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Abstract�Thin-wire structures in the presence or absence of
a ground plane are analyzed numerically in the time domain
(TD) with the aid of the Cagniard-DeHoop method of moments
(CdH-MoM). It is demonstrated that the TD solution of such
problems can be cast into the form of discrete time-convolution
equations. Under the assumption of piecewise linear space-time
axial current distribution, the elements of the TD impedance
array are derived analytically in terms of elementary functions.
Their approximations applying to multi-conductor transmission
lines are discussed. Illustrative numerical examples validating the
TD solution are presented.

Index Terms�transient electromagnetic (EM) scattering, wire
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moments, marching-on-in-time technique, time-domain (TD)
analysis.

I. INTRODUCTION

THE performance of a linear-antenna array [1,
Sec. 14.11.1] consisting of a set of conducting

wires, possibly in the presence of a metal plane [1, Sec. 6.6],
can be analyzed through electric network representations [1,
Sec. 8.7.1]. The pertaining input and mutual impedances,
as well as its electromagnetic (EM) radiation and scattering
characteristics, are functions of the electric current induced
in the antenna-array’s wire elements (see [2, Sec. 8.6] and [3,
Sec. 1.1]). A versatile numerical tool suitable for achieving
this distribution is widely known as the method of moments
[4, Chapter 4]. Under the assumption of sinusoidally in time
varying EM �elds, this solution procedure leads to a system
of equations, say

Ẑ � Î = V̂ ; (1)

thus interrelating the (frequency-domain) axial electric cur-
rents, Î , with the excitation voltage, V̂ , via the impedance
array, Ẑ, at a �xed frequency of analysis. In this manner,
the numerical solution offers an enlightening representation
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of a wire antenna in the form of an N -port network (see [4,
Chapters 4 and 5]). Since the product of two frequency-domain
functions corresponds to the time convolution in the original
domain, the time-domain (TD) generalized representation of
a wire antenna can be cast into the TD discrete-convolution
form

X

k

Zm�k � Ik = V m; (2)

where indices m and k refer to instants in a time window
of observation. The development of such TD network repre-
sentations concerning thin wire structures (in the presence or
absence of a ground plane) is exactly the main objective of
this article.

The thin-wire problems under consideration are solved here
with the help of the Cagniard-DeHoop method of moments
(CdH-MoM) [5], recent applications of which can be found
in [6]�[8], for instance. Regarding its novelty, the outcomes
of this work are not limited to a thin conductor located just
above the reference plane. In this sense, the present work can
be understood as an extension of Ref. [7], where the CdH-
MoM is applied to a single transmission line (TL). In con-
trast to the widespread approach relying on �nite-difference
approximations of the differential operator in the starting
integro-differential equation (see [9]�[12] [13, Sec. 2.3.3]), the
proposed TD solution is free of such approximations. As a
matter of fact, as the EM scattering problem analyzed in this
article is formulated via the EM reciprocity theorem of the
time-convolution type [14, Sec. 28.2], the introduced TD result
can be viewed as an �exact weak� solution for the piecewise-
linear space-time basis. Moreover, since the elements of the
pertaining TD impedance arrays are expressed merely in
terms of elementary functions, their �lling is computationally
effortless. For alternative numerical approaches allowing the
extraction of the TD impedance in an (almost) explicit form
we refer the reader to [15]�[19], for example. These numerical
approaches are mostly capable of handling more general
problem con�gurations, but at the expense of introducing some
additional mathematical intricacies. The TD expressions for
the TD impedance arrays introduced in the present article are
of greater simplicity and are, in their present form, believed
to be entirely new.

The EM scattering problem under consideration is �rst
formulated in Sec. II using the TD EM reciprocity theorem
of the time-convolution type [14, Sec. 28.2]. Subsequently, in
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Fig. 1. Thin-wire antennas above a ground plane.

