𝑜
H2

, 𝑃𝐴𝐸𝐿 =
∑

𝑠∈
𝜔𝑠𝑃

𝑜
𝐴𝐸𝐿 (28)

𝑃𝐴𝐸𝐿 =
∑

𝑠∈𝑆
𝜔𝑠𝑃

𝑜
𝐴𝐸𝐿 , 𝐼 =

∑

𝑠∈𝑆
𝜔𝑠𝐼

𝑜 (29)

𝑃𝐴𝐸𝐿 = 𝑑1𝐼
2 + 𝑑2𝐼 (30)

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 are the constant coefficients obtained in various 
approximation methods,  without possessing direct physical meaning; 
�̇�𝑁
H2

 is the nominal hydrogen mass flow; In piecewise linear approx-
imation methods, the superscript 𝑜 denotes the variable value at the 
chosen breakpoints; 𝑠 is the index of each segment and  is the set 
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of segments; 𝜔𝑠 denotes the weight for linear segment 𝑠, which is a 
continuous variable subject to a set of linear constraints.

3.3. Integrated electricity-heat-hydrogen model

Operating temperature 𝑇 , as evidenced by Eq. (15) and Appendix, 
significantly affects both cell voltage and thermoneutral voltage, lead-
ing to an influence on system efficiency (𝜂) according to Eq. (11). 
However, the two prior electricity–hydrogen models neglect AEL tem-
perature dynamics and their impact on the electricity–hydrogen rela-
tionship. Furthermore, AEL operation generates waste heat due to the 
presence of overpotentials. This waste heat via heat recovery can be 
utilized as a heat source for various applications, such as space heating 
or district heating systems. This enables the possibility of transforming 
the waste heat into a co-product alongside hydrogen for AELs. In this 
context, recognizing the significance of capturing temperature dynam-
ics and the value of waste heat, the representation of AELs can be 
extended from an electricity–hydrogen model to a more comprehensive 
electricity-to-heat-hydrogen model.

3.3.1. Thermal model of AELs
To capture the temperature changes within AEL systems, thermal 

dynamics need to be characterized in the electricity-to-heat-hydrogen 
model. To address this issue, diverse thermal models have been devel-
oped which can be categorized into three types.

Type I:  A lumped thermal model (named by type I in this paper) 
is firstly proposed, which is widely utilized [23], as expressed by Eq. 
(31).  This model conceptualizes the electrolyzer stack as an equivalent 
thermal system with lumped capacitance. It characterizes the thermal 
behavior within the AEL as primarily governed by three factors: (i) heat 
generation (�̇�𝑝𝑟𝑜) during the electrolysis reaction, influenced by the 
input current or power; (ii) heat loss (�̇�𝑙𝑜𝑠𝑠) to the surroundings occurs 
due to the temperature difference between the AEL and the ambient 
environment; (iii) heat extracted (�̇�𝑐𝑜𝑜𝑙) by the circling electrolyte 
which will be cooled through a heat exchanger via flowing cooling 
water inside. �̇�𝑝𝑟𝑜 and �̇�𝑙𝑜𝑠𝑠 can be calculated by Eqs. (32)–(33). �̇�𝑐𝑜𝑜𝑙
would be controlled to maintain the AEL temperature at the desired 
level, which is determined by different ways in existing studies.

In Type I model, the heat exchanger model is integrated to calculate 
the �̇�𝑐𝑜𝑜𝑙, which can be expressed by Eqs. (34)–(35). Note that the 
𝐿𝑀𝑇𝐷ℎ𝑒 expression is based on an assumption that the inlet and 
outlet electrolyte temperature inside the heat exchanger are same. This 
implies that the Ulleberg’s model assumes a homogeneous temperature 
distribution within the AEL system and only predicts the average 
temperature 𝑇  of the system.

𝐶𝑒𝑙𝑦
𝑑𝑇
𝑑𝑡

= �̇�𝑝𝑟𝑜 − �̇�𝑙𝑜𝑠𝑠 − �̇�𝑐𝑜𝑜𝑙 (31)

�̇�𝑝𝑟𝑜 = 𝑁𝑐𝑒𝑙𝑙𝑈𝑐𝑒𝑙𝑙𝐼(1 − 𝜂𝑡𝑜𝑡) = 𝑃𝐴𝐸𝐿(1 − 𝜂) (32)

�̇�𝑙𝑜𝑠𝑠 =
𝑇 − 𝑇𝑎
𝑅ℎ𝑒𝑎𝑡

(33)

�̇�𝑐𝑜𝑜𝑙 = �̇�𝑐𝑜𝑜𝑙𝑐𝑐𝑤(𝑇𝑐𝑤,𝑖 − 𝑇𝑐𝑤,𝑜) = 𝑈ℎ𝑒𝐴ℎ𝑒𝐿𝑀𝑇𝐷ℎ𝑒 (34)

𝐿𝑀𝑇𝐷ℎ𝑒 =

(

𝑇 − 𝑇𝑐𝑤,𝑖
)

−
(

𝑇 − 𝑇𝑐𝑤,𝑜
)

ln 𝑇−𝑇𝑐𝑤,𝑖
𝑇−𝑇𝑐𝑤,𝑜

(35)

where 𝐶𝑒𝑙𝑦 refers to the lumped thermal capacitance of the AEL stack.
Based on the above first-order differential equations Eqs. (31)–(35), 

the nonlinear solution of the temperature can be derived as Eqs. 
(36)–(38). Particularly, it is observed that the temperature 𝑇  can be 
controlled by adjusting the mass flow rate �̇�𝑐𝑜𝑜𝑙 of the cooling water. 
Hence, a PI controller is developed for adjusting �̇�𝑐𝑜𝑜𝑙 in order to enable 
𝑇  to precisely track its reference [88]. This controller can be expressed 
by Eq. (39).

𝑇 (𝑡) =
(

𝑇 − 𝑏) exp(−𝑎𝑡) + 𝑏 (36)
𝑖𝑛𝑖 𝑎 𝑎
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𝑎 = 1
𝜏𝑡

+
�̇�𝑐𝑜𝑜𝑙𝑐𝑐𝑤
𝐶𝑒𝑙𝑦

[

1 − exp
(

−
𝑈ℎ𝑒𝐴ℎ𝑒
�̇�𝑐𝑜𝑜𝑙𝑐𝑐𝑤

)]

(37)

𝑏 =
𝑁𝑐𝑒𝑙𝑙𝑈𝑐𝑒𝑙𝑙𝐼(1 − 𝜂)

𝐶𝑒𝑙𝑦
+

𝑇𝑎
𝜏𝑡

+
�̇�𝑐𝑜𝑜𝑙𝑐𝑐𝑤𝑇𝑐𝑤,𝑖

𝐶𝑒𝑙𝑦

[

1 − exp
(

−
𝑈ℎ𝑒𝐴ℎ𝑒
�̇�𝑐𝑜𝑜𝑙𝑐𝑐𝑤

)]

(38)

�̇�𝑐𝑜𝑜𝑙 = 𝜌𝑐𝑤𝑘𝑛
1

1 + 𝑡𝑑𝑠
⋅ (𝑇 − 𝑇𝑟𝑒𝑓 )

(

𝑘𝑝 +
𝑘𝑖
𝑠

)

(39)

where 𝑠 is the Laplace operator.
Type II:  The calculation of �̇�𝑐𝑜𝑜𝑙 in Type I model is further modified 

by addressing the assumption in the 𝐿𝑀𝑇𝐷ℎ𝑒 expression [79]. The 
calculation method accounts for the difference between the inlet and 
outlet electrolyte temperature inside the heat exchanger, and considers 
the outlet electrolyte temperature equals the stack temperature. Ac-
cordingly, a new model (named by type II) is proposed, as formulated 
by Eqs. (40)–(41) combined with Eqs. (31)–(33).
�̇�𝑐𝑜𝑜𝑙 = �̇�𝑙𝑖𝑞𝑐𝑙𝑖𝑞(𝑇𝑙𝑖𝑞,𝑖 − 𝑇 ) = �̇�𝑐𝑜𝑜𝑙𝑐𝑐𝑤(𝑇𝑐𝑤,𝑜 − 𝑇𝑐𝑤,𝑖) (40)

�̇�𝑐𝑜𝑜𝑙 = 𝑈ℎ𝑒𝐴ℎ𝑒

(

𝑇 − 𝑇𝑐𝑤,𝑖
)

−
(

𝑇𝑙𝑖𝑞,𝑖 − 𝑇𝑐𝑤,𝑜
)

ln 𝑇−𝑇𝑐𝑤,𝑖
𝑇𝑙𝑖𝑞,𝑖−𝑇𝑐𝑤,𝑜

(41)

where 𝑇𝑙𝑖𝑞,𝑖 is the inlet electrolyte temperature inside the heat ex-
changer;

Type III:  Furthermore, the above Type I model is also upgraded 
by augmenting the thermal balance relationship Eq. (31) with the 
introduction of an additional term �̇�𝑒𝑥𝑐ℎ [17,21,24]. This term ac-
counts for the total heat exchange occurring with the exiting hydrogen 
and oxygen streams, including both their sensible and latent heat 
components. Additionally, it incorporates the sensible heat necessary 
to elevate the temperature of deionized water from ambient to the 
operating temperature of the stack. This enhanced consideration offers 
a more precise representation of the heat transfer processes within the 
AEL. The corresponding model (named by type III) can be expressed 
by [17,21,24]:

