
Maximum Coverage
Problems
Theory and Application in
Optimal Sensor Selection

Niels Holtgrefe
Bachelor Thesis 2021

Maximum Coverage
Problems

Theory and Application in Optimal Sensor Selection

by

Niels Holtgrefe

to obtain the degree of Bachelor of Science in Applied Mathematics
at the Delft University of Technology,

to be defended on Wednesday July 14, 2021 at 15:00.

Student number: 4954181
Project duration: April 19, 2021 – July 8, 2021
Thesis committee: Dr. ir. T.M.L. Janssen, TU Delft, supervisor

Dr. ir. L.E. Meester, TU Delft
Dr. J.W. van der Woude, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Maximale
Dekkingsproblemen
Theorie en Toepassing in Optimale Sensor Selectie

door

Niels Holtgrefe

ter verkrijging van de graad van Bachelor of Science in Technische Wiskunde
aan de Technische Universiteit Delft,

te verdedigen op woensdag 14 juli 2021 om 15:00 uur.

Student nummer: 4954181
Project duur: 19 april 2021 – 8 juli 2021
Beoordelingscommissie: Dr. ir. T.M.L. Janssen, TU Delft, begeleider

Dr. ir. L.E. Meester, TU Delft
Dr. J.W. van der Woude, TU Delft

Een digitale versie van deze scriptie is beschikbaar op http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

My supervisor, Teun Janssen, was of great help during the duration of this bachelor thesis.
The discussions we had in our weekly meetings were very helpful and fun. Although most of
our meetings took place online, I was lucky to also meet him in person, which certainly was
no guarantee during the Covid-19 pandemic. I especially want to thank him for giving me the
freedom to investigate the topics I found interesting, while at the same time making sure the
project remained manageable.

Further gratitude goes out towards the other members of my thesis committee: Ludolf
Meester and Jacob van der Woude. Thank you for attending my thesis defence and assessing
this report.

Jeroen Spandaw and Aniek Temming, the two teachers of the bachelorcolloquium, are also
thanked. Their course improved my presentation skills and introduced me to the pitfalls of
writing a thesis.

I would like to thank the KNMI for making their climate data publicly available and
providing me with the geographical coordinates of the Dutch weather stations, upon request.
These were extremely useful for the creation of some of the figures.

I owe thanks to my younger brother Tim, for proofreading parts of my thesis and reviewing
the many adjustments I made on the figures.

Finally, I would like to thank my parents, other family members and friends. Their emo-
tional support was appreciated even more during the Covid-19 pandemic.

Niels Holtgrefe
The Hague, July 2021

iii

Abstract

In this thesis we analyse the class of maximum coverage problems. For all discussed problems,
linear programs are formulated. Using the notion of submodularity, we prove that for the
weighted version of the basic Maximum Coverage problem, where the weights differ per set,
a polynomial-time greedy algorithm guarantees a (1− 1

e)-approximation of the optimal solution.
This improves the already known bound of (1 − 1

e − ε), for all ε > 0. We then show that the
same result holds true, if we allow elements to be covered by multiple sets. Furthermore, a
completely novel extension is introduced, where weights differ per combination of sets. It is
proved that, under the assumption that the weights are submodular and increasing, a greedy
algorithm still provides a (1− 1

e)-approximation.
The latter algorithm is tested in the framework of optimal sensor selection. To this end,

we consider all official weather stations in the Netherlands as our sensor group. We test the
performance of the approximation algorithm, if some of the assumptions do not hold and
no theoretical bounds exists. Corresponding weights are calculated, using two approaches:
inverse distance weighting and multiple linear regression. For both approaches the in practice
performance of the greedy algorithm is shown to be even higher than (1− 1

e), even though not
all assumptions hold. Finally, the corresponding selection of weather stations is shown.

iv

Lay summary

In this thesis we investigate a class of mathematical problems: the maximum coverage prob-
lems. These problems are extremely time-consuming to solve, thus we develop approximation
algorithms. Such algorithms run faster, with the drawback that the given solution is not op-
timal. These algorithms are then tested on one of the main uses of the maximum coverage
problems: modelling sensor selection. We try to find the best placement of weather stations
in the Netherlands. Weather stations are essentially sensors and thus fit this thesis perfectly.

This short summary is written towards the general public that is interested in the topic of this
thesis. The use of mathematical terms is avoided and not much mathematical knowledge is

assumed.

v

Contents

Acknowledgements iii

Abstract iv

Lay summary v

List of abbreviations viii

1 Introduction 1
1.1 Importance of sensors . 1
1.2 Research objective . 1
1.3 Thesis outline. 2
1.4 Notational conventions . 2

2 Maximum Coverage problems 4
2.1 Weighted Maximum Coverage . 4

2.1.1 Problem description and linear program. 4
2.1.2 Greedy approximation algorithm . 6

2.2 Set Dependent Weighted Maximum Coverage . 7
2.2.1 Problem description and linear program. 7
2.2.2 Greedy approximation algorithm . 8
2.2.3 Performance guarantee analysis . 9

2.3 Set Dependent Weighted Maximum Multi-Coverage 14
2.3.1 Problem description and linear program. 14
2.3.2 Greedy approximation algorithm . 15
2.3.3 Performance guarantee analysis . 16

2.4 Power Set Dependent Weighted Maximum Multi-Coverage 19
2.4.1 Problem description and linear program. 20
2.4.2 Restricted version of the problem. 22
2.4.3 Greedy approximation algorithm . 23
2.4.4 Performance guarantee analysis . 23

3 Selection of weather stations in the Netherlands 25
3.1 Problem description . 25
3.2 Weights with inverse distance weighting . 27

3.2.1 Inverse distance weighting . 27
3.2.2 In practice performance analysis . 29
3.2.3 Greedy results . 30

3.3 Weights with multiple linear regression. 31
3.3.1 Multiple linear regression . 32
3.3.2 In practice performance analysis . 33
3.3.3 Greedy results . 34

vi

Contents

4 Conclusion and outlook 36
4.1 Conclusion . 36
4.2 Further research . 37

A Animations of greedy selection 39

References 42

vii

List of abbreviations

BMC Budgeted Maximum Coverage

GMC Generalized Maximum Coverage

IDW Inverse Distance Weighting

ILP Integer Linear Program

KNMI Royal Dutch Meteorological Institute

LP Linear Program

MC Maximum Coverage

MLR Multiple Linear Regression

PDW-MMC Power Set Dependent Weighted Maximum Multi-Coverage

PDW-MMC* Power Set Dependent Weighted Maximum Multi-Coverage with
restricted weight function

SDW-MC Set Dependent Weighted Maximum Coverage

SDW-MMC Set Dependent Weighted Maximum Multi-Coverage

SSR Sum of Squared Residuals

SST Total Sum of Squares

WMC Weighted Maximum Coverage

viii

Chapter1
Introduction

1.1. Importance of sensors
Our society is slowly becoming more and more data-driven. Data analysis and Big Data
are booming terms and data scientists are highly sought-after. From the social sciences to
applied physics, data collection plays an important role in research. While in the humanities
most data is collected by means of surveys and interviews, in applied sciences, sensors play
a vital role. The Cambridge Dictionary [15] defines a sensor as “a device that is used to
record that something is present or that there are changes in something”. Whether discussing
radio telescopes, traffic sensors or carbon dioxide meters, we are thus essentially talking about
sensors.

Most sensors are placed on a subset of all points of interest. It is impossible to equip a
home with hundreds of smoke alarms, thus only a few are used to estimate the data in the
whole house. Here, an important question arises: “What is the optimal placement of sensors?”
In this thesis, we will focus on a class of mathematical optimization problems, used to solve
such questions: the maximum coverage problems.

1.2. Research objective
The basic Maximum Coverage (MC) problem considers the choosing of c sets of elements,
with largest possible union. In a more formal manner:

Maximum Coverage
Instance: E = {e1, . . . , en}, a set of n elements

S = {S1, . . . , Sm}, a collection of m non-empty subsets of E
c, an integer such that 1 ≤ c ≤ m

Objective: Choose a collection of c sets G ⊆ S, such that the cardinality of the
union of the chosen sets is maximal.

We obtain a minimal version of the sensor selection problem, by letting each element ej
correspond to a point of interest and each set Si represent a possible sensor location. The
elements of those sets are then the locations that the sensor would cover. As we maximize the
size of the union of chosen sets, we essentially maximize the number of covered locations.

1

1.3. Thesis outline

More advanced problems exist, where weights are introduced, corresponding to the quality
of information a sensor provides. For example, we could relate the weights to the distance
between the sensor and a location. The problem introduced in [8] can be used for such purposes.
However, there it is assumed that each point of interest can be covered by at most one sensor.
This is quite a restrictive assumption, as it makes a lot more sense to assume that multiple
sensors provide us with more information about a point. To this end, we aim to develop a
new problem, which allows for points to be covered by multiple sensors. Simultaneously, we
explore the possibility of creating separate weights for each combination of sensors that cover a
location. We also try to set up a linear program and come up with a polynomial approximation
algorithm.

1.3. Thesis outline
The main body of this thesis can roughly be divided into two parts with a different focus,
conveniently corresponding to Chapter 2 and 3.

Chapter 2 solely focuses on the mathematical theory behind the maximum coverage prob-
lems. Each section in that chapter covers a specific problem, by providing a standalone analysis.
The problems are defined and linear programs are formulated. We also provide approximation
algorithms and analyse their performance and time complexities. The four problems discussed
are all nested, meaning that each is an extension of the previous one. Figure 1.1 provides a vi-
sualization of the structure of all discussed models and their relation to some other mentioned
problems in this thesis. Whenever the reader feels lost, this figure together with the list of
acronyms on page viii, should help to get back on track.

In Chapter 3 the focus is shifted more towards the application of optimal sensor selection.
The newly introduced problem from section 2.4 is used to study the selection of weather stations
in the Netherlands. Results are discussed and analysed.

This thesis ends with a conclusion and outlook into areas of further research in Chapter 4.

1.4. Notational conventions
We finish this introductory chapter with a short section devoted to the used mathematical
notation, as this thesis heavily relies on set-theoretic notions, such as elements and sets, all the
way up to sets of sets of sets. To distinguish between these mathematical levels of abstraction
and maintain clarity, we will typeset these objects differently. The following conventions will
be used throughout this thesis.

• Standard mathematical objects contained in a set, such as elements or indices, are typeset
in a lowercase italic font, for example ei or j.

• Sets of elements are denoted in uppercase italic, such as E = {e1, . . . , en}.

• Sets of sets will be written down in a calligraphic font, for instance S = {S1, . . . , Sm} or
the powerset of a set P(E) = {E′ ⊆ E}.

• Sets of sets of sets will be indicated by the use of bold calligraphic letters. An example
is the powerset of a set of sets P(S).

2

1.4. Notational conventions

MC
(Section 1.2)

WMC
(Section 2.1)

SDW-MC
(Section 2.2)

SDW-MMC
(Section 2.3)

PDW-MMC
(Section 2.4)

BMC

GMC

Budgeted

Multi
Coverage

Figure 1.1: Structure of maximum coverage problems. It is also indicated whether a problem is budgeted
or whether it allows for elements to be covered by multiple sets. The section which covers the problem
is written in parentheses.

Sometimes, we refer to a set of sets as a collection or family of sets. But if ambiguity arises,
the font of the object will indicate the mathematical abstraction level at which we operate.
Finally, let us note that when a specific optimization problem is discussed, it will be typeset
in a small capital font, such as Budgeted Maximum Coverage.

3

Chapter2
Maximum Coverage problems

In this chapter we focus on a thorough analysis of different types of maximum coverage prob-
lems. Sections 2.1 and 2.2 cover two maximum coverage problems for which existing results are
discussed and new results are derived. Section 2.3 contains a derivation of a recently developed
extension of this class of problems. A completely new extension, not found in the literature,
is introduced and analysed in section 2.4.