Sec. III, the pertaining TD interaction integrals are represented
through complex slowness integrals. In Sec. IV, the space-
time distribution of (unknown) axial currents is expanded
in a piecewise-linear manner, which through the use of the
Cagniard-DeHoop inversion technique [20] leads to closed-
form expressions for the pertaining TD impedance arrays. For
readers’ convenience, analytical details of the joint inversion
procedure are brie�y summarized in the Appendix. Illustrative
numerical results and their validation are presented in Sec. V.
Finally, conclusions are drawn in Sec. VI.

II. PROBLEM DEFINITION

The analyzed problem is shown in Fig. 1. Here, the position
is speci�ed by the coordinates fx; y; zg with respect to a Carte-
sian reference frame with the origin O and the standard base
fix; iy; izg. The time coordinate is denoted by t. The time-
convolution operator is �t . The Heaviside unit-step function is
H(t) and the impulsive Dirac-delta distribution is denoted by
�(t).

The problem con�guration consists of a set of mutually
parallel wire antennas. Their radius, a > 0, is assumed to be
relatively small such that the �reduced form� of Pocklington’s
equation can be adopted [21]. In this thin-wire formulation, the
electric currents at the end faces of the cylindrical wire antenna
are neglected, thus reducing the original surface electric-
�eld integral equation to the simpli�ed 1-D one that can be
solved for the electric current concentrated essentially along
the wire’s axis. We shall analyze both the set of thin wires
in the presence or absence of the in�nite perfectly electrically
conducting (PEC) plane. If present, the ground plane occupies
f�1 < x < 1; �1 < y < 1; �z0��=2 < z < �z0+�=2g
with z0 > 0. To describe the self- and mutual-interactions in a
general system of parallel wires it is suf�cient to analyze the
transient EM response of two wires. Therefore, without any
loss of generality, we shall further consider two wire antennas
occupying �A = f�‘A=2 < x < ‘A=2; y = 0; z = 0g
and �B = f�‘B=2 < x � x0 < ‘B=2; y = y0; z = 0g
(see Fig. 1). Hence, the thin wires are located at the height
z0 > 0 above the ground plane (if present) and at the distance
jy0j > 0 far apart. The EM �eld coupling between two non-
parallel wires is tractable via the CdH-MoM too, but this
extension is outside the scope of the present work. The linear,
homogeneous isotropic and lossless medium surrounding the

antennas is described by (real-valued and positive) scalars �0
and �0 implying the EM wave speed, c0 = (�0�0)�1=2 > 0,
and EM wave impedance Z0 = 1=Y0 = (�0=�0)1=2 > 0.

The presence of the wires is accounted for via the scattered
EM �eld (denoted by s) that is hence de�ned as the difference
between the total and excitation EM �elds. The problem will
be formulated through the TD Lorentz EM reciprocity theorem
[14, Sec. 28.2]. Its application to the (actual) scattered and
(computational) testing �eld states leads to (cf. [7, Eq. (2)])

Z ‘A=2

x=�‘A=2
ET;A(x; a; t) �t Is;A(x; t)dx

+
Z x0+‘B=2

x=x0�‘B=2
ET;A(x; jy0j; t) �t Is;B(x; t)dx

=
Z ‘A=2

x=�‘A=2
Es(x; a; t) �t IT;A(x; t)dx; (3)

and

Z x0+‘B=2

x=x0�‘B=2
ET;B(x; a; t) �t Is;B(x; t)dx

+
Z ‘A=2

x=�‘A=2
ET;B(x; jy0j; t) �t Is;A(x; t)dx

=
Z x0+‘B=2

x=x0�‘B=2
Es(x; a; t) �t IT;B(x; t)dx; (4)

where Is;A(x; t) and Is;B(x; t) denote the (unknown) ax-
ial currents induced in �A and �B , respectively, and
IT;A;B(x; t) are the pertaining testing currents. Furthermore,
ET;A;B(x; %; t) denotes the (axial component of) the testing
electric-�eld strengths as generated by the testing currents,
IT;A;B(x; t), respectively, and % = %(y; z) = (y2 + z2)1=2.
Symbolically, the TD reciprocity relations (3) and (4) can be
cast into the matrix form