𝐶𝑒𝑙𝑦
𝑑𝑇
𝑑𝑡

= �̇�𝑝𝑟𝑜 − �̇�𝑙𝑜𝑠𝑠 − �̇�𝑐𝑜𝑜𝑙 − �̇�𝑒𝑥𝑐ℎ (42)

�̇�𝑙𝑜𝑠𝑠 = 𝐴𝑠𝑡𝑎𝑐𝑘 ⋅ ℎ ⋅
(

𝑇𝑠𝑡𝑎𝑐𝑘 − 𝑇𝑎
)

=
𝑇 − 𝑇𝑎
𝑅ℎ𝑒𝑎𝑡

(43)

ℎ = 1.32 ⋅
(

𝛥𝑇
𝜙

)0.25
or ℎ = ℎ0 + 𝑘 ⋅ 𝐼 (44)

�̇�𝑒𝑥𝑐ℎ = �̇�H2
⋅ 𝐶H2

𝑝 (𝑇 − 𝑇𝑎) + ⋅�̇�O2
𝐶O2
𝑝 (𝑇 − 𝑇𝑎)

+ �̇�H2O ⋅ 𝐶H2O
𝑝 (𝑇 − 𝑇𝑤

𝑖𝑛 ) + �̇�𝑣𝑎𝑝𝑜𝑟𝜆H2O (45)

�̇�H2O = �̇�H2
+ �̇�O2

+ �̇�𝑣𝑎𝑝𝑜𝑟 (46)

�̇�H2
= 0.125�̇�O2

(47)

where �̇�𝑝𝑟𝑜 and �̇�𝑐𝑜𝑜𝑙 can be calculated by Eq. (32) and Eqs. (34)–(35), 
respectively;

Further developments have extended beyond the first-order thermal 
models that characterize only the temperature dynamics of the AEL 
stack. Several studies have incorporated the thermal behavior of the 
gas-liquid separator to provide a more complete representation of the 
full AEL system. A second-order model that considers the thermal 
capacitance of both the stack and the gas-liquid separator has been 
proposed to capture this expanded thermal behavior [58]. A third-order 
formulation has also been introduced, in which the thermal balances 
of the stack, the hot side, and the cold side of the heat exchanger are 
modeled independently [57]. This improves the granularity of thermal 
representation. Additionally, a third-order time-delay model has been 
developed to predict both pre-stack and post-stack temperatures, while 
accounting for inherent thermal delays arising from the stack and 
the downstream cooling coil [25]. These higher-order models improve 
the accuracy of thermal characterization across the entire AEL system 
and are particularly useful in thermal control analysis. However, their 
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increased complexity and large parameter requirements hinder their 
practical application in decision-making optimization contexts. There-
fore, detailed formulations of these models are not included in this 
review.

3.3.2. Model simplification
The integrated electricity-heat-hydrogen model exhibits strong non-

linearity due to both the nonlinear electricity–hydrogen relation 𝑔(⋅)
and the nonlinear temperature response. As demonstrated in Eqs. 
(36)–(39), the Type I thermal model’s temperature response is nonlin-
ear, primarily due to the nonlinear terms in �̇�𝑐𝑜𝑜𝑙. This nonlinearity 
is also observed in the other two thermal models, as they similarly 
incorporate a nonlinear expression of �̇�𝑐𝑜𝑜𝑙. Consequently, integrating 
the electricity-heat-hydrogen model into a decision-making framework 
results in nonlinear optimization models, significantly increasing the 
computational burden for solving them. To mitigate this issue, existing 
studies have simplified the consideration of �̇�𝑐𝑜𝑜𝑙 in Type I model 
by neglecting the heat exchanger modeling and treating �̇�𝑐𝑜𝑜𝑙 as an 
independent decision variable [88–94] . The behind idea is to assume 
that the cooling power can be freely controlled without limitations im-
posed by heat recovery technical constraints (e.g., the interdependence 
between �̇�𝑐𝑜𝑜𝑙 and 𝑇 . Additionally, this model assumes constant heat 
generation and transfer rates within a given time interval 𝛥𝑡.

Based on the aforementioned assumptions, the first-order thermal 
model Eq. (31) can be simplified and reformulated as Eq. (48). Com-
bining this thermal model with the nonlinear electricity–hydrogen 
model Eqs. (7)–(22) establishes the integrated electricity-heat-hydrogen 
model, generally formulated by Eqs. (48)–(49) [88–94]. In this model, 
𝑃𝐴𝐸𝐿 and �̇�𝑐𝑜𝑜𝑙 serve as decision variables, while temperature 𝑇  is 
considered a state variable. This model can be also updated by adding 
new terms representing additional thermal processes, such as the �̇�𝑒𝑥𝑐ℎ
in Type III thermal model Eq. (42), and an auxiliary heating �̇�ℎ𝑒𝑎𝑡 as 
presented in [95]. Notably, �̇�𝑐𝑜𝑜𝑙 representing the waste heat removed 
by heat exchangers, can be potentially recovered and to supply heat 
demands and create additional revenue by heat sales [96]. Therefore, 
this model captures the power-to-hydrogen-and-heat characteristics of 
AEL systems, enabling the calculation of both hydrogen production and 
recovered heat based on a given electrical power input. By incorpo-
rating heat management in decision-making optimization, the model 
can expand the potential for increasing AEL benefits compared to the 
electricity–hydrogen model.

𝑇𝑡+1 = 𝑇𝑡 +
𝛥𝑡
𝐶𝑒𝑙𝑦

(

�̇�𝑝𝑟𝑜 − �̇�𝑙𝑜𝑠𝑠 − �̇�𝑐𝑜𝑜𝑙
)

(48)

�̇�H2
= 𝑔(𝑃𝐴𝐸𝐿, 𝑇 (𝑃𝐴𝐸𝐿)) (49)

where �̇�𝑝𝑟𝑜 and �̇�𝑙𝑜𝑠𝑠 are characterized by Eqs. (32)–(33), respectively; 
�̇�𝑐𝑜𝑜𝑙 serves as an independent decision variable in decision-making 
optimization rather than being characterized by Eqs. (34)–(35); and 𝛥𝑡
represents the time interval for decision-making optimization models. 
The nonlinear function 𝑔(⋅) is defined by Eqs. (7)–(22).

However, the aforementioned integrated electricity-heat-hydrogen 
model exhibits strong nonlinearity due to two factors: (i) the nonlin-
ear expression 𝑃𝐴𝐸𝐿 ⋅ 𝜂 within �̇�𝑝𝑟𝑜, as shown in Eq. (32), where a 
nonlinear relationship 𝑓 (⋅) exists between 𝑃𝐴𝐸𝐿 and 𝜂 as shown in Eq. 
(23); and (ii) the nonlinear function 𝑔(⋅). To mitigate the computa-
tional challenges arising from these nonlinearities in decision-making 
optimization, several studies have proposed linearization techniques.

3.4. Comparative summary of AEL models

This section presents a comparative analysis of the three AEL mod-
els discussed, focusing on their system representation, formulation, 
efficiency characteristics, thermal dynamics considerations, model na-
ture, applicable optimization techniques, and their respective advan-
tages and disadvantages. Table  3 summarizes these key aspects for a 
comprehensive comparison.
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• LEHM: This model adopts a simplified, black-box approach, rep-
resenting only the relationship between input electrical power 
and hydrogen production rate (EtH relationship) through a con-
stant system efficiency or conversion rate. Its low complexity and 
linear nature make it suitable for formulating decision-making 
optimization problems for AEL systems using LP or MILP tech-
niques. These techniques are computationally efficient and ideal 
for large-scale system analysis. However, the model’s simplicity 
comes at the cost of accuracy. By neglecting the dynamic vari-
ations of system efficiency and the influence of parameters like 
input power and temperature, it may not accurately capture the 
real-world behavior of AEL systems.

• NEHM: This model enhances accuracy by incorporating a physics-
based approach that accounts for variable system efficiency by 
analyzing the polarization characteristics of AELs. This allows for 
a more realistic representation of the EtH relationship, capturing 
the impact of operational parameters on system performance. 
However, the inherent nonlinearities introduce greater complex-
ity, requiring more advanced optimization techniques such as 
nonlinear programming for AEL decision-making optimization. 
While direct application of nonlinear solvers may be computa-
tionally expensive, linearization approximation techniques are 
usually employed to find near-optimal solutions with a man-
ageable computational burden. However, this inevitably leads to 
some loss of accuracy due to the approximation.

• IEHHM: This model offers the most comprehensive analysis by 
considering the coupled relationship between electricity, heat, 
and hydrogen production (EtHH relationship). It incorporates the 
variable system efficiency, polarization curve characteristics, and, 
uniquely, detailed thermal dynamics modeling. This inclusion of 
thermal dynamics is a unique feature that enables the model 
to be used for investigating AEL thermal management strategies 
and their impacts, such as designing efficient cooling control 
methods for both efficiency and temperature safety. Additionally, 
it allows for assessing the potential for waste heat recovery by 
quantifying the amount of waste heat generated, thereby con-
tributing to improved overall system sustainability and economic 
feasibility. Moreover, the integrated approach enables simultane-
ous optimization of the AEL’s dual products, including hydrogen 
production and waste heat recovery, based on a given input 
electrical power, maximizing overall energy efficiency and eco-
nomic benefits, especially when AELs are integrated with other 
thermal processes or energy systems like district heating. How-
ever, this EtHH coupling and inherent nonlinearities within this 
model bring the highest complexity compared to other models, 
necessitating sophisticated optimization techniques like nonlinear 
programming. Linearization approximation is usually needed for 
computational feasibility, leading to some loss of accuracy. While 
computationally demanding, this model offers the highest level 
of precision and a more comprehensive understanding of the AEL 
system behavior.

