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Abstract
Continuous Integration (CI) has become a stan-
dard practice for speeding up software develop-
ment. However, the effect of comparatively slower
artifacts, like documentation, on its performance is
still unclear. Although documentation is often re-
garded as important, there is little data that con-
nects documentation practices to key DevOps met-
rics. This study examines this relationship by look-
ing at 670 open-source projects that use CI. We
measured how documentation completeness, up-
date frequency, and release notes affect delivery
frequency, defect counts, and mean time to recov-
ery. Our results show a ”tipping point” where high
documentation completeness greatly increases de-
livery frequency. We also found a ”sweet spot”
for update ratios between 20% and 55%, which
relates to the lowest defect counts. On the other
hand, we found no proof that long release notes
improve recovery time. We conclude that the effec-
tiveness of documentation depends more on quality
and rhythm than on volume. This provides develop-
ers with practical, data-driven strategies to improve
project performance.

1 Introduction
In the software industry, development speed has been increas-
ing more and more over the years. There has been a grow-
ing need for Continuous Delivery (CD), paired with a rising
trend in the adoption of Agile development. [1] Software is
required to be incrementally improved and rolled out in or-
der to meet the constantly evolving needs of customers and
business alike.

Around the 2000s, there was a great dysfunction between
two camps in the software industry. Software engineers and
IT operations teams were not aligned. Despite the fact that the
work of both was critical and more importantly, intertwined,
these teams were typically in siloes. They could not commu-
nicate effectively, had different performance indicators, and
sometimes even separate department leadership. This lead to
rise of the DevOps movement [2], where the development and
IT operations teams had to come together, which resulted in
Continuous Integration (CI) gaining popularity. Some of its
benefits include reduced manual tasks, improved deployment
efficiency, and accelerated delivery cycles.

Software documentation is an often-neglected aspect of
software engineering; however, it is intrinsically tied to CI
and the development process of any team. As Andrew For-
ward defines it in his book, it “is an artifact whose purpose
is to communicate information about the software system to
which it belongs” [3]. Documentation plays a significant role
throughout the software development life-cycle, from initial
planning and decision-making to system maintenance. More-
over, it has been observed that effective documentation im-
proves the overall quality of a software product and enhances
its success by contributing to usability, marketability, and
ease of support. [4]

A survey of software engineering experts by Plösch et
al. [5] confirmed the high importance of quality documen-
tation. The study revealed that its primary positive impact
is on the maintainability of a software product, particularly
its analysability. Furthermore, the surveyed experts identified
accuracy, clarity, consistency, readability, structuredness, and
understandability as the most crucial quality attributes for ef-
fective documentation. This research establishes the general
value of documentation from a practitioner’s standpoint, es-
pecially for maintenance.

Scientific literature on software documentation has estab-
lished its impact on software products as a whole, as well
as how practitioners perceive it. It is immensely helpful for
maintenance, as it is an artifact that remains even when time
passes and developers change, and it is the second-best form
of communication - crucial when no one else is around. As
much as documentation and CI are interconnected and inte-
gral to the Agile process, there is a lack of understanding
of how documentation affects DevOps performance. What
should developers document? How often should the infor-
mation be changed? What about delivery documentation? In
our research, we aim to answer these questions by looking
into industry-based performance indicators like delivery fre-
quency, mean time to recovery (MTTR), and defect count [6]
[7]. The main goal is to observe the presence or lack thereof
of patterns and relations between the performance indicators
and documentation practices. The definitions of the terms
used in the research questions can be found in Section 3.3.
Main Research Topic: How do documentation practices
impact key performance indicators (KPIs)?
RQ1: Is documentation completeness correlated with de-
livery frequency?
RQ2: Does documentation update frequency correlate with
defect count?
RQ3: Are documentation changes in release cycles corre-
lated with mean time to recovery for reported issues?

This research makes the following contributions:
• We identify and measure important patterns that connect

documentation to performance. In particular, we show
a ”tipping point” where high documentation complete-
ness greatly increases delivery frequency. We also find a
”sweet spot” for update ratios, between 20-55% of com-
mits, which helps reduce defect counts.