�
ZAA ZAB
ZBA ZBB

�
�t

�
IA
IB

�
=

�
V A
V B

�
; (5)

where the diagonal sub-arrays ZAA and ZBB represent the
local interactions on wires �A and �B , respectively, while
ZAB and ZBA describe the remote interactions from �A
to �B and vice versa. A straightforward generalization of
the matrix system allows the handling of a larger system of
mutually parallel wire antennas. The pertaining TD interaction
integrals are further represented by complex slowness inte-
grals. Subsequently, these integrals will be transformed back
to the TD using the CdH technique.

III. COMPLEX SLOWNESS REPRESENTATIONS

The property of causality and the time invariance of the
problem con�guration is accounted for by the use of the one-
sided Laplace transformation

Ê(x; %; s) =
Z 1

t=0
exp(�st)E(x; %; t)dt; (6)
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with fs 2 R; s > 0g. In the next step, the wave slowness
representation is introduced

Ê(x; %; s) = (s=2�i)2
Z i1

�=�i1
exp(�s�x)d�

�
Z i1

�=�i1
exp(�s�y)Ê(�; �; z; s)d�; (7)

in which � and � are the wave-slowness parameters in the
x- and y-direction, respectively. Note that this representation
entails @x ! �s� and @y ! �s�. Using Eqs. (6) with (7),
the interaction terms in the TD reciprocity relations (3) and
(4) can be expressed through complex-slowness integrals. For
instance, the local interaction integral on �A in the presence
of the PEC ground plane can be written as

Z ‘A=2

x=�‘A=2
ÊT;A(x; a; s)Îs;A(x; s)dx

= �
sZ0

c0

s
2�i

Z i1

�=�i1
c2

0
2
0(�)~IT;A(�; s)~Is;A(��; s)d�

s
2�i

Z i1

�=�i1

exp[�s�0(�; �)a] � exp[�2s�0(�; �)z0]
2s�0(�; �)

d�;

(8)

where �0(�; �) = [
2
0(�) � �2]1=2, with Re(�0) � 0, and


2
0(�) = 1=c2

0 � �2. Furthermore, for the (transform-domain)
axial testing �eld we used

~ET;A(�; %; s) = �(sZ0=c0)c2
0
2

0(�)~IT;A(�; s) ~G(�; %; s);
(9)

for % = a and the modi�ed Bessel functions in the pertaining
Green’s function, viz

~G(�; %; s) = K0[s
0(�)%(y; z)]=2�
� K0[s
0(�)%(y; z + 2z0)]=2�; (10)

were expressed through their integral representations (see [22,
(9.6.23)]). In a similar fashion, the corresponding remote
interaction from �A to �B can be described by

Z x0+‘B=2

x=x0�‘B=2
ÊT;A(x; a; s)Îs;B(x; s)dx

= �
sZ0

c0

s
2�i

Z i1

�=�i1
c2

0
2
0(�)~IT;A(�; s)~Is;B(��; s)d�

s
2�i

Z i1

�=�i1
exp(�s�y0)

1 � exp[�2s�0(�; �)z0]
2s�0(�; �)

d�: (11)

The remaining interaction integrals can be represented in the
same manner.

