

MSc THESIS

Reliable In-Vehicle FlexRay Network Scheduler Design

Aijie Zhao

 Abstract

CE-MS-2011-05

The rapid developments of the automobile followed with the in-
vehicle applications increase in both number and complexity. Those
automotive technologies bring substantial demands of in-vehicle data
communication. The need for data communication is growing beyond
the capability of the existing automotive network. FlexRay protocol
emerges to adapt the needs of the growing capacity. It is the next
generation automotive communication protocol that offers fast data
rate, reliable and fault-tolerant transmission. The network that uses
FlexRay protocol is called FlexRay network. There are two types of
FlexRay network. Simple FlexRay network is the one uses buses or
active stars to connect the Electronic Control Unit (ECU). Switched
FlexRay network is the one uses network switch to replace the active
star in simple FlexRay network. In this thesis, we first introduce
FlexRay protocol specifications and the real-time scheduling theory
as the background information. Then we discuss the scheduling
problems and configurations in static (ST) and dynamic (DYN)
segments in communication cycle (CC). This thesis presents the
scheduling algorithms for the ST and DYN segment in simple and
switch FlexRay network respectively. The experimental results
obtained from computer simulations show the schedulability of the
switch ST scheduler is far better than the simple ST scheduler. Also,
the results show the worst-case response times of the DYN messages
in switch FlexRay network are shorter than the ones in simple
FlexRay network.

Faculty of Electrical Engineering, Mathematics and Computer Science

Computer Engineering

Mekelweg 4,

2628 CD Delft

The Netherlands

http://ce.et.tudelft.nl/

2011

Reliable In-Vehicle FlexRay Network
Scheduler Design

THESIS

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

by

Aijie Zhao
born in Sichuan, China

Telecommunications
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

i

Reliable In-Vehicle FlexRay Network
Scheduler Design

By Aijie Zhao

Abstract

The rapid developments of the automobile followed with the in-vehicle applications
increase in both number and complexity. Those automotive technologies bring substantial
demands of in-vehicle data communication. The need for data communication is growing
beyond the capability of the existing automotive network. FlexRay protocol emerges to adapt
the needs of the growing capacity. It is the next generation automotive communication
protocol that offers fast data rate, reliable and fault-tolerant transmission. The network that
uses FlexRay protocol is called FlexRay network. There are two types of FlexRay network.
Simple FlexRay network is the one uses buses or active stars to connect the Electronic
Control Unit (ECU). Switched FlexRay network is the one uses network switch to replace the
active star in simple FlexRay network. In this thesis, we first introduce FlexRay protocol
specifications and the real-time scheduling theory as the background information. Then we
discuss the scheduling problems and configurations in static (ST) and dynamic (DYN)
segments in communication cycle (CC). This thesis presents the scheduling algorithms for the
ST and DYN segment in simple and switch FlexRay network respectively. The experimental
results obtained from computer simulations show the schedulability of the switch ST
scheduler is far better than the simple ST scheduler. Also, the results show the worst-case
response times of the DYN messages in switch FlexRay network are shorter than the ones in
simple FlexRay network.

Laboratory : Computer Engineering

Code number : CE-MS-2011-05

Committee Members

Advisor : Dr. Ir. Zaid Al-Ars, CE, TU Delft

Advisor : Dr. Lotfi Mhamdi, CE, TU Delft

Chairperson : Dr. Koen Bertels, CE, TU Delft

Member : Dr. Ertan Onur, WMC, TU Delft

Dedicated to my beloved family

iii

Contents

Abstract ... i

Contents ... iii

Abbreviations ... vii

List of Figures ... ix

List of Tables ... xi

Acknowledgement.. xii

1 Introduction .. 1

1.1 Problem Statement ... 2

1.2 Motivation .. 3

1.3 Project Goal.. 4

1.4 Thesis Overview .. 4

2 Background ... 5

2.1 FlexRay Network ... 5

2.1.1 FlexRay Node .. 7

2.1.2 Network Topology ... 8

2.2 FlexRay Protocol.. 11

2.2.1 Physical Frame Format .. 12

2.2.2 Media Access ... 15

2.2.3 Timing Hierarchies of CC.. 17

2.3 Conclusion ... 23

3 Real-time Scheduling ... 24

3.1 Real-time Tasks .. 24

3.2 Real-time Scheduling Policies ... 25

3.2.1 Preemptive and Non-preemptive Scheduling .. 26

iv

3.2.2 Offline and Online Scheduler .. 26

3.2.3 Different Scheduling Approaches .. 27

3.3 Classic Scheduling Algorithms .. 28

3.3.1 Rate Monotonic scheduling (RM) ... 29

3.3.2 Deadline Monotonic scheduling (DM) .. 30

3.3.3 Earliest Deadline First (EDF) .. 30

3.4 Conclusion ... 31

4 Schedulability of Simple FlexRay Networks .. 32

4.1 System Architecture ... 32

4.2 Task & Message ... 34

4.3 Definition of Latency ... 35

4.4 ST Segment Schedulability Analysis ... 36

4.5 DYN Segment Schedulability Analysis ... 38

4.5.1 Worst-case Communication Latency ... 39

4.5.2 Transmission Delay	39 .. ࢓࡯

4.5.3 Bus Arbitration Delay	࢝39 .. ࢓

4.6 Conclusion ... 43

5 Scheduler Design for Simple FlexRay Networks ... 44

5.1 Scheduler Design for Simple FlexRay ST Segment .. 44

5.1.1 Problem definition ... 46

5.1.2 Motivation for the Solutions .. 48

5.1.3 ST Segment Scheduling Algorithm ... 59

5.2 Scheduler Design for Simple FlexRay DYN Segment .. 62

5.2.1 Problem definition ... 63

5.2.2 Motivation for the Solution .. 66

5.2.3 DYN Segment Scheduling Algorithm ... 69

5.3 Conclusion ... 70

6 Scheduler Design for Switched FlexRay Networks ... 71

6.1 Concept of Switched FlexRay Network ... 71

v

6.2 Scheduler Design for Switched FlexRay ST Segment ... 73

6.2.1 Problem definition ... 74

6.2.2 Motivation for the Solution .. 77

6.2.3 Switched ST Segment Scheduling Algorithm ... 79

6.3 Scheduler Design for Switched FlexRay DYN Segment ... 83

6.3.1 Problem definition ... 83

6.3.2 Motivation for the Solution .. 84

6.3.3 Switched DYN Segment Scheduling Algorithm ... 86

6.4 Conclusion ... 89

7 Experimental Results ... 90

7.1 Experimental Setup .. 90

7.2 ST Segment Scheduler Performance Evaluation ... 91

7.2.1 System Loads ... 91

7.2.2 Number of Slots Used .. 92

7.2.3 Percentage of Schedulable Systems ... 93

7.2.4 System Schedulability ... 94

7.3 DYN Segment Scheduler Performance Evaluation ... 95

7.3.1 Worst-case Response Time without topology information 95

7.3.2 Worst-case Response Time with Path Delays ... 96

7.4 Conclusion ... 98

8 Conclusion and Future Work .. 99

8.1 Conclusion ... 99

8.2 Contributions and Future Work ... 100

Bibliography ... 102

A Source Code of Simple ST Scheduler ... 105

B Source Code of Simple DYN Scheduler.. 114

C Source Code of Switched ST Scheduler ... 120

D Source Code of Switched DYN Scheduler .. 131

E Pseudocode for DYN Schedulers with ECUs’ Output .. 140

vi

E.1 Notations .. 140

E.2 Representation of the Schedule .. 141

E.3 Motivation for the Solution .. 141

E.4 Pseudocode for Simple DYN Scheduler with ECUs’ Output 142

E.5 Pseudocode for Switched DYN Scheduler with ECUs’ output 145

vii

Abbreviations

ABS Anti-Lock Braking

ACC Adaptive Cruise Control

ACU Airbag Control Unit

AD Airbag Deployment

AS Active Suspensions

BD Bus Driver

BDM Body Control Module

BG Bus Guardian

CC Communication Cycle

CCS Chassis Control System

CRC Cyclic Redundancy Check

DEM Differential Electronic Module

DYN Dynamic

ECM Engine Control Module

ECS Engine Control System

ECU Electronic Control Unit

EPS Electric Power Steering

viii

ESC Electronic Stability Control

FTDMA Flexible Time Division Multiple Access

NIT Network Idle Time

NMV Network Management Vector

MT Macrotick

OBD On-Board Diagnostics

ST Static

SYM Symbol Window

TCS Transmission Control system

TDMA Time Division Multiple Access

TPM Tire Pressure Monitoring

ix

List of Figures

Figure 1-1 Example of Automotive Electronic Systems [2] .. 1

Figure 1-2 One subset of a modern vehicle’s networks [1] ... 3

Figure 2-1 FlexRay node cluster connected by FlexRay bus .. 5

Figure 2-2 ECUs nodes cluster connected by FlexRay active star [14] 6

Figure 2-3 Structure of a FlexRay network node ... 7

Figure 2-4 Passive bus topology .. 8

Figure 2-5 Passive star topology .. 9

Figure 2-6 Simple active star topology .. 9

Figure 2-7 Cascaded active star topology .. 10

Figure 2-8 Single channel hybrid topology ... 10

Figure 2-9 Dual-channel hybrid example .. 11

Figure 2-10 FlexRay Frame Format [11] ... 12

Figure 2-11 NM vector in payload segment [11] ... 14

Figure 2-12 Frame ID in payload segment [11] ... 15

Figure 2-13 Timing Hierarchies of CC [11] .. 17

Figure 2-14 Structure of ST segment [11] ... 19

Figure 2-15 Structure of DYN segment [11] ... 21

Figure 3-1 Real-time scheduling Algorithms .. 25

Figure 3-2 Difference between non pre-emptive and pre-emptive systems 26

Figure 3-3 Priority-driven scheduling algorithms .. 29

Figure 4-1 Simple FlexRay Node to Node Communication .. 32

Figure 4-2 Two schedulers for two segments .. 33

Figure 4-3 Timeline of FlexRay DYN data transmission .. 34

Figure 4-4 Example schedule .. 37

x

Figure 4-5 Response time of the DYN messages .. 39

Figure 5-1 Examples of the configuration of ST segment ... 47

Figure 5-2 Example message schedule for ࢓ࡰ ൐ 54 .. ࢋ࢒ࢉ࢟࡯ࢊࢍ

Figure 5-3 Worst case response time of	࢓ࡰ ൐ 54 .. ࢋ࢒ࢉ࢟࡯ࢊࢍ

Figure 5-4 Example message schedule for ࢓ࡰ ൌ 56 .. ࢋ࢒ࢉ࢟࡯ࢊࢍ

Figure 5-5 Worst case response time of ࢓ࡰ ൌ 56 .. ࢋ࢒ࢉ࢟࡯ࢊࢍ

Figure 5-6 Example message schedule for ࢓ࡰ ൏ 57 .. ࢋ࢒ࢉ࢟࡯ࢊࢍ

Figure 5-7 Worst case response time of ࢓ࡰ ൏ 58 .. ࢋ࢒ࢉ࢟࡯ࢊࢍ

Figure 5-8 Examples of the configuration of DYN segment ... 65

Figure 6-1 Simple FlexRay network with 4 nodes connected by active star 72

Figure 6-2 Switched FlexRay network with 4 ports .. 72

Figure 6-3 Two clusters separately communicate during one slot 73

Figure 6-4 One port close during one slot ... 73

Figure 6-5 Concept of branch .. 74

Figure 7-1 Hardware Distribution of EDC in BMW X5 [43] .. 90

Figure 7-2 Average System Loads ... 92

Figure 7-3 Average Number of Slots Used.. 93

Figure 7-4 Percentage of Schedulable System ... 94

Figure 7-5 Average System Schedulability ... 95

Figure 7-6 Worst-case Response Times .. 96

Figure 7-7 Abstract Topology of EDC .. 96

Figure 7-8 Experimental Simple FlexRay Network .. 97

Figure 7-9 Experimental Switched FlexRay Network ... 97

Figure 7-10 Worst-case Response Times with Media Transmission Delay 98

xi

List of Tables

Table 2-1 FlexRay protocol overview ... 11

Table 2-2 Possible nominal Macrotick length ... 18

Table 2-3 Possible Microtick length .. 19

Table 2-4 ST frame length [11] ... 20

Table 2-5 Typical length of ST slot [11] ... 21

Table 2-6 Maximum values of Minislot number ... 22

Table 2-7 Maximum values of 23 ... ࢞ࢀ࢚࢙ࢋ࢚ࢇࡸ࢖

xii

Acknowledgement

Doing something in a new field is really a challenge for me, but also I see it as an
opportunity to learn new things and to put my analyzing ability into practical use. I really
appreciate the experience and knowledge on automotive network I gained from doing this
thesis. This thesis would not be possible to create without the help from my supervisors Lotfi
Mhamdi and Zaid Al-Ars. I learnt from them not only the methodology to solve the problems
that you face when doing academic research but also the way to manage the progress of a
project and the motivation of keeping learning. Therefore I want to thank them for their
advices, comments and reviewing. I would also like to thank Diomidis Katzourakis for the
advices on automotive networks. Thanks to Shuofei Yang for the helpful advices on
programming. Thanks to Hugo Poley for the careful proof reading. Thanks to Gebei He for
always supporting me. Thanks to my beloved parents for supporting my study aboard and
always giving me courage and bravery to face difficulties. Finally, thanks to all give me the
memory of my life in Delft.

Aijie Zhao

Delft, the Netherlands

April 2011

1

1
1 Introduction

The modern car is a combination platform of the safety, easy-to-drive and the
entertainment. Consumers demand more and more automotive automation, driver assistance
and safety from the vehicle. Car manufacturers developed many complex systems and
technologies to satisfy these demands. Over the past forty years, electronic systems in
vehicles have an exponential increase in number and complexity. The analysis indicates that
more than 80 percent of the automotive innovation now stems from electronics [1]. The
development trend of in-vehicle control systems changes from mechanical gradually to
electronic. The manufacturers have concentrated on developing electronic systems that safely
and efficiently replace in-vehicle mechanical and hydraulic applications. Figure 1-1 shows an
example of the electronic systems and applications in a modern vehicle.

Figure 1-1 Example of Automotive Electronic Systems [2]

2 CHAPTER 1. INTRODUCTION

The main purposes of the in-vehicle electronic systems are to assist the driver to control
the vehicle, to avoid some potentially dangerous operations as well as to increase the system
efficiency and stability. There are lots of existing driver assistance systems such as Electric
Power Steering (EPS), Active Suspensions (AS), Electronic Stability Control (ESC), and
Adaptive Cruise Control (ACC). These systems offer the driver easy and accurate experience
of control. There are also systems that give the greatest degree of safety protection to people
such as Antilock Braking System (ABS), Airbag Deployment (AD), and Tire Pressure
Monitoring (TPM). Moreover, there are systems that control core functional devices such as
Engine Control System (ECS), Transmission Control system (TCS), and Chassis Control
System (CCS). These systems have been widely implemented already. Other systems like
Entertainment Systems: multimedia and internet access, Communication and Navigation
Systems, Seat Position Control, and Cabin Environment Controls offer comfort and
convenience to people. These systems are implemented in some models either.

The rest of the chapter is organized as follows: Section 1.1 provides a brief description of
the problem being addressed in this thesis. Section 1.2 presents the motivation behind the
thesis. The goals of this thesis are provided in Section 1.3. The last Section 1.4, states the
overview of the thesis.

1.1 Problem Statement

The in-vehicle electronic systems depend on the successful exchange of a massive
amount of signals and interconnected wires between electronic control units (ECU). Those
ECUs are core equipment in the electronic control system. The exchange of information
motivates the use of in-vehicle control networks.

Control networks in the vehicle facilitate the information and resources sharing among
the distributed ECUs. Connections between vehicles’ electronic elements in the control
networks usually are wiring in the past. In today’s luxury cars, up to 2500 signals are
exchanged for up to 70 ECUs [3]. The wiring needs to be increased to support the exchange
of this enormous amount of signal. However, added wiring increases vehicle weight which
increases fuel consumption and complex wiring harnesses take up large amounts of vehicle
space which limit the expanding of functionality. Beginning in the early 1980s, centralized
and then distributed networks have replaced point-to-point wiring [4]. Today’s control and
communications networks base on serial protocols. So it reduces the total wire length used to
interconnect ECUs. Moreover it counters the problem of large amounts of discrete wiring.

CHAPTER 1. INTRODUCTION 3

Figure 1-2 One subset of a modern vehicle’s networks [1]

One of the main objectives of the design step of an in-vehicle embedded system is to
ensure a proper execution of the vehicle functions, with a predefined level of safety, in the
normal functioning mode but also when some components fail [5] (e.g., reboot of an ECU) or
when the environment of the vehicle creates perturbations. Networks play a central role in
maintaining the electronic control systems working properly, because most of the core
elements are distributed and need to communicate with each other.

As a result, there is a need for designing different automotive networks capable of
meeting different applications’ requirements. Such as Local Interconnected Network (LIN) [6]
designs for transmitting simple control data with data rates lower than 10kb/s. The Low-speed
Controller Area Network (CAN) [7] designs for data sharing and exchanges between sensors
and ECUs. The High-speed CAN [8] designs for high speed real-time communications. The
Media Oriented System Transport (MOST) network [9] designs for the multimedia data
which has high data rates.

New applications like x-by-wire need new features from the control networks such as
predictability, fault tolerance and flexibility. These motivate the development of new
automotive control networks, for example, Time Triggered Protocol (TTP) [10] and FlexRay
[11] . Furthermore, in order to adapt different in-vehicle applications, the control networks
should be able to support both time-triggered (TT) and event-triggered (ET) transmission.
This type of networks, for example, are TTCAN [12] and FlexRay.

1.2 Motivation

The vast increase in automotive electronic systems has created new engineering
opportunities and challenges. The resulting demands on design have led to innovations in

4 CHAPTER 1. INTRODUCTION

electronic networks for automobiles. To be capable of meeting current and next generation
automotive systems requirements, one of the promising technologies envisioned in this
project is the FlexRay. FlexRay is a time-triggered communication technology that provides
high speed fault tolerant communications by combining time-triggered TDMA and the event-
triggered FTDMA. Traffic passing through the FlexRay network is scheduled either statically
with bounded communication latency (e.g. TDMA) or dynamically (e.g., FTDMA) [5]. It is
the next generation in-vehicle network which is also the future replacement for CAN in
many vehicle network architectures. FlexRay has already been implemented in some vehicle
models such as the BMW X5, BMW 7-Series and AUDI A8, etc.[13].

However, even the FlexRay network is one of the most flexible and optimal automotive
networks up to now, it still cannot guarantee to meet in-vehicle real-time constraints under
system high loads, such as required response times. As a result, a new concept called FlexRay
switch emerges to address these problems.

1.3 Project Goal

The goal of this thesis is to design two schedulers for the FlexRay network, one for
simple FlexRay network and another for switch FlexRay network. For a given automotive
network, including the ECUs, the communication patterns and the real-time communication
constraints, design the schedulers to ensure a predictable and safe performance of the
automotive network. The schedulers consist of scheduling both the TDMA communication
(ST segment) and the FTDMA communication (DYN segment).

1.4 Thesis Overview

All the contents presented in this thesis will go into details in the following chapters:

Chapter 2 presents the necessary background information of this thesis, the FlexRay
network components, network topology and the FlexRay protocol. Especially emphasizes on
the FlexRay protocol’s critical timing unit – the Communication Cycle. In this chapter, we
can get a general idea about what the FlexRay is. Chapter 3 discusses the real-time system
and different scheduling algorithms. Chapter 4 investigates the timeline of the FlexRay
transmission and presents the method to evaluate schedulability of ST segment and DYN
segment in simple FlexRay networks. It divides one knotty problem into many small
problems to get a solution. Chapter 5 introduces the bus optimization and configuration for
the ST segment and the DYN segment respectively. Moreover, this chapter gives the
scheduling algorithms for each segment. Chapter 6 introduces the concept of the switch
FlexRay network. This chapter presents the origination of the switch idea followed by the
switching principle in the ST segment and DYN segment respectively. Chapter 7 provides the
scheduling algorithms for the ST and DYN segment in switched networks and the
schedulability analysis for the DYN segment. Chapter 8 concludes this thesis and
recommends the future developments of this topic.

5

2
2 Background

The FlexRay Protocol is a new communication protocol for automotive networks.
FlexRay protocol is originated from the successful experience of BMW ByteFlight protocol.
It is developed by the FlexRay consortium which consists of car manufacturers like BMW,
DaimlerChrysler, General Motors, Ford and Volkswagen. The FlexRay consortium also
cooperates with semiconductor companies like Bosch, Freescale, and Philips. The aim of the
FlexRay protocol is to create a faster and more reliable automotive network system that would
suit current and future needs.

In this chapter, the key components and their functions in the FlexRay node are
introduced and different possible topologies for the FlexRay network are explained. The final
part presents the FlexRay protocol based on different segments in the Communication Cycle
(CC).

2.1 FlexRay Network

Figure 2-1 FlexRay node cluster connected by FlexRay bus

6 CHAPTER 2. BACKGROUND

Figure 2-2 ECUs nodes cluster connected by FlexRay active star [14]

Figure 2-1 and Figure 2-2 illustrates two most common FlexRay networks that consist of
ECUs clusters. The cluster is a distributed system where nodes are connected via at least one
communication channel directly [15], like a bus or an active star.

Figure 2-1 shows a bus network and Figure 2-2 shows an active star network. These two
figures show that FlexRay nodes and physical connections compose the FlexRay network.
Section 2.1.1 will introduce the FlexRay node structure and working mechanism. Section
2.1.2 will comprehensively introduce the probable FlexRay topologies according to FlexRay
2005 specifications.

As previously introduced, the FlexRay protocol are designed especially for the
communication of automotive networks applications. Figure 2-2 shows a typical FlexRay
network with the redundant capacity. A central control component - active star [11] connects
ECUs. In this figure, it can be seen that the FlexRay protocol controls the data transmission
between different Electronic Control Unit (ECU). The dual-channel feature of the FlexRay
protocol can be used as a redundancy channel in case of system failure. We can see these
ECUs as different nodes in FlexRay network. The definition of the ECU and the concept of
the node explain in Section 2.1.1. Section 2.1.2.2 provides the definition of the active star.

CHAPTER 2. BACKGROUND 7

2.1.1 FlexRay Node

Figure 2-3 Structure of a FlexRay network node

As introduced in Section 2.1, the ECUs are the essential components in a FlexRay
network. So what is ECU? ECU is a generic term for any embedded system that controls one
or more of the electrical systems or subsystems [16] in an automotive vehicle. Different ECUs
have different functions. The main ECUs in a vehicle include Engine Control Module (ECM),
Anti-Lock Braking (ABS), Differential Electronic Module (DEM), On-Board Diagnostics
(OBD), Airbag Control Unit (ACU), Body Control Module (BDM), etc. These different
ECUs consist of the core control center of a vehicle. According to the FlexRay specifications,
the node shall provide at least one absolute timer that may be set to an absolute time, in terms
of cycle count and Macrotick. The following paragraphs will explain what components inside
an ECU are essential for the transmission.

Figure 2-3 shows a generic structure of a FlexRay node. We can see from Figure 2-3, the
node generally has two parts, the controller part and the driver part. The controller consists of
a Communication Controller (CC) and a Host CPU. The driver part consists of a Bus Driver
(BD), optional to have a Bus Guardian (BG).

Host CPU

The Host CPU is a part of an ECU where the application software is executed. The Host
CPU provides the control and configuration information to the CC, also provides payload data
transmitted during the CC.

Communication Controller (CC)

The Communication controller is an electronic component in a node that is responsible
for implementing the protocol aspects of the FlexRay communications system. It provides

8 CHAPTER 2. BACKGROUND

status information to the host and delivers payload data received from communication frames
[11].

Bus Driver (BD)

Bus driver is an electronic component consisting of a transmitter and a receiver that
connects a communication controller to one communication channel [11]. It can be used in
electrical encoding/decoding, remote wake-up and error detection on OSI layer 0 (voltage,
temperature).

Bus Guardian (optional)

Bus Guardian protects a channel from interference caused by communication that is not
temporally be scheduled within limited of the times in a schedule [11]. Namely, it restricts
transmissions of CC to defined slots, fault containment for fail-safe node communication,
supports error detection and fault tolerance.

The main processes of a node accesses to the bus are as following: BD first connects the
CC and the bus. The BG monitors the connection which accesses to the bus. The Host CPU
informs the BG which time slots are allocated by the CC. The BG only allows CC to transfer
data at these time slots. It also activates the BD. If the BG detects an idle interval in time, then
it disconnects the node with the communication channel.

2.1.2 Network Topology

The FlexRay protocol supports a variety of topologies while providing a flexible
configuration. This section presents some commonly used topologies in simple FlexRay
network and explains the differences between these topologies.

2.1.2.1 Linear Passive bus

Figure 2-4 Passive bus topology

Like the network shows in Figure 2-4, nodes in FlexRay can be connected to either both
channels or only one of them. The figure shows a possible configuration of the network as a
dual bus system. Nodes that connected by the same bus can only transmit data once at a time.
Similarly, the FlexRay network could be a single-bus system. In this case, all the nodes
should connect to the bus.

CHAPTER 2. BACKGROUND 9

2.1.2.2 Star topology

According to the FlexRay specifications, the star is a device that allows information to be
transferred from one physical communication link to one or more other physical
communication links. It duplicates information present on one of its links to the other links
connected to the star. [11] There are passive and active star in FlexRay protocol.

Passive Star

Figure 2-5 Passive star topology

If there are more than two ECUs need connect with each other, it is good to use a passive
star structure like Figure 2-5 demonstrated. The passive-star structure is a special case of the
linear passive bus. In a passive star structure, all ECUs are connected to a single splice [17].

Active Star

Figure 2-6 Simple active star topology

As Figure 2-6 shows, this network uses point-to-point connections between the active
star and ECUs. The active star has the function to transfer data from one branch to all other
branches, like a Hub in the Ethernet network. Since it has the transmitter and receiver circuit
for each branch, the branches are electrically decoupled from each other [17]. The minimum
number of branches at an active star is 2, no maximum according to the specifications.

10 CHAPTER 2. BACKGROUND

Cascaded Active Star

Figure 2-7 Cascaded active star topology

There are a few possible ways to configure the active-star topology because the FlexRay
network can have multiple stars. Figure 2-7 provides one sample of the topology
configuration. This topology is called cascaded active star. There are some constraints for this
topology. Firstly, it cannot have a closed ring. Secondly, it cannot have more than 2 stars in
one channel. The cascaded active star topology supports redundant channel either. The star
actively sends the incoming signal to all nodes.

2.1.2.3 The hybrid topology

Besides the two topologies mentioned above, the FlexRay network also has the third
topology, which is the combination of those two. The hybrid topology needs to follow the
constraints of every elementary topology. There are many different ways to combine them.
Figure 2-8 and Figure 2-9 provide the most representative two examples.

Figure 2-8 Single channel hybrid topology

In Figure 2-8, ECU1, 2, 3 and 4, use point-to-point connections connect to the active
stars. The other ECUs connect with each other use a bus. The bus connects to the active star 1,
in order to enable the communication between ECU5, 6 and 7.

CHAPTER 2. BACKGROUND 11

Figure 2-9 Dual-channel hybrid example

Figure 2-9 shows another sample of the hybrid topology. In this topology, each ECU is
connecting to two channels A and B but use different ways. Channel A is a passive bus
topology while channel B is an active star topology.

2.2 FlexRay Protocol

The FlexRay protocol is an in-vehicle communication protocol especially for the fast
speed and high reliability data transmission. Compared to other in-vehicle communication
protocols, such as CAN and TTP, the FlexRay protocol has significant improvements in a
variety of aspects. Table 2-1 shows the general overview of the FlexRay protocol.

Transmission channels 1 or 2

Gross data rate 10Mbit/s

Effective data rate/channel 5Mbit/s

Max payload per frame 254 bytes

Max data rate effectively ca.5000 Kbit/s

Transmission duration/frame ca. 60 µs (40 bytes @ 10Mbit/s)

Buffer memory Typ. 8kBytes

Transmission cable Twisted pair cable

Length of the cable Max. 24m

Table 2-1 FlexRay protocol overview

12 CHAPTER 2. BACKGROUND

The FlexRay protocol offers the possibility to serve up to two channels. The two-channel
capacities increase the system bandwidth as well as introduce a redundant channel to increase
the fault tolerance level. The maximum data rate of the channel is 10Mbps. The total data rate
in FlexRay network maximum can be 20Mbits/s. In the psychical layer, the FlexRay protocol
uses twisted pair for sending and receiving. The maximum length of the cable is 24m.

The introduction of the Communication Cycle (CC) is to adapt different communication,
such as time-triggered communication and event-triggered communication. The transmission
in FlexRay network consists of many CCs. Each CC is divided mainly into a ST segment and
a DYN segment. The ST communication provides bounded delay, while the DYN
communication provides flexible transmission. The ST segment uses the static time-trigger
scheme, namely Time Division Multiple Access (TDMA), to transmit data, while the DYN
segment uses the flexible time-triggered scheme, namely the DYN Minislot based scheme to
transmit data. The detail about the CC and Minislots will be introduced in Section 2.2.3.

2.2.1 Physical Frame Format

The data needed to be packed into frames before sending to the physical channel. This
section introduces the FlexRay frame and the functions of different parts in a frame.

Figure 2-10 FlexRay Frame Format [11]

Figure 2-10 shows the FlexRay frame format. It is the only frame in FlexRay protocol.
As we can see in Figure 2-10, the FlexRay frame consists of three parts, the header segment,
the payload segment and the trailer segment. In the following paragraphs, we will introduce
these three parts respectively.

2.2.1.1 FlexRay header segment

The FlexRay header segment is 5 bytes long. It consists of 9 parts. Each part has the
different function.

CHAPTER 2. BACKGROUND 13

Reserved bit (1 bit)

This 1 bit is reserved for future protocol use.

Payload preamble indicator (1 bit)

This 1 bit indicates whether or not an optional vector is contained within the payload
[11]; “1” means contained, “0” means not.

If the frame is transmitted in the ST segment, this position indicates the presence of a
network management vector at the beginning of the payload [11]. If the frame is transmitted
in the DYN segment, this position indicates the presence of a frame ID at the beginning of the
payload.

Null frame indicator (1 bit)

This 1 bit indicates whether or not the frame is an empty frame. ”0” means the payload
segment contains no valid data; “1” means the payload segment contains valid data.

Sync frame indicator (1 bit)

This 1 bit indicates whether or not the frame is a sync frame. “0” means no
synchronization for node; “1” means all receiving nodes shall use the frame for
synchronization if it meets synchronization conditions. This will discuss in detail later.

Startup frame indicator (1 bit)

This 1 bit indicates whether or not a frame is a startup frame. Only cold start nodes1 are
allow to transmit startup frame. “0” means this frame is not a startup frame; “1” means this
frame is a startup frame. This part shall set to “1” in the sync frames of cold start nodes. A
cold-start node can only transmit one frame per CC with startup frame indicator set to “1”.

Frame ID (11 bits)

This position defines the slot in which the frame should be transmitted. Each slot has a
slot number. If the slot number equals to frame ID, this slot can use for transmission of this
frame. A frame ID is unique on each channel in one CC. The frame ID ranges from 1 to 2047.
0 is invalid.

1 Cold-start node: a node capable of initiating the communication startup procedure on the cluster by
sending startup frames.

14 CHAPTER 2. BACKGROUND

Payload length (7 bits)

This part is used to indicate the size of the payload segment. The value of the payload
length position is set to the number of payload bytes divided by 2. Its range is from 0 to 254
bytes.

Header CRC (11 bits)

This part contains a cyclic redundancy check code (CRC) that is computed over the sync
frame indicator, the startup frame indicator, the frame ID, and the payload length [11]. The
header CRC of transmitted frames is computed offline and provided to the Communication
Controller (CC) by means of configuration. It is not computed by transmitting CC. The CC
shall calculate the received frame’s header CRC in order to check that the CRC is correct [11].

Cycle count (6 bits)

This part indicates the value of cycle counter, from the transmitting node's view, at the
time of frame transmission happened.

2.2.1.2 FlexRay payload segment

The FlexRay payload segment contains 0 to 254 bytes data (0 to 127 two-byte words). It
is import to notice that the payload segment contains only even number of bytes because the
unit used in this segment is two-byte.

Network Management Vector

A number of data in the payload segment that transmits in the ST slot can be used as
network management vector (NMVector). This vector is optional.

Figure 2-11 NM vector in payload segment [11]

If the payload segment uses as NMVector, the format of payload segment is like Figure
2-12shows. NMVector is written by the Host CPU in the transmission node as application
data. The length of the NMVector is configurable. All nodes in a cluster must be configured
with the same value for this parameter.

Frame ID

The first two bytes of the payload segment of the FlexRay frame transmitted in the
dynamic segment can be used as frame ID. It is also optional.

CHAPTER 2. BACKGROUND 15

Figure 2-12 Frame ID in payload segment [11]

If the payload segment uses as frame ID, the format of payload segment is like Figure
2-12 shows. The frame ID is an application determined number that identifies the contents of
the data segment. It is 16 bits long. Frame ID is written by the transmission node’s Host CPU
as application data. The CC has no knowledge about the frame ID.

2.2.1.3 FlexRay trailer segment

The FlexRay trailer segment is a 24-bit cyclic redundancy check code (CRC) for the
frame. It is computed with the data in the header segment and the payload segment of the
frame.

2.2.2 Media Access

There are two different ways that use in different segments in CC to trigger the data
transmission. In the ST segment, the FlexRay protocol uses Time Division Multiple Access
(TDMA) as the media access mechanism. In the DYN segment, the FlexRay protocol uses
Flexible Time Division Multiple Access (FTDMA) as the media access mechanism. These
two different ways are the fundamental principles in media access control. Before we
introduce those two media-access mechanisms, we will present two basic trigger modes of the
transmission, the time-trigger and event-trigger.