2.1. Weighted Maximum Coverage
Weighted Maximum Coverage (WMC) is an extension of the Maximum Coverage
problem introduced in section 1.2, where the elements are assigned weights. In subsection 2.1.1
we formally define this problem and set up an integer linear program. A greedy approximation
algorithm is discussed in subsection 2.1.2.

2.1.1. Problem description and linear program
WMC is an optimization problem where we have a set of weighted elements and a collection of
sets containing these elements. The aim of the problem is to choose a predetermined number of
these sets, such that the sum of the weights of all covered elements is maximal. More formally:

Weighted Maximum Coverage
Instance: E = {e1, . . . , en}, a set of n elements

S = {S1, . . . , Sm}, a collection of m non-empty subsets of E
c, an integer such that 1 ≤ c ≤ m

w : E → R≥0, a non-negative weight function
Objective: Choose a collection of c sets G ⊆ S, such that the sum of the weights

of the covered elements is maximized. Here, an element is covered if
it is in at least one chosen set.

Vohra and Hall [18] introduced WMC as the maximal covering location problem, used
to model the problem of location selection of facilities, such as fire stations. Hochbaum and
Pathria [11] have tried to generalize the use of the problem and analysed it even further. A
well-known extension of WMC is Budgeted Maximum Coverage (BMC), discussed in

4

2.1. Weighted Maximum Coverage

[13]. This problem introduces a budget constraint and costs for each set. It is trivial to see,
that when the budget is set to c and the cost per set to one, BMC reduces to WMC. Figure
1.1 illustrates this nicely. However, in this thesis the focus will lie on the unbudgeted versions
of the maximum coverage problems.

A standard method to solve mathematical optimization problems, is by setting up a linear
program (LP). This approach only works, if the objective and the constraints can be formulated
as linear functions. Shortly, we will see that this is indeed the case. Fast algorithms to solve
general LP’s exist, such as the simplexmethod, explaining the wide use of linear programs. If
the decision variables of a linear program are bound to integer values, the LP is often called
an integer linear program (ILP). Should the reader not be familiar with linear programs, [1]
provides an excellent introduction to this topic. However, we will not be diving too deep into
this subject, so the math should not be too hard to follow.

As a start, we first introduce some notation, that will be used in the linear programs in
this thesis. Let I = {1, . . . ,m} be the index set corresponding to the collection of subsets S
and let J = {1, . . . , n} be the index set corresponding to the set of elements E. We also define
the indicator function zij , which shows whether element ej is contained in set Si. That is,

zij =

{
1 if ej ∈ Si ,

0 if ej ̸∈ Si .
(2.1)

We continue by giving an ILP-formulation for WMC. The two decision variables that will
be used, are

xi =

{
1 if Si is chosen ,

0 if Si is not chosen ,
(2.2)

yj =

{
1 if ej is covered,
0 if ej is not covered.

(2.3)

Thus, for each set Si we have a binary decision variable available, indicating whether the
set is chosen or not. Each element ej also has a decision variable showing whether the element
is covered. Equation (2.4) shows the complete ILP-formulation of WMC.

maximize
∑
j∈J

yj · w(ej), (2.4a)

subject to
∑
i∈I

xi ≤ c, (2.4b)∑
i∈I

xi · zij ≥ yj , j ∈ J, (2.4c)

xi ∈ {0, 1}, i ∈ I, (2.4d)
yj ∈ {0, 1}, j ∈ J. (2.4e)

The objective function (2.4a) is quite intuitive. We maximize the weights of all covered
elements, as the weights are only counted if an element is covered, implying that yj = 1.
Constraint (2.4b) allows for at most c sets to be chosen. Constraint (2.4c) makes sure that an
element can only be covered if at least one of the sets that contains the element is chosen. In

5

2.1. Weighted Maximum Coverage

such a case the left-hand side of the sum is larger or equal than 1 and this allows yj to also
become 1. Finally, constraints (2.4d) and (2.4e) are the integrality constraints of the decision
variables.

WMC is known to be NP-hard [18]. Thus, if P = NP, no algorithm can solve WMC in
polynomial time. Although algorithms to solve LP’s are very fast, this means that it becomes
very time-consuming to optimally solve the problem for large instances. This explains the need
for an approximation algorithm that runs in polynomial time.

2.1.2. Greedy approximation algorithm
A logical candidate for an explicit algorithm to solve WMC is a greedy algorithm, which
greedily selects the next set to be added. Algorithm 1 shows the corresponding pseudo code.
Algorithm 1: Greedy approximation algorithm for WMC
Input: an instance of WMC
Output: a collection G of sets Si

1 G ← ∅
2 U ← ∅
3 while |G| < c do
4 Ŝ ← argmax

Si∈S\G

[∑
ej∈E\U w(ej)

]
5 G ← G ∪ {Ŝ}
6 U ← U ∪ Ŝ

7 return G
At each stage we add the set Si that adds the most weight to the intermediate solution,

until we have chosen c sets. This is done on line 4. For each Si that is still available, we
check how much weight the set would add. To this end, we keep track of the elements that are
already covered and are not to be considered any more, via the set U . Assuming the weights are
known, line 4 runs in O(n ·m) time. The algorithm runs c ≤ m times through the while-loop,
resulting in the algorithm having a polynomial time complexity of O(c · n ·m) = O(n ·m2).

It can easily be shown that Algorithm 1 does not necessarily find the optimal solution.
Consider the set of elements E = {1, 2, 3, 4, 5, 6, 7, 8, 9} with unit weights, in other words,
w(ej) = 1 for all ej ∈ E. Let the corresponding collection of sets be S = {S1, S2, S3} with
S1 = {1, 2, 3, 4, 5}, S2 = {1, 2, 6, 7} and S3 = {3, 4, 8, 9}. If we then set c = 2, Algorithm 1
will first choose S1, as it has the largest total weight. In the second iteration of the algorithm,
either S2 or S3 is chosen, because both sets improve the total weight by 2, resulting in a final
selection with a weight of 7. However, if we choose sets S2 and S3, we get a total weight of 8.
Thus, Algorithm 1 indeed did not find the optimal solution.

A very useful result from [11] shows that the greedy approach in Algorithm 1 guarantees
to find a (1 − 1

e)-approximation1 of any non-trivial instance of WMC. This bound is tight,
indicating that examples can be constructed where exactly this ratio is achieved. An approx-
imation ratio of (1 − 1

e) means that the total weight of the greedy solution is at least within
a factor of (1 − 1

e) of the optimal solution. Thus a certain degree of suboptimality is always
achieved by Algorithm 1. Furthermore, Feige [9] proved in 1998 that an approximation ratio
better than (1− 1

e) can not be achieved in polynomial time for Maximum Coverage, unless
P ̸= NP. This result then certainly holds for WMC, as it has Maximum Coverage as a
11− 1

e
≈ 0.632

6

2.2. Set Dependent Weighted Maximum Coverage

special case. Therefore, Algorithm 2 is the best possible polynomial approximation algorithm
for WMC, in terms of approximation ratio.

2.2. Set Dependent Weighted Maximum Coverage
Set Dependent Weighted Maximum Coverage (SDW-MC) is a very natural extension
of WMC. In subsection 2.2.1 the problem itself is discussed and two versions of a linear program
are introduced. In subsection 2.2.2 we turn our attention to an approximation algorithm, for
which we analyse its performance guarantee in subsection 2.2.3.

2.2.1. Problem description and linear program
In SDW-MC the objective remains unchanged, in comparison with WMC. However, as the
name suggests, the weights differ per set Si. Thus each element has its own weight function
with the set S as its domain. This means that we need to choose by which set an element is
covered, with the constraint that an element can be covered by at most one set. Formally the
problem is defined as follows:

Set Dependent Weighted Maximum Coverage
Instance: E = {e1, . . . , en}, a set of n elements

S = {S1, . . . , Sm}, a collection of m non-empty subsets of E
c, an integer such that 1 ≤ c ≤ m

wj : S → R≥0, a non-negative weight function per element ej
Objective: Choose a collection of c sets G ⊆ S, such that the sum of the weights of

the covered elements is maximized. Here, an element can be covered
by at most one of the chosen sets and only the corresponding weight
is counted. An element can only be covered by a set, if it is contained
in that set.

In the literature, no thorough analysis on SDW-MC can be found. However, Cohen and
Katzir [8] have intensively researched the Generalized Maximum Coverage (GMC) prob-
lem, which is the budgeted version of SDW-MC. In GMC each set and element have a cost.
On top of that, a certain budget is available, which bounds the possible selections. By set-
ting the budget equal to c, the cost per set equal to 1 and giving the elements no cost at all,
SDW-MC is retrieved. This suggests that SDW-MC is a special case of GMC, as illustrated
by Figure 1.1. Therefore, all results derived in [8] should also hold for SDW-MC. It is worth
noting that in [8] the problem is formulated in a different, but equivalent way.

Just as in section 2.1, it makes sense to first formulate a linear program of SDW-MC. For
WMC we had to specify whether a set was chosen and whether an element was covered. While
for SDW-MC we also need to specify by which set an element is covered, as it is important
to determine how much weight an element contributes. Therefore, the decision variable yj in
equation (2.3) is subject to a small change, resulting in the following decision variables:

xi =

{
1 if Si is chosen,
0 if Si is not chosen,

(2.5)

yij =

{
1 if Si covers ej ,

0 if Si does not cover ej .
(2.6)

7

2.2. Set Dependent Weighted Maximum Coverage

The corresponding ILP is now depicted in equation (2.7).

maximize
∑
i∈I

∑
j∈J

yij · wj(Si), (2.7a)

subject to
∑
i∈I

xi ≤ c, (2.7b)∑
i∈I

yij ≤ 1, j ∈ J, (2.7c)

xi · zij ≥ yij , i ∈ I, j ∈ J, (2.7d)
xi ∈ {0, 1}, i ∈ I, (2.7e)
yij ∈ {0, 1}, i ∈ I, j ∈ J. (2.7f)

Objective function (2.7a) sums over all possible combinations of sets and elements and only
counts the weights when a set covers an element, namely when yij = 1. Constraint (2.7b) still
makes sure that at most c sets are chosen, while (2.7c) allows each element to be covered by
at most one set Si. Finally, constraint (2.7d) lets yij only take the value 1, which it naturally
seeks due to the objective of maximization, when both xi and zij are equal to 1. Thus an
element can only be covered by a set, if the set is chosen and the element is contained in this
set. Therefore, for a given element, the weights of all sets that do not contain the element can
be arbitrary, as they will never contribute to the objective function. This allows us to make
the non-restrictive assumption that wj(Si) = 0, if ej /∈ Si. With this assumption we can relax
constraint (2.7d). It is not necessary anymore for an element to only be covered by a set, if the
set contains the element. This is due to the fact that the weight of 0 will now make sure that
such a combination of an element and a set will not contribute to the objective function. We
now get an equivalent ILP-formulation of SDW-MC in equation (2.8), where constraint (2.8d)
differs from (2.7d).

maximize
∑
i∈I

∑
j∈J

yij · wj(Si), (2.8a)

subject to
∑
i∈I

xi ≤ c, (2.8b)∑
i∈I

yij ≤ 1, j ∈ J, (2.8c)

xi ≥ yij , i ∈ I, j ∈ J, (2.8d)
xi ∈ {0, 1}, i ∈ I, (2.8e)
yij ∈ {0, 1}, i ∈ I, j ∈ J. (2.8f)

2.2.2. Greedy approximation algorithm
In subsection 2.1.1 it was stated that WMC is NP-hard. As WMC is a special case of
SDW-MC, where the weights across different sets are equal, SDW-MC must certainly also
be NP-hard. Luckily, Cohen and Katzir [8] came up with a greedy algorithm for GMC, that
ensures an approximation ratio of (1− 1

e − ε), for all ε > 0. However, for the special unit-cost
case that is SDW-MC, we will prove in subsection 2.2.3 that we can increase this ratio to

8

2.2. Set Dependent Weighted Maximum Coverage

(1− 1
e), just as for WMC, by using a somewhat different method. Again, this is the best pos-

sible bound, as shown in [9]. The idea behind the algorithm is similar to that of Algorithm 1.
At each stage we add the set Si, that gives us the most additional weight. To simplify the
notation of the algorithm we will introduce the truncate-function.
Definition 2.1. Let x be a real number, then τ is the truncate-function that truncates negative
values to 0. That is,

τ(x) = max(x, 0) .
Using this notation, we now set up the greedy approximation in Algorithm 2.

