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1 
1 Introduction 

The modern car is a combination platform of the safety, easy-to-drive and the 
entertainment. Consumers demand more and more automotive automation, driver assistance 
and safety from the vehicle. Car manufacturers developed many complex systems and 
technologies to satisfy these demands. Over the past forty years, electronic systems in 
vehicles have an exponential increase in number and complexity. The analysis indicates that 
more than 80 percent of the automotive innovation now stems from electronics [1]. The 
development trend of in-vehicle control systems changes from mechanical gradually to 
electronic. The manufacturers have concentrated on developing electronic systems that safely 
and efficiently replace in-vehicle mechanical and hydraulic applications. Figure 1-1 shows an 
example of the electronic systems and applications in a modern vehicle. 

 

Figure 1-1 Example of Automotive Electronic Systems [2] 
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The main purposes of the in-vehicle electronic systems are to assist the driver to control 
the vehicle, to avoid some potentially dangerous operations as well as to increase the system 
efficiency and stability. There are lots of existing driver assistance systems such as Electric 
Power Steering (EPS), Active Suspensions (AS), Electronic Stability Control (ESC), and 
Adaptive Cruise Control (ACC). These systems offer the driver easy and accurate experience 
of control. There are also systems that give the greatest degree of safety protection to people 
such as Antilock Braking System (ABS), Airbag Deployment (AD), and Tire Pressure 
Monitoring (TPM). Moreover, there are systems that control core functional devices such as 
Engine Control System (ECS), Transmission Control system (TCS), and Chassis Control 
System (CCS). These systems have been widely implemented already. Other systems like 
Entertainment Systems: multimedia and internet access, Communication and Navigation 
Systems, Seat Position Control, and Cabin Environment Controls offer comfort and 
convenience to people. These systems are implemented in some models either. 

The rest of the chapter is organized as follows: Section 1.1 provides a brief description of 
the problem being addressed in this thesis. Section 1.2 presents the motivation behind the 
thesis. The goals of this thesis are provided in Section 1.3. The last Section 1.4, states the 
overview of the thesis. 

1.1 Problem Statement 

The in-vehicle electronic systems depend on the successful exchange of a massive 
amount of signals and interconnected wires between electronic control units (ECU). Those 
ECUs are core equipment in the electronic control system. The exchange of information 
motivates the use of in-vehicle control networks. 

Control networks in the vehicle facilitate the information and resources sharing among 
the distributed ECUs. Connections between vehicles’ electronic elements in the control 
networks usually are wiring in the past. In today’s luxury cars, up to 2500 signals are 
exchanged for up to 70 ECUs [3]. The wiring needs to be increased to support the exchange 
of this enormous amount of signal. However, added wiring increases vehicle weight which 
increases fuel consumption and complex wiring harnesses take up large amounts of vehicle 
space which limit the expanding of functionality. Beginning in the early 1980s, centralized 
and then distributed networks have replaced point-to-point wiring [4]. Today’s control and 
communications networks base on serial protocols. So it reduces the total wire length used to 
interconnect ECUs. Moreover it counters the problem of large amounts of discrete wiring. 
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Figure 1-2 One subset of a modern vehicle’s networks [1] 

One of the main objectives of the design step of an in-vehicle embedded system is to 
ensure a proper execution of the vehicle functions, with a predefined level of safety, in the 
normal functioning mode but also when some components fail [5] (e.g., reboot of an ECU) or 
when the environment of the vehicle creates perturbations. Networks play a central role in 
maintaining the electronic control systems working properly, because most of the core 
elements are distributed and need to communicate with each other.  

As a result, there is a need for designing different automotive networks capable of 
meeting different applications’ requirements. Such as Local Interconnected Network (LIN) [6] 
designs for transmitting simple control data with data rates lower than 10kb/s. The Low-speed 
Controller Area Network (CAN) [7] designs for data sharing and exchanges between sensors 
and ECUs. The High-speed CAN [8] designs for high speed real-time communications. The 
Media Oriented System Transport (MOST) network [9] designs for the multimedia data 
which has high data rates.  

New applications like x-by-wire need new features from the control networks such as 
predictability, fault tolerance and flexibility. These motivate the development of new 
automotive control networks, for example, Time Triggered Protocol (TTP) [10] and FlexRay 
[11] . Furthermore, in order to adapt different in-vehicle applications, the control networks 
should be able to support both time-triggered (TT) and event-triggered (ET) transmission. 
This type of networks, for example, are TTCAN [12] and FlexRay. 

1.2 Motivation 

The vast increase in automotive electronic systems has created new engineering 
opportunities and challenges. The resulting demands on design have led to innovations in 
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electronic networks for automobiles. To be capable of meeting current and next generation 
automotive systems requirements, one of the promising technologies envisioned in this 
project is the FlexRay. FlexRay is a time-triggered communication technology that provides 
high speed fault tolerant communications by combining time-triggered TDMA and the event-
triggered FTDMA. Traffic passing through the FlexRay network is scheduled either statically 
with bounded communication latency (e.g. TDMA) or dynamically (e.g., FTDMA) [5]. It is 
the next generation in-vehicle network which is also the future replacement for CAN in 
many vehicle network architectures. FlexRay has already been implemented in some vehicle 
models such as the BMW X5, BMW 7-Series and AUDI A8, etc.[13].  

However, even the FlexRay network is one of the most flexible and optimal automotive 
networks up to now, it still cannot guarantee to meet in-vehicle real-time constraints under 
system high loads, such as required response times. As a result, a new concept called FlexRay 
switch emerges to address these problems. 

1.3 Project Goal 

The goal of this thesis is to design two schedulers for the FlexRay network, one for 
simple FlexRay network and another for switch FlexRay network. For a given automotive 
network, including the ECUs, the communication patterns and the real-time communication 
constraints, design the schedulers to ensure a predictable and safe performance of the 
automotive network. The schedulers consist of scheduling both the TDMA communication 
(ST segment) and the FTDMA communication (DYN segment). 

1.4 Thesis Overview 

All the contents presented in this thesis will go into details in the following chapters: 

Chapter 2 presents the necessary background information of this thesis, the FlexRay 
network components, network topology and the FlexRay protocol. Especially emphasizes on 
the FlexRay protocol’s critical timing unit – the Communication Cycle. In this chapter, we 
can get a general idea about what the FlexRay is. Chapter 3 discusses the real-time system 
and different scheduling algorithms. Chapter 4 investigates the timeline of the FlexRay 
transmission and presents the method to evaluate schedulability of ST segment and DYN 
segment in simple FlexRay networks. It divides one knotty problem into many small 
problems to get a solution. Chapter 5 introduces the bus optimization and configuration for 
the ST segment and the DYN segment respectively. Moreover, this chapter gives the 
scheduling algorithms for each segment. Chapter 6 introduces the concept of the switch 
FlexRay network. This chapter presents the origination of the switch idea followed by the 
switching principle in the ST segment and DYN segment respectively. Chapter 7 provides the 
scheduling algorithms for the ST and DYN segment in switched networks and the 
schedulability analysis for the DYN segment. Chapter 8 concludes this thesis and 
recommends the future developments of this topic. 
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2 
2 Background  

The FlexRay Protocol is a new communication protocol for automotive networks. 
FlexRay protocol is originated from the successful experience of BMW ByteFlight protocol. 
It is developed by the FlexRay consortium which consists of car manufacturers like BMW, 
DaimlerChrysler, General Motors, Ford and Volkswagen. The FlexRay consortium also 
cooperates with semiconductor companies like Bosch, Freescale, and Philips. The aim of the 
FlexRay protocol is to create a faster and more reliable automotive network system that would 
suit current and future needs.  

In this chapter, the key components and their functions in the FlexRay node are 
introduced and different possible topologies for the FlexRay network are explained. The final 
part presents the FlexRay protocol based on different segments in the Communication Cycle 
(CC). 

2.1 FlexRay Network 

 

Figure 2-1 FlexRay node cluster connected by FlexRay bus 
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Figure 2-2 ECUs nodes cluster connected by FlexRay active star [14] 

Figure 2-1 and Figure 2-2 illustrates two most common FlexRay networks that consist of 
ECUs clusters. The cluster is a distributed system where nodes are connected via at least one 
communication channel directly [15], like a bus or an active star. 

Figure 2-1 shows a bus network and Figure 2-2 shows an active star network. These two 
figures show that FlexRay nodes and physical connections compose the FlexRay network. 
Section 2.1.1 will introduce the FlexRay node structure and working mechanism. Section 
2.1.2 will comprehensively introduce the probable FlexRay topologies according to FlexRay 
2005 specifications. 

As previously introduced, the FlexRay protocol are designed especially for the 
communication of automotive networks applications. Figure 2-2 shows a typical FlexRay 
network with the redundant capacity. A central control component - active star [11] connects 
ECUs. In this figure, it can be seen that the FlexRay protocol controls the data transmission 
between different Electronic Control Unit (ECU). The dual-channel feature of the FlexRay 
protocol can be used as a redundancy channel in case of system failure. We can see these 
ECUs as different nodes in FlexRay network. The definition of the ECU and the concept of 
the node explain in Section 2.1.1. Section 2.1.2.2 provides the definition of the active star. 
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2.1.1 FlexRay Node 

 

Figure 2-3 Structure of a FlexRay network node 

As introduced in Section 2.1, the ECUs are the essential components in a FlexRay 
network. So what is ECU? ECU is a generic term for any embedded system that controls one 
or more of the electrical systems or subsystems [16] in an automotive vehicle. Different ECUs 
have different functions. The main ECUs in a vehicle include Engine Control Module (ECM), 
Anti-Lock Braking (ABS), Differential Electronic Module (DEM), On-Board Diagnostics 
(OBD), Airbag Control Unit (ACU), Body Control Module (BDM), etc. These different 
ECUs consist of the core control center of a vehicle. According to the FlexRay specifications, 
the node shall provide at least one absolute timer that may be set to an absolute time, in terms 
of cycle count and Macrotick. The following paragraphs will explain what components inside 
an ECU are essential for the transmission. 

Figure 2-3 shows a generic structure of a FlexRay node. We can see from Figure 2-3, the 
node generally has two parts, the controller part and the driver part. The controller consists of 
a Communication Controller (CC) and a Host CPU. The driver part consists of a Bus Driver 
(BD), optional to have a Bus Guardian (BG). 

Host CPU 

The Host CPU is a part of an ECU where the application software is executed. The Host 
CPU provides the control and configuration information to the CC, also provides payload data 
transmitted during the CC.  

Communication Controller (CC) 

The Communication controller is an electronic component in a node that is responsible 
for implementing the protocol aspects of the FlexRay communications system. It provides 
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status information to the host and delivers payload data received from communication frames 
[11]. 

Bus Driver (BD) 

Bus driver is an electronic component consisting of a transmitter and a receiver that 
connects a communication controller to one communication channel [11]. It can be used in 
electrical encoding/decoding, remote wake-up and error detection on OSI layer 0 (voltage, 
temperature). 

Bus Guardian (optional) 

Bus Guardian protects a channel from interference caused by communication that is not 
temporally be scheduled within limited of the times in a schedule [11]. Namely, it restricts 
transmissions of CC to defined slots, fault containment for fail-safe node communication, 
supports error detection and fault tolerance. 

The main processes of a node accesses to the bus are as following: BD first connects the 
CC and the bus. The BG monitors the connection which accesses to the bus. The Host CPU 
informs the BG which time slots are allocated by the CC. The BG only allows CC to transfer 
data at these time slots. It also activates the BD. If the BG detects an idle interval in time, then 
it disconnects the node with the communication channel. 

2.1.2 Network Topology 

The FlexRay protocol supports a variety of topologies while providing a flexible 
configuration. This section presents some commonly used topologies in simple FlexRay 
network and explains the differences between these topologies. 

2.1.2.1 Linear Passive bus 

 

Figure 2-4 Passive bus topology 

Like the network shows in Figure 2-4, nodes in FlexRay can be connected to either both 
channels or only one of them. The figure shows a possible configuration of the network as a 
dual bus system. Nodes that connected by the same bus can only transmit data once at a time. 
Similarly, the FlexRay network could be a single-bus system. In this case, all the nodes 
should connect to the bus. 
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2.1.2.2 Star topology 

According to the FlexRay specifications, the star is a device that allows information to be 
transferred from one physical communication link to one or more other physical 
communication links. It duplicates information present on one of its links to the other links 
connected to the star. [11] There are passive and active star in FlexRay protocol.  

Passive Star 

 

Figure 2-5 Passive star topology 

If there are more than two ECUs need connect with each other, it is good to use a passive 
star structure like Figure 2-5 demonstrated. The passive-star structure is a special case of the 
linear passive bus. In a passive star structure, all ECUs are connected to a single splice [17]. 

Active Star 

 

Figure 2-6 Simple active star topology 

As Figure 2-6 shows, this network uses point-to-point connections between the active 
star and ECUs. The active star has the function to transfer data from one branch to all other 
branches, like a Hub in the Ethernet network. Since it has the transmitter and receiver circuit 
for each branch, the branches are electrically decoupled from each other [17]. The minimum 
number of branches at an active star is 2, no maximum according to the specifications.  



10  CHAPTER 2. BACKGROUND 

 

 

Cascaded Active Star 

 

Figure 2-7 Cascaded active star topology 

There are a few possible ways to configure the active-star topology because the FlexRay 
network can have multiple stars. Figure 2-7 provides one sample of the topology 
configuration. This topology is called cascaded active star. There are some constraints for this 
topology. Firstly, it cannot have a closed ring. Secondly, it cannot have more than 2 stars in 
one channel. The cascaded active star topology supports redundant channel either. The star 
actively sends the incoming signal to all nodes.  

2.1.2.3 The hybrid topology 

Besides the two topologies mentioned above, the FlexRay network also has the third 
topology, which is the combination of those two. The hybrid topology needs to follow the 
constraints of every elementary topology. There are many different ways to combine them. 
Figure 2-8 and Figure 2-9 provide the most representative two examples.  

 

Figure 2-8 Single channel hybrid topology 

In Figure 2-8, ECU1, 2, 3 and 4, use point-to-point connections connect to the active 
stars. The other ECUs connect with each other use a bus. The bus connects to the active star 1, 
in order to enable the communication between ECU5, 6 and 7. 
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Figure 2-9 Dual-channel hybrid example 

Figure 2-9 shows another sample of the hybrid topology. In this topology, each ECU is 
connecting to two channels A and B but use different ways. Channel A is a passive bus 
topology while channel B is an active star topology. 

2.2 FlexRay Protocol 

The FlexRay protocol is an in-vehicle communication protocol especially for the fast 
speed and high reliability data transmission. Compared to other in-vehicle communication 
protocols, such as CAN and TTP, the FlexRay protocol has significant improvements in a 
variety of aspects. Table 2-1 shows the general overview of the FlexRay protocol. 

Transmission channels 1 or 2 

Gross data rate 10Mbit/s 

Effective data rate/channel 5Mbit/s 

Max payload per frame 254 bytes 

Max data rate effectively ca.5000 Kbit/s 

Transmission duration/frame ca. 60 µs  (40 bytes @ 10Mbit/s) 

Buffer memory Typ. 8kBytes 

Transmission cable Twisted pair cable 

Length of the cable Max. 24m 

Table 2-1 FlexRay protocol overview 
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The FlexRay protocol offers the possibility to serve up to two channels. The two-channel 
capacities increase the system bandwidth as well as introduce a redundant channel to increase 
the fault tolerance level. The maximum data rate of the channel is 10Mbps. The total data rate 
in FlexRay network maximum can be 20Mbits/s. In the psychical layer, the FlexRay protocol 
uses twisted pair for sending and receiving. The maximum length of the cable is 24m. 

The introduction of the Communication Cycle (CC) is to adapt different communication, 
such as time-triggered communication and event-triggered communication. The transmission 
in FlexRay network consists of many CCs. Each CC is divided mainly into a ST segment and 
a DYN segment. The ST communication provides bounded delay, while the DYN 
communication provides flexible transmission. The ST segment uses the static time-trigger 
scheme, namely Time Division Multiple Access (TDMA), to transmit data, while the DYN 
segment uses the flexible time-triggered scheme, namely the DYN Minislot based scheme to 
transmit data. The detail about the CC and Minislots will be introduced in Section 2.2.3. 

2.2.1 Physical Frame Format 

The data needed to be packed into frames before sending to the physical channel. This 
section introduces the FlexRay frame and the functions of different parts in a frame. 

 

Figure 2-10 FlexRay Frame Format [11]  

Figure 2-10 shows the FlexRay frame format. It is the only frame in FlexRay protocol. 
As we can see in Figure 2-10, the FlexRay frame consists of three parts, the header segment, 
the payload segment and the trailer segment. In the following paragraphs, we will introduce 
these three parts respectively. 

2.2.1.1 FlexRay header segment 

The FlexRay header segment is 5 bytes long. It consists of 9 parts. Each part has the 
different function.  
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Reserved bit (1 bit)  

This 1 bit is reserved for future protocol use. 

Payload preamble indicator (1 bit) 

This 1 bit indicates whether or not an optional vector is contained within the payload 
[11]; “1” means contained, “0” means not. 

If the frame is transmitted in the ST segment, this position indicates the presence of a 
network management vector at the beginning of the payload [11]. If the frame is transmitted 
in the DYN segment, this position indicates the presence of a frame ID at the beginning of the 
payload. 

Null frame indicator (1 bit) 

This 1 bit indicates whether or not the frame is an empty frame. ”0” means the payload 
segment contains no valid data; “1” means the payload segment contains valid data. 

Sync frame indicator (1 bit) 

This 1 bit indicates whether or not the frame is a sync frame. “0” means no 
synchronization for node; “1” means all receiving nodes shall use the frame for 
synchronization if it meets synchronization conditions. This will discuss in detail later. 

Startup frame indicator (1 bit) 

This 1 bit indicates whether or not a frame is a startup frame. Only cold start nodes1 are 
allow to transmit startup frame. “0” means this frame is not a startup frame; “1” means this 
frame is a startup frame. This part shall set to “1” in the sync frames of cold start nodes. A 
cold-start node can only transmit one frame per CC with startup frame indicator set to “1”. 

Frame ID (11 bits) 

This position defines the slot in which the frame should be transmitted. Each slot has a 
slot number. If the slot number equals to frame ID, this slot can use for transmission of this 
frame. A frame ID is unique on each channel in one CC. The frame ID ranges from 1 to 2047. 
0 is invalid.  

  

                                                      

1   Cold-start node: a node capable of initiating the communication startup procedure on the cluster by 
sending startup frames. 



14  CHAPTER 2. BACKGROUND 

 

 

Payload length (7 bits) 

This part is used to indicate the size of the payload segment. The value of the payload 
length position is set to the number of payload bytes divided by 2. Its range is from 0 to 254 
bytes. 

Header CRC (11 bits) 

This part contains a cyclic redundancy check code (CRC) that is computed over the sync 
frame indicator, the startup frame indicator, the frame ID, and the payload length [11]. The 
header CRC of transmitted frames is computed offline and provided to the Communication 
Controller (CC) by means of configuration. It is not computed by transmitting CC. The CC 
shall calculate the received frame’s header CRC in order to check that the CRC is correct [11]. 

Cycle count (6 bits) 

This part indicates the value of cycle counter, from the transmitting node's view, at the 
time of frame transmission happened.  

2.2.1.2 FlexRay payload segment 

The FlexRay payload segment contains 0 to 254 bytes data (0 to 127 two-byte words). It 
is import to notice that the payload segment contains only even number of bytes because the 
unit used in this segment is two-byte. 

Network Management Vector 

A number of data in the payload segment that transmits in the ST slot can be used as 
network management vector (NMVector). This vector is optional. 

 

Figure 2-11 NM vector in payload segment [11]  

If the payload segment uses as NMVector, the format of payload segment is like Figure 
2-12shows. NMVector is written by the Host CPU in the transmission node as application 
data. The length of the NMVector is configurable. All nodes in a cluster must be configured 
with the same value for this parameter.  

Frame ID 

The first two bytes of the payload segment of the FlexRay frame transmitted in the 
dynamic segment can be used as frame ID. It is also optional.  
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Figure 2-12 Frame ID in payload segment [11]  

If the payload segment uses as frame ID, the format of payload segment is like Figure 
2-12 shows. The frame ID is an application determined number that identifies the contents of 
the data segment. It is 16 bits long. Frame ID is written by the transmission node’s Host CPU 
as application data. The CC has no knowledge about the frame ID.  

2.2.1.3 FlexRay trailer segment 

The FlexRay trailer segment is a 24-bit cyclic redundancy check code (CRC) for the 
frame. It is computed with the data in the header segment and the payload segment of the 
frame. 

2.2.2 Media Access 

There are two different ways that use in different segments in CC to trigger the data 
transmission. In the ST segment, the FlexRay protocol uses Time Division Multiple Access 
(TDMA) as the media access mechanism. In the DYN segment, the FlexRay protocol uses 
Flexible Time Division Multiple Access (FTDMA) as the media access mechanism. These 
two different ways are the fundamental principles in media access control. Before we 
introduce those two media-access mechanisms, we will present two basic trigger modes of the 
transmission, the time-trigger and event-trigger.  

2.2.2.1 Time-trigger System and Event-trigger System 

Time-trigger system 

A real-time system is time-triggered if a schedule and a clock determine the 
transmissions performed by this system. External events, like interrupts, do not significantly 
influence the system operation.  

The time-triggered communication is a synchronous transmission that controlled by 
distributed fault tolerant clocks. The transmissions are performed according to a predefined 
schedule executed on a global time-base. The global time-base can be established on-line by 
using the global clock synchronization. The scheduler is an off-line scheduler that is not run 
time determined by application behavior.  

The time-triggered system can ensure the data transmission to follow the predetermined 
time. The transmissions are determined in advance. They are not flexible but very predictable. 
This system is suitable for the data that have high-reliability requirements. The time-triggered 
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transmission needs to determine a reasonably coordinated schedule before the transmission 
start.  

Event-trigger system 

In the event-triggered system, transmissions happen when a significant change of state 
occurs. In FlexRay, the Minislot based arbitration controls the event-triggered transmissions. 
The transmission time depends on network load in the DYN segment. The event-triggered 
transmission is very flexible, but not very predictable in case of system under peak load. The 
FlexRay protocol uses both the time-trigger method and the event-trigger method. 

2.2.2.2 TDMA in ST segment 

The ST segment uses static time-trigger, namely Time Division Multiple Access 
(TDMA), as the media access control. The fundamental principle is the time-trigger method 
presented in Section 2.2.2.1. TDMA is a channel access method for shared medium networks. 
It allows several users to share the same frequency channel by dividing the signal into 
different time slots [18]. It assigns the network capacity to the nodes in a static and permanent 
way. Frames are sent at predetermined instances called slots. A schedule of slots is created 
offline. The schedules can also be created online. Once the schedule has been determined, it is 
then followed and repeated online. 

Because TDMA is very deterministic and predictable, it is suitable for safety-critical 
tasks with hard real-time requirements. However, the inflexibility is one of the drawbacks of 
TDMA. TDMA frames cannot be sent at the arbitrary time. Furthermore, TDMA wastes the 
bandwidth. If the transmission of a frame only needs half of the predefined slot, other frames 
cannot use the other half of the slot. 

2.2.2.3 FTDMA in DYN segment 

The DYN segment uses flexible time-trigger, namely Flexible Time Division Multiple 
Access (FTDMA), as the media access control. The fundamental principle is the event-trigger 
task transmission with dynamic Minislot based arbitration presented in Section 2.2.2.1. Once 
a task is triggered by a significant change of state, it needs to use FTDMA to arbitrate the 
media and be transmitted. 

FTDMA enables frames have chances to be sent whenever they require. There are no 
static slot allocations in advance. The media access is priority based. FTDMA is similar to 
TDMA except the slot size. The slot size in FTDMA is not fixed. It will vary depending on 
whether the slot is used or not. If a slot is not used within a small time offset, which is a 
Minislot in FlexRay protocol, the scheduler will progress to the next slot. This is called 
Minislot based arbitration. The slot size depends on the frame length transmitted in that slot. 
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2.2.3 Timing Hierarchies of CC 

 

Figure 2-13 Timing Hierarchies of CC [11] 

The definition of CC in FlexRay protocol is that one complete instance of the 
communication structure that is periodically repeated to comprise the media access method of 
the FlexRay system [11]. As we can see from Figure 2-13, CC can be further divided into 4 
levels, CC level, arbitration grid level, Macrotick level and Microtick level. The lengths of the 
basic units in different levels are configurable. According to FlexRay specifications, the 
header segment of the frame has 6 bits that indicate the value of cycle counter with the 

notation vCycleCounter . The maximum value of the cycle counter is 62 =64. We define the 

period of 64 cycles as the global static-schedule ( ssT ).  

Communication cycle level 

Communication cycle level defines the basic time unit in the FlexRay protocol, CC. It is 
the highest level in the timing hierarchy. As we can see from Figure 2-13, CC consists of ST 
segment, DYN segment (optional), symbol window (optional) and network idle time (NIT). 
The length of the CC, expressed in µs, is from 10 µs to 16000 µs. The typical length is 5ms. 
Each CC has the same length and layout. More discussions about the ST segment and DYN 
segment, which are the most import parts in CC, will present in Section 2.2.3.1 and Section 
2.2.3.2. 

Arbitration grid level 

Arbitration grid level defines the grid of the media access control in FlexRay. There is an 
important concept, slot, needed to mention first. Slot is an interval of time that accessing to a 
communication channel is granted exclusively to a frame. The FlexRay protocol has two 
types of slots, ST slots and DYN slots. The arbitration grid in ST segment is the consecutive 
time intervals called ST slots. The arbitration grid in DYN segment is the consecutive time 
intervals called Minislots.  
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Macrotick level 

Macrotick level consists of Macroticks. A Macrotick (MT) is an interval of time derived 
from the cluster-wide clock synchronization algorithm. Macrotick is also known as the global 
time 2  in the cluster. Different ECUs use Macrotick to synchronize in their clusters. A 
Macrotick consists of an integral number of Microticks. The clock synchronization algorithm 
can adjust the actual number of Microticks in a given Macrotick. The Macrotick represents 
the smallest granularity unit of the global time [11]. 

Number of Microticks in a Macrotick

Microtick length [µs] 

0.0125 0.0250 0.050 0.100 

40 - 1µs 2µs 4µs 

60 - 1.5µs 3µs  

80 1µs 2µs 4µs - 

120 1.5µs 3µs 6µs - 

240 3µs 6µs - - 

Table 2-2 Possible nominal Macrotick length 

The numbers of Macrotick in the CC are 10 to 16000. Table 2-2 shows the possible 
duration of the cluster wide nominal Macrotick is 1 to 6 µs. The typical length of a Macrotick 
is 1µs. Action point is the designated Macrotick boundaries. In other words, it is the instants 
that the transmission should start and end. FlexRay determines the global clock by averaging 
the times in synchronization nodes – the SYNC frame senders. The header segment of SYNC 
frame contains an indicator. The indicator is the deviation that measured between the frame's 
arrival time and its expected arrival time. It is used by the clock synchronization algorithm, 
[11]. 

Microtick level 

Microtick is the time units derived directly from CC’s external oscillator. They are not 
affected by the clock synchronization. It is a node-local concept. Microtick is controller-

                                                      

2    Global time: the cycle time. Cycle time is the time within the current CC, expressed in units of 
Macroticks. Cycle time is reset to zero at the beginning of each CC. 
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specific units. Different nodes can have different duration of Microticks. Microtick is known 
as local clock, only visible on the local CC. The granularity of a node's local time is a 
Microtick [11]. 

Possible sample clock period [µs]

Number of samples per Microtick 

1 2 4 

0.0125 0.0125µs 0.0250µs 0.0500µs 

0.0250 0.0250µs 0.0500µs 0.100µs 

0.0500 0.0500µs 0.100µs - 

Table 2-3 Possible Microtick length 

The Microtick length usually is not a configuration parameter. It is an implementation-
dependent parameter that may be different for each node. Table 2-3 shows the possible 
Microtick length in FlexRay protocol. The duration of a Microtick length is from 0.0125µs to 
0.05 µs according to the specification. The typical length is 0.025 µs.  

2.2.3.1 ST segment 

 

 Figure 2-14 Structure of ST segment [11] 

ST segment is a compulsory part in CC. It uses TDMA as the media access scheme. The 
length of ST segment is configurable but unchanged over the cycles. As it shown in Figure 
2-14, ST segment consists of ST slots. In ST segment, the number of ST slots is fixed. The 
length of each ST slots is equal, despite the presence of ST frame in the slot or not. The 
transmission of the ST frames on the channel follows the predefined scheduling table. A ST 
slot only transmits one ST frame. Each frame has a unique frame ID associated with the slot. 
According to the FlexRay specifications, the maximum ST frame ID is 1023.  
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 Each FlexRay node maintains two slot counters for two channels respectively. Both slot 
counters are initialized with 1 at the start of each CC and increased at the end of each slot. 
The clocks of the two channels are synchronized. Different nodes use the global 
synchronization time to decide when to start to send or to receive the frame.  

Figure 2-14 illustrates a sample of the transmission patterns that are possible for the 
FlexRay node. In ST slot 1, the node transmits a frame on channel A and channel B. In ST 
slot 2, the node only transmits a frame on channel A. In ST slot 3, there is no frame transmit 
on either of the channels. If a slot has no frame to send, the slot stays empty, like the slot 3 in 
Figure 2-14. 

The communication in ST segment should follow the following constraints [11]: 

 Sync frames shall be transmitted on all connected channels. 

 Non-sync frames may be transmitted on either channel, or both. 

 Only one node shall transmit a given frame ID on a given channel. It is not 
acceptable to configure a cluster such that different nodes transmit in the same 
slot/channel combination in different cycles. 

Length of ST frame 

The data needed to transmit in the ST segment is packed into ST frame. All ST frames in 
a cluster have the same payload length. The size of ST frames is fixed in advance by the 
designers. 

Bit Rate [MBit/s] 2.5 MBit/s 5 MBit/s 10 MBit/s 

Minimum ST frame length [gdBit] 86 87 89 

Maximum ST frame length [gdBit] 2628 2631 2638 

Table 2-4 ST frame length [11] 

Table 2-4 gives the typical values of ST frame length under three different bit rates, in 
terms of ݐ݅ܤ݀݃	 ݐ݅ܤ݀݃ .  is the nominal bit time. According to FlexRay specifications, the 
length of the payload in ST frame is 0 to 254 bytes. 

Number of ST slots 

The number of ST slots in ST segment is a configurable parameter with the notation 
of	݃ܰݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ. It is a global constant for a given cluster. According to FlexRay 
specifications, the number of ST slots is from 2 to 1023 and at least is 2. 
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ST slot length 

Bit Rate [MBit/s] 2.5 MBit/s 5 MBit/s 10 MBit/s 

Minimum ST slot length [MT] 9 6 4 

Maximum ST slot length [MT] 658 661 397 

Table 2-5 Typical length of ST slot [11] 

Table 2-5 gives the typical length of ST slot under three different bit rates in terms of 
Macrotick (MT). ST slots in a cluster have the same number of Macroticks. The length of ST 
slot is 4 to 661 MT.  

2.2.3.2 DYN segment4 

 

 Figure 2-15 Structure of DYN segment [11] 

DYN segment is optional in CC. The arbitration grid in DYN segment is Minislot. The 
Minislots length is fixed. Each Minislot contains an identical number of Macroticks.  