2.2.2.1 Time-trigger System and Event-trigger System

Time-trigger system

A real-time system is time-triggered if a schedule and a clock determine the
transmissions performed by this system. External events, like interrupts, do not significantly
influence the system operation.

The time-triggered communication is a synchronous transmission that controlled by
distributed fault tolerant clocks. The transmissions are performed according to a predefined
schedule executed on a global time-base. The global time-base can be established on-line by
using the global clock synchronization. The scheduler is an off-line scheduler that is not run
time determined by application behavior.

The time-triggered system can ensure the data transmission to follow the predetermined
time. The transmissions are determined in advance. They are not flexible but very predictable.
This system is suitable for the data that have high-reliability requirements. The time-triggered

16 CHAPTER 2. BACKGROUND

transmission needs to determine a reasonably coordinated schedule before the transmission
start.

Event-trigger system

In the event-triggered system, transmissions happen when a significant change of state
occurs. In FlexRay, the Minislot based arbitration controls the event-triggered transmissions.
The transmission time depends on network load in the DYN segment. The event-triggered
transmission is very flexible, but not very predictable in case of system under peak load. The
FlexRay protocol uses both the time-trigger method and the event-trigger method.

2.2.2.2 TDMA in ST segment

The ST segment uses static time-trigger, namely Time Division Multiple Access
(TDMA), as the media access control. The fundamental principle is the time-trigger method
presented in Section 2.2.2.1. TDMA is a channel access method for shared medium networks.
It allows several users to share the same frequency channel by dividing the signal into
different time slots [18]. It assigns the network capacity to the nodes in a static and permanent
way. Frames are sent at predetermined instances called slots. A schedule of slots is created
offline. The schedules can also be created online. Once the schedule has been determined, it is
then followed and repeated online.

Because TDMA is very deterministic and predictable, it is suitable for safety-critical
tasks with hard real-time requirements. However, the inflexibility is one of the drawbacks of
TDMA. TDMA frames cannot be sent at the arbitrary time. Furthermore, TDMA wastes the
bandwidth. If the transmission of a frame only needs half of the predefined slot, other frames
cannot use the other half of the slot.

2.2.2.3 FTDMA in DYN segment

The DYN segment uses flexible time-trigger, namely Flexible Time Division Multiple
Access (FTDMA), as the media access control. The fundamental principle is the event-trigger
task transmission with dynamic Minislot based arbitration presented in Section 2.2.2.1. Once
a task is triggered by a significant change of state, it needs to use FTDMA to arbitrate the
media and be transmitted.

FTDMA enables frames have chances to be sent whenever they require. There are no
static slot allocations in advance. The media access is priority based. FTDMA is similar to
TDMA except the slot size. The slot size in FTDMA is not fixed. It will vary depending on
whether the slot is used or not. If a slot is not used within a small time offset, which is a
Minislot in FlexRay protocol, the scheduler will progress to the next slot. This is called
Minislot based arbitration. The slot size depends on the frame length transmitted in that slot.

CHAPTER 2. BACKGROUND 17

2.2.3 Timing Hierarchies of CC

Figure 2-13 Timing Hierarchies of CC [11]

The definition of CC in FlexRay protocol is that one complete instance of the
communication structure that is periodically repeated to comprise the media access method of
the FlexRay system [11]. As we can see from Figure 2-13, CC can be further divided into 4
levels, CC level, arbitration grid level, Macrotick level and Microtick level. The lengths of the
basic units in different levels are configurable. According to FlexRay specifications, the
header segment of the frame has 6 bits that indicate the value of cycle counter with the

notation vCycleCounter . The maximum value of the cycle counter is 62 =64. We define the

period of 64 cycles as the global static-schedule (ssT).

Communication cycle level

Communication cycle level defines the basic time unit in the FlexRay protocol, CC. It is
the highest level in the timing hierarchy. As we can see from Figure 2-13, CC consists of ST
segment, DYN segment (optional), symbol window (optional) and network idle time (NIT).
The length of the CC, expressed in µs, is from 10 µs to 16000 µs. The typical length is 5ms.
Each CC has the same length and layout. More discussions about the ST segment and DYN
segment, which are the most import parts in CC, will present in Section 2.2.3.1 and Section
2.2.3.2.

Arbitration grid level

Arbitration grid level defines the grid of the media access control in FlexRay. There is an
important concept, slot, needed to mention first. Slot is an interval of time that accessing to a
communication channel is granted exclusively to a frame. The FlexRay protocol has two
types of slots, ST slots and DYN slots. The arbitration grid in ST segment is the consecutive
time intervals called ST slots. The arbitration grid in DYN segment is the consecutive time
intervals called Minislots.

18 CHAPTER 2. BACKGROUND

Macrotick level

Macrotick level consists of Macroticks. A Macrotick (MT) is an interval of time derived
from the cluster-wide clock synchronization algorithm. Macrotick is also known as the global
time 2 in the cluster. Different ECUs use Macrotick to synchronize in their clusters. A
Macrotick consists of an integral number of Microticks. The clock synchronization algorithm
can adjust the actual number of Microticks in a given Macrotick. The Macrotick represents
the smallest granularity unit of the global time [11].

Number of Microticks in a Macrotick

Microtick length [µs]

0.0125 0.0250 0.050 0.100

40 - 1µs 2µs 4µs

60 - 1.5µs 3µs

80 1µs 2µs 4µs -

120 1.5µs 3µs 6µs -

240 3µs 6µs - -

Table 2-2 Possible nominal Macrotick length

The numbers of Macrotick in the CC are 10 to 16000. Table 2-2 shows the possible
duration of the cluster wide nominal Macrotick is 1 to 6 µs. The typical length of a Macrotick
is 1µs. Action point is the designated Macrotick boundaries. In other words, it is the instants
that the transmission should start and end. FlexRay determines the global clock by averaging
the times in synchronization nodes – the SYNC frame senders. The header segment of SYNC
frame contains an indicator. The indicator is the deviation that measured between the frame's
arrival time and its expected arrival time. It is used by the clock synchronization algorithm,
[11].

Microtick level

Microtick is the time units derived directly from CC’s external oscillator. They are not
affected by the clock synchronization. It is a node-local concept. Microtick is controller-

2 Global time: the cycle time. Cycle time is the time within the current CC, expressed in units of
Macroticks. Cycle time is reset to zero at the beginning of each CC.

CHAPTER 2. BACKGROUND 19

specific units. Different nodes can have different duration of Microticks. Microtick is known
as local clock, only visible on the local CC. The granularity of a node's local time is a
Microtick [11].

Possible sample clock period [µs]

Number of samples per Microtick

1 2 4

0.0125 0.0125µs 0.0250µs 0.0500µs

0.0250 0.0250µs 0.0500µs 0.100µs

0.0500 0.0500µs 0.100µs -

Table 2-3 Possible Microtick length

The Microtick length usually is not a configuration parameter. It is an implementation-
dependent parameter that may be different for each node. Table 2-3 shows the possible
Microtick length in FlexRay protocol. The duration of a Microtick length is from 0.0125µs to
0.05 µs according to the specification. The typical length is 0.025 µs.

2.2.3.1 ST segment

 Figure 2-14 Structure of ST segment [11]

ST segment is a compulsory part in CC. It uses TDMA as the media access scheme. The
length of ST segment is configurable but unchanged over the cycles. As it shown in Figure
2-14, ST segment consists of ST slots. In ST segment, the number of ST slots is fixed. The
length of each ST slots is equal, despite the presence of ST frame in the slot or not. The
transmission of the ST frames on the channel follows the predefined scheduling table. A ST
slot only transmits one ST frame. Each frame has a unique frame ID associated with the slot.
According to the FlexRay specifications, the maximum ST frame ID is 1023.

20 CHAPTER 2. BACKGROUND

 Each FlexRay node maintains two slot counters for two channels respectively. Both slot
counters are initialized with 1 at the start of each CC and increased at the end of each slot.
The clocks of the two channels are synchronized. Different nodes use the global
synchronization time to decide when to start to send or to receive the frame.

Figure 2-14 illustrates a sample of the transmission patterns that are possible for the
FlexRay node. In ST slot 1, the node transmits a frame on channel A and channel B. In ST
slot 2, the node only transmits a frame on channel A. In ST slot 3, there is no frame transmit
on either of the channels. If a slot has no frame to send, the slot stays empty, like the slot 3 in
Figure 2-14.

The communication in ST segment should follow the following constraints [11]:

 Sync frames shall be transmitted on all connected channels.

 Non-sync frames may be transmitted on either channel, or both.

 Only one node shall transmit a given frame ID on a given channel. It is not
acceptable to configure a cluster such that different nodes transmit in the same
slot/channel combination in different cycles.

Length of ST frame

The data needed to transmit in the ST segment is packed into ST frame. All ST frames in
a cluster have the same payload length. The size of ST frames is fixed in advance by the
designers.

Bit Rate [MBit/s] 2.5 MBit/s 5 MBit/s 10 MBit/s

Minimum ST frame length [gdBit] 86 87 89

Maximum ST frame length [gdBit] 2628 2631 2638

Table 2-4 ST frame length [11]

Table 2-4 gives the typical values of ST frame length under three different bit rates, in
terms of ݐ݅ܤ݀݃	 ݐ݅ܤ݀݃ . is the nominal bit time. According to FlexRay specifications, the
length of the payload in ST frame is 0 to 254 bytes.

Number of ST slots

The number of ST slots in ST segment is a configurable parameter with the notation
of	݃ܰݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ. It is a global constant for a given cluster. According to FlexRay
specifications, the number of ST slots is from 2 to 1023 and at least is 2.

CHAPTER 2. BACKGROUND 21

ST slot length

Bit Rate [MBit/s] 2.5 MBit/s 5 MBit/s 10 MBit/s

Minimum ST slot length [MT] 9 6 4

Maximum ST slot length [MT] 658 661 397

Table 2-5 Typical length of ST slot [11]

Table 2-5 gives the typical length of ST slot under three different bit rates in terms of
Macrotick (MT). ST slots in a cluster have the same number of Macroticks. The length of ST
slot is 4 to 661 MT.

2.2.3.2 DYN segment4

 Figure 2-15 Structure of DYN segment [11]

DYN segment is optional in CC. The arbitration grid in DYN segment is Minislot. The
Minislots length is fixed. Each Minislot contains an identical number of Macroticks.

 Figure 2-15 shows a transmission sample in DYN segment. As we can see in Figure
2-15, the DYN frames and slots have different length. DYN frames have variable length. It
depends on the data needed to transmit in that frame, namely the frame’s payload length. A
DYN slot could consist of one Minislot or multiple Minislots. The length of DYN slot varies
to accommodate different DYN frames’ size. If there is no transmission happened in a slot,
the duration of the slot equals to the duration of a Minislot. Otherwise, the duration of the slot
equals to the length of the DYN frame transmitted in that slot. Because the number of
Minislots in the DYN segment is fixed and the slot size is changeable, the number of DYN
slot is changeable.

FlexRay nodes maintain a slot counters for each channel. The counter adds 1 either after
the end of a frame, in case of the presence of the data, or after one Minislot passed, in case of
no data. The DYN slot counters are independent with each other. As we can see in Figure
2-15, the Minislots in two channels are synchronous, but the DYN slots in two channels are

22 CHAPTER 2. BACKGROUND

not. In dual-channel system, the frame ID allocation can be different in 2 channels. The
highest slot ID number is 2047.

It is import to notice that the actual start and end of transmission is not the nominal start
and end of the slot. There is an action-point-offset we need to take into account. According to
FlexRay specification, the delay in transmission must be greater than clock precision that is
the limitation of fault tolerance in clock synchronization.

Length of DYN frame

The data transmitted in DYN segment is packed into DYN frames. Differing from fixed-
payload ST frames, the DYN frames could have different payload lengths in a cluster. Even
the same-frame-ID frames could have different frame sizes. The size of the frame depends on
the payload length in the frame. According to FlexRay specifications, the payload length of
DYN frame is 0 to 254 bytes.

Minislot number and length

Bit Rate [MBit/s] 2.5 5 10

Minimum number of Minislot [Minislot] 0

Maximum number of Minislot [Minislot] 3977 7977 7986

Minimum length of a Minislot [MT] 2

Maximum length of a Minislot [MT] 63

Table 2-6 Maximum values of Minislot number

Table 2-6 shows the maximum and minimum number of Minislots in DYN segment
under three different bit rates. It also shows the minimum and maximum length of a Minislot
in terms of Macrotick. According to FlexRay specifications, the number of Minislots in the
DYN segment is 0 to 7986. The length of a Minislot is 2 to 63 MT.

Parameter 	࢞ࢀ࢚࢙ࢋ࢚ࢇࡸ࢖

In DYN segment, there is an important concept ݔܶݐݏ݁ݐܽܮ݌		 need to be mentioned.
During the DYN segment, only if there is enough time until the end of DYN segment, a DYN
frame could be transmitted. FlexRay protocol uses a parameter		ݔܶݐݏ݁ݐܽܮ݌ to indicate the last
instant the frame could be transmitted.		ݔܶݐݏ݁ݐܽܮ݌ is the ID of the last Minislot that a frame
could start to transmit. If the remaining time in DYN segment, at this instant, is shorter
than	ݔܶݐݏ݁ݐܽܮ݌ ൈ then this frame cannot be transmitted. Different frames have ,ݐ݋݈ݏ݅݊݅ܯ݀݃
different	ݔܶݐݏ݁ݐܽܮ݌. The range of ݔܶݐݏ݁ݐܽܮ݌ is 0 to 7980 Minislot according to FlexRay
specifications. Table 2-7 presents the maximum value of ݔܶݐݏ݁ݐܽܮ݌ under different bit rates.

CHAPTER 2. BACKGROUND 23

Bit Rate [MBit/s] 2.5 5 10

Maximum	ݔܶݐݏ݁ݐܽܮ݌ [Minislot] 3967 7967 7980

Table 2-7 Maximum values of ࢞ࢀ࢚࢙ࢋ࢚ࢇࡸ࢖

2.2.3.3 Symbol window (SYM) and Network Idle Time (NIT)

Symbol window (SYM) is an optional part in CC. It is a communication period in which
a symbol can be transmitted on the network. The node shall transmit a symbol on a channel if
the media access is in the ALL mode3 and if a symbol is released for transmission. This
period can be used for tests. The duration of the symbol window is 0 to 142 MT.

Network idle time (NIT) is a compulsory part in CC. It contains the remaining number of
Macroticks within the CC which are not allocated to the ST segment, DYN segment, and
symbol window. The network idle time is a communication-free period that concludes each
CC. This period is required for clock synchronization, depends on system requirements. The
duration of the network idle time use to define is 2 to 805 MT.

2.3 Conclusion

In this chapter, we gave an overview of FlexRay network, including the basic facts about
the FlexRay network and the FlexRay protocol.

The first part overviews the core components in a FlexRay node: Host CPU, CC, BD,
and BG. Next, we introduced the main FlexRay topology types such as bus topology, passive
and active star topology, and hybrid topology. The FlexRay frame format is also provided in
this chapter, which may give us the understanding about the physical layer in FlexRay
protocol. Two typical tasks’ trigger-modes: time-trigger and event-trigger, and two typical
media access schemes: TDMA and FTDMA were introduced. The introductions give us a
good understanding about the media access layer in FlexRay protocol. The timing hierarchies
of CC, the basic timing unit in FlexRay protocol, were presented also. This part is the key
background of this thesis, which could help to understand the schedulers presented later. After
this chapter, the FlexRay knowledge related with scheduler design is clear.

3 The ALL mode is one of the six operating modes of media access control. In the ALL mode frames and
symbols are sent in accordance with the node's transmission slot allocation.

24

3
3 Real-time Scheduling

The concept ‘real-time’ in computing refers to a time frame that is very brief, appearing
to be immediate. A real-time system is a system that has to respond to externally generated
input stimuli within a finite and specified period [19]. In other words, a real-time system is
one that must process input information and produce a response or output result within a
specified and reasonable time. Otherwise, might risk severe consequences including system
failure. In a system with a real-time constraint, if the correct response or results are produced
after a certain deadline, they expired and become useless. For example, in some widely
implemented real time systems such as ABS, aircraft control, and over-temperature monitor in
nuclear power station, any outdated response or results of these systems are useless even they
are correct.

This chapter introduces the key concepts in the real-time system and real-time scheduling.
At the end of this chapter, we present three commonly used scheduling algorithms and
analyze their advantages and disadvantages respectively.

3.1 Real-time Tasks

Real-time tasks have three classifications: periodic task, sporadic task, and aperiodic task.
Periodic tasks have a period, which means have a certain inter-arrival time. Sporadic tasks
only have a minimum inter-arrival time. Aperiodic tasks have no known inter-arrival time
requirement.

Based on the tolerance of violation of real-time requirements, tasks can also be divided
into hard real-time task, soft real-time task and non-real-time task.

Hard-real-time task

Hard-real-time tasks have the hard deadline. It must be guaranteed to complete within a
predefined amount of time. If there is a hard real-time task, we must try to avoid violating the
requirement to the best ability. Safety-critical task is a typical sample of this type. We assume
the tasks have deterministic deadlines. The system failure happens when any task is missed.

CHAPTER 3. REAL-TIME SCHEDULING 25

Soft-real-time task

Soft-real-time tasks also have real-time requirements. However, the result is not so
severe when violation happens. Statistical distribution of response time of tasks is acceptable.
A number of deadline violations can be tolerated.

Non-real-time task

Non-real-time tasks have no real-time requirement. For examples, entertainment and
email service are non-real-time tasks.

3.2 Real-time Scheduling Policies

The real-time operation system is an operation system that is intended for real-time
applications. Such operating systems serve application requests nearly real-time [20]. It is the
computing system that must react within precise time constraints to inputs to the system. A
reaction that occurs too late could be useless or even dangerous.

Figure 3-1 Real-time scheduling Algorithms

As shown in Figure 3-1, there are different criteria for the classifications of real-time
scheduling algorithm. Based on the time to generate scheduling table, we classify scheduling
algorithms into online and offline scheduling. Also there are other criteria to classify the real-
time schedulers, such as clock-driven scheduler, priority-driven scheduler, and processor
sharing scheduler. In the following paragraphs, we will discuss these classifications in detail.

26 CHAPTER 3. REAL-TIME SCHEDULING

3.2.1 Preemptive and Non-preemptive Scheduling

Figure 3-2 Difference between non pre-emptive and pre-emptive systems

There are two types of real-time systems: preemptive and non-preemptive. From Figure
3-2, it is clear that the main difference between these two types is the transmission continuity.

Non-preemptive system

In non-preemptive system, a task that has started will execute until its completion
without any interruptions. It will defer execution of any higher-priority tasks.

Preemptive system

Preemption is the act of temporarily interrupting a task being carried out by a computer
system, without requiring its cooperation, and with the intention of resuming the task at a later
time. It is carried out by a preemptive scheduler, which has the power to preempt, or interrupt,
and later resume other tasks in the system [21]. Tasks can preempt each other. The system
allows the task with the highest priority to execute as soon as possible. Preemptive scheduling
incurs more system overhead than non-preemptive scheduling, e.g. context switching time
caused by preemption. Preemptive scheduling has the advantage that it has higher processor
utilization than non-preemptive scheduling.

3.2.2 Offline and Online Scheduler

Scheduler creates a scheduling table. The system’s CPU follows the scheduling table to
transmit data. Scheduler can either offline or online creates the scheduling table. It depends on
whether the input data known beforehand or not.

Offline Scheduler

Offline scheduler should have all of the input data and generate scheduling table before
the system start. At run-time, a dispatcher is used to activate tasks according to the
schedule generated before run-time [22].

CHAPTER 3. REAL-TIME SCHEDULING 27

Online Scheduler

If inputs of a scheduler do not know before the system start, the scheduler is an online
scheduler. Online scheduler generates scheduling table at run-time.

3.2.3 Different Scheduling Approaches

Except the classifications presented above, we can also classify the scheduler based on
other criteria. Mainly, there are three types of real-time schedulers. They are clock-driven
scheduler, priority-driven scheduler, and processor sharing scheduler as shown in Figure 3-1.
We will discuss the details about these three types in the following sections.

Clock-driven Scheduling

In clock-driven scheduling, the time instant to execute send/receive operations are
initiated at predetermined points in time. So the clock-driven scheduling is also called time-
triggered scheduling. Time- triggered systems are typically implemented non-preemptive
static cyclic scheduling (SCS). Scheduling tables are built offline and stored in the memory
before the system start to operate. Dispatchers transmit data and activate tasks based on
predefined scheduling tables. In a distributed time-triggered system, we assume that the nodes’
clocks are synchronized to provide a global reference of time.

At run-time, a dispatcher follows the schedule and makes sure that tasks are only
executing at their predetermined time slots [22]. After the scheduler dispatches a task, it sets
the periodic timer to generate an interrupt at the next task switching time. The scheduler will
then go to sleep until the timer expires. This process is repeated throughout the whole
operation. For each task, the time instant to execute is fixed, so the response time for each
task is very predictable. Therefore, it suits the safety-critical applications.

Time-triggered scheduling is very simply and reliable, but lack of flexibility. It cannot
deal with inputs’ changes at runtime. A small change of input completely changes the whole
scheduling table.

Round-robin Scheduling

Round-robin scheduling is one of the time-triggered scheduling algorithms. There are
two types of round-robin scheduling approaches: regular round robin and weighted round
robin.

Regular round-robin scheduling is commonly used in scheduling time-shared
applications. Messages queue in the FIFO queue when they are ready to execute. The
transmission starts from the beginning of the queue. If the task has not completed by the end
of its timeslot, it is preempted and placed at the end of the queue. When there are N ready
messages in the queue, each message gets one timeslot every N timeslots. A round is N
timeslots.

28 CHAPTER 3. REAL-TIME SCHEDULING

In weighted round-robin, every message is assigned a weight iw . The message will get

iw timeslots in each round, and the duration of a round is
1

n

ii
w

 . It is simpler than priority-

driven scheduling, because weighted round-robin scheduling does not require different
priority queues. Real-time networking commonly uses weighted round-robin scheduling.

Priority-driven Scheduling

Priority-driven scheduling is an important scheduling algorithm. Priority-driven systems
typically implement by using preemptive priority-based scheduling. In priority-driven
scheduling, each task is assigned a priority. System starts to execute from the highest-priority
task among all of the ready tasks.

Based on the priority allocation, we can categorize priority-driven scheduling into Fixed
Priority Scheduling (FPS) and Dynamic Priority Scheduling (DPS). The major difference of
these two schedulers is whether the priorities of tasks can change at runtime. The commonly
used priority-based scheduling algorithms are Fixed Priority Scheduling (FPS) and Earliest
Deadline First (EDF). Section 3.3 will introduce these scheduling algorithms in detail.

Priority-driven scheduling is very flexible but not predictable. It can cope with work-load
changes such as adding or removing the tasks. The predictability of the response time of a
task decreases, as the flexibility increases. Therefore, safety-critical applications not often use
the priority-driven scheduling.

Processor Sharing Scheduling

Processor-sharing-scheduling is a scheduling algorithm that assigns different fractions of
the processor to the messages. Fraction means part of the time interval. In a processor, one
message or job is executed at one time. The processor-sharing means assigning a fraction of
processor’s time to messages or jobs. For example, scheduler assigns 0.2 fraction of the
processor to a job. This means this job can use 0.2 percent of the processor’s time. In order to
obtain the accurate fraction of processor-sharing, the timeslot has to be very small.
However, when the timeslot is very small, the context switching spends a significant
amount of time. This is a major drawback of the Processor-Sharing scheduling [23].

3.3 Classic Scheduling Algorithms

In this section, we introduce three classic priority-driven scheduling algorithms in the
real-time system. Priority-driven scheduling is one of the most widely implemented and
studied scheduling types. The algorithms we present in this section are milestones in the
development of scheduling theory. Understanding these algorithms is very important to
getting the general view of scheduling theory.

As we introduced in Section 3.2.3, based on the priority allocation, the priority-driven
scheduling is categorized into fixed priority and dynamic priority scheduling. Before the
discussion, we need to distinguish the concepts of jobs and tasks. Jobs compose tasks. In
fixed-priority scheduling, all jobs in a task have the same priority that is computed offline.

CHAPTER 3. REAL-TIME SCHEDULING 29

The priorities are assigned to the tasks before the system start. This is called task-level
priority. The highest-priority task is scheduled first. We use 1 to represent the highest priority.
The priority decreases when the integer increases.

In dynamic-priority scheduling, the priority of the task is changeable, and the priority of
the job is changeable either. The priorities are assigned to individual job instead of task. It can
be further divided into job-level fixed-priority scheduling and job-level dynamic priority
scheduling. The dynamic-priority scheduling has higher processor utilization and incurs more
system overhead than the fixed-priority scheduling, because dynamic-priority scheduling
needs to determine the priority at runtime.

Figure 3-3 Priority-driven scheduling algorithms

Figure 3-3 presents the hierarchy of the classification of priority-driven scheduling. In
the following sections, we will introduce two algorithms, Rate Monotonic (RM) and Deadline
Monotonic (DM), which are the optimal algorithms of fixed-priority scheduling. Also, we will
introduce Earliest Deadline First (EDF) scheduling that is the optimal job-level fixed-priority
scheduling.

3.3.1 Rate Monotonic scheduling (RM)

Liu and Layland [24] shows that the Rate Monotonic scheduling is the optimal fixed
priority scheduling algorithm in terms of schedulability under the following restrictions:

 All tasks are independent of each other (e.g. they do not interact).

 All tasks are periodic.

 No task can block waiting for an external event.

 All tasks share a common release time (called the critical instant).

 All tasks have a deadline equal to their period.

30 CHAPTER 3. REAL-TIME SCHEDULING

These first four restrictions have already been relaxed by different approaches, except the
last one. Therefore, we can say Rate Monotonic scheduling is the optimal fixed-priority
scheduling algorithm when tasks’ deadline equal to their periods. The optimal algorithm
means it always generate a feasible schedule if the task set is schedulable by any static
priority algorithms.

RM refers to assigning priorities as a monotonic function of the rate (frequency of the
occurrence) of these tasks. In RM scheduling, the individual task priority assignment bases on
the periods of the tasks. The priorities are inversely proportional to the periods, in other words,
the shorter the period the higher the priority.

RM scheduling can be used statically on any hard real-time systems to decide if the
system is schedulable. In fixed-priority scheduling, the upper bound of schedulability is
69.314% of the processor utilization. However, the large runtime overhead is one of the
shortcomings of RM scheduling. Furthermore, only periodic tasks can apply RM scheduling.

3.3.2 Deadline Monotonic scheduling (DM)

Many systems need tasks’ deadlines shorter than tasks’ periods, which violate the
assumption in RM scheduling mentioned in the previous section. In 1982, Leung and
Whitehead [25] shows that Deadline Monotonic (DM) scheduling is another optimal
algorithm of fixed-priority scheduling when tasks have deadlines less than (or equal) to
periods.

In DM scheduling, tasks’ priorities are inversely proportional to the order of tasks’
deadlines. If happens that tasks have the same deadlines, the priority assignment will be
arbitrary ordered among the same deadline tasks.

3.3.3 Earliest Deadline First (EDF)

One of the most widely used optimal dynamic-priority scheduling algorithms is Earliest
Deadline First (EDF) scheduling. EDF processors are priority-driven and preemptive.
Dertouzos [26] showed that EDF is optimal among all preemptive scheduling algorithms.
Mok also presents another optimal algorithm, Least Laxity First (LLF) [27], which assigns the
processor to the active task with the smallest laxity4. However, LLF has larger overhead than
EDF. That is the reason why EDF is the most commonly used algorithm in dynamic-priority
scheduling. EDF is also called Deadline Driven Scheduling Algorithm. The earliest deadline
task, among all tasks ready for execution, gets the highest priority. The priorities assigned to
tasks are inversely proportional to the absolute deadlines of the tasks. Dynamic-priority
scheduling is still schedulable when the processor utilization approaches 100%. It is more
flexible than fixed priority scheduling algorithm.

4 The laxity is the difference between the absolute deadline and the estimated worst-case finishing time.

CHAPTER 3. REAL-TIME SCHEDULING 31

3.4 Conclusion

This chapter focuses on the real-time scheduling theory. We first introduced the key
scheduling policies. There are lots of criteria to classify scheduling policies. Based on the
transmission continuity, input data certainty and the driven type of the transmission, we
introduced three methods. These introductions give the basic knowledge about the scheduling
methods. Then we presented three representative scheduling algorithms. RM scheduling is an
optimal scheduling algorithm of fixed priority scheduling with the constraint that all tasks
have a deadline equal to their period. DM scheduling is another optimal algorithm of fixed-
priority scheduling when tasks have deadlines less than (or equal) to periods. The third
scheduling algorithm presented is EDF scheduling, which is the optimal priority-based
dynamic scheduling algorithm. We have known the main factors in the scheduling theory
after the discussion of this chapter.

32

4
4 Schedulability of Simple FlexRay

Networks

The important issue in scheduler design is to find whether all tasks are schedulable
during the peak-load. In order to know the system schedulability, we can calculate the total
utilization of the CPU or the response-time of all tasks in the worst-case scenarios (at peak-
load) [22]. These measurements could use to determine whether the tasks are schedulable.

In Chapter 4, we provide the basic constraint of the ST segment schedulability analysis,
which calculates the minimum number of ST slots required in the segment. Then we analyze
the worst-case response time of the DYN messages to verify whether the tasks in a given task
set can meet the deadlines.

4.1 System Architecture

Figure 4-1 Simple FlexRay Node to Node Communication

CHAPTER 4. SCHEDULABILITY OF SIMPLE FLEXRAY NETWORKS 33

As shown in Figure 4-1, there are two nodes in the network, which are all connected with
the FlexRay bus5. The nodes might produce some safety-critical tasks or diagnostic tasks. The
tasks have different timing requirements and generation frequencies, such as time-critical
tasks and non-time-critical tasks. The outputs messages of tasks inherit the timing
requirements and generation frequencies from their sending tasks. As we introduced in
Chapter 2, the CC of FlexRay protocol consists of a ST segment and a DYN segment. Each
segment has different media access control. The working principles of these two segments can
adapt different tasks’ transmissions. Therefore, two segments should have different real-time
kernels that consist of two different schedulers. Figure 4-2 shows the two-scheduler concept.

busT

Figure 4-2 Two schedulers for two segments

The nodes may have different tasks to finish or frames to send. For time-critical tasks,
namely ST tasks, we use ST cyclic scheduling (SCS). The working principle of SCS is that
the set of tasks or messages follows a static scheduling table to transmit and repeat. For DYN
tasks, we use fixed priority scheduling (FPS) that transmits tasks or messages by the
predefined priorities.

ST tasks use SCS scheduler and have the highest priority among all the tasks. These SCS
tasks are preemptive. Their start time is off-line fixed in the scheduling table. SCS activities
are triggered based on a node’s local clock. Other tasks use FPS scheduler. FPS tasks are
scheduled based on priorities. The	 high‐priority	 task	 preempts a lower-priority task. These
tasks can only be executed in the idle time of SCS scheduling table. When several tasks are
ready on a node, the highest-priority task is activated and preempts the other tasks.

5 FlexRay can serve as a dual-channel system, here we only use one channel to communication, the other
channel serve as the redundant channel to make sure fault tolerance in the system.

34 CHAPTER 4. SCHEDULABILITY OF SIMPLE FLEXRAY NETWORKS

4.2 Task & Message

Figure 4-3 Timeline of FlexRay DYN data transmission

CHAPTER 4. SCHEDULABILITY OF SIMPLE FLEXRAY NETWORK 35

Before analyzing the transmission timing in detail, we have to distinguish the concepts of
task from message6. The relationship between the task and the message is shown in Figure 4-3.
The point ‘Sending Task Arrive’ shows that a task becomes ready after all its inputs have
arrived. We assume tasks issue the output messages at the end of their executions. The point
‘Sending Task terminated’ shows this instant. Output messages become ready after the sender
task has finished, as the point ‘Sending Message ready’ shown in Figure 4-3. The point
“Receiving message ready” shows the messages become ready at the receiver processor after
the physical transmission has ended. Moreover, we need to notice that a task could produce
several massages.

4.3 Definition of Latency

Latency is the duration between data ready for transmission at the sender and data ready
for consumption at the receiver [28]. Let us consider the timeline in Figure 4-3. The blue
boxes represent the time to execute tasks inside a single processor, which is from the tasks’
arrival to the tasks’ termination, and issue the output messages. The green boxes represent the
time interval to transmit a frame on the bus. The interval is from the frames that are ready to
be transmitted at the sending bus driver to the frame ready for consumption at the receiving
bus driver.

There are two types of latency. One is end-to-end latency, which is from sending task
arrive to receiving task terminate. We can see this latency in Figure 4-3 from red arrow
“Sending task Arrive” from red arrow “Receiving task terminates”. Other latency is
communication latency which is from sending Communication Controller to receiving
Communication Controller [28]. This latency is only related with communication protocol
and physical media. It is the latency in data link layer and physical layer. We can see this
latency is the length of two green boxes in Figure 4-3.

The reason why we only do the calculation of communication latency is that the ECUs
might from different venders and have different hardware specifications, so it is very difficult
to do the holistic schedulability analysis. There are a lot of existed researches on processor
schedulability analysis, for readers who interested can refer to [29-32].