The above comparison clarifies the differences in modeling accu-
racy, mathematical complexity, and physical coverage among LEHM, 
NEHM, and IEHHM, thus offering a practical guide for model selection 
and development. For practitioners and researchers, this comparative 
structure provides a clear basis for aligning model complexity with 
specific application demands, including long-term planning, short-term 
dispatch, and thermal-energy integration. In practice, the selection of 
the most suitable AEL model generally follows the principles below:

(i) LEHM is recommended for large-scale system planning and op-
erational scheduling tasks, where computational simplicity and solver 
tractability are prioritized;

(ii) NEHM is appropriate for detailed performance analysis and opti-
mization of AELs, providing a balance between accuracy and tractabil-
ity, especially when variable efficiency needs to be captured;
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Table 3
Comparative analysis of AEL models for decision-making optimization.
 Characteristics LEHM NEHM IEHHM  
 System Description Black-box representation: 

EtH relationshipa
Physics-based approach: EtH 
relationship with variable 
efficiency and polarization 
curve

Physics-based approach: 
EtHH relationshipb with 
variable efficiency, 
polarization curve, and 
thermal dynamics

 

 Formulation Eq.  (4) Eq.  (23) Eqs.(32)–(33), (48)–(49)  
 System Efficiency Constant Dependentc Dependent  
 Thermal Dynamics Not considered Not considered, temperature 

(𝑇 ) is an input parameter
Included, with 𝑇  as a 
state variable and waste 
heat recovery as a 
decision variable

 

 Model Nature Low complexity, low 
precision, linear

Medium complexity, higher 
precision, nonlinear

High complexity, highest 
precision, nonlinear

 

 Optimization 
Techniquesd

Linear programming or 
MILP

Nonlinear programming 
(linearization needed)

Nonlinear programming 
(linearization needed)

 

 Advantages Simple, computationally 
efficient, suitable for 
large-scale systems

More accurate representation 
of AEL efficiency variations

Comprehensive analysis 
considering varying 
efficiency, thermal 
dynamics, and heat 
recovery

 

 Disadvantages Overly simplistic, may not 
capture actual system 
behavior

Increased computational 
complexity, simplifications or 
linearization may reduce 
accuracy

Highest computational 
complexity, simplifications 
or linearization may 
reduce accuracy

 

a EtH relationship refers to the electricity-to-hydrogen production rate correlation.
b EtHH relationship denotes the interplay among electricity, heat, and hydrogen production.
c Dependent means that system efficiency varies with system parameters (input power, temperature, pressure, etc.).
d Optimization techniques indicate the resulting decision-making optimization model due to integrating the relevant AEL models.
(iii) IEHHM is most suitable for system-level studies that incorporate 
thermal effects, enable waste heat recovery, or target co-optimization 
of hydrogen and heat. 

Ultimately, the choice involves a trade-off between model complex-
ity, computational efficiency, and the desired accuracy for the intended 
application.

3.5. AEL model integration in decision-making optimization of energy sys-
tems

The three AEL models reviewed in this paper is only providing 
foundational representations of AEL device behavior for system-level 
optimization, each representing distinct levels of modeling granularity. 
As shown in Fig.  7(a), LEHM and NEHM primarily model the electricity-
to-hydrogen (EtH) conversion, in linear and nonlinear manner, respec-
tively; while IEHHM extends this to include heat as a co-product, rep-
resenting the electricity-to-heat-and-hydrogen (EtHH) process. These 
models, regardless of their internal complexity, are formulated as a 
high-level input–output mapping to characterize the AEL device, which 
facilitates modular integration into broader decision-making optimiza-
tion frameworks without changing the optimization problem’s struc-
ture. Once embedded into system-level optimization models, these 
AEL representations function as device submodels that impose AEL’s 
physical constraints within a larger system architecture. The optimiza-
tion models of larger systems, as shown in Fig.  7(b), are typically 
classified based on their uncertainty handling approaches (e.g., de-
terministic, stochastic), optimization objectives (e.g., economic, reli-
ability, or multi-criteria), and solving techniques (e.g., mathematical 
programming, heuristic methods).

Notably, these classifications belong to the overall optimization 
architecture of the energy system, rather than defining new AEL device-
level model categories. Each framework typically integrates one of 
the AEL models (LEHM, NEHM, or IEHHM) as its electrolyzer sub-
model according to the desired trade-off between modeling accuracy 
and computational complexity. For instance, a stochastic optimiza-
tion for a wind-hydrogen system seeking operational tractability may 
adopt LEHM or linearized NEHM, while multi-energy co-optimization 
scenarios that leverage waste heat recovery may benefit from IEHHM.
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This review systematically focuses on these device-level AEL mod-
els (LEHM, NEHM, IEHHM). An overview of their application within 
various decision-making optimization contexts in energy systems is 
presented in Section 4, clarifying their practical implementation.

4. Application of AEL models in decision-making optimization

This section presents a critical review of how AEL models are 
applied in system-level decision-making optimization across various op-
erational and planning aspects within AEL-integrated energy systems. 
The focus is specifically on studies corresponding to Levels 5 and 6 
of the hierarchical framework in Fig.  4. The decision-making entities 
considered range from AEL owners to operators of complex hybrid 
energy systems. The literature selection for this review follow specific 
criteria to ensure relevance and depth: (i) the presented electrolyzer 
models are tailored for the AEL type; (ii) publications are primarily 
drawn from leading peer-reviewed journals in energy systems, hydro-
gen technology, and chemical engineering, spanning the years 2000 
to 2024, to ensure a high standard of research and a comprehensive 
timeframe. Studies that employed three AEL models without offering 
novel applications, methodological innovations, or insights relevant 
to system-level optimization, are specifically excluded; and (iii) the 
primary focus of the selected studies is on decision-making for opti-
mizing the operation and/or planning of individual AEL systems or 
AEL-integrated energy systems. 

Based on these selected publications, the focused system-level appli-
cations are categorized into four principal types: economic operation, 
grid services, heat recovery management, and capacity planning. In 
the following subsections, each representing an application area, the 
critical analysis of how different AEL models have been employed in 
each application is provided, discussing their implications for optimiza-
tion strategies and outcomes, and highlighting key research trends and 
challenges. 

4.1. Economic operation

The economic operation application involves creating economic 
benefits of AELs via optimizing their operation schedule for AEL op-
erators, co-scheduling within AEL-integrated hybrid plants, and even 
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Fig. 7. AEL model integration with decision-making optimization model of energy systems: (a) AEL three models and corresponding energy conversion relationship (EtH or EtHH) 
; (b) the classification of system-level decision-making optimization model.
energy systems (e.g. microgrids) to maximize the system’s profits (or 
minimize the system operation cost), considering both energy price 
fluctuations, renewables generation and demands. It typically includes 
economic arbitrage for independent AEL and AEL-integrated hybrid 
system operators (e.g. hybrid wind-hydrogen systems), and economic 
dispatch of energy systems such as microgrids and power grids. No-
tably, this application does not include added-value revenues which 
typically include additional revenues from AEL’s offering grid service 
and heat recovery. These revenue streams will be explained in other 
applications.

The energy arbitrage of independent AEL operators is achieved 
through managing the AEL to generate profits by buying electricity to 
produce hydrogen at low electricity prices (lower than the hydrogen 
sale price) and stopping AEL operation at high electricity prices (higher 
than the hydrogen sale price). In the case of hybrid systems that inte-
grates AELs and renewable power plants, the arbitrage chance of the 
hybrid plants will be improved due to integrating the revenue stream 
of renewable power. In this case, the energy arbitrage is exploited by: 
prior to using renewable power to produce hydrogen at low electric-
ity prices and buying electricity to produce hydrogen if renewables 
deficit; at high electricity prices, prior to selling renewables power to 
grids while producing hydrogen if the remaining power is available 
otherwise stopping AEL. When it comes to the economic dispatch of 
AEL-integrated energy systems, the economic operation management of 
AELs will become more complex. In such cases, economic co-scheduling 
between AELs and other facilities such as renewables power plants 
and storages, needs to be implemented to optimize multifold revenue 
streams thereby minimizing the system operation cost. The economic 
operation is formulated as an optimization problem to maximize the 
profit of the independent AEL owners and hybrid plant owners or to 
minimize the cost of running the AEL-integrated energy system from 
the perspective of the independent system operators. The contribution 
12 
from AELs via taking advantage of the electricity and hydrogen price 
volatility to the objective cost function is expressed as follows: 

𝐶𝑒𝑎 =
𝑇ℎ
∑

𝑡=1

(

𝜆𝑒𝑡𝑃𝐴𝐸𝐿𝛥𝑡 + 𝑐𝑠𝑢𝑏𝑡 − 𝜆ℎ�̇�H2
𝛥𝑡
)

(50)

where 𝜆𝑒𝑡  is the electricity price at time 𝑡; 𝑏𝑡 is a binary variable 
for representing the start-up of AELs i.e. switching from shut down 
to production or standby; 𝑐𝑠𝑢 is the start-up cost (€); 𝜆ℎ denotes the 
hydrogen selling price, which is usually assumed to be constant; 𝛥𝑡 is 
the time interval; 𝑇ℎ denotes the scheduling horizon.

