
Storage and retrieval mechanisms in mobile spam
blocking applications

V.G.J. de Jong
Supervisor(s): Dr. Apostolis Zarras, Dr. Yury Zhauniarovich

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1

Abstract

Applications on Android phones which block spam calls could be argued a necessity for people
unfortunate enough to have their number on spam lists. Third-party applications provide exten-
sive, up-to-date blocklists to screen incoming calls. This paper analyses and describes how these
types of applications store and access their data. First we analyse which applications keep their
data offline on disk, then we take a look at applications which use the internet to query an in-
coming phone call. We found four applications use a combination of both, two applications using
exclusively online resources and four applications using offline resources only.

1 Introduction
Spam calls are a common frustration for many
people. According to Hiya[1], on average a person
receives 16 scam calls a month. After the prolif-
eration of mobile phones in the past decade, they
are often seen as a personal device with the phone
number often only being known to parties involved
in the life of the person. Therefore, it is hard to
imagine that an incoming spam call will not be
answered. A scam call does not bring any value to
the callee, in contrast, it may be a source of anxi-
ety and expenses. What is even more frightening,
in 75% of cases, scam callers knew some personal
information about their victims[3]. Moreover, by
spoofing the Caller ID information, they trick their
victims to believe that the call is authentic. For
instance, 32% of all victims who lost more than
$1000 due to scam calls reported that they had
received a call from a known business, e.g., their
bank[3]. Not surprisingly, unwanted calls is the
number one source of complaints to the Federal
Communications Commission (FCC) and Federal
Trade Commission (FTC) in the United States[1].
Solutions to this problem are popular, as can be
seen by the millions of downloads apps like Hiya
have according to the Google play store[10].

The research question posed in this paper an-
swers how several popular applications store and
retrieve the information available and how they
differ from one another. This paper will investi-
gate those mechanisms and highlight differences
between choices made, as well as their positives
and negatives.

2 Background
Spam call blockers function similarly to other
android applications. Android applications are
commonly written in Kotlin, which is in turn
build on Java and compiled to a special variant
of the Java bytecode, which is able to run on the
Android Runtime (ART). The ART provides sev-

eral advantages for Android applications such as
a custom garbage collection algorithm and spe-
cialized debugging tools. Android applications
are modified on install time using the Ahead of
Time compiler to optimize the code[2] and uses a
Just-In-Time compiler to optimize further during
runtime[2].

Figure 1: Truecaller ask-
ing for permissions

Where spam call
blocking applications
usually differ from
other Android appli-
cations is in the Ap-
plication Program-
ming Interface (API)
used. These appli-
cations tend to hook
into the phone and
SMS services in order
to facilitate their advertised blocking features. An
example of this can be seen in figure 1, where
Truecaller asks for permission to manage phone
calls.

An incoming call will be processed by the spam
blocking application even before it displays the call
screen and rings the phone. This allows the block-
ing application to make the appropriate decision
based on the data it has whether to allow the call
to go through or to block it. Some applications
overlay the regular incoming call screen with their
own custom call screen. This allows an applica-
tion to verbosely warn the user of any malicious
activity.

3 Methodology

This section of the paper will describe the tools
and setup used to perform the required analysis
for answering the research question for each appli-
cation, as well as referencing a list of the analysed
mobile applications.

2

3.1 Analysed applications

The list of applications is used in the research of
this paper can be found in Appendix A. These ap-
plications are selected as being some of the most
popular at the time of writing this paper. The An-
droid Package Kits (APKs) are obtained through
an online service such as Apkcombo[19]. The
downloaded APK files can be found alongside the
instructions in the Gitlab repository [16].

3.2 Static analysis

The static analysis part of this research covers the
inspection of the source code of the applications
listed in Appendix A. For example, this can mean
reading through the code to find specific methods
which cover functionality offered by an applica-
tion. Tools such as apktool, dex2jar and jadx[20]
can convert an Android application to its source
code and allow it to be analysed. Static analy-
sis allows us to find parts of the code which load
or retrieve the information used to evaluate spam
calls. In section 4 we will discuss why this method
was not chosen as the focus for this paper.

3.3 Dynamic analysis

For the dynamic analysis part we take the ap-
plications and run them in a controlled environ-
ment with several tools which allows us deeper in-
sight into the workings of the application. This
method runs the applications with full functional-
ity as they would on a phone in a real world en-
vironment. As a result, we can allow applications
to work as intended and investigate or extract in-
formation from the workings of the applications.