There is one thing need to mention. The “message” in Figure 4-3 is the data sequence
need to be transmitted which is the payload in FlexRay frame. In communication latency, the
data which ready to transmit is the FlexRay frames. In FlexRay, Communication Controller is
responsible for implementing the protocol aspects to the payload data received from Host
CPU. In other word, Communication Controller is responsible for frame packing or
segmentation. As mentioned before, in this thesis, we do not deal with frame packing or

6 This thesis doesn’t consider the frame packing or frame segmentation. These functions are realized at
higher layer which are out of the scope of this thesis. To simplify the problem, this thesis assumes that
one message is packed into one frame.

36 CHAPTER 4. SCHEDULABILITY OF SIMPLE
FLEXRAY NETWORKS

segmentation, so the time for frame packing or segmentation is only considered including in
end-to-end latency.

4.4 ST Segment Schedulability Analysis

In timing analysis of the FlexRay network, we considered the ST messages are
schedulable if it is possible to generate a valid static scheduling table. So we need to build the
scheduling tables for SCS tasks and ST frames. Before doing this, we first simply compare
the available ST slots and the minimum required ST slots. This comparison gives the general
view of available bus data rate that can use to system design.

The comparisons of available ST slots and required ST slots are the necessary but
insufficient condition to see whether a given set of messages is schedulable. Necessary but
insufficient condition means that if a schedule cannot pass this test, it is not schedulable.
However, there might be some schedules that can pass this test but still cannot generate a
valid schedule.

The comparisons of the minimum required ST slots and available ST slots are the basic
schedulable constraint of the system. If the available ST slots are smaller than the minimum
required ST slots, the system is not schedulable. In this section, we would like to calculate the
minimum required ST slots in the system.

In FlexRay system, each message assigned one transmission buffer based on the slot ID
and the cycle ID. The identifier of the channel on which the transmission shall occur is not
necessary because the dual-channel is only been used as redundancy channel. Aiming to
increase the resource-utility rate, this thesis chooses to use slot multiplexing in ST segment.
Slot multiplexing means messages do not have the exclusive right of the slots. More messages
can share one slot in the ST segment.

Hence message ݉′s schedule is defined by the value of the cycle ID and slot ID of the

transmission slot. The value of the cycle ID is represented by the 2-tuple vector: base cycle mb

and cycle repetition mr [33]. Base cycle mb is the cycle ID in which the first message-arrival

sends. It has the constraint  0,63 ,m mb b  . Cycle repetition mr is the multiple of CC

between two successive transmission cycles in which the message-arrivals send. It has the

constraint  2 , 0,6 ,n
mr n n  

to allow a periodic occurrence in the 64 cycles.

The transmission-slot ID is represented by the 2-tuple vector: base slot ms and slot

repetition mp . ms is the ST slot ID in which the first message-arrival sends. Slot repetition mp

is the multiple of ST slots between two successive message-arrivals within one CC. It has the

constraint  22 , 0, log ,n
mp n gNumberOfStaticSlots n   to allow the successful slot

multiplexing.

CHAPTER 4. SCHEDULABILITY OF SIMPLE FLEXRAY NETWORK 37

0m

0m

0m

0m

0m

0m

1m

1m

1m

2m

2m

0m

0m

1

63

7
6
5
4
3
2

0
1 2

gNumberOfStaticSlots

0m

0m

0m

0m

0m

0m

0m

0m

0m

0m

1m

1m

1m

2m

2m

3 4 5

1m 1m

Figure 4-4 Example schedule

As illustrate in Figure 4-4, the base cycle ܾ௠	is 0 for	݉଴	and	݉ଵ, 3 for	݉ଶ. The cycle
repetition		ݎ௠	 is 1 for	݉଴, 2 for 	݉ଵand 4 for	݉ଶ. 	ݏ௠		is 1 for	݉଴	and 2 for	݉଴	and	݉ଵ. The

Slot repetition		݌௠	is 3 for	݉଴	and	݉ଵ, 2gNumberOfStaticSlot  for	݉ଶ.

The message set STM is the ST messages waiting to send in a cluster. The previous study

[33] shows that the minimum number of ST slot mingNumberOfStaticSlots required7 for the

transmission of the messages set STM is:

 

1

ST

min
m M m

gNumberOfStaticSlots
r

  (4.1)

This equation only suits for the schedule that every message transmits once per cycle.
This fact limits the length of CC at least should equal to the shortest period of ST messages,
in order to accommodates the transmissions of ST messages. Furthermore, according to
FlexRay specification, the maximum cycle ID is 64. Therefore, this constraint limits the
maximum system bandwidth and reduces the system capacity. In order to increase system
bandwidth, the messages should be able to transmit multiple times per cycle. The calculation
of the minimum ST slots required for the transmission then becomes the following formula:

7 This thesis assumes that each message fits within one frame and uses a full slot to transmit.

38 CHAPTER 4. SCHEDULABILITY OF SIMPLE
FLEXRAY NETWORKS

 ST

m
min

m M m

gNumberOfStaticSlot
gNumberOfStaticSlots

r

  (4.2)

mgNumberOfStaticSlot is the total ST slots message m is allocated. STM is the ST

message set in the cluster. It is import to notice that this result is under the assumption that
one message-arrival packs into one frame and sends in one slot. Furthermore, the FlexRay
specifications regulate that the minimum number of ST slots in a system is 2. However, the
actual number of the ST slots needed does not always equal to the minimum ST slots required.
The minimum value only happens when there is no empty slot left between any two ST slots.
It means that the transmission patterns of the ST messages match each other perfectly.
However, this idealized case does not happen in every case.

According to FlexRay specifications, system can have maximum 1023 ST slots. If

min 1023gNumberOfStaticSlots  happens, the system is non-schedulable. The minimum

number of ST slots mingNumberOfStaticSlots can only be used as the basic schedulable

condition. The actual number of ST slots should base on the scheduling result.

4.5 DYN Segment Schedulability Analysis

First thing in schedulability analysis is to decide what scheduling policy we want to use.
There are many exist scheduling algorithms as we introduced in Section 3.3. Although
dynamic-priority scheduling algorithms can give optimized system utility rate, but the
implementation of dynamic-priority scheduling are far more complex than fixed-priority
scheduling algorithms. Therefore, this thesis uses the fixed-priority scheduling as the
scheduling policy.

There are three different approaches of schedulability analysis: utilization-based test,
demand-based test, and response-time test. Utilization-based test is based on the utilization of
the task-set under analysis. Demand-based test is based on the processor demand at a given
time interval. Response-time test is based on the worst-case response-time of each task in the
task-set. The worst-case response time calculation is the best approach to test system
schedulability in the circumstances that no hardware can use for analysis. If all the messages
can meet their deadlines, the system is schedulable.

FlexRay is a hybrid-bus system where TT and ET tasks share the same media and time
resources. Tasks are scheduled using both TT and ET scheduling. However, the TT and ET
tasks do not exchange time-critical communication [34]. Because the TT and ET activities
share the same resource, and TT activities have the highest priority, thus the ET tasks can
only execute in the slack of the TT scheduling table.

In the following sections, we discuss the method of the DYN messages’ worst-case
response time calculation in FlexRay network.

CHAPTER 4. SCHEDULABILITY OF SIMPLE FLEXRAY NETWORK 39

4.5.1 Worst-case Communication Latency

According to the latency analysis in Section 4.3, a frame’s communication latency
consists of two parts (the two green boxes): the bus arbitration delay and the transmission
delay. Therefore, the worst-case communication latency is given by the following formula:

 m m mR w C  (4.3)

mw is the longest delay caused by the media contention before the transmission. We can

see this part as the waiting delay. mC is the longest time taken to send the frame m on the bus.

This part is the transmission delay in Figure 4-3.

In order to calculate mR , we should know these two delays. In the following paragraphs,

we will present the methods to calculate these unknown parameters.

4.5.2 Transmission Delay	࢓࡯

Based on the definition of		݉ܥ, we know that 	݉ܥis related to the message length and the
FlexRay bus bit rate. So we can get:

 _ / _m mC Frame size bus speed (4.4)

In FlexRay protocol, the bus gross data rate is 10Mbit/s and the effective data rate is
5Mbit/s.

4.5.3 Bus Arbitration Delay	࢝࢓

mw represents the longest delay of the bus arbitration before transmission. Three possible

reasons may contribute to this delay: the transmission of ST segment, the transmission of the

DYN frames having lower Frame ID than message 		݉ , denoted by ()lf m , and the

transmission of the DYN frames having same Frame ID but higher priority than message		݉,

denoted by ()hp m . However, the delay mw is the multiple of CC. It is hard to define mw in

terms of ST segment,		݄݌ሺ݉ሻ,	 or		݈݂ሺ݉ሻ.

m

busT

busnT 'mw

Figure 4-5 Response time of the DYN messages

40 CHAPTER 4. SCHEDULABILITY OF SIMPLE
FLEXRAY NETWORKS

The delay mw is the duration between two red lines in Figure 4-5. As we can see in

Figure 4-5, we divide this delay into three parts to simply the analysis. We introduce the
following notations:

 	ߪ௠		denotes the time interval that starts from the instant that sender task generates
the message to the end of the generation CC.

 ()ms m denotes the unused Minislots set that have lower frame ID than message		݉.

Although these Minislots are not used for data transmission, they still delay the

transmission for the length of a Minislot. busnT denotes the number of CCs that

cannot transmit message 		݉ because of the transmission of messages from sets

()hp m , ()lf m and ()ms m .

 'mw denotes the delay that starts from the beginning of the message 		݉ ’s

transmission CC to the transmit point of message		݉. ݈݃݀݁ܿݕܥ	denotes the length of
the CC.

Therefore, the formula of delay mw is:

 'm m bus mw nT w   (4.5)

Parameter	࣌࢓

The maximum value of m appears when the generation of the frame just after the

frame’s allocated slot and there is no data transmission happen before this its generation.

Therefore, the formula of worst-case m is [35]:

 ((1))m bus mgdCycle ST Frame ID gdMinislot      (4.6)

busST is the length of the ST segment.	ܦܫ݁݉ܽݎܨ௠	is the frame ID of message		݉. The

value of 	ܦܫ݁݉ܽݎܨ	 is from 1 to 2047 in binary format. gdMinislot is the duration of a

Minislot. We assume the CC only consist of ST segment and DYN segment, regardless the

symbol window and network idle time. In the following discussion, busT is used as the

approximation of the length of CC. It does not introduce any significant pessimism.

Heuristic solution of 'mw

'mw is the notation of the delay that starts from the beginning of the CC in which the

message m sent until the real transmission of message m happens. The holistic solution gives

the exact value of 'mw . However, the computation times of the highly complex algorithms are

not practical. Therefore, we choose the heuristic solutions instead of the holistic solution. The

CHAPTER 4. SCHEDULABILITY OF SIMPLE FLEXRAY NETWORK 41

heuristic solution has significantly lower complexity and needs extremely short computation
times, while at the same time producing results close to the ones offered by the optimal
implementations [35].

The maximum value of 'mw happens when the messages is transmitted in the last

possible slot. The value of Minislot counter at this instant is smaller than the value of

pLatestTx . pLatestTx is the number of the last Minislot in which a frame transmission can

start in the dynamic segment [11]. The value of pLatestTx depends on the size of DYN

frames and the length of the Minislot. Therefore, the heuristic solution of the worst-case 'mw

[35] is:

 'm bus mw ST pLatestTx gdMinislot   (4.7)

Parameter busnT

Message ݉ that is packed into frame ݉ with		ܦܫ݁݉ܽݎܨ௠ cannot be sent during the CC if
at least one of the following conditions is fulfilled:

 One of the messages from messages set ()hp m occupies the DYN slot that

corresponds to		ܦܫ݁݉ܽݎܨ௠ in the cycle.

 The remaining time in the DYN segment is shorter than the frame length of
message		݉. This might because of the large latency that caused by the data or
Minislots that have the FrameID smaller than		ܦܫ݁݉ܽݎܨ௠ . This latency delays the
message so that it misses the last instant that can transmit in the CC. These elements

belong to sets ()lf m and ()ms m .

Based on the discussions above, the delay busnT can be written as[35]:

  () ((,)) ((,), (,))bus m mnT t BusCycles hp m t BusCycles lf m t ms m t gdCycle  

 (4.8)

The reason why introduce the time interval ݐ is that the message in the
sets		݄݌ሺ݉ሻ,	݈݂ሺ݉ሻ and ݉ݏሺ݉ሻ are changing all the times. Messages keep coming into the
queue and sending out to the scheduler. The analysis should focus on a given time interval. So

we need to consider all the messages in sets ()hp m , ()lf m and ()ms m during this time

interval, which would delay the message	݉. (,)hp m t is the number of messages that have

higher priority than message ݉ during the time interval t. (,)lf m t is the number of messages

that have lower 	ܦܫ݁݉ܽݎܨ		 than 	௠ܦܫ݁݉ܽݎܨ		 during the time interval t. (,)ms m t is the

number of slots which have no data to transmit but have lower		ܦܫ݁݉ܽݎܨ than		ܦܫ݁݉ܽݎܨ௠	
during the time interval t, so that the message ݉ has to wait until the DYN slot counter
reaching the		ܦܫ݁݉ܽݎܨ௠	.

42 CHAPTER 4. SCHEDULABILITY OF SIMPLE
FLEXRAY NETWORKS

Heuristic computation for	࢓࢙ࢋ࢒ࢉ࢟࡯࢙࢛࡮ሺ࢖ࢎሺ࢓, ࢚ሻሻ

If there is a message that has the same		ܦܫ݁݉ܽݎܨ but higher priority than message m, it
delays the transmission of m for one CC. Therefore, the total delay caused by the messages in

the set (,)hp m t is [35]:

 ((,)) (,)mBusCycles hp m t hp m t (4.9)

Heuristic computation for	࢓࢟ࢇ࢒ࢋࡰሺ࢙࢓ሺ࢓, ࢚ሻሻ

The holistic solution of ,ሺ݉ݏ௠൫݉ݏ݈݁ܿݕܥݏݑܤ	 ሻ൯ݐ , namely the optimal solution, can

calculate the tightest worst-case response time. However, the high complexity of the optimal
algorithm leads to the long computational time, which is not practical when calculate the
response times of many messages. The holistic solution only can calculate the results in the
reasonable time for up to 20 DYN frames [35].

We also use the heuristic solution to compute the ((,), (,))mBusCycles lf m t ms m t . If the

massage m is transmitted in the DYN slot corresponded to 	௠ܦܫ݁݉ܽݎܨ	 there are up
to		ܦܫ݁݉ܽݎܨ௠	 െ 1 unused Minislots before the transmission of message ݉ in the worst-case.
We use the approximate number of Minislots in the worst-case scenario instead of the actual
number of Minislots. The duration the Minislot is very small, compared to the duration of CC.
The approximation does not introduce the crucial pessimism [35]. Therefore, the delay caused

by messages in the set (,)ms m t is [35]:

 ((,)) (1)m mDelay ms m t FrameID gdMinislot   (4.10)

Heuristic computation for	࢓࢙ࢋ࢒ࢉ࢟࡯࢙࢛࡮ሺࢌ࢒ሺ࢓, ࢚ሻሻ

The next step we need to compute the delay ,௠ሺ݈݂ሺ݉ݏ݈݁ܿݕܥݏݑܤ	 ሻሻݐ . This problem
transforms into a one dimension bin packing (1DBP) problem. The bin packing problem tries
to maximize the number of bins that can be filled with a fixed minimum capacity by a given
set of items with specified weights. More details about bin packing problem can refer to [36-
38].

There are many existing bin packing algorithms such as First-Fit, Best-Fit, Next Fit,
Worst-Fit and Last-Fit. These existing algorithms generally can be divided into two categories:
optimal algorithm and heuristic algorithm. Optimal algorithm can get exact result but always
is the NP-hard algorithm that has unacceptable computational time, especially for a large
number of inputs. Heuristic algorithm can significantly decrease the algorithm complexity and
computational time. Although it cannot offer tightest results, the algorithm outputs are very
close to the optimal algorithm when there are large numbers of inputs. For this reason, this
thesis chooses a greedy heuristic bin packing algorithm, the First-Fit Decreasing Algorithm
(FFD), as the algorithm to calculate	ݏ݈݁ܿݕܥݏݑܤ௠ሺ݈݂ሺ݉, .ሻሻݐ

The FFD algorithm first sorts the items in decreasing order by size, and then inserting
each item into the first bin in the list with sufficient space. This algorithm packs the largest items

CHAPTER 4. SCHEDULABILITY OF SIMPLE FLEXRAY NETWORK 43

first and is more likely to produce an optimal solution than the simple First-Fit method [39].
The First-Fit packing algorithm is one of the bin packing algorithms. For a number of bins, it
always places the next box into the lowest-numbered bin it will fit into [40]. In our case, the
elements in 	݈݂ሺ݉, ሻݐ are the items. The DYN segments are bins,
namely ,௠ሺ݈݂ሺ݉ݏ݈݁ܿݕܥݏݑܤ	 ሻሻݐ . The minimum capacity required to fill a bin is

mpLatestTx gdMinislot .

For any given DYN message sets, if the	ܦܫ݁݉ܽݎܨ௠	and all the message sizes are known,

the delay ,௠൫݈݂ሺ݉ݏ݈݁ܿݕܥݏݑܤ	 only varies with the DYN segment length	ሻ൯ݐ busDYN . In

conclusion, the analysis of the worst-case response time mR of the DYN message m shows

that mR only varies with the CC length gdCycle .

4.6 Conclusion

In this chapter, we first discussed the different scheduling algorithms that should use in
two segments in CC. Then we differentiated the concept between task and message.
Differentiation two confusing concepts are crucial to help to understand the scheduling
timeline. Next to this, the timeline of the DYN was provided. Then we defined the concept of
the latency, which gave the clear understanding of the transmission timeline. Furthermore, we
discussed the basic scheduling constraint in ST segment, namely the minimum required ST
slots. The basic constraint is the first condition that the scheduler should check in order to
produce a valid scheduling table. Finally, the worst-case response time of the DYN messages
was analyzed and calculated in detail. We chose the FFD algorithm to calculate a part of the
delay.

44

5
5 Scheduler Design for Simple

FlexRay Networks

After all the background knowledge and schedulability analyses, this chapter we will
design the scheduler for simple FlexRay network. This chapter is generally divided into two
parts: ST segment and DYN segment schedulers design. The structure in each part is formed
by three sections. The first section of each segment provides some examples to show the
different schedulability resulting from different values of those configurable parameters in
FlexRay protocol. After the comparisons of examples, the second section defines the
problems needed to configure. Then follow with analysis for each parameter and the
suggested solutions for these problems. The final section is the scheduling algorithm for ST
segment and DYN segment respectively.

5.1 Scheduler Design for Simple FlexRay ST Segment

Before the discussion we would like to present some notations which are used later.

 mb Base cycle is the value of the cycle counter in which the first message8 arrival

sends with the constraint  0,63 ,m mb b  ;

 mD [μs] Message m ’s deadline is the duration from message generation to message

expiration;

8 The concept of message is equivalent to the signal in the discussion of this thesis. The signal may send
from a sensor or processor, etc.

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 45

 gdActionPointOffset [MT] is the number of Macroticks the action point is offset

from the beginning of a static slot or symbol window;

 gdBit [μs] is the nominal bit time;

 gdBitMax [μs] is the maximum bit time taking into account the allowable clock

deviation of each node;

 gdCycle [μs] is the duration of the communication cycle;

 gdMacrotick [μs] is the duration of the cluster wide nominal Macrotick;

 gdMinPropagationDelay [μs] is the minimum propagation delay of a cluster;

 gdMaxPropagationDelay [μs] is the maximum propagation delay of a cluster;

 gdStaticSlot [μs] is the length of a ST slot;

 gdTSSTransmitter [gdBit] is the number of bits in the Transmission Start Sequence;

 gNumberOfStaticSlots is the total number of ST slots in the ST segment;

 mgNumberOfStaticSlots is the total number of ST slot IDs which message m is

allocated, mgNumberOfStaticSlots  ;

 mgNumberOfCycle is the total number of cycles IDs message m allocated,

mgNumberOfCycle  ;

 ݄ܵݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ ௠ܶ is the number of bits constituting the static message m in the
cluster;

 mp Slot repetition is the multiple of ST slots in between two successive message

arrivals within one CC with the constrain  1,1022 ,m mp p  ;

 mr Cycle repetition is the multiple of CC in between two successive transmission

cycles in which message arrivals send. It has the constraint  2 , 0,6 ,n
mr n n  

to allow a periodic occurrence in the 64 cycles;

 busST is the length of the ST segment;

46 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

 ms Base slot is the value of the ST slot counter in which the first message arrival

sends with the constraint  1,1023 ,m ms s  ;

 ௠ܶ	 Message m ’s minimum inter-arrival time is the minimum time interval between
two successive values of message m which inherited from its sender task;

5.1.1 Problem definition

In automotive communication, the time-triggered tasks and messages require the
guaranteed communication latency. They have strictly timing constraint and highly
predictability requirements. ST segment in FlexRay protocol uses TDMA as the media access
mechanism. The messages that transmitted in ST segment have very predictable response
time. Therefore, ST segment suits the time-triggered tasks and messages. The messages
transmitted in ST segment are called ST messages.

Every system has an optimal system configuration. However, the goal of the ST
scheduler design in this thesis is not to find an optimal configuration for a system but to find a
schedulable configuration for any FlexRay systems. Thus, the schedulable constraints defined
in this thesis may vary depend on the system requirements.

From the aspect of system schedulability, we want to accommodate the transmission of
every ST messages to meet their timing constraint. From the aspect of system expansibility,
we want to accommodate the messages by using as less system resource as possible.
Therefore, the idea of the scheduler design is to find the best way to accommodate the ST
messages in order to satisfy the timing constraints and use as less resource as possible.

For any sporadic ST message m generated by the sporadic task, the known parameters

are the minimum inter-arrival time mT and the message size mMessageLengthST . Thus, a ST

message m can be represented by a 2-tuple vector:

 ,m mm T MessageLengthST (5.1)

A ST message is schedulable only if it has a valid static scheduling table. The valid static
scheduling table means that the ST messages can meet their communication constraints as
long as they follow the scheduling table to transmit. These communication constraints are also
the schedulable constraints for the scheduler. Therefore, we should analyze the schedulable
constraints first in order to schedule the ST messages.

5.1.1.1 Configurable Parameters

Let’s consider three examples of different system configuration first. Then we will
discuss the different schedulabilities and related parameters.

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 47

1m 2m 3m

1m 2m 3m

1m 3m2m

3 4CC  

2 5CC  

1 2 4CC   2 2 4CC  

1 4m  2 3m 

3 2m 

3 16R 

3 12R 

3 10R 

Figure 5-1 Examples of the configuration of ST segment

The Figure 5-1 gives a system with two nodes, N1 and N2, connected with a bus.

Message 1m with length of 4 is ready at N1 and messages 2m and 3m with length of 3 and 2

respectively are ready at N2. The messages’ length and SlotID are also shown in figure.
Please note that the examples in Figure 5-1 only shows the ST segment in the CC.

Firstly, let us compare the examples a) and b). As we can see in the example a) in Figure

5-1, there are 2 ST slots available. Each node gets 1 slot. Consequently in N2, 3m have to

share the same slot with 2m . This fact leads to the transmission of 3m delayed to the second

cycle because of the transmission of the higher-priority message 2m . While in example b),

there are 3 ST slots available so that each message gets one slot. Consequently 3m is able to

send during the first cycle. From Figure 5-1, we know that this results the shorter response

time of 3m , which is from 16 in a) to 12 in b).

Let’s consider the example c) and a). c) has the same slot number as example a) does so

that 2m and 3m in c) need to share the same slot. a) has the slot length of 4 while c) has longer

slot length of 5. Even there are not enough slots for the messages in c), the change of slot

length leads to the fact that one slot can accommodate both 2m and 3m , so that 3m still can

send in the first cycle. As we can see from Figure 5-1, the response time of 3m in c) is even

shorter than b). The drawback of changing the slot length is that it delays the response time of

the message 1m and 2m .

48 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

From the examples illustrated above, it is clear to tell that the different number of ST
slots and slot lengths could affect the system schedulability. Different configurations of the
parameters lead to the totally different system capacities. According to FlexRay specifications,
there are regulations about the configurable parameters’ value. However, there always are
optimal values of the parameters for a network. Therefore, it is very important to configure
the system appropriately. The scheduler should not only can apply in FlexRay networks, but
also can maximize the system capacity and increase system schedulability.

5.1.1.2 Schedule Parameters

As introduced in Section 4.4, this thesis uses slot multiplexing to increase the resource
utility rate. The transmission schedule of a ST message m is represented by the 6-tuple vector:

  Schedule , , , , ,m m m m m m ms p gNumberOfStaticSlots b r gNumberOfCycle (5.2)

Every ST message starts to transmit at the base slot ID	ݏ௠	in base cycle ID	ܾ௠ . The
transmissions repeat at a 	݌௠-slots interval for	݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠	times and at a 	ݎ௠-
cycles interval for	݃ܰݏ݈݁ܿݕܥ݂ܱݎܾ݁݉ݑ௠	times. We need to set these unknown parameters in
order to get the schedule of the ST messages.

Therefore, all the factors needed to set in ST segment are:

 The length of the ST slot ݃݀ܵݐ݋݈ܵܿ݅ݐܽݐ;

 The number of ST slots	݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ;

 The schedulable constraints;

 The values of parameters in the schedule of ST message which can meet the
schedulable constraints;

 The optimal allocation order of ST messages to reduce algorithm complexity;

The following sections will analysis and give the solution of these problems one by one.

5.1.2 Motivation for the Solutions

The motivation for the solutions is to define the known factors first and tries to use the
known factors to define the unknown parameters and problems defined in section 5.1.1.

For a ST message m needed to be scheduled, the known parameters introduced in Section

5.1.1 are the minimum inter-arrival time mT and the message length mMessageLengthST . The

following paragraphs will solve the unknown parameters, which are base cycle mb , cycle

repetition mr , base slot ms and slot repetition mp , by using the known factors. Furthermore,

this section presents the optimization configurations and schedulable constraints.

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 49

5.1.2.1 Length of ST slots ࢚࢕࢒ࡿࢉ࢏࢚ࢇ࢚ࡿࢊࢍ

From the examples illustrate in Figure 5-1, we can tell that in order to have the shorter
message response time we need to have either enough slots or enough length slots.

It is easy to tell by comparing the examples a) and c) that longer slot length shortens the
response time of the share-slot low-priority messages. However, this configuration increases
other messages’ response time. The analysis shows a trade-off situation that it is hard to
increase the response time of all messages at the same time. The improvement of the response
time of a part of the messages leads to the degradation in another part of the messages.
Therefore, we need to determine whether it is worth to do that. Alternatively, we could
maintain the response time for most of the messages while sacrifice a few messages’ response
time.

As we can see in Figure 5-1, c) has the shortest response time of the message 3m because

c) uses the frame packing to transmit multiple messages in one slot. However, it is clear that
frame packing significantly increases the system’s computational complexity. Additionally,

the response time of 3m in c) does not significant decrease compared with the one in b).

Therefore, this thesis does not consider the frame packing.

The configuration of the ST slot length gdStaticSlot must assure that the ST frame and

the channel idle delimiter and any potential safety margin fit within the static slot under
worst-case assumptions [35]. In order to fit at least any ST messages in the slot, the payload
of the ST frame should equal to the longest ST message in a cluster. According to the

FlexRay specifications appendix B.4.9, the length of ST frame aFrameLengthStatic has the

following calculation formula:

ሿݐ݅ܤሾ݃݀ܿ݅ݐܽݐ݄ܵݐ݃݊݁ܮ݁݉ܽݎܨܽ
ൌ ሿݐ݅ܤሾ݃݀ݎ݁ݐݐ݅݉ݏ݊ܽݎܶܵܵܶ݀݃	 ൅ ሿݐ݅ܤሾ݃݀ܵܵܨ݀ܿ	
൅ 	80ሾ݃݀ݐ݅ܤሿ ൅ ሾ2	ܿ݅ݐܽݐ݄ܵݐ݃݊݁ܮ݀ܽ݋݈ݕܽܲ݃	 െ ݁ݐݕܾ െ ሿ݀ݎ݋ݓ
∗ 	20ሾ݃݀ݐ݅ܤሿ ൅ 	ሿݐ݅ܤሾ݃݀ܵܧܨ݀ܿ	

(5.3)

If the lengths of the ST messages are known in advance, the payload of the ST frame

gPayloadLengthStatic can be set to the longest ST message length:

 maxgPayLoadLengthStatic MessageLengthST (5.4)

50 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

The length of the ST slot is calculated as following:

ሿܶܯሾݐ݋݈ܵܿ݅ݐܽݐܵ݀݃
ൌ 2	 ∗ ሿܶܯሾݐ݁ݏ݂݂ܱݐ݊݅݋ܲ݊݋݅ݐܿܣ݀݃	
൅ ሿݐ݅ܤሾ݃݀ܿ݅ݐܽݐ݄ܵݐ݃݊݁ܮ݁݉ܽݎܨሺሺሺܽ	ሺ࢒࢏ࢋࢉ	
൅ ሿሻݐ݅ܤሾ݃݀ݎ݁ݐ݈݅݉݅݁ܦ݈݁݀ܫ݈݄݁݊݊ܽܥܿ ∗ ሿݐ݅ܤ݀݃/ݏߤሾݔܽܯݐ݅ܤ݀݃	
൅ ሿݏߤሾݕ݈ܽ݁ܦ݊݋݅ݐܽ݃ܽ݌݋ݎܲ݊݅ܯ݀݃	
൅ ሿܶܯ/ݏߤሾ݇ܿ݅ݐ݋ݎܿܽܯሿሻሻ/ሺ݃݀ݏߤሾݕ݈ܽ݁ܦ݊݋݅ݐܽ݃ܽ݌݋ݎܲݔܽܯ݀݃
∗ ሺ1	 െ 	ሻ		ሻሻݔܽܯ݊݋݅ݐܽ݅ݒ݁ܦ݇ܿ݋݈ܥܿ	

(5.5)

Function ()ceil x returns the nearest integer greater than or equal to x. From formula (5.5)

we can tell that the length of the ST slot gdStaticSlot not only related with the ST frame

length aFrameLengthStatic but also related with some system parameters. The values of

the system parameters in formula(5.3) and formula(5.5) are regulated in FlexRay
specifications.

Various errors influence the system attainable precision of the clock synchronization that
can be achieved. The system precision is mainly influenced by the network topology. The
large and complex network will result in low synchronization accuracy [41].
 has the range from 1 to 63 MT and must be greater than the		ݐ݁ݏ݂݂ܱݐ݊݅݋ܲ݊݋݅ݐܿܣ݀݃
attainable precision [11]. Thus, the simpler the network is, the smaller
the value and ST slot size are. Moreover, the length of the ST	ݐ݁ݏ݂݂ܱݐ݊݅݋ܲ݊݋݅ݐܿܣ݀݃	
segment is fixed, so the smaller slot size leads to more slots available in the CC.

According to FlexRay specifications, ܿݎ݁ݐ݈݅݉݅݁ܦ݈݁݀ܫ݈݄݁݊݊ܽܥ	 is fixed to 11 gdBit.
	ݐ݅ܤ݀݃ and ݃݀ݔܽܯݐ݅ܤ	 have different values for different bus bit rates. The values of
 are 0.4006μs, 0.2003μs and 0.10015μs	ݔܽܯݐ݅ܤ݀݃ are 0.4, 0.2, 0.1μs and the value of		ݐ݅ܤ݀݃
for bus bit rate 2.5, 5 and 10Mbit/s respectively. ݃݀ݕ݈ܽ݁ܦ݊݋݅ݐܽ݃ܽ݌݋ݎܲ݊݅ܯ and
 is from 1		݇ܿ݅ݐ݋ݎܿܽܯ݀݃ .both have the ranges from 0 to 2.5 μs	ݕ݈ܽ݁ܦ݊݋݅ݐܽ݃ܽ݌݋ݎܲݔܽܯ݀݃
to 6 μs. ܿݔܽܯ݊݋݅ݐܽ݅ݒ݁ܦ݇ܿ݋݈ܥ	is fixed to 0.0015. ݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎ	is from 3 to 15 gdBit.
equals to	ܿ݅ݐܽݐ݄ܵݐ݃݊݁ܮ݀ܽ݋݈ݕܽܲ݃ .are fixed to 1 and 2 gdBit respectively	ܵܧܨ݀ܿ and	ܵܵܨ݀ܿ

max
mMessageLengthST , which is from 0 to 127 two-byte-words.

It is important to notice that the payload length of the ST frame gPayloadLengthStatic

increases only in two-byte-word unit, which equal to 20 gdBit in FlexRay specifications.
However, the unit should unify to bit for the calculations, which equals to 1.25 gdBit.

5.1.2.2 Number of ST slots gNumberOfStaticSlots

If the length of the ST segment and the length of the ST slot gdStaticSlot are known,

the number of ST slots gNumberOfStaticSlots is known.

 busST
gNumberOfStaticSlot

gdStaticSlot
 (5.6)

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 51

Equation (5.6) calculates the maximum number of ST slots available in the ST segment.
Since this thesis does not consider the frame packing, the scenario c) is not possible. From the
comparison of example a) and b), it is clear that enough number of ST slots could shorten the
response time of the messages. However, the actual used slots number cannot excess the
maximum available number of slots. The actual number of the used slots is not known until
the generation of the scheduling table.

On one hand, the scheduler need to guarantee the messages have opportunities to
transmit within their deadlines, on the other hand, it should avoid the slot over allocations to
increase the system capacity. Therefore, the ST slots allocation should base on the minimum
requirements of the messages. In other words, the number of ST slots allocated to a message
should close to the required slots number by the messages.

5.1.2.3 Schedulable Constraints

A ST message m is scheduled if it satisfies the following constraints:

1. The message transmission finishes before the message’s deadline mD for every

message-arrival. The worst-case response time is smaller than the deadline mD .