IV. TIME-DOMAIN SOLUTIONS

To solve the reciprocity relations numerically, the space-
time solution is discretized. Hence, the thin-wire antennas �A
and �B are divided into NA + 1 and NB + 1 segments, so
that their partitions are ��A =

�
xn = �‘A=2 + n�A; y =

0; z = 0
	

for n = f1; � � � ; NAg with �A = ‘A=(NA +1), and
��B =

�
xn�x0 = �‘B=2+(n�NA)�B ; y = y0; z = 0

	
for

n = fNA + 1; � � � ; NA + NBg, where �B = ‘B=(NB + 1).
Likewise, the time axis is discretized uniformly via ftk =

k�t; k = 1; 2; � � � ; Mg, where �t > 0 denotes the time step.
It is noted that the uniform discretization is not mandatory, but
its use simpli�es the resulting TD solution. Subsequently, the
induced electric currents along the thin wires are expanded in
terms of spatial and temporal basis (triangular) functions

Is;A(x; t) ’
NAX

n=1

MX

k=1

i[n]
k �[n](x)�k(t); (12)

Is;B(x; t) ’
NA+NBX

n=NA+1

MX

k=1

i[n]
k �[n](x)�k(t); (13)

where i[n]
k denotes the (yet unknown) electric-current coef�-

cients, and the basis functions can be speci�ed by

�[n](x) =

(
1 + (x � xn)=� for x 2 [xn�1; xn]
1 � (x � xn)=� for x 2 [xn; xn+1];

(14)

�k(t) =

(
1 + (t � tk)=�t for t 2 [tk�1; tk]
1 � (t � tk)=�t for t 2 [tk; tk+1]:

(15)

Next, the testing current is chosen to show the rectangular
spatial distribution and the impulsive behavior in time. Ac-
cordingly, we write

IT;A(x; t) =

(
�(t) for x 2 [xS � �A=2; xS + �A=2]
0 elsewhere,

(16)

for all S = f1; � � � ; NAg, and

IT;B(x; t) =

(
�(t) for x 2 [xS � �B=2; xS + �B=2]
0 elsewhere,

(17)

for all S = fNA + 1; � � � ; NA + NBg. Now, making use of
the transform-domain counterparts of Eqs. (12), (13) and (16),
(17) in the complex-slowness integral representations of the
interaction integrals (see Eqs. (8) and (11)), we end up with
[7, Eq. (12)]

mX

k=1

�
Zm�k+1 � 2Zm�k + Zm�k�1

� � Ik = V m; (18)

where Zk = Z(tk) represents a 2-D [(NA+NB)�(NA+NB)]
TD impedance array at t = tk, Ik denotes a 1-D [(NA +
NB) � 1] array of the (unknown) electric-current coef�cients,
i[n]
k , and, V m is a 1-D [(NA + NB) � 1] excitation-voltage

array at t = tm. The elements of the excitation array pertaining
to a given excitation-�eld distribution, say Ee(x; a; t), follow
upon evaluating the TD interaction integrals on the right-hand
side of the TD reciprocity relations (3) and (4). This can be
done by enforcing the explicit-type boundary condition on
the wire’s surface, Es(x; a; t) = �Ee(x; a; t), and using the
chosen testing-current space-time distributions. Thanks to their
simple form (see Eqs. (16) and (17)), the excitation elements
can be for the majority of standard excitation mechanisms
expressed in closed form. In order to cast the resulting time-
convolution system of equations (18) into the form of Eq. (2),
one may substitute

Zn = Zn+1 � 2Zn + Zn�1; (19)
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which, as a matter of fact, represents the central second-order
difference [22, (25.1.2)]. Solving then the system of equations
with the aid of the marching-on-in-time technique, we get the
following step-by-step updating scheme

Im = Z�1
1 �

h
V m �

m�1X

k=1

Zm�k � Ik

i
; (20)

for all m = f1; � � � ; Mg. The closed-form expressions for the
(elements of the) TD impedance array, expressed in terms of
the TD generic function (32), will be next given separately
for the cases with and without the ground plane. Thanks to
the exact evaluation of the TD interaction integrals, the �lling
of the TD impedance array takes typically a few seconds on
a standard PC and the resulting marching-on-in-time scheme
(20) yields stable and accurate TD electric-current responses.