 Figure 2-15 shows a transmission sample in DYN segment. As we can see in Figure 
2-15, the DYN frames and slots have different length. DYN frames have variable length. It 
depends on the data needed to transmit in that frame, namely the frame’s payload length. A 
DYN slot could consist of one Minislot or multiple Minislots. The length of DYN slot varies 
to accommodate different DYN frames’ size. If there is no transmission happened in a slot, 
the duration of the slot equals to the duration of a Minislot. Otherwise, the duration of the slot 
equals to the length of the DYN frame transmitted in that slot. Because the number of 
Minislots in the DYN segment is fixed and the slot size is changeable, the number of DYN 
slot is changeable.  

FlexRay nodes maintain a slot counters for each channel. The counter adds 1 either after 
the end of a frame, in case of the presence of the data, or after one Minislot passed, in case of 
no data. The DYN slot counters are independent with each other. As we can see in Figure 
2-15, the Minislots in two channels are synchronous, but the DYN slots in two channels are 
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not. In dual-channel system, the frame ID allocation can be different in 2 channels. The 
highest slot ID number is 2047.  

It is import to notice that the actual start and end of transmission is not the nominal start 
and end of the slot. There is an action-point-offset we need to take into account. According to 
FlexRay specification, the delay in transmission must be greater than clock precision that is 
the limitation of fault tolerance in clock synchronization.  

Length of DYN frame 

The data transmitted in DYN segment is packed into DYN frames. Differing from fixed-
payload ST frames, the DYN frames could have different payload lengths in a cluster. Even 
the same-frame-ID frames could have different frame sizes. The size of the frame depends on 
the payload length in the frame. According to FlexRay specifications, the payload length of 
DYN frame is 0 to 254 bytes. 

Minislot number and length 

Bit Rate [MBit/s] 2.5 5 10 

Minimum number of Minislot [Minislot] 0 

Maximum number of Minislot [Minislot] 3977 7977 7986 

Minimum length of a Minislot [MT] 2 

Maximum length of a Minislot [MT] 63 

Table 2-6 Maximum values of Minislot number 

Table 2-6 shows the maximum and minimum number of Minislots in DYN segment 
under three different bit rates. It also shows the minimum and maximum length of a Minislot 
in terms of Macrotick. According to FlexRay specifications, the number of Minislots in the 
DYN segment is 0 to 7986. The length of a Minislot is 2 to 63 MT.  

Parameter 	࢞ࢀ࢚࢙ࢋ࢚ࢇࡸ࢖ 

In DYN segment, there is an important concept ݔܶݐݏ݁ݐܽܮ݌		  need to be mentioned. 
During the DYN segment, only if there is enough time until the end of DYN segment, a DYN 
frame could be transmitted. FlexRay protocol uses a parameter		ݔܶݐݏ݁ݐܽܮ݌ to indicate the last 
instant the frame could be transmitted.		ݔܶݐݏ݁ݐܽܮ݌ is the ID of the last Minislot that a frame 
could start to transmit. If the remaining time in DYN segment, at this instant, is shorter 
than	ݔܶݐݏ݁ݐܽܮ݌ ൈ  then this frame cannot be transmitted. Different frames have ,ݐ݋݈ݏ݅݊݅ܯ݀݃
different	ݔܶݐݏ݁ݐܽܮ݌. The range of ݔܶݐݏ݁ݐܽܮ݌ is 0 to 7980 Minislot according to FlexRay 
specifications. Table 2-7 presents the maximum value of ݔܶݐݏ݁ݐܽܮ݌ under different bit rates. 
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Bit Rate [MBit/s] 2.5 5 10 

Maximum	ݔܶݐݏ݁ݐܽܮ݌ [Minislot] 3967 7967 7980

Table 2-7 Maximum values of  ࢞ࢀ࢚࢙ࢋ࢚ࢇࡸ࢖ 

2.2.3.3 Symbol window (SYM) and Network Idle Time (NIT) 

Symbol window (SYM) is an optional part in CC. It is a communication period in which 
a symbol can be transmitted on the network. The node shall transmit a symbol on a channel if 
the media access is in the ALL mode3 and if a symbol is released for transmission. This 
period can be used for tests. The duration of the symbol window is 0 to 142 MT. 

Network idle time (NIT) is a compulsory part in CC. It contains the remaining number of 
Macroticks within the CC which are not allocated to the ST segment, DYN segment, and 
symbol window. The network idle time is a communication-free period that concludes each 
CC. This period is required for clock synchronization, depends on system requirements. The 
duration of the network idle time use to define is 2 to 805 MT. 

2.3 Conclusion 

In this chapter, we gave an overview of FlexRay network, including the basic facts about 
the FlexRay network and the FlexRay protocol.  

The first part overviews the core components in a FlexRay node: Host CPU, CC, BD, 
and BG. Next, we introduced the main FlexRay topology types such as bus topology, passive 
and active star topology, and hybrid topology. The FlexRay frame format is also provided in 
this chapter, which may give us the understanding about the physical layer in FlexRay 
protocol. Two typical tasks’ trigger-modes: time-trigger and event-trigger, and two typical 
media access schemes: TDMA and FTDMA were introduced. The introductions give us a 
good understanding about the media access layer in FlexRay protocol.  The timing hierarchies 
of CC, the basic timing unit in FlexRay protocol, were presented also. This part is the key 
background of this thesis, which could help to understand the schedulers presented later. After 
this chapter, the FlexRay knowledge related with scheduler design is clear. 

                                                      

3    The ALL mode is one of the six operating modes of media access control. In the ALL mode frames and 
symbols are sent in accordance with the node's transmission slot allocation. 
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3 
3 Real-time Scheduling 

The concept ‘real-time’ in computing refers to a time frame that is very brief, appearing 
to be immediate. A real-time system is a system that has to respond to externally generated 
input stimuli within a finite and specified period [19]. In other words, a real-time system is 
one that must process input information and produce a response or output result within a 
specified and reasonable time. Otherwise, might risk severe consequences including system 
failure. In a system with a real-time constraint, if the correct response or results are produced 
after a certain deadline, they expired and become useless. For example, in some widely 
implemented real time systems such as ABS, aircraft control, and over-temperature monitor in 
nuclear power station, any outdated response or results of these systems are useless even they 
are correct. 

This chapter introduces the key concepts in the real-time system and real-time scheduling.  
At the end of this chapter, we present three commonly used scheduling algorithms and 
analyze their advantages and disadvantages respectively. 

3.1 Real-time Tasks 

Real-time tasks have three classifications: periodic task, sporadic task, and aperiodic task. 
Periodic tasks have a period, which means have a certain inter-arrival time. Sporadic tasks 
only have a minimum inter-arrival time. Aperiodic tasks have no known inter-arrival time 
requirement.  

Based on the tolerance of violation of real-time requirements, tasks can also be divided 
into hard real-time task, soft real-time task and non-real-time task. 

Hard-real-time task 

Hard-real-time tasks have the hard deadline. It must be guaranteed to complete within a 
predefined amount of time. If there is a hard real-time task, we must try to avoid violating the 
requirement to the best ability. Safety-critical task is a typical sample of this type. We assume 
the tasks have deterministic deadlines. The system failure happens when any task is missed. 
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Soft-real-time task 

Soft-real-time tasks also have real-time requirements. However, the result is not so 
severe when violation happens. Statistical distribution of response time of tasks is acceptable. 
A number of deadline violations can be tolerated. 

Non-real-time task 

Non-real-time tasks have no real-time requirement. For examples, entertainment and 
email service are non-real-time tasks. 

3.2 Real-time Scheduling Policies 

The real-time operation system is an operation system that is intended for real-time 
applications. Such operating systems serve application requests nearly real-time [20]. It is the   
computing system that must react within precise time constraints to inputs to the system. A 
reaction that occurs too late could be useless or even dangerous.  

 

Figure 3-1 Real-time scheduling Algorithms 

As shown in Figure 3-1, there are different criteria for the classifications of real-time 
scheduling algorithm. Based on the time to generate scheduling table, we classify scheduling 
algorithms into online and offline scheduling. Also there are other criteria to classify the real-
time schedulers, such as clock-driven scheduler, priority-driven scheduler, and processor 
sharing scheduler. In the following paragraphs, we will discuss these classifications in detail. 
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3.2.1 Preemptive and Non-preemptive Scheduling 

 

Figure 3-2 Difference between non pre-emptive and pre-emptive systems 

There are two types of real-time systems: preemptive and non-preemptive. From Figure 
3-2, it is clear that the main difference between these two types is the transmission continuity. 

Non-preemptive system 

In non-preemptive system, a task that has started will execute until its completion 
without any interruptions. It will defer execution of any higher-priority tasks. 

Preemptive system 

Preemption is the act of temporarily interrupting a task being carried out by a computer 
system, without requiring its cooperation, and with the intention of resuming the task at a later 
time. It is carried out by a preemptive scheduler, which has the power to preempt, or interrupt, 
and later resume other tasks in the system [21]. Tasks can preempt each other. The system 
allows the task with the highest priority to execute as soon as possible. Preemptive scheduling 
incurs more system overhead than non-preemptive scheduling, e.g. context switching time 
caused by preemption. Preemptive scheduling has the advantage that it has higher processor 
utilization than non-preemptive scheduling. 

3.2.2 Offline and Online Scheduler 

Scheduler creates a scheduling table. The system’s CPU follows the scheduling table to 
transmit data. Scheduler can either offline or online creates the scheduling table. It depends on 
whether the input data known beforehand or not. 

Offline Scheduler 

Offline scheduler should have all of the input data and generate scheduling table before 
the system start. At run-time, a dispatcher is used to activate tasks according to the 
schedule generated before run-time [22]. 
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Online Scheduler 

If inputs of a scheduler do not know before the system start, the scheduler is an online 
scheduler. Online scheduler generates scheduling table at run-time. 

3.2.3 Different Scheduling Approaches 

Except the classifications presented above, we can also classify the scheduler based on 
other criteria. Mainly, there are three types of real-time schedulers. They are clock-driven 
scheduler, priority-driven scheduler, and processor sharing scheduler as shown in Figure 3-1. 
We will discuss the details about these three types in the following sections.  

Clock-driven Scheduling 

In clock-driven scheduling, the time instant to execute send/receive operations are 
initiated at predetermined points in time. So the clock-driven scheduling is also called time-
triggered scheduling. Time- triggered systems are typically implemented non-preemptive 
static cyclic scheduling (SCS). Scheduling tables are built offline and stored in the memory 
before the system start to operate. Dispatchers transmit data and activate tasks based on 
predefined scheduling tables. In a distributed time-triggered system, we assume that the nodes’ 
clocks are synchronized to provide a global reference of time. 

At run-time, a dispatcher follows the schedule and makes sure that tasks are only 
executing at their predetermined time slots [22]. After the scheduler dispatches a task, it sets 
the periodic timer to generate an interrupt at the next task switching time. The scheduler will 
then go to sleep until the timer expires. This process is repeated throughout the whole 
operation. For each task, the time instant to execute is fixed, so the response time for each 
task is very predictable. Therefore, it suits the safety-critical applications. 

Time-triggered scheduling is very simply and reliable, but lack of flexibility. It cannot 
deal with inputs’ changes at runtime. A small change of input completely changes the whole 
scheduling table.  

Round-robin Scheduling 

Round-robin scheduling is one of the time-triggered scheduling algorithms. There are 
two types of round-robin scheduling approaches: regular round robin and weighted round 
robin. 

Regular round-robin scheduling is commonly used in scheduling time-shared 
applications. Messages queue in the FIFO queue when they are ready to execute. The 
transmission starts from the beginning of the queue. If the task has not completed by the end 
of its timeslot, it is preempted and placed at the end of the queue. When there are N ready 
messages in the queue, each message gets one timeslot every N timeslots. A round is N 
timeslots. 
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In weighted round-robin, every message is assigned a weight iw . The message will get 

iw  timeslots in each round, and the duration of a round is
1

n

ii
w

 . It is simpler than priority-

driven scheduling, because weighted round-robin scheduling does not require different 
priority queues. Real-time networking commonly uses weighted round-robin scheduling. 

Priority-driven Scheduling 

Priority-driven scheduling is an important scheduling algorithm. Priority-driven systems 
typically implement by using preemptive priority-based scheduling. In priority-driven 
scheduling, each task is assigned a priority. System starts to execute from the highest-priority 
task among all of the ready tasks.  

Based on the priority allocation, we can categorize priority-driven scheduling into Fixed 
Priority Scheduling (FPS) and Dynamic Priority Scheduling (DPS). The major difference of 
these two schedulers is whether the priorities of tasks can change at runtime. The commonly 
used priority-based scheduling algorithms are Fixed Priority Scheduling (FPS) and Earliest 
Deadline First (EDF). Section 3.3 will introduce these scheduling algorithms in detail. 

Priority-driven scheduling is very flexible but not predictable. It can cope with work-load 
changes such as adding or removing the tasks. The predictability of the response time of a 
task decreases, as the flexibility increases. Therefore, safety-critical applications not often use 
the priority-driven scheduling. 

Processor Sharing Scheduling 

Processor-sharing-scheduling is a scheduling algorithm that assigns different fractions of 
the processor to the messages. Fraction means part of the time interval. In a processor, one 
message or job is executed at one time. The processor-sharing means assigning a fraction of 
processor’s time to messages or jobs. For example, scheduler assigns 0.2 fraction of the 
processor to a job. This means this job can use 0.2 percent of the processor’s time. In order to 
obtain the accurate fraction of processor-sharing, the timeslot has to be very small. 
However, when the timeslot is very small, the context switching spends a significant 
amount of time. This is a major drawback of the Processor-Sharing scheduling [23]. 

3.3 Classic Scheduling Algorithms 

In this section, we introduce three classic priority-driven scheduling algorithms in the 
real-time system. Priority-driven scheduling is one of the most widely implemented and 
studied scheduling types. The algorithms we present in this section are milestones in the 
development of scheduling theory. Understanding these algorithms is very important to 
getting the general view of scheduling theory. 

As we introduced in Section 3.2.3, based on the priority allocation, the priority-driven 
scheduling is categorized into fixed priority and dynamic priority scheduling. Before the 
discussion, we need to distinguish the concepts of jobs and tasks. Jobs compose tasks. In 
fixed-priority scheduling, all jobs in a task have the same priority that is computed offline. 
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The priorities are assigned to the tasks before the system start. This is called task-level 
priority. The highest-priority task is scheduled first. We use 1 to represent the highest priority. 
The priority decreases when the integer increases. 

In dynamic-priority scheduling, the priority of the task is changeable, and the priority of 
the job is changeable either. The priorities are assigned to individual job instead of task. It can 
be further divided into job-level fixed-priority scheduling and job-level dynamic priority 
scheduling. The dynamic-priority scheduling has higher processor utilization and incurs more 
system overhead than the fixed-priority scheduling, because dynamic-priority scheduling 
needs to determine the priority at runtime.  

 

Figure 3-3 Priority-driven scheduling algorithms 

Figure 3-3 presents the hierarchy of the classification of priority-driven scheduling. In 
the following sections, we will introduce two algorithms, Rate Monotonic (RM) and Deadline 
Monotonic (DM), which are the optimal algorithms of fixed-priority scheduling. Also, we will 
introduce Earliest Deadline First (EDF) scheduling that is the optimal job-level fixed-priority 
scheduling. 

3.3.1 Rate Monotonic scheduling (RM) 

Liu and Layland [24] shows that the Rate Monotonic scheduling is the optimal fixed 
priority scheduling algorithm in terms of schedulability under the following restrictions: 

 All tasks are independent of each other (e.g. they do not interact). 

 All tasks are periodic. 

 No task can block waiting for an external event. 

 All tasks share a common release time (called the critical instant). 

 All tasks have a deadline equal to their period. 
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These first four restrictions have already been relaxed by different approaches, except the 
last one. Therefore, we can say Rate Monotonic scheduling is the optimal fixed-priority 
scheduling algorithm when tasks’ deadline equal to their periods. The optimal algorithm 
means it always generate a feasible schedule if the task set is schedulable by any static 
priority algorithms.  

RM refers to assigning priorities as a monotonic function of the rate (frequency of the 
occurrence) of these tasks. In RM scheduling, the individual task priority assignment bases on 
the periods of the tasks. The priorities are inversely proportional to the periods, in other words, 
the shorter the period the higher the priority. 

RM scheduling can be used statically on any hard real-time systems to decide if the 
system is schedulable. In fixed-priority scheduling, the upper bound of schedulability is 
69.314% of the processor utilization. However, the large runtime overhead is one of the 
shortcomings of RM scheduling. Furthermore, only periodic tasks can apply RM scheduling.  

3.3.2 Deadline Monotonic scheduling (DM) 

Many systems need tasks’ deadlines shorter than tasks’ periods, which violate the 
assumption in RM scheduling mentioned in the previous section. In 1982, Leung and 
Whitehead [25] shows that Deadline Monotonic (DM) scheduling is another optimal 
algorithm of fixed-priority scheduling when tasks have deadlines less than (or equal) to 
periods.  

In DM scheduling, tasks’ priorities are inversely proportional to the order of tasks’ 
deadlines. If happens that tasks have the same deadlines, the priority assignment will be 
arbitrary ordered among the same deadline tasks.  

3.3.3 Earliest Deadline First (EDF) 

One of the most widely used optimal dynamic-priority scheduling algorithms is Earliest 
Deadline First (EDF) scheduling. EDF processors are priority-driven and preemptive. 
Dertouzos [26] showed that EDF is optimal among all preemptive scheduling algorithms. 
Mok also presents another optimal algorithm, Least Laxity First (LLF) [27], which assigns the 
processor to the active task with the smallest laxity4. However, LLF has larger overhead than 
EDF. That is the reason why EDF is the most commonly used algorithm in dynamic-priority 
scheduling. EDF is also called Deadline Driven Scheduling Algorithm. The earliest deadline 
task, among all tasks ready for execution, gets the highest priority. The priorities assigned to 
tasks are inversely proportional to the absolute deadlines of the tasks. Dynamic-priority 
scheduling is still schedulable when the processor utilization approaches 100%. It is more 
flexible than fixed priority scheduling algorithm. 

                                                      

4    The laxity is the difference between the absolute deadline and the estimated worst-case finishing time. 



CHAPTER 3. REAL-TIME SCHEDULING  31 

 

 

3.4 Conclusion 

This chapter focuses on the real-time scheduling theory. We first introduced the key 
scheduling policies. There are lots of criteria to classify scheduling policies. Based on the 
transmission continuity, input data certainty and the driven type of the transmission, we 
introduced three methods. These introductions give the basic knowledge about the scheduling 
methods. Then we presented three representative scheduling algorithms. RM scheduling is an 
optimal scheduling algorithm of fixed priority scheduling with the constraint that all tasks 
have a deadline equal to their period. DM scheduling is another optimal algorithm of fixed-
priority scheduling when tasks have deadlines less than (or equal) to periods. The third 
scheduling algorithm presented is EDF scheduling, which is the optimal priority-based 
dynamic scheduling algorithm. We have known the main factors in the scheduling theory 
after the discussion of this chapter.  
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4 
4 Schedulability of Simple FlexRay 

Networks 

The important issue in scheduler design is to find whether all tasks are schedulable 
during the peak-load. In order to know the system schedulability, we can calculate the total 
utilization of the CPU or the response-time of all tasks in the worst-case scenarios (at peak-
load) [22]. These measurements could use to determine whether the tasks are schedulable. 

In Chapter 4, we provide the basic constraint of the ST segment schedulability analysis, 
which calculates the minimum number of ST slots required in the segment. Then we analyze 
the worst-case response time of the DYN messages to verify whether the tasks in a given task 
set can meet the deadlines. 

4.1 System Architecture 

 

Figure 4-1 Simple FlexRay Node to Node Communication 
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As shown in Figure 4-1, there are two nodes in the network, which are all connected with 
the FlexRay bus5. The nodes might produce some safety-critical tasks or diagnostic tasks. The 
tasks have different timing requirements and generation frequencies, such as time-critical 
tasks and non-time-critical tasks. The outputs messages of tasks inherit the timing 
requirements and generation frequencies from their sending tasks. As we introduced in 
Chapter 2, the CC of FlexRay protocol consists of a ST segment and a DYN segment. Each 
segment has different media access control. The working principles of these two segments can 
adapt different tasks’ transmissions. Therefore, two segments should have different real-time 
kernels that consist of two different schedulers. Figure 4-2 shows the two-scheduler concept.  

busT

 

Figure 4-2 Two schedulers for two segments 

The nodes may have different tasks to finish or frames to send. For time-critical tasks, 
namely ST tasks, we use ST cyclic scheduling (SCS). The working principle of SCS is that 
the set of tasks or messages follows a static scheduling table to transmit and repeat. For DYN 
tasks, we use fixed priority scheduling (FPS) that transmits tasks or messages by the 
predefined priorities. 

ST tasks use SCS scheduler and have the highest priority among all the tasks. These SCS 
tasks are preemptive. Their start time is off-line fixed in the scheduling table. SCS activities 
are triggered based on a node’s local clock. Other tasks use FPS scheduler. FPS tasks are 
scheduled based on priorities. The	 high‐priority	 task	 preempts a lower-priority task. These 
tasks can only be executed in the idle time of SCS scheduling table. When several tasks are 
ready on a node, the highest-priority task is activated and preempts the other tasks.  

                                                      

5    FlexRay can serve as a dual-channel system, here we only use one channel to communication, the other 
channel serve as the redundant channel to make sure fault tolerance in the system. 
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4.2 Task & Message  

 

Figure 4-3 Timeline of FlexRay DYN data transmission 



CHAPTER 4. SCHEDULABILITY OF SIMPLE FLEXRAY NETWORK 35 

 

 

Before analyzing the transmission timing in detail, we have to distinguish the concepts of 
task from message6. The relationship between the task and the message is shown in Figure 4-3. 
The point ‘Sending Task Arrive’ shows that a task becomes ready after all its inputs have 
arrived. We assume tasks issue the output messages at the end of their executions. The point 
‘Sending Task terminated’ shows this instant. Output messages become ready after the sender 
task has finished, as the point ‘Sending Message ready’ shown in Figure 4-3. The point 
“Receiving message ready” shows the messages become ready at the receiver processor after 
the physical transmission has ended. Moreover, we need to notice that a task could produce 
several massages. 

4.3 Definition of Latency 

Latency is the duration between data ready for transmission at the sender and data ready 
for consumption at the receiver [28]. Let us consider the timeline in Figure 4-3. The blue 
boxes represent the time to execute tasks inside a single processor, which is from the tasks’ 
arrival to the tasks’ termination, and issue the output messages. The green boxes represent the 
time interval to transmit a frame on the bus. The interval is from the frames that are ready to 
be transmitted at the sending bus driver to the frame ready for consumption at the receiving 
bus driver.  

There are two types of latency. One is end-to-end latency, which is from sending task 
arrive to receiving task terminate. We can see this latency in Figure 4-3 from red arrow 
“Sending task Arrive” from red arrow “Receiving task terminates”. Other latency is 
communication latency which is from sending Communication Controller to receiving 
Communication Controller [28]. This latency is only related with communication protocol 
and physical media. It is the latency in data link layer and physical layer. We can see this 
latency is the length of two green boxes in Figure 4-3. 

The reason why we only do the calculation of communication latency is that the ECUs 
might from different venders and have different hardware specifications, so it is very difficult 
to do the holistic schedulability analysis. There are a lot of existed researches on processor 
schedulability analysis, for readers who interested can refer to [29-32]. 

There is one thing need to mention. The “message” in Figure 4-3 is the data sequence 
need to be transmitted which is the payload in FlexRay frame. In communication latency, the 
data which ready to transmit is the FlexRay frames. In FlexRay, Communication Controller is 
responsible for implementing the protocol aspects to the payload data received from Host 
CPU. In other word, Communication Controller is responsible for frame packing or 
segmentation. As mentioned before, in this thesis, we do not deal with frame packing or 

                                                      

6    This thesis doesn’t consider the frame packing or frame segmentation. These functions are realized at 
higher layer which are out of the scope of this thesis. To simplify the problem, this thesis assumes that 
one message is packed into one frame.  
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segmentation, so the time for frame packing or segmentation is only considered including in 
end-to-end latency. 

4.4 ST Segment Schedulability Analysis 

In timing analysis of the FlexRay network, we considered the ST messages are 
schedulable if it is possible to generate a valid static scheduling table. So we need to build the 
scheduling tables for SCS tasks and ST frames. Before doing this, we first simply compare 
the available ST slots and the minimum required ST slots. This comparison gives the general 
view of available bus data rate that can use to system design. 

The comparisons of available ST slots and required ST slots are the necessary but 
insufficient condition to see whether a given set of messages is schedulable. Necessary but 
insufficient condition means that if a schedule cannot pass this test, it is not schedulable. 
However, there might be some schedules that can pass this test but still cannot generate a 
valid schedule. 

The comparisons of the minimum required ST slots and available ST slots are the basic 
schedulable constraint of the system. If the available ST slots are smaller than the minimum 
required ST slots, the system is not schedulable. In this section, we would like to calculate the 
minimum required ST slots in the system.  

In FlexRay system, each message assigned one transmission buffer based on the slot ID 
and the cycle ID. The identifier of the channel on which the transmission shall occur is not 
necessary because the dual-channel is only been used as redundancy channel. Aiming to 
increase the resource-utility rate, this thesis chooses to use slot multiplexing in ST segment. 
Slot multiplexing means messages do not have the exclusive right of the slots. More messages 
can share one slot in the ST segment.  

Hence message ݉′s  schedule is defined by the value of the cycle ID and slot ID of the 

transmission slot. The value of the cycle ID is represented by the 2-tuple vector: base cycle mb

and cycle repetition mr  [33]. Base cycle mb is the cycle ID in which the first message-arrival 

sends. It has the constraint  0,63 ,m mb b  . Cycle repetition mr  is the multiple of CC 

between two successive transmission cycles in which the message-arrivals send. It has the 

constraint  2 , 0,6 ,n
mr n n  

 
to allow a periodic occurrence in the 64 cycles. 

The transmission-slot ID is represented by the 2-tuple vector: base slot ms and slot 

repetition mp . ms is the ST slot ID in which the first message-arrival sends. Slot repetition mp

is the multiple of ST slots between two successive message-arrivals within one CC. It has the 

constraint  22 , 0, log ,n
mp n gNumberOfStaticSlots n   to allow the successful slot 

multiplexing.  
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Figure 4-4 Example schedule 

As illustrate in Figure 4-4, the base cycle ܾ௠	is 0 for	݉଴	and	݉ଵ, 3 for	݉ଶ. The cycle 
repetition		ݎ௠	 is 1 for	݉଴, 2 for 	݉ଵand 4 for	݉ଶ. 	ݏ௠		is 1 for	݉଴	and 2 for	݉଴	and	݉ଵ. The 

Slot repetition		݌௠	is 3 for	݉଴	and	݉ଵ, 2gNumberOfStaticSlot   for	݉ଶ. 

The message set STM is the ST messages waiting to send in a cluster. The previous study 

[33] shows that the minimum number of ST slot mingNumberOfStaticSlots required7  for the 

transmission of the messages set STM is: 

 
 

1

ST

min
m M m

gNumberOfStaticSlots
r

   (4.1) 

This equation only suits for the schedule that every message transmits once per cycle. 
This fact limits the length of CC at least should equal to the shortest period of ST messages, 
in order to accommodates the transmissions of ST messages. Furthermore, according to 
FlexRay specification, the maximum cycle ID is 64. Therefore, this constraint limits the 
maximum system bandwidth and reduces the system capacity. In order to increase system 
bandwidth, the messages should be able to transmit multiple times per cycle. The calculation 
of the minimum ST slots required for the transmission then becomes the following formula:  

                                                      

7    This thesis assumes that each message fits within one frame and uses a full slot to transmit. 
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 ST

m
min

m M m

gNumberOfStaticSlot
gNumberOfStaticSlots

r

   (4.2) 

mgNumberOfStaticSlot is the total ST slots message m  is allocated. STM is the ST 

message set in the cluster. It is import to notice that this result is under the assumption that 
one message-arrival packs into one frame and sends in one slot.  Furthermore, the FlexRay 
specifications regulate that the minimum number of ST slots in a system is 2. However, the 
actual number of the ST slots needed does not always equal to the minimum ST slots required. 
The minimum value only happens when there is no empty slot left between any two ST slots. 
It means that the transmission patterns of the ST messages match each other perfectly. 
However, this idealized case does not happen in every case.  

According to FlexRay specifications, system can have maximum 1023 ST slots. If 

min 1023gNumberOfStaticSlots   happens, the system is non-schedulable. The minimum 

number of ST slots mingNumberOfStaticSlots can only be used as the basic schedulable 

condition. The actual number of ST slots should base on the scheduling result.  

4.5 DYN Segment Schedulability Analysis 

First thing in schedulability analysis is to decide what scheduling policy we want to use. 
There are many exist scheduling algorithms as we introduced in Section 3.3. Although 
dynamic-priority scheduling algorithms can give optimized system utility rate, but the 
implementation of dynamic-priority scheduling are far more complex than fixed-priority 
scheduling algorithms. Therefore, this thesis uses the fixed-priority scheduling as the 
scheduling policy. 

There are three different approaches of schedulability analysis: utilization-based test, 
demand-based test, and response-time test. Utilization-based test is based on the utilization of 
the task-set under analysis. Demand-based test is based on the processor demand at a given 
time interval. Response-time test is based on the worst-case response-time of each task in the 
task-set. The worst-case response time calculation is the best approach to test system 
schedulability in the circumstances that no hardware can use for analysis. If all the messages 
can meet their deadlines, the system is schedulable.  

FlexRay is a hybrid-bus system where TT and ET tasks share the same media and time 
resources. Tasks are scheduled using both TT and ET scheduling. However, the TT and ET 
tasks do not exchange time-critical communication [34]. Because the TT and ET activities 
share the same resource, and TT activities have the highest priority, thus the ET tasks can 
only execute in the slack of the TT scheduling table. 

In the following sections, we discuss the method of the DYN messages’ worst-case 
response time calculation in FlexRay network.  
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4.5.1 Worst-case Communication Latency 

According to the latency analysis in Section 4.3, a frame’s communication latency 
consists of two parts (the two green boxes): the bus arbitration delay and the transmission 
delay. Therefore, the worst-case communication latency is given by the following formula: 

 m m mR w C   (4.3) 

mw is the longest delay caused by the media contention before the transmission. We can 

see this part as the waiting delay. mC is the longest time taken to send the frame m on the bus. 

This part is the transmission delay in Figure 4-3. 

In order to calculate mR , we should know these two delays. In the following paragraphs, 

we will present the methods to calculate these unknown parameters. 

4.5.2 Transmission Delay	࢓࡯ 

Based on the definition of		݉ܥ, we know that 	݉ܥis related to the message length and the 
FlexRay bus bit rate. So we can get: 

 _ / _m mC Frame size bus speed  (4.4) 

In FlexRay protocol, the bus gross data rate is 10Mbit/s and the effective data rate is 
5Mbit/s. 

4.5.3 Bus Arbitration Delay	࢝࢓ 

mw represents the longest delay of the bus arbitration before transmission. Three possible 

reasons may contribute to this delay: the transmission of ST segment, the transmission of the 

DYN frames having lower Frame ID than message 		݉ , denoted by ( )lf m , and the 

transmission of the DYN frames having same Frame ID but higher priority than message		݉, 

denoted by ( )hp m . However, the delay mw  is the multiple of CC. It is hard to define mw  in 

terms of ST segment,		݄݌ሺ݉ሻ,	 or		݈݂ሺ݉ሻ.  

m

busT

busnT 'mw

 

Figure 4-5 Response time of the DYN messages 
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The delay mw  is the duration between two red lines in Figure 4-5. As we can see in 

Figure 4-5, we divide this delay into three parts to simply the analysis. We introduce the 
following notations: 

 	ߪ௠		denotes the time interval that starts from the instant that sender task generates 
the message to the end of the generation CC.  