Eq.  (50) represents the operation cost of AEL, which is equal to 
the cost of buying electricity and AEL start-up minus the revenue of 
selling hydrogen. Minimization of this cost directly forms the objective 
function for economic arbitrage of independent AEL owners [95], but 
it can be changed in different extends e.g. removing the start-up cost 
term when ignoring the state-switching of AELs. While in the case of 
economic arbitrage of hybrid plants and economic dispatch of energy 
systems, the cost Eq. (50) offers a cost contribution from AEL operation 
to the total objective cost function.

The LEHM has long been a preferred option for economic analysis 
of AEL systems, primarily due to its simplicity and compatibility with 
linear and MILP formulations. In early studies, it offers a practical 
way to model large-scale systems or explore complex operation strate-
gies without overly computational burden. LEHM is widely used to 
assess wind-hydrogen hybrid systems, especially for modeling market 
participation and optimal system planning [64]. In microgrid stud-
ies, it supports scheduling strategy development under operational 
constraints such as frequency regulation [65], and in multi-objective 
frameworks, it facilitates optimization across costs, emissions, and grid 
services [67]. Its application has also extended to hydrogen logistics 
planning [66], demand-response scheduling for fueling stations [68], 
and operation of large AEL clusters within power systems [69].  De-
spite its advantages, LEHM is limited by its assumption of constant 
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Table 4
Comparison of the literature on economic operation applications with respect to AEL modeling and optimization techniques.
 Study AEL Model AEL state- Objective Optimization Uncertainty Interval/  
 model approximation switchinga functionb technique horizon  
 [64] LEHM None On/Off Obj 2 LP Deterministic 1 h/ 48 h  
 [65] LEHM None On/Off Obj 3 MILP 

(CPLEX-solved)
Deterministic 12 min/ 24 h  

 [66] LEHM None None Obj 2 MILP Deterministic 1 month/ 1 year  
 [67] LEHM None On/Off Obj 3 MILP 

(MATLAB-solved)
Deterministic 15 min/ 2 weeks 

 [68] LEHM None None Obj 1 NP 
(CIP-NTR-solved)c

Deterministic 1 h/ 1 week  

 [69] LEHM None On/STB/Off Obj 3 MILP 
(Gurobi-solved)

Deterministic 1 h/ 24 h  

 [15] NEHM Linear Eq.  (26) On/STB/Off Obj 2 MILP 
(Gurobi-solved)

Deterministic 1 h/ 1 year  

 [97] NEHM None On/Off Obj 2 Artificial bee 
colony

Deterministic 1 h/ 24 h  

 [82] NEHM PWL Eq.  (28) None Obj 2 MILP Deterministic 1 h/ 72 h  
 [81] NEHM PWL Eq.  (28), 

Quadratic Eq. 
(27)

On/STB/Off Obj 2 MILP, MISOCPd, 
solved by Gurobi

Deterministic/ 
Stochastic

1 h/ 24 h  

 [80] NEHM PWL Eq.  (29) On/STB/Off Obj 2 DRCCP→e MILP, 
solved by Gurobi

Robust chance-
constrained

1 h/ 24 h  

 [98] NEHM Quadratic Eq. 
(30)

On/Off Obj 2 MINLP 
(BARO-solved)

Deterministic 15 min/ 24 h  

 [99] NEHM None None Obj 3 DDPGf Deterministic 1 h/ 24 h  
 [100] NEHM None None Obj 3 Harmony Search Stochastic 1 h/ 24 h  
 [86] NEHM PWL On/Off Obj 3 MINLP→MILP 

(Gurobi-solved)
Stochastic 15 min/ 1 week  

 [101] NEHM None On/STB/Off Obj 3 Beluga whale 
optimization

Deterministic 1 h/ 24 h  

 [93] IEHHM Linear On/STB/Off Obj 2 MILP Deterministic 1 h/ 24 h  
a (1) None: AEL always works without no state-switching; (2) On/Off: AELs switch between the production (on) mode and shut-down (off) 
mode. (3) On/STB/Off: AELs switch among the on mode, standby mode (STB) and off mode.
b (1) Obj 1: refers to economic energy arbitrage for independent hydrogen system (e.g. only AELs, AEL+tank, AELs+tank+fuel cells.); (2) 
Obj 2: refers to economic energy arbitrage for on/off-grid hybrid renewable-hydrogen plants (e.g. wind-hydrogen systems); (3) Obj 3 refers 
to economic dispatch within AEL-integrated energy systems (e.g. microgrids and power systems).
c CIP-NTR means the combined interior point nonlinear programming and newton trust region solution mechanism.
d MISOCP is the mixed-integer second-order cone programming.
e DRCCP means distributionally robust chance-constrained programming. The symbol → means transforming the original optimization into 
another one.
f DDPG is the deep deterministic policy gradient algorithm.
efficiency. While this assumption enables fast computation, it often 
fails to reflect realistic performance, especially under partial load or 
transient operating conditions. This mismatch between simplicity and 
operational realism has motivated a shift toward NEHM, which cap-
ture AEL’s efficiency variations more accurately and support improved 
decision-making. 

NEHM considers AEL’s characteristics of polarization curve and 
dynamic efficiency, enabling more realistic representations of AEL 
behavior in operation optimization. This modeling feature is particu-
larly important in wind-electrolyzer systems, where power inputs are 
highly fluctuating. To manage the computational burden of nonlinear-
ity, various approximation methods (discussed in Section 3.2.2) have 
been adopted, such as linearization and PWL fitting. These approaches 
support the use of MILP solvers while preserving key efficiency char-
acteristics to different degrees [15,82]. Simpler approximations are 
often favored in short-term scheduling, while higher-order methods, 
including quadratic or robust formulations, are applied when uncer-
tainty or system complexity requires greater accuracy [80,81]. These 
frameworks have demonstrated improvements in cost efficiency and 
system reliability under renewable and market volatility. 

Several studies have explored alternatives to traditional mathe-
matical programming. Fuzzy control [97] and metaheuristic algo-
rithms [101] have been applied to NEHM-integrated optimization 
models, particularly for real-time or non-convex problems. NEHM 
has also been integrated into multi-objective optimization to evaluate 
trade-offs between economic value and environmental impact, such 
as in solar-AEL systems [98] or wind-based hybrid designs [82]. In 
off-grid and complex hybrid systems, NEHM supports reinforcement 
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learning-based dispatch (e.g., deep deterministic policy gradient algo-
rithm) [99], scenario-based uncertainty modeling in microgrids [86], 
and hydrogen-fuel cell integration [100]. These diverse applications 
prove NEHM’s adaptability, though its computational cost remains a 
constraint in large-scale optimization problems. 

Compared to LEHM and NEHM, the IEHHM provides a broader view 
by modeling both thermal and electrochemical dynamics. It enables 
improving energy utilization and unlock added economic value by 
accounting for waste heat recovery. Recent work has demonstrated 
the application of IEHHM in wind-electrolyzer systems, capturing tem-
perature effects on efficiency and jointly scheduling hydrogen and 
heat flows [93]. These models incorporate switching of operational 
modes, temperature-dependent performance, and heat exchange dy-
namics, offering a more complete representation of AEL behavior in 
energy management.  However, IEHHM has yet to be widely used in 
dispatch studies. Its main drawback lies in model complexity. Including 
thermal dynamics introduces additional variables and nonlinearities, 
which are difficult to handle in long time-horizon or multi-node energy 
system optimization. As a result, current applications are limited to 
small-scale case studies or rely on simplifications. Despite these chal-
lenges, the potential for IEHHM to unlock greater economic value from 
AELs, especially when integrated with district heating or industrial heat 
demand, still suggests an important future direction for research in AEL 
economic operation. 

Table  4 provides a comparative overview of the reviewed literature 
on AEL models in economic operation, revealing several key trends and 
critical insights. A clear evolution toward models with higher physical 
accuracy is evident, with NEHM now being the most prevalent choice, 
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utilized in over half of the analyzed studies. This reflects a growing 
recognition that capturing variable AEL efficiency is crucial for accurate 
dispatch optimization. To manage the inherent nonlinearity of NEHM, 
approximation techniques like piecewise linearization and quadratic 
fitting have become standard practice, trying to balance solution ac-
curacy with computational efficiency. However, the reliance on these 
approximations means that many NEHM-based optimization models 
still necessitate advanced solvers or heuristic algorithms to handle the 
residual complexity, particularly for large-scale or real-time applica-
tions. In addition, it aslo indicates the predominance of deterministic 
optimization frameworks for dealing with economic operation, though 
recent studies have introduced stochastic and robust methods to ad-
dress renewable variability and market uncertainties. Furthermore, the 
inclusion of AEL state-switching (on/off/standby modes) is commonly 
considered, with binary variables used to represent AEL operation 
modes and transitions. This better reflects the realistic operational 
environment of AELs, but increasing complexity to the optimization 
formulations. 

Overall, the analysis of reviewing those studies implies a clear 
progression toward more detailed AEL models for economic operation. 
However, several significant challenges remain, particularly in: (1) 
effectively integrating detailed thermal dynamics (via IEHHM) into 
scalable operation models; (2) managing diverse uncertainties without 
compromising tractability, and (3) solving large-scale and potentially 
non-convex optimization problems arising from high-accuracy AEL rep-
resentations. Addressing these challenges will be essential for realizing 
the full economic potential of AEL technologies in future multi-energy 
systems. 