Algorithm 2: Greedy approximation algorithm for SDW-MC
Input: an instance of SDW-MC
Output: a collection G of sets Si

1 G ← ∅
2 while |G| < c do
3 Ŝ ← arg max

Si∈S\G

[∑
j∈J τ (wj(Si)−maxSk∈G wj(Sk))

]
4 G ← G ∪ {Ŝ}
5 return G

In this algorithm, we add the c sets one by one, each time choosing the set Ŝ for which the
total increase of weight is the highest. The increase of weight of a set Si for an element ej , is
the difference between the weight wj(Si) and the current maximum of all possible weights. The
truncate-function makes sure that if a certain set Si has a lower weight for an element than the
current maximum, the increase is set to 0 and does not become negative. It takes O(n ·m2)
time to run over line 3, resulting in a total time complexity of O(n ·m3) for Algorithm 2.

2.2.3. Performance guarantee analysis
For the analysis of the algorithm we rely on a famous article by Nemhauser, Wolsey, and
Fisher [14]. As a first step, we define the total weight of a selection. This is the largest possible
weight of a selection, while still adhering to the conditions of the SDW-MC problem. In other
words, for each element ej we choose the largest weight for the element of all chosen sets.
Definition 2.2. Let wj : S → R≥0 be a weight function of an instance of SDW-MC, then
the total weight w : P(S)→ R≥0 is

w(A) =
∑
j∈J

(
max
Si∈A

wj(Si)

)
, ∀A ∈ P(S) ,

with w(∅) = 0.
Using this notation, we can essentially write SDW-MC as the problem of finding Gopt,

where
Gopt = arg max

A⊆S
{w(A) : |A| ≤ c} . (2.9)

We aim to find a collection of sets A of size at most c, while maximizing the total weight for
this collection.

To derive the approximation ratio of Algorithm 2, we first state what the residual value of
a set function is.

9

2.2. Set Dependent Weighted Maximum Coverage

Definition 2.3. Let F = {e1, . . . , en} be a finite set and let f : P(F) → R be a set function
defined on the power set of F , then the residual value or incremental value of adding ei to A,
is

ρi(A) = f(A ∪ {ei})− f(A), ∀ei ∈ F , ∀A ∈ P(F) .

Thus ρi(A) represents the increase in total value, by adding ei to A.

Furthermore, we introduce what an increasing and submodular set function is.

Definition 2.4. Let F be a finite set and let f : P(F) → R be a set function defined on the
power set of F , then f is increasing if

f(A) ≤ f(B), ∀A,B ∈ P(F), such that A ⊆ B .

Remark. If −f is increasing, then f is decreasing.

Definition 2.5. Let F be a finite set and let f : P(F) → R be a set function defined on the
power set of F , then f is submodular if

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ∈ P(F) .

Remark. If −f is submodular, then f is supermodular.
An equivalent definition of submodularity, that makes use of the residual value, is given in

Proposition 2.6 and was proved by Nemhauser, Wolsey, and Fisher [14].

Proposition 2.6 (Nemhauser, Wolsey & Fisher, 1978). Let F be a finite set and let f :
P(F)→ R be a set function defined on the power set of F , then the two following statements
are equivalent and both define submodular set functions.

(i) f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ∈ P(F) ,

(ii) ρi(A) ≥ ρi(B), ∀A,B ∈ P(F), such that A ⊆ B and ∀ei ∈ F \B .

We see that submodularity captures the notion of diminishing (marginal) returns, saying
that the incremental value of a function decreases for larger sets [12].

The strategy to get our approximation ratio now is as follows. First we will prove, with help
of a lemma, that the total weight function is submodular. Afterwards, we will show that the
total weight function is increasing. Then, we show that Algorithm 2 is based on the residual
weight of the total weight function. Finally, we show that all these results together, combined
with a theorem from [14], gives us our bound.

The first lemma we present, shows that the maximum is a submodular function.

Lemma 2.7. If A and B are subsets of a finite set F and f : F → R is a function defined on
their elements, then

max
x∈A

f(x) + max
x∈B

f(x) ≥ max
x∈A∪B

f(x) + max
x∈A∩B

f(x) .

Proof. Let A and B be arbitrary subsets of an arbitrary finite set F and let f be an
arbitrary function defined on its elements. Denote

x1 = arg max
x∈A

f(x) , x2 = arg max
x∈B

f(x) ,

10

2.2. Set Dependent Weighted Maximum Coverage

x3 = arg max
x∈A∪B

f(x) , x4 = arg max
x∈A∩B

f(x) .

It can easily be seen that x3 ∈ A ∪ B and thus x3 ∈ A or x3 ∈ B (or both). Without
loss of generality, we will now assume that x3 ∈ A. As x3 gives the largest value of f
of all x ∈ A∪B, this implies immediately that x1 = x3. Also note that f(x4) ≤ f(x2),
because (A ∩ B) ⊆ B. Combining these two facts, we get f(x1) + f(x2) = f(x3) +
f(x2) ≥ f(x3) + f(x4), which is equivalent to the desired result.

With help of Lemma 2.7 we can now prove that the total weight function, as defined in
Definition 2.2, is also submodular.

Theorem 2.8. If w : P(S) → R≥0 is a total weight function of an instance of SDW-MC,
then w is a submodular function.

Proof. Let A and B be arbitrary subsets of S. Then,

w(A) + w(B) Def
=
2.2

∑
j∈J

(
max
Si∈A

wj(Si)

)
+
∑
j∈J

(
max
Si∈B

wj(Si)

)

=
∑
j∈J

(
max
Si∈A

wj(Si) + max
Si∈B

wj(Si)

)
Lem
≥
2.7

∑
j∈J

(
max

Si∈A∪B
wj(Si) + max

Si∈A∩B
wj(Si)

)

=
∑
j∈J

(
max

Si∈A∪B
wj(Si)

)
+
∑
j∈J

(
max

Si∈A∩B
wj(Si)

)
Def
=
2.2

w(A ∪ B) + w(A ∩ B) .

Thus, by Definition 2.5, w is a submodular function.

The other property the total weight function should have, is that it is increasing. This will
be shown in the following proposition.

Proposition 2.9. If w : P(S)→ R≥0 is a total weight function of an instance of SDW-MC,
then w is an increasing function.

Proof. Let A and B be arbitrary subsets of S, such that A ⊆ B. Then,

w(A) Def
=
2.2

∑
j∈J

(
max
Si∈A

wj(Si)

)
≤
∑
j∈J

(
max
Si∈B

wj(Si)

)
Def
=
2.2

w(B) .

Thus w is an increasing function by Definition 2.4. Here, we used the trivial fact that
the maximum of a set is also increasing, as the maximum will never decrease when we
add an element to a set.

Theorem 2.10 now shows that the residual weight of the total weight function, as defined
in Definition 2.3, takes on the form on which Algorithm 2 is based. This indicates that
Algorithm 2 maximizes the residual weight at each iteration.

11

2.2. Set Dependent Weighted Maximum Coverage

Theorem 2.10. Let w : P(S)→ R≥0 be a total weight function of an instance of SDW-MC,
then the residual weight of this function can be written as

ρi(A) =
∑
j∈J

τ

(
wj(Si)− max

Sk∈A
wj(Sk)

)
, ∀Si ∈ S, ∀A ∈ P(S) .

Proof. Let Si ∈ S and A ∈ P(S) be arbitrary. Then,

ρi(A)
Def
=
2.3

w(A ∪ {Si})− w(A)

Def
=
2.2

∑
j∈J

(
max

Sk∈A∪{Si}
wj(Sk)

)
−
∑
j∈J

(
max
Sk∈A

wj(Sk)

)

=
∑
j∈J

(
max

[
wj(Si), max

Sk∈A
wj(Sk)

]
− max

Sk∈A
wj(Sk)

)

=
∑
j∈J

(
max

[
wj(Si)− max

Sk∈A
wj(Sk), 0

])
Def
=
2.1

∑
j∈J

τ

(
wj(Si)− max

Sk∈A
wj(Sk)

)
.

We will continue by stating a result derived by Nemhauser, Wolsey, and Fisher [14]. For
the lengthy analysis that lies at the basis of the theorem, we refer to their article.

Theorem 2.11 (Nemhauser, Wolsey & Fisher, 1978). Let F be a finite set and let f : P(F)→
R≥0 be a non-constant, increasing, submodular set function with f(∅) = 0. Consider the
problem of finding

Gopt = arg max
A⊆F

{f(A) : |A| ≤ c} ,

where 1 ≤ c ≤ |F |. Let G be the solution of a greedy algorithm, where G is build up by adding
elements one by one, at each stage adding the element of F with largest incremental value.
Then,

f(G) ≥
(
1−

[
c− 1

c

]c)
· f(Gopt) >

(
1− 1

e

)
· f(Gopt) ,

thus G is a (1− 1
e)-approximation of Gopt.

With help of Proposition 2.9 and Theorems 2.8, 2.10 and 2.11, we can now deduct the
performance guarantee of Algorithm 2.

Corollary 2.12. Algorithm 2 guarantees to find a (1 − 1
e)-approximation of any non-trivial

instance of SDW-MC.

Proof. This follows directly from Theorem 2.11. As shown earlier in this section, we
can write any instance of SDW-MC in the form of equation (2.9). In Theorem 2.8
and Proposition 2.9, we showed that the corresponding function w is increasing and
submodular. By excluding trivial cases, w must be non-constant. Furthermore, w was

12

2.2. Set Dependent Weighted Maximum Coverage

defined to have value 0 for the empty set (Definition 2.2). In Theorem 2.10, we showed
that for each iteration, Algorithm 2 indeed adds the set Si with maximal incremental
value. Thus all conditions of Theorem 2.11 are met and we get our approximation
bound.

Interestingly, the minimization counterpart of Theorem 2.11 also holds. The proof of
the following theorem also tells us how to rewrite such maximization problems to equivalent
minimization problems. To avoid confusion, we would like to emphasize that the function f in
the following theorem takes on only non-positive values.

Theorem 2.13. Let F be a finite set and let f : P(F)→ R≤0 be a non-constant, decreasing,
supermodular set function with f(∅) = 0. Consider the problem of finding

Gopt = arg min
A⊆F

{f(A) : |A| ≤ c} ,

where 1 ≤ c ≤ |F |. Let G be the solution of a greedy algorithm, where G is build up by adding
elements one by one, at each stage adding the element of F with smallest incremental value.
Then,

f(G) ≤
(
1−

[
c− 1

c

]c)
· f(Gopt) <

(
1− 1

e

)
· f(Gopt) ,

thus G is a (1− 1
e)-approximation of Gopt.

Proof. First let us define the function g : P(F)→ R≥0, as

g(A) = −f(A), ∀A ∈ P(F) .

We can rewrite the selection we want to find as follows:

Gopt = arg min
A⊆F

{f(A) : |A| ≤ c} = arg max
A⊆F

{−f(A) : |A| ≤ c} = arg max
A⊆F

{g(A) : |A| ≤ c} .