• We offer actionable insights for developers. Our findings
showcase that teams can use the documentation update
ratio as a project health metric.

• Additionally, by demonstrating that long release notes
do not speed up issue recovery, we emphasize the im-
portance of keeping high-quality technical documenta-
tion over other, less effective practices.

This paper is organized as follows. Section 2 provides the
background and summarizes the existing literature that sup-
ports this work. Section 3 describes the methods for data
selection, extraction, and analysis. The findings appear in
Section 4. Lastly, Section 5 consolidates the discussion of the
results, their implications, threats to validity, and the conclud-
ing remarks.



2 Background and Related Work
In this section, we will begin by discussing the Agile devel-
opment trend in the software industry. Then, we will go over
academic and industry research on CI. Finally, we will high-
light research on documentation, how these topics are related,
and where there is a knowledge gap.
Agile Adoption One of the catalysts for changes in the soft-
ware industry was the release of the Agile manifesto [8] in
2001. Around 2007, an exploratory study at Microsoft [9]
found that approximately one-third of surveyed respondents
were utilizing Agile methodologies to varying degrees, with
Scrum being the most popular variant. Almost five years later,
a 2011 survey of Finnish software practitioners [10] revealed
that 58% of organizational units were employing agile and/or
lean methods. By 2017, a survey of software engineers and
managers [11] confirmed a clear trend towards agile adoption
across organizations, with Scrum remaining the most com-
mon process in use. Most recently, the 17th State of Ag-
ile Report [1] in 2023 indicated that 71% of survey partici-
pants utilize Agile in their software development life-cycle,
and Scrum continues to be the dominant team-level method-
ology.
Academic Research on CI There have been many stud-
ies on CI as a practice. Some explored pipeline standardiza-
tion [12], while others evaluated the causal impact of adopt-
ing CI in software engineering (effects on frequency and size
of commits, pull request handling, issue tracking, and testing
practices) [13]. Due to the growing literature on CI and a lack
of an integrated review on approaches, tools, challenges, and
practices, Shanin et al. attempted to classify them and provide
an evidence-based guide for selecting appropriate techniques
depending on the context [14].

More concretely, Vasilescu et al. examined the impact of
specific development practices on project outcomes by con-
ducting a large-scale study on GitHub projects to discern the
effects of Continuous Integration (CI) adoption. [15] They
primarily investigated how CI influences team productivity,
which they measured through aspects like the volume and
handling of pull requests (e.g., the number of pull requests
merged per month), and code quality, measured by the num-
ber of bug reports over time. Their main finding was that CI
adoption improved the productivity of project teams, allow-
ing them to integrate more contributions, particularly from
core developers, and reduced the rejection rate for pull re-
quests from external contributors. Importantly, this increase
in productivity did not lead to an observable decrease in user-
experienced code quality; while CI helped developers dis-
cover more defects internally, it was not associated with an
increase in user-reported bugs.
Industry Research on CI To quantify the impact of the
evolving practices and to guide organizations in their De-
vOps journey, industry research has focused on identifying
key performance indicators. Notably, Google’s DevOps Re-
search and Assessment (DORA) program has been influential
in this area. Through years of research, DORA proposed four
key metrics to measure software delivery performance, cate-
gorizing them into measures of throughput and stability [6].
For throughput, there are deployment frequency and lead time

for changes. For stability, the metrics are change failure rate
and mean time to recovery (MTTR). Additionally, industry
guides like the one provided by JetBrains for their TeamCity
CI/CD tool also emphasize the importance of monitoring rel-
evant IT operations indicators to optimize delivery pipelines
and ensure operational health [7].
Research on Documentation Well-crafted documentation
facilitates quick learning for new users and contributors, sim-
plifies product understanding, and can reduce support costs
by making information easily accessible. [4] To move be-
yond these general principles, however, academic research
has looked to capture the practitioner’s perspective on the
value and challenges of documentation.