With dynamic analysis, instead of analysing
the code as you would with static analysis, we
analyse the behaviour of the applications and the
artifacts they produce. Using a man-in-the-middle
attack we can intercept and read the network traf-
fic produced by an application The built-in file ex-
plorer of Android Studio allows us to analyse the
files stored by the application on the filesystem.

4 Comparison of analysis
methods

Using dynamic analysis instead of static analysis
has several advantages for the research question

described in this paper. First, as every application
is made differently by various people using distinct
tools and frameworks, there are significant differ-
ences in source code and structure. Furthermore,
several applications have a large code base, read-
ing and understanding the source code is a serious
undertaking.

Using dynamic analysis on the other hand, yields
tangible results rapidly. A basic setup using only
Android Studio already allows the retrieval of
databases on disk, which might store information
used to block spam calls. Of course, not all appli-
cation (only) use databases on disk and therefore
this method only is inadequate.

Often applications use the internet to commu-
nicate findings and query data. To analyse this
data, tools such as MITMtool can be used to this
end. Several applications make use of an internet
connection to evaluate whether an incoming call is
a spam call. Many people in the target audience
of these applications have a data plan, according
to Statista [5] and it seems application developers
make use of this fact. In many cases applications
make network calls to an endpoint with for exam-
ple the time, location and phone number of the
incoming call and receive information about the
number.

Getting the same results using static analysis is
prohibitively more work. It takes careful recon-
struction of each step in the code and likely par-
tial reverse engineering of the endpoint API to get
similar results, if possible at all. Many apps re-
trieve an API key during runtime or ask you to
login first, which further complicates the reverse
engineering. In such cases dynamic analysis shows
its strengths and advantages.

5 Setup and results

5.1 Static analysis

Using the setup described in the project
repository[18] results in readable source code
which can be analysed by hand or using tools.
However, it should be noted, this method results
in code which cannot be compiled back into a us-
able APK to install and run on a device or em-
ulator. This is a limitation of dex2jar and jadx.
To generate source code which can be recompiled,

3

apktool is run with different option flags on the
command line. This results in Smali code, which
is a human-readable representation of the byte-
code run on the ART. This Smali code can, if so
desired, be recompiled back into an APK and in-
stalled on a machine. This allows modifications to
the Smali code to be run and tested on the An-
droid emulator.

5.2 Dynamic analysis
For dynamic analysis, the official Google
emulator[28] is used to run each application like it
would in a real world environment. The emulator
offers a complete integration and mocks several
features like internet or WiFi, SMS, calling and
other services by using virtual sensors and a vir-
tual SIM card. The emulator allows interaction
with the system through keyboard and mouse,
which is automatically mapped to the correspond-
ing input for Android.

Android Debug Bridge (ADB)[29] is used to
interact with the emulator through the command
line and allows scripting to aid analysis.

Each application analysed is first installed into a
clean install of the emulator, since several apps
conflict with each other and will ask you to delete
the other app first before they will function as in-
tended. Applications can easily be installed using
the ADB, provided the APK has been obtained.

After the application has been installed, it can
be interacted with as if it were installed on a
smartphone and several steps for dynamic anal-
ysis can already be taken:

1. Use the integrated calling functionality of
the emulator to emulate a call using a known
scamming phone number. If the application
detects the call without having to add the
number to the applications blocklist manu-
ally, the application has some sort of means
to detect spam calls. Numbers for test-
ing purposes can be found in the paper’s
GitLab project under the section dynamic-
analysis[17].

2. The files the application works with are
saved on disk and can be accessed using An-
droid Studio’s Device File explorer. Usually,
files used by an application are stored in the
/data/data/com.application.name direc-
tory.

5.2.1 Analysis of on-disk databases

After extracting an applications’ files using the
method described above, we can analyse the
databases the application uses (if any) by investi-
gating the SQLite databases found in the directory
databases/ as can be seen in figure 2.

Figure 2: File type detection shows the Android ap-
plication’s databases are SQLite 3.x

Using a visual database tool such as
SQLitebrowser[30] we can investigate databases
and determine their purpose. For several apps it
can be determined these use offline means of evalu-
ating incoming calls as these store databases with
many numbers and include information on these
numbers. For example what spam call category
they belong to. An excerpt from ShowCaller’s
database can be seen in figure 3, which shows
information about known spam call numbers.