By Definitions 2.4 and 2.5, g = −f is increasing and submodular. Trivially, g is non-
constant, because f was non-constant. Furthermore, we also have that g(∅) = −f(∅) =
0. Finally, it can easily be seen that the element of F with smallest incremental value
of function f , has the largest incremental value of function g. Thus we are now in the
exact situation of Theorem 2.11, so

g(G) ≥
(
1−

[
c− 1

c

]c)
· g(Gopt) >

(
1− 1

e

)
· g(Gopt) .

Then by the definition of g,

f(G) ≤
(
1−

[
c− 1

c

]c)
· f(Gopt) <

(
1− 1

e

)
· f(Gopt) .

13

2.3. Set Dependent Weighted Maximum Multi-Coverage

2.3. Set Dependent Weighted MaximumMulti-Coverage
In this section we discuss a logical generalization of SDW-MC: Set Dependent Weighted
Maximum Multi-Coverage (SDW-MMC), where elements can be covered by multiple sets.
This section follows the same structure as section 2.2. In subsection 2.3.1 the problem is defined
and a linear program is given. Subsection 2.3.2 discusses an approximation algorithm, which
we analyse in subsection 2.3.3.

2.3.1. Problem description and linear program
SDW-MMC allows for an element to be covered by at most b ≤ c sets, as opposed to just one
set. If this happens, the weights are added accordingly. This results in a slight alteration of
the problem definition.

Set Dependent Weighted Maximum Multi-Coverage
Instance: E = {e1, . . . , en}, a set of n elements

S = {S1, . . . , Sm}, a collection of m non-empty subsets of E
c, an integer such that 1 ≤ c ≤ m
b, an integer such that 1 ≤ b ≤ c

wj : S → R≥0, a non-negative weight function per element ej
Objective: Choose a collection of c sets G ⊆ S, such that the sum of the weights of

the covered elements is maximized. Here, an element can be covered
by at most b of the chosen sets and only the corresponding weights are
counted. An element can only be covered by a set, if it is contained
in that set.

It is immediately clear, that if we set b = 1, we have the exact same problem as SDW-MC,
where an element can only be covered once. This implies that SDW-MMC also belongs to
the class of NP-hard problems, if P ̸= NP.

For the ILP-formulation we need the exact same decision variables as for SDW-MC:

xi =

{
1 if Si is chosen,
0 if Si is not chosen,

(2.10)

yij =

{
1 if Si covers ej ,

0 if Si does not cover ej .
(2.11)

We will assume that the non-restrictive assumption that wj(Si) = 0, if ej /∈ Si, still holds.
Then, we can reuse the ILP in equation (2.8), by only changing constraint (2.8c), such that an
element can be covered by at most b sets. This gives us the ILP in equation (2.12), which can
be used to solve the problem optimally.

14

2.3. Set Dependent Weighted Maximum Multi-Coverage

maximize
∑
i∈I

∑
j∈J

yij · wj(Si), (2.12a)

subject to
∑
i∈I

xi ≤ c, (2.12b)∑
i∈I

yij ≤ b, j ∈ J, (2.12c)

xi ≥ yij , i ∈ I, j ∈ J, (2.12d)
xi ∈ {0, 1}, i ∈ I, (2.12e)
yij ∈ {0, 1}, i ∈ I, j ∈ J. (2.12f)

2.3.2. Greedy approximation algorithm
Only very recently, SDW-MMC and its unweighted version, the Maximum Multi Coverage
problem, were explored by Barman, Fawzi, Ghoshal, et al. [5]. In this article, it was stated that
a greedy algorithm designed similarly as Algorithm 2, should also achieve an approximation
bound of (1 − 1

e) for Maximum Multi Coverage. However, this direction was not further
explored. In the current and next subsection, this idea is worked out and it is proved that the
same result holds for the weighted version SDW-MMC.

To simplify our algorithm, let us first introduce some notation for the kth-largest element
of a set.

Definition 2.14. Let A be a finite set of numbers, with k a positive integer such that k ≤ |A|,
then we denote the kth-largest element of A by

kmaxA or kmax(A) .

As we only use non-negative weights throughout this thesis, we set kmax(A) = 0 for k > |A|.

To produce the greedy algorithm, we follow the same pattern as in Algorithm 2, but we
add an extra while loop. In the first while loop, we add the b sets that have the largest
total weight. As each element can be covered by b sets, we do not need to choose by which
set an element is covered. In the second while loop, the greedy procedure begins. Instead
of comparing the largest current weight of each element, as we did in Algorithm 2, we now
compare the bth-largest weight. This is the case, because that is the weight that will possibly
drop out, if the new weight is larger. Again, we truncate negative values to 0. The resulting
algorithm is Algorithm 3.

15

2.3. Set Dependent Weighted Maximum Multi-Coverage

Algorithm 3: Greedy approximation algorithm for SDW-MMC
Input: an instance of SDW-MMC
Output: a collection G of sets Si

1 G ← ∅
2 while |G| < b do
3 Ŝ ← arg max

Si∈S\G

[∑
j∈J wj(Si)

]
4 G ← G ∪ {Ŝ}
5 while |G| < c do

6 Ŝ ← arg max
Si∈S\G

[∑
j∈J τ

(
wj(Si)−maxb

Sk∈G
(wj(Sk))

)]
7 G ← G ∪ {Ŝ}
8 return G

The time complexity of the algorithm remains unchanged, so it still is O(n ·m3).

2.3.3. Performance guarantee analysis
To analyse the performance of Algorithm 3, we use the same strategy as for Algorithm 2. Thus
we first define a new total weight function for SDW-MMC. Instead of adding up the largest
weight possible for each element, we add up the b largest weights possible for each element.

Definition 2.15. Let wj : S → R≥0 be a weight function of an instance of SDW-MMC, then
the total weight wb : P(S)→ R≥0 is

wb(A) =
∑
j∈J

(
b∑

k=1

kmax
Si∈A

wj(Si)

)
, ∀A ∈ P(S) ,

with wb(∅) = 0.

With this new total weight function we can rewrite equation (2.9), which is our optimization
target, to

Gopt = arg max
A⊆S

{wb(A) : |A| ≤ c} . (2.13)

We continue by proving a generalization of Lemma 2.7, namely that the sum of the b largest
elements of a set is submodular.

Lemma 2.16. If A and B are subsets of a finite set F , f : F → R≥0 is a non-negative function
defined on their elements and b is a positive integer, then

b∑
k=1

kmax
x∈A

f(x) +

b∑
k=1

kmax
x∈B

f(x) ≥
b∑

k=1

kmax
x∈A∪B

f(x) +

b∑
k=1

kmax
x∈A∩B

f(x) .

Proof. In this proof, when referring to the largest element of a set, the element that
has the largest value in terms of the function f is meant.

Let A ⊆ B ⊆ F be arbitrary, let b be an arbitrary positive integer and let y ∈ F \B
be an arbitrary element. We now let z(A) denote the sum of the b largest elements of

16

2.3. Set Dependent Weighted Maximum Multi-Coverage

A, thus

z(A) =
b∑

k=1

kmax
x∈A

f(x) .

Then the residual values become

ρy(A) =
b∑

k=1

kmax
x∈A∪{y}

f(x)−
b∑

k=1

kmax
x∈A

f(x)

and

ρy(B) =

b∑
k=1

kmax
x∈B∪{y}

f(x)−
b∑

k=1

kmax
x∈B

f(x) .

Because the sum of the b largest elements of a set always increases or remains the same
for larger sets, we have that ρy(A) ≥ 0 and ρy(B) ≥ 0. Note that as f is non-negative,
the truncation to 0 for sets that are smaller than b, does not bring us any trouble. We
now discuss two cases.

Case 1: f(y) < bmaxx∈B f(x). In other words, y is not part of the b largest elements
of B. In this case we immediately get that:

ρy(B) =
b∑

k=1

kmax
x∈B∪{y}

f(x)−
b∑

k=1

kmax
x∈B

f(x) =
b∑

k=1

kmax
x∈B

f(x)−
b∑

k=1

kmax
x∈B

f(x) = 0 .

Since ρy(A) ≥ 0, we get ρy(A) ≥ ρy(B).

Case 2: f(y) ≥ bmaxx∈B f(x). In other words, y gives a larger or equal value, than at
least one of the b largest elements in B. This means that

b∑
k=1

kmax
x∈B∪{y}

f(x) =

b−1∑
k=1

kmax
x∈B

f(x) + f(y) .

So ρy(B) = f(y)− bmaxx∈B f(x). Because A ⊆ B, we have that bmaxx∈A f(x) ≤
bmaxx∈B f(x) ≤ f(y), giving us the same for A:

b∑
k=1

kmax
x∈A∪{y}

f(x) =

b−1∑
k=1

kmax
x∈A

f(x) + f(y) .

Thus ρy(A) = f(y) − bmaxx∈A f(x). Now ρy(A) − ρy(B) = bmaxx∈B f(x) −
bmaxx∈A f(x) ≥ 0, so we also have ρy(A) ≥ ρy(B).

In both cases it holds that ρy(A) ≥ ρy(B), then by Proposition 2.6 this is equivalent
to

b∑
k=1

kmax
x∈A

f(x) +

b∑
k=1

kmax
x∈B

f(x) ≥
b∑

k=1

kmax
x∈A∪B

f(x) +

b∑
k=1

kmax
x∈A∩B

f(x) .

17

2.3. Set Dependent Weighted Maximum Multi-Coverage

With help of this lemma we can now show that the total weight function from Definition 2.15
is submodular.

Theorem 2.17. If wb : P(S)→ R≥0 is a total weight function of an instance of SDW-MMC,
then wb is a submodular function.

Proof. Let A and B be arbitrary subsets of S. Then,

wb(A) + wb(B) Def
=
2.15

∑
j∈J

(
b∑

k=1

kmax
Si∈A

wj(Si)

)
+
∑
j∈J

(
b∑

k=1

kmax
Si∈B

wj(Si)

)

=
∑
j∈J

(
b∑

k=1

kmax
Si∈A

wj(Si) +

b∑
k=1

kmax
Si∈B

wj(Si)

)
Lem
≥
2.16

∑
j∈J

(
b∑

k=1

kmax
Si∈A∪B

wj(Si) +
b∑

k=1

kmax
Si∈A∩B

wj(Si)

)

=
∑
j∈J

(
b∑

k=1

kmax
Si∈A∪B

wj(Si)

)
+
∑
j∈J

(
b∑

k=1

kmax
Si∈A∩B

wj(Si)

)
Def
=
2.15

wb(A ∪ B) + wb(A ∩ B).

Thus, by Definition 2.5, wb is a submodular function.

Quite intuitively, the total weight function from Definition 2.15 is also increasing.

Proposition 2.18. If wb : P(S) → R≥0 is a total weight function of an instance of SDW-
MMC, then wb is an increasing function.

Proof. Let A and B be arbitrary subsets of S, such that A ⊆ B. Then,

wb(A) Def
=
2.15

∑
j∈J

(
b∑

k=1

kmax
Si∈A

wj(Si)

)
≤
∑
j∈J

(
b∑

k=1

kmax
Si∈B

wj(Si)

)
Def
=
2.15

wb(B) .

Thus w is an increasing function by Definition 2.4. Here we used the trivial fact that
kmax is also increasing, if we only have non-negative weights.

It remains to show that the greedy procedure in Algorithm 3 adds the set Si with highest
residual value. To this end, the residual value of the total weight function of an instance of
SDW-MMC is written out in Theorem 2.19.

Theorem 2.19. Let wb : P(S) → R≥0 be a total weight function of an instance of SDW-
MMC, then the residual weight of this function can be written as

ρi(A) =
∑
j∈J

τ

(
wj(Si)− bmax

Sk∈A
wj(Sk)

)
, ∀Si ∈ S, ∀A ∈ P(S) .