Building on the work by Plösch et al. and others, Agha-
jani et al. conducted a more extensive study with 146 prac-
titioners to delve deeper into specific documentation issues.
[16] Their surveys revealed that practitioners are most con-
cerned with problems in the information content itself, such
as faulty tutorials, incomplete installation instructions, and
documentation that is inconsistent with the code. From a pro-
cess standpoint, the most significant obstacle reported was the
universal lack of time to create and maintain documentation.
Additionally, this research established that code comments
and contribution guidelines are perceived as more useful for
various tasks. It also highlighted that contribution guidelines
are often neglected and while that may not have a directly vis-
ible negative effect, it can have a strong positive impact when
it is well-written.
Bringing it All Together The widespread adoption of Ag-
ile development has driven the growth of DevOps practices
and, consequently, related academic research. Vasilescu et
al., for instance, showed how to quantitatively assess the ef-
fects of Continuous Integration (CI) on team productivity. In
parallel, industry researchers have sought to develop quan-
tifiable metrics for DevOps performance. While qualitative
studies have thoroughly explored the value, importance, and
challenges of software documentation, a critical gap exists:
the lack of quantitative data linking specific documentation
practices directly to software delivery performance.

3 Methodology
For the aims of our research, we want to analyze open-source
data. GitHub, being one of the most popular platforms for
version control and collaboration, is ideal for this. Addition-
ally, it is important to note that the key performance indicators
we observe are typically applied in industry contexts. There-
fore, we will need to adapt them for our needs. In section 3.3,
we will go over the original definitions and our interpretations
more in depth.

3.1 Data Selection
GitHub as a source of data provides immeasurable opportu-
nities for researchers; however, it comes with caveats. [17]
For example, many repositories are personal projects. Others
have infrequent activity or are completely abandoned. There-
fore, it was important to have a set of criteria when selecting
projects. As a result, we developed a multi-step filtering pro-
cess. Additionally, we analyzed data from May 15, 2024,



Table 1: Quartile distribution for project activity metrics, based on
the initial dataset of 6715 projects.

Metric Q1 Q2 Q3 Q4
Total Releases ≤ 1 ≤ 21 ≤ 69 >69
Commits (1-year) ≤ 1 ≤ 35 ≤ 263 >263

to May 15, 2025, for all three research questions. This time
frame was chosen for its recency, relevance, and the availabil-
ity of crucial workflow data used in our selection process.

Preliminary Filtering Based on the methodology con-
ducted by Vasilescu et al. [15], we selected projects in
seven of the most popular languages on GitHub: Python,
JavaScript, TypeScript, Java, C#, C++, and PHP [18], and
filtered out projects with less than 50 stars [17]. Additionally,
we excluded forks and archived repositories. Using these cri-
teria, we were able to select 6715 projects using the GitHub
API.[19]

Secondary Filtering It was also necessary to identify the
presence of CI in a project. Due to the various ways to config-
ure pipelines, there is no standardized method of identifying
them. Unfortunately, it is insufficient to check for the pres-
ence of .yml files, as sometimes they are used for automated
bots or even issue templates. To overcome this obstacle, we
instead relied on the GitHub Actions feature, which brings
CI/CD to the platform. The GitHub API can provide data
related to Actions usage for a given repository [20], but the
data is limited to roughly one year in the past for all projects.
Therefore, we considered a project to utilize CI if there was at
least one workflow created before May 15, 2024. Following
this step, we were left with 4097 repositories.

Tertiary Filtering To examine projects with meaningful
data for our research questions, we adapted methods by Ray
et al. [21] to measure activity. We established quantifiable
thresholds by collecting data for the first 6715 projects. We
observed the number of commits in the selected time win-
dow of one year and the total number of releases for a project
during its lifetime. Based on these two metrics, we calculated
quartiles to exclude projects with low measurable activity. An
overview can be seen in Table 1 This method led to us includ-
ing projects with at least 50 commits and at least 20 releases.
As a result, 1921 repositories remained.

Final Filtering As we required GitHub issues data for two
of our KPIs, we followed another technique by Vasilescu et
al. [15] Projects were selected if they had a minimum of 100
issues and at least 75% of these issues were labeled. These
metrics indicated adequate usage of the GitHub project man-
agement functionality and resulted in our final dataset of 670
projects.

3.2 Data Extraction

From our list of 670 projects, we methodically gathered data
from two main sources: the Git repository history and the
GitHub API.