The mathematic expression is:

 ,ST m mm M R D   (5.7)

STM is the ST message set in a cluster. mR is the worst-case response time of

message m. This constraint suits for any schedulable systems, not only FlexRay
system.

2. The FlexRay 2005 specifications regulate the transmission buffer between the
host and the CC is non-queued buffers. A non-queued transmit buffer is a data
storage structure in which new values overwrite former values [11]. To avoid buffer
overwriting, the message transmission should finish before the next message-arrival.

Therefore, in the worst-case scenario, message m’s deadline mD , namely the

expiration time, equals to the minimum inter-arrival time mT of the messages. The

mathematic expression is:

 ,ST m mm M D T   (5.8)

5.1.2.4 Base cycle	࢓࢈ and base slot ࢙࢓

V denotes the maximum vector space of the schedule. The X-axis of V is the ST slot ID

with the maximum value of	݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ. The Y-axis of V is the cycle ID with

the maximum value of 63. V represents the maximum system capacity of FlexRay protocol.
Although the arrivals of ST messages are aperiodic, the transmission schedules of the ST

messages are periodic. If the first transmission position (,)m ms b for the message m is

52 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

determined, the following transmission slots are known. It is clear that the position (,)m ms b is

very important to the message’s schedule. Point (,)m ms b is called reference point. This thesis

defines a subset ofV , denoted by mV , to represent all possible positions of the reference point

of message m, ሺݏ௠, ܾ௠ሻ ∈ ௠ܸ. In other words, the searching space of message m’s schedule is

mV , mV V .

If the message is transmitted periodically, the transmission timeline, from this message’s
point of view, becomes the multiples of its period. Every small interval has the same duration
as its transmission period and all are the same. The possible position for its reference point
only has to choose from one of the spare slots in this interval. The following transmission
instances are just as the repetition of the reference point in every interval. Therefore once the
spare slot for the reference point is found, all of the following transmission instances can be
guaranteed to successfully schedule. If we assume the schedule for message m repeats every

௠݌ -slots and every 	ݎ௠ -cycles, the possible values of the base slot ݏ௠ are  1, mp and the

possible values of the base cycle ܾ௠ are  0, 1mr  because of the periodic transmission of

messages.

Here we use the notation mS to represents the possible values of base slot ݏ௠ which

defined as follow:

  1, , ,m m m m mS p s S s   (5.9)

And use the notation mCC to represents the possible values of base cycle 	ܾ௠ . It is

defined as follow:

  0, 1 , ,m m m m mCC r b CC b    (5.10)

Therefore the searching space of the reference point of messages m is defined as:

  ,m m mV S CC (5.11)

5.1.2.5 Cycle repetition	࢘࢓and slot repetition ࢓࢖

The analysis of base cycle mb and base slot ms show that these two values are directly

related to the values mr and mp . The previous section already set the searching space of ms and

mb . So this section will discuss the constraints of mr and mp .

It is obvious that the worst-case response time mR is related to mr and mp .

  , min
sST m m Nm M R T m M    is the constraint of mR defined in Section 5.1.1.

Furthermore, the design goal of the ST scheduler is allocating the slots to messages in the
resource-saving way. To avoid ST slots wasting caused by over allocation, the cycle

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 53

repetition mr should be the maximum value that satisfies equation(5.7). Similarly, the slot

repetition mp also should be the maximum value that satisfies equation(5.7). Furthermore, to

ensure the messages’ transmission patterns match with each other better and the concurrent

transmissions, we deduce the constraint for mr and mp as followings:

   max 2 0,6 , ,n
m m mr n n R D    (5.12)

   2max 2 0, log / , ,n
m m mp n gdCycle gdStaticSlot n R D      (5.13)

The slots that occupied by the schedule of message m are represented as a 2-tuple vector

set mbuffer :

     buffer = 1 , 1m m m m ms m p b n r      (5.14)

   1, , , 1, ,m mm gNumberOfStaticSlots m n gNumberOfCycle n   

mgNumberOfStaticSlots is the number of slots per cycle message m occupied.

mgNumberOfCycle is the number of cycles per 64 cycles message m occupied. After the

message m is scheduled, the slots occupied by this schedule needs to be eliminated from the

reference point’s searching space 1mV  of the next message m+1.

5.1.2.6 Detailed parameters based on the message types

Section 5.1.1 defined that the schedule of message m is represented by a 6-tuple vector

 , , , , ,m m m m m ms p gNumberOfStaticSlots b r gNumberOfCycle . The messages need to be

scheduled are divided into three types, based on the relationship between their deadlines and

the CC length gdCycle .

The following paragraphs illustrate examples of three message-types’ schedules and
analyze the unknown parameters and schedulable constraints based on the transmission
characteristics.

54 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

࢓ࡰ ൐ ࢋ࢒ࢉ࢟࡯ࢊࢍ

2m

2m

1

63

7
6
5
4
3
2

0
1 2

gNumberOfStaticSlots

1m

1m

1m

Figure 5-2 Example message schedule for ࢓ࡰ ൐ ࢋ࢒ࢉ࢟࡯ࢊࢍ

If mD is longer than the CC length gdCycle , the message m only needs one ST slot per

cycle and does not need to use all 64 cycles. Therefore, the slot repetition

mp gNumberOfStaticSlots . Because of m mD T , the minimum inter-arrival period mT is

also longer than the CC length. Thus, this message type uses the slot multiplexing to increase
the shared-resource utility rate.

An example schedule is shown in Figure 5-2. 1m and 2m share the same ST slot ID 1.

The cycle repetition 1r and 2r are 2 so that these two messages take turns to transmit. In general,

this type of messages only gets one ST slot per cycle and transmits once per mr cycles.

mD

Figure 5-3 Worst case response time of	࢓ࡰ ൐ ࢋ࢒ࢉ࢟࡯ࢊࢍ

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 55

As shown in Figure 5-3, the worst-case response time happens when message arrives just
after the start of its allocated slot. The worst-case response time is the red duration in Figure
5-3. The mathematic expression for this type of worst case response time is:

 m mR r gdCycle  (5.15)

Equation(5.12) sets   max 2 0,6 , ,n
m m mr n n R D    . Therefore, the value of mr

for this type of messages can be deduced from equation(5.12) and equation(5.15):

  max 2 0,6 , ,n m
m m

D
r n n r

gdCycle

 
    

 
 (5.16)

The number of cycles that message occupied in 64 cycles is:

64

m
m

gNumberOfCycle
r

 (5.17)

In conclusion, the schedule for the message setሼ݉|ܦ௠ ൐ :ሽ has the characteristic݈݁ܿݕܥ݀݃

 ݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠ ൌ 1

 ݈݃ܰ݁ܿݕܥ݂ܱݎܾ݁݉ݑ௠ ൌ
଺ସ

௥೘

 ݎ௠ ൌ ݔܽ݉ ቄ2௡ቚ݊ ∈ ሾ0,6ሿ, ݊ ∈ Ժ, ௠ݎ ൑
஽೘

௚ௗ஼௬௖௟௘
ቅ

 ݌௠ ൌ ݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑܰ݃

56 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

࢓ࡰ ൌ 	ࢋ࢒ࢉ࢟࡯ࢊࢍ

1

63

7
6
5
4
3
2

0
1 2

gNumberOfStaticSlots

0m

0m

0m

0m

0m

0m

0m

0m

0m

Figure 5-4 Example message schedule for ࢓ࡰ ൌ ࢋ࢒ࢉ࢟࡯ࢊࢍ

Messages that ܦ௠ equals to ݈ܿݕܥ݀݃ are considered as a special case of
ሼ݉|ܦ௠ ൐ ௠ݎ	ሽ with݈݁ܿݕܥ݀݃ ൌ 1. The message deadlineܦ௠equals to the CC length	݈݃݀݁ܿݕܥ.

An example schedule is shown in Figure 5-4. 0m uses ST slot ID 1. The cycle repetition 0r is 1

because	ܦ௠ ൌ In general, this type of messages only gets one ST slot per cycle and .݈݁ܿݕܥ݀݃

transmits in every cycle. Therefore	ݎ௠ ൌ 1 and 1mgNumberOfStaticSlots  .

mD

Figure 5-5 Worst case response time of ࢓ࡰ ൌ ࢋ࢒ࢉ࢟࡯ࢊࢍ

In conclusion, the schedule for the message set ሼ݉|ܦ௠ ൌ :ሽhas the characteristic݈݁ܿݕܥ݀݃

 ݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠ ൌ 1

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 57

 ݈݃ܰ݁ܿݕܥ݂ܱݎܾ݁݉ݑ௠ ൌ 64

 ݎ௠ ൌ 1

 ݌௠ ൌ ݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑܰ݃

࢓ࡰ ൏ ࢋ࢒ࢉ࢟࡯ࢊࢍ

0m

0m

0m

0m

0m

0m

0m

0m

1

63

7
6
5
4
3
2

0
1 2

gNumberOfStaticSlots

0m

0m

0m

0m

0m

0m

0m

0m

0m

0m

3 4 5

Figure 5-6 Example message schedule for ࢓ࡰ ൏ ࢋ࢒ࢉ࢟࡯ࢊࢍ

The messages that mD shorter than gdCycle has to assign multiple ST slots per cycle to

be able to transmit every message-arrival within the deadline. The slot repetition mp
 has the

constraint  2 , 0,9 ,n
mp n n   in order to better match with other messages’ schedules.

An example schedule is shown in Figure 5-6. 0m is allocated ST slot ID 1 and 3. The cycle

repetition 0r is 1 because mD gdCycle . In general, this type of messages gets multiple ST

slots per cycle and transmits in every cycle. Therefore 1mr  .

58 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

mD

Figure 5-7 Worst case response time of ࢓ࡰ ൏ ࢋ࢒ࢉ࢟࡯ࢊࢍ

The worst case response time is the red duration shown in Figure 5-7. The mathematic
expression for this type of worst case response time is:

 m mR p gdStaticSlot  (5.18)

Equation(5.13) sets ௠݌ ൌ ݔܽ݉ ቄ2௡ቚ݊ ∈ ቂ0, ଶ݃݋݈ ቀ
௚ௗ஼௬௖௟௘

௚ௗௌ௧௔௧௜௖ௌ௟௢௧
ቁቃ , ݊ ∈ Ժ, ܴ௠ ൑ ௠ቅܦ .

Therefore, the value ݌௠	of this type of messages can be deduced from equation(5.13) and
equation(5.18):

௠݌ ൌ ݔܽ݉ ቄ2௡ቚ݊ ∈ ቂ0, ଶ݃݋݈ ቀ
௚ௗ஼௬௖௟௘

௚ௗௌ௧௔௧௜௖ௌ௟௢௧
ቁቃ , ݊ ∈ Ժ, ௠݌ ൑

஽೘
௚ௗௌ௧௔௧௜௖ௌ௟௢௧

ቅ (5.19)

Because	ܦ௠ ൏ the number of cycles assigned to message m is the maximum ,݈݁ܿݕܥ݀݃
number of cycle counter 64:

௠݈݁ܿݕܥ݂ܱݎܾ݁݉ݑܰ݃ ൌ 64 (5.20)

The number of ST slots message m occupied per cycle equals to the maximum number of
transmissions during one cycle:

 m
m

gdCycle
gNumberOfStaticSlots

p gdStaticSlot

 
   

 (5.21)

In conclusion, the schedule for the message setሼ݉|ܦ௠ ൏ :ሽ has the characteristic݈݁ܿݕܥ݀݃

 ݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠ ൌ ቒ ௚ௗ஼௬௖௟௘

௣೘ൈ௚ௗௌ௧௔௧௜௖ௌ௟௢௧
ቓ

 ݈݃ܰ݁ܿݕܥ݂ܱݎܾ݁݉ݑ௠ ൌ 64

 ݎ௠ ൌ 1

 ݌௠ ൌ ݔܽ݉ ቄ2௡ቚ݊ ∈ ሾ0, ݈݁ܿݕܥଶሺ݃݀݃݋݈ ⁄ݐ݋݈ܵܿ݅ݐܽݐܵ݀݃ ሻሿ, ݊ ∈ Ժ, ௠݌ ൑
஽೘

௚ௗௌ௧௔௧௜௖ௌ௟௢௧
ቅ

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 59

5.1.2.7 Allocation order

The preceding discussion determined the ST slot length, the number of ST slot, and the

constraints of mr and mb . The next question will be: which message should be scheduled first

so that the system might have a better schedulability?

In ST segment scheduling, all of the ST messages should meet their deadlines in order to
have a schedulable system. The scheduling order of the ST messages follows the principle
that the least flexible message is allocated first. In other words, the messages need to be
scheduled first are the ones that have the least feasible schedules, namely the flexibility of the
message. The message’s flexibility is represented by the searching-space size of the reference

point	 ௠ܸ ൌ ሺܵ௠, ௠ሻ. ܥܥ 0, 1m mS p  and  0, 1m mCC r  . Therefore the size is mp × mr .

Furthermore, the 2D area is less flexible than the 1D area. Since the transmissions of the
messages in set	ሼ݉|ܦ௠ ൏ ሽ form a 2D area, they are less flexible than other types of݈݁ܿݕܥ݀݃
messages. Therefore, the messages in set	ሼ݉|ܦ௠ ൏ ሽ are scheduled first, which have݈݁ܿݕܥ݀݃

smaller value of mp . In conclusion, the allocation order follows the ascending order of the

values mp and then in ascending order of values mr .

5.1.3 ST Segment Scheduling Algorithm

The motivations to solve the problems are already presented in section 5.1.1. Here we
provide the ST scheduling algorithm for a known network in Algorithm 1 based on these
solutions.

Input:

 Bus bit rate	ࢊࢋࢋ࢖࢙_࢙࢛࢈

 ST message setࢀࡿࡹ ࢀࡿࡹ , is the ST message set waiting to send in a cluster,

 , ,m m STm T MessageLengthST m M 

Output:

6m Scheduling matrix STSimpleScheduler :

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

...

m m m m m m

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle















 
 

Simple FlexRay ST scheduling algorithm

60 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

for STm M  do // assign values to different parameters based on message types

 max= , number of active stars in the topologygdStaticSlot f MessageLengthST

busST
gNumberOfStaticSlot

gdStaticSlot


m mD T

if 30000mD 

30000mD 

end if

if mD gdCycle

1mr 

 2max 2 0, log / , ,n m
m m

D
p n gdCycle gdStaticSlot n p

gdStaticSlot

 
      

 

m
m

gdCycle
gNumberOfStaticSlots

p gdStaticSlot

 
   

64mgNumberOfCycle 

else

mp gNumberOfStaticSlots

1mgNumberOfStaticSlots 

if mD gdCycle

 max 2 0,6 , ,n m
m m

D
r n n r

gdCycle

 
    

 

64
m

m

gNumberOfCycle
r



else // message type mD gdCycle

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 61

1mr 

64mgNumberOfCycle 

end if

end if

end for

min max 2,
ST

m

m M m

gNumberOfStaticSlots
gNumberOfStaticSlots

r 

  
      



if mingNumberOfStaticSlots gNumberOfStaticSlots

output non-schedulable, exit //system non-schedulable

end if

Sort the messages STm M  in ascending order of the values mp and then in ascending order

of values mr store them in the message list STL

௠௜௡݌ ൌ minሺ݌௠ሻ //sort finish

   , 0,0use use useV S CC 

for STm L do

Slot ID set  1,m mS p

CC set  0, 1m mCC r 

 ,m m mV S CC

m m useV V V  // update the available space of the reference point

if mV is empty set

output system non-schedulable, exit

end if

for ሺݏ௠, ܾ௠ሻ ∈ ௠ܸ

for  1, ,mm gNumberOfStaticSlots m  

62 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

for  1, ,mn gNumberOfCycle n  

    buffer = 1 , 1m m m m ms m p b n r     

end for

end for

use use mV V buffer 

௡௘௪ݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑܰ݃ ൌ ௠ݏ ൅ ሺ݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠ െ 1ሻ ൈ ௠݌
//update used maximum ID ST slots

if new usegNumberOfStaticSlots gNumberOfStaticSlots

 use newgNumberOfStaticSlots gNumberOfStaticSlots

end if

take m out of STL , update STL

if STL is empty

output STSimpleScheduler matrix, exit //system schedulable

end if

continue with next STm L

end for

end for // continue with next value of gdCycle

Algorithm 1 Pseudocode for Simple FlexRay ST scheduling algorithm

In the worst-case scenario, the complexity of the algorithm is  O n . n is the number of

ST messages.

5.2 Scheduler Design for Simple FlexRay DYN Segment

Before analysis of this section, we would like to present some notations which are uses
later.

 busDYN is the length of the DYN segment;

 gdMinislot is the duration of a Minislot;

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 63

 mMessageLengthDYN is the number of bits constituting the dynamic message m

in the cluster;

 mpLatestTx is the number of the last Minislot in which a frame transmission can

start in the DYN segment;

 mR is the worst-case response time of the DYN message m;

5.2.1 Problem definition

The analysis of ST segment shows that the ST segment communication is designed for
the periodic tasks and messages that have a minimum inter-arrival time. These tasks and
messages are time-triggered, which require highly predictability and guaranteed latency.
However, automotive communication not only has the periodic tasks and messages but also
has the aperiodic ones. The aperiodic tasks and messages do not have a maximum inter-
arrival bit rate. It is necessary to have another media access scheme to adapt the transmission
and improve the network efficiency. The media access mechanism in DYN segment of the
FlexRay CC uses event-triggered FTDMA. It is the Minislot-based scheme to adapt the
flexible transmissions. The messages transmitted in DYN segment are called DYN messages.

There are two differences between ST segment and DYN segment communications.
Firstly, the length of the ST slot is fixed in a schedule while the length of the DYN slot varies
based on the size of the frame transmitted in that slot. Secondly, the transmissions of other
messages do not affect the response time of the ST messages since every ST message is
allocated a ST slot to transmit. On the contrary, the transmission of other messages affect the
response time of the DYN message9 since the DYN messages do not have a fixed slot for
transmission. The DYN message only has a FrameID that can be used to arbitrate the shared
resource, in this case is the FlexRay bus.

The aperiodic tasks or messages arrive unpredictably. They do not have an average inter-
arrival time. Therefore, the known parameters of the DYN message m are message length

mMessageLength and the deadlines mD . Thus, a DYN message m can be represented by 2

parameters:

  ,m mm D MessageLengthDYN (5.22)

Since the DYN message is the event-triggered transmission, there is no fixed scheduling
table for the message in advance of the system start. So we need to find another method to

9 The discussion of DYN segment don’t consider the frame packing problem as the consistent policy of the
ST segment. Therefore the DYN message can be seen as DYN frame.

64 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

evaluate the system schedulability which is different from the method to see whether the
scheduler can generate a valid scheduling table. Because the unpredictability of the DYN
message arriving, to guarantee a system is schedulable, the best way is to ensure the system is
schedulable in the worst-case scenario, even this method is a little pessimistic. To see if the
communication network can complete the transmission of every DYN message within its
deadline, even in the worst case, is the constraint used to evaluate the system schedulability.
In other words, the worst-case response time of the message should be shorter than its
deadline:

 ,DYN m mm M R D   (5.23)

DYNM is the DYN message set in a cluster. mR is the worst-case response time of message

m.

Just like the analysis in Section 4.5, the worst-case scenario of a DYN message
transmission happens when the higher-priority messages and the lower frame ID messages are
all queuing for transmission. We assume all the DYN messages are ready for transmission.
We calculate the worst-case response time	R୫ of every DYN message to see whether it is
smaller than the deadline. The calculation of the worst-case response time is presented in
Section 4.5. Thus, the message is scheduled if the scheduler can guarantee the response time
at least equals to the deadline.

Configurable Parameters

Let us consider the examples first and discuss the different message response times and
the related parameters.

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 65

1m 2m
3m

20CC 

2m1m

1m

1m

2 35R 

3m

2 21R 

1m 3m 2m

3m

3m

2 37R 

2m

2m

DYN

20CC 
DYN

21CC 
DYN

Figure 5-8 Examples of the configuration of DYN segment

The examples of the different configurations in DYN segment are shown in Figure 5-8.
The network of the examples consists of two nodes N1 and N2. They are connected by a bus.
The messages transmitted on the nodes are shown in figure.

Let us compare example a) and b). These two examples have the same DYN segment

length but different Frame ID allocations. As we can see in Figure 5-8, 1m and 3m are

messages in node N1. They share the same Frame ID=1 in example a) while use the different

Frame ID 1 and 3 in examples b) and c). In example a), 3m is the lowest priority among all

shared Frame ID messages. If they both ready at the same time, the transmission of 3m is

delayed one cycle by the transmission of higher-priority 1m . This situation is similar to ST

segment that different ST messages share the same Slot ID. We use Frame ID instead of Slot

66 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

ID in DYN segment. In example a), the delay of 3m suspends the transmission of 2m . In

example b), 3m has its own Frame ID so that it has the right to arbitrate the bus access and can

transmit in the first cycle. This reduces the response time of 2m since it does not need to wait

for 3m .

Let us consider example b) and c). These two examples have the same Frame ID

allocation but different DYN lengths. The response time of 2m is shorter in c) than it in b).

Because b) does not have enough time in DYN segment after the transmission of 1m to

accommodate 2m while c) has enough time in DYN segment to accommodates 2m . 3m still

cannot fit in the first cycle in c) even it has its own Frame ID. However, at least we can say
the longer DYN length gives more possibilities to the messages to reduce the response time.

The results are very similar to ST segment. The capacity of DYN segment is strongly
affected by the values of the DYN length and the frame ID. Furthermore, the transmission

order and response time of message 1m does not change in example a), b) and c). Since it has

the highest priority among all of the messages, it cannot be affected by the other messages’
transmission. However, this does not indicate that the higher-priority messages have shorter

response time. Message 3m and 2m in example b) and c) have the same Frame ID, however, the

response time of 2m is not always shorter than 3m .The reason is the size of the message also

affect the transmission order and the response time.

The problems in the DYN segment scheduler design are:

 Setting the order of the DYN messages’ Frame ID assignment to achieve the best
system schedulability;

 Calculation ࢞ࢀ࢚࢙ࢋ࢚ࢇࡸ࢖;

 Calculating the message worst-case response time	࢓ࡾ ;

 Setting the length of the DYN segment	࢙࢛࢈ࡺࢅࡰ ;

5.2.2 Motivation for the Solution

5.2.2.1 Assigning the Frame ID

The worst-case response time analysis in Section 4.5 gives the conclusion that the

messages in sets ()hp m , ()lf m and ()ms m may cause the delay of the message m. Delay

reduction optimizes the DYN messages’ transmission. The illustration in Figure 5-8 leads to

the conclusion that shared FrameID causes large delay. Therefore, allocating a Frame ID to
each message in the cluster reduce the worst-case response time of the lower priority
messages.

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 67

The value of Frame ID corresponds to the priority. The next question is how to allocate
the priority to the DYN messages. The discussions of previous sections show that the message
size and the priority both could affect the message’s response time. We can observe from
Figure 5-8 that the response time of a larger size message that has low priority is expected
very long. The long response time is not a problem as long as the message can meet the
deadline. Frame ID ‘1’ denotes the highest priority in this thesis.

Therefore, we allocate the FrameID to messages from 1, namely the highest priority,

follows the descending order of the value m

m

MessageLengthDYN

D
. If the messages have the

same value m

m

MessageLengthDYN

D
, the Frame-ID assignment is in descending order of the

value	ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ௠.

5.2.2.2 Calculation ࢞ࢀ࢚࢙ࢋ࢚ࢇࡸ࢖

Based on the discussion of the message response time, we can tell that for a given DYN

message sets, if the mFrameID and the message sizes ௠݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ	 are known, the

worst-case response time ܴ௠ only varies with the DYN segment length	ܻܦ ௕ܰ௨௦ , namely the
CC length ݈݃݀݁ܿݕܥ and ST segment length	ܵ ௕ܶ௨௦.

To calculate the worst-case response time	ܴ௠, the parameter ݔܶݐݏ݁ݐܽܮ݌௠ needs to be

determined first. Section 4.5.3 already introduced the concept of mpLatestTx that the

parameter mpLatestTx shows the number of the last Minislot in which a frame transmission

can start in the DYN segment [11]. A DYN message cannot be transmitted at the instant that

the value of Minislot counter is smaller than mpLatestTx .The value of pLatestTx depends

on the size of the DYN frames10 and the size of the Minislot. According to the FlexRay

specification, the approximate calculation formula of pLatestTx is:

ሿݐ݋݈ݏ݅݊݅ܯሾ	ݔܶݐݏ݁ݐܽܮ݌ 	
൑ –		ݏݐ݋݈ݏ݅݊݅ܯ݂ܱݎܾ݁݉ݑܰ݃ 	ሿݏߤሾ	ܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨܽ	
		ሿݏߤሾ	ݐ݋݈ݏ݅݊݅ܯ݀݃	/

(5.24)

The value of pLatestTx mainly related with the number of Minislots in the DYN

segment gNumberOfMinislots and the DYN frame length. This thesis ignores the length of

network idle time (NIT) and symbol window (SYM). The number of Minislots

gNumberOfMinislots in DYN segment can be approximately calculated as following:

10 The calculation simplified the frame length into the message length.

68 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

ݏݐ݋݈ݏ݅݊݅ܯ݂ܱݎܾ݁݉ݑܰ݃ ൎ ܻܦ ௕ܰ௨௦/݃݀ݐ݋݈ݏ݅݊݅ܯሾݏߤሿ	

(5.25)

FlexRay specifications define the DYN frame length aFrameLengthDynamic as

following:

ሿݏߤሾ	ܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨܽ
ൌ ሺ	݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎሾ݃݀ݐ݅ܤሿ ൅ 	ݐ݅ܤ݀݃	83	
൅ ሿݐሾܾ݅	ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ	 ∗ ሻݐ݅ܤ݀݃	1.25	 ∗ 		ሿݏߤሾݐ݅ܤ݀݃

(5.26)

As we can see in formula(5.24), pLatestTx relates with other system parameters.

According to FlexRay specification, the value of the system parameter gdMinislot is from 2

to 63 MT. mMessageLengthDYN is from 0 to 127 two-byte-words.

5.2.2.3 Calculate the message worst-case response time mR

The discussion in Section 4.5 has already presented the detail of the heuristic calculation
formula of worst-case response time:

ܴ௠ ൌ ௠ݓ ൅ ௠ܥ ൌ ሺߪ௠ ൅ ݊ ௕ܶ௨௦ ൅ ᇱݓ
௠ሻ ൅ ሺܽܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨ௠ ⁄݀݁݁݌ݏ_ݏݑܾ ሻ	

ൌ
൫݈݃݀݁ܿݕܥ െ ሺܾܵܶݏݑ ൅ ሺ݉ܦܫ݁݉ܽݎܨ െ 1ሻ ∗ ሻ൯ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
,൫݈݂ሺ݉݉ݏ݈݁ܿݕܥݏݑܤ	 ሻ൯ݐ ∗ ݈݁ܿݕܥ݀݃ ൅ ሺ݉ܦܫ݁݉ܽݎܨ െ 1ሻ ∗ ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅

	൫ܾܵܶݏݑ ൅ ݉ݔܶݐݏ݁ݐܽܮ݌ ∗ ൯ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
	ሺܽܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨ ∗ ݐ݅ܤ݀݃ ⁄݀݁݁݌ݏ_ݏݑܾ ሻ	

(5.27)

In this thesis, there are no shared Frame ID DYN messages, namely the message

set ,ሺ݉݌݄	 ሻݐ is empty. Thus, the delay ,ሺ݉݌௠൫݄ݏ݈݁ܿݕܥݏݑܤ	 ሻ൯ݐ ൌ 0 . The solution of

,൫݈݂ሺ݉݉ݏ݈݁ܿݕܥݏݑܤ ሻ൯ݐ transforms into the 1DBP problem. In this case, the message set

݈݂ሺ݉, 	ሻݐ represents the items, the DYN segments ܻܦ ௕ܰ௨௦ are bins, and the minimum

capacity required to fill a bin is mpLatestT gdMinislot .

5.2.2.4 Length of the DYN segment	࢙࢛࢈ࡺࢅࡰ

The CC consists of ST segment and DYN segment in this thesis. The length of DYN

segment busDYN can be calculated as following:

ܻܦ ௕ܰ௨௦ ൌ ݈݁ܿݕܥ݀݃ െ ܵ ௕ܶ௨௦ (5.28)

According to FlexRay specification, the range of gdCycle is from 10 µs to 16000 µs.

Moreover, the increment of the cycle length aims to accommodate different sizes of messages.

The payload of the frame can increase only in two-byte-word unit, which equals to 20 gdBit

CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 69

in FlexRay protocol. Therefore, the algorithm should increase the cycle length in the same
unit as the increment of the FlexRay frame payload.

5.2.3 DYN Segment Scheduling Algorithm

The motivations of the simple DYN scheduler design are presented in the previous
section. Based on the solutions, we provide the simple DYN scheduling algorithm for a
known network in Algorithm 2.

Input:

 Bus bit rate ࢊࢋࢋ࢖࢙_࢙࢛࢈

 The DYN message setࡺࢅࡰࡹ ,ࡺࢅࡰࡹ is maximum DYN message set waiting to send

in a cluster,  , ,m m DYNm D MessageLengthDYN m M 

Output:

System schedulable or non-schedulable

Simple FlexRay DYN scheduling algorithm

Sort the DYN messages DYNm M  in descending order of the value m

m

MessageLength

D
 and

then in descending order of the value mMessageLength , store them in the message list DYNL

Assign the Frame ID to the DYN messages with the order in list DYNL from 1

// sort the messages and assign the Frame IDs

for ݈݃݀݁ܿݕܥ ൌ step 20 ݏߤ16000	݋ݐ	10 μsgdBit

simple	FlexRay	ST	scheduling	algorithm

ܻܦ ௕ܰ௨௦ ൌ ݈݁ܿݕܥ݀݃ െ ܵ ௕ܶ௨௦

ݏݐ݋݈ݏ݅݊݅ܯ݂ܱݎܾ݁݉ݑܰ݃ ൌ ܻܦ ௕ܰ௨௦/݃݀ݐ݋݈ݏ݅݊݅ܯ

for DYNm L

ሻݐሺܾ݅	ܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨܽ ൌ
ݎ݁ݐݐ݅݉ݏ݊ܽݎܶܵܵܶ݀݃ ൅ 	83 ൅
ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ ∗ 1.25

௠ݔܶݐݏ݁ݐܽܮ݌ ൌ ݏݐ݋݈ݏ݅݊݅ܯ݂ܱݎܾ݁݉ݑܰ݃ െ ሺܽܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨ ∗
ݐ݋݈ݏ݅݊݅ܯ݀݃/ሻݐܾ݅݀݃

70 CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE
FLEXRAY NETWORKS

FFD	bin	packing	algorithm calculates the delay ,ሺ݈݂ሺ݉݉ݏ݈݁ܿݕܥݏݑܤ ,ሺ݉ݏ݉,ሻݐ ሻሻݐ

ܴ௠ ൌ

൫݈݃݀݁ܿݕܥ െ ሺܵ ௕ܶ௨௦ ൅ ሺܦܫ݁݉ܽݎܨ௠ െ 1ሻ ∗ ሻ൯ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅

,௠൫݈݂ሺ݉ݏ݈݁ܿݕܥݏݑܤ	 ሻ൯ݐ ∗ ݈݁ܿݕܥ݀݃ ൅ ሺܦܫ݁݉ܽݎܨ௠ െ 1ሻ ∗ ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
	ሺܵ ௕ܶ௨௦ ൅ ௠ݔܶݐݏ݁ݐܽܮ݌ ∗ ሻݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
	ሺܽܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨ ∗ ݐ݅ܤ݀݃ ⁄݀݁݁݌ݏ_ݏݑܾ ሻ		

if ܴ௠ ൑ ௠ܦ

take ݉ out of list ܮ஽௒ே

if ܮ஽௒ே is not empty

continue with next message in list ܮ஽௒ே

else

output schedulable, exit

end if

else

next value of ݈݃݀݁ܿݕܥ

end if

end for

end for

output non-schedulable, exit //system non-schedulable

Algorithm 2 Pseudocode for Simple FlexRay DYN scheduling algorithm

The complexity of the algorithm is  O n . n is the number of DYN messages.

5.3 Conclusion

This chapter focuses on the ST and DYN segment scheduler-design in simple FlexRay
network. We first analyzed schedulable constraints and configurable parameters of messages
and decided the way to determine the value of these constraints. In the analysis of the ST
segment, we classified the ST messages into three types and gave the values of the parameters
in detail for each of these types. Afterwards, we decided the allocation order of the slot ID. In
the analysis of the DYN segment, we focused on the allocation order of the frame ID and the
calculation of the worst-case response time. In the calculation, the key parameter ݔܶݐݏ݁ݐܽܮ݌
is specially discussed. In the end of DYN segment discussion, we presented the scheduling
algorithm.

71

6
6 Scheduler Design for Switched

FlexRay Networks

The simple FlexRay schedulers design has already presented in Chapter 5. This chapter
introduces a new FlexRay network that includes a new component called ‘FlexRay switch’. It
has the similar conceptual features like the Ethernet network switch.

The switch can isolate or combine different branches into separate clusters based on
communication needs. Each cluster can work parallel. So each cluster has different schedules
to maximize the use of the shared resource. During different slots, the clusters consist of
different nodes. This is done by reforming clusters in each slot. In other words, ECUs belong
to the different cluster during different slots. The switch FlexRay network is no longer
communicates in broadcast mode. The clustering step has a crucial influence to increase the
slot utility rate.

This chapter we first will introduce the concept of switch FlexRay network. Then we will
present scheduling algorithms for ST and DYN segment in switch FlexRay network
respectively.

6.1 Concept of Switched FlexRay Network

According to FlexRay specifications, the existing component active star is a central
component in the network. It is the good starting point to realize the switching function.
Therefore the network replaces the active star with a switch in order to realize multiple paths
of data synchronized transmission.