 ( )ms m denotes the unused Minislots set that have lower frame ID than message		݉. 

Although these Minislots are not used for data transmission, they still delay the 

transmission for the length of a Minislot. busnT denotes the number of CCs that 

cannot transmit message 		݉  because of the transmission of messages from sets

( )hp m , ( )lf m and ( )ms m . 

 'mw denotes the delay that starts from the beginning of the message 		݉ ’s 

transmission CC to the transmit point of message		݉. ݈݃݀݁ܿݕܥ	denotes the length of 
the CC.  

Therefore, the formula of delay mw is: 

 'm m bus mw nT w    (4.5) 

Parameter	࣌࢓ 

The maximum value of m appears when the generation of the frame just after the 

frame’s allocated slot and there is no data transmission happen before this its generation. 

Therefore, the formula of worst-case m  is [35]: 

 ( (  1) )m bus mgdCycle ST Frame ID gdMinislot       (4.6) 

busST is the length of the ST segment.	ܦܫ݁݉ܽݎܨ௠	is the frame ID of message		݉. The 

value of 	ܦܫ݁݉ܽݎܨ	 is from 1 to 2047 in binary format. gdMinislot is the duration of a 

Minislot. We assume the CC only consist of ST segment and DYN segment, regardless the 

symbol window and network idle time. In the following discussion, busT  is used as the 

approximation of the length of CC. It does not introduce any significant pessimism. 

Heuristic solution of 'mw  

'mw  is the notation of the delay that starts from the beginning of the CC in which the 

message m sent until the real transmission of message m happens. The holistic solution gives 

the exact value of 'mw . However, the computation times of the highly complex algorithms are 

not practical. Therefore, we choose the heuristic solutions instead of the holistic solution. The 



CHAPTER 4. SCHEDULABILITY OF SIMPLE FLEXRAY NETWORK 41 

 

 

heuristic solution has significantly lower complexity and needs extremely short computation 
times, while at the same time producing results close to the ones offered by the optimal 
implementations [35]. 

The maximum value of 'mw happens when the messages is transmitted in the last 

possible slot. The value of Minislot counter at this instant is smaller than the value of

pLatestTx . pLatestTx  is the number of the last Minislot in which a frame transmission can 

start in the dynamic segment [11]. The value of pLatestTx  depends on the size of DYN 

frames and the length of the Minislot. Therefore, the heuristic solution of the worst-case 'mw

[35] is: 

 'm bus mw ST pLatestTx gdMinislot    (4.7) 

Parameter busnT  

Message ݉ that is packed into frame ݉ with		ܦܫ݁݉ܽݎܨ௠ cannot be sent during the CC if 
at least one of the following conditions is fulfilled:  

 One of the messages from messages set ( )hp m  occupies the DYN slot that 

corresponds to		ܦܫ݁݉ܽݎܨ௠ in the cycle. 

 The remaining time in the DYN segment is shorter than the frame length of 
message		݉. This might because of the large latency that caused by the data or 
Minislots that have the FrameID smaller than		ܦܫ݁݉ܽݎܨ௠ . This latency delays the 
message so that it misses the last instant that can transmit in the CC. These elements 

belong to sets ( )lf m and ( )ms m . 

Based on the discussions above, the delay busnT can be written as[35]: 

  ( ) ( ( , )) ( ( , ), ( , ))bus m mnT t BusCycles hp m t BusCycles lf m t ms m t gdCycle  

 (4.8) 

The reason why introduce the time interval ݐ  is that the message in the 
sets		݄݌ሺ݉ሻ,	݈݂ሺ݉ሻ and ݉ݏሺ݉ሻ are changing all the times. Messages keep coming into the 
queue and sending out to the scheduler. The analysis should focus on a given time interval. So 

we need to consider all the messages in sets ( )hp m , ( )lf m and ( )ms m during this time 

interval, which would delay the message	݉. ( , )hp m t is the number of messages that have 

higher priority than message ݉ during the time interval t. ( , )lf m t  is the number of messages 

that have lower 	ܦܫ݁݉ܽݎܨ		 than 	௠ܦܫ݁݉ܽݎܨ		  during the time interval t. ( , )ms m t is the 

number of slots which have no data to transmit but have lower		ܦܫ݁݉ܽݎܨ than		ܦܫ݁݉ܽݎܨ௠	 
during the time interval t, so that the message ݉ has to wait until the DYN slot counter 
reaching the		ܦܫ݁݉ܽݎܨ௠	. 
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Heuristic computation for	࢓࢙ࢋ࢒ࢉ࢟࡯࢙࢛࡮ሺ࢖ࢎሺ࢓, ࢚ሻሻ  

If there is a message that has the same		ܦܫ݁݉ܽݎܨ but higher priority than message m, it 
delays the transmission of m for one CC. Therefore, the total delay caused by the messages in 

the set ( , )hp m t is [35]: 

 ( ( , )) ( , )mBusCycles hp m t hp m t  (4.9) 

Heuristic computation for	࢓࢟ࢇ࢒ࢋࡰሺ࢙࢓ሺ࢓, ࢚ሻሻ 

The holistic solution of ,ሺ݉ݏ௠൫݉ݏ݈݁ܿݕܥݏݑܤ	 ሻ൯ݐ , namely the optimal solution, can 

calculate the tightest worst-case response time. However, the high complexity of the optimal 
algorithm leads to the long computational time, which is not practical when calculate the 
response times of many messages. The holistic solution only can calculate the results in the 
reasonable time for up to 20 DYN frames [35].  

We also use the heuristic solution to compute the ( ( , ), ( , ))mBusCycles lf m t ms m t . If the 

massage m is transmitted in the DYN slot corresponded to 	௠ܦܫ݁݉ܽݎܨ	  there are up 
to		ܦܫ݁݉ܽݎܨ௠	 െ 1 unused Minislots before the transmission of message ݉ in the worst-case. 
We use the approximate number of Minislots in the worst-case scenario instead of the actual 
number of Minislots. The duration the Minislot is very small, compared to the duration of CC. 
The approximation does not introduce the crucial pessimism [35]. Therefore, the delay caused 

by messages in the set ( , )ms m t is [35]: 

 ( ( , )) ( 1)m mDelay ms m t FrameID gdMinislot    (4.10) 

Heuristic computation for	࢓࢙ࢋ࢒ࢉ࢟࡯࢙࢛࡮ሺࢌ࢒ሺ࢓, ࢚ሻሻ 

The next step we need to compute the delay ,௠ሺ݈݂ሺ݉ݏ݈݁ܿݕܥݏݑܤ	 ሻሻݐ . This problem 
transforms into a one dimension bin packing (1DBP) problem. The bin packing problem tries 
to maximize the number of bins that can be filled with a fixed minimum capacity by a given 
set of items with specified weights. More details about bin packing problem can refer to [36-
38]. 

There are many existing bin packing algorithms such as First-Fit, Best-Fit, Next Fit, 
Worst-Fit and Last-Fit. These existing algorithms generally can be divided into two categories: 
optimal algorithm and heuristic algorithm. Optimal algorithm can get exact result but always 
is the NP-hard algorithm that has unacceptable computational time, especially for a large 
number of inputs. Heuristic algorithm can significantly decrease the algorithm complexity and 
computational time. Although it cannot offer tightest results, the algorithm outputs are very 
close to the optimal algorithm when there are large numbers of inputs. For this reason, this 
thesis chooses a greedy heuristic bin packing algorithm, the First-Fit Decreasing Algorithm 
(FFD), as the algorithm to calculate	ݏ݈݁ܿݕܥݏݑܤ௠ሺ݈݂ሺ݉,   .ሻሻݐ

The FFD algorithm first sorts the items in decreasing order by size, and then inserting 
each item into the first bin in the list with sufficient space. This algorithm packs the largest items 
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first and is more likely to produce an optimal solution than the simple First-Fit method [39]. 
The First-Fit packing algorithm is one of the bin packing algorithms. For a number of bins, it 
always places the next box into the lowest-numbered bin it will fit into [40]. In our case, the 
elements in 	݈݂ሺ݉, ሻݐ  are the items. The DYN segments are bins, 
namely ,௠ሺ݈݂ሺ݉ݏ݈݁ܿݕܥݏݑܤ	 ሻሻݐ . The minimum capacity required to fill a bin is

mpLatestTx gdMinislot .  

For any given DYN message sets, if the	ܦܫ݁݉ܽݎܨ௠	and all the message sizes are known, 

the delay ,௠൫݈݂ሺ݉ݏ݈݁ܿݕܥݏݑܤ	 only varies with the DYN segment length	ሻ൯ݐ busDYN . In 

conclusion, the analysis of the worst-case response time mR  of the DYN message m shows 

that mR only varies with the CC length gdCycle . 

4.6 Conclusion 

In this chapter, we first discussed the different scheduling algorithms that should use in 
two segments in CC.  Then we differentiated the concept between task and message.  
Differentiation two confusing concepts are crucial to help to understand the scheduling 
timeline. Next to this, the timeline of the DYN was provided. Then we defined the concept of 
the latency, which gave the clear understanding of the transmission timeline. Furthermore, we 
discussed the basic scheduling constraint in ST segment, namely the minimum required ST 
slots. The basic constraint is the first condition that the scheduler should check in order to 
produce a valid scheduling table. Finally, the worst-case response time of the DYN messages 
was analyzed and calculated in detail. We chose the FFD algorithm to calculate a part of the 
delay. 
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5 
5 Scheduler Design for Simple 

FlexRay Networks 

After all the background knowledge and schedulability analyses, this chapter we will 
design the scheduler for simple FlexRay network. This chapter is generally divided into two 
parts: ST segment and DYN segment schedulers design. The structure in each part is formed 
by three sections. The first section of each segment provides some examples to show the 
different schedulability resulting from different values of those configurable parameters in 
FlexRay protocol.  After the comparisons of examples, the second section defines the 
problems needed to configure. Then follow with analysis for each parameter and the 
suggested solutions for these problems. The final section is the scheduling algorithm for ST 
segment and DYN segment respectively.  

5.1 Scheduler Design for Simple FlexRay ST Segment  

Before the discussion we would like to present some notations which are used later. 

 mb Base cycle is the value of the cycle counter in which the first message8  arrival 

sends with the constraint  0,63 ,m mb b  ; 

 mD [μs] Message m ’s deadline is the duration from message generation to message 

expiration; 

                                                      

8    The concept of message is equivalent to the signal in the discussion of this thesis. The signal may send 
from a sensor or processor, etc. 
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 gdActionPointOffset  [MT] is the number of Macroticks the action point is offset 

from the beginning of a static slot or symbol window; 

 gdBit  [μs] is the nominal bit time; 

 gdBitMax  [μs] is the maximum bit time taking into account the allowable clock 

deviation of each node; 

 gdCycle [μs] is the duration of the communication cycle; 

 gdMacrotick  [μs] is the duration of the cluster wide nominal Macrotick; 

 gdMinPropagationDelay  [μs] is the minimum propagation delay of a cluster; 

 gdMaxPropagationDelay  [μs] is the maximum propagation delay of a cluster; 

 gdStaticSlot [μs] is the length of a ST slot; 

 gdTSSTransmitter  [gdBit] is the number of bits in the Transmission Start Sequence; 

 gNumberOfStaticSlots is the total number of ST slots in the ST segment; 

 mgNumberOfStaticSlots  is the total number of ST slot IDs which message m  is 

allocated, mgNumberOfStaticSlots  ; 

 mgNumberOfCycle is the total number of cycles IDs message m allocated, 

mgNumberOfCycle  ; 

 ݄ܵݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ ௠ܶ is the number of bits constituting the static message m in the 
cluster; 

 mp Slot repetition is the multiple of ST slots in between two successive message 

arrivals within one CC with the constrain  1,1022 ,m mp p  ; 

 mr Cycle repetition is the multiple of CC in between two successive transmission 

cycles in which message arrivals send. It has the constraint  2 , 0,6 ,n
mr n n  

to allow a periodic occurrence in the 64 cycles; 

 busST is the length of the ST segment; 
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 ms Base slot is the value of the ST slot counter in which the first message arrival 

sends with the constraint  1,1023 ,m ms s  ; 

 ௠ܶ	 Message m ’s minimum inter-arrival time is the minimum time interval between 
two successive values of message m which inherited from its sender task; 

5.1.1 Problem definition 

In automotive communication, the time-triggered tasks and messages require the 
guaranteed communication latency. They have strictly timing constraint and highly 
predictability requirements. ST segment in FlexRay protocol uses TDMA as the media access 
mechanism. The messages that transmitted in ST segment have very predictable response 
time. Therefore, ST segment suits the time-triggered tasks and messages. The messages 
transmitted in ST segment are called ST messages. 

Every system has an optimal system configuration. However, the goal of the ST 
scheduler design in this thesis is not to find an optimal configuration for a system but to find a 
schedulable configuration for any FlexRay systems. Thus, the schedulable constraints defined 
in this thesis may vary depend on the system requirements. 

From the aspect of system schedulability, we want to accommodate the transmission of 
every ST messages to meet their timing constraint. From the aspect of system expansibility, 
we want to accommodate the messages by using as less system resource as possible. 
Therefore, the idea of the scheduler design is to find the best way to accommodate the ST 
messages in order to satisfy the timing constraints and use as less resource as possible. 

For any sporadic ST message m generated by the sporadic task, the known parameters 

are the minimum inter-arrival time mT  and the message size mMessageLengthST . Thus, a ST 

message m can be represented by a 2-tuple vector: 

 
 ,m mm T MessageLengthST  (5.1) 

A ST message is schedulable only if it has a valid static scheduling table. The valid static 
scheduling table means that the ST messages can meet their communication constraints as 
long as they follow the scheduling table to transmit. These communication constraints are also 
the schedulable constraints for the scheduler. Therefore, we should analyze the schedulable 
constraints first in order to schedule the ST messages. 

5.1.1.1 Configurable Parameters 

Let’s consider three examples of different system configuration first. Then we will 
discuss the different schedulabilities and related parameters. 
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Figure 5-1 Examples of the configuration of ST segment 

The Figure 5-1 gives a system with two nodes, N1 and N2, connected with a bus. 

Message 1m  with length of 4 is ready at N1 and messages 2m and 3m with length of 3 and 2 

respectively are ready at N2. The messages’ length and SlotID are also shown in figure. 
Please note that the examples in Figure 5-1 only shows the ST segment in the CC.  

Firstly, let us compare the examples a) and b). As we can see in the example a) in Figure 

5-1, there are 2 ST slots available. Each node gets 1 slot. Consequently in N2, 3m have to 

share the same slot with 2m . This fact leads to the transmission of 3m  delayed to the second 

cycle because of the transmission of the higher-priority message 2m . While in example b), 

there are 3 ST slots available so that each message gets one slot. Consequently 3m  is able to 

send during the first cycle. From Figure 5-1, we know that this results the shorter response 

time of 3m , which is from 16 in a) to 12 in b). 

Let’s consider the example c) and a). c) has the same slot number as example a) does so 

that 2m and 3m  in c) need to share the same slot. a) has the slot length of 4 while c) has longer 

slot length of 5. Even there are not enough slots for the messages in c), the change of slot 

length leads to the fact that one slot can accommodate both 2m and 3m , so that 3m still can 

send in the first cycle. As we can see from Figure 5-1, the response time of 3m in c) is even 

shorter than b). The drawback of changing the slot length is that it delays the response time of 

the message 1m  and 2m .  
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From the examples illustrated above, it is clear to tell that the different number of ST 
slots and slot lengths could affect the system schedulability. Different configurations of the 
parameters lead to the totally different system capacities. According to FlexRay specifications, 
there are regulations about the configurable parameters’ value. However, there always are 
optimal values of the parameters for a network. Therefore, it is very important to configure 
the system appropriately. The scheduler should not only can apply in FlexRay networks, but 
also can maximize the system capacity and increase system schedulability.  

5.1.1.2 Schedule Parameters 

As introduced in Section 4.4, this thesis uses slot multiplexing to increase the resource 
utility rate. The transmission schedule of a ST message m is represented by the 6-tuple vector: 

  Schedule , , , , ,m m m m m m ms p gNumberOfStaticSlots b r gNumberOfCycle (5.2) 

Every ST message starts to transmit at the base slot ID	ݏ௠	in base cycle ID	ܾ௠ . The 
transmissions repeat at a 	݌௠-slots interval for	݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠	times and at a 	ݎ௠-
cycles interval for	݃ܰݏ݈݁ܿݕܥ݂ܱݎܾ݁݉ݑ௠	times. We need to set these unknown parameters in 
order to get the schedule of the ST messages.  

Therefore, all the factors needed to set in ST segment are: 

 The length of the ST slot ݃݀ܵݐ݋݈ܵܿ݅ݐܽݐ; 

 The number of ST slots	݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ; 

 The schedulable constraints; 

 The values of parameters in the schedule of ST message which can meet the 
schedulable constraints; 

 The optimal allocation order of ST messages to reduce algorithm complexity; 

The following sections will analysis and give the solution of these problems one by one. 

5.1.2 Motivation for the Solutions 

The motivation for the solutions is to define the known factors first and tries to use the 
known factors to define the unknown parameters and problems defined in section 5.1.1.  

For a ST message m needed to be scheduled, the known parameters introduced in Section 

5.1.1 are the minimum inter-arrival time mT  and the message length mMessageLengthST . The 

following paragraphs will solve the unknown parameters, which are base cycle mb , cycle 

repetition mr , base slot ms and slot repetition mp , by using the known factors. Furthermore, 

this section presents the optimization configurations and schedulable constraints. 

 



CHAPTER 5. SCHEDULER DESIGN FOR SIMPLE FLEXRAY NETWORKS 49 

 

 

5.1.2.1 Length of ST slots ࢚࢕࢒ࡿࢉ࢏࢚ࢇ࢚ࡿࢊࢍ 

From the examples illustrate in Figure 5-1, we can tell that in order to have the shorter 
message response time we need to have either enough slots or enough length slots.  

It is easy to tell by comparing the examples a) and c) that longer slot length shortens the 
response time of the share-slot low-priority messages. However, this configuration increases 
other messages’ response time. The analysis shows a trade-off situation that it is hard to 
increase the response time of all messages at the same time. The improvement of the response 
time of a part of the messages leads to the degradation in another part of the messages. 
Therefore, we need to determine whether it is worth to do that. Alternatively, we could 
maintain the response time for most of the messages while sacrifice a few messages’ response 
time. 

As we can see in Figure 5-1, c) has the shortest response time of the message 3m because 

c) uses the frame packing to transmit multiple messages in one slot. However, it is clear that 
frame packing significantly increases the system’s computational complexity. Additionally, 

the response time of 3m  in c) does not significant decrease compared with the one in b). 

Therefore, this thesis does not consider the frame packing.  

The configuration of the ST slot length gdStaticSlot must assure that the ST frame and 

the channel idle delimiter and any potential safety margin fit within the static slot under 
worst-case assumptions [35]. In order to fit at least any ST messages in the slot, the payload 
of the ST frame should equal to the longest ST message in a cluster. According to the 

FlexRay specifications appendix B.4.9, the length of ST frame aFrameLengthStatic  has the 

following calculation formula: 

ሿݐ݅ܤሾ݃݀ܿ݅ݐܽݐ݄ܵݐ݃݊݁ܮ݁݉ܽݎܨܽ
ൌ ሿݐ݅ܤሾ݃݀ݎ݁ݐݐ݅݉ݏ݊ܽݎܶܵܵܶ݀݃	 ൅ ሿݐ݅ܤሾ݃݀ܵܵܨ݀ܿ	
൅ 	80ሾ݃݀ݐ݅ܤሿ ൅ ሾ2	ܿ݅ݐܽݐ݄ܵݐ݃݊݁ܮ݀ܽ݋݈ݕܽܲ݃	 െ ݁ݐݕܾ െ ሿ݀ݎ݋ݓ
∗ 	20ሾ݃݀ݐ݅ܤሿ ൅ 	ሿݐ݅ܤሾ݃݀ܵܧܨ݀ܿ	

(5.3) 

If the lengths of the ST messages are known in advance, the payload of the ST frame 

gPayloadLengthStatic  can be set to the longest ST message length: 

 maxgPayLoadLengthStatic MessageLengthST  (5.4) 
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The length of the ST slot is calculated as following: 

ሿܶܯሾݐ݋݈ܵܿ݅ݐܽݐܵ݀݃
ൌ 2	 ∗ ሿܶܯሾݐ݁ݏ݂݂ܱݐ݊݅݋ܲ݊݋݅ݐܿܣ݀݃	
൅ ሿݐ݅ܤሾ݃݀ܿ݅ݐܽݐ݄ܵݐ݃݊݁ܮ݁݉ܽݎܨሺሺሺܽ	ሺ࢒࢏ࢋࢉ	
൅ ሿሻݐ݅ܤሾ݃݀ݎ݁ݐ݈݅݉݅݁ܦ݈݁݀ܫ݈݄݁݊݊ܽܥܿ ∗ ሿݐ݅ܤ݀݃/ݏߤሾݔܽܯݐ݅ܤ݀݃	
൅ ሿݏߤሾݕ݈ܽ݁ܦ݊݋݅ݐܽ݃ܽ݌݋ݎܲ݊݅ܯ݀݃	
൅ ሿܶܯ/ݏߤሾ݇ܿ݅ݐ݋ݎܿܽܯሿሻሻ/ሺ݃݀ݏߤሾݕ݈ܽ݁ܦ݊݋݅ݐܽ݃ܽ݌݋ݎܲݔܽܯ݀݃
∗ ሺ1	 െ 	ሻ		ሻሻݔܽܯ݊݋݅ݐܽ݅ݒ݁ܦ݇ܿ݋݈ܥܿ	

(5.5) 

Function ( )ceil x returns the nearest integer greater than or equal to x. From formula (5.5) 

we can tell that the length of the ST slot gdStaticSlot  not only related with the ST frame 

length aFrameLengthStatic  but also related with some system parameters. The values of 

the system parameters in formula(5.3) and formula(5.5) are regulated in FlexRay 
specifications.  

Various errors influence the system attainable precision of the clock synchronization that 
can be achieved. The system precision is mainly influenced by the network topology. The 
large and complex network will result in low synchronization accuracy [41]. 
 has the range from 1 to 63 MT and must be greater than the		ݐ݁ݏ݂݂ܱݐ݊݅݋ܲ݊݋݅ݐܿܣ݀݃
attainable precision [11]. Thus, the simpler the network is, the smaller 
the  value and ST slot size are. Moreover, the length of the ST	ݐ݁ݏ݂݂ܱݐ݊݅݋ܲ݊݋݅ݐܿܣ݀݃	
segment is fixed, so the smaller slot size leads to more slots available in the CC. 

According to FlexRay specifications, ܿݎ݁ݐ݈݅݉݅݁ܦ݈݁݀ܫ݈݄݁݊݊ܽܥ	 is fixed to 11 gdBit. 
	ݐ݅ܤ݀݃ and ݃݀ݔܽܯݐ݅ܤ	 have different values for different bus bit rates. The values of 
 are 0.4006μs, 0.2003μs and 0.10015μs	ݔܽܯݐ݅ܤ݀݃ are 0.4, 0.2, 0.1μs and the value of		ݐ݅ܤ݀݃
for bus bit rate 2.5, 5 and 10Mbit/s respectively. ݃݀ݕ݈ܽ݁ܦ݊݋݅ݐܽ݃ܽ݌݋ݎܲ݊݅ܯ and 
 is from 1		݇ܿ݅ݐ݋ݎܿܽܯ݀݃ .both have the ranges from 0 to 2.5 μs	ݕ݈ܽ݁ܦ݊݋݅ݐܽ݃ܽ݌݋ݎܲݔܽܯ݀݃
to 6 μs. ܿݔܽܯ݊݋݅ݐܽ݅ݒ݁ܦ݇ܿ݋݈ܥ	is fixed to 0.0015. ݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎ	is from 3 to 15 gdBit. 
equals to	ܿ݅ݐܽݐ݄ܵݐ݃݊݁ܮ݀ܽ݋݈ݕܽܲ݃ .are fixed to 1 and 2 gdBit respectively	ܵܧܨ݀ܿ and	ܵܵܨ݀ܿ

max
mMessageLengthST  , which is from 0 to 127 two-byte-words. 

It is important to notice that the payload length of the ST frame gPayloadLengthStatic  

increases only in two-byte-word unit, which equal to 20 gdBit in FlexRay specifications. 
However, the unit should unify to bit for the calculations, which equals to 1.25 gdBit.  

5.1.2.2 Number of ST slots gNumberOfStaticSlots  

If the length of the ST segment and the length of the ST slot gdStaticSlot  are known, 

the number of ST slots gNumberOfStaticSlots  is known.  

 busST
gNumberOfStaticSlot

gdStaticSlot
  (5.6) 
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Equation (5.6) calculates the maximum number of ST slots available in the ST segment. 
Since this thesis does not consider the frame packing, the scenario c) is not possible. From the 
comparison of example a) and b), it is clear that enough number of ST slots could shorten the 
response time of the messages. However, the actual used slots number cannot excess the 
maximum available number of slots. The actual number of the used slots is not known until 
the generation of the scheduling table.  

On one hand, the scheduler need to guarantee the messages have opportunities to 
transmit within their deadlines, on the other hand, it should avoid the slot over allocations to 
increase the system capacity. Therefore, the ST slots allocation should base on the minimum 
requirements of the messages. In other words, the number of ST slots allocated to a message 
should close to the required slots number by the messages.  

5.1.2.3 Schedulable Constraints 

A ST message m is scheduled if it satisfies the following constraints: 

1. The message transmission finishes before the message’s deadline mD for every 

message-arrival. The worst-case response time is smaller than the deadline mD . 

The mathematic expression is: 

 ,ST m mm M R D    (5.7) 

STM is the ST message set in a cluster. mR is the worst-case response time of 

message m. This constraint suits for any schedulable systems, not only FlexRay 
system.  

2. The FlexRay 2005 specifications regulate the transmission buffer between the 
host and the CC is non-queued buffers. A non-queued transmit buffer is a data 
storage structure in which new values overwrite former values [11]. To avoid buffer 
overwriting, the message transmission should finish before the next message-arrival. 

Therefore, in the worst-case scenario, message m’s deadline mD , namely the 

expiration time, equals to the minimum inter-arrival time mT  of the messages. The 

mathematic expression is: 

 ,ST m mm M D T    (5.8) 

5.1.2.4 Base cycle	࢓࢈ and base slot ࢙࢓ 

V denotes the maximum vector space of the schedule. The X-axis of V is the ST slot ID 

with the maximum value of	݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ. The Y-axis of V is the cycle ID with 

the maximum value of 63. V represents the maximum system capacity of FlexRay protocol.  
Although the arrivals of ST messages are aperiodic, the transmission schedules of the ST 

messages are periodic. If the first transmission position ( , )m ms b  for the message m is 
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determined, the following transmission slots are known. It is clear that the position ( , )m ms b is 

very important to the message’s schedule. Point ( , )m ms b  is called reference point. This thesis 

defines a subset ofV , denoted by mV , to represent all possible positions of the reference point 

of message m, ሺݏ௠, ܾ௠ሻ ∈ ௠ܸ. In other words, the searching space of message m’s schedule is

mV , mV V .  

If the message is transmitted periodically, the transmission timeline, from this message’s 
point of view, becomes the multiples of its period. Every small interval has the same duration 
as its transmission period and all are the same. The possible position for its reference point 
only has to choose from one of the spare slots in this interval. The following transmission 
instances are just as the repetition of the reference point in every interval. Therefore once the 
spare slot for the reference point is found, all of the following transmission instances can be 
guaranteed to successfully schedule. If we assume the schedule for message m repeats every 

௠݌ -slots and every 	ݎ௠ -cycles, the possible values of the base slot ݏ௠  are  1, mp and the 

possible values of the base cycle ܾ௠ are  0, 1mr   because of the periodic transmission of 

messages.  

Here we use the notation mS  to represents the possible values of base slot ݏ௠  which 

defined as follow: 

  1, , ,m m m m mS p s S s    (5.9) 

And use the notation mCC to represents the possible values of base cycle 	ܾ௠  . It is 

defined as follow: 

  0, 1 , ,m m m m mCC r b CC b     (5.10) 

Therefore the searching space of the reference point of messages m  is defined as: 

  ,m m mV S CC  (5.11) 

5.1.2.5 Cycle repetition	࢘࢓and slot repetition ࢓࢖ 

The analysis of base cycle mb and base slot ms show that these two values are directly 

related to the values mr and mp . The previous section already set the searching space of ms  and

mb . So this section will discuss the constraints of mr and mp .  

It is obvious that the worst-case response time mR is related to mr and mp . 

  , min
sST m m Nm M R T m M    is the constraint of mR  defined in Section 5.1.1. 

Furthermore, the design goal of the ST scheduler is allocating the slots to messages in the 
resource-saving way. To avoid ST slots wasting caused by over allocation, the cycle 
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repetition mr  should be the maximum value that satisfies equation(5.7). Similarly, the slot 

repetition mp  also should be the maximum value that satisfies equation(5.7).  Furthermore, to 

ensure the messages’ transmission patterns match with each other better and the concurrent 

transmissions, we deduce the constraint for mr and mp as followings: 

   max 2 0,6 , ,n
m m mr n n R D     (5.12) 

   2max 2 0, log / , ,n
m m mp n gdCycle gdStaticSlot n R D       (5.13) 

The slots that occupied by the schedule of message m are represented as a 2-tuple vector 

set mbuffer :  

     buffer = 1 , 1m m m m ms m p b n r       (5.14) 

 
   1, , ,    1, ,m mm gNumberOfStaticSlots m n gNumberOfCycle n   

 

mgNumberOfStaticSlots is the number of slots per cycle message m occupied.

mgNumberOfCycle is the number of cycles per 64 cycles message m occupied. After the 

message m is scheduled, the slots occupied by this schedule needs to be eliminated from the 

reference point’s searching space 1mV   of the next message m+1. 

5.1.2.6 Detailed parameters based on the message types 

Section 5.1.1 defined that the schedule of message m is represented by a 6-tuple vector

 , , , , ,m m m m m ms p gNumberOfStaticSlots b r gNumberOfCycle . The messages need to be 

scheduled are divided into three types, based on the relationship between their deadlines and 

the CC length gdCycle . 

The following paragraphs illustrate examples of three message-types’ schedules and 
analyze the unknown parameters and schedulable constraints based on the transmission 
characteristics. 
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࢓ࡰ ൐   ࢋ࢒ࢉ࢟࡯ࢊࢍ
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1

63
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3
2

0
1 2

gNumberOfStaticSlots

1m

1m

1m

 

Figure 5-2 Example message schedule for ࢓ࡰ ൐  ࢋ࢒ࢉ࢟࡯ࢊࢍ

If mD is longer than the CC length gdCycle , the message m only needs one ST slot per 

cycle and does not need to use all 64 cycles. Therefore, the slot repetition

mp gNumberOfStaticSlots . Because of m mD T , the minimum inter-arrival period mT  is 

also longer than the CC length. Thus, this message type uses the slot multiplexing to increase 
the shared-resource utility rate.  

An example schedule is shown in Figure 5-2. 1m and 2m share the same ST slot ID 1. 