Figure 1: The cloc command used to measure code and comment
volume.

cloc --quiet
--exclude-dir=doc,docs,test,tests
--exclude-lang=JSON,Markdown ,Text .

Repository Content Data For each project, we regu-
larly sampled the main branch to gather information on in-
repository documentation. At each sampling point, we col-
lected:

• Standard Documentation Files: This includes the
presence and line count of important files suggested by
GitHub for community health. These files are README,
CODE OF CONDUCT, LICENSE, and CONTRIBUTING. It
also covers issue and pull request templates. [22] [23]
To ensure our measurements matched the platform’s be-
havior, our data extraction script looked for these files in
the order stated by GitHub: first in the ”.github/” direc-
tory, then in the project’s root, and finally in the ”docs/”
directory. [24]

• Code and Comment Volume: This is the total number
of lines of code and lines of comments. We extracted it
by running the cloc command-line tool on the contents
of the repository, using the specific command shown in
Listing 1 to exclude documentation and test directories,
as well as JSON, markdown, and text files.

GitHub API Data We used the GitHub API to collect his-
torical data on project activity:

• Commits: The commit history, which tracks changes to
documentation files over time.

• Issues: Data for all project issues, including creation
and closing timestamps, labels, titles, and body text.
This data is important for identifying bugs and measur-
ing how long it takes to resolve them.

• Releases: The complete history of project releases, in-
cluding publication timestamps and the body text of the
release notes.

3.3 Concepts and Metrics
To answer our research questions, we transformed the ex-
tracted raw data into quantifiable metrics. This section ex-
plains the independent variables, which are documentation
practices, and the dependent variables, which are key perfor-
mance indicators, used for our analysis. We calculated all
KPIs over 12 consecutive 30-day intervals to observe trends
over time.

Documentation Completeness (RQ1) We utilize this met-
ric to assess the quality and detail of a project’s documenta-
tion over a 30-day time period. It is calculated using a step-
by-step process that allows for comparison across different
projects:

1. For each commit, we calculate three basic metrics: (a)
the number of standard documentation files present, (b)
the total lines of code (LoC) in these files, and (c) the



percentage of comments in the source code, which is
calculated as:

code comment percentage =
num of code comment lines

num of code lines
(1)

2. To address large differences between projects, we stan-
dardize each of these three metrics (convert them to a
z-score) on a per-project basis. This shows whether a
commit’s documentation is above or below that project’s
own average.

3. We create a final documentation completeness score for
each commit by adding these three standardized scores.

4. The value used for each 30-day analysis period is the
average of this composite score across all commits made
during that time.

This method lets us track improvements in documentation
within a project over time, instead of comparing unrelated
values between projects.

Documentation Update Ratio (RQ2) This independent
variable measures how much of the development effort goes
into keeping documentation up to date. To find this, we first
looked at every commit within a 30-day period that changed a
standard documentation file (for example, README, CON-
TRIBUTING). We then calculated the ratio for each project
and each interval using the following formula:

Doc Update Ratio =
Num of commits altering documentation

Total num of commits
(2)

This metric highlights the frequency of documentation up-
dates relative to the overall project activity.

Release Documentation (RQ3) This metric measures the
effort spent on communicating changes through release notes.
For each 30-day interval, we first calculate the total number of
lines of text across the bodies of all releases published within
that period. To control for project-specific norms where some
projects naturally have longer release notes than others, this
total line count is then standardized (converted to a z-score)
on a per-project basis. The final metric used in our model rep-
resents whether the release documentation effort in a given
interval was higher or lower than that project’s historical av-
erage.

Delivery Frequency (RQ1)

• Original Definition: JetBrains [7] defines deployment
frequency as the number of times a CI/CD pipeline de-
ploys to a production environment.

• Adapted Metric: In open-source projects, we cannot
easily identify production deployments. Therefore, we
adapted this metric by looking at official project re-
leases.

• Calculation: We measure delivery frequency as the to-
tal number of a project’s releases during each 30-day pe-
riod.