Figure 3: Excerpt from ShowCaller’s offline-
data.sqlite database. Phone numbers are hashed.

5.2.2 Analysis of network traffic

Several apps are querying the data necessary to
evaluate incoming calls on demand, thus a setup
is necessary to intercept and log calls over the
network. Fortunately, all applications discussed
in this paper use secure means of communication
(HTTPS/TLS) to send data, which might contain
personal information. However, this does mean
the traffic is encrypted and thus not immediately
readable for analysis. The setup needs to support
intercepting and decrypting network traffic.

The tool used in this paper for this setup is
MITMproxy[31], a popular tool which supports
all requirements listed above. MITMproxy uses a
self-signed root certificate to be seen as a trusted
endpoint to which the application can connect.
The tool is able to decrypt TLS traffic, log it and

4

forward it to the actual destination.

To properly use this tool, a more sophisticated
setup is needed to configure the Android emula-
tor to properly connect through the proxy without
certificate errors.

The man-in-the-middle setup in this paper was
configured using the steps provided in the dynamic
analysis section of the project repository[17] and
is largely based on the documentation of MITM-
proxy, as the tool provides an excellent guide
on how to configure TLS decryption on Android
machines[32]. The setup in this paper was con-
structed on an operating system based on the
Linux kernel and an Android emulator with API
level 28. For the CallerID Block application an
Android emulator with API level >28 is necessary.

All traffic from the emulator is routed through
the host machine and with MITMproxy full TLS
decryption and traffic inspection is possible.

5.2.3 Resistance against network analysis:
certificate pinning

Some applications perform additional checks to
ensure the endpoint they are connecting to is legit-
imate. In this case applications use a hardcoded
entry which contains the hashes of allowed TLS
certificates and will only establish a successful con-
nection after the certificate hash has been verified
to be valid.

In this paper, CallApp, employs such a
method. This means further setup is needed be-
fore we are able to inspect the network traffic from
and to this app.

The first attempt at circumventing the pinning
was based on searching and replacing the hard-
coded hashes in the source code with a hash of
MITMproxy’s custom root certificate. This ap-
proach did not seem to work. A second attempt
was made using Frida[24], which provides a dy-
namic method hook approach without requiring
modifications to the source code.

This tool can be used to inject custom scripts
into a process and hook functions using a server
component[25] installed on the Android emula-
tor. Using a custom script[26] provided by HTTP-
toolkit, which hooks common implementations of
certificate pinning, we are able to disable this fea-
ture for CallApp. The exact steps taken to accom-
plish this can be found in the project repository

under dynamic analysis[17].

6 Results

The results obtained after analysing the data re-
trieved with the lab setup are divided into two
parts. The application stores the data used to de-
tect spam calls in structured databases on disk or
the application queries an online resource for each
call and provide online screening. In several cases
applications use both methods, likely to provide
protection in case of no internet access. In figure
4, an overview of the results is shown.

Figure 4: Table of the results for each application

Of all applications analysed in this paper, only
TelGuarder and Hiya do not seem to use offline
methods of detecting possible spam calls.

From these results it is already clear several apps
use both sources on disk and from the internet to
evaluate an incoming call. It is unknown whether
these are used in tandem or whether one method
is preferred over another depending on the circum-
stances. In the following subsections, specific find-
ings for each application are shown.

5

6.1 BelControl
The on disk database is quite limited with only 38
000 entries and not really interesting. The network
calls on the other hand seem to be very verbose,
and while the contents were binary encoded and
not readable, the URLs are.
1 https://www.everycaller.com/api/android/ ⌋

41/en_US/lookup/↪→

2 https://www.everycaller.com/api/android/ ⌋
41/en_US/get_caller/↪→

3 https://www.googleapis.com/plus/ ⌋
v2whitelisted/people/lookup↪→

From the API structure it seems likely some infor-
mation on an incoming call is requested. The last
call to googleapis.com is readable, the request and
response is structured as follows:

These are parsed query paramaters, there
is no payload↪→

includePeople: 1
includeGal: 1
type: phone
fields: kind,items(id,metadata(object ⌋

Type,plusPageType,attributions),names,ph ⌋
oneNumbers(value,type,formattedType,cano ⌋
nicalizedForm),addresses(value,type,form ⌋
attedType),images(url,metadata(container ⌋
)),urls(value),placeDetails,extendedData)

↪→

↪→

↪→

↪→

↪→

includePlaces: 1
callType: incoming
id: [REDACTED] # Phone number

The following response is received.