72 CHAPTER 6. SCHEDULER DESIGN FOR
SWITCHED FLEXRAY NETWORKS

Figure 6-1 Simple FlexRay network with 4 nodes connected by active star

Figure 6-2 Switched FlexRay network with 4 ports11

Figure 6-2 shows a simple FlexRay network included eight nodes that are connected by
an active star while Figure 6-2 shows a network includes a FlexRay switch that the eight
nodes are connected by the switch. The blue and red lines represent the data flows. As we can
see from two figures, the simple FlexRay network only has one data flow while switch
FlexRay can has two independent data flows. The active star allows only one source node at a
time while FlexRay switch allows multiple source nodes. It is clear to tell that switch FlexRay
network significantly increase the system bandwidth.

FlexRay switch cannot use the packet switching since it is used in the real time system.
Predefined scheduling matrix stored in the switch decides the operation order of the ports.

11 The concept of port basiclly is equivalent to branch in this thesis. But port is more emphasis on the
physical interface while branch is more emphasis on the whole system behind the interface.

CHAPTER 6. SCHEDULER DESIGN FOR SWITCHED FLEXRAY NETWORKS 73

Figure 6-3 Two clusters separately communicate during one slot

Figure 6-4 One port close during one slot

Figure 6-3 and Figure 6-4 are two different clustering examples of the same switched
network. The switch has different branches which can isolate or group different branches into
different clusters, namely the clusters, and to send data simultaneously based on the
communication needs. The topology of the cluster could be bus topology, star topology or
mixed topology. The maximum number of clusters depends on the number of switch ports.
There is only one source node at a time in any cluster.

After the introduction of switch FlexRay network, the following sections will discuss the
related problems and the answers concerning the scheduler design for ST segment and DYN
segment.

6.2 Scheduler Design for Switched FlexRay ST Segment

Before the discussion we would like to present some notations which are used later.

 mMatrix is the matrix of message m indicating the message transmission path;

 CycleNumber,SlotIDMatrix is the switching matrix for a specific slot ID and cycle

number;

74 CHAPTER 6. SCHEDULER DESIGN FOR
SWITCHED FLEXRAY NETWORKS

 availablePort is the set of unoccupied ports in the switch;

 mPort is the set of source and destination ports of message m;

 usePort is the These three constraints indicate that if a switch port functions as the

disconnected port, the source port or the destination port involving any
communication during a slot it is seen as an occupied port. The occupied port set is
notated

 switchPort is the set of the ports for the FlexRay switch;

6.2.1 Problem definition

The best way to solve a problem is to analyze the differences between the existing
problems and the new problems and get the solutions from the existing solutions. After the
analysis of simple FlexRay ST scheduler design, problems and solutions of this scheduler are
clear. This section deals with the ST segment scheduler design in switch FlexRay network.
Therefore, the best starting point of the new scheduler is to consider the differences between
the working principle of switch FlexRay network and the simple FlexRay network. Then start
to find solutions for these differences and design the new scheduler.

The main difference of these two networks is the FlexRay switch. The simple FlexRay
network supports one data source sending at a time. Switched FlexRay network includes a
FlexRay switch that enables multiple data sources to send data simultaneously.

Every message has a message transmission path that consists of one source node and one
or more destination nodes. Each node is associated with a fixed switch port. From the
message’s point of view, the switching path is a set of source and destination nodes. From the
switch’s point of view, the switching path is a set of source and destination ports. The nodes
connected with the same port can be seen as one simple FlexRay branch.

Figure 6-5 Concept of branch

CHAPTER 6. SCHEDULER DESIGN FOR SWITCHED FLEXRAY NETWORKS 75

The concept of the branch is shown in Figure 6-5. As it is seen from the figure, the
network is divided into four branches since the switch has four ports. The nodes N4 and N5
are connected with the same port in the switch. These two nodes form a simple FlexRay
branch. It is clear that the maximum number of the branches equals to the number of the
switch ports.

The ST messages transmitted in the switch FlexRay network are called switched ST
message. The switched ST messages can be further divided into two types: the one transmits
through the switch is called the after-switch message, alternatively, the one does not transmit
through the switch is called the local communication message.

The after switch ST messages have the source and destination nodes in the different
branches. Thus, the messages’ source and destination information need to transmit to the

FlexRay switch to indicate the switching path. This thesis introduces the notation mMatrix to

represent the switching path of message m. We assume the messages transmitted in the
network have fixed switching path at different slots. Furthermore, the switching path needs to
be known by the scheduler in advance. Therefore, on the basis of simple ST message’s
representation, the switched ST messages can be represented by a 4-tuple vector:

  , ,m m mm T MessageLengthST Port mMatrix, (6.1)

mPort is the set of source and destination ports of message m. mMatrix is the matrix of

message m indicating the message transmission path.

The local communication ST messages have the source and destination nodes in one

branch. The set of transmission related ports mPort only contains one element. The

transmission of the message never passes through the switch in the network. Hence the switch

does not need to know the transmission path mMatrix . Therefore, the local communication

ST messages can be seen as a special case of the switch ST messages that the transmission

path mMatrix is 0.

The concept of cluster introduced in Section 6.1 is the key change in the switch FlexRay
network. Multipath transmission significantly increases the system bandwidth. To enable
multipath transmissions, we need to group ports to form the clusters, namely a broadcast
group, based on the communications. The communication inside one cluster is the same as the
simple FlexRay network. The time grid of the ST segment is the ST slot, so the clusters in the
network regroup every slot. For each ST slot, there should be a corresponding switching
matrix.

Like the simple ST messages, the switched ST messages are considered schedulable if it
is possible to generate a valid static scheduling table. Hence the switched ST scheduler aims
to generate a valid ST scheduling table after the clustering. The schedulable constraints of the
switched ST scheduler are the same as the ones in the simple ST scheduler.

76 CHAPTER 6. SCHEDULER DESIGN FOR
SWITCHED FLEXRAY NETWORKS

Schedule Parameters

In simple FlexRay network, the transmission follows the scheduling table stored in the
hosts. In switch FlexRay network, the simultaneous transmissions in ST segment are realized
by the scheduling tables stored in the nodes’ hosts and the switching matrix table stored in the
switch. The scheduling table consists of the same parameters as the simple FlexRay
scheduling table:

  Schedule , , , , ,m m m m m m ms p gNumberOfStaticSlots b r gNumberOfCycle (6.2)

The switching matrix table consists of a set of switching matrixes of different slot IDs in
different cycles during the global static scheduling period 	 ௦ܶ௦ . Therefore, the number of
matrixes in the matrix table depends on the number of ST slots and number of CCs. Each
matrix in the matrix table represents the connections between the switch ports of a particular

instance. One example of the switching matrix [42] for cycle number CycleNumber and Slot

ID SlotID shows below:

1,2 1,3 1,4

2,1 2,3 2,4

3,1 3,2 3,4

4,1 4,2 4,3

0

0

0

0

Port Port Port

Port Port Port

Port Port Port

Port Port Port

 
 
 
 
  
 

CycleNumber,SlotIDMatrix (6.3)

Matrix (6.3) is one of the switching matrixes in the switching matrix table of a four ports
switch. In this matrix, the column represents the source port. The row represents the

destination port. Therefore, it is a 4 4 matrix. The source port i is marked by a “1” in the i th
column. For example, if there are two messages transmitted in the network. One of the
messages is transmitted from port 3 to port 2 during a slot. The other message is transmitted

from port 1 to port 4 during the same slot. 2,3Port and 4,1Port in the matrix are marked by a

“1”. The switching matrix for this slot then becomes:

0 0 0 0

0 0 1 0

0 0 0 0

1 0 0 0

 
 
 
 
 
 

CycleNumber,SlotIDMatrix (6.4)

The 3rd and 1st column represent the source ports 3 and 1 and the 2nd and 4th row
represent the destination ports 2 and 4. If the data transmits from port 3 to braches 1, 2 and 4,
then the switching matrix for this slot becomes:

0 0 1 0

0 0 1 0

0 0 0 0

0 0 1 0

 
 
 
 
 
 

CycleNumber,SlotIDMatrix (6.5)

CHAPTER 6. SCHEDULER DESIGN FOR SWITCHED FLEXRAY NETWORKS 77

If an after-switch ST message transmits during some slots in some cycles, the switching
matrix of these slots should have the switching path information of these messages so that the
switch knows how to transfer the data. Besides the communications between the branches, the
communications also happen locally inside one branch during some slots. If a branch
communicates locally during some slots, it is disconnected by not having the switching path
information in the switching matrix for those slots.

The discussion above shows that the data transmissions in the switched ST segment not
only follow the clustering constraints but also need to satisfy the basic schedulable constraints.
Therefore, the problems need to solve in the switched ST segment scheduler design are:

 Clustering and generating the switching matrix CycleNumber,SlotIDMatrix for each ST

slot;

 The value of the parameters in the schedule which can meet the schedulable
constraints need to be set;

6.2.2 Motivation for the Solution

Section 6.2.1 pointed out the problem of switched ST scheduler design is to cluster the
switch ports efficiently. The first goal of the switched scheduler is to allocate the ST messages
in the schedule. The second goal is to reduce the system utility rate. Therefore, the priori
consideration of the switched ST scheduler design is the schedulable constraints. The
clustering constraints are further considered.

6.2.2.1 Clustering Constraints

The switched ST scheduler aims to maximize the number of non-used slots to increase
the system capacity. The scheduler tries to merge different slots’ transmissions into one slot
as much as possible. However, in order to avoid the data collision, clustering the possible
messages needs to satisfy the clustering constraints listed in the following.

 A port cannot be the source and destination port at the same time;

According to the FlexRay specifications, the interface between the CC and the BD
has different signal lines for the data transmission and receiving. The interface
between the host and the CC only has one signal line for the data transmission and
receiving. Therefore, if a port is a destination port during some slots, it cannot be the
source port during these slots [42]. This means a port of the switch cannot be the
source port and the destination port during the same slot.

 A destination port cannot have more than one source port;

According to the FlexRay specifications, the receive buffer in a FlexRay node might
be the queued buffer. However, there is only one signal line in the node for
transmission. Multiple sources will cause data collision. Therefore, a destination

78 CHAPTER 6. SCHEDULER DESIGN FOR
SWITCHED FLEXRAY NETWORKS

port may have zero source ports when it communicates locally or one source port
when it uses the switch to communicate.

 A branch that communicates locally during a slot needs to disconnect with the
switch;

A branch is a simple FlexRay cluster. The cluster’s bus is occupied by the local
communication data if there is local data communication. Therefore, other data
cannot transmit on the bus at that slot. This branch cannot participate in the switched
communication between other branches during that slot.

6.2.2.2 Different valued parameters with simple ST scheduler

The goal of the switch FlexRay ST scheduler design is to maximize the utility rate of the
used slots. If one slot is assigned to a message, the scheduler tries to find other messages that
are able to transmit during this slot satisfied the constraints presented in Section 6.2.2.1. If
successfully find the messages, the scheduler multiplex their transmissions.

availablePort denotes a new concept called available port set in switch FlexRay network. It

is defined as the unoccupied ports in the switch during that slot. This concept is very
important because the clustering finds the transmission that can happen simultaneously by

using different available ports availablePort , slot ID and cycle number. The vector space mV

changes to represent the possible positions of the reference point with 3 parameters: base

cycle mb , base slot ms and the available ports availablePort . It is defined as following:

  , ,m m m availableV S CC Port (6.6)

The slot ID set mS and the CC set mCC have the same definitions as the ones in the simple

FlexRay network.

Section 6.2.2.1 defined three clustering constraints. Constraint 3 states that the local
communication messages affect the clustering of the after-switch ST messages. The three
constraints indicate that a switch port is occupied in a slot when it functions as the
disconnected port, the source port or the destination. The occupied port set is notated as

usePort . These ports cannot be the source or the destination ports in other clusters during the

same slot. It is clear to get the conclusion that usePort should be eliminated from availablePort in

the slot clustering. We also define the notation switchPort to represent the ports a FlexRay

switch has. Thus we have:

 available switch usePort Port Port  (6.7)

CHAPTER 6. SCHEDULER DESIGN FOR SWITCHED FLEXRAY NETWORKS 79

6.2.3 Switched ST Segment Scheduling Algorithm

Input:

 Bus bit rate	ࢊࢋࢋ࢖࢙_࢙࢛࢈

 Switch port set ࢎࢉ࢚࢏࢙࢚࢝࢘࢕ࡼ

 ST message setࢀࡿࡹ is the set of ST messages waiting to send in a network.

 , , , ,m m m STm T MessageLengthST Port m M mMatrix . The matrix ܕܠܑܚܜ܉ۻ

is 0 if the message port set ࢓࢚࢘࢕ࡼ only contains one element.

Output:

 6m scheduling matrix STSwitchScheduler
:

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

...

m m m m m m

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle















 
 

 Switching matrix table:

63,1 63,1 63,

1,1 1,2 1,

0,1 0,2 0,

...

...

...

...

gNumberOfStaticSlot

gNumberOfStaticSlot

gNumberOfStaticSlot

Matrix Matrix Matrix

Matrix Matrix Matrix

Matrix Matrix Matrix

 
 
   
 
  

STMatrixTable ,

in which:

1,2 1,3 1,4

2,1 2,3 2,4

3,1 3,2 3,4

4,1 4,2 4,3

0

0

0

0

Port Port Port

Port Port Port

Port Port Port

Port Port Port

 
 
 
 
  
 

CycleNumber,SlotID
Matrix

  1, ,SlotID gNumberOfStaticSlots SlotID 

 0,63 ,CycleNumber CycleNumber 

Switched FlexRay ST scheduling algorithm

for STm M  do // assign values to different parameters based on message types

80 CHAPTER 6. SCHEDULER DESIGN FOR
SWITCHED FLEXRAY NETWORKS

gdCycle
gdStaticSlot

gNumberOfStaticSlot


m mD T

if 30000mD 

30000mD 

end if

if mD gdCycle

1mr 

 max 2 0,9 , ,n m
m m

D
p n n p

gdStaticSlot

 
    

 

m
m

gdCycle
gNumberOfStaticSlots

p gdStaticSlot

 
   

64mgNumberOfCycle 

else

1023mp 

1mgNumberOfStaticSlots 

if mD gdCycle

 max 2 0,6 , ,n m
m m

D
r n n r

gdCycle

 
    

 

64
m

m

gNumberOfCycle
r



else // message type mD gdCycle

1mr 

64mgNumberOfCycle 

end if

CHAPTER 6. SCHEDULER DESIGN FOR SWITCHED FLEXRAY NETWORKS 81

end if

end for

min max 2,
ST

m

m M m

gNumberOfStaticSlots
gNumberOfStaticSlots

r 

  
      



if mingNumberOfStaticSlots gNumberOfStaticSlots

output non-schedulable, exit //system non-schedulable

end if

for STm M  do

Sort the messages STm M  in ascending order of the values mp and then in ascending

order of values mr store them in the message list STL

௠௜௡݌ ൌ minሺ݌௠ሻ

end for //sort finish

   , , 0,0,0use use use useV S CC Port 

0STMatrixTable

for STm L do

Slot ID set  0, 1m mS p 

CC set  0, 1m mCC r 

 , ,m m m switchV S CC Port

m m useV V V  // update the available space of the reference point

if mV is empty set

output system non-schedulable, exit

end if

for ሺݏ௠, ܾ௠, ௠ሻݐݎ݋ܲ ∈ ௠ܸ

for  1, ,mm gNumberOfStaticSlots m  

82 CHAPTER 6. SCHEDULER DESIGN FOR
SWITCHED FLEXRAY NETWORKS

 Algorithm 3 Pseudocode for Switched ST scheduling algorithm

for  1, ,mn gNumberOfCycle n  

    buffer = 1 , 1 , m m m m m ms m p b n r Port     

end for

end for

if elements in set mPort >1 //update the matrix of that slot

CycleNumber,SlotID CycleNumber,SlotID mMatrix = Matrix + Matrix ,

 1m mSlotID s m p    ,  1, ,mm gNumberOfStaticSlots m  

 1m mCycleNumber b n r    ,  1, ,mn gNumberOfCycle n  

end if

use use mV V buffer 

௡௘௪ݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑܰ݃ ൌ ௠ݏ ൅ ሺ݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠ െ 1ሻ ൈ ௠݌
//update used maximum ID ST slots

if new usegNumberOfStaticSlots gNumberOfStaticSlots

 use newgNumberOfStaticSlots gNumberOfStaticSlots

end if

take m out of STL , update STL

if STL is empty

output STSwitchScheduler and STMatrixTable , exit //system schedulable

end if

continue with next STm L

end for

end for // continue with next value of gdCycle

CHAPTER 6. SCHEDULER DESIGN FOR SWITCHED FLEXRAY NETWORKS 83

6.3 Scheduler Design for Switched FlexRay DYN Segment

6.3.1 Problem definition

By grouping sub-set of ports into clusters, different switched ST messages can transmit
simultaneously. Each cluster functions like a simple FlexRay network. Therefore, a switch
FlexRay network can be seen as the combination of a few simple FlexRay networks. The
clustering increases the system bandwidth and enables simultaneous collision-free
transmissions. The switched DYN segment communication can consult the method in
switched ST communication and make necessary modifications. To distinguish the simple
DYN message from the messages transmitted in the FlexRay network, the latter is called
switched DYN message.

Section 2.2.2.3 introduced that FTDMA is the media access mechanism in DYN segment.
In DYN segment, the messages could send in any instant in terms of the number of Minislots
with an arbitrary length of payload (maximum is 127 2-byte-words). There are two major
differences between ST segment and DYN segment. The first difference is the length of the
slot. The DYN slot length is varied by the size of the messages while the ST slot length is
fixed in a cluster. The second difference is the message response time. The transmission of
other messages could affect the response time of the switched DYN message. The ST
messages use fixed slot transmission to prevent the interferences from other messages. Every
switched DYN message is allocated a FrameID for bus arbitration.

To enable the switched transmission, it is necessary to known the source and destination
ports of the switched DYN message. The known parameters of a switched DYN message	݉
are the message lengthܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ௠ , the message deadlineܦ௠, the set of source
and destination ports ௠ݐݎ݋ܲ	 and the message switching path ܕܠܑܚܜ܉ۻ	 . Therefore the
switched DYN messages can be represented by a 4-tuple vector:

݉ ൌ ሼܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ௠,ܦ௠, ሽ (6.8)ܕܠܑܚܜ܉ۻ,௠ݐݎ݋ܲ

Local communication message is a special switched DYN message that does not pass
through the switch. So the message ports set only contains one port that is both the source and
destination port. It can be seen as no switching information. Thus, the switching
path	ܕܠܑܚܜ܉ۻ is 0.

The goal of the switched DYN scheduler is to increase the utility rate of the shared
resource and to improve the system bandwidth. Therefore, efficiently build the broadcast
groups based on the communication demands is the crucial issue. The clustering constraints
are the same as the ones in switched ST segment. The regrouping period of the clusters in the
switched DYN segment is slightly different from the period in the switched ST segment. The
fixed time grid is Minislot in the DYN segment instead of ST slot in the ST segment.
However, the duration of the Minislot is too short to be the regrouping period. So the
regrouping period should be multiple of the Minislot duration. For each period, there should
be a corresponding switching matrix stored in the switch.

84 CHAPTER 6. SCHEDULER DESIGN FOR
SWITCHED FLEXRAY NETWORKS

The schedulable constraints are the same as the ones in simple DYN segment. The
switched DYN segment is considered schedulable if every DYN messages’ worst-case
response time 	ܴ௠ is shorter than or equal to the deadline	ܦ௠ . Hence the switched DYN
scheduler should calculate the worst-case response time after the clustering step and compare
them with the deadlines to determine the system schedulability.

In conclusion, the problems needed to solve in the switched DYN scheduler design are:

 Clustering;

 Calculating the switched DYN message worst-case response time mR ;

6.3.2 Motivation for the Solution

6.3.2.1 Clustering

The analysis in the previous section has already shown that, for the DYN segment, the
regrouping period should be multiple of the Minislot. There are two methods of choosing the
regrouping period.

 Regrouping the cluster every CC

Since the duration of the CC is fixed, it is suitable to use as the regrouping period [42].
Therefore, the switch regroups the nodes at the interval of a CC. In other words, the switch
can have different clusters during each CC and up to 64 clusters in total.

Besides the regrouping period, there is one more difference between the switched ST
scheduler and the switched DYN scheduler. In the switched DYN scheduler, the branch could
be both source and destination branch in a cluster. Although the regrouping period of the
cluster is one cycle, the timing of data transmission is Minislot-based. Therefore, the node can
change part in different Minislots. Furthermore, the branches in one cluster should have the

same value of the slot counter DYNvSlotCounter .

 Flexible regrouping period

The second method tries to refine the clusters by reducing the set of branches belonged to
a cluster. The refinement will increase system bandwidth since it allows more transmissions
happen at the same time than the big cluster. The refinement is done by reducing the
regrouping period of the clusters. Just as the discussion in the previous section, the newly
refined period is a specific period that is multiple of the Minislot duration and is shorter than
the duration of a CC. Each regrouping period could be different. The regrouping points need
to be defined in advance based on practical communication demands to obtain the maximum
system bandwidth. The switch builds the new clusters at every regrouping point. The
clustering is based on the switching matrix pre-stored in the switch that describes the
connection of the switch ports. Theoretically, this can help to gain more bandwidth but may
require lot more configuration memories.

CHAPTER 6. SCHEDULER DESIGN FOR SWITCHED FLEXRAY NETWORKS 85

This thesis chooses the duration of the CC as the regrouping period because the switched
DYN scheduler is a general scheduler, not a scheduler for a particular implementation. The
flexible regrouping points cannot be set without the detail transmission information.
Furthermore, the first method still can gain more bandwidth without increasing too many
configurations and hardware requirements.

6.3.2.2 Calculating the worst-case response time mR

In the schedulability analysis, it is sure that applying the switch in FlexRay network
introduces additional switching delay. The worst-case response time becomes:

 ܴ௠ ൌ ௠ݓ ൅ ௠ܥ ൅ ܵௗ௘௟௔௬_௠ (6.9)

ܵௗ௘௟௔௬_௠ is the delay of message ݉ caused by FlexRay switch. Section 6.2.1 introduced

two types of messages in the switch FlexRay network. One called after-switch message, the
other called local communication message. For the local communication message, it does not
pass through the switch. Therefore, the switching delay	ܵௗ௘௟௔௬_௠ equals to 0.

The switching delay ܵௗ௘௟௔௬_௠ is defined as from the transceiver of the sending port to the

transceiver of the destination port [42]. This switching delay’s definition not considers
the upper layer delays in the switch such as searching-switching-entry delay. It is the physical
switching delay. According to FlexRay specifications, the maximum delay allowed for the

active star is150ns . So the switching delay is required to keep within this bound. In the
experimental setup in [42], the delay is proven to successfully stay within the bound.
Therefore, in the calculation of worst-case response time, the switching delay	ܵௗ௘௟௔௬_௠ can be

ignored.

Introducing the switch does not change the bus arbitration scheme. The mathematic

model of the bus arbitration delay mw and transmission delay mC is the same as the simple

FlexRay analysis. Switched FlexRay network enables parallel communication between
branches, which virtually transform one communication network into several networks. From
the aspect of the system schedulability, this equals to reduce the system size and increase the
chance to access the bus.

In simple FlexRay analysis, the 1DBP algorithm is used to calculate the delay

((,))mBusCycles lf m t . The bin is the DYN segment. The items to fill the bin are the

elements in (,)lf m t . Since the messages are clustered, the messages in one cluster can send

simultaneously. The original transmission order of the messages changes. The analysis of the
DYN message transmission in Section 4.5 shows that the message transmission order is
decided by the Frame ID. Therefore, we can see the transmission order changes as the Frame
ID changes.

For the messages in the same cluster, the Frame IDs of messages update to the smallest
Frame ID in the cluster. For messages not included in a cluster, from their point of views, the
messages in a cluster are considered as one representative message. The size of the
representative message is the longest message length in that cluster. For the messages that

86 CHAPTER 6. SCHEDULER DESIGN FOR
SWITCHED FLEXRAY NETWORKS

change the Frame ID, the messages in set (,)lf m t are decreased, and the delay

((,))mBusCycles lf m t is reduced.

In order to calculate the worst-case response time mR of the switched DYN messages,

the worst-case scenario is that all DYN messages are ready for transmission at the same time.

After the clustering step, based on the new Frame ID, the method to calculate mR is the same

as the one in simple DYN network.

6.3.3 Switched DYN Segment Scheduling Algorithm

The motivations of solutions already presented in the previous section. Based on the
discussions, we provide the DYN segment scheduling algorithm for a known network in
Algorithm 4.

Input:

 Bus bit rate ࢊࢋࢋ࢖࢙_࢙࢛࢈

 Switch port set ࢎࢉ࢚࢏࢙࢚࢝࢘࢕ࡼ

 The DYN message setࡺࢅࡰࡹ ,ࡺࢅࡰࡹ is maximum DYN message set waiting to send

in a cluster,   , ,? , ,?m m m DYNm MessageLengthDYN D Port m M mMatrix

Output:

System schedulable or non-schedulable

Switched FlexRay DYN scheduling algorithm

for DYNm M 

Sort the DYN messages DYNm M  in descending order of the value m

m

MessageLength

D

and then in descending order of the value mMessageLength , store them in the message

list DYNL

Assign the Frame ID to the DYN messages with the order in list DYNL from 1

end for // sort the messages and assign the Frame IDs

// start of clustering and Frame IDs updating

for ∀݉ ∈ ܻܰܦܮ

CHAPTER 6. SCHEDULER DESIGN FOR SWITCHED FLEXRAY NETWORKS 87

if ݉ is the first message in ܮ஽௒ே

create set ݈ܿݎ݁ݐݏݑଵ ൌ ሼemptyሽ //create the first message set ݈ܿݎ݁ݐݏݑଵ

ݐ݁ܵݎ݁ݐݏݑ݈ܥ ൌ ሼ݈ܿݎ݁ݐݏݑଵሽ // create a set represented all the available clusters

௨௦௘_௖௟௨௦௧௘௥భݐݎ݋ܲ ൌ ௠ݐݎ݋ܲ

݉ ∈ ଵݎ݁ݐݏݑ݈ܿ ଵ // put ݉ in setݎ݁ݐݏݑ݈ܿ

else //	݉ is not the first message

for all ݈ܿݎ݁ݐݏݑଵ	to	݈ܿݎ݁ݐݏݑ௠ in the set	ݐ݁ܵݎ݁ݐݏݑ݈ܥ

//for all valid cluster in ݐ݁ܵݎ݁ݐݏݑ݈ܥ

if ܲݐݎ݋௠ ⊆ ݊	, ௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ∈ ሾ1,݉ሿ, ݊ ∈ Գ

௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൌ ௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൅ ௠ݐݎ݋ܲ

݉ ∈ ௡ݎ݁ݐݏݑ݈ܿ ௡ // put message m inݎ݁ݐݏݑ݈ܿ

go to the next message

// if message is able to put in any one of the existed	݈ܿݎ݁ݐݏݑ௡, finish the
clustering step of message m

end if

end for

create set ݈ܿݎ݁ݐݏݑ௠ାଵ ൌ ሼemptyሽ //create a new set ݈ܿݎ݁ݐݏݑ௠ାଵ

/* if search all available clusters message still cannot find a cluster can fit in, create
a new cluster */

௨௦௘_௖௟௨௦௧௘௥೘శభݐݎ݋ܲ
ൌ ௠ݐݎ݋ܲ

݉ ∈ ௠ାଵݎ݁ݐݏݑ݈ܿ

// put ݉ in the new created cluster ݈ܿݎ݁ݐݏݑ௠ାଵ

go to the next message //finish the cluster step of this message

end if

௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൌ ௦௪௜௧௖௛ݐݎ݋ܲ െ ௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ

//update the valid ports for any set ݈ܿݎ݁ݐݏݑ௡ included message m

if ܲݐݎ݋௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ ൌ 0

ݐ݁ܵݎ݁ݐݏݑ݈ܥ ൌ ݐ݁ܵݎ݁ݐݏݑ݈ܥ െ ௡ݎ݁ݐݏݑ݈ܿ

88 CHAPTER 6. SCHEDULER DESIGN FOR
SWITCHED FLEXRAY NETWORKS

//update the valid cluster set ݐ݁ܵݎ݁ݐݏݑ݈ܥ

end if

end for // finish the clustering step for all the DYN messages

for ∀݉ ∈ update the Frame ID for each DYN message // ܻܰܦܮ

௠ܦܫ݁݉ܽݎܨ ൌ ,௡ݎ݁ݐݏݑ݈ܿ	݊݅	௠௜௡ܦܫ݁݉ܽݎܨ ݉	݁݃ܽݏݏ݁݉ ∈ ௡ݎ݁ݐݏݑ݈ܿ

end for

// start the calculation of the worst-case response time

for 10 to 16000 sgdCycle  step 20 μsgdBit

simple	FlexRay	ST	scheduling	algorithm

ܻܦ ௕ܰ௨௦ ൌ ݈݁ܿݕܥ݀݃ െ ܵ ௕ܶ௨௦

for DYNm L

௠ݔܶݐݏ݁ݐܽܮ݌ ൌ

ሺܻܦ ௕ܰ௨௦	–	ሺ݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎ	 ൅ 	83	 ൅
ሾbitሿ	ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ	 ∗ 1.25	ሻ ∗ ݇ܿ݅ݐ݋ݎܿܽܯ/ሺ݃݀	ሻݐ݅ܤ݀݃ ∗
 	ሻݐ݋݈ݏ݅݊݅ܯ݀݃

FFD	bin	packing	algorithm calculates the delay݉ݏ݈݁ܿݕܥݏݑܤ൫݈݂ሺ݉, ሻ൯ݐ

ܴ௠ ൌ

൫݈݃݀݁ܿݕܥ െ ሺܵ ௕ܶ௨௦ ൅ ሺܦܫ݁݉ܽݎܨ௠ െ 1ሻ ∗ ሻ൯ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅

,௠൫݈݂ሺ݉ݏ݈݁ܿݕܥݏݑܤ	 ሻ൯ݐ ∗ ݈݁ܿݕܥ݀݃ ൅ ሺܦܫ݁݉ܽݎܨ௠ െ 1ሻ ∗ ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
	ሺܵ ௕ܶ௨௦ ൅ ௠ݔܶݐݏ݁ݐܽܮ݌ ∗ ሻݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
	ሺሺ݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎ ൅ 83 ൅ ሻܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ ∗ 1.25 ∗ ݐ݅ܤ݀݃ ⁄݀݁݁݌ݏ_ݏݑܾ ሻ	

if ܴ௠ ൏ ௠ܦ

take ݉ out of list ܮ஽௒ே

if ܮ஽௒ே is not empty

continue with next message in list ܮ஽௒ே

else

output schedulable, exit

end if

else

next value of ݈݃݀݁ܿݕܥ

CHAPTER 6. SCHEDULER DESIGN FOR SWITCHED FLEXRAY NETWORKS 89

Algorithm 4 Pseudocode for Switched DYN scheduling algorithm

6.4 Conclusion

The method of the switch FlexRay scheduler design is solving the differences and
following the similarities. Firstly, the concept of switch FlexRay network was introduced.
Secondly, we analyzed the differences between simple and switched network and found the
solutions of these differences for the ST and DYN segment respectively. The main difference
between the switched and the simple scheduler design is that it needs an extra step before the
simple scheduling algorithm, called clustering. Forming the ECUs’ clusters depends on the
transmission path of the messages and the switch ports number. If none of the ports in two
messages’ port set is the same, then these two messages can transmit in the same slot, namely
slot-sharing messages. For ST messages, clusters are regrouped at the interval of a slot.
Different slot has the different clusters. For DYN messages, clusters are regrouped at the
interval of a CC. Different cycle has the different clusters. At the end of the discussion, the
switched scheduling algorithms were presented.

end if

end for

end for

output non-schedulable, exit //system non-schedulable

90

7
7 Experimental Results

After theoretical analyses and conceptual designs of schedulers for two segments in two
types of networks, this chapter aims at the performance evaluations for these four schedulers
and comparisons in between the simple scheduler and the switched scheduler of ST and DYN
segment respectively by using four C++ programs designed for four schedulers.

The evaluations of ST schedulers are executed in two aspects: schedulability analysis and
system resource utilization analysis. The worst-case response time is the key characteristic for
the DYN segment scheduling. Therefore, the response time analyses are the evaluation
standard of the DYN schedulers.

7.1 Experimental Setup

The Electronic Damper Control (EDC) technology in BMW X5 is the pilot application of
FlexRay technology in BMW’s productions. Therefore, we choose this application as the
evaluative scenario. This section aims at performance evaluation of the scheduling algorithm
presented in section 5.1.3 in the BMW EDC application.

Figure 7-1 Hardware Distribution of EDC in BMW X5 [43]

CHAPTER 7. EXPERIMENTAL RESULTS 91

Figure 7-1 shows the general hardware distribution of the EDC in BMW X5. Each red
circle represents a FlexRay node.

The experiment uses the following FlexRay configuration settings, which are in line with
the design settings disclosed by BMW [43, 44].

 The duration of the CC fixes to 5ms, denoted by gdCycle . The duration of ST

segment fixes to 3ms, denoted by busST . This thesis ignores the duration of the SYM

and the NIT. So the DYN segment fixes to 2ms, denoted by busDYN .

 The data payload of a ST frame sets to 8 2-bytes words, which is 16 bytes, denoted

by gPayloadLengthStatic .

 The length of the Macrotick set to 2μs, denoted by	݃݀݇ܿ݅ݐ݋ݎܿܽܯ.