Defect Count (RQ2)
• Original Definition: This metric refers to the ”number

of open tickets in your backlog classified as bugs” [7].
• Adapted Metric: We use GitHub’s issue tracking sys-

tem to estimate this. An issue is labeled as a ”bug” if
its title or body includes keywords like ”defect”, ”er-
ror”, ”bug”, ”issue”, ”mistake”, ”incorrect”, ”fault,”
or ”flaw,” and does not include resolution terms such as
”fix” or ”resolve.” This method comes from Vasilescu
et al. [15].

• Calculation: We calculate the defect count by counting
the number of ”bug” issues that were open during each
30-day period.

Mean Time to Recovery (MTTR) (RQ3)
• Original Definition: MTTR is the average time it takes

to restore a service after a production failure [7].
• Adapted Metric: As it is hard to identify production

failures in open-source projects, we adapted MTTR to
measure the average time to fix ”bug” issues.

• Calculation: We first calculate the time taken to solve
each individual ”bug” issue (as identified in RQ2) that
was closed during a specific period. MTTR for that pe-
riod is the average of these solve times.

solve time = time issue is closed− time issue is created
(3)

3.4 Data Analysis
To examine the relation between documentation practices and
key performance indicators, we used a statistical modeling
approach designed for longitudinal panel data with possibly
non-linear relationships. The main method for all three re-
search questions was the Generalized Additive Mixed Model
(GAMM). We chose GAMMs for several important reasons.
Non-Linearity The effect of documentation on perfor-
mance metrics is not always linear. For instance, the ben-
efit of extending documentation may reduce after a certain
point. GAMMs can represent these complex, non-linear pat-
terns with spline functions, offering a more flexible and real-
istic model of the data.
Project-Specific Effects Every open-source project has
unique baseline characteristics. For example, one project may
regularly update their documentation and have an update ra-
tio of around 35% consistently, with peaks around 60%. For
another repository, it might be more typical to have an update
ratio of 20% with spikes at 40%. If we do not consider these
differences, it could lead to inaccurate results. By adding the
project’s identity as a fixed effect term (f(project id)) in
our models, we can account for these project-specific differ-
ences. This enables us to focus on the impact of changes in
documentation within each project over time.
Different Data Distributions Our dependent variables
(KPIs) have different statistical properties. For count data
like delivery frequency (RQ1), we used a Poisson GAMM.
For the other KPIs, which were highly skewed, such as defect
count and MTTR, we applied a logarithmic transformation



Table 2: Summary of the Poisson GAMM for RQ1. The dependent
variable is delivery frequency.

Feature EDoF P-value
s(Doc. Completeness Score) 8.2 <0.001
s(Time Interval) 8.7 <0.001
f(Project ID) 629.0 <0.001

(log(x+1)). This was done to stabilize the variance and nor-
malize the distribution. We then analyzed this transformed
data using a Linear GAMM, which assumes a Gaussian dis-
tribution.

For each research question, the model took the general
form:

KPI ∼ s(documentation metric) + s(time interval) +
f(project id)

where s() denotes a smoothing spline function. This model
lets us evaluate the partial effect of the documentation metric
on the KPI, while also controlling for overall time trends and
project-specific baselines. For time periods where we could
not calculate an independent variable because there was no
activity, such as no commits or releases, we replaced the value
with 0. We carried out the analysis in Python using the pygam
library. The results will be presented in the next section.

4 Results
In this section, we will present the findings from our statisti-
cal analysis. For each question, we give a summary table of
the fitted Generalized Additive Mixed Model (GAMM). This
table shows the statistical significance and the type of rela-
tionships found. Next, we include a partial dependence plot.
This plot showcases how the documentation metric impacts
the corresponding key performance indicator, after account-
ing for the other variables in the model.

4.1 RQ1: Documentation Completeness and
Delivery Frequency

To answer our first research question, we aimed to observe
how our documentation completeness score affects delivery
frequency by using a Poisson GAMM. The model fit well
and explained a significant portion of the variance in the data
(Pseudo R-Squared = 0.84).

The summary of the GAMM results can be seen in Table 2.
All terms in the model were statistically significant predictors
of delivery frequency (p <0.001). The documentation com-
pleteness score had an effective degrees of freedom (EDoF)
of 8.2. This value is much greater than 1. It shows that the re-
lationship between documentation completeness and delivery
frequency is complex and non-linear. A simple linear corre-
lation would not be able to capture completely.