Remark. If b > |A|, we can simplify this to ρi(A) =
∑

j∈J wj(Si).

18

2.4. Power Set Dependent Weighted Maximum Multi-Coverage

Proof. Let Si ∈ S and A ∈ P(S) be arbitrary. Then,

ρi(A)
Def
=
2.3

wb(A ∪ {Si})− wb(A)

Def
=
2.15

∑
j∈J

(
b∑

k=1

kmax
Sk∈A∪{Si}

wj(Sk)

)
−
∑
j∈J

(
b∑

k=1

kmax
Sk∈A

wj(Sk)

)

=
∑
j∈J

(
max

[
wj(Si) +

b−1∑
k=1

kmax
Sk∈A

wj(Sk),

b∑
k=1

kmax
Sk∈A

wj(Sk)

]
−

b∑
k=1

kmax
Sk∈A

wj(Sk)

)

=
∑
j∈J

(
max

[
wj(Si)− bmax

Sk∈A
wj(Sk), 0

])
Def
=
2.1

∑
j∈J

τ

(
wj(Si)− bmax

Sk∈A
wj(Sk)

)
.

Although seemingly complicated, the third equality is quite trivial. It just distinguishes
between the case where wj(Si) is part of the b largest weights and the case where it is
not.

The proof of the remark immediately follows from Definition 2.14, where it was
stated that kmax(A) = 0 for k > |A|.

We are now ready to prove what the performance guarantee of Algorithm 3 is.

Corollary 2.20. Algorithm 3 guarantees to find a (1 − 1
e)-approximation of any non-trivial

instance of SDW-MMC.

Proof. This follows directly from Theorem 2.11. As shown earlier in this section, we
can write any instance of SDW-MMC in the form of equation (2.13). In Theorem 2.17
and Proposition 2.18 we showed that the corresponding function wb is increasing and
submodular. By excluding trivial cases, wb must be non-constant. Furthermore, wb

was defined to have value 0 for the empty set (Definition 2.15). In Theorem 2.19
we showed that for each iteration, Algorithm 3 indeed adds the set Si with maximal
incremental value. Note that in the algorithm we used the remark below Theorem 2.19
to simplify the expression for the first b iterations. Together, these results thus show
that all conditions of Theorem 2.11 are met and we get our approximation bound.

2.4. PowerSetDependentWeightedMaximumMulti-Coverage
Although SDW-MMC allows for elements to be covered multiple times, the corresponding
weights are always added up. To allow for more interaction between the sets that cover an
element, we introduce a completely novel extension: Power Set Dependent Weighted
Maximum Multi-Coverage (PDW-MMC). In subsection 2.4.1 the problem is formally
introduced and two version of a linear program are given. Subsection 2.4.2 covers a restricted
version of PDW-MMC, for which more results can be derived. Finally, subsections 2.4.3 and
2.4.4 cover a greedy algorithm and its performance guarantee.

19

2.4. Power Set Dependent Weighted Maximum Multi-Coverage

2.4.1. Problem description and linear program
Whereas SDW-MMC has very rigid weights for each set Si, for some problems the need for
more flexible weight arises, an example will be investigated in Chapter 3. PDW-MMC fills
this gap. In the PDW-MMC problem each combination of sets that can cover an element has
a possibly different weight. Note that coverage by more sets therefore not necessarily means a
higher weight. To formally discuss the problem, we will need to define the capped power set.

Definition 2.21. Let S be a set and let b ≤ |S| be a natural number. The capped power set
of order b is

Pb(S) = {S′ ⊆ S : |S′| ≤ b} .

Remark. Note that |Pb(S)| =
∑b

k=0

(|S|
k

)
and that P|S|(S) = P(S), where P(S) is the standard

power set.
We can now define the PDW-MMC problem.

Power Set Dependent Weighted Maximum Multi-Coverage
Instance: E = {e1, . . . , en}, a set of n elements

S = {S1, . . . , Sm}, a collection of m non-empty subsets of E
c, an integer such that 1 ≤ c ≤ m
b, an integer such that 1 ≤ b ≤ c

wj : Pb(S)→ R≥0, a non-negative weight function per element ej ,
with wj(∅) = 0

Objective: Choose a collection of c sets G ⊆ S, such that the sum of the weights of
the covered elements is maximized. Here, an element can be covered
by at most b of the chosen sets and only the corresponding weight is
counted. An element can only be covered by a set, if it is contained
in that set.

Instead of the set S, the weight function now has the capped powerset Pb(S) as its domain.
So for each element ej a weight function exists, which depends on the combination of sets that
cover the element. The emptyset has weight 0, such that elements that are covered by it (to
rephrase it, elements that are not covered) do not contribute to the objective function.

To set up an ILP, we first need some new notation. Let Kb = {1, . . . , |Pb(S)|} be the index
set corresponding to the elements of Pb(S). These elements, which are sets containing different
Si, will be denoted by Tk. Furthermore, we create an index set Ik = {i ∈ I : Si ∈ Tk} for all
k ∈ Kb, consisting of all indices of the sets Si that are contained in Tk.

As a side note, we show that PDW-MMC indeed is a generalization of SDW-MMC. For
each instance of SDW-MMC with weight function wj : S → R≥0, we can create an instance
of PDW-MMC by only changing the weight function to have Pb(S) as its domain. The new
weight function w̃j : Pb(S)→ R≥0 would become:

w̃j(Tk) =

{∑
i∈Ik wj(Si) if Tk ̸= ∅ ,

0 if Tk = ∅ ,
∀Tk ∈ Pb(S) . (2.14)

The fact that SDW-MMC is a special case of PDW-MMC, implies that PDW-MMC still
belongs to the class of NP-hard problems, if P ̸= NP.

20

2.4. Power Set Dependent Weighted Maximum Multi-Coverage

Although PDW-MMC is NP-hard (unless P = NP), an ILP is still usefull. It can be used
to solve small instances and allows for a carefull analysis of in practice approximation ratios,
as we will see in Chapter 3. For the ILP one of the decision variables is changed, in comparison
with SDW-MMC. This results in:

xi =

{
1 if Si is chosen,
0 if Si is not chosen,

(2.15)

ykj =

{
1 if Tk covers ej ,

0 if Tk does not cover ej .
(2.16)

We see that y does not indicate by which set an element is covered, but by which collection of
sets it is covered.

With these decision variables, we produce the ILP-formulation in equation (2.17).

maximize
∑
j∈J

∑
k∈Kb

ykj · wj(Tk) , (2.17a)

subject to
∑
i∈I

xi ≤ c, (2.17b)∑
k∈Kb

ykj ≤ 1, j ∈ J, (2.17c)

xi · zij ≥ ykj , j ∈ J, k ∈ Kb, i ∈ Ik, (2.17d)
xi ∈ {0, 1}, i ∈ I, (2.17e)
ykj ∈ {0, 1}, j ∈ J, k ∈ Kb . (2.17f)

Objective function (2.17a) sums over all elements and all combinations of sets of size at
most b. Constraint (2.17b) allows for at most c sets to be chosen, while (2.17c) makes sure that
each element is covered by exactly one collection of sets. Therefore, in the objective function,
only one weight is counted per element. Finally, constraint (2.17d) handles the relation between
decision variables xi and ykj . An element ej can only be covered by a collection of sets Tk, if
all sets Si ∈ Tk are chosen and if all sets Si ∈ Tk contain the element. Only then, the left-hand
side of the inequality becomes 1. This constraint also explains the creation of the indexset Ik,
because we only want to consider the xi for which Si ∈ Tk.

The condition that all sets Si ∈ Tk must contain the element, can be relaxed. Instead
of forcing elements to be covered only by sets that contain the element, we can make sure
that adding a set that does not contain the element, does not change the weight. This will
then never change the value of the objective function and therefore it is a non-restrictive
assumption. More formally, if Tk ⊆ T ′

k and ej /∈ Si, for all Si ∈ T ′
k \ Tk, then wj(Tk) = wj(T ′

k).
One implication of this assumption is that wj({Si}) = 0, if ej /∈ Si. This can easily be seen,
by mentioning that wj(∅) = 0 by the problem definition. This implication is equivalent to the
assumption that was made to simplify the LP’s for SDW-MC and SDW-MMC.

21

2.4. Power Set Dependent Weighted Maximum Multi-Coverage

This new assumption simplifies constraint (2.17d), resulting in the following ILP:

maximize
∑
j∈J

∑
k∈Kb

ykj · wj(Tk) (2.18a)

subject to
∑
i∈I

xi ≤ c, (2.18b)∑
k∈Kb

ykj ≤ 1, j ∈ J, (2.18c)

xi ≥ ykj , j ∈ J, k ∈ Kb, i ∈ Ik, (2.18d)
xi ∈ {0, 1}, i ∈ I, (2.18e)
ykj ∈ {0, 1}, j ∈ J, k ∈ Kb . (2.18f)

As shown above, this problem is very hard to solve. The number of constraints is even
higher than the previously discussed problems, due to the exponential size of the set of weights.
Thus there is a strong need for a polynomial approximation algorithm. Unfortunately, it is not
possible to construct an algorithm that solves PDW-MMC within a certain ratio. There are
no real assumptions on the weight function and therefore an optimum can lie at any possible
combination of chosen sets. Any arbitrary set could have a weight close to ∞. It is thus not
possible to find this combination in a general way, without checking all possibilities. However,
if we assume a certain structure for the weights, some nice results are still possible. In the
next subsection we will introduce these assumptions.

2.4.2. Restricted version of the problem
We introduce a restricted version of PDW-MMC which we will call PDW-MMC*. The
imposed restrictions will allow us to set up a greedy algorithm and find its approximation
ratio. We make three assumptions:

1. Elements can be covered by all chosen sets, thus b =∞.

2. The weights are increasing. By Definition 2.4 we then have,

wj(A) ≤ wj(B), ∀A,B ∈ P(S), such that A ⊆ B . (2.19)

3. The weights are submodular. By Definition 2.5 we then have,

wj(A) + wj(B) ≥ wj(A ∩ B) + wj(A ∪ B), ∀A,B ∈ P(S) . (2.20)

Assumptions 1 and 2 are enough to change the ILP. As the weights are increasing and
elements can be covered by all chosen sets, only the collections of size c should be taken into
account. If we now define a new index set K ′ = {|Pc−1(S)|+ 1, . . . , |Pc(S)|} corresponding to

22

2.4. Power Set Dependent Weighted Maximum Multi-Coverage

all sets of size c and we change Ik to I ′k accordingly, we get the following ILP:

maximize
∑
j∈J

∑
k∈K′

ykj · wj(Tk) , (2.21a)

subject to
∑
i∈I

xi ≤ c, (2.21b)∑
k∈K′

ykj ≤ 1, j ∈ J, (2.21c)

xi ≥ ykj , j ∈ J, k ∈ K ′, i ∈ I ′k, (2.21d)
xi ∈ {0, 1}, i ∈ I, (2.21e)
ykj ∈ {0, 1}, j ∈ J, k ∈ K ′ . (2.21f)

Assumption 3 is necessary for the performance guarantee of the approximation algorithm
that will be presented in the next subsection.

2.4.3. Greedy approximation algorithm
Due to the increasing nature and submodularity of the weights in PDW-MMC*, a logical
candidate to solve this problem greedily would be Algorithm 4.
Algorithm 4: Greedy approximation algorithm for PDW-MMC*
Input: an instance of PDW-MMC*
Output: a collection G of sets Si

1 G ← ∅
2 while |G| < c do
3 Ŝ ← argmax

Si∈S\G

∑
j∈J (wj(G ∪ {Si})− wj(G))

4 G ← G ∪ {Ŝ}
5 return G

At every iteration, we include the set that adds the most additional weights. Because
b =∞, we can simply compare the difference in weights for each possible new set Si. The time
complexity of the algorithm, which is O(n ·m2), makes this a polynomial algorithm.