The cycle repetition 1r and 2r are 2 so that these two messages take turns to transmit. In general, 

this type of messages only gets one ST slot per cycle and transmits once per mr cycles.  

mD
 

Figure 5-3 Worst case response time of	࢓ࡰ ൐  ࢋ࢒ࢉ࢟࡯ࢊࢍ
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As shown in Figure 5-3, the worst-case response time happens when message arrives just 
after the start of its allocated slot. The worst-case response time is the red duration in Figure 
5-3. The mathematic expression for this type of worst case response time is: 

 m mR r gdCycle   (5.15) 

Equation(5.12) sets   max 2 0,6 , ,n
m m mr n n R D    . Therefore, the value of mr

for this type of messages can be deduced from equation(5.12) and equation(5.15): 

  max 2 0,6 , ,n m
m m

D
r n n r

gdCycle

 
    

 
 (5.16) 

The number of cycles that message occupied in 64 cycles is: 

 
64

m
m

gNumberOfCycle
r

  (5.17) 

In conclusion, the schedule for the message setሼ݉|ܦ௠ ൐   :ሽ has the characteristic݈݁ܿݕܥ݀݃

 ݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠ ൌ 1 

 ݈݃ܰ݁ܿݕܥ݂ܱݎܾ݁݉ݑ௠ ൌ
଺ସ

௥೘
 

 ݎ௠ ൌ ݔܽ݉ ቄ2௡ቚ݊ ∈ ሾ0,6ሿ, ݊ ∈ Ժ, ௠ݎ ൑
஽೘

௚ௗ஼௬௖௟௘
ቅ 

 ݌௠ ൌ  ݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑܰ݃
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࢓ࡰ ൌ   	ࢋ࢒ࢉ࢟࡯ࢊࢍ
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Figure 5-4 Example message schedule for ࢓ࡰ ൌ  ࢋ࢒ࢉ࢟࡯ࢊࢍ

Messages that ܦ௠ equals to ݈ܿݕܥ݀݃ are considered as a special case of 
ሼ݉|ܦ௠ ൐ ௠ݎ	ሽ with݈݁ܿݕܥ݀݃ ൌ 1. The message deadlineܦ௠equals to the CC length	݈݃݀݁ܿݕܥ. 

An example schedule is shown in Figure 5-4. 0m uses ST slot ID 1. The cycle repetition 0r is 1 

because	ܦ௠ ൌ  In general, this type of messages only gets one ST slot per cycle and .݈݁ܿݕܥ݀݃

transmits in every cycle. Therefore	ݎ௠ ൌ 1 and 1mgNumberOfStaticSlots  . 

mD

 

Figure 5-5 Worst case response time of ࢓ࡰ ൌ  ࢋ࢒ࢉ࢟࡯ࢊࢍ

In conclusion, the schedule for the message set ሼ݉|ܦ௠ ൌ   :ሽhas the characteristic݈݁ܿݕܥ݀݃

 ݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠ ൌ 1 
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 ݈݃ܰ݁ܿݕܥ݂ܱݎܾ݁݉ݑ௠ ൌ 64 

 ݎ௠ ൌ 1 

 ݌௠ ൌ  ݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑܰ݃

࢓ࡰ ൏   ࢋ࢒ࢉ࢟࡯ࢊࢍ

0m

0m

0m

0m

0m

0m

0m

0m

1

63

7
6
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3
2

0
1 2

gNumberOfStaticSlots

0m

0m

0m

0m

0m

0m

0m

0m

0m

0m

3 4 5
 

Figure 5-6 Example message schedule for ࢓ࡰ ൏  ࢋ࢒ࢉ࢟࡯ࢊࢍ

The messages that mD shorter than gdCycle  has to assign multiple ST slots per cycle to 

be able to transmit every message-arrival within the deadline. The slot repetition mp
 has the 

constraint  2 , 0,9 ,n
mp n n   in order to better match with other messages’ schedules. 

An example schedule is shown in Figure 5-6. 0m is allocated ST slot ID 1 and 3. The cycle 

repetition 0r is 1 because mD gdCycle . In general, this type of messages gets multiple ST 

slots per cycle and transmits in every cycle. Therefore 1mr  .  
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mD

 

Figure 5-7 Worst case response time of ࢓ࡰ ൏  ࢋ࢒ࢉ࢟࡯ࢊࢍ

The worst case response time is the red duration shown in Figure 5-7. The mathematic 
expression for this type of worst case response time is: 

 m mR p gdStaticSlot   (5.18) 

Equation(5.13) sets ௠݌ ൌ ݔܽ݉ ቄ2௡ቚ݊ ∈ ቂ0, ଶ݃݋݈ ቀ
௚ௗ஼௬௖௟௘

௚ௗௌ௧௔௧௜௖ௌ௟௢௧
ቁቃ , ݊ ∈ Ժ, ܴ௠ ൑ ௠ቅܦ . 

Therefore, the value ݌௠	of this type of messages can be deduced from equation(5.13) and 
equation(5.18): 

௠݌  ൌ ݔܽ݉ ቄ2௡ቚ݊ ∈ ቂ0, ଶ݃݋݈ ቀ
௚ௗ஼௬௖௟௘

௚ௗௌ௧௔௧௜௖ௌ௟௢௧
ቁቃ , ݊ ∈ Ժ, ௠݌ ൑

஽೘
௚ௗௌ௧௔௧௜௖ௌ௟௢௧

ቅ (5.19) 

Because	ܦ௠ ൏  the number of cycles assigned to message m is the maximum ,݈݁ܿݕܥ݀݃
number of cycle counter 64:  

௠݈݁ܿݕܥ݂ܱݎܾ݁݉ݑܰ݃  ൌ 64 (5.20) 

The number of ST slots message m occupied per cycle equals to the maximum number of 
transmissions during one cycle: 

 m
m

gdCycle
gNumberOfStaticSlots

p gdStaticSlot

 
   

 (5.21) 

In conclusion, the schedule for the message setሼ݉|ܦ௠ ൏   :ሽ has the characteristic݈݁ܿݕܥ݀݃

 ݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠ ൌ ቒ ௚ௗ஼௬௖௟௘

௣೘ൈ௚ௗௌ௧௔௧௜௖ௌ௟௢௧
ቓ 

 ݈݃ܰ݁ܿݕܥ݂ܱݎܾ݁݉ݑ௠ ൌ 64 

 ݎ௠ ൌ 1 

 ݌௠ ൌ ݔܽ݉ ቄ2௡ቚ݊ ∈ ሾ0, ݈݁ܿݕܥଶሺ݃݀݃݋݈ ⁄ݐ݋݈ܵܿ݅ݐܽݐܵ݀݃ ሻሿ, ݊ ∈ Ժ, ௠݌ ൑
஽೘

௚ௗௌ௧௔௧௜௖ௌ௟௢௧
ቅ 
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5.1.2.7 Allocation order 

The preceding discussion determined the ST slot length, the number of ST slot, and the 

constraints of mr and mb . The next question will be: which message should be scheduled first 

so that the system might have a better schedulability? 

In ST segment scheduling, all of the ST messages should meet their deadlines in order to 
have a schedulable system. The scheduling order of the ST messages follows the principle 
that the least flexible message is allocated first. In other words, the messages need to be 
scheduled first are the ones that have the least feasible schedules, namely the flexibility of the 
message. The message’s flexibility is represented by the searching-space size of the reference 

point	 ௠ܸ ൌ ሺܵ௠, ௠ሻ. ܥܥ 0, 1m mS p  and  0, 1m mCC r  . Therefore the size is mp × mr .  

Furthermore, the 2D area is less flexible than the 1D area. Since the transmissions of the 
messages in set	ሼ݉|ܦ௠ ൏  ሽ form a 2D area, they are less flexible than other types of݈݁ܿݕܥ݀݃
messages. Therefore, the messages in set	ሼ݉|ܦ௠ ൏  ሽ are scheduled first, which have݈݁ܿݕܥ݀݃

smaller value of mp . In conclusion, the allocation order follows the ascending order of the 

values mp and then in ascending order of values mr . 

5.1.3 ST Segment Scheduling Algorithm 

The motivations to solve the problems are already presented in section 5.1.1.  Here we 
provide the ST scheduling algorithm for a known network in Algorithm 1 based on these 
solutions. 

Input:  

 Bus bit rate	ࢊࢋࢋ࢖࢙_࢙࢛࢈ 

 ST message setࢀࡿࡹ ࢀࡿࡹ ,  is the ST message set waiting to send in a cluster, 

 , ,m m STm T MessageLengthST m M   

Output: 

6m Scheduling matrix STSimpleScheduler :  

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

... ... ... ... ... ...

m m m m m m

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle















 
 

 

Simple FlexRay ST scheduling algorithm 
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for STm M  do   // assign values to different parameters based on message types 

 max= ,  number of active stars in the topologygdStaticSlot f MessageLengthST  

busST
gNumberOfStaticSlot

gdStaticSlot
  

m mD T
  

if 30000mD   

30000mD   

end if 

if mD gdCycle  

1mr 
 

 2max 2 0, log / , ,n m
m m

D
p n gdCycle gdStaticSlot n p

gdStaticSlot

 
      

 
 

m
m

gdCycle
gNumberOfStaticSlots

p gdStaticSlot

 
     

64mgNumberOfCycle 
 

else 

mp gNumberOfStaticSlots
 

1mgNumberOfStaticSlots   

if mD gdCycle   

 max 2 0,6 , ,n m
m m

D
r n n r

gdCycle

 
    

   

64
m

m

gNumberOfCycle
r


 

else    // message type mD gdCycle  
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1mr    

64mgNumberOfCycle   

end if 

end if 

end for 

min max 2,
ST

m

m M m

gNumberOfStaticSlots
gNumberOfStaticSlots

r 

  
      

  

if mingNumberOfStaticSlots gNumberOfStaticSlots  

output non-schedulable, exit  //system non-schedulable 

end if 

Sort the messages STm M   in ascending order of the values mp and then in ascending order 

of values mr  store them in the message list STL
 

௠௜௡݌ ൌ minሺ݌௠ሻ  //sort finish 

   , 0,0use use useV S CC 
 

for STm L  do 

Slot ID set  1,m mS p  

CC set  0, 1m mCC r 
 

 ,m m mV S CC
 

m m useV V V  // update the available space of the reference point 

if mV  is empty set 

output system non-schedulable, exit 

end if 

for  ሺݏ௠, ܾ௠ሻ ∈ ௠ܸ 

for  1, ,mm gNumberOfStaticSlots m     
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for  1, ,mn gNumberOfCycle n    

    buffer = 1 , 1m m m m ms m p b n r       

end for 

end for 

use use mV V buffer 
 

௡௘௪ݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑܰ݃ ൌ ௠ݏ ൅ ሺ݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠ െ 1ሻ ൈ ௠݌  
//update used maximum ID ST slots 

if new usegNumberOfStaticSlots gNumberOfStaticSlots  

 use newgNumberOfStaticSlots gNumberOfStaticSlots  

end if 

take m out of STL , update STL  

if STL is empty 

output STSimpleScheduler  matrix, exit  //system schedulable 

end if 

continue with next STm L  

end for 

end for       // continue with next value of gdCycle  

Algorithm 1 Pseudocode for Simple FlexRay ST scheduling algorithm 

In the worst-case scenario, the complexity of the algorithm is  O n . n is the number of 

ST messages. 

5.2 Scheduler Design for Simple FlexRay DYN Segment  

Before analysis of this section, we would like to present some notations which are uses 
later. 

 busDYN is the length of the DYN segment; 

 gdMinislot is the duration of a Minislot; 
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 mMessageLengthDYN  is the number of bits constituting the dynamic message m

in the cluster; 

 mpLatestTx  is the number of the last Minislot in which a frame transmission can 

start in the DYN segment; 

 mR is the worst-case response time of the DYN message m; 

5.2.1 Problem definition 

The analysis of ST segment shows that the ST segment communication is designed for 
the periodic tasks and messages that have a minimum inter-arrival time. These tasks and 
messages are time-triggered, which require highly predictability and guaranteed latency. 
However, automotive communication not only has the periodic tasks and messages but also 
has the aperiodic ones. The aperiodic tasks and messages do not have a maximum inter-
arrival bit rate. It is necessary to have another media access scheme to adapt the transmission 
and improve the network efficiency. The media access mechanism in DYN segment of the 
FlexRay CC uses event-triggered FTDMA. It is the Minislot-based scheme to adapt the 
flexible transmissions. The messages transmitted in DYN segment are called DYN messages. 

There are two differences between ST segment and DYN segment communications. 
Firstly, the length of the ST slot is fixed in a schedule while the length of the DYN slot varies 
based on the size of the frame transmitted in that slot. Secondly, the transmissions of other 
messages do not affect the response time of the ST messages since every ST message is 
allocated a ST slot to transmit. On the contrary, the transmission of other messages affect the 
response time of the DYN message9 since the DYN messages do not have a fixed slot for 
transmission. The DYN message only has a FrameID that can be used to arbitrate the shared 
resource, in this case is the FlexRay bus. 

The aperiodic tasks or messages arrive unpredictably. They do not have an average inter-
arrival time. Therefore, the known parameters of the DYN message m  are message length

mMessageLength and the deadlines mD . Thus, a DYN message m can be represented by 2 

parameters: 

  ,m mm D MessageLengthDYN  (5.22) 

Since the DYN message is the event-triggered transmission, there is no fixed scheduling 
table for the message in advance of the system start. So we need to find another method to 

                                                      

9    The discussion of DYN segment don’t consider the frame packing problem as the consistent policy of the 
ST segment. Therefore the DYN message can be seen as DYN frame. 
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evaluate the system schedulability which is different from the method to see whether the 
scheduler can generate a valid scheduling table. Because the unpredictability of the DYN 
message arriving, to guarantee a system is schedulable, the best way is to ensure the system is 
schedulable in the worst-case scenario, even this method is a little pessimistic. To see if the 
communication network can complete the transmission of every DYN message within its 
deadline, even in the worst case, is the constraint used to evaluate the system schedulability. 
In other words, the worst-case response time of the message should be shorter than its 
deadline: 

 ,DYN m mm M R D    (5.23) 

DYNM is the DYN message set in a cluster. mR is the worst-case response time of message 

m.  

Just like the analysis in Section 4.5, the worst-case scenario of a DYN message 
transmission happens when the higher-priority messages and the lower frame ID messages are 
all queuing for transmission. We assume all the DYN messages are ready for transmission. 
We calculate the worst-case response time	R୫ of every DYN message to see whether it is 
smaller than the deadline. The calculation of the worst-case response time is presented in 
Section 4.5. Thus, the message is scheduled if the scheduler can guarantee the response time 
at least equals to the deadline.  

Configurable Parameters 

Let us consider the examples first and discuss the different message response times and 
the related parameters. 
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Figure 5-8 Examples of the configuration of DYN segment 

The examples of the different configurations in DYN segment are shown in Figure 5-8. 
The network of the examples consists of two nodes N1 and N2. They are connected by a bus. 
The messages transmitted on the nodes are shown in figure.  

Let us compare example a) and b). These two examples have the same DYN segment 

length but different Frame ID allocations. As we can see in Figure 5-8, 1m and 3m are 

messages in node N1. They share the same Frame ID=1 in example a) while use the different 

Frame ID 1 and 3 in examples b) and c). In example a), 3m is the lowest priority among all 

shared Frame ID messages. If they both ready at the same time, the transmission of 3m  is 

delayed one cycle by the transmission of higher-priority 1m . This situation is similar to ST 

segment that different ST messages share the same Slot ID. We use Frame ID instead of Slot 
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ID in DYN segment. In example a), the delay of 3m  suspends the transmission of 2m . In 

example b), 3m has its own Frame ID so that it has the right to arbitrate the bus access and can 

transmit in the first cycle. This reduces the response time of 2m  since it does not need to wait 

for 3m .  

Let us consider example b) and c). These two examples have the same Frame ID 

allocation but different DYN lengths. The response time of 2m  is shorter in c) than it in b). 

Because b) does not have enough time in DYN segment after the transmission of 1m  to 

accommodate 2m  while c) has enough time in DYN segment to accommodates 2m  . 3m  still 

cannot fit in the first cycle in c) even it has its own Frame ID. However, at least we can say 
the longer DYN length gives more possibilities to the messages to reduce the response time.  

The results are very similar to ST segment. The capacity of DYN segment is strongly 
affected by the values of the DYN length and the frame ID. Furthermore, the transmission 

order and response time of message 1m does not change in example a), b) and c). Since it has 

the highest priority among all of the messages, it cannot be affected by the other messages’ 
transmission. However, this does not indicate that the higher-priority messages have shorter 

response time. Message 3m and 2m in example b) and c) have the same Frame ID, however, the 

response time of 2m is not always shorter than 3m .The reason is the size of the message also 

affect the transmission order and the response time. 

The problems in the DYN segment scheduler design are:  

 Setting the order of the DYN messages’ Frame ID assignment to achieve the best 
system schedulability; 

 Calculation ࢞ࢀ࢚࢙ࢋ࢚ࢇࡸ࢖; 

 Calculating the message worst-case response time	࢓ࡾ ; 

 Setting the length of the DYN segment	࢙࢛࢈ࡺࢅࡰ ; 

5.2.2 Motivation for the Solution 

5.2.2.1 Assigning the Frame ID 

The worst-case response time analysis in Section 4.5 gives the conclusion that the 

messages in sets ( )hp m , ( )lf m and ( )ms m  may cause the delay of the message m. Delay 

reduction optimizes the DYN messages’ transmission. The illustration in Figure 5-8 leads to 

the conclusion that shared FrameID  causes large delay. Therefore, allocating a Frame ID to 
each message in the cluster reduce the worst-case response time of the lower priority 
messages.  
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The value of Frame ID corresponds to the priority. The next question is how to allocate 
the priority to the DYN messages. The discussions of previous sections show that the message 
size and the priority both could affect the message’s response time. We can observe from 
Figure 5-8 that the response time of a larger size message that has low priority is expected 
very long. The long response time is not a problem as long as the message can meet the 
deadline. Frame ID ‘1’ denotes the highest priority in this thesis. 

Therefore, we allocate the FrameID to messages from 1, namely the highest priority, 

follows the descending order of the value m

m

MessageLengthDYN

D
. If the messages have the 

same value m

m

MessageLengthDYN

D
, the Frame-ID assignment is in descending order of the 

value	ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ௠. 

5.2.2.2 Calculation ࢞ࢀ࢚࢙ࢋ࢚ࢇࡸ࢖ 

Based on the discussion of the message response time, we can tell that for a given DYN 

message sets, if the mFrameID and the message sizes ௠݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ	  are known, the 

worst-case response time ܴ௠  only varies with the DYN segment length	ܻܦ ௕ܰ௨௦ , namely the 
CC length ݈݃݀݁ܿݕܥ and ST segment length	ܵ ௕ܶ௨௦.  

To calculate the worst-case response time	ܴ௠, the parameter ݔܶݐݏ݁ݐܽܮ݌௠ needs to be 

determined first. Section 4.5.3 already introduced the concept of mpLatestTx that the 

parameter mpLatestTx shows the number of the last Minislot in which a frame transmission 

can start in the DYN segment [11]. A DYN message cannot be transmitted at the instant that 

the value of Minislot counter is smaller than mpLatestTx .The value of pLatestTx  depends 

on the size of the DYN frames10 and the size of the Minislot. According to the FlexRay 

specification, the approximate calculation formula of pLatestTx is: 

ሿݐ݋݈ݏ݅݊݅ܯሾ	ݔܶݐݏ݁ݐܽܮ݌ 	
൑ –		ݏݐ݋݈ݏ݅݊݅ܯ݂ܱݎܾ݁݉ݑܰ݃ 	ሿݏߤሾ	ܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨܽ	
		ሿݏߤሾ	ݐ݋݈ݏ݅݊݅ܯ݀݃	/

(5.24) 

The value of pLatestTx  mainly related with the number of Minislots in the DYN 

segment gNumberOfMinislots  and the DYN frame length. This thesis ignores the length of 

network idle time (NIT) and symbol window (SYM). The number of Minislots

gNumberOfMinislots  in DYN segment can be approximately calculated as following: 

                                                      

10  The calculation simplified the frame length into the message length. 
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ݏݐ݋݈ݏ݅݊݅ܯ݂ܱݎܾ݁݉ݑܰ݃ ൎ ܻܦ ௕ܰ௨௦/݃݀ݐ݋݈ݏ݅݊݅ܯሾݏߤሿ	

(5.25) 

FlexRay specifications define the DYN frame length aFrameLengthDynamic as 

following: 

ሿݏߤሾ	ܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨܽ
ൌ ሺ	݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎሾ݃݀ݐ݅ܤሿ ൅ 	ݐ݅ܤ݀݃	83	
൅ ሿݐሾܾ݅	ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ	 ∗ ሻݐ݅ܤ݀݃	1.25	 ∗ 		ሿݏߤሾݐ݅ܤ݀݃

(5.26) 

As we can see in formula(5.24), pLatestTx  relates with other system parameters. 

According to FlexRay specification, the value of the system parameter gdMinislot is from 2 

to 63 MT. mMessageLengthDYN is from 0 to 127 two-byte-words. 

5.2.2.3 Calculate the message worst-case response time mR  

The discussion in Section 4.5 has already presented the detail of the heuristic calculation 
formula of worst-case response time: 

ܴ௠ ൌ ௠ݓ ൅ ௠ܥ  ൌ ሺߪ௠ ൅ ݊ ௕ܶ௨௦ ൅ ᇱݓ
௠ሻ ൅ ሺܽܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨ௠ ⁄݀݁݁݌ݏ_ݏݑܾ ሻ	

ൌ
൫݈݃݀݁ܿݕܥ െ ሺܾܵܶݏݑ ൅ ሺ݉ܦܫ݁݉ܽݎܨ െ 1ሻ ∗ ሻ൯ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
,൫݈݂ሺ݉݉ݏ݈݁ܿݕܥݏݑܤ	 ሻ൯ݐ ∗ ݈݁ܿݕܥ݀݃ ൅ ሺ݉ܦܫ݁݉ܽݎܨ െ 1ሻ ∗ ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅

	൫ܾܵܶݏݑ ൅ ݉ݔܶݐݏ݁ݐܽܮ݌ ∗ ൯ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
	ሺܽܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨ ∗ ݐ݅ܤ݀݃ ⁄݀݁݁݌ݏ_ݏݑܾ ሻ	   

(5.27) 

In this thesis, there are no shared Frame ID DYN messages, namely the message 

set ,ሺ݉݌݄	 ሻݐ  is empty. Thus, the delay ,ሺ݉݌௠൫݄ݏ݈݁ܿݕܥݏݑܤ	 ሻ൯ݐ ൌ 0 . The solution of 

,൫݈݂ሺ݉݉ݏ݈݁ܿݕܥݏݑܤ ሻ൯ݐ  transforms into the 1DBP problem. In this case, the message set 

݈݂ሺ݉, 	ሻݐ represents the items, the DYN segments ܻܦ ௕ܰ௨௦   are bins, and the minimum 

capacity required to fill a bin is mpLatestT gdMinislot .  

5.2.2.4 Length of the DYN segment	࢙࢛࢈ࡺࢅࡰ 

The CC consists of ST segment and DYN segment in this thesis. The length of DYN 

segment busDYN  can be calculated as following:  

ܻܦ ௕ܰ௨௦ ൌ ݈݁ܿݕܥ݀݃ െ ܵ ௕ܶ௨௦                                       (5.28) 

According to FlexRay specification, the range of gdCycle is from 10 µs to 16000 µs. 

Moreover, the increment of the cycle length aims to accommodate different sizes of messages. 

The payload of the frame can increase only in two-byte-word unit, which equals to 20 gdBit
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in FlexRay protocol. Therefore, the algorithm should increase the cycle length in the same 
unit as the increment of the FlexRay frame payload.  

5.2.3 DYN Segment Scheduling Algorithm 

The motivations of the simple DYN scheduler design are presented in the previous 
section. Based on the solutions, we provide the simple DYN scheduling algorithm for a 
known network in Algorithm 2. 

Input:  

 Bus bit rate ࢊࢋࢋ࢖࢙_࢙࢛࢈ 

 The DYN message setࡺࢅࡰࡹ ,ࡺࢅࡰࡹ is maximum DYN message set waiting to send 

in a cluster,  , ,m m DYNm D MessageLengthDYN m M   

Output: 

System schedulable or non-schedulable 

Simple FlexRay DYN scheduling algorithm 

Sort the DYN messages DYNm M  in descending order of the value m

m

MessageLength

D
 and 

then in descending order of the value mMessageLength , store them in the message list DYNL  

Assign the Frame ID to the DYN messages with the order in list DYNL from 1 

// sort the messages and assign the Frame IDs 

for  ݈݃݀݁ܿݕܥ ൌ step  20 ݏߤ16000	݋ݐ	10  μsgdBit  

simple	FlexRay	ST	scheduling	algorithm  

ܻܦ ௕ܰ௨௦ ൌ ݈݁ܿݕܥ݀݃ െ ܵ ௕ܶ௨௦  

ݏݐ݋݈ݏ݅݊݅ܯ݂ܱݎܾ݁݉ݑܰ݃ ൌ ܻܦ ௕ܰ௨௦/݃݀ݐ݋݈ݏ݅݊݅ܯ  

for DYNm L
 

ሻݐሺܾ݅	ܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨܽ ൌ
ݎ݁ݐݐ݅݉ݏ݊ܽݎܶܵܵܶ݀݃ ൅ 	83 ൅
ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ ∗ 1.25  

௠ݔܶݐݏ݁ݐܽܮ݌ ൌ ݏݐ݋݈ݏ݅݊݅ܯ݂ܱݎܾ݁݉ݑܰ݃ െ ሺܽܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨ ∗
ݐ݋݈ݏ݅݊݅ܯ݀݃/ሻݐܾ݅݀݃   
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FFD	bin	packing	algorithm calculates the delay ,ሺ݈݂ሺ݉݉ݏ݈݁ܿݕܥݏݑܤ ,ሺ݉ݏ݉,ሻݐ  ሻሻݐ

ܴ௠ ൌ

൫݈݃݀݁ܿݕܥ െ ሺܵ ௕ܶ௨௦ ൅ ሺܦܫ݁݉ܽݎܨ௠ െ 1ሻ ∗ ሻ൯ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅

,௠൫݈݂ሺ݉ݏ݈݁ܿݕܥݏݑܤ	 ሻ൯ݐ ∗ ݈݁ܿݕܥ݀݃ ൅ ሺܦܫ݁݉ܽݎܨ௠ െ 1ሻ ∗ ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
	ሺܵ ௕ܶ௨௦ ൅ ௠ݔܶݐݏ݁ݐܽܮ݌ ∗ ሻݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
	ሺܽܿ݅݉ܽ݊ݕܦ݄ݐ݃݊݁ܮ݁݉ܽݎܨ ∗ ݐ݅ܤ݀݃ ⁄݀݁݁݌ݏ_ݏݑܾ ሻ		  

if ܴ௠ ൑   ௠ܦ

take ݉ out of list ܮ஽௒ே 

if ܮ஽௒ே is not empty 

continue with next message in list ܮ஽௒ே 

else  

output schedulable, exit 

end if 

else 

next value of ݈݃݀݁ܿݕܥ 

end if 

end for 

end for 

output non-schedulable, exit  //system non-schedulable 

Algorithm 2 Pseudocode for Simple FlexRay DYN scheduling algorithm 

The complexity of the algorithm is  O n . n is the number of DYN messages. 

5.3 Conclusion 

This chapter focuses on the ST and DYN segment scheduler-design in simple FlexRay 
network. We first analyzed schedulable constraints and configurable parameters of messages 
and decided the way to determine the value of these constraints. In the analysis of the ST 
segment, we classified the ST messages into three types and gave the values of the parameters 
in detail for each of these types. Afterwards, we decided the allocation order of the slot ID. In 
the analysis of the DYN segment, we focused on the allocation order of the frame ID and the 
calculation of the worst-case response time. In the calculation, the key parameter ݔܶݐݏ݁ݐܽܮ݌ 
is specially discussed. In the end of DYN segment discussion, we presented the scheduling 
algorithm.  
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6 
6 Scheduler Design for Switched 

FlexRay Networks 

The simple FlexRay schedulers design has already presented in Chapter 5. This chapter 
introduces a new FlexRay network that includes a new component called ‘FlexRay switch’. It 
has the similar conceptual features like the Ethernet network switch.  

The switch can isolate or combine different branches into separate clusters based on 
communication needs. Each cluster can work parallel. So each cluster has different schedules 
to maximize the use of the shared resource. During different slots, the clusters consist of 
different nodes. This is done by reforming clusters in each slot. In other words, ECUs belong 
to the different cluster during different slots. The switch FlexRay network is no longer 
communicates in broadcast mode. The clustering step has a crucial influence to increase the 
slot utility rate.  

This chapter we first will introduce the concept of switch FlexRay network. Then we will 
present scheduling algorithms for ST and DYN segment in switch FlexRay network 
respectively.  

6.1 Concept of Switched FlexRay Network 

According to FlexRay specifications, the existing component active star is a central 
component in the network. It is the good starting point to realize the switching function. 
Therefore the network replaces the active star with a switch in order to realize multiple paths 
of data synchronized transmission. 
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Figure 6-1 Simple FlexRay network with 4 nodes connected by active star 

 

Figure 6-2 Switched FlexRay network with 4 ports11 

Figure 6-2 shows a simple FlexRay network included eight nodes that are connected by 
an active star while Figure 6-2 shows a network includes a FlexRay switch that the eight 
nodes are connected by the switch. The blue and red lines represent the data flows. As we can 
see from two figures, the simple FlexRay network only has one data flow while switch 
FlexRay can has two independent data flows. The active star allows only one source node at a 
time while FlexRay switch allows multiple source nodes. It is clear to tell that switch FlexRay 
network significantly increase the system bandwidth. 

FlexRay switch cannot use the packet switching since it is used in the real time system. 
Predefined scheduling matrix stored in the switch decides the operation order of the ports. 

                                                      

11  The concept of port basiclly is equivalent to branch in this thesis. But port is more emphasis on the 
physical interface while branch is more emphasis on the whole system behind the interface. 
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Figure 6-3 Two clusters separately communicate during one slot 

 

Figure 6-4 One port close during one slot 

Figure 6-3 and Figure 6-4 are two different clustering examples of the same switched 
network. The switch has different branches which can isolate or group different branches into 
different clusters, namely the clusters, and to send data simultaneously based on the 
communication needs. The topology of the cluster could be bus topology, star topology or 
mixed topology. The maximum number of clusters depends on the number of switch ports. 
There is only one source node at a time in any cluster.  

After the introduction of switch FlexRay network, the following sections will discuss the 
related problems and the answers concerning the scheduler design for ST segment and DYN 
segment. 

6.2 Scheduler Design for Switched FlexRay ST Segment  

Before the discussion we would like to present some notations which are used later. 

 mMatrix is the matrix of message m indicating the message transmission path; 

 CycleNumber,SlotIDMatrix is the switching matrix for a specific slot ID and cycle 

number; 
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 availablePort  is the set of unoccupied ports in the switch; 

 mPort  is the set of source and destination ports of message m; 

 usePort is the These three constraints indicate that if a switch port functions as the 

disconnected port, the source port or the destination port involving any 
communication during a slot it is seen as an occupied port. The occupied port set is 
notated 

 switchPort is the set of the ports for the FlexRay switch; 

6.2.1 Problem definition 

The best way to solve a problem is to analyze the differences between the existing 
problems and the new problems and get the solutions from the existing solutions. After the 
analysis of simple FlexRay ST scheduler design, problems and solutions of this scheduler are 
clear. This section deals with the ST segment scheduler design in switch FlexRay network. 
Therefore, the best starting point of the new scheduler is to consider the differences between 
the working principle of switch FlexRay network and the simple FlexRay network. Then start 
to find solutions for these differences and design the new scheduler. 

The main difference of these two networks is the FlexRay switch. The simple FlexRay 
network supports one data source sending at a time. Switched FlexRay network includes a 
FlexRay switch that enables multiple data sources to send data simultaneously.  