4.2. Grid service

The grid service application explores the feasibility and economic 
benefits of AELs participating in grid ancillary services, notably fre-
quency regulation services, to balance the grid when supply and de-
mand are mismatched. Recent advancements in AEL technologies have 
demonstrated AEL’s qualified frequency regulation capabilities. Ad-
vanced AELs like the pressurized AELs exhibit rapid power up/down-
regulation within seconds [14,15,102]. This fast ramping capability 
makes them capable of providing frequency regulation for grids, as in-
vestigated in [7,103]. Depending on the structure of particular electric-
ity markets, the participated markets and frequency regulation prod-
ucts can be different. For example, the Danish case demonstrates that 
the provided products from AELs could be frequency containment 
reserve (FCR), automatic frequency restoration reserve (aFRR), man-
ual frequency restoration reserve (mFRR), traded in reserve markets 
and/or real-time markets (also called balancing markets) [70]. Further-
more, the frequency service provider could be paid via two revenue 
streams. The first one is the payment of provided reserve capacity for 
frequency regulation, referred to as capacity revenue or availability 
payment [104]; while the second one is the payment of activated 
up/down reserve for frequency regulation in real-time operation, called 
regulation revenue or performance revenue [70,83]. Providing grid 
service will bring additional revenue streams and the corresponding 
revenues will be added to the objective cost function of decision-
making optimization models. In the Danish market structure, it can be 
expressed by Eqs. (51)–(53) [7,70]. While in the PJM market (North 
America’s market) [83], the performance revenue is usually formulated 
by Eq. (54). The revenue expression can be even simpler when the 
product is only single i.e. not distinguishing the up/down product, as 
presented in Eq. (55) [83].
𝐶𝑔𝑠 = −

(

𝐶𝑐𝑎
𝑔𝑠 + 𝐶𝑟𝑒

𝑔𝑠

)

(51)

𝐶𝑐𝑎
𝑔𝑠 =

𝑇ℎ
∑

𝑡=1

(

𝜆𝑐,𝑢𝑝𝑡 𝑃 𝑐,𝑢𝑝
𝑡 𝛥𝑡 + 𝜆𝑐,𝑑𝑤𝑡 𝑃 𝑐,𝑑𝑤

𝑡 𝛥𝑡
)

(52)

𝐶𝑟𝑒
𝑔𝑠 =

𝑇ℎ
∑

(

𝜆𝑟,𝑢𝑝𝑡 𝑃 𝑟,𝑢𝑝
𝑡 𝛥𝑡 + 𝜆𝑟,𝑑𝑤𝑡 𝑃 𝑟,𝑑𝑤

𝑡 𝛥𝑡
)

(53)

𝑡=1
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𝐶𝑟𝑒
𝑔𝑠 =

𝑇ℎ
∑

𝑡=1

[

𝜌
(

𝑃 𝑟,𝑢𝑝
𝑡 + 𝑃 𝑟,𝑑𝑤

𝑡

)

𝛥𝑡
]

(54)

𝐶𝑔𝑠 =
𝑇ℎ
∑

𝑡=1

(

𝜆𝑐𝑡𝑃
𝑐
𝑡 𝛥𝑡

)

+
𝑇ℎ
∑

𝑡=1

(

𝜆𝑟𝑡𝑃
𝑟
𝑡 𝛥𝑡

)

(55)

where 𝐶𝑐𝑎
𝑔𝑠  and 𝐶𝑟𝑒

𝑔𝑠 represent the capacity revenue and regulation 
revenue, respectively; The superscript 𝑐 and 𝑟 in 𝜆 denote the capacity 
price and regulation price; The superscript 𝑐 and 𝑟 in 𝑃  denote the 
offered frequency reserve capacity and activated capacity for real-time 
regulation; The superscript 𝑢𝑝, 𝑑𝑤 in 𝜆, 𝑃  represent the up and down 
frequency regulation service, respectively.

Due to its computational simplicity, the LEHM has been widely 
used in early studies on AEL participation in grid services. Its tractable 
structure allows for straightforward integration into scheduling models, 
particularly those formulated as linear or MILPs. This has made LEHM a 
natural choice when co-optimizing electrolyzers with other assets or de-
signing market participation strategies. For example, techno-economic 
assessments under German market conditions employs LEHM to eval-
uate the profitability of AELs providing secondary control reserve, 
emphasizing the influence of system design and operational strate-
gies [105]. In scenarios involving large-scale AEL deployment, such 
as co-location with EV charging infrastructure, LEHM-based dispatch 
models have demonstrated the potential of grid service revenues to 
improve system profitability [104]. As research progresses, LEHM has 
been integrated into more advanced optimization frameworks that 
address uncertainty. An example is using chance-constrained stochastic 
programming to co-optimize energy arbitrage and ancillary service 
participation in PV-battery-AEL hybrid systems [106]. This enabled 
profit maximization while accounting for variability in solar power and 
grid signals. Similarly, studies in the Danish market apply LEHM within 
market-based models to estimate revenues from different reserve ser-
vices and assess hydrogen break-even prices under various participation 
scenarios [7,70]. 

Nevertheless, LEHM’s core assumption of constant efficiency in-
troduces limitations when modeling AELs under dynamic operating 
conditions, such as those encountered during frequency regulation. This 
simplification may lead to inaccuracies in estimating hydrogen pro-
duction or energy use during grid service events, potentially distorting 
cost assessments and bidding strategies. Thus, while LEHM provides a 
useful first-order approximation, its fixed-efficiency structure restricts 
its ability to accurately represent the dynamic behavior required in 
fast-response grid services. 

To address this gap, recent efforts have begun incorporating NEHM 
into grid service participation. One example applies a piecewise-linear 
NEHM within a robust cooperative bidding strategy for a
wind-electrolysis system [83]. This model enables more accurate hydro-
gen production estimation under grid services and allows for trade-off 
analysis between grid service revenue and hydrogen output. While 
this direction reflects growing interest in higher-accuracy representa-
tions, NEHM adoption in this scenario remains limited, due to the 
increased computational complexity involved in real-time bidding or 
high-resolution scheduling. 

Table  5 summarizes the reviewed studies on AEL modeling for grid 
service applications. LEHM remains the prevailing choice, primarily 
due to its simplicity and tractability. Its linear structure facilitates 
straightforward integration into system-level scheduling and market 
optimization frameworks, enabling efficient, albeit simplified, assess-
ments of AEL’s economic potential in frequency services, including 
revenue estimation and profitability analysis across various market 
scenarios. However, this simplicity of AEL dynamics comes at the 
expense of physical accuracy. Besides, it is revealed that NEHM has only 
recently appeared, and IEHHM is absent entirely, pointing to notable 
gaps in representing AEL’s key dynamics during grid service provision. 

Therefore, based on the literature review analysis, three critical 
needs emerge : (a) Capturing the efficiency variation and transient be-
havior of AELs during frequent load changing conditions typical of grid 
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Table 5
Comparison of the literature on grid service applications with respect to AEL modeling and optimization techniques.
 Study AEL

model
AEL
state-
switching

Objective
function

Grid service Optimization
technique

Uncertainty Interval/
horizon

 [105] LEHM None Wind 
prediction 
error reduction

Frequency 
service

Rule-based N/A 4 s/ 1 year  

 [104] LEHM On/STB Obj 1 F1 MILP (simplex 
algorithm-solved)

Deterministic 1 h/ 1 year  

 [106] LEHM On/Off Obj 2 F2 MILP 
(Gurobi-solved)

Chance-
constrained 
stochastic

1 h/ 21 days 

 [70] LEHM None Obj 2 F2 MILP 
(Gurobi-solved)

Deterministic 1 h/ 3 years  

 [7] LEHM None Obj 1 F2 LP (Gurobi-solved) Deterministic 1 h/ 3 years  
 [83] NEHM 

(PWL3)
On/STB Obj 2 F2 robust 

optimization
Robust 1 h/ 1 year  

F1 refers to the frequency service which only considers the capacity revenue.
F2 refers to the frequency service which accounts for both the capacity revenue and regulation revenue.
PWL3 This term means the NEHM model is approximated by a piecewise linearization method.
services; (b) Accounting for thermal effects that may significantly in-
fluence AEL performance under repeated activation scenarios, by using 
IEHHM; (c) Incorporating uncertainty in both resource availability and 
service activation, as most current models remain deterministic, with 
few exceptions applying robust or stochastic methods.  Particularly, 
future work should consider integrating more detailed AEL models 
(e.g. NEHM and IEHHM) into uncertainty-aware optimization frame-
works to improve the accuracy and reliability of dispatch outcomes. 
This would provide a stronger foundation for evaluating the technical 
feasibility, economic performance, and service potential of AELs in 
ancillary service markets. 

4.3. Heat recovery management

As analyzed in the thermal modeling of Section 3.3, the heat re-
leased during the electrolysis process can be extracted via heat exchang-
ers, corresponding to the cooling power �̇�𝑐𝑜𝑜𝑙, to maintain the AEL 
temperature. This recovered heat presents a valuable opportunity for 
enhancing system efficiency and creating additional revenue streams by 
supplying for heat loads or district heating systems (DHSs). The heat re-
covery management application focuses on optimizing the management 
of this recovered waste heat generated by AELs during their operation, 
improving overall system benefits through heat selling or by directly 
offsetting heating costs. The revenue of selling recovered heat can be 
added to the objective cost function of decision-optimization models, 
as expressed by Eq. (56). In addition, the recovered heat could also 
contribute to cost function reduction by using the recovered heat to 
supply part of heat loads thereby reducing heating costs. 

𝐶ℎ𝑒 = −
𝑇ℎ
∑

𝑡=1
𝜆ℎ𝑒𝑡 �̇�𝑐𝑜𝑜𝑙𝛥𝑡 (56)

where 𝜆ℎ𝑒𝑡  denotes the price of heat sale; �̇�𝑐𝑜𝑜𝑙 represents the available 
recovered heat and is subjected to the thermal behavior characterized 
by the thermal model of AELs.