A. Antennas in the Presence of the Ground Plane

In the presence of the ground plane, the local interactions
on �A can be described by the TD impedance sub-array ZAA
(see Eq. (5)). Its elements can be expressed via

Z [S;n]
A;A (t) =

Z0

c0�t�A

h
�[S;n](3�A=2; 0; t)

� 3 �[S;n](�A=2; 0; t)
i
; (21)

for all S = f1; � � � ; NAg with n = f1; � � � ; NAg, where

�[S;n](�; y; t)
= �(x[S;n] + �; y; a; t) � �(x[S;n] + �; y; 2z0; t)

�
h
�(x[S;n] � �; y; a; t) � �(x[S;n] � �; y; 2z0; t)

i
; (22)

In Eq. (22) we used x[S;n] = xS � xn and recall that
�(x; y; z; t) is given by Eq. (32). A similar expression applies
to the local interactions on �B , viz

Z [S;n]
B;B (t) =

Z0

c0�t�B

h
�[S;n](3�B=2; 0; t)

� 3 �[S;n](�B=2; 0; t)
i
; (23)

for all S = fNA + 1; � � � ; NA + NBg with n = fNA +
1; � � � ; NA + NBg. Furthermore, the remote interactions from
�A to �B is described by

Z [S;n]
AB (t) =

Z0

c0�t�B

h
�[S;n](�A=2 + �B ; y0; t)

� 2 �[S;n](�A=2; y0; t) + �[S;n](�A=2 � �B ; y0; t)
i
; (24)

for all S = f1; � � � ; NAg with n = fNA + 1; � � � ; NA + NBg.
Finally, sub-array describing the remote interactions from �B
to �A immediately follows as

Z [S;n]
BA (t) =

Z0

c0�t�A

h
�[S;n](�B=2 + �A; y0; t)

� 2 �[S;n](�B=2; y0; t) + �[S;n](�B=2 � �A; y0; t)
i
; (25)

for all S = fNA + 1; � � � ; NA + NBg and n = f1; � � � ; NAg.
Alternatively, owing to the self-adjointness of the surround-
ing medium [23, Sec. 1.4.1], one may invoke the property

of reciprocity represented by Z [S;n]
BA (t) = Z [n;S]

AB (t) for all
S = fNA + 1; � � � ; NA + NBg, n = f1; � � � ; NAg and t > 0.

If the thin-wire antennas are relatively close to the ground
plane, which is an underlying assumption of the standard TL
theory (e.g. [5, Sec. 11.1] and [24]), approximation (33) can
be used to further simplify the TD impedance array. Indeed,
in such a case, we arrive at

Z [S;n]
AA (t)

TL
’

Zc

c0�t�A

h
	(x[S;n] + 3�A=2; t)

� 3	(x[S;n] + �A=2; t) + 3	(x[S;n] � �A=2; t)

� 	(x[S;n] � 3�A=2; t)
i
; (26)

for all S = f1; � � � ; NAg with n = f1; � � � ; NAg, where
Zc = (Z0=2�) log(2z0=a) is the characteristic impedance of
the TL above the PEC ground and the TD function 	(x; t)
is given in the Appendix by Eq. (34). As a matter of fact,
this result fully complies with the CdH-MoM analysis of TLs
reported in a previous work [7, Eq. (14)]. Upon replacing A
with B in Eq. (26), a similar expression for the approximate
Z [S;n]

BB (t) can be readily obtained. If, in addition, the TLs are
relatively close to each other, their mutual EM coupling can
be characterized by

Z [S;n]
AB (t)

TL
’

Zd

c0�t�B

h
	(x[S;n] + �B + �A=2; t)

� 	(x[S;n] + �B � �A=2; t) � 2	(x[S;n] + �A=2; t)
+ 2	(x[S;n] � �A=2; t) + 	(x[S;n] � �B + �A=2; t)

� 	(x[S;n] � �B � �A=2; t)
i
; (27)

for all S = f1; � � � ; NAg with n = fNA + 1; � � � ; NA + NBg,
where Zd = (Z0=2�) log[(y2

0 + 4z2
0)=jy0j]. Finally, the TL

approximation of Z [S;n]
BA (t) can be found from Eq. (27) using

the property of reciprocity, again.