{
"kind": "plus#peopleList"

}

As in this request the phone number was passed
as an argument. It is plausible information on the
number is requested, although not verifiable in the
response.

6.2 CallApp
CallApp uses a small database on disk contain-
ing United States area codes. This database has
around 190 000 entries. No phone numbers were
found in this database, it seems this database
purely aids in displaying CallerID[34].

After disabling the certificate pinning CallApp is
using, there are no calls to the internet observed.
This is allegedly a feature of the premium tier.

6.3 CallBlocker

CallBlocker does not seem to offer much in terms
of protection against spam callers. Its offline
database has very few entries, about 582 and does
not provide additional functionality by querying
online resources.

6.4 CallerID

CallerID uses a modest database of around 20
000 entries and queries API endpoints on each
incoming call. This applications seemingly uses
a similar binary encoding like BelControl. The
following API endpoints were queried.

1 https://app.ayamote.com/api/v1/sea.php
2 https://app.ayamote.com/api/v1/searep.php
3 https://ct.ayamote.com/c_n/api/v1/ ⌋

cnwik.php↪→

However, this API is formed differently and
uses the application/x-www-form-urlencoded
content-type. This allows us to view the key, even
if most of the data remains unreadable.

The following request is an example.

cc: 44
uid: 25eba4914c851913d122351889968f1d
tel_number: K0S3Rzh4RHczPmM1NC==
app_version: 1.6.5
stamp: 9eae757ee95fc7bcf3d835e2b862ab98
device: sdk_gphone_x86_64_arm64
default_cc: 1
platform: android

With the following response.

ezL2hGG2gbMjQl41NEzmdHXvb263eaJmelM6JkLwInby ⌋
gm2jgJ91bZ1fcpYxYnX1MjpkLmwjdpJtaULAIjKv ⌋
MmG4bbRielM6JkLwInBzdXKjgK9zKmsiJkzmdInz ⌋
dSJ8LmItKqV5dIYjbHHldWxkRmIjNFNmZYowZGBo ⌋
gnKxfp9td5giPlDwIoTsfWWhf7RidaEiPkLmLDLw ⌋
g2dkRmJUbZJyZ4jkRnHsfGRkiU==

↪→

↪→

↪→

↪→

↪→

While it would seem at first glance the data is
base64 encoded, decoding does not yield readable
data.

6

6.5 ShouldIAnswer

ShouldIAnswer uses an offline database to detect
spam calls, which is downloaded at startup from
the following endpoint:

https://aapi.shouldianswer.net/srvapp/ ⌋
get-database/cached?_dbVer=1991↪→

The file that is downloaded as a result,
cached.gzip, unfortunately does not seem to
reveal a parsable database after extraction. How-
ever, the file is 12 megabytes and will likely pro-
vide data on 100 000 - 200 000 phone numbers if
we extrapolate data sizes in relation to the other
applications in this paper.

ShouldIAnswer does not perform extra queries
to online resources whenever an incoming call is
made.

6.6 ShowCaller

ShowCaller has access to an offlinedata.sqlite
database on disk which provides information on
about 50 000 phone numbers.

When an incoming call is detected, ShowCaller
performs several calls to the internet, all of
which use the same binary as found with Cal-
lerID. To the following API endpoints, similar
application/x-www-form-urlencoded content-
type requests are made.

1 https://app.show-caller.com/api/v1/ ⌋
sea.php↪→

2 https://app.show-caller.com/api/v1/ ⌋
cheact.php↪→

3 https://app.show-caller.com/api/v1/ ⌋
seacomcousub.php↪→

The following request is an example.

cc: 1
uid: 11093cb4f57c99e5fe68f6a92393cf3e
tel_number: 00447868726250
is_contacts: 1
stamp: 103c6c8d8c6f6cf54fcb50e31971f78d
device: android
version: 2.2.5
default_cc: 1
cid: 1

This request produces a similar response as the
one made by CallerID. However, in contrast with

CallerID it seems ShowCaller does not apply the
encoding to the request, as the parameters like
the phone number are plain-text. The response is
similar to the response from CallerID.