Every message has a message transmission path that consists of one source node and one 
or more destination nodes. Each node is associated with a fixed switch port. From the 
message’s point of view, the switching path is a set of source and destination nodes. From the 
switch’s point of view, the switching path is a set of source and destination ports. The nodes 
connected with the same port can be seen as one simple FlexRay branch.  

 

Figure 6-5 Concept of branch 
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The concept of the branch is shown in Figure 6-5. As it is seen from the figure, the 
network is divided into four branches since the switch has four ports. The nodes N4 and N5 
are connected with the same port in the switch. These two nodes form a simple FlexRay 
branch. It is clear that the maximum number of the branches equals to the number of the 
switch ports.  

The ST messages transmitted in the switch FlexRay network are called switched ST 
message. The switched ST messages can be further divided into two types: the one transmits 
through the switch is called the after-switch message, alternatively, the one does not transmit 
through the switch is called the local communication message.  

The after switch ST messages have the source and destination nodes in the different 
branches. Thus, the messages’ source and destination information need to transmit to the 

FlexRay switch to indicate the switching path. This thesis introduces the notation mMatrix  to 

represent the switching path of message m. We assume the messages transmitted in the 
network have fixed switching path at different slots. Furthermore, the switching path needs to 
be known by the scheduler in advance. Therefore, on the basis of simple ST message’s 
representation, the switched ST messages can be represented by a 4-tuple vector: 

  , ,m m mm T MessageLengthST Port mMatrix,  (6.1) 

mPort  is the set of source and destination ports of message m. mMatrix is the matrix of 

message m indicating the message transmission path. 

The local communication ST messages have the source and destination nodes in one 

branch. The set of transmission related ports mPort only contains one element. The 

transmission of the message never passes through the switch in the network. Hence the switch 

does not need to know the transmission path mMatrix . Therefore, the local communication 

ST messages can be seen as a special case of the switch ST messages that the transmission 

path mMatrix is 0.  

The concept of cluster introduced in Section 6.1 is the key change in the switch FlexRay 
network. Multipath transmission significantly increases the system bandwidth. To enable 
multipath transmissions, we need to group ports to form the clusters, namely a broadcast 
group, based on the communications. The communication inside one cluster is the same as the 
simple FlexRay network. The time grid of the ST segment is the ST slot, so the clusters in the 
network regroup every slot. For each ST slot, there should be a corresponding switching 
matrix.  

Like the simple ST messages, the switched ST messages are considered schedulable if it 
is possible to generate a valid static scheduling table. Hence the switched ST scheduler aims 
to generate a valid ST scheduling table after the clustering. The schedulable constraints of the 
switched ST scheduler are the same as the ones in the simple ST scheduler.  
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Schedule Parameters 

In simple FlexRay network, the transmission follows the scheduling table stored in the 
hosts. In switch FlexRay network, the simultaneous transmissions in ST segment are realized 
by the scheduling tables stored in the nodes’ hosts and the switching matrix table stored in the 
switch. The scheduling table consists of the same parameters as the simple FlexRay 
scheduling table: 

  Schedule , , , , ,m m m m m m ms p gNumberOfStaticSlots b r gNumberOfCycle (6.2) 

The switching matrix table consists of a set of switching matrixes of different slot IDs in 
different cycles during the global static scheduling period 	 ௦ܶ௦ . Therefore, the number of 
matrixes in the matrix table depends on the number of ST slots and number of CCs. Each 
matrix in the matrix table represents the connections between the switch ports of a particular 

instance. One example of the switching matrix [42] for cycle number CycleNumber  and Slot 

ID SlotID shows below: 

 

1,2 1,3 1,4

2,1 2,3 2,4

3,1 3,2 3,4

4,1 4,2 4,3

0

0

0

0

Port Port Port

Port Port Port

Port Port Port

Port Port Port

 
 
 
 
  
 

CycleNumber,SlotIDMatrix  (6.3) 

Matrix (6.3) is one of the switching matrixes in the switching matrix table of a four ports 
switch. In this matrix, the column represents the source port. The row represents the 

destination port. Therefore, it is a 4 4 matrix. The source port i is marked by a “1” in the i th 
column. For example, if there are two messages transmitted in the network. One of the 
messages is transmitted from port 3 to port 2 during a slot. The other message is transmitted 

from port 1 to port 4 during the same slot. 2,3Port and 4,1Port  in the matrix are marked by a 

“1”. The switching matrix for this slot then becomes: 

 

0 0 0 0

0 0 1 0

0 0 0 0

1 0 0 0

 
 
 
 
 
 

CycleNumber,SlotIDMatrix  (6.4) 

The 3rd and 1st column represent the source ports 3 and 1 and the 2nd and 4th row 
represent the destination ports 2 and 4. If the data transmits from port 3 to braches 1, 2 and 4, 
then the switching matrix for this slot becomes: 

 

0 0 1 0

0 0 1 0

0 0 0 0

0 0 1 0

 
 
 
 
 
 

CycleNumber,SlotIDMatrix  (6.5) 
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If an after-switch ST message transmits during some slots in some cycles, the switching 
matrix of these slots should have the switching path information of these messages so that the 
switch knows how to transfer the data. Besides the communications between the branches, the 
communications also happen locally inside one branch during some slots. If a branch 
communicates locally during some slots, it is disconnected by not having the switching path 
information in the switching matrix for those slots. 

The discussion above shows that the data transmissions in the switched ST segment not 
only follow the clustering constraints but also need to satisfy the basic schedulable constraints. 
Therefore, the problems need to solve in the switched ST segment scheduler design are: 

 Clustering and generating the switching matrix CycleNumber,SlotIDMatrix for each ST 

slot; 

 The value of the parameters in the schedule which can meet the schedulable 
constraints need to be set; 

6.2.2 Motivation for the Solution 

Section 6.2.1 pointed out the problem of switched ST scheduler design is to cluster the 
switch ports efficiently. The first goal of the switched scheduler is to allocate the ST messages 
in the schedule. The second goal is to reduce the system utility rate. Therefore, the priori 
consideration of the switched ST scheduler design is the schedulable constraints. The 
clustering constraints are further considered.  

6.2.2.1 Clustering Constraints 

The switched ST scheduler aims to maximize the number of non-used slots to increase 
the system capacity. The scheduler tries to merge different slots’ transmissions into one slot 
as much as possible. However, in order to avoid the data collision, clustering the possible 
messages needs to satisfy the clustering constraints listed in the following. 

 A port cannot be the source and destination port at the same time; 

According to the FlexRay specifications, the interface between the CC and the BD 
has different signal lines for the data transmission and receiving. The interface 
between the host and the CC only has one signal line for the data transmission and 
receiving. Therefore, if a port is a destination port during some slots, it cannot be the 
source port during these slots [42]. This means a port of the switch cannot be the 
source port and the destination port during the same slot. 

 A destination port cannot have more than one source port; 

According to the FlexRay specifications, the receive buffer in a FlexRay node might 
be the queued buffer. However, there is only one signal line in the node for 
transmission. Multiple sources will cause data collision. Therefore, a destination 
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port may have zero source ports when it communicates locally or one source port 
when it uses the switch to communicate. 

 A branch that communicates locally during a slot needs to disconnect with the 
switch; 

A branch is a simple FlexRay cluster. The cluster’s bus is occupied by the local 
communication data if there is local data communication. Therefore, other data 
cannot transmit on the bus at that slot. This branch cannot participate in the switched 
communication between other branches during that slot. 

6.2.2.2 Different valued parameters with simple ST scheduler 

The goal of the switch FlexRay ST scheduler design is to maximize the utility rate of the 
used slots. If one slot is assigned to a message, the scheduler tries to find other messages that 
are able to transmit during this slot satisfied the constraints presented in Section 6.2.2.1. If 
successfully find the messages, the scheduler multiplex their transmissions. 

availablePort denotes a new concept called available port set in switch FlexRay network.  It 

is defined as the unoccupied ports in the switch during that slot. This concept is very 
important because the clustering finds the transmission that can happen simultaneously by 

using different available ports availablePort , slot ID and cycle number. The vector space mV  

changes to represent the possible positions of the reference point with 3 parameters: base 

cycle mb , base slot ms and the available ports availablePort . It is defined as following: 

  , ,m m m availableV S CC Port  (6.6) 

The slot ID set mS and the CC set mCC have the same definitions as the ones in the simple 

FlexRay network. 

Section 6.2.2.1 defined three clustering constraints. Constraint 3 states that the local 
communication messages affect the clustering of the after-switch ST messages. The three 
constraints indicate that a switch port is occupied in a slot when it functions as the 
disconnected port, the source port or the destination. The occupied port set is notated as

usePort . These ports cannot be the source or the destination ports in other clusters during the 

same slot. It is clear to get the conclusion that usePort should be eliminated from availablePort  in 

the slot clustering. We also define the notation switchPort to represent the ports a FlexRay 

switch has. Thus we have: 

 available switch usePort Port Port   (6.7) 
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6.2.3 Switched ST Segment Scheduling Algorithm 

Input:  

 Bus bit rate	ࢊࢋࢋ࢖࢙_࢙࢛࢈ 

 Switch port set ࢎࢉ࢚࢏࢙࢚࢝࢘࢕ࡼ 

 ST message setࢀࡿࡹ is the set of ST messages waiting to send in a network.

 , , , ,m m m STm T MessageLengthST Port m M mMatrix . The matrix ܕܠܑܚܜ܉ۻ 

is 0 if the message port set ࢓࢚࢘࢕ࡼ only contains one element.  

Output: 

 6m scheduling matrix STSwitchScheduler
:

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

... ... ... ... ... ...

m m m m m m

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle

s p gNumberOfStaticSlots b r gNumberOfCycle















 
 

 

 Switching matrix table:

63,1 63,1 63,

1,1 1,2 1,

0,1 0,2 0,

...

... ... ... ...

...

...

gNumberOfStaticSlot

gNumberOfStaticSlot

gNumberOfStaticSlot

Matrix Matrix Matrix

Matrix Matrix Matrix

Matrix Matrix Matrix

 
 
   
 
  

STMatrixTable ,                                 

in which:                                            

 

1,2 1,3 1,4

2,1 2,3 2,4

3,1 3,2 3,4

4,1 4,2 4,3

0

0

0

0

Port Port Port

Port Port Port

Port Port Port

Port Port Port

 
 
 
 
  
 

CycleNumber,SlotID
Matrix  

  1, ,SlotID gNumberOfStaticSlots SlotID 

 0,63 ,CycleNumber CycleNumber 
 

Switched FlexRay ST scheduling algorithm 

for STm M  do   // assign values to different parameters based on message types 
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gdCycle
gdStaticSlot

gNumberOfStaticSlot
  

m mD T
  

if 30000mD   

30000mD   

end if 

if mD gdCycle  

1mr 
 

 max 2 0,9 , ,n m
m m

D
p n n p

gdStaticSlot

 
    

 
 

m
m

gdCycle
gNumberOfStaticSlots

p gdStaticSlot

 
     

64mgNumberOfCycle 
 

else 

1023mp 
 

1mgNumberOfStaticSlots   

if mD gdCycle   

 max 2 0,6 , ,n m
m m

D
r n n r

gdCycle

 
    

   

64
m

m

gNumberOfCycle
r


 

else    // message type mD gdCycle  

1mr    

64mgNumberOfCycle   

end if 
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end if 

end for 

min max 2,
ST

m

m M m

gNumberOfStaticSlots
gNumberOfStaticSlots

r 

  
      

  

if mingNumberOfStaticSlots gNumberOfStaticSlots  

output non-schedulable, exit  //system non-schedulable 

end if 

for STm M  do 

Sort the messages STm M   in ascending order of the values mp and then in ascending 

order of values mr  store them in the message list STL
 

௠௜௡݌ ൌ minሺ݌௠ሻ  

end for      //sort finish 

   , , 0,0,0use use use useV S CC Port   

0STMatrixTable  

for STm L  do 

Slot ID set  0, 1m mS p   

CC set  0, 1m mCC r   

 , ,m m m switchV S CC Port  

m m useV V V  // update the available space of the reference point 

if mV  is empty set 

output system non-schedulable, exit 

end if 

for  ሺݏ௠, ܾ௠, ௠ሻݐݎ݋ܲ ∈ ௠ܸ 

for  1, ,mm gNumberOfStaticSlots m     
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 Algorithm 3 Pseudocode for Switched ST scheduling algorithm 

 

 

for  1, ,mn gNumberOfCycle n    

    buffer = 1 ,  1 ,  m m m m m ms m p b n r Port       

end for 

end for 

if elements in set mPort >1    //update the matrix of that slot 

CycleNumber,SlotID CycleNumber,SlotID mMatrix = Matrix + Matrix ,

 1m mSlotID s m p    ,  1, ,mm gNumberOfStaticSlots m  

 1m mCycleNumber b n r    ,  1, ,mn gNumberOfCycle n    

end if 

use use mV V buffer 
 

௡௘௪ݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑܰ݃ ൌ ௠ݏ ൅ ሺ݃ܰݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑ௠ െ 1ሻ ൈ ௠݌  
//update used maximum ID ST slots 

if new usegNumberOfStaticSlots gNumberOfStaticSlots  

 use newgNumberOfStaticSlots gNumberOfStaticSlots  

end if 

take m out of STL , update STL  

if STL is empty 

output STSwitchScheduler and STMatrixTable , exit  //system schedulable 

end if 

continue with next STm L  

end for 

end for       // continue with next value of gdCycle  
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6.3 Scheduler Design for Switched FlexRay DYN Segment 

6.3.1 Problem definition 

By grouping sub-set of ports into clusters, different switched ST messages can transmit 
simultaneously. Each cluster functions like a simple FlexRay network. Therefore, a switch 
FlexRay network can be seen as the combination of a few simple FlexRay networks. The 
clustering increases the system bandwidth and enables simultaneous collision-free 
transmissions. The switched DYN segment communication can consult the method in 
switched ST communication and make necessary modifications. To distinguish the simple 
DYN message from the messages transmitted in the FlexRay network, the latter is called 
switched DYN message.  

Section 2.2.2.3 introduced that FTDMA is the media access mechanism in DYN segment. 
In DYN segment, the messages could send in any instant in terms of the number of Minislots 
with an arbitrary length of payload (maximum is 127 2-byte-words). There are two major 
differences between ST segment and DYN segment. The first difference is the length of the 
slot. The DYN slot length is varied by the size of the messages while the ST slot length is 
fixed in a cluster. The second difference is the message response time. The transmission of 
other messages could affect the response time of the switched DYN message. The ST 
messages use fixed slot transmission to prevent the interferences from other messages. Every 
switched DYN message is allocated a FrameID for bus arbitration.  

To enable the switched transmission, it is necessary to known the source and destination 
ports of the switched DYN message. The known parameters of a switched DYN message	݉ 
are the message lengthܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ௠ , the message deadlineܦ௠, the set of source 
and destination ports ௠ݐݎ݋ܲ	  and the message switching path ܕܠܑܚܜ܉ۻ	 . Therefore the 
switched DYN messages can be represented by a 4-tuple vector: 

݉ ൌ ሼܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ௠,ܦ௠,  ሽ                    (6.8)ܕܠܑܚܜ܉ۻ,௠ݐݎ݋ܲ

Local communication message is a special switched DYN message that does not pass 
through the switch. So the message ports set only contains one port that is both the source and 
destination port. It can be seen as no switching information. Thus, the switching 
path	ܕܠܑܚܜ܉ۻ is 0. 

The goal of the switched DYN scheduler is to increase the utility rate of the shared 
resource and to improve the system bandwidth. Therefore, efficiently build the broadcast 
groups based on the communication demands is the crucial issue. The clustering constraints 
are the same as the ones in switched ST segment. The regrouping period of the clusters in the 
switched DYN segment is slightly different from the period in the switched ST segment. The 
fixed time grid is Minislot in the DYN segment instead of ST slot in the ST segment. 
However, the duration of the Minislot is too short to be the regrouping period. So the 
regrouping period should be multiple of the Minislot duration. For each period, there should 
be a corresponding switching matrix stored in the switch.  
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The schedulable constraints are the same as the ones in simple DYN segment. The 
switched DYN segment is considered schedulable if every DYN messages’ worst-case 
response time 	ܴ௠  is shorter than or equal to the deadline	ܦ௠ . Hence the switched DYN 
scheduler should calculate the worst-case response time after the clustering step and compare 
them with the deadlines to determine the system schedulability.  

In conclusion, the problems needed to solve in the switched DYN scheduler design are:  

 Clustering; 

 Calculating the switched DYN message worst-case response time mR ;  

6.3.2 Motivation for the Solution 

6.3.2.1 Clustering  

The analysis in the previous section has already shown that, for the DYN segment, the 
regrouping period should be multiple of the Minislot. There are two methods of choosing the 
regrouping period. 

 Regrouping the cluster every CC 

Since the duration of the CC is fixed, it is suitable to use as the regrouping period [42]. 
Therefore, the switch regroups the nodes at the interval of a CC. In other words, the switch 
can have different clusters during each CC and up to 64 clusters in total.  

Besides the regrouping period, there is one more difference between the switched ST 
scheduler and the switched DYN scheduler. In the switched DYN scheduler, the branch could 
be both source and destination branch in a cluster. Although the regrouping period of the 
cluster is one cycle, the timing of data transmission is Minislot-based. Therefore, the node can 
change part in different Minislots. Furthermore, the branches in one cluster should have the 

same value of the slot counter DYNvSlotCounter . 

 Flexible regrouping period 

The second method tries to refine the clusters by reducing the set of branches belonged to 
a cluster. The refinement will increase system bandwidth since it allows more transmissions 
happen at the same time than the big cluster. The refinement is done by reducing the 
regrouping period of the clusters. Just as the discussion in the previous section, the newly 
refined period is a specific period that is multiple of the Minislot duration and is shorter than 
the duration of a CC. Each regrouping period could be different. The regrouping points need 
to be defined in advance based on practical communication demands to obtain the maximum 
system bandwidth. The switch builds the new clusters at every regrouping point. The 
clustering is based on the switching matrix pre-stored in the switch that describes the 
connection of the switch ports. Theoretically, this can help to gain more bandwidth but may 
require lot more configuration memories.  
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This thesis chooses the duration of the CC as the regrouping period because the switched 
DYN scheduler is a general scheduler, not a scheduler for a particular implementation. The 
flexible regrouping points cannot be set without the detail transmission information. 
Furthermore, the first method still can gain more bandwidth without increasing too many 
configurations and hardware requirements. 

6.3.2.2 Calculating the worst-case response time mR  

In the schedulability analysis, it is sure that applying the switch in FlexRay network 
introduces additional switching delay. The worst-case response time becomes: 

 ܴ௠ ൌ ௠ݓ ൅ ௠ܥ ൅ ܵௗ௘௟௔௬_௠ (6.9) 

ܵௗ௘௟௔௬_௠ is the delay of message ݉ caused by FlexRay switch. Section 6.2.1 introduced 

two types of messages in the switch FlexRay network. One called after-switch message, the 
other called local communication message.  For the local communication message, it does not 
pass through the switch. Therefore, the switching delay	ܵௗ௘௟௔௬_௠ equals to 0. 

The switching delay ܵௗ௘௟௔௬_௠ is defined as from the transceiver of the sending port to the 

transceiver of the destination port [42]. This switching delay’s definition not considers 
the upper layer delays in the switch such as searching-switching-entry delay. It is the physical 
switching delay. According to FlexRay specifications, the maximum delay allowed for the 

active star is150ns . So the switching delay is required to keep within this bound. In the 
experimental setup in [42], the delay is proven to successfully stay within the bound. 
Therefore, in the calculation of worst-case response time, the switching delay	ܵௗ௘௟௔௬_௠ can be 

ignored. 

Introducing the switch does not change the bus arbitration scheme. The mathematic 

model of the bus arbitration delay mw and transmission delay mC  is the same as the simple 

FlexRay analysis. Switched FlexRay network enables parallel communication between 
branches, which virtually transform one communication network into several networks. From 
the aspect of the system schedulability, this equals to reduce the system size and increase the 
chance to access the bus.  

In simple FlexRay analysis, the 1DBP algorithm is used to calculate the delay

( ( , ))mBusCycles lf m t . The bin is the DYN segment. The items to fill the bin are the 

elements in ( , )lf m t . Since the messages are clustered, the messages in one cluster can send 

simultaneously. The original transmission order of the messages changes. The analysis of the 
DYN message transmission in Section 4.5 shows that the message transmission order is 
decided by the Frame ID. Therefore, we can see the transmission order changes as the Frame 
ID changes.  

For the messages in the same cluster, the Frame IDs of messages update to the smallest 
Frame ID in the cluster. For messages not included in a cluster, from their point of views, the 
messages in a cluster are considered as one representative message. The size of the 
representative message is the longest message length in that cluster. For the messages that 
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change the Frame ID, the messages in set ( , )lf m t are decreased, and the delay

( ( , ))mBusCycles lf m t  is reduced.  

In order to calculate the worst-case response time mR  of the switched DYN messages, 

the worst-case scenario is that all DYN messages are ready for transmission at the same time. 

After the clustering step, based on the new Frame ID, the method to calculate mR is the same 

as the one in simple DYN network. 

6.3.3 Switched DYN Segment Scheduling Algorithm 

The motivations of solutions already presented in the previous section. Based on the 
discussions, we provide the DYN segment scheduling algorithm for a known network in 
Algorithm 4. 

Input:  

 Bus bit rate ࢊࢋࢋ࢖࢙_࢙࢛࢈ 

 Switch port set ࢎࢉ࢚࢏࢙࢚࢝࢘࢕ࡼ 

 The DYN message setࡺࢅࡰࡹ ,ࡺࢅࡰࡹ is maximum DYN message set waiting to send 

in a cluster,    , ,? , ,?m m m DYNm MessageLengthDYN D Port m M mMatrix   

Output: 

System schedulable or non-schedulable 

Switched FlexRay DYN scheduling algorithm 

for DYNm M   

Sort the DYN messages DYNm M  in descending order of the value m

m

MessageLength

D
 

and then in descending order of the value mMessageLength , store them in the message 

list DYNL  

Assign the Frame ID to the DYN messages with the order in list DYNL from 1 

end for  // sort the messages and assign the Frame IDs 

// start of clustering and Frame IDs updating 

for ∀݉ ∈  ܻܰܦܮ
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if ݉ is the first message in ܮ஽௒ே 

create set ݈ܿݎ݁ݐݏݑଵ ൌ ሼemptyሽ  //create the first message set ݈ܿݎ݁ݐݏݑଵ 

ݐ݁ܵݎ݁ݐݏݑ݈ܥ ൌ ሼ݈ܿݎ݁ݐݏݑଵሽ   // create a set represented all the available clusters 

௨௦௘_௖௟௨௦௧௘௥భݐݎ݋ܲ ൌ   ௠ݐݎ݋ܲ

݉ ∈  ଵݎ݁ݐݏݑ݈ܿ ଵ     // put ݉ in setݎ݁ݐݏݑ݈ܿ

else   //	݉ is not the first message 

for all ݈ܿݎ݁ݐݏݑଵ	to	݈ܿݎ݁ݐݏݑ௠ in the set	ݐ݁ܵݎ݁ݐݏݑ݈ܥ  

//for all valid cluster in ݐ݁ܵݎ݁ݐݏݑ݈ܥ 

if ܲݐݎ݋௠ ⊆ ݊	, ௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ∈ ሾ1,݉ሿ, ݊ ∈ Գ 

௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൌ ௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൅   ௠ݐݎ݋ܲ

݉ ∈  ௡ݎ݁ݐݏݑ݈ܿ ௡    // put message m inݎ݁ݐݏݑ݈ܿ

go to the next message  

// if message is able to put in any one of the existed	݈ܿݎ݁ݐݏݑ௡, finish the 
clustering step of message m 

end if 

end for 

create set ݈ܿݎ݁ݐݏݑ௠ାଵ ൌ ሼemptyሽ   //create a new set ݈ܿݎ݁ݐݏݑ௠ାଵ 

/* if search all available clusters message still cannot find a cluster can fit in, create 
a new cluster */ 

௨௦௘_௖௟௨௦௧௘௥೘శభݐݎ݋ܲ
ൌ   ௠ݐݎ݋ܲ

݉ ∈   ௠ାଵݎ݁ݐݏݑ݈ܿ

// put ݉ in the new created cluster ݈ܿݎ݁ݐݏݑ௠ାଵ 

go to the next message  //finish the cluster step of this message 

end if 

௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൌ ௦௪௜௧௖௛ݐݎ݋ܲ െ ௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ   

//update the valid ports for any set ݈ܿݎ݁ݐݏݑ௡ included message m 

if ܲݐݎ݋௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ ൌ 0 

ݐ݁ܵݎ݁ݐݏݑ݈ܥ ൌ ݐ݁ܵݎ݁ݐݏݑ݈ܥ െ     ௡ݎ݁ݐݏݑ݈ܿ
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//update the valid cluster set  ݐ݁ܵݎ݁ݐݏݑ݈ܥ

end if 

end for    // finish the clustering step for all the DYN messages 

for ∀݉ ∈  update the Frame ID for each DYN message //     ܻܰܦܮ

௠ܦܫ݁݉ܽݎܨ ൌ ,௡ݎ݁ݐݏݑ݈ܿ	݊݅	௠௜௡ܦܫ݁݉ܽݎܨ ݉	݁݃ܽݏݏ݁݉ ∈   ௡ݎ݁ݐݏݑ݈ܿ

end for 

// start the calculation of the worst-case response time 

for 10 to 16000 sgdCycle   step  20  μsgdBit  

simple	FlexRay	ST	scheduling	algorithm  

ܻܦ ௕ܰ௨௦ ൌ ݈݁ܿݕܥ݀݃ െ ܵ ௕ܶ௨௦  

for DYNm L
 

௠ݔܶݐݏ݁ݐܽܮ݌ ൌ

ሺܻܦ ௕ܰ௨௦	–	ሺ݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎ	 ൅ 	83	 ൅
ሾbitሿ	ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ	 ∗ 1.25	ሻ ∗ ݇ܿ݅ݐ݋ݎܿܽܯ/ሺ݃݀	ሻݐ݅ܤ݀݃ ∗
  	ሻݐ݋݈ݏ݅݊݅ܯ݀݃

FFD	bin	packing	algorithm calculates the delay݉ݏ݈݁ܿݕܥݏݑܤ൫݈݂ሺ݉,  ሻ൯ݐ

ܴ௠ ൌ

൫݈݃݀݁ܿݕܥ െ ሺܵ ௕ܶ௨௦ ൅ ሺܦܫ݁݉ܽݎܨ௠ െ 1ሻ ∗ ሻ൯ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅

,௠൫݈݂ሺ݉ݏ݈݁ܿݕܥݏݑܤ	 ሻ൯ݐ ∗ ݈݁ܿݕܥ݀݃ ൅ ሺܦܫ݁݉ܽݎܨ௠ െ 1ሻ ∗ ݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
	ሺܵ ௕ܶ௨௦ ൅ ௠ݔܶݐݏ݁ݐܽܮ݌ ∗ ሻݐ݋݈ݏ݅݊݅ܯ݀݃ ൅
	ሺሺ݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎ ൅ 83 ൅ ሻܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ ∗ 1.25 ∗ ݐ݅ܤ݀݃ ⁄݀݁݁݌ݏ_ݏݑܾ ሻ	  

if ܴ௠ ൏   ௠ܦ

take ݉ out of list ܮ஽௒ே 

if ܮ஽௒ே is not empty 

continue with next message in list ܮ஽௒ே 

else  

output schedulable, exit 

end if 

else 

next value of ݈݃݀݁ܿݕܥ 



CHAPTER 6. SCHEDULER DESIGN FOR SWITCHED FLEXRAY NETWORKS 89 

 

 

Algorithm 4 Pseudocode for Switched DYN scheduling algorithm 

6.4 Conclusion 

The method of the switch FlexRay scheduler design is solving the differences and 
following the similarities. Firstly, the concept of switch FlexRay network was introduced. 
Secondly, we analyzed the differences between simple and switched network and found the 
solutions of these differences for the ST and DYN segment respectively. The main difference 
between the switched and the simple scheduler design is that it needs an extra step before the 
simple scheduling algorithm, called clustering. Forming the ECUs’ clusters depends on the 
transmission path of the messages and the switch ports number. If none of the ports in two 
messages’ port set is the same, then these two messages can transmit in the same slot, namely 
slot-sharing messages. For ST messages, clusters are regrouped at the interval of a slot. 
Different slot has the different clusters. For DYN messages, clusters are regrouped at the 
interval of a CC. Different cycle has the different clusters.  At the end of the discussion, the 
switched scheduling algorithms were presented. 

end if 

end for 

end for 

output non-schedulable, exit  //system non-schedulable 
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7 
7 Experimental Results 

After theoretical analyses and conceptual designs of schedulers for two segments in two 
types of networks, this chapter aims at the performance evaluations for these four schedulers 
and comparisons in between the simple scheduler and the switched scheduler of ST and DYN 
segment respectively by using four C++ programs designed for four schedulers.  

The evaluations of ST schedulers are executed in two aspects: schedulability analysis and 
system resource utilization analysis. The worst-case response time is the key characteristic for 
the DYN segment scheduling. Therefore, the response time analyses are the evaluation 
standard of the DYN schedulers.  

7.1 Experimental Setup 

The Electronic Damper Control (EDC) technology in BMW X5 is the pilot application of 
FlexRay technology in BMW’s productions. Therefore, we choose this application as the 
evaluative scenario. This section aims at performance evaluation of the scheduling algorithm 
presented in section 5.1.3 in the BMW EDC application. 

 

Figure 7-1 Hardware Distribution of EDC in BMW X5 [43] 
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Figure 7-1 shows the general hardware distribution of the EDC in BMW X5. Each red 
circle represents a FlexRay node. 

The experiment uses the following FlexRay configuration settings, which are in line with 
the design settings disclosed by BMW [43, 44].  

 The duration of the CC fixes to 5ms, denoted by gdCycle . The duration of ST 

segment fixes to 3ms, denoted by busST . This thesis ignores the duration of the SYM 

and the NIT. So the DYN segment fixes to 2ms, denoted by busDYN . 

 The data payload of a ST frame sets to 8 2-bytes words, which is 16 bytes, denoted 

by gPayloadLengthStatic . 

 The length of the Macrotick set to 2μs, denoted by	݃݀݇ܿ݅ݐ݋ݎܿܽܯ. 

 The length of the Minislot set to 5MT, denoted by	݃݀ݐ݋݈ݏ݅݊݅ܯ. 

 The bus bit rate set to 10Mbit/s. 

7.2 ST Segment Scheduler Performance Evaluation  

This thesis uses C++ language programs two programs, which correspond to the simple 
ST scheduler and the switched ST scheduler. Section 5.1.3 and Section 6.2.3 introduced these 
two schedulers. The source codes of these programs can refer to Appendix A and B.  

The following sections will present four evaluations: the system loads, used ST slots, 
percentage of scheduled system and the system schedulability. By analyzing these tests, we 
will know the performances of the two ST schedulers.  

Different number of ST messages input to the schedulers, which generate varying results. 
For every level of message number, the programs randomly generate 100 sets of messages for 
the evaluations. Each set represents a different system. In the scenario, each ST message has 
the same length 8 2-byte-word. The number of star sets to 0 in the simple FlexRay network 
and sets to 1 in the switch FlexRay network. Other system related parameters are set in the 
program. The user can change the value of the parameters in the source code in the Appendix 
if the system parameters changed. All the statistics results are made from 100 sets of 
messages. 