 The length of the Minislot set to 5MT, denoted by	݃݀ݐ݋݈ݏ݅݊݅ܯ.

 The bus bit rate set to 10Mbit/s.

7.2 ST Segment Scheduler Performance Evaluation

This thesis uses C++ language programs two programs, which correspond to the simple
ST scheduler and the switched ST scheduler. Section 5.1.3 and Section 6.2.3 introduced these
two schedulers. The source codes of these programs can refer to Appendix A and B.

The following sections will present four evaluations: the system loads, used ST slots,
percentage of scheduled system and the system schedulability. By analyzing these tests, we
will know the performances of the two ST schedulers.

Different number of ST messages input to the schedulers, which generate varying results.
For every level of message number, the programs randomly generate 100 sets of messages for
the evaluations. Each set represents a different system. In the scenario, each ST message has
the same length 8 2-byte-word. The number of star sets to 0 in the simple FlexRay network
and sets to 1 in the switch FlexRay network. Other system related parameters are set in the
program. The user can change the value of the parameters in the source code in the Appendix
if the system parameters changed. All the statistics results are made from 100 sets of
messages.

7.2.1 System Loads

The goal of system loads evaluation is that can show the average used system bandwidth
with different number of ST messages inputted to two schedulers. The results show in Figure
7-2.

92 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7-2 Average System Loads

Formula (7.1) calculates the system load, namely the system bit rate.

 min /maxLoad gNumberOfStaticSlots MessageLengthST gdCycle  (7.1)

The minimum required number of ST slots mingNumberOfStaticSlots is the number of

slots occupied by ST messages in the ST segment. For example, to schedule a ST message set
successfully requires the minimum number of ST slots 60, the message length for each
message is 16 bytes = 64 bits. The system load is 60 * 64/5000 = 0.768 Mbit/s. By summing
up the 100 systems’ loads and averaging by the test time100, we can get the average system
load.

As we can see in Figure 7-2, the system loads are lower in the switched ST (SWST)
scheduler than the ones in the simple ST (SST) scheduler under each level of input messages.
This is because of the slot-sharing mechanism in the SWST scheduler. The SWST scheduler
schedules each message based on its transmission pattern and path which contains the
information of the source and destination ports. The source and destination ports form the
message’s ports set. If two messages have different port set, then they can share the
transmission in one slot. This slot-sharing mechanism is the reason why the SWST scheduler
has lower system load for each level of message number.

7.2.2 Number of Slots Used

The number of slots used means the maximum ST slot ID required by a set of ST
messages’ transmission. The used ST slots are not always equals to the minimum number of
ST slots as we explained in Section 4.4. The transmission patterns of messages cannot match
with each other perfectly all the time. There might be some wasted slots. So the used ST slots
usually more than the minimum slots required. By summing up the used number of slots in

0.28
0.38

0.52 0.52

0.68
0.75

0.84
0.94

1.05 1.10
1.20

1.30
1.42

0.19
0.27 0.32

0.40 0.45
0.51 0.56

0.63
0.70

0.77
0.84

0.91 0.96

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

30 40 50 60 70 80 90 100 110 120 130 140 150

A
ve
ra
ge

 S
ys
te
m
 L
o
ad

s
[M

b
it
/s
]

Number of ST messages

Average System Loads

SST

SWST

CHAPTER 7. EXPERIMENTAL RESULTS 93

the scheduled systems and averaging by the number of scheduled systems, we can get the
average number of used slots.

Figure 7-3 Average Number of Slots Used

The results shown in Figure 7-3 are the same as expected. It shows that the SWST
scheduler requires less number of slots than the SST scheduler to schedule the same amount
of ST messages. This fact indicates the same that the SWST scheduler has better ability to
save the system resource than the SST scheduler.

7.2.3 Percentage of Schedulable Systems

By evaluating 100 sets of messages, we get the percentage of successfully schedulable
systems. In other words, this test shows the number of schedulable systems in 100 testing
systems. The useful bandwidth is the maximum bandwidth the system could make use of. The
bandwidth defines in formula(7.2):

 /maxBandwidth gNumberOfStaticSlots MessageLengthST gdCycle  (7.2)

Since the number of ST is 96 in our scenario, the useful bandwidth is 96 * 64/5000 ≈
1.23 Mbit/s. So we can get the conclusion that the system has better schedulability when the
system load is less than the useful system bandwidth 1.23 Mbit/s.

70 71
74 74

77 78
81

83
85

88
91

95

64.0
66.5 67.0 68.0

69.0 70.0
70.7 72.0

72.4 73.2
74.2 74.6

50

55

60

65

70

75

80

85

90

95

100

30 40 50 60 70 80 90 100 110 120 130 140

A
ve
ra
ge

 N
u
m
b
e
r
o
f
Sl
o
ts
 U
se
d

Number of ST messages

Average Number of Slots Used

SST

SWST

94 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7-4 Percentage of Schedulable System

Figure 7-4 shows that more systems scheduled by using the SWST scheduler than
scheduled by the SST scheduler. This fact indicates the SWST scheduler has better capability
of scheduling than the SST scheduler when has the same number of input messages.

7.2.4 System Schedulability

The system schedulability evaluates the percentages of scheduled messages in a message
set. The evaluations are done for different number of input ST messages. The results are the
average values of the system schedulabilities of 100 systems. In each system, we count the
total number of messages that are scheduled by the scheduler and calculate the percentage of
the scheduled messages among the whole message set. By averaging 100 systems, we get the
average system schedulability of different number of input messages.

99%

75%
66%

35%

9% 2%

100%100%100%100%100%100%100%100%100%100%100%
95%

86%

76%

53%

0%

20%

40%

60%

80%

100%

120%

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

P
e
rc
e
n
ta
ge

 o
f
Sc
h
e
d
u
la
b
le
 S
ys
te
m
s

Number of ST messages

Percentage of Schedulable Systems

SST

SWST

CHAPTER 7. EXPERIMENTAL RESULTS 95

Figure 7-5 Average System Schedulability

As we can see from Figure 7-5, the SWST scheduler has the better system schedulability
than the SST scheduler. This is also because of the slot-sharing mechanism in SWST
scheduler as explained Section 7.2.1.

The schedulability has a modest decreasing from 140 messages to 150 messages when
the system applies the SST scheduler. Because there are more messages requiring the same
system capacities from the system, but the system cannot provide these capacities when it
reaches some limit. This may cause the scheduled failures of messages after a certain message
and the modest decreasing of the schedulabilities.

7.3 DYN Segment Scheduler Performance Evaluation

7.3.1 Worst-case Response Time without topology information

The same as the performance evaluations conducted for the ST scheduler, evaluations for
the DYN scheduler are also done by two C++ programs. The key characteristic of the DYN
message is the worst-case response time	ܴ௠. Therefore, we focus on the calculation of 	ܴ௠ in
our evaluations. Chapter 4 already presented the method to determine the worst-case response
times	ܴ௠. In the evaluation, the SWDYN scheduler randomly allocates switch ports to DYN
messages, and then follows the method in Chapter 4 to calculate	ܴ௠. Before the calculation,
the SWDYN scheduler has one more step which uses the slot-sharing mechanism to cluster
the messages and reallocate FrameIDs. The switch ports messages occupied and message
length will affect the worst-case response times.

We use 10 DYN messages in the evaluations and assign them different message lengths.
The smallest messages size is 500 bits.

98.7%
96.4%

92.8%

87.0%

73.4%

100% 100% 100% 100% 99.9% 99.4%

99.1%
97.9%

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

A
ve
ra
ge

 S
ys
te
m
 S
ch
e
d
u
la
b
ili
ty

Number of ST messages

Average System Schedulability

SST

SWST

96 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7-6 Worst-case Response Times

As we can see from Figure 7-6, the message with the original FrameID 5 is sharing the
slot with message has FrameID 1. The message with the original FrameID 9 is sharing the slot
with the message has FrameID 10. Hence message 5 has the same response time as message
1 and message 10 has the same response time as message 9. The clustering and FrameID
reallocation reduce the response time of these two messages. It is clear to tell from Figure 7-6
that the worst-case response times of the SWDYN scheduler are equal or less than the SDYN
scheduler. Therefore, we can draw the conclusion that if there is any message satisfies the
slot-sharing condition, the response time of the message with large FrameID will decrease.
The response time of the other messages which have large FrameIDs will decrease either.

7.3.2 Worst-case Response Time with Path Delays

Figure 7-7 Abstract Topology of EDC

Figure 7-7 shows the abstract topology of the EDC in BMW X5. The nodes N1 to N4 are
slave ECUs, which correspond to the four red circles in Figure 7-1. There is a central
management unit which connects these four nodes by an active star. The management unit
can also be seen as a node N5.

10.8

60.9

111.0

161.1

211.2

261.3

311.4

361.5

411.6

461.7

60.9 61.0

111.1

161.2 161.3

211.4

261.5

311.6 311.8

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

1 2 3 4 5 6 7 8 9 10

W
o
rs
t‐
ca
se
 r
e
sp
o
n
se
 t
im

e
 [
m
s]

DYN Frame ID

Worst‐case Response Time

SDYN

SWDYN

CHAPTER 7. EXPERIMENTAL RESULTS 97

Taking topology into consideration, there is one parameter will affect the response time:
the longest length of the wire between the source mode and the destination node. The wire
causes the part of the delay called path delay. The following paragraphs will evaluate the
worst-case response time with path delays.

Figure 7-8 Experimental Simple FlexRay Network

As the topology shown in Figure 7-8, the experimental network removes the active star
and replaces it with a bus. The bus connects five ECUs. Figure 7-9 shows a topology that a
FlexRay switch replaces the active star connected four ECUs. The switch locates in node 5,
which is also the management unit in the network.

Figure 7-9 Experimental Switched FlexRay Network

We assume the longest wire length between two ECUs is 300 meters. If the transmission
happens between ports 1 and 4 or 2 and 3, the wire length is 200 meters. If the transmission
only happens locally, the wire length is 100 meters. Therefore, based on the wire length we
can calculate the path delay. For example, the worst path delay, which is the wire
transmission delay of 300 meters, equals to		300m/	3 ൈ 10଼	m/s ൌ 1ms. 3 ൈ 10଼	m/s is the
speed of light.

Figure 7-10 illustrates the results that the response times of the SDYN scheduler and the
SWDYN scheduler. We use the same set of messages as in Figure 7-6 for testing.

98 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7-10 Worst-case Response Times with Media Transmission Delay

Through the comparison of Figure 7-6 and Figure 7-10, we can tell that the patterns of
the response times vary not much. Compared with bus arbitration delays, the path delays are
relatively small.

7.4 Conclusion

This chapter presented the test data in the EDC application in the simple and switch
FlexRay schedulers. In the evaluation, we used the actual data from automotive manufacturer
to generate the test data. We compared these two types of schedulers for ST and DYN
segment respectively. In the evaluation of the ST segment, four parameters, average system
loads, average used ST slots, the percentage of scheduled system and the system
schedulabilities, were used to analyze the data under different number of input messages. In
the evaluation of the DYN segment, the evaluated parameter is the worst-case response time
without and with the path delays.

11.8

61.9

112.0

162.1

212.2

262.3

312.4

362.5

412.6

462.7

11.8
62.9 62.0

112.1

161.9 162.0
212.4

263.5
312.6 312.8

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

1 2 3 4 5 6 7 8 9 10

W
o
rs
t‐
ca
se
 r
e
sp
o
n
se
 t
im

e
 [
m
s]

DYN Frame ID

Worst‐case Response Time with
Transmission Delay

SDYN

SWDYN

99

8
8 Conclusion and Future Work

The next generation of automotive control network uses the switch FlexRay networks as
its core networks and incorporates with other automotive control networks, to connect the vast
amount of electronic systems. This thesis designs two schedulers for simple and switch
FlexRay networks each. These schedulers can evaluate the effectiveness of the parameters in
the design and measure the system upper bound. These evaluation results can be used as
design references that assist the in-vehicle embedded systems design and further improvement.
In this chapter, we will conclude the works we did in this thesis and will discuss the future
work that can be done to improve this project.

Section 8.1 will summarize the content of the thesis. The contributions and some future
work suggestions of this thesis will give in section 8.2.

8.1 Conclusion

Chapter 2 gives the background information of this thesis. This chapter discusses the
FlexRay network and its working principle and briefly introduces the types of topologies and
components in the node. The protocol physical and media access layers were introduced, as
well. Furthermore, Chapter 2 presents the timing hierarchies of the basic timing unit, CC, in
details. On one hand, the FlexRay protocol offers scalable dependability and fault tolerance,
which realize by redundancy transmission; on the other hand, the FlexRay protocol is also
very flexible. By using the time-triggered communication in ST segment, nodes are assigned
as many slots as needed to ensure the reliable ST communication. Meanwhile, the DYN
messages only transmit when it is necessary to save the resource. The FlexRay network
supports various topologies like bus topology, star topology, mixed topology and switched
topology.

Chapter 3 discussed the real-time scheduling theory. Common classifications of real-time
scheduling were given. We can classify the scheduling policies into preemptive and non-
preemptive, offline and online, or clock-driven, priority-driven, etc. This chapter also
introduces a few representative scheduling algorithms in the fix-priority and dynamic priority
scheduling. The previous studies indicate that the RM scheduling is the optimal fix-priority

100 CHAPTER 8. CONCLUSION AND FURTHER WORK

algorithm when the tasks’ deadlines are equal to their periods. The DM scheduling is another
fix-priority scheduling algorithm which elevates the constraint of the deadline. It is the
optimal algorithm when tasks have deadlines less than (or equal) to periods. The EDF
scheduling is one of the optimal algorithms in dynamic-priority scheduling.

In Chapter 4, the differences of two segments in the CC were discussed. We draw the
conclusion that different schedulers should be used for different segments. Then we
distinguished the concepts of task and message. This chapter also analyzes the timeline of the
transmission and discusses the latency in detail, to help to understand the discussion about
response time in the following contents. In this chapter, we determine that the bus arbitration
and data transmission compose the latency discussed in this thesis. The final part of this
chapter investigates schedulabilities of the ST and DYN segments in the simple FlexRay
networks.

Chapter 5 and Chapter 6 bring up the scheduling algorithms of the ST and DYN
segments, for the simple and switch FlexRay networks respectively. By analyzing the
schedulable constraints and configurable parameters, we determine the methods to generate
the ST scheduling table which depends on the characteristics of the input messages. For DYN
communication, the transmission is event triggered. The DYN scheduler is an online
scheduler. It produces the responses or outputs based on the runtime inputs. Therefore, it does
not have a ST scheduling table. As a result, the DYN scheduler without runtime inputs only
can calculate the worst-case response time to estimate the conservative system schedulability.

Chapter 7 evaluates the performances of the four schedulers. The results for the simple
and switch FlexRay network were compared. It is obvious that the switch FlexRay network
has significant improvement in system schedulability. Meanwhile, it decreases the resource
utility rate. Therefore, the conclusion we drew from the performance evaluations is that the
switch FlexRay network increases the system capacity and efficiency. It is the trend in the
future.

8.2 Contributions and Future Work

This section summaries the contributions and concludes this thesis by suggesting some
ideas for future improvements.

The main contribution of this thesis is the developments of the scheduling algorithms for
the simple and switch FlexRay networks. By using these schedulers, we are able to analyze
the schedulabilities and upper bound of automotive networks. The results generated from the
schedulers are very helpful in the designing step of automotive systems.

From all the discussions and analyses in this thesis, it is clear to form the concept about
FlexRay protocol and the concept of clustering in switch FlexRay network, also to understand
about the factors that affect the worst-case response time of the DYN messages. However,
there are still spaces of the improvements. The following sections provide some of the
suggestions for future works:

CHAPTER 8. CONCLUSION AND FURTHER WORK 101

 Test the schedulers with hardware implementations;

The scheduling algorithms are only on the conceptual level, with the results from
the computer simulations. The schedulers provided in this thesis have not yet been
experimentally proved. For future developments, it is suggested that combine the
software with hardware implementations to evaluate the performances of the
schedulers, including schedulability, efficiencies and system utilization. The
evaluations should conduct under different system configurations and network loads.

 Holistic analysis of the worst-case response time for DYN messages;

To simplify the calculation, this thesis uses the heuristic solutions to calculate the
worst-case response time. By calculating the communication latency with holistic
analyses, we can get more accurate system schedulabilities.

 Refine the clusters of the switched DYN messages by using flexible regrouping
period;

The discussion in Section 6.3.2.1 shows that there exists a regrouping time of the
DYN clusters. This thesis uses the duration of a CC as the regrouping period. More
multiplexing in the system undoubtedly increases system bandwidth. By refining the
communication clusters, the utility rate of the system resource will increase.
Reducing the regrouping period, which should base on the transmission data, can
refine the clusters.

 Increase the accuracy of the schedulability analysis in DYN segment;

This thesis calculates the worst-case response time of the DYN messages and then
compares with the messages deadlines. The comparison results indicate the system
schedulability. However, this is only a conservative estimation for the system
schedulability. In order to generate a DYN scheduling table for an application, the
parameters extracted from the ECUs, such as clock times, should input to the
scheduler presented in Appendix E. The input data affects the generated DYN
scheduling table. Consequently, we can get a more accurate evaluation of the system
schedulability.

102 BIBLIOGRAPHY

Bibliography

[1] G. Leen, and D. Heffernan, “Expanding automotive electronic systems,” Computer, vol.
35, no. 1, pp. 88-93, 2002.

[2] "Automotive Electronic Systems," The Clemson University Vehicular Electronics
Laboratory.

[3] A. Albert, “Comparison of event-triggered and time-triggered concepts with regards to
distributed control systems,” Embedded World, vol. 2, pp. 235-252, 2004.

[4] G. Leen, D. Heffernan, and A. Dunne, “Digital networks in the automotive vehicle,”
Computing & Control Engineering Journal, vol. 10, no. 6, pp. 257-266, 1999.

[5] "Two Msc. Thesis Positions:Reliable In-Vehicle FlexRay Network Scheduler Design."

[6] "LIN Specification Package, Revision 2.0," LIN Consortium September 2003.

[7] "Road Vehicles—Low Speed Serial Data Communication—Part 2: Low Speed
Controller Area Network," ISO 11 519-2, 1994.

[8] "Road Vehicles—Interchange of Digital Information—Controller Area Network for
High-Speed Communication," ISO 11 898, 1994.

[9] N. Navet, Y. Song, F. Simonot-Lion et al., “Trends in Automotive Communication
Systems,” Proceedings of The IEEE, vol. 93, no. 6, pp. 1204-1223, 2005.

[10] "Time-Triggered Protocol TTP/C, High-Level Specification Document, Protocol Version
1.1.," TTTech Computertechnik GmbH., November, 2003.

[11] F. Consortium, "FlexRay Communication System, Protocol Specification, Version 2.1
Rev.A," FlexRay Consortium, 12 December 2005.

[12] "Road Vehicles—Controller Area Network (CAN)—Part 4: Time-Triggered
Communication," ISO 11 898-4, 2000.

[13] Wikipedia. "FlexRay," http://en.wikipedia.org/wiki/FlexRay.

[14] "FlexRay Overview," F. N. A. F. B. a. N. T. A. Modeling, ed., Mirabilis Design Inc.,
2006.

[15] S. Kosov, FlexRay communication protocol (Wakeup and Startup), Institute for
Computer Architecture and Parallel Computing, Universitat Des Saarlandes, 2005.

[16] Wikipedia. "Electronic control unit,"
http://en.wikipedia.org/wiki/Electronic_control_unit.

BIBLIOGRAPHY 103

[17] "FlexRay Electrical Physical Layer Specification V2.1 Rev.B," FlexRay Consortium,
November 2006, p. 27.

[18] Wikipedia. "Time division multiple access,"
http://en.wikipedia.org/wiki/Time_division_multiple_access.

[19] S. J. Young, Real time languages: Design and development, New York: Halsted Press,
1982.

[20] Wikipedia. "Real-time operating system," http://en.wikipedia.org/wiki/Real-
time_operating_system.

[21] Wikipedia. "Preemption (computing),"
http://en.wikipedia.org/wiki/Preemption_%28computing%29.

[22] T. Nolte, “Share-Driven Scheduling of Embedded Networks,” Department of Computer
Science and Electronics, Malardalen University, Västerås, Sweden, 2006.

[23] J. Leung, and H. Zhao, Real-Time Scheduling Analysis, DOT/FAA/AR-05/27, New
Jersey Institute of Technology, Newark, NJ, 2005.

[24] C. L. Liu, and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard
real-time environment,” Journal of the Association for Computing Machinery, vol. 20,
no. 1, pp. 40-61, January, 1973.

[25] J. Y. T. Leung, and J. Whitehead, “On the complexity of fixed-priority scheduling of
periodic real-time tasks,” Performance Evaluation, vol. 2, no. 4, pp. 237-250, December,
1982.

[26] M. L. Dertouzos, “Control Robotics: The Procedural Control of Physical Processes.,” in
IFIP Congres, Stockholm, Sweden, 1974, pp. 807-81.

[27] A. K. Mok, “Fundamental Design Problems of Distributed Systems for the Hard Real-
Time Environment,” Ph.D. thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, 1983.

[28] TTTech, "Welcome to FlexRay," TTTech Computertechnik AG, 2009.

[29] K. Tindell, A. Burns, and A. Wellings, “An Extendible Approach for Analysing Fixed
Priority Hard Real-Time Tasks,” Real-Time Systems, vol. 6, no. 1, pp. 133-151, March,
1994.

[30] N. Audsley, A. Burns, M. Richardson et al., “Applying New Scheduling Theory to Static
Priority Pre-emptive Scheduling,” Software Engineering Journal, vol. 8, no. 5, pp. 284-
292, September, 1993.

[31] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols: An Approach
to Real-Time Synchronisation,” IEEE Transactions on Computers, vol. 39, no. 9, pp.
1175-1185, September, 1990.

104 BIBLIOGRAPHY

[32] K. Tindell, and J. Clark, “Holistic Schedulability Analysis for Distributed Hard Real-
Time Systems,” Parallel Embedded Real-Time Systems, no. Micrprocessors and
Microprogramming, March, 1994.

[33] M. Lukasiewycz, M. Glaß, P. Milbredt et al., "FlexRay Schedule Optimization of the
Static Segment," Proceedings of the 7th International Conference on
Hardware/Software Codesign and System Synthesis. pp. 363-372.

[34] P. Pop, P. Eles, Z. Peng et al., “Analysis and Optimization of Distributed Real-Time
Enbedded Systems,” ACM Transactions on Design Automation of Electronic Systems,
vol. 11, no. 3, pp. 593-625, July, 2006.

[35]T. Pop, P. Pop, P. Eles et al., “Timing Analysis of the FlexRay Communication Protocol,”
in 18th Euromicro Conference on Real-Time Systems, Dresden, Germany, 2006.

[36] Wikipedia. "Bin packing problem,"
http://en.wikipedia.org/wiki/Bin_packing_problem#First-fit_algorithm.

[37] M. Labbé, G. Laporte, and S. Martello, “An exact algorithm for the dual bin packing
problem,” Operations Research Letters, vol. 17, no. 1, pp. 9-18, February, 1995.

[38] H2G2. "Packing Algorithms," http://www.bbc.co.uk/dna/h2g2/A954722.

[39] JRank. "Science Encyclopedia: Mathematics—first-fit decreasing packing algorithm,"
http://science.jrank.org/pages/50761/first-fit-decreasing-packing-algorithm.html.

[40] JRank. "Science Encyclopedia: Mathematics —First -fit packing algorithm,"
http://science.jrank.org/pages/50760/first-fit-packing-algorithm.html.

[41] M. Grenier, L. Havet, and N. Navet, “Configuring the communication on FlexRay – the
case of the static segment,” in 4th European Congress on Embedded Real Time Software
(ERTS 2008), Toulouse, France, 2008.

[42] P. Milbredt, B. Vermeulen, G. o. Tabanoglu et al., "Switched FlexRay: Increasing the
Effective Bandwidth and Safety of FlexRay Networks."

[43] A. Schedl, “Goals and architecture of FlexRay at BMW,” in Vector FlexRay Symposium,
Stuttgart, Germany, 2007.

[44] M. Peteratzinger, F. Steiner, and R. Schuermans, “Use of XCP on FlexRay at BMW,”
HANSER automotive, September, 2006.

105

A
A Source Code of Simple ST

Scheduler

1 /*--
Simple FlexRay ST scheduling algorithm

---*/
2 #include <iostream>
3 #include <iomanip>
4 #include <vector>
5 #include <set>
6 #include <algorithm>
7 #include <time.h>
8 #include <math.h>
9
10 using namespace std;
11
12 #define max(a,b) (((a) > (b)) ? (a) : (b))
13
14 //-----------------System parameters-------------------
15 const int pSamplesPerMicrotick = 1;//Number of samples per

microtick
16 const double gdSampleClockPeriod = 0.0125;//Sample clock

period[μs]
17 double pdMicrotick;//Duration of a microtick[μs]
18 double gdMaxMicrotick;//Maximum microtick length of all

microticks configured within a cluster[μs]
19 double gdMacrotick = 2;// Duration of the cluster wide nominal

macrotick[μs]
20 double gdBit, gdBitMax, gdBitMin; // gdBit:Nominal bit time[μ

s], gdBitMax[μs], gdBitMin[μs]
21 int gdActionPointOffset;//Number of macroticks the action point

is offset from the beginning of a static slot or symbol
window[MT]

22 double gAssumedPrecision;//Assumed precision of the application
network[μs]; aBestCasePrecision[μs] <= gAssumedPrecision[μs]
<= aWorstCasePrecision[μs]=(34μT + 20 * gClusterDriftDamping[μ
T]) * gdMaxMicrotick[μs /μT] +2 * gdMaxPropagationDelay

106 APPENDIX A. SOURCE CODE OF SIMPLE ST
SCHEDULER

23 double aBestCasePrecision, aWorstCasePrecision;
24 int gdTSSTransmitter; //Number of bits in the Transmission Start

Sequence[gdBit]
25 double gdMaxInitializationError;//maximum initialization

error[μs]; 2 * (gdMaxMicrotick[μs] * (1 + 0.0015)) +
gdMaxPropagationDelay <= gdMaxInitializationError<=
gAssumedPrecision= aWorstCasePrecision= 11.7 μs

26 int gClusterDriftDamping = 5;//cluster drift damping factor=0~
5[̔]

27 double dStarTruncation = 0.45; //Interval by which the
transmission of a frame is shortened by one star = 0.45[μs]

28 double dBDRxia = 0.3;//Activity reaction time. Time by which a
transmission becomes shortened in a receiving node = 0 ~ 0.45[μ
s];It is the truncation that occurs in the BD of the receiving
node. It is present even if the frame does not pass through any
active stars.

29 int nStarPath = 0;//0~2; the maximum number of active stars
between any two nodes

30 double gdMinPropagationDelay = 0, gdMaxPropagationDelay =
2.5;//A minimum/maximum propagation delay of the network as seen
by the local node[μs], 0 ~ 2.5

31
32 double BusSpeed = 10;//Bus data rate[Mbit/s]
33 double gdCycle = 5000, STbus = 3000;//gdCycle:CC length[μs],

STbus:ST segment length[μs]
34
35
36 //---------------ST segment parameters----------------
37 int num_ST;//number of ST messages
38 double gdStaticSlot; //ST-Slot length[μs]
39 int gNumberOfStaticSlots, gNumberOfStaticSlots_min,

gNumberOfStaticSlots_use = 0;//gNumberOfStaticSlots_min: minimum
required number of ST slots;gNumberOfStaticSlots_use:used number
of ST slots

40 double gPayloadLengthStatic;//payload length of the ST
frame[bit]

41 int aFrameLengthStatic;//ST Frame length[dBit]
42 int scheduledCount = 0; //counter of scheduled messages
43 bool Vuse[1023][64] = {0}; //used vector space
44
45
46 struct buf
47 {
48 int x;
49 int y;
50 };
51
52 struct MessageST
53 {
54 int FrameID_ST;//FrameID of ST messages
55 int MessageLengthST; // MessageLengthST[bit]
56 double T_ST; //Period of production of static message [μs]
57 double D_ST; //Deadline of static message [μs]
58
59 int s; //base slot
60 int p; //slot repetition

APPENDIX A. SOURCE CODE OF SIMPLE ST SCHEDULER 107

61 int gNumberOfStaticSlot_m;//Number of ST slots for m
62 int b; //base cycle
63 int r; //cycle repetition
64 int gNumberOfCycle;//Number of cycles allocated to
65
66 bool buffer[1023][64];//the slots m’s transmission occupied
67 bool V[1023][64];
68 bool isScheduled;
69
70 int SlotIDMax; //Max slot ID
71
72 buf SlotID;
73 buf CC;
74 };
75
76
77 int main()
78 {
79 /*--

user input
--*/

80 /*cout << "Please choose the duration of the samples
clock[μs]: 0.0125, 0.0250, 0.0500";

81 cin >> gdSampleClockPeriod;
82 cout << "Please choose the number of samples per Microtick:

1,2,4";
83 cin >> pSamplesPerMicrotick;*/
84 cout << "Please input the number of ST messages:";
85 cin >> num_ST;
86 /*cout << "Please input the maximum number of active stars

between any 2 nodes:";
87 cin >> nStarPath;
88 cout << "Please input the FlexRay bus bit rate [MBit/s]:";
89 cin >> BusSpeed;
90 cout << "Please input the min bit rate of the ST messages

[MBit/s]:";
91 cin >> min_bitRate;
92 cout << "Please input the max bit rate of the ST messages

[MBit/s]:";
93 cin >> max_bitRate;*/
94
95 srand((unsigned)time(NULL));
96 for (int j = 0; j < 10; j++)
97 {
98 rand();
99 }
100
101 vector<MessageST> MST;
102 vector<MessageST> Lst;
103 vector<MessageST>::iterator iterST;
104
105 /*--

value the system parameters
--*/

106 if (BusSpeed == 2.5)
107 {
108 gdBit = 0.4;

108 APPENDIX A. SOURCE CODE OF SIMPLE ST
SCHEDULER

109 gdBitMax = 0.4006;
110 gdBitMin = 0.3994;
111 }
112 if (BusSpeed == 5)
113 {
114 gdBit = 0.2;
115 gdBitMax = 0.2003;
116 gdBitMin = 0.1997;
117 }
118 if (BusSpeed == 10)
119 {
120 gdBit = 0.1;
121 gdBitMax = 0.10015;
122 gdBitMin = 0.09985;
123 }
124
125 pdMicrotick = pSamplesPerMicrotick * gdSampleClockPeriod;
126 gdMaxMicrotick = pdMicrotick;
127 aWorstCasePrecision=(34 + 20 * gClusterDriftDamping) *

gdMaxMicrotick +2 * gdMaxPropagationDelay;
128
129 gAssumedPrecision = aWorstCasePrecision;
130 gdMaxInitializationError = 2 * (gdMaxMicrotick* (1 +

0.0015)) + gdMaxPropagationDelay;
131
132 gdTSSTransmitter = ceil((gdBitMax+ dBDRxia+ nStarPath *

dStarTruncation)/gdBitMin);
133 gdActionPointOffset = ceil((2*gAssumedPrecision -

gdMinPropagationDelay +2 * gdMaxInitializationError) /
(gdMacrotick* (1 - 0.0015)));

134 //------------------output message info-------------------

135 cout << "ID_ST" << '\t' << "ML_ST" << '\t' << "T_ST" << '\t'
<< "D_ST" << '\t' << endl;

136
137 //-----------------messages input parameters-----------

138 int ID = 1;
139 for (int n = 0; n < num_ST; n++)
140 {
141 MessageST *temp = new MessageST;
142 temp->FrameID_ST = ID++;
143
144 //-------------random T generation--------------
145 int a = rand() % 11;
146 if (a == 0)
147 {
148 temp->T_ST = 5000;
149 }
150 else if (a == 1)
151 {
152 temp->T_ST = 10010;
153 }
154 else if (a == 2)
155 {
156 temp->T_ST = 20010;
157 }
158 else if (a == 3)

APPENDIX A. SOURCE CODE OF SIMPLE ST SCHEDULER 109

159 {
160 temp->T_ST = 40010;
161 }
162 else if (a == 4)
163 {
164 temp->T_ST = 80010;
165 }
166 else if (a == 5)
167 {
168 temp->T_ST = 160010;
169 }
170 else if (a == 6)
171 {
172 temp->T_ST = 320010;
173 }
174 else if (a == 7)
175 {
176 temp->T_ST = 4000;
177 }
178 else if (a == 8)
179 {
180 temp->T_ST = 2000;
181 }
182 else if (a == 9)
183 {
184 temp->T_ST = 1000;
185 }
186 else if (a == 10)
187 {
188 temp->T_ST = 500;
189 }
190
191 temp->D_ST = temp->T_ST;
192 if (temp->D_ST > 40000)
193 {
194 temp->D_ST = 40000;
195 }
196
197 temp->MessageLengthST = 64;
198
199 for (int i = 0; i <= 1022; i++)
200 {
201 for (int j = 0; j <= 63; j++)
202 {
203 temp->buffer[i][j] = 0;
204 temp->V[i][j] = 1;
205 }
206 }
207 temp->isScheduled = false;
208 MST.push_back(*temp);
209 cout << setw(3) << temp->FrameID_ST << '\t' << temp-

>MessageLengthST << '\t' << temp->T_ST << '\t' << temp->D_ST <<
'\t' << endl;

210 }
211
212 /*---

value the message schedule's main parameters
213 ---*/

110 APPENDIX A. SOURCE CODE OF SIMPLE ST
SCHEDULER

214 int MessageLengthSTMax;
215 for (iterST = MST.begin(); iterST != MST.end(); iterST++)
216 {
217 if (MessageLengthSTMax < iterST->MessageLengthST)
218 MessageLengthSTMax = iterST->MessageLengthST;
219 }
220
221 gPayloadLengthStatic = MessageLengthSTMax;
222 aFrameLengthStatic = (gdTSSTransmitter+ 1 + 80