B. Antennas in the Absence of the Ground Plane

The presence of the ground plane can be accommodated
by the method of images. Consequently, the TD expressions
applying to the con�guration without the ground plane can
be derived from Eqs. (21)�(25) upon removing the image-
source contributions. Pursuing this line of reasoning, we get
(cf. Eq. (21))

Z [S;n]
AA (t) =

Z0

c0�t�A

h
�(x[S;n] + 3�A=2; 0; a; t)

� 3�(x[S;n] + �A=2; 0; a; t) + 3�(x[S;n] � �A=2; 0; a; t)

� �(x[S;n] � 3�A=2; 0; a; t)
i
; (28)

for all S = f1; � � � ; NAg with n = f1; � � � ; NAg. Further-
more, the remote interaction between two thin-wire antennas
located in D0 is described by (cf. Eq. (24))

Z [S;n]
AB (t) =

Z0

c0�t�B

h
�(x[S;n] + �B + �A=2; y0; 0; t)

� �(x[S;n] + �B � �A=2; y0; 0; t)
� 2�(x[S;n] + �A=2; y0; 0; t) + 2�(x[S;n] � �A=2; y0; 0; t)
+ �(x[S;n] � �B + �A=2; y0; 0; t)

� �(x[S;n] � �B � �A=2; y0; 0; t)
i
; (29)
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Fig. 2. Excitation voltage pulse shape.

for all S = f1; � � � ; NAg with n = fNA + 1; � � � ; NA + NBg.
Using the replacements A $ B, similar expressions can be
found at once for the local interactions on �B and the remote
interactions from �B to �A. For the sake of conciseness, these
expressions are omitted.

V. ILLUSTRATIVE NUMERICAL EXAMPLES

The validity of the presented CdH-MoM numerical solution
will be demonstrated on numerical examples. Throughout the
examples that follow, the transmitting thin-wire antenna, �A,
is activated via a voltage pulse applied to a relatively narrow
gap located at its center at x = 0. As the excitation pulse
shape, we take the bipolar triangular pulse [7, Eq. (28)]

V0(t) = (2Vm=tw)
�
t H(t) � 2

�
t � tw=2

�
H

�
t � tw=2

�

+ 2
�
t � 3tw=2

�
H

�
t � 3tw=2

�
� (t � 2tw) H(t � 2tw)

�
;

(30)

with c0tw=‘A = 1=2 and the unit amplitude Vm = 1:0 V (see
Fig. 2).

In the �rst example, we calculate the self-response of
a single thin-wire antenna �A located in the unbounded
surrounding space in the absence of the ground plane. We
take a=‘A = 1=500, implying a=c0tw = 1=250, so that the
thin-wire assumption is safely met. The electric-current pulse
calculated using the TD impedance array from Sec. IV-B is
shown in Fig. 3. For validation purposes, the problem has also
been analyzed with the help of the �nite-integration technique
(FIT) as implemented in CST Microwave Studior. It can
be seen that the calculated pulse shapes correlate well. The
total computational time of a demonstrational (non-optimized)
MATLAB code with NA = 49 and M = 601 grid points was
about 6 s, with approximately 2=3 of the time being used for
�lling the TD impedance array and 1=3 for the marching-on-
in-time scheme (20). On the other hand, the corresponding
CST simulation took about 30 minutes. All simulations were
conducted on a standard Intel(R) Core(TM) i7-2600 CPU 3.40
GHz platform with 16.0 GB RAM.