2.4.4. Performance guarantee analysis
Of course it is of great interest to know how well Algorithm 4 approximates the optimal
solution. To this end, we first define the total weight of an instance of PDW-MMC*. Because
the weights are increasing and b = ∞, we can just add up the weight of each element for the
current selection.

Definition 2.22. Let wj : P(S)→ R≥0 be a weight function of an instance of PDW-MMC*,
then the total weight w : P(S)→ R≥0 is

w(A) =
∑
j∈J

wj(A), ∀A ⊆ S .

Just as in the previous sections, we are trying to find a subset of S of size at most c, while
maximizing the total weight of this subset. Therefore, we can write PDW-MMC* as the

23

2.4. Power Set Dependent Weighted Maximum Multi-Coverage

problem of finding Gopt, where

Gopt = arg max
A⊆S

{w(A) : |A| ≤ c} . (2.22)

The next step in our analysis, is to show that on line 3 of Algorithm 4, we add the set with
largest incremental weight.

Theorem 2.23. Let w : P(S) → R≥0 be a total weight function of an instance of PDW-
MMC*, then the residual weight of this function can be written as

ρi(A) =
∑
j∈J

(wj(A ∪ {Si})− wj(A)) , ∀Si ∈ S, ∀A ∈ P(S) .

Proof. Let Si ∈ S and A ∈ P(S) be arbitrary. Then,

ρi(A)
Def
=
2.3

w(A ∪ {Si})− w(A) Def
=
2.22

∑
j∈J

wj(A ∪ {Si})−
∑
j∈J

wj(A)

=
∑
j∈J

(wj(A ∪ {Si})− wj(A)) .

We are now ready to prove the main result of this subsection: the performance guarantee of
Algorithm 4. To derive an approximation bound, we again turn our attention to Theorem 2.11
and show that its conditions hold for PDW-MMC* and Algorithm 4.

Corollary 2.24. Algorithm 4 guarantees to find a (1 − 1
e)-approximation of any non-trivial

instance of PDW-MMC*.

Proof. This follows directly from Theorem 2.11. As shown earlier in this subsection, we
can write any instance of PDW-MMC* in the form of equation (2.22). For an instance
of PDW-MMC*, the weights wj are increasing and submodular by the assumptions
made in equations (2.19) and (2.20). This immediately implies that the total weight
w (as defined in Definition 2.22) is increasing and submodular, as we just sum over
all elements. By excluding trivial cases, w must be non-constant. Furthermore, wj

was defined to have value 0 for the empty set (see the problem description of PDW-
MMC) and thus w has this same property. In Theorem 2.23, we showed that for
each iteration, Algorithm 4 indeed adds the set Si with maximal incremental value.
Thus, all conditions of Theorem 2.11 are met and we get that Algorithm 4 provides a
(1− 1

e)-approximation for PDW-MMC*.

24

Chapter3
Selection of weather stations in the

Netherlands

One application of the class of maximum coverage problems is the selection of the optimal
collection of sensors, as argued by Aggarwal, Bar-Noy, and Shamoun in [2] and [3]. Specifi-
cally, we will use the PDW-MMC problem to model the selection of weather stations in the
Netherlands. In section 3.1 the problem is described. Afterwards, two different approaches to
calculate weights are investigated in section 3.2 and 3.3.

3.1. Problem description
The Netherlands has a total of 46 official weather stations monitored by the Royal Dutch
Meteorological Institute (KNMI). These stations, or sensors, gather useful data, such as tem-
perature, radiation and wind speed. We will try to find a subset of these stations of a certain
size, that gives us the maximal information. Only the stations itself are considered as our
points of interest. We focus on three physical quantities:

• Temperature: the daily mean temperature (in degrees Celsius);

• Precipitation: the daily amount of rainfall (in millimeters);

• Humidity: the daily mean relative atmospheric humidity (in percentages).

Figure 3.1 shows the 34 sensors that capture these quantities. The stations indicated by white
squares are used to test the performance of the greedy algorithm. To model this problem as
a PDW-MMC problem, we first need to define what the elements ej and the sets Si are.
As our stations are also our locations of interest, both the elements and the sets correspond
to a possible sensor location. Each set Si contains all elements ej , as every station always
gives some information about other stations. Furthermore, we set b = ∞, as we want every
weather station available to help with the estimations. It should be noted that we are implicitly
implying that the set S now becomes a multiset, where duplicate elements are allowed, as each
Si contains the same elements. However, this has no influence on the analysis conducted in
this thesis, as we never used the characteristic that the Si are unique. In [8], GMC was even
defined in such a way that it allows multisets.

25

3.1. Problem description

Figure 3.1: Locations of the 34 official KNMI-monitored weather stations in the Netherlands, that mea-
sure temperature, humidity and precipitation. The stations used for testing purposes are indicated
by white squares. (The station indicated by ∗ only measures temperature and humidity and no
precipitation.)

It remains to determine weights wj per location for each combination of sensors. Then we
can maximize the total weight to obtain a subset of c sensors. Two approaches, based on two of
the most used interpolation methods in geospatial analysis [17], are tried to determine weights:
an interpolation technique called inverse distance weighting and multiple linear regression. We
refer to these different weights as IDW-weights and MLR-weights. For both approaches we
estimate the values at a certain location for each day that we have data available, using only
the data of the selected sensors. As a side note, let us mention that it is important to make
a distinction between interpolation and forecasting. We aim to interpolate the data, meaning
that we predict certain values based on values at another location. This is unalike forecasting,
were one seeks to predict future data.

After the interpolation is conducted, we calculate the weights by setting them equal to the
R2 of the estimate. The coefficient of determination or R2 is a measure of the fit of a model,
independent of the scale of the variables [10]. The R2 can be calculated as

R2 = 1− SSR

SST
= 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳ)2

. (3.1)

Here yi denotes the real data, ŷi denotes the estimated data and ȳ is the mean over all yi. SSR
is the sum of squared residuals, in other words the sum of squared errors. SST is the total sum
of squares, which gives an indication of the variation of the data with respect to its mean. It
is quite clear that R2 ≤ 1, as the fraction never becomes negative due to the squares. The R2

increases when the fit gets better and is thus a good indicator of the importance of a selection.
However, a small adjustment must be made. If we do not estimate y with regression, the R2

can become negative and give us a worse model, than just taking a constant. Thus, we will
truncate the weights to 0, when the R2 is negative. In such cases we assume that a constant

26

3.2. Weights with inverse distance weighting

model will be used, as in real life we always have the option to not use parts of the data. The
objective of PDW-MMC is to maximize the sum of weights, thus we are maximizing the sum
of R2 for each weather station. In essence, we can reformulate this as the maximization of the
average R2 of all locations, as we have a fixed number of weather stations.

Our two approaches differ in the way the data is estimated. While the first method has
a more meaningful physical interpretation, the second method gives us nicer mathematical
results.

3.2. Weights with inverse distance weighting
The interpolation that we will be using first, is inverse distance weighting (IDW), introduced
in 1968 by Shepard [16]. It is a deterministic method, not dependent on any statistical as-
sumptions and therefore widely applicable. Furthermore, it is not too computationally heavy.
The core of the interpolation is that it is distance-dependent: points further away of the point
of interest contribute less to the interpolation. This has a very nice physical interpretation, as
weather data of points nearby are likely to be similar. In subsection 3.2.1 this technique will
be explained in more detail. Subsection 3.2.2 analyses the in practice performance of a greedy
algorithm, while subsection 3.2.3 shows the results of the algorithm.

3.2.1. Inverse distance weighting
IDW uses all available data to interpolate missing data-points. A formal definition, adapted
from [16], is given in Definition 3.1.

Definition 3.1 (Inverse distance weighting). Let D ⊂ Rm be a set of n points xi, for which
we know function values f(xi) : D → R. Let p ≥ 0 be a real number and let d(x1, x2) denote
the distance (of a certain metric) between points x1 and x2. Then the IDW-interpolation of a
point y ∈ Rn is

u(y) =


∑n

i=1 vi(y)f(xi)∑n
i=1 vi(y)

if d(xi, y) ̸= 0 for all i ,

f(xi) if d(xi, y) = 0 for some i ,

with weights
vi(y) =

1

d(xi, y)p
.

We see that IDW-interpolation returns a weighted average of all available points. The
weights vi (not to be confused with the weights of the maximum coverage models) are inversely
proportional with the distance to the available points. As a result, points further away have
a smaller weight than points close by. With the power parameter p we can tune this relation.
For p = 0, all available points carry the same weight and thus each IDW-interpolation gives
back the average of all points. For p = 1, the relationship is exactly inversely proportional. By
letting p grow, points that are further away get less and less influence. Finally, if p → ∞ we
reach the so-called nearest neighbor interpolation. In this form of interpolation, a point takes
on the value of its closest neighbor for which we know the function value. For a two-dimensional
function this results in the plot being a Voronoi diagram.

To illustrate the influence of the power parameter, an IDW-interpolation was executed
in Figure 3.2 for five different values of p. Figure 3.2a shows the arbitrarily chosen function
f(x, y) = x · (1 − x) · cos(4πx) · sin2(4πy2) + 1

4 and the 1000 random points used for the

27

3.2. Weights with inverse distance weighting

(a) Original function (b) IDW with p = 1 (c) IDW with p = 2

(d) IDW with p = 3 (e) IDW with p = 5 (f) IDW with p → ∞ (Nearest
neighbour interpolation)

Figure 3.2: IDW-interpolation using 1000 random samples from the function f(x, y) = x · (1 − x) ·
cos(4πx) · sin2(4πy2) + 1

4 for five different values of p. The orange dots denote the points in the
dataset D.

interpolation. From Figures 3.2b–e we can clearly see that for larger p the interpolated function
values are less influenced by points further away. This also results in harder cut-offs and a less
smooth surface. Figure 3.2f indeed shows that for p→∞ we get a Voronoi diagram. It seems
that for the function f , the IDW-interpolation with p = 5 gives us the best result, although
one could argue that p = 3 is better due to its smoothness. However, this p is highly dependent
on the underlying function and the number of used datapoints [7]. It is quite easy to come
up with functions for which other values of p are preferable. So, one must be careful when
choosing the parameter p. In geospatial analysis a choice of p = 2 is widely used. Higher values
were also tried in the research leading to this thesis, but results did not change significantly.
Therefore, we will adhere to the convention of p = 2 in this thesis.

Unfortunately, when using IDW to estimate data, no structure exists for the corresponding
R2. It is not necessarily increasing nor submodular, as it is perfectly imaginable that a certain
weather station has a highly negative influence on the estimates. For meteorological reasons,
a station close by might have severely different data and thus make the estimates worse. Even
though without these characteristics, no approximation guarantees hold, we are still interested
in the in practice performance of Algorithm 4 for different values of c.

28

3.2. Weights with inverse distance weighting

3.2.2. In practice performance analysis
As mentioned in the previous subsection, a greedy algorithm has no performance guarantee,
when IDW-weights are used. However, we would still like to know how our algorithm performs
in practice. To obtain a measure for the performance, we would need to know the optimal
solution to the problem. This allows us to compare the approximate solutions. Here, a problem
arises. As explained in subsection 2.4.1, PDW-MMC is a NP-hard problem. It is thus impos-
sible to solve the problem optimally for the whole dataset, as this would require an enormous
amount of computation time. Therefore, we first turn our focus to the subset of eight sensors
shown in Figure 3.1.

With help of Python, all estimates necessary to find the weights, are calculated using IDW.
Then, the corresponding R2 of the estimates is calculated, such that we can acquire our weights
for the PDW-MMC problem. We then have an instance of PDW-MMC, which we can solve
optimally with the ILP given in equation (2.18). We will be using the efficient commercial
LP-solver Gurobi1, on an academic license, to fulfill this task. Afterwards, Algorithm 4 is used
to give an approximation of these solutions.