The IEHHM is the standard choice for modeling AELs in heat 
recovery studies, due to its ability to capture coupled electrochemical, 
thermal, and hydrogen production dynamics. Current literature follows 
two main approaches to leveraging heat recovery for economic benefit: 
(1) using the recovered heat to meet heat demand and reduce system 
operating costs; (2) directly accounting for heat revenue by treating it 
as a marketable product in heat markets. 

The first approach is the most common, i.e. using recovered AEL 
heat to meet existing thermal demands. In distribution networks with 
high renewable penetration, IEHHM models that are often simpli-
fied via multi-segmented linearization (MSL) have been embedded 
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in dispatch strategies to delivery waste heat to district heating sys-
tems (DHSs). This has proven effective in enhancing system flexibility, 
reducing renewables curtailment and operational costs [94]. Exper-
imental validation of IEHHM-based models has also confirmed that 
temperature strongly affects AEL performance, supporting dispatch 
strategies where heat recovery improves energy conversion efficiency 
at the microgrid level [90]. IEHHM has further been used to coor-
dinate AELs with CHP units and hydrogen storage, expanding the 
feasible operating region of energy systems and enabling additional 
reductions in fuel consumption and emissions [91]. At the utility 
scale, scheduling models integrating AEL’s thermal and impurity con-
straints, also based on MSL-approximated IEHHMs, have been shown 
to increase both operational flexibility and investment return through 
coordinated multi-physics control [95]. While MSL approximations 
improve computational tractability, they may introduce errors in cap-
turing nonlinear thermal effects, which can affect dispatch outcomes in 
high time-resolution conditions. 

Other studies focus on the second approach i.e. treating recov-
ered heat as a co-product, adding it directly to the revenue stream. 
This often requires more advanced control strategies. Model Predic-
tive Control (MPC) frameworks have been developed to manage AEL-
DHS interactions, with IEHHM models integrated either in simplified 
single-segmented linear (SSL) form or in full nonlinear detail. Early 
studies using SSL approximations have shown that even moderate 
heat recovery (e.g., supplying 10% of DHS demand) could be eco-
nomically valuable without compromising AEL efficiency [96]. More 
recent work has implemented detailed IEHHM models without lin-
earization, directly within MPC optimization for hydrogen-based multi-
energy microgrids [88,89]. These studies integrate heat revenue into 
the objective function and employ advanced MPC algorithms to ensure 
AEL’s operational feasibility and maximize economic benefits. This shift 
toward using unapproximated IEHHM suggests the direction of de-
veloping advanced solving algorithms to handle detailed multiphysics 
models efficiently. 

Table  6 provides a summary of the reviewed literature on heat re-
covery applications. All reviewed studies rely on IEHHM, confirming its 
essential role in modeling the thermal behavior of AELs. Most of them 
adopt MSL or SSL approximations to improve tractability, especially 
in large-scale or real-time contexts. However, the increasing adoption 
of direct nonlinear MPC implementations indicates that high-accuracy 
modeling is becoming more feasible in practice. This development is 
important for improving the accuracy of heat recovery assessments and 
avoiding the limitations of simplified models. 

One notable limitation across the literature is the universal re-
liance on deterministic formulations. The effectiveness of AEL heat 
recovery can vary significantly under uncertain thermal demands, elec-
tricity prices, or renewable inputs. Most of the reviewed studies do 
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Table 6
Comparison of the literature on heat recovery management applications with respect to AEL modeling and optimization techniques.
 Study AEL

model
Model
approximationa

AEL
state-
switching

Objective
function

Heat
recovered
contributionb

Optimization
technique

Interval/
horizon

 [94] IEHHM MSL None Obj 3 Indirect MIQCP (Robust) 1 h/ 24 h  
 [90] IEHHM MSL None Optimal 

state 
tracking

Indirect MIQP 
(Deterministic)

1h/ 24 h  

 [91] IEHHM MSL None Obj 3 Indirect MILP 
(Deterministic)

1 h/ 24 h  

 [95] IEHHM MSL On/STB/OFF Obj 1 Indirect MILP 
(Deterministic)

15 min/ 24 h 

 [96] IEHHM SSL On/OFF Obj 3 Direct MILP 
(Deterministic)

1 h/ 24 h  

 [88] IEHHM None On/OFF Obj 3 Direct MPC-MILP 
(Deterministic)

1 h/ 24 h  

 [89] IEHHM None On/OFF Obj 3 Direct MPC-MILP 
(Deterministic)

1 h/ 24 h  

a The model approximation includes two types: (1) MSL is multi-segmented linearization, referring to using multiple segmented linear planes 
to approximate the nonlinear plane characterized by the inherent nonlinearity of AEL; (2) SSL is single -segmented linearization, which means 
using only one linear plane to conduct the approximation.
b This term involves two types: (1) Direct means considering the revenue of recovered heat sale and being directly added into the objective 
cost function; (2) Indirect means using recovered heat to supply heat loads, indirectly offsetting the heating cost.
not account for these uncertainties, except that only one considers 
the uncertainty of renewable power. Thus, future work should further 
explore uncertainty-aware optimization methods (e.g., stochastic or 
robust methods) in conjunction with IEHHM-based modeling. Incor-
porating uncertainty would enable more resilient and realistic strate-
gies to manage AEL heat recovery in complex and variable energy 
environments. 

4.4. Capacity configuration

The capacity configuration application focuses on optimizing the 
capacity configuration and design of AELs-integrated hybrid energy sys-
tems (e.g., microgrids, hybrid renewables-battery-hydrogen systems). 
The goal is typically to find the optimal sizes of electrolyzers and 
other devices (e.g., batteries, wind generators) to minimize system costs 
(or maximize system profits), meet energy needs, maximize hydrogen 
production, and so on. Depending on the focused systems/projects and 
their particular purposes, the objective function of capacity configu-
ration could be different. Whereas, there are several common techno-
economic indicators: (i) financial indicators: present value (NPV), net 
present cost (NPC), life cycle cost (LCC), of single and multiple de-
vices within energy systems, as well as, levelized cost of hydrogen 
(LCOH) and levelized cost of energy (LCOE) of energy systems, etc.; 
(ii) non-financial indicators: loss of power supply probability (LPSP), 
hydrogen production, carbon emission (CE), etc. Furthermore, these 
indicators usually include many items and sub-items, particularly, their 
calculation is quite distinct depending on particular energy systems and 
purposes. It is thus hard to give a general formulation for characterizing 
the objective function suitable to all of the studies.

Given the long time-horizon (e.g. yearly resolution) of capacity 
planning and the need to accurately reflect efficiency under varying 
loads, NEHMs are widely adopted. They allow planners to account for 
part-load behavior and nonlinear energy conversion characteristic in 
AEL systems, especially when coupled with variable renewable inputs. 
However, integrating NEHM, even in approximated forms, into op-
timization frameworks introduces significant complexity, particularly 
when combined with multiple objectives or uncertain inputs.  In off-
grid systems, for example, NEHM-based models have been integrated 
with heuristic solvers such as strength pareto evolutionary algorithms 
to evaluate trade-offs across system cost, emissions, and energy bal-
ance [78]. More advanced leader–follower frameworks combine lin-
earized NEHM dispatch models in the lower layer with upper-layer 
genetic algorithms for sizing [75,76]. These frameworks are further 
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used to clarify the impact of component degradation, forecast uncer-
tainty, and operational strategies on sizing results. Other works fit 
NEHM using polynomials and apply particle swarm optimization to 
minimize LCOE in remote hybrid systems [85]. 

At larger scales, NEHM has been incorporated into planning models 
for national infrastructure. For instance, coordinated sizing of HVDC 
lines and power-to-hydrogen supply chains has been addressed using 
piecewise NEHM approximations within distributionally robust chance-
constrained programming frameworks [84]. These models evaluate AEL 
sizing alongside broader infrastructure under renewable uncertainty. 
Offshore wind systems, by contrast, have adopted convex programs 
with quadratically approximated NEHM to optimize hybrid hydrogen-
battery storage [110]. In both cases, model approximation such as 
piecewise, polynomial, quadratic, is essential to maintain tractability 
across long-time horizons. 

While NEHM dominates recent work, LEHMs are still used where 
computational efficiency or solver compatibility is prioritized. Off-
grid system designs often apply LEHMs in NSGA-II frameworks to 
balance system reliability and cost without the burden of nonlinear 
modeling [107]. They are also used to co-optimize energy dumping, 
hydrogen shortfall, and emissions [71]. In addition, LEHMs are also 
employed in long-term NPV optimization for PV-battery-electrolyzer 
systems [72], and in multi-stakeholder power-to-ammonia systems to 
coordinate capacity sizing and pricing through two-stage decomposi-
tion [108]. Despite known simplifications, LEHM’s tractability remains 
an advantage in certain planning contexts. 

Though less common, IEHHMs have begun to appear in capacity 
planning where thermal behavior and heat integration are relevant. 
In wind-PV-hydrogen systems, full IEHHMs have been used to assess 
operational reliability and production stability with coupled thermal-
electric dynamics [111]. Single-segment linearized IEHHMs are also 
used in planning seasonal hydrogen storage within an electricity–
hydrogen integrated energy system, employing a hybrid stochastic-
robust optimization framework [92]. These efforts highlight that, de-
spite their complexity, IEHHMs can offer value in systems where ther-
mal characteristics significantly affect sizing decisions. 