The nature of this non-linear relation is visualized in the
partial dependence plot in Figure 2. The plot showcases the
predicted delivery frequency as a function of the standardized
documentation completeness score, after accounting for all
other variables in the model.

For most projects, the documentation score falls within a
range of standardized values between -3.0 and +3.0. Here,

Figure 2: Partial dependence plot for the documentation complete-
ness score. The y-axis shows the predicted effect on delivery fre-
quency. The solid black line is the predicted relationship, the dashed
red lines represent the 95% confidence interval, and the purple rug
plot at the bottom shows the distribution of data points.

there is a positive but modest link to delivery frequency. This
indicates that keeping a basic level of documentation, such as
having a README, contributing guidelines, and some code
comments, is helpful. However, it may not be enough by itself
to significantly speed up a project’s development cycle.

On the other hand, a clear tipping point occurs with scores
greater than +3.0. At this level, the investment in documen-
tation starts to pay off, resulting in a noticeable increase in
delivery frequency. This indicates that the documentation has
reached a ”critical mass”, changing how the team operates.

In summary, our analysis addresses RQ1 by showing a
clear, non-linear relationship. Delivery frequency increases
slightly with basic documentation. However, it speeds up
significantly once documentation completeness exceeds a
’tipping point’ of +3.0. The main takeaway is that excel-
lent documentation serves as a powerful tool for develop-
ment. It likely goes beyond simple descriptions and ac-
tively reduces problems for developers by speeding up on-
boarding, strengthening their understanding of the code base,
and allowing them to make changes more quickly and confi-
dently. Therefore, while basic documentation is good prac-
tice, teams aiming to increase their delivery speed should fo-
cus on achieving a high standard of documentation quality, as
this is where the real benefits come from.

4.2 RQ2: Documentation Update Ratio and Defect
Count

For our second research question, we looked at the relation
between the documentation update ratio and the number of
open defects. Because the defect count data was skewed, we
used a logarithmic transformation (log(x+1)) and modeled
the outcome with a Linear GAMM. The overall model fit was
very high, achieving a Pseudo R-Squared of 0.96.

Table 3 shows the summary of the model’s terms. All terms
included were highly significant predictors (p <0.001). The
documentation update ratio has an effective degrees of free-
dom (EDoF) of 7.1. This value is much greater than 1, which

~


Table 3: Summary of the Linear GAMM for RQ2. The dependent
variable is log(defect count + 1).

Feature EDoF P-value
s(Doc. Update Ratio) 7.1 <0.001
s(Time Interval) 7.9 <0.001
f(Project ID) 636.6 <0.001

Figure 3: Partial dependence plot for the documentation update ra-
tio. The y-axis shows the predicted effect on log(defect count + 1).
The solid black line is the predicted relationship, the dashed red lines
represent the 95% confidence interval, and the purple rug plot shows
the data distribution.

confirms that the relationship between how often documenta-
tion updates occur and the defect count is complex and non-
linear.

This non-linearity appears in the partial dependence plot in
Figure 3. The plot displays the predicted effect on the log-
transformed defect count. It shows a complex, wave-like pat-
tern that indicates the relationship is very contextual.

The analysis shows an interesting and not immediately
clear link between how often documentation is updated and
the quality of software. The results indicate that the goal is
not just to increase the documentation update ratio, but to
keep it within a ”healthy” range.

The projects with the lowest defect counts tend to have
20% to 55% of their commits focused on documenta-
tion changes. This ”sweet spot” probably reflects a well-
developed and cohesive process where documentation is reg-
ularly updated alongside code. The rug plot at the bottom of
the chart supports this view, showing that many project inter-
vals fall within this effective range, especially between 20%
and 40%. Additionally, the narrow confidence intervals sug-
gest that the model is statistically confident about this positive
impact.

Additionally, the model shows that going to either extreme
is linked to a higher defect count. A low update ratio (<20%),
which the rug plot indicates as quite common, is associated
with a higher number of defects. The model is confident in
this finding, suggesting that allowing documentation to be-
come outdated actively contributes to lower software quality.
On the other hand, a very high update ratio (>55%) is related

Table 4: Summary of the Linear GAMM for RQ3. The dependent
variable is log(MTTR + 1).