(a) Temperature (b) Humidity

(c) Rainfall (d) Approximation ratio of greedy and optimal

Figure 3.3: Total objective value of the optimal solution and greedy solution found by Algorithm 4 of
the selection of weather stations from the test-subset. Results for different numbers of sensors to
be selected are shown and all three quantities of interest are depicted. Weights are calculated using
IDW. The corresponding approximation ratios are also plotted.

1https://www.gurobi.com/

29

https://www.gurobi.com/

3.2. Weights with inverse distance weighting

For each quantity of interest both the optimal and the approximate solution are calculated
for all possible values of c. This gives us objective values, which we can compare. The results
for our three quantities of interest are depicted in Figures 3.3a–c. Instead of using the sum
of R2, the average R2 is used, as it has a more intuitive interpretation. Note that the three
graphs are all scaled to fit the window and start at c = 1. The smaller graphs inside the
figures show the complete graphs. Figure 3.3d shows the corresponding approximation ratios,
in comparison with the theoretical bound we get under the assumptions of subsection 2.4.2.

Although theoretically these weights are not increasing, Figures 3.3a–c clearly show us
that the objective value of the greedy algorithm do increase. Figure 3.3d even shows that the
ratio between the greedy solution and the optimal solution stays well above the bound that is
known for submodular weights, even though this assumption does not hold. Thus, in practice,
Algorithm 4 seems to give us good approximations.

Another phenomenon worth discussing, is that the average R2 for c = 1 differs quite a bit
among the three quantities. When looking at temperature (Figure 3.3a), one sensor gives us
an average R2 larger than 0.93. This is easily explained by the fact that the temperature does
not vary largely across the Netherlands and one sensor already gives quite good estimates.
The daily rainfall starts at a much smaller R2 (Figure 3.3c). Probably, because rain is a very
local phenomenon that has large variations. The third quantity, humidity, lies in between
temperature and rainfall, with a starting R2 of approximately 0.75.

3.2.3. Greedy results
Although theoretically no bound on the approximation can be derived, the previous subsection
shows that in practice our greedy solution gives us good results. As explained before, it is
impossible to solve the problem optimally for the whole dataset, so we only show the greedy
solutions. In Figure 3.4 the color of the stations indicate at which stage a sensor was added.
The darker the color the earlier the sensor was added and thus the ‘more important’ a sensor
is. For all three quantities there is good spread of dark and light sensors, indicating that the
greedy algorithm does not choose clusters of sensors. This is obviously very intuitive. If viewed
digitally, Figures A.1a–c in Appendix A provide animations corresponding to Figure 3.4.

Figure 3.5 shows how the objective function behaves. We see the same kind of behavior as
for the test subset of eight stations, with the difference that the increase in R2 is a bit slower.
This is quite logical, because the average is now taken over more sensors and thus there is more
room for mistakes.

30

3.3. Weights with multiple linear regression

(a) Temperature (b) Humidity (c) Precipitation

Figure 3.4: Selection of weather stations by Algorithm 4 with IDW-weights. All three quantities of
interest are depicted. The color indicates at which iteration a station is chosen.

Figure 3.5: Objective value for each iteration of Algorithm 4, applied to the selection of weather stations
in the Netherlands based on three different quantities. Weights are calculated with IDW.

3.3. Weights with multiple linear regression
A more sophisticated method to make estimations is by using multiple linear regression (MLR),
also known as multiple regression. In contrast to IDW, it is a stochastic method dependent
on certain statistical assumptions. Although no physical reasoning lies behind the estimation,
one major advantage of this method is that the weights will always be increasing. The more
regressors we add, the better the estimate will be and thus the higher the weights. In the next
subsection we prove this result and give a short overview of MLR. In subsections 3.3.2 and
3.3.3 we discuss the performance of the greedy algorithm and the corresponding results.

31

3.3. Weights with multiple linear regression

3.3.1. Multiple linear regression
This short recap on multiple linear regression is loosely based on [10]. For more details, we
refer to that study book.

Let

y =

y1
...
yn

 , X =

1 x11 . . . x1k
...

...
...

1 xn1 . . . xnk

 , β =

β0
...
βk

 , ε =

ε1
...
εn

 . (3.2)

Here y is the vector of dependent variables which we seek to estimate. Each of the n variables
yi has k corresponding regressors or explanatory variables. The matrix X contains all these
regressors and a column of ones, corresponding to the addition of a constant in the model. In
other words, X represents the complete dataset, used to estimate y. In MLR, it is assumed
that each yi is a linear combination of the k regressors in X, plus a random error ε. If we
denote the corresponding parameters by β, we get,

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi, i = 1, . . . , n . (3.3)

Using the notation in equation (3.2) we can write these n equations as,

y = Xβ + ε . (3.4)

It is our goal to find an estimate β̂ of the vector β, to get estimates ŷ for y. The criterion
used in MLR, is to find the vector b which minimizes the sum of squared residuals, given by

SSR =
n∑

i=1

(yi − b0 − b1xi1 − · · · − bkxik)
2 . (3.5)

The ordinary least squares (OLS) estimator does exactly this job and can be calculated as,

β̂OLS = (X ′X)−1X ′y , (3.6)

where X ′ denotes the transpose of X. Thus, MLR gives the following estimate for the vector
y:

ŷ = Xβ̂OLS = X(X ′X)−1X ′y . (3.7)

Because MLR minimizes the SSR and the R2 is based on the SSR (see equation (3.1)), we
can prove the following useful result.

Theorem 3.2. When using multiple linear regression to estimate data, the R2 is increasing,
if we view R2 as a set-function with the set of regressors as its domain.

Proof. Let A,B both be arbitrary sets of regressors, such that A ⊆ B. On page 137 in
[10] the very intuitive result that the SSR is decreasing, is proved. With slight abuse
of notation, we thus have that SSR(A) ≥ SSR(B). Furthermore, the total sum of
squares SST is not dependent on the regressors and so SST (A) = SST (B). Then by
the definition of R2, given in equation (3.1), we get

R2(A) = 1− SSR(A)

SST (A)
≤ 1− SSR(B)

SST (B)
= R2(B) .

32

3.3. Weights with multiple linear regression

So, R2 is increasing by Definition 2.4.

Although we now have that the R2 is increasing, the second property we would appreciate,
does not hold. In Theorem 3.3 we state that the R2 is not submodular (nor supermodular).
The proof of the theorem also supplies us with a counterexample.

Theorem 3.3. When using multiple linear regression to estimate data, the R2 is neither
submodular nor supermodular, if we view R2 as a set-function with the set of regressors as its
domain.

Proof. We will prove this by giving two easy counterexamples. Let,

y =

1
2
3

 , X =

1 1 1 1
1 2 1 2
1 1 2 3

 .

Each of the columns of X correspond to a regressor. Now let A = {1, 2} and B =
{1, 3} both be sets of these regressors. Then, with slight abuse of notation, we find
R2(A) = R2({1, 2}) = 0, R2(B) = R2({1, 3}) = 0.75, R2(A ∪ B) = R2({1, 2, 3}) = 1
and R2(A ∩B) = R2({1}) = 0. Thus we get that

R2(A) +R2(B) � R2(A ∪B) +R2(A ∩B) .

Then, by Definition 2.5, R2 is not submodular.
Now, let C = {1, 4}. It can easily be verified that R2(C) = R2({1, 4}) = 1,

R2(A ∪ C) = R2({1, 2, 4}) = 1 and R2(A ∩ C) = R2({1}) = 0. Thus,

R2(A) +R2(C) � R2(A ∪ C) +R2(A ∩ C) .

Then, by Definition 2.5, R2 is also not supermodular.

3.3.2. In practice performance analysis
In comparison with IDW-weights, MLR-weights have more structure: they are increasing.
However, even with increasing weights, the selection of weather stations can still not be mod-
elled as a PDW-MMC* problem. As shown in Theorem 3.3, the assumption of submodularity
does not hold. Therefore, we once more turn our attention to a small subset of the problem
to investigate the in practice approximation ratio of a greedy algorithm.

Just as for IDW-weights, the greedy algorithm that is tested is Algorithm 4. The ILP that
is used to obtain the optimal solutions can be simplified a bit. As explained in subsection 2.4.2,
only the assumptions that b = ∞ and that the weights are increasing are enough to use the
ILP from equation (2.18), which has fewer options to consider. This ILP will also be solved
with Gurobi.

Figures 3.6a–c show the results of this analysis. When compared to Figures 3.3a–c, which
show the results for IDW-weights, a lot of similarities appear. Nevertheless, one difference can
be seen: the average R2 in Figures 3.6a–c is larger. This is very logical, as MLR minimizes the
sum of squared residuals and thus maximizes the R2, whereas IDW is not specifically tailored
towards this maximization goal. What attracts attention, is that the difference in R2 between
IDW and MLR is minimal. This indicates that IDW already delivered very good estimates.

33

3.3. Weights with multiple linear regression

From Figure 3.3d we see that the approximation is even better than before. Thus we again
conclude that de facto our algorithm seems to give us good approximations. The rest of the
trends in the figures remain unchanged. Temperature still starts with the highest R2, while
rainfall begins with a low R2.

(a) Temperature (b) Humidity

(c) Rainfall (d) Approximation ratio of greedy and optimal

Figure 3.6: Total objective value of the optimal solution and greedy solution found by Algorithm 4 of
the selection of weather stations from the test-subset. Results for different numbers of sensors to
be selected are shown and all three quantities of interest are depicted. Weights are calculated using
MLR. The corresponding approximation ratios are also plotted.

3.3.3. Greedy results
From the previous subsection we have learned that Algorithm 4 has a very good in practice
performance for MLR-weights, even better than for IDW-weights. Therefore, we can now turn
our focus on the whole group of weather stations.

Figure 3.7 depicts at what stage Algorithm 4 chooses a certain weather station. Again
a good spread of the lighter and darker coloured stations can be seen. It is also quite ap-
parent that the sensors are chosen in different orders for the different quantities of interest.
Figures A.1d–f in Appendix A again provide visually more pleasing animations of Figure 3.7,
which can only be viewed digitally.

Furthermore, Figure 3.8 shows the objective values corresponding to Figure 3.7. Just as
for IDW-weights, when we want to measure temperature or humidity, even a few sensors gives

34

3.3. Weights with multiple linear regression

(a) Temperature (b) Humidity (c) Precipitation

Figure 3.7: Selection of weather stations by Algorithm 4 with MLR-weights. All three quantities of
interest are depicted. The color indicates at which iteration a station is chosen.

us a large average R2. As discussed before, rainfall is a more local phenomenon, demanding
more sensors to get the same average R2.

Figure 3.8: Objective value for each iteration of Algorithm 4, applied to the selection of weather stations
in the Netherlands based on three different quantities. Weights are calculated with MLR.

35

Chapter4
Conclusion and outlook

4.1. Conclusion
We have discussed several maximum coverage problems. First, some already known results
for WMC were revised. Afterwards, we defined the SDW-MC problem and formulated an
ILP. We discussed some results from [14], which we used to prove that a greedy algorithm
gives a (1 − 1

e)-approximation of the optimal solution. Then, we extended the problem by
allowing elements to be covered by at most b sets, as opposed to just one. This resulted in
the SDW-MMC problem. A similar analysis as for SDW-MC was conducted, to show that a
greedy algorithm also guarantees a (1− 1

e)-approximation for SDW-MMC. To allow for more
flexibility, we let every combination of sets have a possibly different weight. We set up an
ILP-formulation to solve this PDW-MMC problem optimally. Although a greedy algorithm
has no theoretical performance guarantee for this problem, under the assumptions that the
weights are increasing and submodular, and each element can be covered by all sets, we again
derived a performance guarantee of (1− 1

e).
In the subsequent chapter, the PDW-MMC problem was tested. In the framework of

sensor selection, we modelled the optimal selection of weather stations in the Netherlands. We
used a publicly available dataset of climate data from the KNMI to determine our weights. For
each combination of sensors we estimated the data of all sensors. From these estimations we
could calculate the R2 for each sensor, which is a measure of the fit of our estimations. These
R2 were then used as weights. The estimations were done by two different methods. First, we
tried inverse distance weighting, an interpolation technique which returns a weighted average
of the data from other sensors, based on the distance they are apart. Afterwards, multiple
linear regression was used.