Table  7 summarizes these studies and highlights how modeling 
choice impacts optimization strategy. Linearized NEHMs are most com-
mon, offering a trade-off between accuracy and solvability. When 
problem complexity grows due to multiphysics coupling or uncer-
tainty, heuristic solvers (e.g., GA, PSO, NSGA-II) and decomposition 
methods (e.g., nested column-and-constraint generation) are often em-
ployed. LEHMs remain useful when compatibility with MILP solvers 
is required, particularly in early-stage or investor-focused planning. 
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Table 7
Comparison of the literature on capacity configuration applications with respect to AEL modeling and optimization techniques.
 Study AEL

model
Model
approxi-
mation

AEL
state-
switching

Objective
function

Optimization
technique

Uncertainty Interval/
horizon

 [107] LEHM None None Min. system 
cost + LPSP

NSGAIIa Deterministic 1 h/ 1 year  

 [71] LEHM None On/Off Multi-
objectivesb

Iterative method Deterministic 1 h/ 1 year  

 [72] LEHM None On/STB/Off Optimized NPV MILP 
(Gurobi-solved)

Deterministic 1 h/ 1 year  

 [108] LEHM None None Min. system 
cost

MINLP, solved 
by two-stage 
decomposed 
method

Robust 1 h/ 1 year  

 [78] NEHM Linear Eq. 
(25)

None Min. 
NPC+LPSP+CE

SPEAc Deterministic 1 h/ 1 year  

 [76] NEHM Linear Eq. 
(24)

On/Off Min. system 
costd

GA+MILP Robust 1 h/ 1 year  

 [75] NEHM Linear Eq. 
(24)

On/Off Min. system 
cost

GA+MILP Robust 1 h/ 1 year  

 [85] NEHM Polynomial 
fitted

On/Off Min. LCOE PSO Deterministic 1 h/ 1 year  

 [84] NEHM PWL On/Off Min. system 
cost

DRCCP→ MIQCP 
(CPLEX-solved)

DRCCP 1 h/ 1 year  

 [109] NEHM None On/STB Min. 
grid-exchanged 
power

Analytical 
optimization 
method

Deterministic 1 h/ 1 year  

 [110] NEHM Quadratic On/Off Min. system 
cost

NP (relaxation 
into convex 
form, solved by 
CVX)

Deterministic 1 h/ 1 year  

 [111] IEHHM None None Max. hydrogen 
production

Imperial 
competitive 
colony

Deterministic 1 h/ 1 week 

 [92] IEHHM SSL On/Off Min. system 
cost

NPe 
(nested-C&CG)

Stochastic & robust 1 h/ 1 year  

a NSGAII means non-dominated sorting genetic algorithm.
b The multiple objectives of this study consist of minimizing LCOH, total hydrogen deficit, energy dump possibility, maximizing carbon 
emissions avoided and natural gas preserved.
c SPEA means the strength pareto evolutionary algorithm.
d The constitution of the system cost can be different depending on particular publications, typically including initial capital or investment 
cost, operation and maintenance cost, and replacement cost, etc., minus the diverse revenue streams.
e NP means nonlinear programming, where the solved nested-C&CG method refers to nested column-and-constraint generation.
Although still limited, the use of IEHHM reflects a growing research 
interest in heat-coupled system optimization. Many studies also in-
clude AEL state-switching (e.g. on, off and standby) in the modeling, 
improving accuracy and supporting feasible dispatch strategies. 

Overall, the analysis of the literature review reflects a shift toward 
more detailed, uncertainty-aware frameworks operating at hourly res-
olution over long time horizons. This trend aligns AEL planning with 
broader long-term energy system planning models used for investment 
decision-making. However, challenges remain in developing efficient 
approaches that combine physical accuracy, uncertainty handling, and 
computational tractability within a unified optimization framework. 

5. Discussion

The previous sections have synthesized existing AEL models and 
their applications across system-level decision-making scenarios. This 
section expands the review by offering a systematic discussion to 
comparatively summarize key characteristics of each model, current 
limitations, and prospective advancements. The aim is to highlight the 
contributions of existing modeling methods, further identify research 
gaps guide future efforts toward more accurate, efficient, and advanced 
AEL modeling strategies.

5.1. Summary remarks

This review identifies a variety of system-level AEL modeling ap-
proaches based on an analysis of over 100 peer-reviewed studies, also 
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highlighting their roles in optimizing decision-making across four key 
applications: economic operation, grid services, heat recovery manage-
ment, and capacity planning. 

LEHMs, characterized by their simplicity and computational effi-
ciency, have been prevalent in initial explorations of AEL economic 
viability and large-scale system planning. They offer a convenient way 
to represent AELs as simple energy converters with fixed efficiency, 
enabling the formulation of optimization problems as LP or MILP 
models that are readily solvable by commercial solvers. However, 
this simplified approach comes at the cost of neglecting the dynamic 
efficiency variations inherent to AELs. This oversimplification can lead 
to inaccurate estimations of hydrogen production and suboptimal op-
erational decisions, potentially resulting in hydrogen safety issues. As 
the field progresses, there is a growing recognition of the need for more 
accurate and realistic models.

NEHMs offer a significant advancement by incorporating efficiency 
variations based on the AEL polarization curve, capturing the impact 
of operational parameters on system performance. This increased accu-
racy enables more informed decision-making, leading to more efficient 
and profitable AEL operation. However, this advantage is accompanied 
by the challenge of nonlinearity. Integrating NEHMs into optimiza-
tion frameworks often necessitates the use of nonlinear programming 
techniques, which can be computationally expensive. To address this, 
researchers have employed various approximation methods, such as 
linearization and quadratic fitting, to transform the nonlinear problem 
into a more tractable form, allowing for the use of solvers like Gurobi 
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and CPLEX. While these approximations provide a compromise be-
tween accuracy and computational efficiency, they inevitably introduce 
some degree of error.

Furthermore, IEHHMs represent the most comprehensive model-
ing approach, capturing the coupled relationship between electricity, 
heat, and hydrogen production. The key advancement of this model 
lies in the incorporation of detailed thermal dynamics, allowing for 
a more realistic representation of AEL performance by accounting 
for the impact of operating temperature on efficiency and hydrogen 
production. This thermal dynamics integration enables the exploration 
of thermal management strategies to optimize AEL performance and 
unlock additional operational flexibility. Specifically, IEHHMs enable 
the co-optimization of both hydrogen production and waste heat re-
covery, leading to enhanced system efficiency and economic benefits, 
particularly in integrated energy systems where waste heat can be 
utilized for heating purposes or sold to external consumers. However, 
this comprehensive representation comes at the cost of significant 
computational complexity. The strong nonlinearity of IEHHMs often 
requires sophisticated solving techniques, such as MSL or MPC algo-
rithms. While these methods can effectively address the optimization 
challenge, they are computationally demanding, potentially limiting 
their applicability to larger-scale systems and necessitating further 
research into computationally efficient solutions.

Overall, the three models reflect varying levels of detail in repre-
senting the multi-physics and energy conversion assumption of AEL 
systems. As shown in Fig.  8(a), the LEHM assumes a linear relationship 
between electricity input and hydrogen output, exhibiting a constant 
conversion efficiency that is typically in the range of 60%–70% [65,
67,68,105]. In contrast, the NEHM captures a nonlinear electricity-to-
hydrogen relationship and reflects variable efficiency, as illustrated in 
Fig.  8(b). This relationship is affected by operating temperature which 
is assumed to be fixed in this model. Different from prior two models, 
Fig.  8(c) shows the IEHHM incorporates not only the electricity-to-
hydrogen conversion but also thermal effects, modeling the nonlinear 
electricity-to-heat-hydrogen coupling. Unlike NEHM, the IEHHM effec-
tively includes temperature dynamics explicitly rather than assuming 
it to be constant. Both NEHM and IEHHM can capture efficiency varia-
tions which is commonly within an operational range of 60%–80% [82,
83,89,94], depending on operational conditions such as input power 
and operating temperature.

Different AEL models also influence the choice of optimization tech-
niques employed for decision-making studies in energy systems. The 
linear nature of LEHMs readily accommodates LP or MILP formulations, 
while NEHMs often necessitate nonlinear programming approaches. 
The complex nature of IEHHMs often requires tailored solving meth-
ods like MSL or MPC-based algorithms. As shown in Tables  4 to 7, 
the literature demonstrates a diverse array of optimization techniques 
applied to AEL-related system’s decision-making problems. This reflects 
the need for specialized methods to address the distinct challenges 
posed by different models and application requirements. Therefore, the 
choice of AEL model needs a trade-off between model accuracy and 
computational efficiency by analyzing the requirements of intended ap-
plications. Fig.  9(a) summarizes the current distribution of each model’s 
usage across system-level decision-making applications. NEHM is the 
most frequently adopted (42% of studies), followed by LEHM (35%), 
and then IEHHM (23%). Fig.  9(b) further provides a more detailed view 
of the distribution of model usage within specific application areas. It 
reveals the dominance of IEHHM in heat recovery studies and LEHM in 
grid service, as well as the preference of NEHM in economic operation 
and capacity planning.