6.7 StopCall
StopCall downloads their entire database on
startup from their API endpoint. It contains
around 130 000 entries in total and the following
endpoints are observed on startup.

1 https://srv22.mglabapps.host/app2/ ⌋
app_device.php↪→

2 https://srv22.mglabapps.host/app2/ ⌋
app_download.php↪→

No network calls are being made when an incom-
ing call is detected.

6.8 TelGuarder
TelGuarder is the first application which takes
an all online approach. No offline data could be
found, but TelGuarder queries each incoming call
on its API endpoints. Such requests are made to
the following API endpoint:

https://tgedgeapi.telguarder.com/v2/Search/ ⌋
NumberLookup/Mobile↪→

The request looks like this.

{
"keepProportions": true,
"logoHeight": 132,
"logoWidth": 132,
"numbers": [

"00447868726250"
],
"resizeLogo": true

}

The response to this request is large and can be
found here.

Furthermore, it seems TelGuarder has a large,
community driven system where users mark num-
bers as spam themselves and can even leave com-
ments. These comments are then queried from the
following endpoint:

https://api.advista.no/Report/Number/ ⌋
Comments/Mobile↪→

An example of a request and response to retrieve
these comments can be found here.

7

https://gitlab.com/Vgjdejong/spamcallblockingapps-analysis/-/tree/main/applications/telguarder
https://gitlab.com/Vgjdejong/spamcallblockingapps-analysis/-/tree/main/applications/telguarder

6.9 TrueCaller

TrueCaller uses its own APIs to query for each in-
coming call. Such requests are made to the follow-
ing endpoint. Note the presence of the incoming
phone number on the second line.

https://search5-eu.truecaller.com/v2/ ⌋
search?q=447868726250&countryCode=NL& ⌋
type=2&placement=CALLERID%2CAFTERCALL% ⌋
2CDETAILS&adId=f27b7cdd-660e-473a-95f8- ⌋
839885ec1465&encoding=json

↪→

↪→

↪→

↪→

A large amount of information is returned, an ex-
ample of a full response can be found here.

But what makes TrueCaller the most interesting
application so far is the offline detection method
present. In insights.db there is a table called
catagorizer_probability which contains key-
words which are assigned probabilities. TrueCaller
seemingly uses these keywords and probabilities
to automatically detect incoming SMS spam mes-
sages without an online lookup. TrueCaller is the
only application analysed which offers such func-
tionality. This could not be tested as this is mar-
keted as a premium feature. Figure 5 shows sev-
eral entries in the catagorizer_probability ta-
ble.

Figure 5: Snippet from TrueCaller’s database table
with probabilistic entries

6.10 Hiya

Hiya does not use any sort of offline method for
detecting incoming spam calls, but just like Tel-
Guarder it is exclusively online. Each incoming
call is screened by Hiya on their own API end-
points. The following endpoints were found.

1 https://auth.edge.hiyaapi.com/v2/auth/ ⌋
token↪→

2 https://callerprofile.edge.hiyaapi.com/ ⌋
v3/phone_numbers/eventProfile↪→

Hiya immediately queries their APIs with the fol-
lowing request on an incoming call.

{
"event": {

"direction": "Incoming",
"isContact": false,
"phone": {

"meta": {
"countryCode": "US",
"isShortCode": false,
"isValid": false,
"parserVersion": "5.0.2",
"rawPhone": "00447868726250"

},
"phone": "1/00447868726250"

},
"timestamp":

"2022-05-02T16:11:26.559Z",↪→

"type": "EventProfileCallEvent"
},
"profileScope": {

"identity": true,
"registered": true,
"reputation": true

}
}

The following response was received.

{
"attribution": {

"attributionImageUrl": ["REDACTED"],
"attributionName": "Hiya",
"attributionUrl": ["REDACTED"]

},
"callId": ["REDACTED"],
"displayName": "Suspected Spam",
"profileDetails": {

"entityType": "UNKNOWN",
"lineTypeId": "other"

},
"profileIcon": "WARN",
"profileTag": ["REDACTED"],
"reputationLevel": "SPAM",
"verified": false

}

Several parts were redacted to keep the response
compact. The full response can be viewed here.