7.2.1 System Loads 

The goal of system loads evaluation is that can show the average used system bandwidth 
with different number of ST messages inputted to two schedulers. The results show in Figure 
7-2. 
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Figure 7-2 Average System Loads 

Formula (7.1) calculates the system load, namely the system bit rate. 

 min /maxLoad gNumberOfStaticSlots MessageLengthST gdCycle   (7.1) 

The minimum required number of ST slots mingNumberOfStaticSlots is the number of 

slots occupied by ST messages in the ST segment. For example, to schedule a ST message set 
successfully requires the minimum number of ST slots 60, the message length for each 
message is 16 bytes = 64 bits. The system load is 60 * 64/5000 = 0.768 Mbit/s. By summing 
up the 100 systems’ loads and averaging by the test time100, we can get the average system 
load. 

As we can see in Figure 7-2, the system loads are lower in the switched ST (SWST) 
scheduler than the ones in the simple ST (SST) scheduler under each level of input messages. 
This is because of the slot-sharing mechanism in the SWST scheduler. The SWST scheduler 
schedules each message based on its transmission pattern and path which contains the 
information of the source and destination ports. The source and destination ports form the 
message’s ports set. If two messages have different port set, then they can share the 
transmission in one slot. This slot-sharing mechanism is the reason why the SWST scheduler 
has lower system load for each level of message number. 

7.2.2 Number of Slots Used 

The number of slots used means the maximum ST slot ID required by a set of ST 
messages’ transmission. The used ST slots are not always equals to the minimum number of 
ST slots as we explained in Section 4.4. The transmission patterns of messages cannot match 
with each other perfectly all the time. There might be some wasted slots. So the used ST slots 
usually more than the minimum slots required. By summing up the used number of slots in 
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the scheduled systems and averaging by the number of scheduled systems, we can get the 
average number of used slots.  

 

Figure 7-3 Average Number of Slots Used 

The results shown in Figure 7-3 are the same as expected. It shows that the SWST 
scheduler requires less number of slots than the SST scheduler to schedule the same amount 
of ST messages. This fact indicates the same that the SWST scheduler has better ability to 
save the system resource than the SST scheduler. 

7.2.3 Percentage of Schedulable Systems 

By evaluating 100 sets of messages, we get the percentage of successfully schedulable 
systems. In other words, this test shows the number of schedulable systems in 100 testing 
systems. The useful bandwidth is the maximum bandwidth the system could make use of. The 
bandwidth defines in formula(7.2): 

 /maxBandwidth gNumberOfStaticSlots MessageLengthST gdCycle   (7.2) 

Since the number of ST is 96 in our scenario, the useful bandwidth is 96 * 64/5000 ≈ 
1.23 Mbit/s. So we can get the conclusion that the system has better schedulability when the 
system load is less than the useful system bandwidth 1.23 Mbit/s. 
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Figure 7-4 Percentage of Schedulable System 

Figure 7-4 shows that more systems scheduled by using the SWST scheduler than 
scheduled by the SST scheduler. This fact indicates the SWST scheduler has better capability 
of scheduling than the SST scheduler when has the same number of input messages. 

7.2.4 System Schedulability 

The system schedulability evaluates the percentages of scheduled messages in a message 
set. The evaluations are done for different number of input ST messages.  The results are the 
average values of the system schedulabilities of 100 systems. In each system, we count the 
total number of messages that are scheduled by the scheduler and calculate the percentage of 
the scheduled messages among the whole message set. By averaging 100 systems, we get the 
average system schedulability of different number of input messages. 
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Figure 7-5 Average System Schedulability 

As we can see from Figure 7-5, the SWST scheduler has the better system schedulability 
than the SST scheduler.  This is also because of the slot-sharing mechanism in SWST 
scheduler as explained Section 7.2.1.  

The schedulability has a modest decreasing from 140 messages to 150 messages when 
the system applies the SST scheduler. Because there are more messages requiring the same 
system capacities from the system, but the system cannot provide these capacities when it 
reaches some limit. This may cause the scheduled failures of messages after a certain message 
and the modest decreasing of the schedulabilities. 

7.3 DYN Segment Scheduler Performance Evaluation 

7.3.1 Worst-case Response Time without topology information 

The same as the performance evaluations conducted for the ST scheduler, evaluations for 
the DYN scheduler are also done by two C++ programs. The key characteristic of the DYN 
message is the worst-case response time	ܴ௠. Therefore, we focus on the calculation of 	ܴ௠ in 
our evaluations. Chapter 4 already presented the method to determine the worst-case response 
times	ܴ௠. In the evaluation, the SWDYN scheduler randomly allocates switch ports to DYN 
messages, and then follows the method in Chapter 4 to calculate	ܴ௠. Before the calculation, 
the SWDYN scheduler has one more step which uses the slot-sharing mechanism to cluster 
the messages and reallocate FrameIDs. The switch ports messages occupied and message 
length will affect the worst-case response times.  

We use 10 DYN messages in the evaluations and assign them different message lengths. 
The smallest messages size is 500 bits. 
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Figure 7-6 Worst-case Response Times 

As we can see from Figure 7-6, the message with the original FrameID 5 is sharing the 
slot with message has FrameID 1. The message with the original FrameID 9 is sharing the slot 
with the message has FrameID 10.  Hence message 5 has the same response time as message 
1 and message 10 has the same response time as message 9. The clustering and FrameID 
reallocation reduce the response time of these two messages. It is clear to tell from Figure 7-6 
that the worst-case response times of the SWDYN scheduler are equal or less than the SDYN 
scheduler. Therefore, we can draw the conclusion that if there is any message satisfies the 
slot-sharing condition, the response time of the message with large FrameID will decrease. 
The response time of the other messages which have large FrameIDs will decrease either.  

7.3.2 Worst-case Response Time with Path Delays 

 

Figure 7-7 Abstract Topology of EDC 

Figure 7-7 shows the abstract topology of the EDC in BMW X5. The nodes N1 to N4 are 
slave ECUs, which correspond to the four red circles in Figure 7-1. There is a central 
management unit which connects these four nodes by an active star. The management unit 
can also be seen as a node N5.  
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Taking topology into consideration, there is one parameter will affect the response time: 
the longest length of the wire between the source mode and the destination node. The wire 
causes the part of the delay called path delay. The following paragraphs will evaluate the 
worst-case response time with path delays. 

 

Figure 7-8 Experimental Simple FlexRay Network 

As the topology shown in Figure 7-8, the experimental network removes the active star 
and replaces it with a bus. The bus connects five ECUs. Figure 7-9 shows a topology that a 
FlexRay switch replaces the active star connected four ECUs. The switch locates in node 5, 
which is also the management unit in the network. 

 

Figure 7-9 Experimental Switched FlexRay Network 

We assume the longest wire length between two ECUs is 300 meters. If the transmission 
happens between ports 1 and 4 or 2 and 3, the wire length is 200 meters. If the transmission 
only happens locally, the wire length is 100 meters. Therefore, based on the wire length we 
can calculate the path delay. For example, the worst path delay, which is the wire 
transmission delay of 300 meters, equals to		300m/	3 ൈ 10଼	m/s ൌ 1ms. 3 ൈ 10଼	m/s is the 
speed of light.  

Figure 7-10 illustrates the results that the response times of the SDYN scheduler and the 
SWDYN scheduler. We use the same set of messages as in Figure 7-6 for testing. 
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Figure 7-10 Worst-case Response Times with Media Transmission Delay 

Through the comparison of Figure 7-6 and Figure 7-10, we can tell that the patterns of 
the response times vary not much. Compared with bus arbitration delays, the path delays are 
relatively small. 

7.4 Conclusion 

This chapter presented the test data in the EDC application in the simple and switch 
FlexRay schedulers. In the evaluation, we used the actual data from automotive manufacturer 
to generate the test data. We compared these two types of schedulers for ST and DYN 
segment respectively. In the evaluation of the ST segment, four parameters, average system 
loads, average used ST slots, the percentage of scheduled system and the system 
schedulabilities, were used to analyze the data under different number of input messages. In 
the evaluation of the DYN segment, the evaluated parameter is the worst-case response time 
without and with the path delays.  
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8 
8 Conclusion and Future Work 

The next generation of automotive control network uses the switch FlexRay networks as 
its core networks and incorporates with other automotive control networks, to connect the vast 
amount of electronic systems.  This thesis designs two schedulers for simple and switch 
FlexRay networks each. These schedulers can evaluate the effectiveness of the parameters in 
the design and measure the system upper bound. These evaluation results can be used as 
design references that assist the in-vehicle embedded systems design and further improvement. 
In this chapter, we will conclude the works we did in this thesis and will discuss the future 
work that can be done to improve this project. 

Section 8.1 will summarize the content of the thesis. The contributions and some future 
work suggestions of this thesis will give in section 8.2.  

8.1 Conclusion 

Chapter 2 gives the background information of this thesis. This chapter discusses the 
FlexRay network and its working principle and briefly introduces the types of topologies and 
components in the node. The protocol physical and media access layers were introduced, as 
well. Furthermore, Chapter 2 presents the timing hierarchies of the basic timing unit, CC, in 
details. On one hand, the FlexRay protocol offers scalable dependability and fault tolerance, 
which realize by redundancy transmission; on the other hand, the FlexRay protocol is also 
very flexible. By using the time-triggered communication in ST segment, nodes are assigned 
as many slots as needed to ensure the reliable ST communication. Meanwhile, the DYN 
messages only transmit when it is necessary to save the resource. The FlexRay network 
supports various topologies like bus topology, star topology, mixed topology and switched 
topology. 

Chapter 3 discussed the real-time scheduling theory. Common classifications of real-time 
scheduling were given. We can classify the scheduling policies into preemptive and non-
preemptive, offline and online, or clock-driven, priority-driven, etc. This chapter also 
introduces a few representative scheduling algorithms in the fix-priority and dynamic priority 
scheduling. The previous studies indicate that the RM scheduling is the optimal fix-priority 
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algorithm when the tasks’ deadlines are equal to their periods. The DM scheduling is another 
fix-priority scheduling algorithm which elevates the constraint of the deadline. It is the 
optimal algorithm when tasks have deadlines less than (or equal) to periods. The EDF 
scheduling is one of the optimal algorithms in dynamic-priority scheduling.  

In Chapter 4, the differences of two segments in the CC were discussed. We draw the 
conclusion that different schedulers should be used for different segments. Then we 
distinguished the concepts of task and message. This chapter also analyzes the timeline of the 
transmission and discusses the latency in detail, to help to understand the discussion about 
response time in the following contents. In this chapter, we determine that the bus arbitration 
and data transmission compose the latency discussed in this thesis. The final part of this 
chapter investigates schedulabilities of the ST and DYN segments in the simple FlexRay 
networks.  

Chapter 5 and Chapter 6 bring up the scheduling algorithms of the ST and DYN 
segments, for the simple and switch FlexRay networks respectively. By analyzing the 
schedulable constraints and configurable parameters, we determine the methods to generate 
the ST scheduling table which depends on the characteristics of the input messages. For DYN 
communication, the transmission is event triggered. The DYN scheduler is an online 
scheduler. It produces the responses or outputs based on the runtime inputs. Therefore, it does 
not have a ST scheduling table. As a result, the DYN scheduler without runtime inputs only 
can calculate the worst-case response time to estimate the conservative system schedulability. 

Chapter 7 evaluates the performances of the four schedulers. The results for the simple 
and switch FlexRay network were compared. It is obvious that the switch FlexRay network 
has significant improvement in system schedulability. Meanwhile, it decreases the resource 
utility rate. Therefore, the conclusion we drew from the performance evaluations is that the 
switch FlexRay network increases the system capacity and efficiency. It is the trend in the 
future. 

8.2 Contributions and Future Work 

This section summaries the contributions and concludes this thesis by suggesting some 
ideas for future improvements. 

The main contribution of this thesis is the developments of the scheduling algorithms for 
the simple and switch FlexRay networks. By using these schedulers, we are able to analyze 
the schedulabilities and upper bound of automotive networks. The results generated from the 
schedulers are very helpful in the designing step of automotive systems.  

From all the discussions and analyses in this thesis, it is clear to form the concept about 
FlexRay protocol and the concept of clustering in switch FlexRay network, also to understand 
about the factors that affect the worst-case response time of the DYN messages. However, 
there are still spaces of the improvements. The following sections provide some of the 
suggestions for future works: 
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 Test the schedulers with hardware implementations; 

The scheduling algorithms are only on the conceptual level, with the results from 
the computer simulations. The schedulers provided in this thesis have not yet been 
experimentally proved.  For future developments, it is suggested that combine the 
software with hardware implementations to evaluate the performances of the 
schedulers, including schedulability, efficiencies and system utilization. The 
evaluations should conduct under different system configurations and network loads.  

 Holistic analysis of the worst-case response time for DYN messages; 

To simplify the calculation, this thesis uses the heuristic solutions to calculate the 
worst-case response time.  By calculating the communication latency with holistic 
analyses, we can get more accurate system schedulabilities.  

 Refine the clusters of the switched DYN messages by using flexible regrouping 
period; 

The discussion in Section 6.3.2.1 shows that there exists a regrouping time of the 
DYN clusters. This thesis uses the duration of a CC as the regrouping period. More 
multiplexing in the system undoubtedly increases system bandwidth. By refining the 
communication clusters, the utility rate of the system resource will increase. 
Reducing the regrouping period, which should base on the transmission data, can 
refine the clusters. 

 Increase the accuracy of the schedulability analysis in DYN segment; 

This thesis calculates the worst-case response time of the DYN messages and then 
compares with the messages deadlines. The comparison results indicate the system 
schedulability. However, this is only a conservative estimation for the system 
schedulability. In order to generate a DYN scheduling table for an application, the 
parameters extracted from the ECUs, such as clock times, should input to the 
scheduler presented in Appendix E. The input data affects the generated DYN 
scheduling table. Consequently, we can get a more accurate evaluation of the system 
schedulability. 
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A 
A Source Code of Simple ST 

Scheduler 

1  /*--------------------------------------------------------------  
Simple FlexRay ST scheduling algorithm               

-------------------------------------------------------------*/ 
2  #include <iostream> 
3  #include <iomanip> 
4  #include <vector> 
5  #include <set> 
6  #include <algorithm> 
7  #include <time.h> 
8  #include <math.h> 
9   
10  using namespace std; 
11   
12  #define max(a,b) (((a) > (b)) ? (a) : (b)) 
13   
14  //-----------------System parameters------------------- 
15  const int pSamplesPerMicrotick = 1;//Number of samples per 

microtick 
16  const double gdSampleClockPeriod = 0.0125;//Sample clock 

period[μs] 
17  double pdMicrotick;//Duration of a microtick[μs] 
18  double gdMaxMicrotick;//Maximum microtick length of all 

microticks configured within a cluster[μs] 
19  double gdMacrotick = 2;// Duration of the cluster wide nominal 

macrotick[μs] 
20  double gdBit, gdBitMax, gdBitMin; // gdBit:Nominal bit time[μ

s], gdBitMax[μs], gdBitMin[μs] 
21  int gdActionPointOffset;//Number of macroticks the action point 

is offset from the beginning of a static slot or symbol 
window[MT] 

22  double gAssumedPrecision;//Assumed precision of the application 
network[μs];  aBestCasePrecision[μs] <= gAssumedPrecision[μs] 
<= aWorstCasePrecision[μs]=(34μT + 20 * gClusterDriftDamping[μ
T]) * gdMaxMicrotick[μs /μT] +2 * gdMaxPropagationDelay 
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23  double aBestCasePrecision, aWorstCasePrecision; 
24  int gdTSSTransmitter; //Number of bits in the Transmission Start 

Sequence[gdBit]  
25  double gdMaxInitializationError;//maximum initialization 

error[μs]; 2 * (gdMaxMicrotick[μs] * (1 + 0.0015)) + 
gdMaxPropagationDelay <= gdMaxInitializationError<= 
gAssumedPrecision= aWorstCasePrecision= 11.7 μs 

26  int gClusterDriftDamping = 5;//cluster drift damping factor=0~ 
5[̔]     

27  double dStarTruncation = 0.45; //Interval by which the 
transmission of a frame is shortened by one star = 0.45[μs] 

28  double dBDRxia = 0.3;//Activity reaction time. Time by which a 
transmission becomes shortened in a receiving node = 0 ~ 0.45[μ
s];It is the truncation that occurs in the BD of the receiving 
node. It is present even if the frame does not pass through any 
active stars. 

29  int nStarPath = 0;//0~2; the maximum number of active stars 
between any two nodes 

30  double gdMinPropagationDelay = 0, gdMaxPropagationDelay = 
2.5;//A minimum/maximum propagation delay of the network as seen 
by the local node[μs], 0 ~ 2.5 

31   
32  double BusSpeed = 10;//Bus data rate[Mbit/s] 
33  double gdCycle = 5000, STbus = 3000;//gdCycle:CC length[μs], 

STbus:ST segment length[μs] 
34   
35   
36  //---------------ST segment parameters---------------- 
37  int num_ST;//number of ST messages 
38  double gdStaticSlot; //ST-Slot length[μs] 
39  int gNumberOfStaticSlots, gNumberOfStaticSlots_min, 

gNumberOfStaticSlots_use = 0;//gNumberOfStaticSlots_min: minimum 
required number of ST slots;gNumberOfStaticSlots_use:used number 
of ST slots 

40  double gPayloadLengthStatic;//payload length of the ST 
frame[bit] 

41  int aFrameLengthStatic;//ST Frame length[dBit] 
42  int scheduledCount = 0; //counter of scheduled messages 
43  bool Vuse[1023][64] = {0}; //used vector space
44   
45   
46  struct buf 
47  { 
48      int x; 
49      int y; 
50  }; 
51   
52  struct MessageST 
53  { 
54      int FrameID_ST;//FrameID of ST messages 
55      int MessageLengthST; // MessageLengthST[bit] 
56      double T_ST; //Period of production of static message [μs] 
57      double D_ST; //Deadline of static message [μs] 
58       
59      int s; //base slot 
60      int p; //slot repetition 
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61      int gNumberOfStaticSlot_m;//Number of ST slots for m 
62      int b; //base cycle 
63      int r; //cycle repetition 
64      int gNumberOfCycle;//Number of cycles allocated to 
65       
66      bool buffer[1023][64];//the slots m’s transmission occupied 
67      bool V[1023][64]; 
68      bool isScheduled; 
69   
70      int SlotIDMax; //Max slot ID 
71       
72      buf SlotID; 
73      buf CC; 
74  }; 
75   
76   
77  int main() 
78  { 
79  /*------------------------------------------------------------

user input                             
------------------------------------------------------------*/ 

80      /*cout << "Please choose the duration of the samples 
clock[μs]: 0.0125, 0.0250, 0.0500"; 

81      cin >> gdSampleClockPeriod; 
82      cout << "Please choose the number of samples per Microtick: 

1,2,4"; 
83      cin >> pSamplesPerMicrotick;*/ 
84      cout << "Please input the number of ST messages:"; 
85      cin >> num_ST; 
86      /*cout << "Please input the maximum number of active stars 

between any 2 nodes:"; 
87      cin >> nStarPath; 
88      cout << "Please input the FlexRay bus bit rate [MBit/s]:"; 
89      cin >> BusSpeed; 
90      cout << "Please input the min bit rate of the ST messages 

[MBit/s]:"; 
91      cin >> min_bitRate; 
92      cout << "Please input the max bit rate of the ST messages 

[MBit/s]:"; 
93      cin >> max_bitRate;*/ 
94       
95      srand((unsigned)time(NULL)); 
96      for (int j = 0; j < 10; j++) 
97      {        
98          rand(); 
99      } 
100       
101      vector<MessageST> MST; 
102      vector<MessageST> Lst; 
103      vector<MessageST>::iterator iterST; 
104   
105  /*------------------------------------------------------------

value the system parameters                    
------------------------------------------------------------*/ 

106      if (BusSpeed == 2.5)   
107      { 
108          gdBit = 0.4;    
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109          gdBitMax = 0.4006; 
110          gdBitMin = 0.3994; 
111      }        
112      if (BusSpeed == 5) 
113      { 
114          gdBit = 0.2; 
115          gdBitMax = 0.2003; 
116          gdBitMin = 0.1997; 
117      } 
118      if (BusSpeed == 10) 
119      { 
120          gdBit = 0.1; 
121          gdBitMax = 0.10015; 
122          gdBitMin = 0.09985; 
123      } 
124   
125      pdMicrotick = pSamplesPerMicrotick * gdSampleClockPeriod; 
126      gdMaxMicrotick = pdMicrotick; 
127      aWorstCasePrecision=(34  + 20 * gClusterDriftDamping) *

gdMaxMicrotick +2 * gdMaxPropagationDelay; 
128   
129      gAssumedPrecision = aWorstCasePrecision; 
130      gdMaxInitializationError = 2 * (gdMaxMicrotick* (1 +

0.0015)) + gdMaxPropagationDelay; 
131   
132      gdTSSTransmitter = ceil( (gdBitMax+ dBDRxia+ nStarPath *

dStarTruncation)/gdBitMin); 
133      gdActionPointOffset = ceil((2*gAssumedPrecision -

gdMinPropagationDelay +2 * gdMaxInitializationError) /
(gdMacrotick* (1 - 0.0015))); 

134  //------------------output message info------------------- 
 

135      cout << "ID_ST" << '\t' << "ML_ST" << '\t' << "T_ST" << '\t'
<< "D_ST" << '\t' << endl; 

136       
137  //-----------------messages input parameters----------- 

 
138      int ID = 1; 
139      for (int n = 0; n < num_ST; n++) 
140      { 
141          MessageST *temp = new MessageST; 
142          temp->FrameID_ST = ID++; 
143           
144          //-------------random T generation-------------- 
145          int a = rand() % 11; 
146          if (a == 0) 
147          { 
148              temp->T_ST = 5000; 
149          } 
150          else if (a == 1) 
151          { 
152              temp->T_ST = 10010; 
153          } 
154          else if (a == 2) 
155          { 
156              temp->T_ST = 20010; 
157          } 
158          else if (a == 3) 
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159          { 
160              temp->T_ST = 40010; 
161          } 
162          else if (a == 4) 
163          { 
164              temp->T_ST = 80010; 
165          } 
166          else if (a == 5) 
167          { 
168              temp->T_ST = 160010; 
169          } 
170          else if (a == 6) 
171          { 
172              temp->T_ST = 320010; 
173          } 
174          else if (a == 7) 
175          { 
176              temp->T_ST = 4000; 
177          } 
178          else if (a == 8) 
179          { 
180              temp->T_ST = 2000; 
181          } 
182          else if (a == 9) 
183          { 
184              temp->T_ST = 1000; 
185          } 
186          else if (a == 10) 
187          { 
188              temp->T_ST = 500; 
189          } 
190           
191          temp->D_ST = temp->T_ST; 
192          if (temp->D_ST > 40000) 
193          { 
194              temp->D_ST = 40000; 
195          } 
196           
197          temp->MessageLengthST = 64; 
198           
199          for (int i = 0; i <= 1022; i++) 
200          { 
201              for (int j = 0; j <= 63; j++) 
202              { 
203                  temp->buffer[i][j] = 0; 
204                  temp->V[i][j] = 1; 
205              } 
206          } 
207          temp->isScheduled = false; 
208          MST.push_back(*temp); 
209          cout << setw(3) << temp->FrameID_ST << '\t' << temp-

>MessageLengthST << '\t' << temp->T_ST << '\t' << temp->D_ST <<
'\t' << endl; 

210      } 
211   
212  /*-------------------------------------------------------------  

value the message schedule's main parameters 
213  -------------------------------------------------------------*/ 
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214      int MessageLengthSTMax; 
215      for (iterST = MST.begin(); iterST != MST.end(); iterST++) 
216      { 
217          if (MessageLengthSTMax < iterST->MessageLengthST) 
218              MessageLengthSTMax = iterST->MessageLengthST; 
219      } 
220   
221      gPayloadLengthStatic = MessageLengthSTMax; 
222      aFrameLengthStatic = (gdTSSTransmitter+ 1 + 80

+gPayloadLengthStatic* 1.25 + 2);//gdBit 
223       
224      gdStaticSlot = 2 * gdActionPointOffset +

ceil( ((aFrameLengthStatic +
11)*gdBitMax+gdMinPropagationDelay+gdMaxPropagationDelay)/(gdMac
rotick *(1-0.0015))); 

225      gNumberOfStaticSlots = STbus / gdStaticSlot; 
226   
227          for (iterST = MST.begin(); iterST != MST.end();

iterST++) 
228          { 
229              if (iterST->D_ST < gdCycle) 
230              { 
231                  iterST->r = 1; 
232                  for (int n = 0; n <= log(gdCycle / gdStaticSlot)

/ log(2); n++) 
233                      { 
234                          if (iterST->p <= iterST->D_ST /

gdStaticSlot) 
235                          { 
236                              iterST->p = pow(2,n); 
237                          } 
238                      } 
239                  iterST->gNumberOfStaticSlot_m =

ceil((double)gNumberOfStaticSlots / iterST->p); 
240                  iterST->gNumberOfCycle = 64; 
241              } 
242              else 
243              { 
244                  iterST->p = gNumberOfStaticSlots; 
245                  iterST->gNumberOfStaticSlot_m = 1; 
246                  if (iterST->D_ST > gdCycle) 
247                  { 
248                      for (int n = 0; n <= 6; n++) 
249                      { 
250                          if (iterST->r <= iterST->D_ST / gdCycle) 
251                          { 
252                              iterST->r = pow(2,n); 
253                          } 
254                      } 
255                      iterST->gNumberOfCycle = 64 / iterST->r; 
256                  } 
257                  else  
258                  { 
259                      iterST->r = 1; 
260                      iterST->gNumberOfCycle = 64; 
261                  } 
262              } 
263          } 
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264   
265  //------------------basic  constraint---------------------- 

 
266          for (iterST = MST.begin(); iterST != MST.end();

iterST++) 
267          { 
268              gNumberOfStaticSlots_min += (double)iterST-

>gNumberOfStaticSlot_m/iterST->r; 
269          } 
270          gNumberOfStaticSlots_min =

ceil((double)gNumberOfStaticSlots_min); 
271          if (gNumberOfStaticSlots_min <= 2) 
272          { 
273              gNumberOfStaticSlots_min = 2; 
274          } 
275          if (gNumberOfStaticSlots_min > gNumberOfStaticSlots) 
276          { 
277              cout << "non-schedulable ,gNumberOfStaticSlots_min> 

gNumberOfStaticSlots" << endl; 
278              return 0; 
279          } 
280  //------------------sort------------------------------ 

 
281          while (MST.size() != 0) 
282          { 
283              vector<MessageST>::iterator temp = MST.begin(); 
284              for (iterST = MST.begin(); iterST != MST.end();

iterST++) 
285              { 
286                  if (iterST->p < temp->p || (iterST->p == temp->p 

&& iterST->r < temp->r)) 
287                  { 
288                      temp = iterST; 
289                  } 
290              } 
291              Lst.push_back(*temp); 
292              MST.erase(temp); 
293          } 
294  //------------------scheduling process------------------ 
295          for (iterST = Lst.begin(); iterST != Lst.end();

iterST++) 
296          { 
297              if (iterST->isScheduled) 
298              { 
299                  continue; 
300              } 
301              iterST->SlotID.x = 0; 
302              iterST->SlotID.y = iterST->p - 1; 
303              iterST->CC.x = 0; 
304              iterST->CC.y = iterST->r - 1; 
305               
306              for (int i = iterST->SlotID.x; i <= iterST-

>SlotID.y; i++) 
307              { 
308                  for (int j = iterST->CC.x; j <= iterST->CC.y;

j++) 
309                  { 
310                      if (Vuse[i][j] == 0) //space not be used 
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311                      { 
312                          iterST->V[i][j] = 0; 
313                      } 
314                  } 
315              } 
316              for (int sm = iterST->SlotID.x; sm <= iterST-

>SlotID.y; sm++) 
317              { 
318                  if (iterST->isScheduled) 
319                  { 
320                      break; 
321                  } 
322                  for (int bm = iterST->CC.x; bm <= iterST->CC.y;

bm++) 
323                  { 
324                      if (iterST->isScheduled) 
325                      { 
326                          break; 
327                      } 
328                      if (iterST->V[sm][bm] == 0) 
329                      { 
330                          iterST->s = sm; 
331                          iterST->b = bm; 
332                          for (int m = 1; m <= iterST-

>gNumberOfStaticSlot_m; m++) 
333                          { 
334                              for (int n = 1; n <= iterST-

>gNumberOfCycle; n++) 
335                              { 
336                                  iterST->buffer[iterST->s+(m-

1)*iterST->p][iterST->b+(n-1)*iterST->r] = 1; 
337                              } 
338                          } 
339                          for (int k = 0; k <= 1022; k++) 
340                          { 
341                              for (int j = 0; j <= 63; j++) 
342                              { 
343                                  Vuse[k][j] = Vuse[k][j] |

iterST->buffer[k][j]; //update Vuse 
344                              } 
345                          } 
346   
347                          iterST->SlotIDMax = iterST->s+1

+(iterST->gNumberOfStaticSlot_m - 1)*iterST->p;  
348   
349                          if ( iterST->SlotIDMax >

gNumberOfStaticSlots_use) 
350                          { 
351                              gNumberOfStaticSlots_use= iterST-

>SlotIDMax; //update used max slot ID 
352                          } 
353                          if (gNumberOfStaticSlots_use >

gNumberOfStaticSlots) 
354                          { 
355                              cout << "system non-schedulable. 

gNumberOfStaticSlots_use > gNumberOfStaticSlots." << endl; 
356                              return 0; 
357                          } 
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358   
359   
360                          iterST->isScheduled = true; 
361                          scheduledCount++; 
362                          if (scheduledCount == Lst.size()) 
363                          { 
364                              cout << "scheduled" << endl; 
365                              cout << "gdStaticSlot:" <<

gdStaticSlot << endl; 
366                              cout << "gNumberOfStaticSlots:" <<

gNumberOfStaticSlots << endl; 
367                              cout << "number of ST slots used:"

<< gNumberOfStaticSlots_use << endl; 
368  //-----------------output ST schedule---------------------- 

 
369                              vector<MessageST>::iterator 

iterSTOut; 
370                              cout << "ID_ST" << '\t' << "s" <<

'\t' << "p" << '\t' << setw(8) << "STSlotNum"; 
371                              cout << setw(5) << "b" << setw(5) <<

"r" << '\t' << "CycNum" << '\t' << "SlotIDMax" << '\t' << endl; 
372                              for (iterSTOut = Lst.begin();

iterSTOut != Lst.end(); iterSTOut++) 
373                              { 
374                                  cout << setw(3) << iterSTOut-

>FrameID_ST << '\t' << iterSTOut->s + 1 << '\t' << iterSTOut->p 
<< '\t' << setw(4) << iterSTOut->gNumberOfStaticSlot_m; 

375                                  cout << setw(10) << iterSTOut->b 
<< setw(5) << iterSTOut->r << '\t' << setw(4) << iterSTOut-
>gNumberOfCycle << setw(9) << iterSTOut->SlotIDMax << '\t' <<
endl; 

376                              } 
377  //------------------------------------------------------------- 

 
378                              return 0; 
379                          } 
380                          else 
381                          { 
382                              break; 
383                          } 
384                      }                
385                  } 
386              }    
387          } 
388      cout << "system non-schedulable. Schedulability:" <<

(double)scheduledCount/Lst.size()*100 << "%" << endl; 
389      cout << "gdStaticSlot:" << gdStaticSlot << endl; 
390      cout << "gNumberOfStaticSlots:" << gNumberOfStaticSlots <<

endl; 
391      return 0; 
392  } 
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B 
B Source Code of Simple DYN 

Scheduler 

1  /*------------------------------------------------------------
Simple FlexRay DYN scheduling algorithm              

-------------------------------------------------------------*/ 
2  #include <iostream> 
3  #include <iomanip> 
4  #include <vector> 
5  #include <set> 
6  #include <algorithm> 
7  #include <time.h> 
8  #include <math.h> 
9   
10  using namespace std; 
11   
12  //----------------System parameters------------------- 
13  const double gdMacrotick = 2;//Duration of the cluster wide 

nominal macrotick[μs] 
14  double gdTSSTransmitter;//Number of bits in the Transmission 

Start Sequence[gdBit]  
15  double gdBit, gdBitMax, gdBitMin; // gdBit:Nominal bit time[μ

s], gdBitMax[μs], gdBitMin[μs] 
16  double dStarTruncation = 0.45; //Interval by which the 

transmission of a frame is shortened by one star = 0.45[μs] 
17  double dBDRxia = 0.3;//Activity reaction time. Time by which a 

transmission becomes shortened in a receiving node = 0 ~ 0.45[μ
s];It is the truncation that occurs in the BD of the receiving 
node. It is present even if the frame does not pass through any 
active stars. 