Feature EDoF P-value
s(Release Doc. Size) 7.9 0.685
s(Time Interval) 7.9 <0.001
f(Project ID) 636.8 <0.001

to the highest number of defects. This seemingly surprising
result is explained by the rug plot and confidence intervals.
The rug reveals that such high ratios are uncommon. Instead
of a standard practice it might rather be a sign of underlying
project issues, such as a major refactoring. While the confi-
dence intervals widen in this upper range due to limited data,
the upward trend is statistically significant (p <0.001) and
clearly shows that this situation is problematic.

Therefore, in response to RQ2, our findings indicate that
documentation update frequency has a complex, non-linear
correlation with defect count. There is a ’sweet spot’ between
a 20% and 55% update ratio that corresponds to the lowest
number of defects, suggesting this range represents a healthy
project rhythm.

4.3 RQ3: Release Documentation and Mean Time
to Recovery

For our final research question, we observed how the size
of release documentation affects mean time to recovery
(MTTR). As the MTTR data was skewed (similarly to defect
count), we used a logarithmic transformation (log(x+1))
and applied a Linear GAMM. The overall model fit was mod-
erate, with a Pseudo R-Squared of 0.50.

The results of the GAMM, summarized in Table 4, show
a clear and important finding. The control variables for time
and project identity were highly significant. However, the
independent variable of interest, release documentation size,
had no statistically significant relationship with MTTR (p =
0.685).

The partial dependence plot in Figure 4 visually confirms
this lack of a significant effect. The plot showcases the
predicted effect of release documentation size on the log-
transformed MTTR.

The estimated effect, shown by the black line, remains
close to zero throughout the data range. A zero effect on
the y-axis indicates no impact on the log-transformed MTTR.
Additionally, the 95% confidence interval, represented by the
red dashed lines, is wide and always includes the zero line.
This visual pattern suggests a non-significant result. It likely
stems from random noise in the data, rather than a true rela-
tionship.

The rug plot demonstrates that the model had enough data,
particularly for projects with average to above-average re-
lease documentation sizes, indicated by scores from -1.0 to
+2.0. The lack of a significant effect, despite this data, rein-
forces the conclusion.

Answering RQ3, our analysis found no statistically signif-
icant relationship between the volume of release documenta-
tion and the mean time to recovery. Practically, increasing
the amount of documentation in a release does not seem to



Figure 4: Partial dependence plot for release documentation size.
The y-axis shows the predicted effect on log(MTTR + 1). The solid
black line is the predicted relationship, the dashed red lines represent
the 95% confidence interval, and the purple rug plot shows the data
distribution.

help teams restore service faster. This implies that for inci-
dent response, the overall size of release notes is not the key
factor. Other types of documentation or the actual content
might serve as better indicators. In general, teams should be
careful about prioritizing documentation volume as a strategy
for enhancing system stability and recovery speed.

5 Discussion
Our research aimed to measure the effect of documentation
on key performance indicators, going beyond the belief that
it is simply ”important.” The findings show that the relation-
ship is complex, dependent on context, and not necessarily
straightforward. This suggests that the ”how” and ”when” of
documentation are more important than just the amount.
Quality, Rhythm, and Purpose over Volume Our analy-
sis shows a ”tipping point” where detailed, high-quality doc-
umentation changes from helping with maintenance to di-
rectly increasing delivery frequency. This supports the views
of practitioners who believe that well-made documentation
reduces cognitive load and simplifies development [5] [16].
Having basic files is good practice. However, reaching a high
standard in documentation seems to significantly boost team
development speed.

This is supported by our finding of a ”sweet spot” for keep-
ing documentation up to date. A documentation update ratio
of 20-55% relates to the lowest defect counts. This shows that
regularly updating documentation with code is important for
quality. Going outside this range signals issues. A low ratio
shows outdated documentation that can confuse developers.
On the other hand, a very high ratio may be a symptom of
project instability, like a major refactoring, rather than being
a direct cause of defects.