Although neither of the methods fulfilled the requirement of submodular weights, the in
practice performance of the greedy algorithm, tested on a subset of the problem, was very
high. We eventually found an order in which the sensors are added by the greedy algorithm
for three different quantities of interest: temperature, rainfall and humidity. As a side result,
we found out that even one sensor gives an average R2 larger than 0.93, when estimating
temperature. For humidity and rainfall these values were approximately 0.70 and 0.41, re-
spectively. Therefore, the quality of estimation varies a lot, due to the physical properties of
the quantities. The amount of rainfall has large variations, even across a small country, such
as the Netherlands. Meanwhile, the temperature does not differ a lot between parts of the

36

4.2. Further research

Netherlands. This explains the relatively high R2.
We should address that the way we modelled the selection of weather stations in the

Netherlands is a mere simplification of reality. We only assumed each weather station to be a
point of interest, as no climate data is available for the entirety of the Netherlands. This results
in the modelling becoming somewhat artificial, as the greedy algorithm is drawn towards areas
with a high density of weather stations. Those areas contribute the most to the total objective
function. Thus, if we want to interpret the acquired results, we should do so with caution. A
logical and safe interpretation is that the order in which the stations are added, resembles the
order of importance of the stations. Therefore, it can be used to choose which stations should
be kept, if the authorities were to remove some of them in the future.

4.2. Further research
One could think of numerous directions of further research. Either, in areas where our ap-
proaches have their limitations or by diving deeper in some of the matter discussed in this
thesis. The most notable examples will be listed below.

We first return to the problem of the algorithm being drawn towards areas with a lot of
weather stations. One way to circumvent this issue, would be by dividing the research area in
sections. If we then multiply each station with an importance factor, inversely proportional
to the number of stations in each section, we make sure that all areas of the Netherlands get
some coverage from the KNMI. In this way, lone weather stations contribute more to the total
objective function.

A very obvious extension of some of the models discussed in this thesis is adding budget
constraints. Instead of a cardinality constraint, where a predetermined number of sets are to
be chosen, we then assign costs to each set (and possibly to each element). The total cost
must then adhere to the given budget. As discussed in section 2.1 and 2.2, both WMC and
SDW-MC already have known budgeted versions: BMC and GMC, respectively. However,
SDW-MMC and PDW-MMC do not. This is nicely illustrated in Figure 1.1. By including
a budget, we improve the applicability of both models, as it not only allows us to model true
financial costs, but also costs in terms of power consumption or resources [3].

In subsection 2.3.3 it was proved that Algorithm 3 gives a (1 − 1
e)-approximation of any

instance of SDW-MMC. In [5] no explicit algorithm was found that could beat this bound,
but an implicit algorithm was developed with a higher approximation ratio of (1 − bbe−b/b!),
taking advantage of the fact that elements can be covered multiple times. This algorithm first
solved the LP-relaxation of the problem and then made use of a rounding method called pipage
rounding. In this thesis, our focus lies on explicit algorithms and so this was of no immediate
use. However, the result from [5] suggests their algorithm might have an explicit counterpart,
which would improve Algorithm 3.

The PDW-MMC problem from subsection 2.4 is an extension of SDW-MMC. In a very
recent, not yet published article by Barman, Fawzi, and Fermé [4], a different extension was
introduced. Instead of simply adding up the weights if an element is covered multiple times,
the weights are multiplied by a concave function, depending on how many times the element is
covered. Although this problem not immediately applies to the setting of weather stations, it
might work better than our proposed PDW-MMC for other problems. Therefore, this article
must certainly be explored further.

A negative property of PDW-MMC is that its greedy algorithm only has a performance
guarantee under the assumptions that the weights are increasing and submodular. In a recent

37

4.2. Further research

article by Chamon, Pappas, and Ribeiro [6], results were derived for approximately submodular
functions. A function is approximately submodular, if it violates true submodularity only
up to an additive or multiplicative constant. Although in general this does not influence
our approximation bounds, for specific weight functions these notions might provide us with
bounds, even if the assumption of submodularity does not hold. This certainly is an area worth
investigating.

We now turn our attention to the calculation of weights in Chapter 3. We used the R2

as a measure of fit and proved that it is not submodular. In [12] it is shown that under
certain assumptions a different objective, the logarithm of the determinant of the covariance
matrix, is supermodular. Chamon, Pappas, and Ribeiro [6] described this so-called logdet as
a “supermodular surrogate” of the mean squared error, implying that it also is a measure of
fit. Due to the supermodularity, this might be an interesting area of research.

38

AppendixA
Animations of greedy selection

This appendix contains the same results as in Figures 3.4 and 3.7, which showed the selection
process of Algorithm 4 applied to weather stations in the Netherlands. To better visualise
this process, animated versions of these figures are depicted in Figure A.1. Figures A.1a–c
correspond to Figure 3.4, which showed the results for the IDW-weights. Figures A.1d–f show
the results for the MLR-weights and correspond to Figure 3.7. These animations can only be
viewed digitally in Adobe Acrobat Reader1 or Foxit Reader2.

(a) IDW-weights – Temperature (b) IDW-weights – Humidity

Figure A.1: Animation of selection of weather stations by Algorithm 4 with MLR- and IDW-weights.
All three quantities of interest are depicted.

1https://get.adobe.com/nl/reader/
2https://www.foxit.com/pdf-reader/

39

https://get.adobe.com/nl/reader/
https://www.foxit.com/pdf-reader/

(c) IDW-weights – Precipitation (d) MLR-weights – Temperature

(e) MLR-weights – Humidity (f) MLR-weights – Precipitation

Figure A.1: Animation of selection of weather stations for different quantities by Algorithm 4 with
IDW- and MLR-weights. All three quantities of interest are depicted.

40

References

[1] K. Aardal, L. Van Iersel, and R. Janssen, Lecture notes am2020 optimization, Lecture
Notes, 2020.

[2] C. C. Aggarwal, A. Bar-Noy, and S. Shamoun, “On sensor selection in linked information
networks,” in 2011 International Conference on Distributed Computing in Sensor Systems
and Workshops (DCOSS), IEEE, 2011, pp. 1–8.

[3] C. C. Aggarwal, A. Bar-Noy, and S. Shamoun, “On sensor selection in linked information
networks,” Computer Networks, vol. 126, pp. 100–113, 2017.

[4] S. Barman, O. Fawzi, and P. Fermé, “Tight approximation guarantees for concave cov-
erage problems,” arXiv preprint arXiv:2010.00970, 2020.

[5] S. Barman, O. Fawzi, S. Ghoshal, and E. Gürpınar, “Tight approximation bounds for
maximum multi-coverage,” in International Conference on Integer Programming and
Combinatorial Optimization, Springer, 2020, pp. 66–77.

[6] L. F. Chamon, G. J. Pappas, and A. Ribeiro, “Approximate supermodularity of kalman
filter sensor selection,” IEEE Transactions on Automatic Control, vol. 66, no. 1, pp. 49–
63, 2020.

[7] F.-W. Chen and C.-W. Liu, “Estimation of the spatial rainfall distribution using inverse
distance weighting (idw) in the middle of taiwan,” Paddy and Water Environment, vol. 10,
no. 3, pp. 209–222, 2012.

[8] R. Cohen and L. Katzir, “The generalized maximum coverage problem,” Information
Processing Letters, vol. 108, no. 1, pp. 15–22, 2008.

[9] U. Feige, “A threshold of ln n for approximating set cover,” Journal of the ACM (JACM),
vol. 45, no. 4, pp. 634–652, 1998.

[10] C. Heij, P. De Boer, P. Franses, T. Kloek, and H. Van Dijk, Econometric Methods with
Applications in Business and Economics. Oxford University Press, Jan. 2004.

[11] D. S. Hochbaum and A. Pathria, “Analysis of the greedy approach in problems of max-
imum k-coverage,” Naval Research Logistics (NRL), vol. 45, no. 6, pp. 615–627, 1998.

[12] S. T. Jawaid and S. L. Smith, “Submodularity and greedy algorithms in sensor scheduling
for linear dynamical systems,” Automatica, vol. 61, pp. 282–288, 2015.

[13] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage problem,” In-
formation processing letters, vol. 70, no. 1, pp. 39–45, 1999.

[14] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for
maximizing submodular set functions—i,” Mathematical programming, vol. 14, no. 1,
pp. 265–294, 1978.

[15] “Sensor,” in Cambridge Dictionary, Cambridge University Press, 2021. [Online]. Avail-
able: https://dictionary.cambridge.org/dictionary/english/sensor (visited on
07/05/2021).

41

https://dictionary.cambridge.org/dictionary/english/sensor

References

[16] D. Shepard, “A two-dimensional interpolation function for irregularly-spaced data,” in
Proceedings of the 1968 23rd ACM national conference, 1968, pp. 517–524.

[17] R. Sluiter, “Interpolation methods for climate data: Literature review,” KNMI intern
rapport, Royal Netherlands Meteorological Institute, De Bilt, 2009.

[18] R. V. Vohra and N. G. Hall, “A probabilistic analysis of the maximal covering location
problem,” Discrete Applied Mathematics, vol. 43, no. 2, pp. 175–183, 1993.

42

	Acknowledgements
	Abstract
	Lay summary
	List of abbreviations
	Introduction
	Importance of sensors
	Research objective
	Thesis outline
	Notational conventions

	Maximum Coverage problems
	Weighted Maximum Coverage
	Problem description and linear program
	Greedy approximation algorithm

	Set Dependent Weighted Maximum Coverage
	Problem description and linear program
	Greedy approximation algorithm
	Performance guarantee analysis

	Set Dependent Weighted Maximum Multi-Coverage
	Problem description and linear program
	Greedy approximation algorithm
	Performance guarantee analysis

	Power Set Dependent Weighted Maximum Multi-Coverage
	Problem description and linear program
	Restricted version of the problem
	Greedy approximation algorithm
	Performance guarantee analysis

	Selection of weather stations in the Netherlands
	Problem description
	Weights with inverse distance weighting
	Inverse distance weighting
	In practice performance analysis
	Greedy results

	Weights with multiple linear regression
	Multiple linear regression
	In practice performance analysis
	Greedy results

	Conclusion and outlook
	Conclusion
	Further research

	Animations of greedy selection
	References

	5.Plus:
	5.Reset:
	5.Minus:
	5.EndRight:
	5.StepRight:
	5.PlayPauseRight:
	5.PlayRight:
	5.PauseRight:
	5.PlayPauseLeft:
	5.PlayLeft:
	5.PauseLeft:
	5.StepLeft:
	5.EndLeft:
	anm5:
	5.33:
	5.32:
	5.31:
	5.30:
	5.29:
	5.28:
	5.27:
	5.26:
	5.25:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	4.Plus:
	4.Reset:
	4.Minus:
	4.EndRight:
	4.StepRight:
	4.PlayPauseRight:
	4.PlayRight:
	4.PauseRight:
	4.PlayPauseLeft:
	4.PlayLeft:
	4.PauseLeft:
	4.StepLeft:
	4.EndLeft:
	anm4:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	3.Plus:
	3.Reset:
	3.Minus:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