+gPayloadLengthStatic* 1.25 + 2);//gdBit
223
224 gdStaticSlot = 2 * gdActionPointOffset +

ceil(((aFrameLengthStatic +
11)*gdBitMax+gdMinPropagationDelay+gdMaxPropagationDelay)/(gdMac
rotick *(1-0.0015)));

225 gNumberOfStaticSlots = STbus / gdStaticSlot;
226
227 for (iterST = MST.begin(); iterST != MST.end();

iterST++)
228 {
229 if (iterST->D_ST < gdCycle)
230 {
231 iterST->r = 1;
232 for (int n = 0; n <= log(gdCycle / gdStaticSlot)

/ log(2); n++)
233 {
234 if (iterST->p <= iterST->D_ST /

gdStaticSlot)
235 {
236 iterST->p = pow(2,n);
237 }
238 }
239 iterST->gNumberOfStaticSlot_m =

ceil((double)gNumberOfStaticSlots / iterST->p);
240 iterST->gNumberOfCycle = 64;
241 }
242 else
243 {
244 iterST->p = gNumberOfStaticSlots;
245 iterST->gNumberOfStaticSlot_m = 1;
246 if (iterST->D_ST > gdCycle)
247 {
248 for (int n = 0; n <= 6; n++)
249 {
250 if (iterST->r <= iterST->D_ST / gdCycle)
251 {
252 iterST->r = pow(2,n);
253 }
254 }
255 iterST->gNumberOfCycle = 64 / iterST->r;
256 }
257 else
258 {
259 iterST->r = 1;
260 iterST->gNumberOfCycle = 64;
261 }
262 }
263 }

APPENDIX A. SOURCE CODE OF SIMPLE ST SCHEDULER 111

264
265 //------------------basic constraint----------------------

266 for (iterST = MST.begin(); iterST != MST.end();

iterST++)
267 {
268 gNumberOfStaticSlots_min += (double)iterST-

>gNumberOfStaticSlot_m/iterST->r;
269 }
270 gNumberOfStaticSlots_min =

ceil((double)gNumberOfStaticSlots_min);
271 if (gNumberOfStaticSlots_min <= 2)
272 {
273 gNumberOfStaticSlots_min = 2;
274 }
275 if (gNumberOfStaticSlots_min > gNumberOfStaticSlots)
276 {
277 cout << "non-schedulable ,gNumberOfStaticSlots_min>

gNumberOfStaticSlots" << endl;
278 return 0;
279 }
280 //------------------sort------------------------------

281 while (MST.size() != 0)
282 {
283 vector<MessageST>::iterator temp = MST.begin();
284 for (iterST = MST.begin(); iterST != MST.end();

iterST++)
285 {
286 if (iterST->p < temp->p || (iterST->p == temp->p

&& iterST->r < temp->r))
287 {
288 temp = iterST;
289 }
290 }
291 Lst.push_back(*temp);
292 MST.erase(temp);
293 }
294 //------------------scheduling process------------------
295 for (iterST = Lst.begin(); iterST != Lst.end();

iterST++)
296 {
297 if (iterST->isScheduled)
298 {
299 continue;
300 }
301 iterST->SlotID.x = 0;
302 iterST->SlotID.y = iterST->p - 1;
303 iterST->CC.x = 0;
304 iterST->CC.y = iterST->r - 1;
305
306 for (int i = iterST->SlotID.x; i <= iterST-

>SlotID.y; i++)
307 {
308 for (int j = iterST->CC.x; j <= iterST->CC.y;

j++)
309 {
310 if (Vuse[i][j] == 0) //space not be used

112 APPENDIX A. SOURCE CODE OF SIMPLE ST
SCHEDULER

311 {
312 iterST->V[i][j] = 0;
313 }
314 }
315 }
316 for (int sm = iterST->SlotID.x; sm <= iterST-

>SlotID.y; sm++)
317 {
318 if (iterST->isScheduled)
319 {
320 break;
321 }
322 for (int bm = iterST->CC.x; bm <= iterST->CC.y;

bm++)
323 {
324 if (iterST->isScheduled)
325 {
326 break;
327 }
328 if (iterST->V[sm][bm] == 0)
329 {
330 iterST->s = sm;
331 iterST->b = bm;
332 for (int m = 1; m <= iterST-

>gNumberOfStaticSlot_m; m++)
333 {
334 for (int n = 1; n <= iterST-

>gNumberOfCycle; n++)
335 {
336 iterST->buffer[iterST->s+(m-

1)*iterST->p][iterST->b+(n-1)*iterST->r] = 1;
337 }
338 }
339 for (int k = 0; k <= 1022; k++)
340 {
341 for (int j = 0; j <= 63; j++)
342 {
343 Vuse[k][j] = Vuse[k][j] |

iterST->buffer[k][j]; //update Vuse
344 }
345 }
346
347 iterST->SlotIDMax = iterST->s+1

+(iterST->gNumberOfStaticSlot_m - 1)*iterST->p;
348
349 if (iterST->SlotIDMax >

gNumberOfStaticSlots_use)
350 {
351 gNumberOfStaticSlots_use= iterST-

>SlotIDMax; //update used max slot ID
352 }
353 if (gNumberOfStaticSlots_use >

gNumberOfStaticSlots)
354 {
355 cout << "system non-schedulable.

gNumberOfStaticSlots_use > gNumberOfStaticSlots." << endl;
356 return 0;
357 }

APPENDIX A. SOURCE CODE OF SIMPLE ST SCHEDULER 113

358
359
360 iterST->isScheduled = true;
361 scheduledCount++;
362 if (scheduledCount == Lst.size())
363 {
364 cout << "scheduled" << endl;
365 cout << "gdStaticSlot:" <<

gdStaticSlot << endl;
366 cout << "gNumberOfStaticSlots:" <<

gNumberOfStaticSlots << endl;
367 cout << "number of ST slots used:"

<< gNumberOfStaticSlots_use << endl;
368 //-----------------output ST schedule----------------------

369 vector<MessageST>::iterator

iterSTOut;
370 cout << "ID_ST" << '\t' << "s" <<

'\t' << "p" << '\t' << setw(8) << "STSlotNum";
371 cout << setw(5) << "b" << setw(5) <<

"r" << '\t' << "CycNum" << '\t' << "SlotIDMax" << '\t' << endl;
372 for (iterSTOut = Lst.begin();

iterSTOut != Lst.end(); iterSTOut++)
373 {
374 cout << setw(3) << iterSTOut-

>FrameID_ST << '\t' << iterSTOut->s + 1 << '\t' << iterSTOut->p
<< '\t' << setw(4) << iterSTOut->gNumberOfStaticSlot_m;

375 cout << setw(10) << iterSTOut->b
<< setw(5) << iterSTOut->r << '\t' << setw(4) << iterSTOut-
>gNumberOfCycle << setw(9) << iterSTOut->SlotIDMax << '\t' <<
endl;

376 }
377 //---

378 return 0;
379 }
380 else
381 {
382 break;
383 }
384 }
385 }
386 }
387 }
388 cout << "system non-schedulable. Schedulability:" <<

(double)scheduledCount/Lst.size()*100 << "%" << endl;
389 cout << "gdStaticSlot:" << gdStaticSlot << endl;
390 cout << "gNumberOfStaticSlots:" << gNumberOfStaticSlots <<

endl;
391 return 0;
392 }

114

B
B Source Code of Simple DYN

Scheduler

1 /*--
Simple FlexRay DYN scheduling algorithm

---*/
2 #include <iostream>
3 #include <iomanip>
4 #include <vector>
5 #include <set>
6 #include <algorithm>
7 #include <time.h>
8 #include <math.h>
9
10 using namespace std;
11
12 //----------------System parameters-------------------
13 const double gdMacrotick = 2;//Duration of the cluster wide

nominal macrotick[μs]
14 double gdTSSTransmitter;//Number of bits in the Transmission

Start Sequence[gdBit]
15 double gdBit, gdBitMax, gdBitMin; // gdBit:Nominal bit time[μ

s], gdBitMax[μs], gdBitMin[μs]
16 double dStarTruncation = 0.45; //Interval by which the

transmission of a frame is shortened by one star = 0.45[μs]
17 double dBDRxia = 0.3;//Activity reaction time. Time by which a

transmission becomes shortened in a receiving node = 0 ~ 0.45[μ
s];It is the truncation that occurs in the BD of the receiving
node. It is present even if the frame does not pass through any
active stars.

18 int nStarPath = 0;//0~2; the maximum number of active stars
between any two nodes

19
20 double BusSpeed = 10;//Bus data rate[Mbit/s]
21 double gdCycle = 5000, STbus = 3000, DYNbus;//gdCycle:CC

length[μs], STbus:ST segment length[μs], DYN bus length[μs]
22
23

APPENDIX B. SOURCE CODE OF SIMPLE DYN SCHEDULER 115

24 //---------------DYN segment parameters----------------
25 int num_DYN;//number of DYN messages
26 double gdMinislot;//Minislot length[μs]
27 int gNumberOfMinislots;
28 int scheduledCountDYN = 0;
29 int pLatestTx;//Number of the last minislot in which a frame

transmission can start in the dynamic segment
30 double aFrameLength_DYN;//DYN frame length
31
32
33 struct MessageDYN
34 {
35 int FrameID_DYN; //FrameID
36 int MessageLengthDYN;// MessageLengthDYN[bit]
37 double FrameLengthDYN; //DYN frame length
38 double D_DYN;//Deadline of dynamic message [μs]
39 double R_DYN; //response time[μs]
40 };
41
42
43 int main()
44 {
45 //-------------------user input---------------------------
46 cout << "Please input the number of DYN messages:";
47 cin >> num_DYN;
48 gdMinislot = 5 * gdMacrotick;
49 /*cout << "Please input the length of a Minislot:";
50 cin >> gdMinislot;*/
51
52 srand((unsigned)time(NULL));
53 for (int j = 0; j < 10; j++)
54 {
55 rand();
56 }
57
58 vector<MessageDYN> MDYN;
59 vector<MessageDYN> Ldyn;
60 vector<MessageDYN>::iterator iterDYN;
61
62 vector<MessageDYN> lf;
63 vector<MessageDYN> lf_sort;
64 vector<MessageDYN>::iterator iterlf;
65 vector<MessageDYN>::iterator iterMessageLength;
66
67
68 if (BusSpeed == 2.5)
69 {
70 gdBit = 0.4;
71 gdBitMax = 0.4006;
72 gdBitMin = 0.3994;
73 }
74 if (BusSpeed == 5)
75 {
76 gdBit = 0.2;
77 gdBitMax = 0.2003;
78 gdBitMin = 0.1997;
79 }

116 APPENDIX B. SOURCE CODE OF SIMPLE DYN
SCHEDULER

80 if (BusSpeed == 10)
81 {
82 gdBit = 0.1;
83 gdBitMax = 0.10015;
84 gdBitMin = 0.09985;
85 }
86
87 //----------------system parameters------------------------
88 gdTSSTransmitter = ceil((gdBitMax+ dBDRxia+ nStarPath *

dStarTruncation)/gdBitMin);
89 DYNbus = gdCycle - STbus;
90 gNumberOfMinislots = DYNbus / gdMinislot;//int = floor()
91 //-------------messages input parameters--------------------
92 for (int m = 0; m < num_DYN; m++)
93 {
94 MessageDYN *temp = new MessageDYN;
95
96 //-------------random D generation-------------------
97 int a = rand() % 7;
98 if (a == 0)
99 {
100 temp->D_DYN = 10000;
101 }
102 else if (a == 1)
103 {
104 temp->D_DYN = 20000;
105 }
106 else if (a == 2)
107 {
108 temp->D_DYN = 50000;
109 }
110 else if (a == 3)
111 {
112 temp->D_DYN = 100000;
113 }
114 else if (a == 4)
115 {
116 temp->D_DYN = 200000;
117 }
118 else if (a == 5)
119 {
120 temp->D_DYN = 1000000;
121 }
122 else if (a == 6)
123 {
124 temp->D_DYN = 2000000;
125 }
126
127 temp->MessageLengthDYN = rand() % gNumberOfMinislots *

BusSpeed * gdMinislot;//maximum DYN data supported, changeable
128 MDYN.push_back(*temp);
129 }
130
131 //---------------sort the DYN messages----------------------
132 int ID = 1;
133 while (MDYN.size() != 0)
134 {
135 vector<MessageDYN>::iterator temp = MDYN.begin();

APPENDIX B. SOURCE CODE OF SIMPLE DYN SCHEDULER 117

136 for (iterDYN = MDYN.begin(); iterDYN != MDYN.end();
iterDYN++)

137 {
138 if (iterDYN->MessageLengthDYN/iterDYN->D_DYN > temp-

>MessageLengthDYN/temp->D_DYN)
139 {
140 temp = iterDYN;
141 }
142 }
143 temp->FrameID_DYN = ID++;
144 Ldyn.push_back(*temp);
145 MDYN.erase(temp);
146 }
147 //-----------------sort end----------------------------
148
149 cout << "FrameID" << setw(8) << "ML_DYN" << setw(11) <<

"D_DYN[ms]" << setw(12) << "R_DYN[ms]" << setw(18) <<
"scheduled?" << '\t' << endl;

150 //---------------worst-case reponse time------------------------
151 for (iterDYN = Ldyn.begin(); iterDYN != Ldyn.end();

iterDYN++)
152 {
153 aFrameLength_DYN = gdTSSTransmitter + 83 + iterDYN-

>MessageLengthDYN * 1.25;//gdBit
154 pLatestTx = gNumberOfMinislots - (aFrameLength_DYN *

gdBit) / gdMinislot;
155
156 //--------construct lf(m) list---------------------
157 lf_sort.clear();//initiate vector lf_sort for the next

m_DYN
158 int FrameID_m = iterDYN->FrameID_DYN;
159 for (iterlf = Ldyn.begin(); iterlf!= Ldyn.end();

iterlf++)
160 {
161 if (iterlf->FrameID_DYN < FrameID_m)
162 {
163 bool hasSameID = false;
164 for (iterMessageLength = lf.begin();

iterMessageLength!= lf.end(); iterMessageLength++)
165 {
166 if(iterMessageLength->FrameID_DYN == iterlf-

>FrameID_DYN)
167 {
168 hasSameID = true;
169 if (iterMessageLength->MessageLengthDYN

< iterlf->MessageLengthDYN)//check the same FrameID message size
170 {
171 iterMessageLength->MessageLengthDYN

= iterlf->MessageLengthDYN;
172 iterMessageLength->FrameID_DYN =

iterlf->FrameID_DYN;
173 iterMessageLength->D_DYN = iterlf-

>D_DYN;
174 iterMessageLength->R_DYN = iterlf-

>R_DYN;
175 }
176 }
177 }

118 APPENDIX B. SOURCE CODE OF SIMPLE DYN
SCHEDULER

178 if (!hasSameID)
179 {
180 lf.push_back(*iterlf);//put into vector
181 }
182 }
183 else
184 {
185 continue;
186 }
187 }
188
189 //----------sort the lf(m) in decreasing order--------------
190 while (lf.size() != 0)
191 {
192 vector<MessageDYN>::iterator temp = lf.begin();
193 for (iterlf= lf.begin(); iterlf != lf.end();

iterlf++)
194 {
195 if (iterlf->MessageLengthDYN > temp-

>MessageLengthDYN)
196 {
197 temp = iterlf;
198 }
199 }
200 lf_sort.push_back(*temp);
201 lf.erase(temp);
202 }
203
204 /*--

first fit bin packing calculates BusCycles_lf
--*/

205 double bin[64];
206 for (int n = 1; n <= 64; n++)
207 {
208 bin[n] = DYNbus;
209 }
210 int BusCycles_lf = 1;
211 for (iterlf= lf_sort.begin(); iterlf != lf_sort.end();

iterlf++)
212 {
213 iterlf->FrameLengthDYN = gdTSSTransmitter + 83 +

iterlf->MessageLengthDYN * 1.25;
214 for (n = 1; n <= 64; n++)//searching all avilable

bins
215 {
216 if (bin[n] >= iterlf->FrameLengthDYN &&

bin[n] >= DYNbus-pLatestTx * gdMinislot)//enough space, put into
this bin

217 {
218 if (n > BusCycles_lf)//update BusCycles_lf
219 {
220 BusCycles_lf = n; //determine the number

of cycles occupied by lf messages
221 }
222 bin[n] -= iterlf->FrameLengthDYN;//update

the spare space of bin[n]
223 break;
224 }

APPENDIX B. SOURCE CODE OF SIMPLE DYN SCHEDULER 119

225 else
226 {
227 continue;//search next bin
228 }
229 }
230 }
231
232 //---------------worst-case response time--------------------
233 iterDYN->R_DYN = (gdCycle-(STbus+(iterDYN->FrameID_DYN-

1)*gdMinislot))+ BusCycles_lf *gdCycle + (iterDYN->FrameID_DYN-
1)*gdMinislot + (STbus+pLatestTx*gdMinislot)+(aFrameLength_DYN
*gdBit/BusSpeed);

234 if (iterDYN->R_DYN <= iterDYN->D_DYN)
235 {
236 scheduledCountDYN++;
237 cout << setw(4) << iterDYN->FrameID_DYN << setw(11)

<< iterDYN->MessageLengthDYN << setw(9) << iterDYN->D_DYN/1000
<< setw(13) << iterDYN->R_DYN/1000 << setw(15) << "Yes" << '\t'
<< endl;

238 if (scheduledCountDYN == Ldyn.size())
239 {
240 cout << "System schedulable. DYN messages are

100% scheduled." << endl;
241 return 0;
242 }
243 }
244 else
245 {
246 cout << setw(4) << iterDYN->FrameID_DYN << setw(11)

<< iterDYN->MessageLengthDYN << setw(9) << iterDYN->D_DYN/1000
<< setw(13) << iterDYN->R_DYN/1000 << setw(15) << "No" << '\t'
<< endl;

247 }
248 }
249 cout << "system non-schedulable. Schedulability:" <<

(double)scheduledCountDYN/Ldyn.size()*100 << "%"<< endl;
250 return 0;
251 }

120

C
C Source Code of Switched ST

Scheduler

1 /*--
Switched FlexRay ST scheduling algorithm

---*/
2 #include <iostream>
3 #include <iomanip>
4 #include <vector>
5 #include <set>
6 #include <algorithm>
7 #include <time.h>
8 #include <math.h>
9
10 using namespace std;
11
12 #define max(a,b) (((a) > (b)) ? (a) : (b))
13
14 //----------------System parameters-------------------
15 const int pSamplesPerMicrotick = 1;//Number of samples per

microtick
16 const double gdSampleClockPeriod = 0.0125;//Sample clock

period[μs]
17 double pdMicrotick;//Duration of a microtick[μs]
18 double gdMaxMicrotick;//Maximum microtick length of all

microticks configured within a cluster[μs]
19 double gdMacrotick = 2;// Duration of the cluster wide nominal

macrotick[μs]
20 double gdBit, gdBitMax, gdBitMin; // gdBit:Nominal bit time[μ

s], gdBitMax[μs], gdBitMin[μs]
21 int gdActionPointOffset;//Number of macroticks the action point

is offset from the beginning of a static slot or symbol
window[MT]

22 double gAssumedPrecision;//Assumed precision of the application
network[μs]; aBestCasePrecision[μs] <= gAssumedPrecision[μs]
<= aWorstCasePrecision[μs]=(34μT + 20 * gClusterDriftDamping[μ
T]) * gdMaxMicrotick[μs /μT] +2 * gdMaxPropagationDelay

APPENDIX C. SOURCE CODE OF SWITCHED ST SCHEDULER 121

23 double aBestCasePrecision, aWorstCasePrecision;
24 int gdTSSTransmitter; //Number of bits in the Transmission Start

Sequence[gdBit]
25 double gdMaxInitializationError;//maximum initialization

error[μs]; 2 * (gdMaxMicrotick[μs] * (1 + 0.0015)) +
gdMaxPropagationDelay <= gdMaxInitializationError<=
gAssumedPrecision= aWorstCasePrecision= 11.7 μs

26 int gClusterDriftDamping = 5;//cluster drift damping factor=0~
5[̔]

27 double dStarTruncation = 0.45; //Interval by which the
transmission of a frame is shortened by one star = 0.45[μs]

28 double dBDRxia = 0.3;//Activity reaction time. Time by which a
transmission becomes shortened in a receiving node = 0 ~ 0.45[μ
s];It is the truncation that occurs in the BD of the receiving
node. It is present even if the frame does not pass through any
active stars.

29 int nStarPath = 1;//0~2; the maximum number of active stars
between any two nodes

30 double gdMinPropagationDelay = 0, gdMaxPropagationDelay =
2.5;//A minimum/maximum propagation delay of the network as seen
by the local node[μs], 0 ~ 2.5

31
32 double BusSpeed = 10;//Bus data rate[Mbit/s]
33 double gdCycle = 5000, STbus = 3000;//gdCycle:CC length[μs],

STbus:ST segment length[μs]
34
35
36 //---------------ST segment parameters----------------
37 int num_ST;//number of ST messages
38 double gdStaticSlot; //ST-Slot length[μs]
39 int gNumberOfStaticSlots, gNumberOfStaticSlots_min,

gNumberOfStaticSlots_use = 0;//gNumberOfStaticSlots_min: minimum
required number of ST slots;gNumberOfStaticSlots_use:used number
of ST slots

40 double gPayloadLengthStatic;//payload length of the ST
frame[bit]

41 int aFrameLengthStatic;//ST Frame lengthg[dBit]
42 int scheduledCount = 0; //counter of scheduled messages
43 bool Vuse[1023][64] = {0}; //used vector space
44
45
46 struct buf
47 {
48 int x;
49 int y;
50 };
51
52 struct MessageST
53 {
54 int FrameID_ST; //FrameID of ST messages
55 int MessageLengthST; // Static message length[bit]
56 double T_ST; //Period of production of static message [μs]
57 double D_ST; //Deadline of static message [μs]
58
59 bool Port[4]; //ports message m occupied
60 bool Source[4]; //message m’s source ports

122 APPENDIX C. SOURCE CODE OF SWITCHED ST
SCHEDULER

61 bool Sink[4]; //message m’s sink ports
62 bool Matrix[4][4]; //messages m’s transmission path
63
64 int s; //base slot
65 int p; //slot repetition
66 int gNumberOfStaticSlot_m;//Number of ST slots for m
67 int b; //base cycle
68 int r; //cycle repetition
69 int gNumberOfCycle;//Number of cycles allocated to
70
71
72 bool buffer[1023][64][4];//slots message m occupied
73 bool V[1023][64][4];
74 bool isScheduled;
75
76 int SlotIDMax; //Max slot ID
77
78 buf SlotID;
79 buf CC;
80 };
81
82
83
84 int main()
85 {
86 /*--

user input
--*/

87 /*cout << "Please choose the duration of the samples
clock[μs]: 0.0125, 0.0250, 0.0500";

88 cin >> gdSampleClockPeriod;
89 cout << "Please choose the number of samples per Microtick:

1,2,4";
90 cin >> pSamplesPerMicrotick;*/
91 cout << "Please input the number of ST messages:";
92 cin >> num_ST;
93 /*cout << "Please input the maximum number of active stars

between any 2 nodes:";
94 cin >> nStarPath;
95 cout << "Please input the FlexRay bus bit rate [MBit/s]:";
96 cin >> BusSpeed;
97 cout << "Please input the min bit rate of the ST messages

[MBit/s]:";
98 cin >> min_bitRate;
99 cout << "Please input the max bit rate of the ST messages

[MBit/s]:";
100 cin >> max_bitRate;*/
101
102 srand((unsigned)time(NULL));
103 for (int j = 0; j < 10; j++)
104 {
105 rand();
106 }
107
108 vector<MessageST> MST;
109 vector<MessageST> Lst;
110 vector<MessageST>::iterator iterST;

APPENDIX C. SOURCE CODE OF SWITCHED ST SCHEDULER 123

111
112 /*--

value the system parameters
--*/

113 if (BusSpeed == 2.5)
114 {
115 gdBit = 0.4;
116 gdBitMax = 0.4006;
117 gdBitMin = 0.3994;
118 }
119 if (BusSpeed == 5)
120 {
121 gdBit = 0.2;
122 gdBitMax = 0.2003;
123 gdBitMin = 0.1997;
124 }
125 if (BusSpeed == 10)
126 {
127 gdBit = 0.1;
128 gdBitMax = 0.10015;
129 gdBitMin = 0.09985;
130 }
131
132 pdMicrotick = pSamplesPerMicrotick * gdSampleClockPeriod;
133 gdMaxMicrotick = pdMicrotick;
134 aWorstCasePrecision=(34 + 20 * gClusterDriftDamping) *

gdMaxMicrotick +2 * gdMaxPropagationDelay;
135
136 gAssumedPrecision = aWorstCasePrecision;
137 gdMaxInitializationError = 2 * (gdMaxMicrotick* (1 +

0.0015)) + gdMaxPropagationDelay;
138
139 gdTSSTransmitter = ceil((gdBitMax+ dBDRxia+ nStarPath *

dStarTruncation)/gdBitMin);
140 gdActionPointOffset = ceil((2*gAssumedPrecision -

gdMinPropagationDelay +2 * gdMaxInitializationError) /
(gdMacrotick* (1 - 0.0015)));

141 //-----------------output message info-----------------------
142 cout << "ID_ST" << '\t' << "ML_ST" << '\t' << "T_ST" << '\t'

<< "D_ST" << '\t' << endl;
143
144 //--------------------messages input parameters-------------
145 int ID = 1;
146 for (int n = 0; n < num_ST; n++)
147 {
148 MessageST *temp = new MessageST;
149 temp->FrameID_ST = ID++;
150
151 //-------------random T generation-------------
152 int a = rand() % 11;
153 if (a == 0)
154 {
155 temp->T_ST = 5000;
156 }
157 else if (a == 1)
158 {
159 temp->T_ST = 10010;
160 }

124 APPENDIX C. SOURCE CODE OF SWITCHED ST
SCHEDULER

161 else if (a == 2)
162 {
163 temp->T_ST = 20010;
164 }
165 else if (a == 3)
166 {
167 temp->T_ST = 40010;
168 }
169 else if (a == 4)
170 {
171 temp->T_ST = 80010;
172 }
173 else if (a == 5)
174 {
175 temp->T_ST = 160010;
176 }
177 else if (a == 6)
178 {
179 temp->T_ST = 320010;
180 }
181 else if (a == 7)
182 {
183 temp->T_ST = 4000;
184 }
185 else if (a == 8)
186 {
187 temp->T_ST = 2000;
188 }
189 else if (a == 9)
190 {
191 temp->T_ST = 1000;
192 }
193 else if (a == 10)
194 {
195 temp->T_ST = 500;
196 }
197
198 temp->D_ST = temp->T_ST;
199 if (temp->D_ST > 40000)
200 {
201 temp->D_ST = 40000;
202 }
203
204 temp->MessageLengthST = 64;
205
206 for (int i = 0; i <= 1022; i++)
207 {
208 for (int j = 0; j <= 63; j++)
209 {
210 for (int k = 0; k <= 3; k++)
211 {
212 temp->buffer[i][j][k] = 0;
213 temp->V[i][j][k] = 1;
214 }
215 }
216 }
217 //-------------random message Port generation---------
218 for (int k = 0; k <= 3; k++)

APPENDIX C. SOURCE CODE OF SWITCHED ST SCHEDULER 125

219 {
220 temp->Port[k] = 0;
221 temp->Source[k] = 0;
222 temp->Sink[k] = 0;
223 }
224 int first = rand() % 4;
225 temp->Source[first] = 1;
226 for (int m = 0; m <= 3; m++)
227 {
228 if(m != first)
229 {
230 if (rand() % 2 == 0)
231 {
232 temp->Sink[m] = 0;
233 }
234 else
235 {
236 temp->Sink[m] = 1;
237 }
238 }
239 temp->Port[m] = temp->Source[m] + temp->Sink[m];
240 }
241
242 temp->isScheduled = false;
243 MST.push_back(*temp);
244 cout << setw(3) << temp->FrameID_ST << '\t' << temp-

>MessageLengthST << '\t' << temp->T_ST << '\t' << temp->D_ST <<
'\t' << endl;

245 }
246 //------------------output message port----------------------
247 cout <<"Port"<<'\t'<<endl;
248 for (iterST = MST.begin(); iterST != MST.end(); iterST++)
249 {
250 for (int m = 0; m <= 3; m++)
251 {
252 if(iterST->Port[m] == 1) // "1" means been occupied
253 {
254 cout<<m<<',';
255 }
256 }
257 cout << endl;
258 }
259
260 /*---

value the message schedule's main parameters
--*/

261 int MessageLengthSTMax;
262 for (iterST = MST.begin(); iterST != MST.end(); iterST++)
263 {
264 if (MessageLengthSTMax < iterST->MessageLengthST)
265 MessageLengthSTMax = iterST->MessageLengthST;
266 }
267
268 gPayloadLengthStatic = MessageLengthSTMax;
269 aFrameLengthStatic = (gdTSSTransmitter+ 1 + 80

+gPayloadLengthStatic* 1.25 + 2);//gdBit
270
271 gdStaticSlot = 2 * gdActionPointOffset +

126 APPENDIX C. SOURCE CODE OF SWITCHED ST
SCHEDULER

ceil(((aFrameLengthStatic +
11)*gdBitMax+gdMinPropagationDelay+gdMaxPropagationDelay)/(gdMac
rotick *(1-0.0015)));

272 gNumberOfStaticSlots = STbus / gdStaticSlot;
273
274 for (iterST = MST.begin(); iterST != MST.end();

iterST++)
275 {
276 if (iterST->D_ST < gdCycle)
277 {
278 iterST->r = 1;
279 for (int n = 0; n <= log(gdCycle/gdStaticSlot) /

log(2); n++)
280 {
281 if (iterST->p <= iterST->D_ST /

gdStaticSlot)
282 {
283 iterST->p = pow(2,n);
284 }
285 }
286 iterST->gNumberOfStaticSlot_m =

ceil((double)gNumberOfStaticSlots / iterST->p);
287 iterST->gNumberOfCycle = 64;
288 }
289 else
290 {
291 iterST->p = gNumberOfStaticSlots;
292 iterST->gNumberOfStaticSlot_m = 1;
293 if (iterST->D_ST > gdCycle)
294 {
295 for (int n = 0; n <= 6; n++)
296 {
297 if (iterST->r <= iterST->D_ST / gdCycle)
298 {
299 iterST->r = pow(2,n);
300 }
301 }
302 iterST->gNumberOfCycle = 64 / iterST->r;
303 }
304 else
305 {
306 iterST->r = 1;
307 iterST->gNumberOfCycle = 64;
308 }
309 }
310 }
311 //--------------------basic constraint--------------------

312 for (iterST = MST.begin(); iterST != MST.end();

iterST++)
313 {
314 gNumberOfStaticSlots_min += (double)iterST-

>gNumberOfStaticSlot_m/iterST->r;
315 }
316 gNumberOfStaticSlots_min =

ceil((double)gNumberOfStaticSlots_min);
317 if (gNumberOfStaticSlots_min <= 2)
318 {

APPENDIX C. SOURCE CODE OF SWITCHED ST SCHEDULER 127

319 gNumberOfStaticSlots_min = 2;
320 }
321 if (gNumberOfStaticSlots_min > gNumberOfStaticSlots)
322 {
323 cout << "non-schedulable ,gNumberOfStaticSlots_min>

gNumberOfStaticSlots" << endl;
324 return 0;
325 }
326 //----------------------sort------------------------------

327 while (MST.size() != 0)
328 {
329 vector<MessageST>::iterator temp = MST.begin();
330 for (iterST = MST.begin(); iterST != MST.end();

iterST++)
331 {
332 if (iterST->p < temp->p || (iterST->p == temp->p

&& iterST->r < temp->r))
333 {
334 temp = iterST;
335 }
336 }
337 Lst.push_back(*temp);
338 MST.erase(temp);
339 }
340 //--------------------scheduling process--------------------
341 for (iterST = Lst.begin(); iterST != Lst.end();

iterST++)
342 {
343 if (iterST->isScheduled)
344 {
345 continue;
346 }
347 iterST->SlotID.x = 0;
348 iterST->SlotID.y = iterST->p - 1;
349 iterST->CC.x = 0;
350 iterST->CC.y = iterST->r - 1;
351
352 for (int i = iterST->SlotID.x; i <= iterST-

>SlotID.y; i++)
353 {
354 for (int j = iterST->CC.x; j <= iterST->CC.y;

j++)
355 {
356 for (int k = 0; k <= 3; k++)
357 {
358 if (Vuse[i][j][k] == 0) //space not be

used
359 {
360 iterST->V[i][j][k] = 0;
361 }
362 }
363 }
364 }
365 for (int sm = iterST->SlotID.x; sm <= iterST-

>SlotID.y; sm++)
366 {
367 if (iterST->isScheduled)

128 APPENDIX C. SOURCE CODE OF SWITCHED ST
SCHEDULER

368 {
369 break;
370 }
371 for (int bm = iterST->CC.x; bm <= iterST->CC.y;

bm++)
372 {
373 if (iterST->isScheduled)
374 {
375 break;
376 }
377 bool flag = true;
378 for (int k = 0; k <= 3; k++)
379 {
380 if (iterST->Port[k] == 1&&iterST-

>V[sm][bm][k] == 1)
381 {
382 flag = false;
383 break;
384 }
385 }
386 if (!flag)
387 {
388 continue;
389 }
390 if (flag)
391 {
392 iterST->s = sm;
393 iterST->b = bm;
394 for (int m = 1; m <= iterST-

>gNumberOfStaticSlot_m; m++)
395 {
396 for (int n = 1; n <= iterST-

>gNumberOfCycle; n++)
397 {
398 for (k = 0; k <= 3; k++)
399 {
400 if (iterST->Port[k] == 1)
401 {
402 iterST->buffer[iterST-

>s+(m-1)*iterST->p][iterST->b+(n-1)*iterST->r][k] = 1;
403 }
404 }
405 }
406 }
407 for (int i = 0; i <= 1022; i++)
408 {
409 for (int j = 0; j <= 63; j++)
410 {
411 for (k = 0; k <= 3; k++)
412 {
413 Vuse[i][j][k] =

Vuse[i][j][k] | iterST->buffer[i][j][k]; //update Vuse
414 }
415 }
416 }
417
418 iterST->SlotIDMax = iterST->s + 1

+(iterST->gNumberOfStaticSlot_m - 1)*iterST->p;

APPENDIX C. SOURCE CODE OF SWITCHED ST SCHEDULER 129

419
420 if (iterST->SlotIDMax >

gNumberOfStaticSlots_use)
421 {
422 gNumberOfStaticSlots_use= iterST-

>SlotIDMax; //update used max slot ID
423 }
424 if (gNumberOfStaticSlots_use >

gNumberOfStaticSlots)
425 {
426 cout << "system non-schedulable.

gNumberOfStaticSlots_use > gNumberOfStaticSlots." << endl;
427 return 0;
428 }
429 iterST->isScheduled = true;
430 scheduledCount++;
431 if (scheduledCount == Lst.size())
432 {
433 cout << "scheduled" << endl;
434 cout << "gdStaticSlot:" <<

gdStaticSlot << endl;
435 cout << "gNumberOfStaticSlots:" <<

gNumberOfStaticSlots << endl;
436 cout << "number of ST slots used:"

<< gNumberOfStaticSlots_use << endl;
437 //------------------output ST schedule--------------------------

438 vector<MessageST>::iterator

iterSTOut;
439 cout << "ID_ST" << '\t' << "s" <<

'\t' << "p" << '\t' << setw(8) << "STSlotNum";
440 cout << setw(5) << "b" << setw(5) <<

"r" << '\t' << "CycNum" << '\t' << "SlotIDMax" << '\t' << endl;
441 for (iterSTOut = Lst.begin();

iterSTOut != Lst.end(); iterSTOut++)
442 {
443 cout << setw(3) << iterSTOut-

>FrameID_ST << '\t' << iterSTOut->s + 1 << '\t' << iterSTOut->p
<< '\t' << setw(4) << iterSTOut->gNumberOfStaticSlot_m;

444 cout << setw(10) << iterSTOut->b
<< setw(5) << iterSTOut->r << '\t' << setw(4) << iterSTOut-
>gNumberOfCycle << setw(9) << iterSTOut->SlotIDMax << '\t' <<
endl;

445 }
446 //--
447 return 0;
448 }
449 else
450 {
451 break;
452 }
453 }
454 }
455 }
456 }
457 cout << "system non-schedulable. Schedulability:" <<

(double)scheduledCount/Lst.size()*100 << "%" << endl;
458 cout << "gdStaticSlot:" << gdStaticSlot << endl;

130 APPENDIX C. SOURCE CODE OF SWITCHED ST
SCHEDULER

459 cout << "gNumberOfStaticSlots:" << gNumberOfStaticSlots <<
endl;

460 return 0;
461 }

131

D
D Source Code of Switched DYN

Scheduler

1 /*--
Switched FlexRay DYN scheduling algorithm

---*/
2 #include <iostream>
3 #include <iomanip>
4 #include <vector>
5 #include <set>
6 #include <algorithm>
7 #include <time.h>
8 #include <math.h>
9
10 using namespace std;
11
12 //----------------System parameters-------------------
13 const double gdMacrotick = 2;//Duration of the cluster wide

nominal macrotick[μs]
14 double gdTSSTransmitter;//Number of bits in the Transmission

Start Sequence[gdBit]
15 double gdBit, gdBitMax, gdBitMin; // gdBit:Nominal bit time[μ

s], gdBitMax[μs], gdBitMin[μs]
16 double dStarTruncation = 0.45; //Interval by which the

transmission of a frame is shortened by one star = 0.45[μs]
17 double dBDRxia = 0.3;//Activity reaction time. Time by which a

transmission becomes shortened in a receiving node = 0 ~ 0.45[μ
s];It is the truncation that occurs in the BD of the receiving
node. It is present even if the frame does not pass through any
active stars.