Finally, our finding about release note size and mean
time to recovery (MTTR) shows the importance of purpose.
Lengthy release notes do not help developers solve problems.
Instead, the content should be clearer, or other documents
might work better.

Implications and Future Directions These findings offer
actionable insights for both practitioners and researchers.

For Practitioners: First, they should focus on good, thor-
ough documentation to cross the ”tipping point” and speed
up delivery, instead of just meeting a minimum standard.
Second, they should track the documentation update ratio
as a measure of project health. A steady, moderate ratio
shows healthy practices, while extremes could suggest tech-
nical debt or project issues. Lastly, they should not depend
on release notes; instead, they should turn to technical docu-
mentation for quick recovery.

For Researchers: There are new opportunities for diving
deeper into the topic. Future studies could use NLP to look
at the content and quality of documentation, or apply causal
inference models to go beyond correlation. Additionally, ex-
panding the scope to include documentation on external plat-
forms, like wikis and ReadTheDocs, presents both a major
challenge and an opportunity.

Threats to Validity This study, like any empirical research,
faces threats to its validity. We outline the most important
threats and our strategies to address them below. These are
organized by internal, construct, and external validity.

Threats to Internal and Construct Validity A major
threat to construct validity is how we defined important con-
cepts. For example, our metrics for defect count and MTTR
rely on finding ”bugs” through keyword analysis of GitHub
issues. This method can yield unreliable results because the
classification of issues may vary. A study by Herzig et al.
[25] revealed that approximately one-third (33.8%) of issues
marked as ’bugs’ are frequently misclassified. Although we
used standard keyword filtering techniques to minimize this
problem, some mislabeling is unavoidable, which adds noise
to our dataset. Additionally, our measurement of documen-
tation only includes items found in the Git repository, such
as README files, code comments, and release notes. This
method does not take into account documentation stored on
external platforms like wikis or ReadTheDocs. Because of
this, we may underestimate the total documentation effort of a
project. We decided to focus on standardized, repository arti-
facts to establish a consistent and comparable baseline across
all the projects in our study. Lastly, a minor threat to internal
validity is data stability. Project artifacts such as release notes
and commits can be changed even after they are created. We
believe such changes are infrequent and doa not systemati-
cally bias the results within our analysis period.

Threats to External Validity We conducted our study on
a specific group of open-source projects from GitHub. These
projects had to meet several criteria: CI through GitHub Ac-
tions, minimum level of activity, and developed in one of
seven popular programming languages. This sampling was
necessary to ensure data quality and relevance to our research
questions, but it limits the scope of our conclusions. As a re-
sult, our findings may not apply to all software projects. We
should be careful when applying these results to different set-
tings, such as proprietary or closed-source projects, projects
in different fields or less common programming languages, or
projects that do not use a formal CI process.



Responsible Research Our study was conducted using
publicly available data from GitHub, and our analysis was
performed at the project level. To ensure transparency and
enable replication, all scripts and data are available.

• The data collection tool is available at: https://doi.org/
10.5281/zenodo.15711349

• The final dataset is available at: https://doi.org/10.5281/
zenodo.15713021

Concluding remarks This study aimed to examine the im-
pact of documentation practices on key performance indi-
cators in Continuous Integration open-source projects. We
looked at 670 repositories to go beyond the common be-
lief that documentation is important and offer specific, data-
driven evidence of its effects.

Our analysis revealed three important findings. First, we
found a ”tipping point” where having complete documenta-
tion goes from being a helpful practice to a key factor in in-
creasing delivery frequency. Second, we discovered a ”sweet
spot” for maintaining documentation. Projects that spent be-
tween 20% and 55% of their commits on updating documen-
tation had the lowest defect counts. This suggests that this
range indicates a healthy development rhythm. Finally, our
research showed no clear link between the length of release
notes and faster mean time to recovery. This indicates that
having more content is not a replacement for clear and usable
technical documentation when fixing problems.

Collectively, these results support a central theme. The ef-
fectiveness of documentation depends on its quality, rhythm,
and purpose, rather than its sheer volume. This research of-
fers useful metrics that give developers and teams a clearer
understanding of how to use documentation. It is not just an
artifact for maintenance, but rather it should be utilized as a
way to improve software delivery and quality.
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