In the second example, the TD expressions presented in
Sec. IV-A are employed to calculate the gap-excited, electric

0 1 2 3 4 5 6

-2

-1

0

1

2

t=tw

Is (
0;

t)
(m

A
)

c0tw=‘A = 1=2

a=‘A = 1=500

CdH-MoM
FIT

Fig. 3. Electric-current response of the thin-wire antenna in the absence of
the ground plane.

current responses of the antenna from the previous example,
but now in the presence of ground plane. The distance of the
wire from the ground plane is �rst z0=‘A = 1=5. Figure 4a
shows the resulting pulse shapes as calculated using (21)
(CdH-MoM) and its TL approximation (26) (CdH-MoM-TL)
with NA = 49 and M = 601, again. Apparently, since the
relative height of the thin-wire antenna above the ground plane,
z0=c0tw = 2=5, is not suf�ciently small, the TL approximation
is not appropriate in this case. But, the full CdH-MoM solution
agrees with the FIT based solution well, again. Owing to
the presence of image-source contributions (cf. Eqs. (21) and
(28)), the inclusion of the ground plane approximately doubles
the time to �ll the TD impedance array.

On the other hand, if the antenna is relatively close to the
ground plane, the approximate expression (26) can replace
Eqs. (21) to estimate the current distribution in a speedy
manner. This observation is exempli�ed in Fig. 4b, where the
current responses are calculated for z0=‘A = 1=20. Since we
keep c0tw=‘A = 1=2, the height of the wire is a tenth of the
excitation pulse’s spatial support now, i.e. z0=c0tw = 1=10.
While the CdH-MoM solution and its TL approximation then
converge to each other, the use of the TL approximation
is owing to its simplicity computationally more ef�cient. In
the actual case with NA = 49 and M = 601, the TL
approximation was about 5 � faster compared to the full CdH-
MoM solution. Finally, it is noted that this TD result can be
validated with the aid of the pertaining TD analytical solution
based on the standard TL theory (see [5, Eq. (17.26)]). The
discrepancies between the CdH-MoM-TL solution and the
analytical one can be attributed to inevitable accumulated and
space-time discretization errors. It has been veri�ed that the
correlation between the results can be improved by using a
denser discretization of the solution domain.

In the third example, we shall analyze the pulsed EM �eld
signal transfer between two thin-wire antennas, �A and �B , lo-
cated at the height z0=‘A = 1=20 above the ground plane. The
transmitting antenna, �A, remains the same as in the previous
scenarios. The receiving antenna, �B , of length ‘B = ‘A=4
is at its center loaded by a resistor of RL = 100 
. The
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Fig. 4. Electric-current response of the thin-wire antenna in the presence of
the ground plane. (a) z0=‘A = 1=5; (b) z0=‘A = 1=20.

distance distance between the antennas is y0=‘A = 1=5 with
x0 = 0. As their radius we take a=‘A = 1=1000. The voltage
induced across the load of the receiving antenna has been
calculated via the impedance arrays (21)�(25) (CdH-MoM)
as well as using their TL approximations (26) and (27) (CdH-
MoM-TL) with NA = 39, NB = 19 and M = 1201. The
calculated pulses are shown in Fig. 5a. Despite the relatively
small distance from the ground plane, z0=c0tw = 1=10, their
relative distance, y0=c0tw = 2=5 is not suf�ciently small to
justify the approximation made in Eq. (27). Consequently, the
CdH-MoM-TL approximation that predicts an instantaneous
voltage response is not accurate. But, a good correspondence
of the full CdH-MoM solution with the FIT based one is
achieved, again. In this case, the total computational time
of the CdH-MoM simulation amounted to about 26 s, out of
which approximately 2=3 were spent to �ll the TD impedance
array and 1=3 to carry out the marching-on-in-time scheme,
again. The TD impedance array can be �lled roughly 6 � faster
using the TL approximation.