18  int nStarPath = 0;//0~2; the maximum number of active stars 
between any two nodes 

19   
20  double BusSpeed = 10;//Bus data rate[Mbit/s] 
21  double gdCycle = 5000, STbus = 3000, DYNbus;//gdCycle:CC 

length[μs], STbus:ST segment length[μs], DYN bus length[μs] 
22       
23   
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24  //---------------DYN segment parameters---------------- 
25  int num_DYN;//number of DYN messages 
26  double gdMinislot;//Minislot length[μs] 
27  int gNumberOfMinislots; 
28  int scheduledCountDYN = 0; 
29  int pLatestTx;//Number of the last minislot in which a frame 

transmission can start in the dynamic segment 
30  double aFrameLength_DYN;//DYN frame length
31   
32   
33  struct MessageDYN 
34  { 
35      int FrameID_DYN; //FrameID 
36      int MessageLengthDYN;// MessageLengthDYN[bit] 
37      double FrameLengthDYN; //DYN frame length 
38      double D_DYN;//Deadline of dynamic message [μs] 
39      double R_DYN; //response time[μs] 
40  }; 
41   
42   
43  int main() 
44  { 
45  //-------------------user input--------------------------- 
46      cout << "Please input the number of DYN messages:"; 
47      cin >> num_DYN; 
48      gdMinislot = 5 * gdMacrotick; 
49      /*cout << "Please input the length of a Minislot:"; 
50      cin >> gdMinislot;*/ 
51   
52      srand((unsigned)time(NULL)); 
53      for (int j = 0; j < 10; j++) 
54      {        
55          rand(); 
56      } 
57   
58      vector<MessageDYN> MDYN; 
59      vector<MessageDYN> Ldyn; 
60      vector<MessageDYN>::iterator iterDYN; 
61   
62      vector<MessageDYN> lf; 
63      vector<MessageDYN> lf_sort; 
64      vector<MessageDYN>::iterator iterlf; 
65      vector<MessageDYN>::iterator iterMessageLength; 
66   
67   
68      if (BusSpeed == 2.5)   
69      { 
70          gdBit = 0.4;    
71          gdBitMax = 0.4006; 
72          gdBitMin = 0.3994; 
73      }        
74      if (BusSpeed == 5) 
75      { 
76          gdBit = 0.2; 
77          gdBitMax = 0.2003; 
78          gdBitMin = 0.1997; 
79      } 
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80      if (BusSpeed == 10) 
81      { 
82          gdBit = 0.1; 
83          gdBitMax = 0.10015; 
84          gdBitMin = 0.09985; 
85      } 
86       
87  //----------------system parameters------------------------ 
88      gdTSSTransmitter = ceil( (gdBitMax+ dBDRxia+ nStarPath * 

dStarTruncation)/gdBitMin); 
89      DYNbus = gdCycle - STbus; 
90      gNumberOfMinislots = DYNbus / gdMinislot;//int = floor() 
91  //-------------messages input parameters-------------------- 
92      for (int m = 0; m < num_DYN; m++) 
93      { 
94          MessageDYN *temp = new MessageDYN; 
95   
96          //-------------random D generation------------------- 
97          int a = rand() % 7; 
98          if (a == 0) 
99          { 
100              temp->D_DYN = 10000; 
101          } 
102          else if (a == 1) 
103          { 
104              temp->D_DYN = 20000; 
105          } 
106          else if (a == 2) 
107          { 
108              temp->D_DYN = 50000; 
109          } 
110          else if (a == 3) 
111          { 
112              temp->D_DYN = 100000; 
113          } 
114          else if (a == 4) 
115          { 
116              temp->D_DYN = 200000; 
117          } 
118          else if (a == 5) 
119          { 
120              temp->D_DYN = 1000000; 
121          } 
122          else if (a == 6) 
123          { 
124              temp->D_DYN = 2000000; 
125          } 
126           
127          temp->MessageLengthDYN = rand() % gNumberOfMinislots * 

BusSpeed * gdMinislot;//maximum DYN data supported, changeable 
128          MDYN.push_back(*temp); 
129      } 
130   
131  //---------------sort the DYN messages---------------------- 
132      int ID = 1; 
133      while (MDYN.size() != 0) 
134      { 
135          vector<MessageDYN>::iterator temp = MDYN.begin(); 
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136          for (iterDYN = MDYN.begin(); iterDYN != MDYN.end(); 
iterDYN++) 

137          { 
138              if (iterDYN->MessageLengthDYN/iterDYN->D_DYN > temp-

>MessageLengthDYN/temp->D_DYN) 
139              { 
140                  temp = iterDYN; 
141              } 
142          } 
143          temp->FrameID_DYN = ID++; 
144          Ldyn.push_back(*temp); 
145          MDYN.erase(temp); 
146      } 
147  //-----------------sort end---------------------------- 
148               
149      cout << "FrameID" << setw(8) << "ML_DYN" << setw(11) << 

"D_DYN[ms]" << setw(12) << "R_DYN[ms]" << setw(18) << 
"scheduled?" << '\t' << endl; 

150  //---------------worst-case reponse time------------------------ 
151      for (iterDYN = Ldyn.begin(); iterDYN != Ldyn.end(); 

iterDYN++) 
152      {        
153          aFrameLength_DYN = gdTSSTransmitter + 83 + iterDYN-

>MessageLengthDYN * 1.25;//gdBit 
154          pLatestTx = gNumberOfMinislots - (aFrameLength_DYN * 

gdBit) / gdMinislot; 
155   
156     //--------construct lf(m) list--------------------- 
157          lf_sort.clear();//initiate vector lf_sort for the next 

m_DYN 
158          int FrameID_m = iterDYN->FrameID_DYN; 
159          for (iterlf = Ldyn.begin(); iterlf!= Ldyn.end(); 

iterlf++) 
160          { 
161              if (iterlf->FrameID_DYN < FrameID_m) 
162              { 
163                  bool hasSameID = false; 
164                  for (iterMessageLength = lf.begin(); 

iterMessageLength!= lf.end(); iterMessageLength++) 
165                  { 
166                      if(iterMessageLength->FrameID_DYN == iterlf-

>FrameID_DYN) 
167                      { 
168                          hasSameID = true; 
169                          if (iterMessageLength->MessageLengthDYN 

< iterlf->MessageLengthDYN)//check the same FrameID message size 
170                          { 
171                              iterMessageLength->MessageLengthDYN 

= iterlf->MessageLengthDYN; 
172                              iterMessageLength->FrameID_DYN = 

iterlf->FrameID_DYN; 
173                              iterMessageLength->D_DYN = iterlf-

>D_DYN; 
174                              iterMessageLength->R_DYN = iterlf-

>R_DYN; 
175                          } 
176                      } 
177                  } 
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178                  if (!hasSameID) 
179                  { 
180                      lf.push_back(*iterlf);//put into vector 
181                  } 
182              } 
183              else 
184              { 
185                  continue; 
186              } 
187          } 
188   
189  //----------sort the lf(m) in decreasing order--------------   
190          while (lf.size() != 0) 
191          { 
192              vector<MessageDYN>::iterator temp = lf.begin(); 
193              for (iterlf= lf.begin(); iterlf != lf.end(); 

iterlf++) 
194              { 
195                  if (iterlf->MessageLengthDYN > temp-

>MessageLengthDYN) 
196                  { 
197                      temp = iterlf; 
198                  } 
199              } 
200              lf_sort.push_back(*temp); 
201              lf.erase(temp); 
202          } 
203   
204  /*----------------------------------------------------------

first fit bin packing calculates BusCycles_lf           
----------------------------------------------------------*/ 

205          double bin[64]; 
206          for (int n = 1; n <= 64; n++) 
207          { 
208              bin[n] = DYNbus; 
209          } 
210          int BusCycles_lf = 1; 
211          for (iterlf= lf_sort.begin(); iterlf != lf_sort.end(); 

iterlf++) 
212          { 
213              iterlf->FrameLengthDYN = gdTSSTransmitter + 83 + 

iterlf->MessageLengthDYN * 1.25; 
214              for (n = 1; n <= 64; n++)//searching all avilable 

bins 
215              {                
216                  if ( bin[n] >= iterlf->FrameLengthDYN && 

bin[n] >= DYNbus-pLatestTx * gdMinislot)//enough space, put into 
this bin 

217                  { 
218                      if ( n > BusCycles_lf)//update BusCycles_lf 
219                      { 
220                          BusCycles_lf = n; //determine the number 

of cycles occupied by lf messages 
221                      } 
222                      bin[n] -= iterlf->FrameLengthDYN;//update 

the spare space of bin[n] 
223                      break; 
224                  } 
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225                  else 
226                  { 
227                      continue;//search next bin 
228                  }                
229              } 
230          } 
231   
232  //---------------worst-case response time-------------------- 
233          iterDYN->R_DYN = (gdCycle-(STbus+(iterDYN->FrameID_DYN-

1)*gdMinislot))+ BusCycles_lf *gdCycle + (iterDYN->FrameID_DYN-
1)*gdMinislot + (STbus+pLatestTx*gdMinislot)+(aFrameLength_DYN 
*gdBit/BusSpeed); 

234          if (iterDYN->R_DYN <= iterDYN->D_DYN) 
235          { 
236              scheduledCountDYN++; 
237              cout << setw(4) << iterDYN->FrameID_DYN << setw(11) 

<< iterDYN->MessageLengthDYN << setw(9) << iterDYN->D_DYN/1000 
<< setw(13) << iterDYN->R_DYN/1000 << setw(15) << "Yes" << '\t' 
<< endl; 

238              if (scheduledCountDYN == Ldyn.size()) 
239              { 
240                  cout << "System schedulable. DYN messages are 

100% scheduled." << endl; 
241                  return 0; 
242              } 
243          } 
244          else 
245          { 
246              cout << setw(4) << iterDYN->FrameID_DYN << setw(11) 

<< iterDYN->MessageLengthDYN << setw(9) << iterDYN->D_DYN/1000 
<< setw(13) << iterDYN->R_DYN/1000 << setw(15) << "No" << '\t' 
<< endl; 

247          } 
248      } 
249      cout << "system non-schedulable. Schedulability:" << 

(double)scheduledCountDYN/Ldyn.size()*100 << "%"<< endl; 
250      return 0; 
251  } 
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C 
C Source Code of Switched ST 

Scheduler 

1  /*------------------------------------------------------------
Switched FlexRay ST scheduling algorithm              

-------------------------------------------------------------*/ 
2  #include <iostream> 
3  #include <iomanip> 
4  #include <vector> 
5  #include <set> 
6  #include <algorithm> 
7  #include <time.h> 
8  #include <math.h> 
9   
10  using namespace std; 
11   
12  #define max(a,b) (((a) > (b)) ? (a) : (b)) 
13   
14  //----------------System parameters------------------- 
15  const int pSamplesPerMicrotick = 1;//Number of samples per 

microtick 
16  const double gdSampleClockPeriod = 0.0125;//Sample clock 

period[μs] 
17  double pdMicrotick;//Duration of a microtick[μs] 
18  double gdMaxMicrotick;//Maximum microtick length of all 

microticks configured within a cluster[μs] 
19  double gdMacrotick = 2;// Duration of the cluster wide nominal 

macrotick[μs] 
20  double gdBit, gdBitMax, gdBitMin; // gdBit:Nominal bit time[μ

s], gdBitMax[μs], gdBitMin[μs] 
21  int gdActionPointOffset;//Number of macroticks the action point 

is offset from the beginning of a static slot or symbol 
window[MT] 

22  double gAssumedPrecision;//Assumed precision of the application 
network[μs];  aBestCasePrecision[μs] <= gAssumedPrecision[μs] 
<= aWorstCasePrecision[μs]=(34μT + 20 * gClusterDriftDamping[μ
T]) * gdMaxMicrotick[μs /μT] +2 * gdMaxPropagationDelay 



APPENDIX C. SOURCE CODE OF SWITCHED ST SCHEDULER 121 

 

 

23  double aBestCasePrecision, aWorstCasePrecision; 
24  int gdTSSTransmitter; //Number of bits in the Transmission Start 

Sequence[gdBit]  
25  double gdMaxInitializationError;//maximum initialization 

error[μs]; 2 * (gdMaxMicrotick[μs] * (1 + 0.0015)) + 
gdMaxPropagationDelay <= gdMaxInitializationError<= 
gAssumedPrecision= aWorstCasePrecision= 11.7 μs 

26  int gClusterDriftDamping = 5;//cluster drift damping factor=0~ 
5[̔]     

27  double dStarTruncation = 0.45; //Interval by which the 
transmission of a frame is shortened by one star = 0.45[μs] 

28  double dBDRxia = 0.3;//Activity reaction time. Time by which a 
transmission becomes shortened in a receiving node = 0 ~ 0.45[μ
s];It is the truncation that occurs in the BD of the receiving 
node. It is present even if the frame does not pass through any 
active stars. 

29  int nStarPath = 1;//0~2; the maximum number of active stars 
between any two nodes 

30  double gdMinPropagationDelay = 0, gdMaxPropagationDelay = 
2.5;//A minimum/maximum propagation delay of the network as seen 
by the local node[μs], 0 ~ 2.5 

31   
32  double BusSpeed = 10;//Bus data rate[Mbit/s] 
33  double gdCycle = 5000, STbus = 3000;//gdCycle:CC length[μs], 

STbus:ST segment length[μs] 
34   
35   
36  //---------------ST segment parameters---------------- 
37  int num_ST;//number of ST messages 
38  double gdStaticSlot; //ST-Slot length[μs] 
39  int gNumberOfStaticSlots, gNumberOfStaticSlots_min, 

gNumberOfStaticSlots_use = 0;//gNumberOfStaticSlots_min: minimum 
required number of ST slots;gNumberOfStaticSlots_use:used number 
of ST slots 

40  double gPayloadLengthStatic;//payload length of the ST 
frame[bit] 

41  int aFrameLengthStatic;//ST Frame lengthg[dBit] 
42  int scheduledCount = 0; //counter of scheduled messages 
43  bool Vuse[1023][64] = {0}; //used vector space
44   
45   
46  struct buf 
47  { 
48      int x; 
49      int y; 
50  }; 
51   
52  struct MessageST 
53  { 
54      int FrameID_ST; //FrameID of ST messages 
55      int MessageLengthST; // Static message length[bit] 
56      double T_ST; //Period of production of static message [μs] 
57      double D_ST; //Deadline of static message [μs] 
58       
59      bool Port[4]; //ports message m occupied 
60      bool Source[4]; //message m’s source ports 
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61      bool Sink[4]; //message m’s sink ports 
62      bool Matrix[4][4]; //messages m’s transmission path 
63       
64      int s; //base slot 
65      int p; //slot repetition 
66      int gNumberOfStaticSlot_m;//Number of ST slots for m 
67      int b; //base cycle 
68      int r; //cycle repetition 
69      int gNumberOfCycle;//Number of cycles allocated to 
70       
71       
72      bool buffer[1023][64][4];//slots message m occupied 
73      bool V[1023][64][4]; 
74      bool isScheduled; 
75   
76      int SlotIDMax; //Max slot ID 
77       
78      buf SlotID; 
79      buf CC; 
80  }; 
81   
82   
83   
84  int main() 
85  {    
86  /*------------------------------------------------------------

user input                             
--------------------------------------------------------------*/ 

87      /*cout << "Please choose the duration of the samples 
clock[μs]: 0.0125, 0.0250, 0.0500"; 

88      cin >> gdSampleClockPeriod; 
89      cout << "Please choose the number of samples per Microtick: 

1,2,4"; 
90      cin >> pSamplesPerMicrotick;*/ 
91      cout << "Please input the number of ST messages:"; 
92      cin >> num_ST; 
93      /*cout << "Please input the maximum number of active stars 

between any 2 nodes:"; 
94      cin >> nStarPath; 
95      cout << "Please input the FlexRay bus bit rate [MBit/s]:"; 
96      cin >> BusSpeed; 
97      cout << "Please input the min bit rate of the ST messages 

[MBit/s]:"; 
98      cin >> min_bitRate; 
99      cout << "Please input the max bit rate of the ST messages 

[MBit/s]:"; 
100      cin >> max_bitRate;*/ 
101       
102      srand((unsigned)time(NULL)); 
103      for (int j = 0; j < 10; j++) 
104      {        
105          rand(); 
106      } 
107       
108      vector<MessageST> MST; 
109      vector<MessageST> Lst; 
110      vector<MessageST>::iterator iterST; 
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111   
112  /*------------------------------------------------------------

value the system parameters                    
------------------------------------------------------------*/ 

113      if (BusSpeed == 2.5)   
114      { 
115          gdBit = 0.4;    
116          gdBitMax = 0.4006; 
117          gdBitMin = 0.3994; 
118      }        
119      if (BusSpeed == 5) 
120      { 
121          gdBit = 0.2; 
122          gdBitMax = 0.2003; 
123          gdBitMin = 0.1997; 
124      } 
125      if (BusSpeed == 10) 
126      { 
127          gdBit = 0.1; 
128          gdBitMax = 0.10015; 
129          gdBitMin = 0.09985; 
130      } 
131   
132      pdMicrotick = pSamplesPerMicrotick * gdSampleClockPeriod; 
133      gdMaxMicrotick = pdMicrotick; 
134      aWorstCasePrecision=(34  + 20 * gClusterDriftDamping) *

gdMaxMicrotick +2 * gdMaxPropagationDelay; 
135   
136      gAssumedPrecision = aWorstCasePrecision;     
137      gdMaxInitializationError = 2 * (gdMaxMicrotick* (1 +

0.0015)) + gdMaxPropagationDelay; 
138   
139      gdTSSTransmitter = ceil( (gdBitMax+ dBDRxia+ nStarPath *

dStarTruncation)/gdBitMin); 
140      gdActionPointOffset = ceil((2*gAssumedPrecision -

gdMinPropagationDelay +2 * gdMaxInitializationError) /
(gdMacrotick* (1 - 0.0015))); 

141  //-----------------output message info----------------------- 
142      cout << "ID_ST" << '\t' << "ML_ST" << '\t' << "T_ST" << '\t'

<< "D_ST" << '\t' << endl; 
143       
144  //--------------------messages input parameters------------- 
145      int ID = 1; 
146      for (int n = 0; n < num_ST; n++) 
147      { 
148          MessageST *temp = new MessageST; 
149          temp->FrameID_ST = ID++; 
150           
151          //-------------random T generation------------- 
152          int a = rand() % 11; 
153          if (a == 0) 
154          { 
155              temp->T_ST = 5000; 
156          } 
157          else if (a == 1) 
158          { 
159              temp->T_ST = 10010; 
160          } 
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161          else if (a == 2) 
162          { 
163              temp->T_ST = 20010; 
164          } 
165          else if (a == 3) 
166          { 
167              temp->T_ST = 40010; 
168          } 
169          else if (a == 4) 
170          { 
171              temp->T_ST = 80010; 
172          } 
173          else if (a == 5) 
174          { 
175              temp->T_ST = 160010; 
176          } 
177          else if (a == 6) 
178          { 
179              temp->T_ST = 320010; 
180          } 
181          else if (a == 7) 
182          { 
183              temp->T_ST = 4000; 
184          } 
185          else if (a == 8) 
186          { 
187              temp->T_ST = 2000; 
188          } 
189          else if (a == 9) 
190          { 
191              temp->T_ST = 1000; 
192          } 
193          else if (a == 10) 
194          { 
195              temp->T_ST = 500; 
196          } 
197           
198          temp->D_ST = temp->T_ST; 
199          if (temp->D_ST > 40000) 
200          { 
201              temp->D_ST = 40000; 
202          } 
203           
204          temp->MessageLengthST = 64; 
205           
206          for (int i = 0; i <= 1022; i++) 
207          { 
208              for (int j = 0; j <= 63; j++) 
209              { 
210                  for (int k = 0; k <= 3; k++) 
211                  { 
212                      temp->buffer[i][j][k] = 0; 
213                      temp->V[i][j][k] = 1; 
214                  } 
215              } 
216          } 
217          //-------------random message Port generation--------- 
218          for (int k = 0; k <= 3; k++) 
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219          { 
220              temp->Port[k] = 0; 
221              temp->Source[k] = 0; 
222              temp->Sink[k] = 0; 
223          } 
224          int first = rand() % 4; 
225          temp->Source[first] = 1; 
226          for (int m = 0; m <= 3; m++) 
227          { 
228              if(m != first) 
229              { 
230                  if (rand() % 2 == 0) 
231                  { 
232                      temp->Sink[m] = 0; 
233                  } 
234                  else 
235                  { 
236                      temp->Sink[m] = 1; 
237                  } 
238              } 
239              temp->Port[m] = temp->Source[m] + temp->Sink[m]; 
240          } 
241           
242          temp->isScheduled = false; 
243          MST.push_back(*temp); 
244          cout << setw(3) << temp->FrameID_ST << '\t' << temp-

>MessageLengthST << '\t' << temp->T_ST << '\t' << temp->D_ST <<
'\t' << endl; 

245      } 
246  //------------------output message port---------------------- 
247      cout <<"Port"<<'\t'<<endl; 
248      for (iterST = MST.begin(); iterST != MST.end(); iterST++) 
249      { 
250          for (int m = 0; m <= 3; m++) 
251          { 
252              if(iterST->Port[m] == 1) // "1" means been occupied 
253              {  
254                  cout<<m<<','; 
255              } 
256          } 
257          cout << endl; 
258      } 
259   
260  /*-------------------------------------------------------------

value the message schedule's main parameters 
------------------------------------------------------------*/ 

261      int MessageLengthSTMax; 
262      for (iterST = MST.begin(); iterST != MST.end(); iterST++) 
263      { 
264          if (MessageLengthSTMax < iterST->MessageLengthST) 
265              MessageLengthSTMax = iterST->MessageLengthST; 
266      } 
267       
268      gPayloadLengthStatic = MessageLengthSTMax; 
269      aFrameLengthStatic = (gdTSSTransmitter+ 1 + 80

+gPayloadLengthStatic* 1.25 + 2);//gdBit 
270   
271      gdStaticSlot = 2 * gdActionPointOffset +
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ceil( ((aFrameLengthStatic +
11)*gdBitMax+gdMinPropagationDelay+gdMaxPropagationDelay)/(gdMac
rotick *(1-0.0015))); 

272      gNumberOfStaticSlots = STbus / gdStaticSlot; 
273       
274          for (iterST = MST.begin(); iterST != MST.end();

iterST++) 
275          { 
276              if (iterST->D_ST < gdCycle) 
277              { 
278                  iterST->r = 1; 
279                  for (int n = 0; n <= log(gdCycle/gdStaticSlot) /

log(2); n++) 
280                  { 
281                          if (iterST->p <= iterST->D_ST /

gdStaticSlot) 
282                          { 
283                              iterST->p = pow(2,n); 
284                          } 
285                  } 
286                  iterST->gNumberOfStaticSlot_m =

ceil((double)gNumberOfStaticSlots / iterST->p); 
287                  iterST->gNumberOfCycle = 64; 
288              } 
289              else 
290              { 
291                  iterST->p = gNumberOfStaticSlots; 
292                  iterST->gNumberOfStaticSlot_m = 1; 
293                  if (iterST->D_ST > gdCycle) 
294                  { 
295                      for (int n = 0; n <= 6; n++) 
296                      { 
297                          if (iterST->r <= iterST->D_ST / gdCycle) 
298                          { 
299                              iterST->r = pow(2,n); 
300                          } 
301                      } 
302                      iterST->gNumberOfCycle = 64 / iterST->r; 
303                  } 
304                  else  
305                  { 
306                      iterST->r = 1; 
307                      iterST->gNumberOfCycle = 64; 
308                  } 
309              } 
310          } 
311  //--------------------basic  constraint-------------------- 

 
312          for (iterST = MST.begin(); iterST != MST.end();

iterST++) 
313          { 
314              gNumberOfStaticSlots_min += (double)iterST-

>gNumberOfStaticSlot_m/iterST->r; 
315          } 
316          gNumberOfStaticSlots_min =

ceil((double)gNumberOfStaticSlots_min); 
317          if (gNumberOfStaticSlots_min <= 2) 
318          { 
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319              gNumberOfStaticSlots_min = 2; 
320          } 
321          if (gNumberOfStaticSlots_min > gNumberOfStaticSlots) 
322          { 
323              cout << "non-schedulable ,gNumberOfStaticSlots_min> 

gNumberOfStaticSlots" << endl; 
324              return 0; 
325          } 
326  //----------------------sort------------------------------ 

 
327          while (MST.size() != 0) 
328          { 
329              vector<MessageST>::iterator temp = MST.begin(); 
330              for (iterST = MST.begin(); iterST != MST.end();

iterST++) 
331              { 
332                  if (iterST->p < temp->p || (iterST->p == temp->p 

&& iterST->r < temp->r)) 
333                  { 
334                      temp = iterST; 
335                  } 
336              } 
337              Lst.push_back(*temp); 
338              MST.erase(temp); 
339          } 
340  //--------------------scheduling process-------------------- 
341          for (iterST = Lst.begin(); iterST != Lst.end();

iterST++) 
342          { 
343              if (iterST->isScheduled) 
344              { 
345                  continue; 
346              } 
347              iterST->SlotID.x = 0; 
348              iterST->SlotID.y = iterST->p - 1; 
349              iterST->CC.x = 0; 
350              iterST->CC.y = iterST->r - 1; 
351               
352              for (int i = iterST->SlotID.x; i <= iterST-

>SlotID.y; i++) 
353              { 
354                  for (int j = iterST->CC.x; j <= iterST->CC.y;

j++) 
355                  { 
356                      for (int k = 0; k <= 3; k++) 
357                      { 
358                          if (Vuse[i][j][k] == 0) //space not be 

used 
359                          { 
360                              iterST->V[i][j][k] = 0; 
361                          } 
362                      } 
363                  } 
364              } 
365              for (int sm = iterST->SlotID.x; sm <= iterST-

>SlotID.y; sm++) 
366              { 
367                  if (iterST->isScheduled) 
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368                  { 
369                      break; 
370                  } 
371                  for (int bm = iterST->CC.x; bm <= iterST->CC.y;

bm++) 
372                  { 
373                      if (iterST->isScheduled) 
374                      { 
375                          break; 
376                      } 
377                      bool flag = true; 
378                      for (int k = 0; k <= 3; k++) 
379                      { 
380                          if (iterST->Port[k] == 1&&iterST-

>V[sm][bm][k] == 1) 
381                          {  
382                              flag = false; 
383                              break; 
384                          } 
385                      } 
386                      if (!flag) 
387                      { 
388                          continue; 
389                      } 
390                      if (flag) 
391                      { 
392                          iterST->s = sm; 
393                          iterST->b = bm; 
394                          for (int m = 1; m <= iterST-

>gNumberOfStaticSlot_m; m++) 
395                          { 
396                              for (int n = 1; n <= iterST-

>gNumberOfCycle; n++) 
397                              { 
398                                  for (k = 0; k <= 3; k++) 
399                                  { 
400                                      if (iterST->Port[k] == 1) 
401                                      { 
402                                          iterST->buffer[iterST-

>s+(m-1)*iterST->p][iterST->b+(n-1)*iterST->r][k] = 1; 
403                                      } 
404                                  } 
405                              } 
406                          } 
407                          for (int i = 0; i <= 1022; i++) 
408                          { 
409                              for (int j = 0; j <= 63; j++) 
410                              { 
411                                  for (k = 0; k <= 3; k++) 
412                                  { 
413                                      Vuse[i][j][k] =

Vuse[i][j][k] | iterST->buffer[i][j][k]; //update Vuse 
414                                  } 
415                              } 
416                          } 
417   
418                          iterST->SlotIDMax = iterST->s + 1

+(iterST->gNumberOfStaticSlot_m - 1)*iterST->p; 



APPENDIX C. SOURCE CODE OF SWITCHED ST SCHEDULER 129 

 

 

419   
420                          if ( iterST->SlotIDMax >

gNumberOfStaticSlots_use) 
421                          { 
422                              gNumberOfStaticSlots_use= iterST-

>SlotIDMax; //update used max slot ID 
423                          } 
424                          if (gNumberOfStaticSlots_use >

gNumberOfStaticSlots) 
425                          { 
426                              cout << "system non-schedulable. 

gNumberOfStaticSlots_use > gNumberOfStaticSlots." << endl; 
427                              return 0; 
428                          } 
429                          iterST->isScheduled = true; 
430                          scheduledCount++; 
431                          if (scheduledCount == Lst.size()) 
432                          { 
433                              cout << "scheduled" << endl; 
434                              cout << "gdStaticSlot:" <<

gdStaticSlot << endl; 
435                              cout << "gNumberOfStaticSlots:" <<

gNumberOfStaticSlots << endl; 
436                              cout << "number of ST slots used:"

<< gNumberOfStaticSlots_use << endl; 
437  //------------------output ST schedule-------------------------- 

 
438                              vector<MessageST>::iterator 

iterSTOut; 
439                              cout << "ID_ST" << '\t' << "s" <<

'\t' << "p" << '\t' << setw(8) << "STSlotNum"; 
440                              cout << setw(5) << "b" << setw(5) <<

"r" << '\t' << "CycNum" << '\t' << "SlotIDMax" << '\t' << endl; 
441                              for (iterSTOut = Lst.begin();

iterSTOut != Lst.end(); iterSTOut++) 
442                              { 
443                                  cout << setw(3) << iterSTOut-

>FrameID_ST << '\t' << iterSTOut->s + 1 << '\t' << iterSTOut->p 
<< '\t' << setw(4) << iterSTOut->gNumberOfStaticSlot_m; 

444                                  cout << setw(10) << iterSTOut->b 
<< setw(5) << iterSTOut->r << '\t' << setw(4) << iterSTOut-
>gNumberOfCycle << setw(9) << iterSTOut->SlotIDMax << '\t' <<
endl; 

445                              } 
446  //-------------------------------------------------------------- 
447                              return 0; 
448                          } 
449                          else 
450                          { 
451                              break; 
452                          } 
453                      }                
454                  } 
455              }    
456          } 
457      cout << "system non-schedulable. Schedulability:" <<

(double)scheduledCount/Lst.size()*100 << "%" << endl; 
458      cout << "gdStaticSlot:" << gdStaticSlot << endl; 
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459      cout << "gNumberOfStaticSlots:" << gNumberOfStaticSlots <<
endl; 

460      return 0; 
461  } 
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D 
D Source Code of Switched DYN 

Scheduler 

1  /*------------------------------------------------------------
Switched FlexRay DYN scheduling algorithm             

-------------------------------------------------------------*/ 
2  #include <iostream> 
3  #include <iomanip> 
4  #include <vector> 
5  #include <set> 
6  #include <algorithm> 
7  #include <time.h> 
8  #include <math.h> 
9   
10  using namespace std; 
11   
12  //----------------System parameters------------------- 
13  const double gdMacrotick = 2;//Duration of the cluster wide 

nominal macrotick[μs] 
14  double gdTSSTransmitter;//Number of bits in the Transmission 

Start Sequence[gdBit]  
15  double gdBit, gdBitMax, gdBitMin; // gdBit:Nominal bit time[μ

s], gdBitMax[μs], gdBitMin[μs] 
16  double dStarTruncation = 0.45; //Interval by which the 

transmission of a frame is shortened by one star = 0.45[μs] 
17  double dBDRxia = 0.3;//Activity reaction time. Time by which a 

transmission becomes shortened in a receiving node = 0 ~ 0.45[μ
s];It is the truncation that occurs in the BD of the receiving 
node. It is present even if the frame does not pass through any 
active stars. 