18 int nStarPath = 1;//0~2; the maximum number of active stars
between any two nodes

19
20 double BusSpeed = 10;//Bus data rate[Mbit/s]
21 double gdCycle = 5000, STbus = 3000, DYNbus;//gdCycle:CC

length[μs], STbus:ST segment length[μs], DYN bus length[μs]
22
23

132 APPENDIX D. SOURCE CODE OF SWITCHED DYN
SCHEDULER

24 //---------------DYN segment parameters----------------
25 int num_DYN;//number of DYN messages
26 double gdMinislot;//Minislot length[μs]
27 int gNumberOfMinislots;
28 int scheduledCountDYN = 0;
29 int pLatestTx;//Number of the last minislot in which a frame

transmission can start in the dynamic segment
30 double aFrameLength_DYN;//DYN frame length
31
32
33 struct MessageDYN
34 {
35 int FrameID_DYN; //FrameID
36 int FrameID_DYNnew; //FrameID after clustering
37 int MessageLengthDYN;// MessageLengthDYN[bit]
38 double FrameLengthDYN; //DYN Frame length
39 double D_DYN;//Deadline of dynamic message [μs]
40 double R_DYN; //response time[μs]
41
42 bool Port_DYN[4]; //the ports message m occupied
43 int clusterID_DYN; //cluster ID messages m belonged
44 bool isCluster;
45 };
46
47
48 int main()
49 {
50 //-------------------user input---------------------------
51 cout << "Please input the number of DYN messages:";
52 cin >> num_DYN;
53 /*cout << "Please input the length of a Minislot:";
54 cin >> gdMinislot;*/
55
56 srand((unsigned)time(NULL));
57 for (int j = 0; j < 10; j++)
58 {
59 rand();
60 }
61
62 vector<MessageDYN> MDYN;
63 vector<MessageDYN> Ldyn;
64 vector<MessageDYN>::iterator iterDYN;
65 vector<MessageDYN>::iterator iterFrameID;
66
67 vector<MessageDYN> lf;
68 vector<MessageDYN> lf_sort;
69 vector<MessageDYN>::iterator iterlf;
70 vector<MessageDYN>::iterator iterMessageLength;
71
72 if (BusSpeed == 2.5)
73 {
74 gdBit = 0.4;
75 gdBitMax = 0.4006;
76 gdBitMin = 0.3994;
77 }
78 if (BusSpeed == 5)
79 {

APPENDIX D. SOURCE CODE OF SWITCHED DYN SCHEDULER 133

80 gdBit = 0.2;
81 gdBitMax = 0.2003;
82 gdBitMin = 0.1997;
83 }
84 if (BusSpeed == 10)
85 {
86 gdBit = 0.1;
87 gdBitMax = 0.10015;
88 gdBitMin = 0.09985;
89 }
90
91 //---

system parameters

92 gdTSSTransmitter = ceil((gdBitMax+ dBDRxia+ nStarPath *
dStarTruncation)/gdBitMin);

93 DYNbus = gdCycle - STbus;
94 gNumberOfMinislots = DYNbus / gdMinislot;//int = floor()
95
96 //--

messages input parameters

97 for (int m = 0; m < num_DYN; m++)
98 {
99 MessageDYN *temp = new MessageDYN;
100
101 //-------------random D generation----------------
102 int a = rand() % 7;
103 if (a == 0)
104 {
105 temp->D_DYN = 100000;
106 }
107 else if (a == 1)
108 {
109 temp->D_DYN = 200000;
110 }
111 else if (a == 2)
112 {
113 temp->D_DYN = 500000;
114 }
115 else if (a == 3)
116 {
117 temp->D_DYN = 1000000;
118 }
119 else if (a == 4)
120 {
121 temp->D_DYN = 2000000;
122 }
123 else if (a == 5)
124 {
125 temp->D_DYN = 10000000;
126 }
127 else if (a == 6)
128 {
129 temp->D_DYN = 20000000;
130 }
131
132 temp->MessageLengthDYN = rand() % 128;//maximum 16 bytes

134 APPENDIX D. SOURCE CODE OF SWITCHED DYN
SCHEDULER

DYN data supported, changeable
133 temp->isCluster = false;
134 //-------------random message Port generation----------
135 int first = rand() % 4;
136 temp->Port_DYN[first] = 1;
137 for (int i = 0; i <= 3; i++)
138 {
139 if(i != first)
140 {
141 if (rand() % 2 == 0)
142 {
143 temp->Port_DYN[i] = 0;
144 }
145 else
146 {
147 temp->Port_DYN[i] = 1;
148 }
149 }
150 }
151 MDYN.push_back(*temp);
152 }
153
154 //--

sort the DYN messages
--

155 int ID = 1;
156 while (MDYN.size() != 0)
157 {
158 vector<MessageDYN>::iterator temp = MDYN.begin();
159 for (iterDYN = MDYN.begin(); iterDYN != MDYN.end();

iterDYN++)
160 {
161 if (iterDYN->MessageLengthDYN/iterDYN->D_DYN > temp-

>MessageLengthDYN/temp->D_DYN)
162 {
163 temp = iterDYN;
164 }
165 }
166 temp->FrameID_DYN = ID++;
167 Ldyn.push_back(*temp);
168 MDYN.erase(temp);
169 }
170
171 //--

clustering
--

172 int cluster[100][4];
173 int cluster_max = 1;
174 for (int i = 0; i < 100; i++)
175 {
176 for (int j = 0; j < 4; j++)
177 {
178 cluster[i][j] = -1;
179 }
180 }
181
182 for (iterDYN = Ldyn.begin(); iterDYN != Ldyn.end();

iterDYN++)

APPENDIX D. SOURCE CODE OF SWITCHED DYN SCHEDULER 135

183 {
184 if (iterDYN == Ldyn.begin())
185 {
186 for (int j = 0; j < 4; j++)
187 {
188 if (iterDYN->Port_DYN[j] == 1)
189 {
190 cluster[1][j] = iterDYN->FrameID_DYN;
191 }
192 }
193 iterDYN->clusterID_DYN = 1;
194 iterDYN->isCluster = true;
195 }
196 else
197 {
198 for (int i = 1; i <= cluster_max; i++)//search all

valid clusters
199 {
200 if (iterDYN->isCluster)
201 {
202 break;
203 }
204 bool flag =true;
205 for (int j = 0; j < 4; j++)
206 {
207 if (iterDYN->Port_DYN[j] == 1 &&

cluster[i][j] > 0)//one port has been occupied
208 {
209 flag = false;
210 }
211 }
212 if (flag)//every port needed by the transmission

is valid
213 {
214 for (int j = 0; j < 4; j++)
215 {
216 if (iterDYN->Port_DYN[j] == 1)
217 {
218 cluster[i][j] = iterDYN-

>FrameID_DYN;
219 }
220 }
221 iterDYN->clusterID_DYN = i;
222 iterDYN->isCluster = true;
223 }
224 }
225 if (!iterDYN->isCluster)//cannot find the valid

cluster, create a new one
226 {
227 cluster_max++;
228 for (int j = 0; j < 4; j++)
229 {
230 if (iterDYN->Port_DYN[j] == 1)
231 {
232 cluster[cluster_max][j] = iterDYN-

>FrameID_DYN;
233 }
234 }

136 APPENDIX D. SOURCE CODE OF SWITCHED DYN
SCHEDULER

235 iterDYN->clusterID_DYN = cluster_max;
236 iterDYN->isCluster = true;
237 }
238 }
239 }
240 //---

update FrameIDs
--

241 cout << "FrameID" << endl;
242 for (iterDYN = Ldyn.begin(); iterDYN != Ldyn.end();

iterDYN++)
243 {
244 cout << setw(4) << iterDYN->FrameID_DYN << endl;//output

original FrameID as reference
245 }
246
247 cout << "FrameID_new" << '\t' << endl;
248 for (iterDYN = Ldyn.begin(); iterDYN != Ldyn.end();

iterDYN++)
249 {
250 iterDYN->FrameID_DYNnew = iterDYN->FrameID_DYN;
251 for (int j = 0; j < 4; j++)
252 {
253 if (cluster[iterDYN->clusterID_DYN][j] > 0 &&

cluster[iterDYN->clusterID_DYN][j] < iterDYN->FrameID_DYNnew)
254 {
255 iterDYN->FrameID_DYNnew = cluster[iterDYN-

>clusterID_DYN][j];
256 }
257 }
258 if(iterDYN->FrameID_DYNnew < iterDYN->FrameID_DYN)
259 {
260 for (iterFrameID= Ldyn.begin(); iterFrameID!=

Ldyn.end(); iterFrameID++)
261 {
262 if(iterFrameID->FrameID_DYN > iterDYN-

>FrameID_DYN)
263 {
264 iterFrameID->FrameID_DYN = iterFrameID-

>FrameID_DYN - 1;
265 }
266 }
267 }
268 cout << setw(4) << iterDYN->FrameID_DYNnew << '\t' <<

endl;//output updated FrameID
269 iterDYN->FrameID_DYN = iterDYN->FrameID_DYNnew;//use new

FrameID in the following calculation
270 }
271
272 //---

update the Frame IDs end

273
274 cout << "FrameID" << setw(8) << "ML_DYN" << setw(11) <<

"D_DYN[ms]" << setw(12) << "R_DYN[ms]" << setw(18) <<
"scheduled?" << '\t' << endl;

275 //---
worst-case reponse time

APPENDIX D. SOURCE CODE OF SWITCHED DYN SCHEDULER 137

276 for (iterDYN = Ldyn.begin(); iterDYN != Ldyn.end();

iterDYN++)
277 {
278 aFrameLength_DYN = gdTSSTransmitter + 83 + iterDYN-

>MessageLengthDYN * 1.25;
279 pLatestTx = gNumberOfMinislots - (aFrameLength_DYN *

gdBit) / gdMinislot;
280
281 //----------------construct lf(m) list----------------------
282
283 lf_sort.clear();//initiate vector lf_sort for the next

m_DYN
284 int FrameID_m = iterDYN->FrameID_DYN;
285 for (iterlf = Ldyn.begin(); iterlf!= Ldyn.end();

iterlf++)
286 {
287 if (iterlf->FrameID_DYN < FrameID_m)
288 {
289 bool hasSameID = false;
290 for (iterMessageLength = lf.begin();

iterMessageLength!= lf.end(); iterMessageLength++)
291 {
292 if(iterMessageLength->FrameID_DYN == iterlf-

>FrameID_DYN)
293 {
294 hasSameID = true;
295 if (iterMessageLength->MessageLengthDYN

< iterlf->MessageLengthDYN)//check the same FrameID message size
296 {
297 iterMessageLength->clusterID_DYN =

iterlf->clusterID_DYN;
298 iterMessageLength->MessageLengthDYN

= iterlf->MessageLengthDYN;
299 iterMessageLength->FrameID_DYN =

iterlf->FrameID_DYN;
300 iterMessageLength->FrameID_DYNnew =

iterlf->FrameID_DYNnew;
301 iterMessageLength->D_DYN = iterlf-

>D_DYN;
302 iterMessageLength->R_DYN = iterlf-

>R_DYN;
303 for (int port_i = 0; port_i < 4;

port_i++)
304 {
305 iterMessageLength-

>Port_DYN[port_i] = iterlf->Port_DYN[port_i];
306 }
307 iterMessageLength->isCluster =

iterlf->isCluster;
308 }
309 }
310 }
311 if (!hasSameID)
312 {
313 lf.push_back(*iterlf);//put into vector
314 }
315 }

138 APPENDIX D. SOURCE CODE OF SWITCHED DYN
SCHEDULER

316 else
317 {
318 continue;
319 }
320 }
321
322 //---

sort the lf(m) in decreasing order
--

323 while (lf.size() != 0)
324 {
325 vector<MessageDYN>::iterator temp = lf.begin();
326 for (iterlf= lf.begin(); iterlf != lf.end();

iterlf++)
327 {
328 if (iterlf->MessageLengthDYN > temp-

>MessageLengthDYN)
329 {
330 temp = iterlf;
331 }
332 }
333 lf_sort.push_back(*temp);
334 lf.erase(temp);//initiate lf for the next m_DYN
335 }
336
337 //--

first fit bin packing calculates BusCycles_lf

338 double bin[64];
339 for (int n = 1; n <= 64; n++)
340 {
341 bin[n] = DYNbus;
342 }
343 int BusCycles_lf = 1;
344 for (iterlf= lf_sort.begin(); iterlf != lf_sort.end();

iterlf++)
345 {
346 iterlf->FrameLengthDYN = gdTSSTransmitter + 83 +

iterlf->MessageLengthDYN * 1.25;
347 for (n = 1; n <= 64; n++)//searching all avilable

bins
348 {
349 if (bin[n] >= iterlf->FrameLengthDYN &&

bin[n] >= DYNbus-pLatestTx * gdMinislot)//enough space, put into
this bin

350 {
351 if (n > BusCycles_lf)//update BusCycles_lf
352 {
353 BusCycles_lf = n; //determine the number

of cycles occupied by lf messages
354 }
355 bin[n] -= iterlf->FrameLengthDYN;//update

the spare space of bin[n]
356 break;
357 }
358 else
359 {
360 continue;//search next bin

APPENDIX D. SOURCE CODE OF SWITCHED DYN SCHEDULER 139

361 }
362 }
363 }
364
365 //---

worst-case response time
--

366 iterDYN->R_DYN = (gdCycle-(STbus+(iterDYN->FrameID_DYN-
1)*gdMinislot))+ BusCycles_lf *gdCycle + (iterDYN->FrameID_DYN-
1)*gdMinislot + (STbus+pLatestTx*gdMinislot)+(aFrameLength_DYN
*gdBit/BusSpeed);

367 if (iterDYN->R_DYN <= iterDYN->D_DYN)
368 {
369 scheduledCountDYN++;
370 cout << setw(4) << iterDYN->FrameID_DYN << setw(9)

<< iterDYN->MessageLengthDYN << setw(11) << iterDYN->D_DYN/1000
<< setw(13) << iterDYN->R_DYN/1000 << setw(15) << "Yes" << '\t'
<< endl;

371 if (scheduledCountDYN == Ldyn.size())
372 {
373 cout << "System schedulable. DYN messages are

100% scheduled." << endl;
374 return 0;
375 }
376 }
377 else
378 {
379 cout << setw(4) << iterDYN->FrameID_DYN << setw(9)

<< iterDYN->MessageLengthDYN << setw(11) << iterDYN->D_DYN/1000
<< setw(13) << iterDYN->R_DYN/1000 << setw(15) << "No" << '\t'
<< endl;

380 }
381 }
382 cout << "system non-schedulable. Schedulability:" <<

(double)scheduledCountDYN/Ldyn.size()*100 << "%"<< endl;
383 return 0;
384 }

140

E
E Pseudocode for DYN Schedulers

with ECUs’ Output

E.1 Notations

Here we would like to present some notations which may use in the discussion.

 mCycleID is the ID of the cycle in which the DYN message is scheduled;

 _m gCycleID is the value of cycle counter at the instant of the DYN message m is

generated;

 _m tCycleID is the value of cycle counter at the instant of the DYN message m is

transmitted,  _ 0,63m tCycleID  , _m tCycleID  ;

 busDYN is the length of the DYN segment;

 gdMinislot is the number of Macroticks constituting the duration of a Minislot;

 _m gMacrotick is the value of Macrotick in the node timer at the instant of the DYN

message m is generated;

 _m tMacrotick is the value of Macrotick in the node timer at the instant of the DYN

message m is transmitted;

 mMessageLengthDYN is the number of bits constituting the dynamic message m

in the cluster;

APPENDIX E. PSEUDOCODE FOR DYN SCHEDULERS WITH ECUS’ OUTPUT 141

 mMinislotID is the number of Minislot from the beginning of the DYN segment to

the transmission of message m;

 mpLatestTx is the number of the last Minislot in which a frame transmission can

start in the DYN segment;

 mR is the worst-case response time of the DYN message m;

 busST is the length of the ST segment;

 DYNvSlotCounter is the value of slot counter of DYN segment;

E.2 Representation of the Schedule

Unlike the fixed starting time of any ST slot in the ST segment, the starting time of the
DYN slot is not fixed in a schedule. It depends on the transmission data in different networks.
Therefore we cannot imitate the way of schedule representing in ST segment to use the Frame
ID as a part of the schedule.

According to FlexRay specifications, the node shall provide at least one absolute timer
that may be set to an absolute time in terms of cycle count and Macrotick, i.e. the timer is set
to expire at a determined Macrotick in a determined communication cycle [11]. This means

any instant in time can represent as 2-tuple vector  ,vCycleCounter Macrotick . Moreover,

the length of a Minislot is fixed in a schedule so each Minislot ID has a fixed starting time.
Therefore the Minislot ID is a good reference grid for any message’s schedule. The
transmission schedule of the DYN message m can be represented by a 2-tuple vector:

  Schedule ,m m mMinislotID CycleID (E.1)

 Schedule ,m m mMinislotID CycleID  Schedule ,m m mMinislotID CycleID

Every DYN message starts to transmit at position mMinislotID of cycle number mCycleID .

Therefore the problem of the scheduler design in DYN segment needs to consider these
two factors. Here list them below:

 Length of the DYN segment busDYN ;

 The way to assign the Frame ID and the optimal way to set the order of Frame ID;

 Parameters mMinislotID and mCycleID ;

E.3 Motivation for the Solution

142 APPENDIX E. PSEUDOCODE FOR DYN
SCHEDULERS WITH ECUS’ OUTPUT

If there is an idle instant which with the value of DYN slot counter equal to message m’s

FrameID and it satisfies the mpLatestTx condition, the DYN message m can start to transmit.

We denote this instant of the DYN message generation as  _ _,m g m gCycleID Macrotick .

Similarly, we denote the instant of the DYN message transmission as

 _ _,m t m tCycleID Macrotick . The interval between these two instants is the message

response time mR . It cannot longer than message deadline mD . The mathematic expression for

this constraint is:

 m mR D (E.2)

The response time can write as follow:

   _ _ _ _, ,m m t m t m g m gR CycleID Macrotick CycleID Macrotick 

 =  _ _ []m t m gCycleID CycleID gdCycle s  

 _ _ []m t m gMacrotick Macrotick gdMacrotick s  (E.3)

mMinislotID is related with _m tMacrotick by:

_ []

[]
m t

m

Macrotick MT
MinislotID

gdMinislot MT
 (E.4)

E.4 Pseudocode for Simple DYN Scheduler with ECUs’ Output

Input:

 Bus bit rate ࢊࢋࢋ࢖࢙_࢙࢛࢈

 The DYN message setࡺࢅࡰࡹ ,ࡺࢅࡰࡹ is maximum DYN message set waiting to send

in a cluster,  , ,m m DYNm D MessageLengthDYN m M 

Output:

 2m scheduling matrix DYNSimpleScheduler

1 1

2 2

3 3

... ...

m m

MinislotID CycleID

MinislotID CycleID

MinislotID CycleID

MinislotID CycleID

 
 
 
 
 
 
  

APPENDIX E. PSEUDOCODE FOR DYN SCHEDULERS WITH ECUS’ OUTPUT 143

Simple DYN scheduler with ECUs’ Output

for DYNm M 

Sort the DYN messages DYNm M  in descending order of the value

m

m

MessageLength

D
 and then in descending order of the value mMessageLength , store

them in the message list DYNL

Assign the Frame ID to the DYN messages with the order in list DYNL from 1

end for

for 10 to 16000 sgdCycle  step 20 μsgdBit

Simple FlexRay ST scheduling algorithm

ܵ ௕ܶ௨௦ ൌ ݐ݋݈ܵܿ݅ݐܽݐܵ݀݃ ∗ ݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑܰ݃

ܻܦ ௕ܰ௨௦ ൌ ݈݁ܿݕܥ݀݃ െ ܵ ௕ܶ௨௦

for 2 to 63MTgdMinislot  step 1 gdMacrotick [MT]

for DYNm L

௠ݔܶݐݏ݁ݐܽܮ݌ ൌ

ሺܻܦ ௕ܰ௨௦	–	ሺ݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎ	 ൅ 	83	 ൅
ሾbitሿ	ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ	 ∗ 1.25	ሻ ∗
݇ܿ݅ݐ݋ݎܿܽܯ/ሺ݃݀	ሻݐ݅ܤ݀݃ ∗ 	ሻݐ݋݈ݏ݅݊݅ܯ݀݃

_m gCycleID = the value of cycle counter in the timer at this instant

_m gMacrotick = the value of Macrotick in the timer at this instant

_m m gCycleID CycleID

if m is the first message

0useDYN 

1DYNvSlotCounter 

end if

m bus useDYN DYN DYN 

144 APPENDIX E. PSEUDOCODE FOR DYN
SCHEDULERS WITH ECUS’ OUTPUT

// update the valid time for message m in DYN segment

if maxmCycleID vCycleCounter

// maxvCycleCounter is the value get after ST segment scheduling

if DYN mvSlotCounter FrameID

if m
m

DYN
pLatestTx

gdMinislot

 
 

 

_m tCycleID = the value of cycle counter in the timer at this

instant

//read the new value from the timer

_m tMacrotick = the value of Macrotick in the timer at this

instant

//read the new value from the timer

Rm=  _ _ []m t m gCycleID CycleID gdCycle s 

 _ _ []m t m gMacrotick Macrotick gdMacrotick s  

if m mR D

_m t
m

Macrotick
MinislotID

gdMinislot


store  ,m mMinislotID CycleID in the matrix

DYNSimpleScheduler

use use mDYN DYN MessageLength 

take m out of DYNL , update DYNL

if DYNL is empty

output matrix DYNSimpleScheduler , exit //system

schedulable

end if

continue with next message 1 DYNm L 

APPENDIX E. PSEUDOCODE FOR DYN SCHEDULERS WITH ECUS’ OUTPUT 145

1DYN DYNvSlotCounter vSlotCounter 

else

continue with next gdMinislot value

end if

else

use useDYN DYN gdMinislot 

1DYN DYNvSlotCounter vSlotCounter 

continue with next message 1 DYNm L 

end if

else

1DYN DYNvSlotCounter vSlotCounter 

end if

1m mCycleID CycleID 

else

continue with next gdMinislot value

end if

end for

end for

end for

output non-schedulable, exit //system non-schedulable

Algorithm E Pseudocode for Simple DYN scheduler with ECUs’ Output

E.5 Pseudocode for Switched DYN Scheduler with ECUs’ output

Input:

 Bus bit rate ࢊࢋࢋ࢖࢙_࢙࢛࢈

 Switch port set ࢎࢉ࢚࢏࢙࢚࢝࢘࢕ࡼ

146 APPENDIX E. PSEUDOCODE FOR DYN
SCHEDULERS WITH ECUS’ OUTPUT

 The DYN message setࡺࢅࡰࡹ ,ࡺࢅࡰࡹ is maximum DYN message set waiting to send

in a cluster,   , ,?m m m DYNm MessageLengthDYN D Port m M mMatrix

Output:

System schedulable or non-schedulable

Switched DYN scheduler with ECUs’ output

for DYNm M 

Sort the DYN messages DYNm M  in descending order of the value m

m

MessageLength

D

and then in descending order of the value mMessageLength , store them in the message

list DYNL

Assign the Frame ID to the DYN messages with the order in list DYNL from 1

end for // sort the messages and assign the Frame IDs

// start of clustering and Frame IDs updating

for ∀݉ ∈ ܻܰܦܮ

if ݉ is the first message in ܮ஽௒ே

create set ݈ܿݎ݁ݐݏݑଵ ൌ ሼemptyሽ //create the first message set ݈ܿݎ݁ݐݏݑଵ

ݐ݁ܵݎ݁ݐݏݑ݈ܥ ൌ ሼ݈ܿݎ݁ݐݏݑଵሽ // create a set represented all the available clusters

௨௦௘_௖௟௨௦௧௘௥భݐݎ݋ܲ ൌ ௠ݐݎ݋ܲ

݉ ∈ ଵݎ݁ݐݏݑ݈ܿ ଵ // put ݉ in setݎ݁ݐݏݑ݈ܿ

else //	݉ is not the first message

for all ݈ܿݎ݁ݐݏݑଵ	to	݈ܿݎ݁ݐݏݑ௠ in the set	ݐ݁ܵݎ݁ݐݏݑ݈ܥ

//for all valid cluster in ݐ݁ܵݎ݁ݐݏݑ݈ܥ

if ܲݐݎ݋௠ ⊆ ݊	, ௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ∈ ሾ1,݉ሿ, ݊ ∈ Գ

௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൌ ௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൅ ௠ݐݎ݋ܲ

݉ ∈ ௡ݎ݁ݐݏݑ݈ܿ ௡ // put message m inݎ݁ݐݏݑ݈ܿ

go to the next message

// if message is able to put in any one of the existed ௡, finish theݎ݁ݐݏݑ݈ܿ

APPENDIX E. PSEUDOCODE FOR DYN SCHEDULERS WITH ECUS’ OUTPUT 147

clustering step of message m

end if

end for

create set ݈ܿݎ݁ݐݏݑ௠ାଵ ൌ ሼemptyሽ //create a new set ݈ܿݎ݁ݐݏݑ௠ାଵ

/* if search all available clusters message still cannot find a cluster can fit in, create
a new cluster */

௨௦௘_௖௟௨௦௧௘௥೘శభݐݎ݋ܲ
ൌ ௠ݐݎ݋ܲ

݉ ∈ ௠ାଵݎ݁ݐݏݑ݈ܿ

// put ݉ in the new created cluster ݈ܿݎ݁ݐݏݑ௠ାଵ

go to the next message //finish the cluster step of this message

end if

௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൌ ௦௪௜௧௖௛ݐݎ݋ܲ െ ௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ

//update the valid ports for any set ݈ܿݎ݁ݐݏݑ௡ included message m

if ܲݐݎ݋௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ ൌ 0

ݐ݁ܵݎ݁ݐݏݑ݈ܥ ൌ ݐ݁ܵݎ݁ݐݏݑ݈ܥ െ ௡ݎ݁ݐݏݑ݈ܿ

//update the valid cluster set	ݐ݁ܵݎ݁ݐݏݑ݈ܥ

end if

end for // finish the clustering step for all the DYN messages

for ∀݉ ∈ update the Frame ID for each DYN message // ܻܰܦܮ

௠ܦܫ݁݉ܽݎܨ ൌ ,௡ݎ݁ݐݏݑ݈ܿ	݊݅	௠௜௡ܦܫ݁݉ܽݎܨ ݉	݁݃ܽݏݏ݁݉ ∈ ௡ݎ݁ݐݏݑ݈ܿ

end for

// start the calculation of the worst-case response time

for 10 to 16000 sgdCycle  step 20 μsgdBit

simple	FlexRay	ST	scheduling	algorithm

ܻܦ ௕ܰ௨௦ ൌ ݈݁ܿݕܥ݀݃ െ ܵ ௕ܶ௨௦

for 2 to 63MTgdMinislot  step 1 gdMacrotick [MT]

for DYNm L

௠ݔܶݐݏ݁ݐܽܮ݌ ൌ

148 APPENDIX E. PSEUDOCODE FOR DYN
SCHEDULERS WITH ECUS’ OUTPUT

ሺܻܦ ௕ܰ௨௦ – ሺ݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎ ൅ 83 ൅
ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ	 ሾbitሿ ∗ 1.25 ሻ ∗
݇ܿ݅ݐ݋ݎܿܽܯ/ሺ݃݀	ሻݐ݅ܤ݀݃ ∗ 	ሻݐ݋݈ݏ݅݊݅ܯ݀݃

_m gCycleID = the value of cycle counter in the timer at this instant

_m gMacrotick = the value of Macrotick in the timer at this instant

_m m gCycleID CycleID

if m is the first message

0useDYN 

1DYNvSlotCounter 

end if

m bus useDYN DYN DYN 

// update the valid time for message m in DYN segment

if maxmCycleID vCycleCounter

// maxvCycleCounter is the value get after ST segment scheduling

if DYN mvSlotCounter FrameID

if m
m

DYN
pLatestTx

gdMinislot

 
 

 

_m tCycleID = the value of cycle counter in the timer at this

instant

//read the new value from the timer

_m tMacrotick = the value of Macrotick in the timer at this

instant

//read the new value from the timer

Rm=  _ _ []m t m gCycleID CycleID gdCycle s 

 _ _ []m t m gMacrotick Macrotick gdMacrotick s  

if m mR D

APPENDIX E. PSEUDOCODE FOR DYN SCHEDULERS WITH ECUS’ OUTPUT 149

_m t
m

Macrotick
MinislotID

gdMinislot


store  ,m mMinislotID CycleID in the matrix

DYNSimpleScheduler

use use mDYN DYN MessageLength 

take m out of DYNL , update DYNL

if DYNL is empty

output matrix DYNSimpleScheduler , exit //system

schedulable

end if

continue with next message 1 DYNm L 

1DYN DYNvSlotCounter vSlotCounter 

else

continue with next gdMinislot value

end if

else

use useDYN DYN gdMinislot 

1DYN DYNvSlotCounter vSlotCounter 

continue with next message 1 DYNm L 

end if

else

1DYN DYNvSlotCounter vSlotCounter 

end if

1m mCycleID CycleID 

else

continue with next gdMinislot value

150 APPENDIX E. PSEUDOCODE FOR DYN
SCHEDULERS WITH ECUS’ OUTPUT

Algorithm F Pseudocode for Switched DYN scheduler with ECUs’ output

end if

end for

end for

end for

output non-schedulable, exit //system non-schedulable