7 Responsible research

The source material used in this paper is in all
cases copyright restricted and care is taken into
respecting the terms of service. When interacting

8

https://gitlab.com/Vgjdejong/spamcallblockingapps-analysis/-/tree/main/applications/truecaller
https://gitlab.com/Vgjdejong/spamcallblockingapps-analysis/-/tree/main/applications/webascender-callerid

with external 3rd parties, no action was performed
with malicious intent.

8 Discussion

While the results from the previous section cover
the storage location of the data, it does not discuss
the availability, quality or effectiveness of the data
and their implementations in the applications.

Rough metrics about the size of the data, the
presence of additional network functionality and
amount of record entries in database are given
in this paper, but these might not reflect the ac-
tual performance of an application in a real world
setting. Further research can take in account
and compare the data between apps to gauge ef-
fectiveness and discuss whether installing a 3rd
party application is worth it.

All the applications analysed in this paper are
available free of charge and as a consequence they
transmit large amounts of data to advertising end-
point, which can be observed in the captured net-
work traffic in the projects repository [16]. Fur-
ther research might delve deeper into this subject
and analyse how personal data is used by these
applications.

9 Conclusion
The analysis of where each application stores its
data was successful for each of the applications re-
searched. Quite a large range of the amount of
data available to each application was observed,
as some application have access to significant more
data and methods than others.

It is interesting to see some applications use
a trusted approach of both offline and online
databases, which ensures up-to-date information
when connected to the internet, while retaining
functionality when offline. However, some appli-
cations go all in on online data-sets only, seem-
ingly expecting the user to be connected to the
internet when the cell phone has reception. Other
applications only use offline databases, but these
may under-perform compared to their online coun-
terparts as offline databases are not updated as
often and do not provide the flexibility of online
databases.

TrueCaller even managed to implement some
probabilistic method for detecting spam/scam
SMS messages, a method which no other appli-
cation uses. It is interesting to see applications
go to such lengths to perform their task. While
several applications analysed definitely fall in this
category, others lack a large dataset or online fea-
tures.

As noted in the discussion section, the effec-
tiveness of the data is not taken into consideration
in this paper.

References
[1] Hiya, "State of the Phone Call: Half Yearly Report 2019" (2019),

https://assets.hiya.com/public/pdf/HiyaStateOfTheCall2019H1.pdf?v=6b7b682837c56c47656c012c1da0e6a0

[2] Android Runtime (ART) and Dalvik. (2020). Android Open Source Project.
https://source.android.com/devices/tech/dalvik#AOT_compilation

[3] First Orion, "Scam Call Trends and Projections Report", Summer 2019, http://firstorion.com/wp-
content/uploads/2019/07/First-Orion-Scam-Trends-Report_Summer-2019.pdf

[4] CTIA, "Robocall Abatement Apps for Android Devices" (2020), https://api.ctia.org/wp-
content/uploads/2020/01/robocall-resources-for-android-2020.pdf

[5] Ceci, L. (2022, February 22). Mobile internet usage worldwide - statistics & facts. Statista. Re-
trieved June 19, 2022, from https://www.statista.com/topics/779/mobile-internet/

[6] Call Control - SMS/Call Blocker. Block Spam Calls! - Apps on
Google Play. Google Play Store. Retrieved June 19, 2022, from
https://play.google.com/store/apps/details?id=com.flexaspect.android.everycallcontrol

9

[7] CallApp: Caller ID & Recording - Apps on Google Play. Google Play Store. Retrieved June 19,
2022, from https://play.google.com/store/apps/details?id=com.callapp.contacts

[8] Call Blocker - Stop spam calls - Apps on Google Play. Google Play Store. Retrieved June 19, 2022,
from https://play.google.com/store/apps/details?id=com.unknownphone.callblocker

[9] Caller ID, Phone Dialer, Block - Apps on Google Play. Google Play Store. Retrieved June 19, 2022,
from https://play.google.com/store/apps/details?id=com.callerid.block

[10] Hiya - Call Blocker, Fraud Detection & Caller ID - Apps on
Google Play. Google Play Store. Retrieved June 19, 2022, from
https://play.google.com/store/apps/details?id=com.webascender.callerid

[11] Should I Answer? - Apps on Google Play. Google Play Store. Retrieved June 19, 2022, from
https://play.google.com/store/apps/details?id=org.mistergroup.shouldianswer