18  int nStarPath = 1;//0~2; the maximum number of active stars 
between any two nodes 

19   
20  double BusSpeed = 10;//Bus data rate[Mbit/s] 
21  double gdCycle = 5000, STbus = 3000, DYNbus;//gdCycle:CC 

length[μs], STbus:ST segment length[μs], DYN bus length[μs] 
22       
23   
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24  //---------------DYN segment parameters---------------- 
25  int num_DYN;//number of DYN messages 
26  double gdMinislot;//Minislot length[μs] 
27  int gNumberOfMinislots; 
28  int scheduledCountDYN = 0; 
29  int pLatestTx;//Number of the last minislot in which a frame 

transmission can start in the dynamic segment 
30  double aFrameLength_DYN;//DYN frame length
31   
32   
33  struct MessageDYN 
34  { 
35      int FrameID_DYN; //FrameID 
36      int FrameID_DYNnew; //FrameID after clustering 
37      int MessageLengthDYN;// MessageLengthDYN[bit] 
38      double FrameLengthDYN; //DYN Frame length 
39      double D_DYN;//Deadline of dynamic message [μs] 
40      double R_DYN; //response time[μs] 
41   
42      bool Port_DYN[4]; //the ports message m occupied 
43      int clusterID_DYN; //cluster ID messages m belonged 
44      bool isCluster; 
45  }; 
46   
47   
48  int main() 
49  { 
50  //-------------------user input--------------------------- 
51      cout << "Please input the number of DYN messages:"; 
52      cin >> num_DYN; 
53      /*cout << "Please input the length of a Minislot:"; 
54      cin >> gdMinislot;*/ 
55   
56      srand((unsigned)time(NULL)); 
57      for (int j = 0; j < 10; j++) 
58      {        
59          rand(); 
60      } 
61   
62      vector<MessageDYN> MDYN; 
63      vector<MessageDYN> Ldyn; 
64      vector<MessageDYN>::iterator iterDYN; 
65      vector<MessageDYN>::iterator iterFrameID; 
66   
67      vector<MessageDYN> lf; 
68      vector<MessageDYN> lf_sort; 
69      vector<MessageDYN>::iterator iterlf; 
70      vector<MessageDYN>::iterator iterMessageLength; 
71       
72      if (BusSpeed == 2.5)   
73      { 
74          gdBit = 0.4;    
75          gdBitMax = 0.4006; 
76          gdBitMin = 0.3994; 
77      }        
78      if (BusSpeed == 5) 
79      { 
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80          gdBit = 0.2; 
81          gdBitMax = 0.2003; 
82          gdBitMin = 0.1997; 
83      } 
84      if (BusSpeed == 10) 
85      { 
86          gdBit = 0.1; 
87          gdBitMax = 0.10015; 
88          gdBitMin = 0.09985; 
89      } 
90   
91  //-------------------------------------------------------------

system parameters                         
------------------------------------------------------------- 

92      gdTSSTransmitter = ceil( (gdBitMax+ dBDRxia+ nStarPath * 
dStarTruncation)/gdBitMin); 

93      DYNbus = gdCycle - STbus; 
94      gNumberOfMinislots = DYNbus / gdMinislot;//int = floor() 
95       
96  //------------------------------------------------------------

messages input parameters                     
------------------------------------------------------------- 

97      for (int m = 0; m < num_DYN; m++) 
98      { 
99          MessageDYN *temp = new MessageDYN; 
100           
101  //-------------random D generation---------------- 
102          int a = rand() % 7; 
103          if (a == 0) 
104          { 
105              temp->D_DYN = 100000; 
106          } 
107          else if (a == 1) 
108          { 
109              temp->D_DYN = 200000; 
110          } 
111          else if (a == 2) 
112          { 
113              temp->D_DYN = 500000; 
114          } 
115          else if (a == 3) 
116          { 
117              temp->D_DYN = 1000000; 
118          } 
119          else if (a == 4) 
120          { 
121              temp->D_DYN = 2000000; 
122          } 
123          else if (a == 5) 
124          { 
125              temp->D_DYN = 10000000; 
126          } 
127          else if (a == 6) 
128          { 
129              temp->D_DYN = 20000000; 
130          } 
131           
132          temp->MessageLengthDYN = rand() % 128;//maximum 16 bytes 



134  APPENDIX D. SOURCE CODE OF SWITCHED DYN 
SCHEDULER 

 

 

DYN data supported, changeable 
133          temp->isCluster = false; 
134    //-------------random message Port generation---------- 
135          int first = rand() % 4; 
136          temp->Port_DYN[first] = 1; 
137          for (int i = 0; i <= 3; i++) 
138          { 
139              if(i != first) 
140              { 
141                  if (rand() % 2 == 0) 
142                  { 
143                      temp->Port_DYN[i] = 0; 
144                  } 
145                  else 
146                  { 
147                      temp->Port_DYN[i] = 1; 
148                  } 
149              } 
150          } 
151          MDYN.push_back(*temp); 
152      } 
153   
154  //------------------------------------------------------------

sort the DYN messages                       
-------------------------------------------------------------- 

155      int ID = 1; 
156      while (MDYN.size() != 0) 
157      { 
158          vector<MessageDYN>::iterator temp = MDYN.begin(); 
159          for (iterDYN = MDYN.begin(); iterDYN != MDYN.end(); 

iterDYN++) 
160          { 
161              if (iterDYN->MessageLengthDYN/iterDYN->D_DYN > temp-

>MessageLengthDYN/temp->D_DYN) 
162              { 
163                  temp = iterDYN; 
164              } 
165          } 
166          temp->FrameID_DYN = ID++; 
167          Ldyn.push_back(*temp); 
168          MDYN.erase(temp); 
169      } 
170   
171  //----------------------------------------------------------

clustering                             
------------------------------------------------------------ 

172      int cluster[100][4]; 
173      int cluster_max = 1; 
174      for (int i = 0; i < 100; i++) 
175      { 
176          for (int j = 0; j < 4; j++) 
177          { 
178              cluster[i][j] = -1; 
179          } 
180      } 
181   
182      for (iterDYN = Ldyn.begin(); iterDYN != Ldyn.end(); 

iterDYN++) 
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183      { 
184          if (iterDYN == Ldyn.begin()) 
185          { 
186              for (int j = 0; j < 4; j++) 
187              { 
188                  if ( iterDYN->Port_DYN[j] == 1 ) 
189                  { 
190                      cluster[1][j] = iterDYN->FrameID_DYN; 
191                  } 
192              } 
193              iterDYN->clusterID_DYN = 1; 
194              iterDYN->isCluster = true; 
195          } 
196          else 
197          { 
198              for (int i = 1; i <= cluster_max; i++)//search all 

valid clusters 
199              { 
200                  if (iterDYN->isCluster) 
201                  { 
202                      break; 
203                  } 
204                  bool flag =true; 
205                  for (int j = 0; j < 4; j++) 
206                  { 
207                      if ( iterDYN->Port_DYN[j] == 1 && 

cluster[i][j] > 0 )//one port has been occupied 
208                      { 
209                          flag = false;  
210                      } 
211                  } 
212                  if (flag)//every port needed by the transmission 

is valid 
213                  { 
214                      for (int j = 0; j < 4; j++) 
215                      { 
216                          if ( iterDYN->Port_DYN[j] == 1) 
217                          { 
218                              cluster[i][j] = iterDYN-

>FrameID_DYN; 
219                          } 
220                      } 
221                      iterDYN->clusterID_DYN = i; 
222                      iterDYN->isCluster = true; 
223                  } 
224              } 
225              if (!iterDYN->isCluster)//cannot find the valid 

cluster, create a new one 
226              { 
227                  cluster_max++; 
228                  for (int j = 0; j < 4; j++) 
229                  { 
230                      if ( iterDYN->Port_DYN[j] == 1 ) 
231                      { 
232                          cluster[cluster_max][j] = iterDYN-

>FrameID_DYN; 
233                      } 
234                  } 
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235                  iterDYN->clusterID_DYN = cluster_max; 
236                  iterDYN->isCluster = true; 
237              } 
238          } 
239      } 
240  //-------------------------------------------------------------

update FrameIDs                          
-------------------------------------------------------------- 

241      cout << "FrameID" << endl; 
242      for (iterDYN = Ldyn.begin(); iterDYN != Ldyn.end(); 

iterDYN++) 
243      { 
244          cout << setw(4) << iterDYN->FrameID_DYN << endl;//output 

original FrameID as reference 
245      } 
246   
247      cout << "FrameID_new" << '\t' << endl; 
248      for (iterDYN = Ldyn.begin(); iterDYN != Ldyn.end(); 

iterDYN++) 
249      { 
250          iterDYN->FrameID_DYNnew = iterDYN->FrameID_DYN; 
251          for (int j = 0; j < 4; j++) 
252          { 
253              if (cluster[iterDYN->clusterID_DYN][j] > 0 && 

cluster[iterDYN->clusterID_DYN][j] < iterDYN->FrameID_DYNnew) 
254              { 
255                  iterDYN->FrameID_DYNnew = cluster[iterDYN-

>clusterID_DYN][j]; 
256              } 
257          } 
258          if(iterDYN->FrameID_DYNnew < iterDYN->FrameID_DYN) 
259          { 
260              for (iterFrameID= Ldyn.begin(); iterFrameID!= 

Ldyn.end(); iterFrameID++) 
261              { 
262                  if(iterFrameID->FrameID_DYN > iterDYN-

>FrameID_DYN) 
263                  { 
264                      iterFrameID->FrameID_DYN = iterFrameID-

>FrameID_DYN - 1; 
265                  } 
266              } 
267          } 
268          cout << setw(4) << iterDYN->FrameID_DYNnew << '\t' << 

endl;//output updated FrameID 
269          iterDYN->FrameID_DYN = iterDYN->FrameID_DYNnew;//use new 

FrameID in the following calculation 
270      } 
271   
272  //-----------------------------------------------------------

update the Frame IDs end                      
------------------------------------------------------------- 

273   
274      cout << "FrameID" << setw(8) << "ML_DYN" << setw(11) << 

"D_DYN[ms]" << setw(12) << "R_DYN[ms]" << setw(18) << 
"scheduled?" << '\t' << endl; 

275  //-----------------------------------------------------------
worst-case reponse time                      
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------------------------------------------------------------- 
276      for (iterDYN = Ldyn.begin(); iterDYN != Ldyn.end(); 

iterDYN++) 
277      {        
278          aFrameLength_DYN = gdTSSTransmitter + 83 + iterDYN-

>MessageLengthDYN * 1.25; 
279          pLatestTx = gNumberOfMinislots - (aFrameLength_DYN * 

gdBit) / gdMinislot; 
280   
281   //----------------construct lf(m) list---------------------- 
282           
283          lf_sort.clear();//initiate vector lf_sort for the next 

m_DYN 
284          int FrameID_m = iterDYN->FrameID_DYN; 
285          for (iterlf = Ldyn.begin(); iterlf!= Ldyn.end(); 

iterlf++) 
286          { 
287              if (iterlf->FrameID_DYN < FrameID_m) 
288              { 
289                  bool hasSameID = false; 
290                  for (iterMessageLength = lf.begin(); 

iterMessageLength!= lf.end(); iterMessageLength++) 
291                  { 
292                      if(iterMessageLength->FrameID_DYN == iterlf-

>FrameID_DYN) 
293                      { 
294                          hasSameID = true; 
295                          if (iterMessageLength->MessageLengthDYN 

< iterlf->MessageLengthDYN)//check the same FrameID message size 
296                          { 
297                              iterMessageLength->clusterID_DYN = 

iterlf->clusterID_DYN; 
298                              iterMessageLength->MessageLengthDYN 

= iterlf->MessageLengthDYN; 
299                              iterMessageLength->FrameID_DYN = 

iterlf->FrameID_DYN; 
300                              iterMessageLength->FrameID_DYNnew = 

iterlf->FrameID_DYNnew; 
301                              iterMessageLength->D_DYN = iterlf-

>D_DYN; 
302                              iterMessageLength->R_DYN = iterlf-

>R_DYN; 
303                              for (int port_i = 0; port_i < 4; 

port_i++) 
304                              { 
305                                  iterMessageLength-

>Port_DYN[port_i] = iterlf->Port_DYN[port_i]; 
306                              }                            
307                              iterMessageLength->isCluster = 

iterlf->isCluster; 
308                          } 
309                      } 
310                  } 
311                  if (!hasSameID) 
312                  { 
313                      lf.push_back(*iterlf);//put into vector 
314                  } 
315              } 
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316              else 
317              { 
318                  continue; 
319              } 
320          } 
321           
322  //-------------------------------------------------------------

sort the lf(m) in decreasing order                 
-------------------------------------------------------------- 

323          while (lf.size() != 0) 
324          { 
325              vector<MessageDYN>::iterator temp = lf.begin(); 
326              for (iterlf= lf.begin(); iterlf != lf.end(); 

iterlf++) 
327              { 
328                  if (iterlf->MessageLengthDYN > temp-

>MessageLengthDYN) 
329                  { 
330                      temp = iterlf; 
331                  } 
332              } 
333              lf_sort.push_back(*temp); 
334              lf.erase(temp);//initiate lf for the next m_DYN 
335          } 
336   
337  //--------------------------------------------------------------

first fit bin packing calculates BusCycles_lf           
--------------------------------------------------------------- 

338          double bin[64]; 
339          for (int n = 1; n <= 64; n++) 
340          { 
341              bin[n] = DYNbus; 
342          } 
343          int BusCycles_lf = 1; 
344          for (iterlf= lf_sort.begin(); iterlf != lf_sort.end(); 

iterlf++) 
345          { 
346              iterlf->FrameLengthDYN = gdTSSTransmitter + 83 + 

iterlf->MessageLengthDYN * 1.25; 
347              for (n = 1; n <= 64; n++)//searching all avilable 

bins 
348              {                
349                  if ( bin[n] >= iterlf->FrameLengthDYN && 

bin[n] >= DYNbus-pLatestTx * gdMinislot)//enough space, put into 
this bin 

350                  { 
351                      if ( n > BusCycles_lf)//update BusCycles_lf 
352                      { 
353                          BusCycles_lf = n; //determine the number 

of cycles occupied by lf messages 
354                      } 
355                      bin[n] -= iterlf->FrameLengthDYN;//update 

the spare space of bin[n] 
356                      break; 
357                  } 
358                  else 
359                  { 
360                      continue;//search next bin 
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361                  }                
362              } 
363          } 
364   
365  //-----------------------------------------------------------

worst-case response time                      
------------------------------------------------------------ 

366          iterDYN->R_DYN = (gdCycle-(STbus+(iterDYN->FrameID_DYN-
1)*gdMinislot))+ BusCycles_lf *gdCycle + (iterDYN->FrameID_DYN-
1)*gdMinislot + (STbus+pLatestTx*gdMinislot)+(aFrameLength_DYN 
*gdBit/BusSpeed); 

367          if (iterDYN->R_DYN <= iterDYN->D_DYN) 
368          { 
369              scheduledCountDYN++; 
370              cout << setw(4) << iterDYN->FrameID_DYN << setw(9) 

<< iterDYN->MessageLengthDYN << setw(11) << iterDYN->D_DYN/1000 
<< setw(13) << iterDYN->R_DYN/1000 << setw(15) << "Yes" << '\t' 
<< endl; 

371              if (scheduledCountDYN == Ldyn.size()) 
372              { 
373                  cout << "System schedulable. DYN messages are 

100% scheduled." << endl; 
374                  return 0; 
375              } 
376          } 
377          else 
378          { 
379              cout << setw(4) << iterDYN->FrameID_DYN << setw(9) 

<< iterDYN->MessageLengthDYN << setw(11) << iterDYN->D_DYN/1000 
<< setw(13) << iterDYN->R_DYN/1000 << setw(15) << "No" << '\t' 
<< endl; 

380          } 
381      } 
382      cout << "system non-schedulable. Schedulability:" << 

(double)scheduledCountDYN/Ldyn.size()*100 << "%"<< endl; 
383      return 0; 
384  } 
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E 
E Pseudocode for DYN Schedulers 

with ECUs’ Output 

E.1 Notations 

Here we would like to present some notations which may use in the discussion. 

 mCycleID is the ID of the cycle in which the DYN message is scheduled; 

 _m gCycleID  is the value of cycle counter at the instant of the DYN message m is 

generated; 

 _m tCycleID  is the value of cycle counter at the instant of the DYN message m is 

transmitted,  _ 0,63m tCycleID  , _m tCycleID  ; 

 busDYN is the length of the DYN segment; 

 gdMinislot is the number of Macroticks constituting the duration of a Minislot; 

 _m gMacrotick  is the value of Macrotick in the node timer at the instant of the DYN 

message m is generated; 

 _m tMacrotick is the value of Macrotick in the node timer at the instant of the DYN 

message m is transmitted; 

 mMessageLengthDYN  is the number of bits constituting the dynamic message m

in the cluster; 
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 mMinislotID is the number of Minislot from the beginning of the DYN segment to 

the transmission of message m; 

 mpLatestTx  is the number of the last Minislot in which a frame transmission can 

start in the DYN segment; 

 mR is the worst-case response time of the DYN message m; 

 busST is the length of the ST segment; 

 DYNvSlotCounter is the value of slot counter of DYN segment; 

E.2 Representation of the Schedule 

Unlike the fixed starting time of any ST slot in the ST segment, the starting time of the 
DYN slot is not fixed in a schedule. It depends on the transmission data in different networks. 
Therefore we cannot imitate the way of schedule representing in ST segment to use the Frame 
ID as a part of the schedule.  

According to FlexRay specifications, the node shall provide at least one absolute timer 
that may be set to an absolute time in terms of cycle count and Macrotick, i.e. the timer is set 
to expire at a determined Macrotick in a determined communication cycle [11]. This means 

any instant in time can represent as 2-tuple vector  ,vCycleCounter Macrotick . Moreover, 

the length of a Minislot is fixed in a schedule so each Minislot ID has a fixed starting time. 
Therefore the Minislot ID is a good reference grid for any message’s schedule. The 
transmission schedule of the DYN message m can be represented by a 2-tuple vector: 

  Schedule ,m m mMinislotID CycleID  (E.1) 

 Schedule ,m m mMinislotID CycleID  Schedule ,m m mMinislotID CycleID

Every DYN message starts to transmit at position mMinislotID of cycle number mCycleID .  

Therefore the problem of the scheduler design in DYN segment needs to consider these 
two factors. Here list them below: 

 Length of the DYN segment busDYN ; 

 The way to assign the Frame ID and the optimal way to set the order of Frame ID; 

 Parameters mMinislotID and mCycleID ; 

E.3 Motivation for the Solution 
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If there is an idle instant which with the value of DYN slot counter equal to message m’s 

FrameID and it satisfies the mpLatestTx condition, the DYN message m can start to transmit. 

We denote this instant of the DYN message generation as  _ _,m g m gCycleID Macrotick . 

Similarly, we denote the instant of the DYN message transmission as

 _ _,m t m tCycleID Macrotick . The interval between these two instants is the message 

response time mR . It cannot longer than message deadline mD . The mathematic expression for 

this constraint is: 

 m mR D  (E.2) 

The response time can write as follow: 

   _ _ _ _, ,m m t m t m g m gR CycleID Macrotick CycleID Macrotick 
 

 =  _ _ [ ]m t m gCycleID CycleID gdCycle s  
 

 
 _ _ [ ]m t m gMacrotick Macrotick gdMacrotick s   (E.3) 

mMinislotID is related with _m tMacrotick by: 

 
_ [ ]

[ ]
m t

m

Macrotick MT
MinislotID

gdMinislot MT
  (E.4) 

E.4 Pseudocode for Simple DYN Scheduler with ECUs’ Output 

Input:  

 Bus bit rate ࢊࢋࢋ࢖࢙_࢙࢛࢈ 

 The DYN message setࡺࢅࡰࡹ ,ࡺࢅࡰࡹ is maximum DYN message set waiting to send 

in a cluster,  , ,m m DYNm D MessageLengthDYN m M   

Output: 

 2m scheduling matrix DYNSimpleScheduler   

1 1

2 2

3 3

... ...

m m

MinislotID CycleID

MinislotID CycleID

MinislotID CycleID

MinislotID CycleID

 
 
 
 
 
 
  
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Simple DYN scheduler with ECUs’ Output 

for DYNm M   

Sort the DYN messages DYNm M  in descending order of the value

m

m

MessageLength

D
 and then in descending order of the value mMessageLength , store 

them in the message list DYNL  

Assign the Frame ID to the DYN messages with the order in list DYNL from 1 

end for 

for 10 to 16000 sgdCycle   step  20  μsgdBit  

Simple FlexRay ST scheduling algorithm  

ܵ ௕ܶ௨௦ ൌ ݐ݋݈ܵܿ݅ݐܽݐܵ݀݃ ∗   ݏݐ݋݈ܵܿ݅ݐܽݐ݂ܱܵݎܾ݁݉ݑܰ݃

ܻܦ ௕ܰ௨௦ ൌ ݈݁ܿݕܥ݀݃ െ ܵ ௕ܶ௨௦  

for 2 to 63MTgdMinislot  step 1 gdMacrotick [MT]  

for DYNm L  

௠ݔܶݐݏ݁ݐܽܮ݌ ൌ

ሺܻܦ ௕ܰ௨௦	–	ሺ݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎ	 ൅ 	83	 ൅
ሾbitሿ	ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ	 ∗ 1.25	ሻ ∗
݇ܿ݅ݐ݋ݎܿܽܯ/ሺ݃݀	ሻݐ݅ܤ݀݃ ∗   	ሻݐ݋݈ݏ݅݊݅ܯ݀݃

_m gCycleID = the value of cycle counter in the timer at this instant 

_m gMacrotick = the value of Macrotick in the timer at this instant 

_m m gCycleID CycleID  

if m is the first message  

0useDYN   

1DYNvSlotCounter   

end if 

m bus useDYN DYN DYN   
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// update the valid time for message m in DYN segment 

if maxmCycleID vCycleCounter  

// maxvCycleCounter is the value get after ST segment scheduling 

if DYN mvSlotCounter FrameID   

if m
m

DYN
pLatestTx

gdMinislot

 
 

 
 

_m tCycleID = the value of cycle counter in the timer at this 

instant 

//read the new value from the timer 

_m tMacrotick = the value of Macrotick in the timer at this 

instant 

//read the new value from the timer 

Rm=  _ _ [ ]m t m gCycleID CycleID gdCycle s 

 _ _ [ ]m t m gMacrotick Macrotick gdMacrotick s    

if m mR D  

_m t
m

Macrotick
MinislotID

gdMinislot
  

store  ,m mMinislotID CycleID in the matrix

DYNSimpleScheduler  

use use mDYN DYN MessageLength   

take m out of DYNL , update DYNL  

if DYNL is empty  

output matrix DYNSimpleScheduler , exit  //system 

schedulable  

end if 

continue with next message 1 DYNm L   
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1DYN DYNvSlotCounter vSlotCounter   

else  

continue with next gdMinislot value 

end if 

else 

use useDYN DYN gdMinislot   

1DYN DYNvSlotCounter vSlotCounter   

continue with next message 1 DYNm L   

end if 

else 

1DYN DYNvSlotCounter vSlotCounter   

end if 

1m mCycleID CycleID   

else 

continue with next gdMinislot value 

end if 

end for 

end for 

end for 

output non-schedulable, exit  //system non-schedulable 

Algorithm E Pseudocode for Simple DYN scheduler with ECUs’ Output 

E.5 Pseudocode for Switched DYN Scheduler with ECUs’ output 

Input:  

 Bus bit rate ࢊࢋࢋ࢖࢙_࢙࢛࢈ 

 Switch port set ࢎࢉ࢚࢏࢙࢚࢝࢘࢕ࡼ 
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 The DYN message setࡺࢅࡰࡹ ,ࡺࢅࡰࡹ is maximum DYN message set waiting to send 

in a cluster,    , ,?m m m DYNm MessageLengthDYN D Port m M mMatrix   

Output: 

System schedulable or non-schedulable 

Switched DYN scheduler with ECUs’ output 

for DYNm M   

Sort the DYN messages DYNm M  in descending order of the value m

m

MessageLength

D
 

and then in descending order of the value mMessageLength , store them in the message 

list DYNL  

Assign the Frame ID to the DYN messages with the order in list DYNL from 1 

end for  // sort the messages and assign the Frame IDs 

// start of clustering and Frame IDs updating 

for ∀݉ ∈  ܻܰܦܮ

if ݉ is the first message in ܮ஽௒ே 

create set ݈ܿݎ݁ݐݏݑଵ ൌ ሼemptyሽ  //create the first message set ݈ܿݎ݁ݐݏݑଵ 

ݐ݁ܵݎ݁ݐݏݑ݈ܥ ൌ ሼ݈ܿݎ݁ݐݏݑଵሽ   // create a set represented all the available clusters 

௨௦௘_௖௟௨௦௧௘௥భݐݎ݋ܲ ൌ   ௠ݐݎ݋ܲ

݉ ∈  ଵݎ݁ݐݏݑ݈ܿ ଵ     // put ݉ in setݎ݁ݐݏݑ݈ܿ

else   //	݉ is not the first message 

for all ݈ܿݎ݁ݐݏݑଵ	to	݈ܿݎ݁ݐݏݑ௠ in the set	ݐ݁ܵݎ݁ݐݏݑ݈ܥ  

//for all valid cluster in ݐ݁ܵݎ݁ݐݏݑ݈ܥ 

if ܲݐݎ݋௠ ⊆ ݊	, ௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ∈ ሾ1,݉ሿ, ݊ ∈ Գ 

௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൌ ௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൅   ௠ݐݎ݋ܲ

݉ ∈  ௡ݎ݁ݐݏݑ݈ܿ ௡    // put message m inݎ݁ݐݏݑ݈ܿ

go to the next message  

// if message is able to put in any one of the existed  ௡, finish theݎ݁ݐݏݑ݈ܿ
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clustering step of message m 

end if 

end for 

create set ݈ܿݎ݁ݐݏݑ௠ାଵ ൌ ሼemptyሽ   //create a new set ݈ܿݎ݁ݐݏݑ௠ାଵ 

/* if search all available clusters message still cannot find a cluster can fit in, create 
a new cluster */ 

௨௦௘_௖௟௨௦௧௘௥೘శభݐݎ݋ܲ
ൌ   ௠ݐݎ݋ܲ

݉ ∈   ௠ାଵݎ݁ݐݏݑ݈ܿ

// put ݉ in the new created cluster ݈ܿݎ݁ݐݏݑ௠ାଵ 

go to the next message  //finish the cluster step of this message 

end if 

௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ݐݎ݋ܲ ൌ ௦௪௜௧௖௛ݐݎ݋ܲ െ ௨௦௘_௖௟௨௦௧௘௥೙ݐݎ݋ܲ   

//update the valid ports for any set ݈ܿݎ݁ݐݏݑ௡ included message m 

if ܲݐݎ݋௩௔௟௜ௗ_௖௟௨௦௧௘௥೙ ൌ 0 

ݐ݁ܵݎ݁ݐݏݑ݈ܥ ൌ ݐ݁ܵݎ݁ݐݏݑ݈ܥ െ     ௡ݎ݁ݐݏݑ݈ܿ

//update the valid cluster set	ݐ݁ܵݎ݁ݐݏݑ݈ܥ 

end if 

end for    // finish the clustering step for all the DYN messages 

for ∀݉ ∈  update the Frame ID for each DYN message //     ܻܰܦܮ

௠ܦܫ݁݉ܽݎܨ ൌ ,௡ݎ݁ݐݏݑ݈ܿ	݊݅	௠௜௡ܦܫ݁݉ܽݎܨ ݉	݁݃ܽݏݏ݁݉ ∈   ௡ݎ݁ݐݏݑ݈ܿ

end for 

// start the calculation of the worst-case response time 

for 10 to 16000 sgdCycle   step  20  μsgdBit  

simple	FlexRay	ST	scheduling	algorithm  

ܻܦ ௕ܰ௨௦ ൌ ݈݁ܿݕܥ݀݃ െ ܵ ௕ܶ௨௦  

for 2 to 63MTgdMinislot  step 1 gdMacrotick [MT]  

for DYNm L  

௠ݔܶݐݏ݁ݐܽܮ݌ ൌ
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ሺܻܦ ௕ܰ௨௦ – ሺ݃݀ܶܵܵܶݎ݁ݐݐ݅݉ݏ݊ܽݎ ൅ 83 ൅
ܻܰܦ݄ݐ݃݊݁ܮ݁݃ܽݏݏ݁ܯ	 ሾbitሿ ∗ 1.25 ሻ ∗
݇ܿ݅ݐ݋ݎܿܽܯ/ሺ݃݀	ሻݐ݅ܤ݀݃ ∗   	ሻݐ݋݈ݏ݅݊݅ܯ݀݃

_m gCycleID = the value of cycle counter in the timer at this instant 

_m gMacrotick = the value of Macrotick in the timer at this instant 

_m m gCycleID CycleID  

if m is the first message  

0useDYN   

1DYNvSlotCounter   

end if 

m bus useDYN DYN DYN   

// update the valid time for message m in DYN segment 

if maxmCycleID vCycleCounter  

// maxvCycleCounter is the value get after ST segment scheduling 

if DYN mvSlotCounter FrameID   

if m
m

DYN
pLatestTx

gdMinislot

 
 

 
 

_m tCycleID = the value of cycle counter in the timer at this 

instant 

//read the new value from the timer 

_m tMacrotick = the value of Macrotick in the timer at this 

instant 

//read the new value from the timer 

Rm=  _ _ [ ]m t m gCycleID CycleID gdCycle s 

 _ _ [ ]m t m gMacrotick Macrotick gdMacrotick s    

if m mR D  
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_m t
m

Macrotick
MinislotID

gdMinislot
  

store  ,m mMinislotID CycleID in the matrix

DYNSimpleScheduler  

use use mDYN DYN MessageLength   

take m out of DYNL , update DYNL  

if DYNL is empty  

output matrix DYNSimpleScheduler , exit  //system 

schedulable  

end if 

continue with next message 1 DYNm L   

1DYN DYNvSlotCounter vSlotCounter   

else  

continue with next gdMinislot value 

end if 

else 

use useDYN DYN gdMinislot   

1DYN DYNvSlotCounter vSlotCounter   

continue with next message 1 DYNm L   

end if 

else 

1DYN DYNvSlotCounter vSlotCounter   

end if 

1m mCycleID CycleID   

else 

continue with next gdMinislot value 
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Algorithm F Pseudocode for Switched DYN scheduler with ECUs’ output 

end if 

end for 

end for 

end for 

output non-schedulable, exit  //system non-schedulable 