5.2. Future development

While significant progress has been made in the development and 
application of AEL models, several cross-cutting limitations continue 
to constrain their broader impact in energy systems optimization. The 
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Fig. 8. Comparative energy conversion characteristics of various AEL models using 
literature-based data [23,89]: (a) LEHM; (b) NEHM; (c) IEHHM.

current modeling is predominantly challenged by: (1) the limited appli-
cation scope of high-accuracy models such as IEHHMs beyond thermal 
use cases; (2) insufficient treatment of critical aspects, particularly 
degradation mechanisms and BOP dynamics; and (3) computational 
bottlenecks that hinder the deployment of nonlinear models like NEHM 
and IEHHM in large-scale decision-making problems. These challenges 
reflects the need for more holistic, scalable, and computationally effi-
cient AEL modeling frameworks. To address these challenges, several 
promising directions for advancing AEL modeling in decision-making 
optimization are worth further exploration:

(1) Broader exploration of IEHHM applications: The reviewed 
literature reveals a significant gap in the utilization of IEHHMs for ap-
plications beyond heat recovery management. While IEHHMs offer the 
most comprehensive approach by capturing the coupled relationship 
between electricity, heat, and hydrogen production, their application 
in the reviewed literature has been limited. Future research should 
explore the potential of IEHHMs to optimize AEL operation across a 
wider range of applications, particularly in grid services and capacity 
configuration, where the thermal dynamics of AELs can significantly 
impact system performance and economic viability.
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Fig. 9. Distribution of AEL model usage across system-level decision-making optimization studies: (a) Overall model usage percentage; (b) Model usage within each application.
(2) Comprehensive degradation modeling: Most of the exist-
ing AEL models do not consider their degradation phenomenon. Sev-
eral relevant studies [76,79,85,96] only offer simplified approaches 
to modeling AEL degradation, often relying on operational hour lim-
itations, fixed degradation costs, or basic voltage aging terms. Future 
research should prioritize developing more comprehensive and accu-
rate degradation models for AELs, incorporating factors such as oper-
ating time, on/off cycling, input power fluctuations, and temperature 
variations. Integrating these models into decision-making optimization 
frameworks would enable more reliable long-term assessments of AEL 
performance and economic viability, particularly for systems operating 
with intermittent renewable energy inputs.

(3) Modeling BOP characteristics and impacts: Current AEL mod-
els often neglect the detailed characteristics and operational constraints 
of BOP components within AEL systems, primarily focusing on cell 
and stack characteristics. Future model development should incor-
porate BOP components and relevant technical constraints, such as 
pressure limitations, electrolyte dynamics, and gas purity considera-
tions. This integration would enable a more realistic representation 
of AEL operation, leading to more effective and feasible optimization 
strategies. Additionally, incorporating BOP control strategies, such as 
pressure management and electrolyte circulation, into decision-making 
optimization frameworks could enable the simultaneous optimization 
of both AEL core operation and BOP control for maximizing system 
efficiency, reliability, and economic benefits.

(4) Efficient modeling of large-scale AEL deployments: The re-
viewed studies often rely on simplified models for large-scale AEL 
plants, assuming negligible differences among stacks, and scaling up 
from single-cell or stack values by multiplying the number of cells 
or stacks. This simplification overlooks the potential for optimizing 
the operation of individual AEL units within a plant and can lead to 
inaccuracies in representing realistic operational characteristics. Fu-
ture advancements should focus on modeling large-scale AEL plants 
with multiple electrolyzer units while maintaining computational effi-
ciency. This could involve developing reduced-order models, clustering 
techniques, or other aggregation methods that balance accuracy and 
computational burden for effective optimization of large-scale AEL 
deployments.

(5) Exploring AEL model applications for comprehensive grid 
support: The current emphasis on frequency regulation as the primary 
grid service provided by AELs overlooks their potential contributions 
to other essential grid support functions. The next direction could focus 
on investigating the application of AEL models in optimizing AEL par-
ticipation in broader grid support, such as voltage support, congestion 
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management, peak shaving, and renewable energy integration. This 
exploration would enable a more holistic and multifaceted utilization 
of AELs to enhance grid stability, reliability, and flexibility.

(6) Advanced computational techniques: Integrating more de-
tailed AEL models like IEHHMs into decision-making optimization 
poses significant computational challenges, further amplified by large-
scale AEL plant integration and uncertainties in energy systems. To 
fully leverage the benefits of these sophisticated models and explore 
complex energy system scenarios, future research should investigate 
advanced and time-saving computational algorithms. One promising 
solution is utilizing artificial intelligence and machine learning algo-
rithms, especially investigating their integration with combinatorial 
optimization techniques.

6. Conclusion

This paper presents a comprehensive review of AEL modeling ap-
proaches and their applications in system-level decision-making opti-
mization within energy systems. Building upon a holistic analysis of 
hierarchical AEL research, this review reveals distinct modeling re-
quirements across different levels of AEL system analysis, highlighting 
the need for varying granularities and timeframes. Most importantly, 
the review, focusing on the system-level optimization analysis, system-
atically categorizes and summarizes existing AEL models into three 
primary types: LEHMs, NEHMs, and IEHHMs. These models are fur-
ther analyzed and compared based on their system representation, 
efficiency characteristics, thermal dynamics considerations, and appli-
cable optimization techniques. The review then critically examines the 
application of these models across four key decision-making areas: 
economic operation, grid service provision, heat recovery management, 
and capacity configuration.

The comparative analysis of different AEL models and applications 
reveals a distinct evolution in AEL modeling for decision-making op-
timization, driven by a growing emphasis on capturing the complex 
dynamics of AEL operation and maximizing their value within energy 
systems. While simpler LEHMs remain useful for initial assessments 
and large-scale planning, the reviewed literature demonstrates a clear 
shift toward more sophisticated NEHMs and IEHHMs to achieve greater 
accuracy and represent the variable efficiency and coupled energy 
interactions inherent to AELs. This trend is evident across all four ap-
plication areas, with NEHMs now prevalent in economic operation and 
capacity configuration studies, and IEHHMs dominating heat recov-
ery management research. Moreover, the widespread incorporation of 
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AEL state-switching capabilities highlights the importance of modeling 
operational flexibility for realistic assessments.

However, several critical research gaps remain. Future research 
should prioritize a broader exploration of IEHHM applications beyond 
heat recovery management, expanding the role of AELs in diverse grid 
services, developing degradation models, and incorporating detailed 
BOP characteristics and relevant constraints. Additionally, efficient 
modeling techniques for large-scale AEL deployments and the inves-
tigation of advanced computational algorithms, particularly leveraging 
artificial intelligence and machine learning, are crucial for advancing 
the field. Addressing these research directions will pave the way for 
more accurate, robust, and computationally tractable AEL models, 
enabling their effective integration into future energy systems.

By comprehensively reviewing various AEL models and analyz-
ing their implications for system-level decision-making optimization, 
this work provides practical guidance for selecting appropriate AEL 
models for stakeholders, especially engaged in optimizing the design 
and operation of hydrogen-integrated energy systems. For beginners, 
such as students or early-stage researchers, it offers a foundational 
understanding of model types, their characteristics, and trade-offs, 
while explicitly guiding model selection based on specific application 
needs. For researchers in the field, the review also informs future 
investigations by identifying key challenges (e.g., degradation mod-
eling and computational bottlenecks) and emerging trends in AEL 
integration. Industry practitioners, including energy system planners, 
hydrogen project developers, and grid service designers, may benefit 
from the model-to-application mapping and accompanying insights 
into how model accuracy influences optimization strategies, investment 
planning, and integration with thermal or ancillary energy systems.
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Appendix. Voltage efficiency

The voltage efficiency is defined as the ratio between the ther-
moneutral voltage and cell voltage, as expressed by Eq. (A.1). The 
thermoneutral voltage 𝑈𝑡𝑛 is the minimum voltage required for low-
temperature electrolysis to occur without heat integration, at which 
the electrolyzer cell neither generates nor absorbs heat [6]. It can be 
calculated by Eqs. (A.2)–(A.8). Note that according to the physical 
definition of the enthalpy change 𝛥𝐻 of the electrolysis reaction, it 
satisfies 𝛥𝐻 = 3600𝑀H2

⋅𝐻𝐻𝑉 . Accordingly, by substituting Eq. (A.2) 
into Eq. (A.1), the voltage efficiency can be rewritten as Eq. (A.9). The 
relation shown in Eq. (11) is therefore proven. 

𝜂𝑣 =
𝑈𝑡𝑛
𝑈𝑐𝑒𝑙𝑙

(A.1)

𝑈𝑡𝑛 =
𝛥𝐻
𝑧𝐹

≈ 𝑈𝐻𝐻𝑉 +
𝜙
𝑧𝐹

⋅ 𝑌 (A.2)

𝑈𝐻𝐻𝑉 = 1.4756 + 2.252 × 10−4𝑇 + 1.52 × 10−8𝑇 2 (A.3)

𝜙 = 1.5
𝑃𝜔

𝑃 − 𝑃𝜔
(A.4)

𝑃 = 𝑒
(

0.01621−0.138 𝑚+0.1933
√

𝑚+1.024ln𝑃 ∗
𝜔

)

(A.5)
𝜔
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ln𝑃 ∗
𝜔 = 37.04 − 6276

𝑇 + 273.15
− 3.416ln(𝑇 + 273.15) (A.6)

𝑚 =
𝑊𝑡

(

183.1221 − 0.56845(𝑇 + 273.15) + 984.5679𝑒
𝑊𝑡

115.96277

)

100 × 56.105
(A.7)

𝑌 = 42.96 + 40.762𝑇 − 0.06682𝑇 2 (A.8)

𝜂𝑣 =
𝑈𝑡𝑛
𝑈𝑐𝑒𝑙𝑙

=
𝛥𝐻
𝑧𝐹

𝑈𝑐𝑒𝑙𝑙
=

3600𝑀H2
⋅𝐻𝐻𝑉

𝑧𝐹𝑈𝑐𝑒𝑙𝑙
(A.9)
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