[12] Stop Calling Me - Call Blocker - Apps on Google Play. Google Play Store. Retrieved June 19,
2022, from https://play.google.com/store/apps/details?id=com.mglab.scm

[13] Showcaller: Caller ID & Block - Apps on Google Play. Google Play Store. Retrieved June 19,
2022, from https://play.google.com/store/apps/details?id=com.allinone.callerid

[14] Spam Call Blocker - telGuarder - Apps on Google Play. Google Play Store. Retrieved June 19,
2022, from https://play.google.com/store/apps/details?id=com.telguarder

[15] Truecaller: Caller ID & Block - Apps on Google Play. Google Play Store. Retrieved June 19, 2022,
from https://play.google.com/store/apps/details?id=com.truecaller

[16] de Jong, V. G. J. (2022, June 19). Victor De Jong / SpamCallBlockingApps-Analysis. GitLab.
Retrieved June 19, 2022, from https://gitlab.com/Vgjdejong/spamcallblockingapps-analysis

[17] de Jong, V. G. J. (2022, June 19). Victor De Jong / SpamCallBlockingApps-Analysis. Git-
Lab. Retrieved June 19, 2022, from https://gitlab.com/Vgjdejong/spamcallblockingapps-analysis/-
/tree/main/dynamic-analysis

[18] de Jong, V. G. J. (2022, June 19). Victor De Jong / SpamCallBlockingApps-Analysis. Git-
Lab. Retrieved June 19, 2022, from https://gitlab.com/Vgjdejong/spamcallblockingapps-analysis/-
/blob/main/applications/README.md

[19] APK Downloader - Download APK for Android [2022]. (2022). APKCombo.Com. Retrieved June
19, 2022, from https://apkcombo.com/apk-downloader

[20] Arnatovich, Y. L., Wang, L., Ngo, N. M., & Soh, C. (2018). A comparison of android reverse
engineering tools via program behaviors validation based on intermediate languages transformation.
IEEE Access, 6, 12382-12394.

[21] Tumbleson, C. (n.d.). GitHub - iBotPeaches/Apktool: A tool for reverse engineering Android apk
files. GitHub. Retrieved June 19, 2022, from https://github.com/iBotPeaches/Apktool

[22] Pan, B. (n.d.). GitHub - pxb1988/dex2jar: Tools to work with android .dex and java .class files.
GitHub. Retrieved June 19, 2022, from https://github.com/pxb1988/dex2jar

[23] GitHub - skylot/jadx: Dex to Java decompiler. (n.d.). GitHub. Retrieved June 19, 2022, from
https://github.com/skylot/jadx

[24] Frida. (2022, February 25). Frida - A World-Class Dynamic Instrumentation Framework. Retrieved
June 19, 2022, from https://frida.re/docs/android/

10

[25] Releases - frida/frida. (2022, June 3). GitHub. Retrieved June 19, 2022, from
https://github.com/frida/frida/releases

[26] GitHub - httptoolkit/frida-android-unpinning: A Frida script to disable SSL certifi-
cate pinning in a target application. (n.d.). GitHub. Retrieved June 19, 2022, from
https://github.com/httptoolkit/frida-android-unpinning

[27] Download Android Studio and SDK tools. (n.d.). Android Developers. Retrieved June 19, 2022,
from https://developer.android.com/studio

[28] Run apps on the Android Emulator. (n.d.). Android Developers. Retrieved June 19, 2022, from
https://developer.android.com/studio/run/emulator

[29] Android Debug Bridge (adb). (n.d.). Android Developers. Retrieved June 19, 2022, from
https://developer.android.com/studio/command-line/adb

[30] GitHub - sqlitebrowser/sqlitebrowser: Official home of the DB Browser for SQLite (DB4S) project.
GitHub. Retrieved June 19, 2022, from https://github.com/sqlitebrowser/sqlitebrowser

[31] mitmproxy - an interactive HTTPS proxy. (n.d.). MITMproxy. Retrieved June 19, 2022, from
https://mitmproxy.org/

[32] System CA on Android Emulator. (n.d.). MITMproxy. Retrieved June 19, 2022, from
https://docs.mitmproxy.org/stable/howto-install-system-trusted-ca-android/

[33] System CA on Android Emulator. (n.d.). MITMproxy. Retrieved June 19, 2022, from
https://docs.mitmproxy.org/stable/howto-install-system-trusted-ca-android/#1-prerequisites

[34] Wikipedia contributors. (2022, April 8). Caller ID. Wikipedia. Retrieved June 19, 2022, from
https://en.wikipedia.org/wiki/Caller_ID

[35] Oracle. (n.d.). OpenJDK. OpenJDK. Retrieved June 19, 2022, from https://openjdk.org/

[36] Python Software Foundation. (2022, June 9). Python. Python.Org. Retrieved June 19, 2022, from
https://www.python.org/

Appendices
A List of analysed applications

1. Bel Control [6], sha256: 424d796c267812e91cdabd161f4796d99d1333d673f4f13ec417114a156b180d

2. CallApp [7], sha256: 939d6021aa9d7d857b179205af7f49efa40fb750bac5c4d51615d4366c77762f

3. Call Blocker [8], sha256: baecc852b2f68a949166359e474152b70cb8cc4a070df3933a92d0672e187674

4. CallerId Block [9], sha256: 8bd6439dceae65033d466319098f1cb8d29b13e254ba6f51d45cd1cb264109d9

5. Hiya [10], sha256: c5f0b9050e47abbdd7b8aff1c4ae6a30c0bc5a8a67a5bcfd4eb10ede3bc2a5a0

6. ShouldIanswer [11], sha256: 47742d1bc20854818d8589f0f5e9f0606bccebed79f038d254e0329da13f9979

7. ShowCaller [13], sha256: d36a7286768ad34751a64560707a059b5375699f620465aad44009e443ba3290

8. Stop met mij te bellen [12], sha256: 2ec5fa0cc3f6679347ed00da188a08a458d10a533583c11a891bba2c9421813c

9. TelGuarder [14], sha256: 42a6e65fc96c204dcd4f6f8aa60ab92ce7df2588a8f0a28a1cf940ba0d3c6785

10. TrueCaller [15], sha256: 1617441470c65eb40a6236b8d7ff0933846b21ce9c64661577a613c06ac8ef2a

11

B Tools used
Several tools are used for static and dynamic analysis. As there is little overlap between the 2 methods,
the tools are split as such.

B.1 Static analysis
• apktool[21] V2.6.0

• dex2jar[22] V2.1

• jadx[23] V1.4.1

B.2 Dynamic analysis
• Android Studio[27] V2021.2.1-Patch1

Android Studio Chipmunk | 2021.2.1 Patch 1
Build #AI-212.5712.43.2112.8609683, built on May 18, 2022
Runtime version: 11.0.12+0-b1504.28-7817840 amd64
VM: OpenJDK 64-Bit Server VM by JetBrains s.r.o.
Linux 5.18.1-1-manjaro
GC: G1 Young Generation, G1 Old Generation
Memory: 2048M
Cores: 16
Registry: external.system.auto.import.disabled=true

Current Desktop: X-Cinnamon

• android-tools[27] V31.0.3

• android-sdk-platform-tools[27] V33.0.2-1

• sqlitebrowser[30] V3.12.2

• mitmproxy[31] V8.1.0

• Frida[24] V15.1.24

• frida-server[25] V15.1.24

• frida-script.js[26] commit 91422adeda7982e32d761e7efe6ac95286eb8254

B.3 Operating system
Linux 5.18.1-1-MANJARO #1 SMP PREEMPT_DYNAMIC x86_64 GNU/Linux

B.4 Other tools
Listed here are some of the frameworks the tools above rely on.

• OpenJDK[35] V18.0.1.1

• Python[36] V3.10.4

12

	Introduction
	Background
	Methodology
	Analysed applications
	Static analysis
	Dynamic analysis

	Comparison of analysis methods
	Setup and results
	Static analysis
	Dynamic analysis
	Analysis of on-disk databases
	Analysis of network traffic
	Resistance against network analysis: certificate pinning

	Results
	BelControl
	CallApp
	CallBlocker
	CallerID
	ShouldIAnswer
	ShowCaller
	StopCall
	TelGuarder
	TrueCaller
	Hiya

	Responsible research
	Discussion
	Conclusion
	Appendices
	List of analysed applications
	Tools used
	Static analysis
	Dynamic analysis
	Operating system
	Other tools