Since the evaluation of the TD impedance array is very
fast, the presented CdH-MoM approach lends itself to being
used in design optimization procedures or/and parametric
studies of ultra-wide-band wireless interconnects (e.g. [25],
[26]). A simple parametric analysis is presented in Fig. 5b,
where we demonstrate the in�uence of the receiving wire’s
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Fig. 5. Voltage pulses induced across the load of the receiving antenna. (a)
Pulse shapes computed via the CdH-MoM, its TL approximation and FIT; (b)
In�uence of the receiving wire’s length on the voltage response.

length on the induced-voltage pulse shape. The remaining
con�gurational and excitation parameters were kept the same
as in the previous example.

VI. CONCLUSION

The CdH-MoM has been applied to analyze the EM tran-
sient response of (a system of) thin-wire antennas in the
presence or absence of the ground plane. It has been demon-
strated that such antenna con�gurations can be represented
through a set of discrete time-convolution equations. Closed-
form analytical expressions for the pertaining TD impedance
arrays have been derived analytically with the aid of the CdH
technique. The thus obtained elements of TD impedance arrays
are expressed in terms of elementary functions only, which
makes their implementation and evaluation in any computing
environment such as MATLAB virtually effortless. Their ap-
proximations pertaining to multi-conductor transmission lines
are discussed. Illustrative numerical examples were presented
and validated using a commercial 3-D EM computational tool.



7

0

Re(�)

Im(�)

�-planeK0

C0 c�1
0

G

G�

Fig. 6. Complex �-plane.

APPENDIX

GENERIC FUNCTION

The generic integral representation has the following form

�̂(x; y; z; s) = �
1

2�i

Z

�2K0

c2
0
2

0(�)
exp(s�x)

s3�3 d�

�
1

2�i

Z i1

�=�i1

expf�s[��y + �0(�; �)z]g
2 �0(�; �)

d�; (31)

for x; y 2 R, fz 2 R; z > 0g and fs 2 R; s > 0g, and
recall that �0(�; �) = [
2

0(�) � �2]1=2, with Re(�0) � 0, and

2

0(�) = 1=c2
0 ��2. Next, K0 denotes the integration path that

is indented to the right with a semi-circular arc with center at
the origin, � = 0, and a vanishingly small radius (see Fig. 6).

To transform (31) back to the original domain, we shall
pursue the approach used in [5, Appendix G], for instance.
The inversion procedure starts with the transformation of
the inner integral with respect to �. In the �rst step, its
integrand is �rst continued into the complex �-plane away
from Re(�) = 0. Consequently, using Cauchy’s theorem and
Jordan’s lemma, the integration contour in the complex �-
plane is deformed into the so-called CdH path along which
��y+�0(�; �) = u%
0(�) is satis�ed for all fu 2 R; u � 1g
with % = (y2 + z2)1=2. Solving the latter equation for �,
we obtain a parametrization of the CdH hyperbolic path, say
C [ C�, where � denotes the complex conjugate. It is noted
that the CdH path intersects Im(�) = 0 at �(u = 1) =
�(y=%)
0(�). Therefore, since we assume that % > 0, the
CdH path cannot not intersect the horizontal branch cuts
extending along f
0(�) � jRe(�)j < 1; Im(�) = 0g. In the
subsequent step, the integrations along C and C� are combined
and the parameter u is introduced as the new variable of
integration. The thus obtained integral with respect to u is
used in Eq. (31). Here, the order of the integrations with
respect to � and u are interchanged and in the resulting
integrand with respect to � is continued analytically away
from Re(�) = 0. It is noted that the integrand shows the
triple pole singularity at � = 0 and the algebraic branch
cuts along f1=c0 � jRe(�)j < 1; Im(�) = 0g due to
Re(
0) � 0 (see Fig. 6). Again, under the application of

Cauchy’s theorem and Jordan’s lemma, the indented path K0
is deformed into the hyperbolic CdH path, say G and G�, along
which ��x + u%
0(�) = � is met for f� 2 R; � � R(u)=c0g
with R(u) = (x2 + u2%2)1=2. In addition, if x > 0, the
contribution of the pole singularity is taken into account by
adding the integration around C0. Its evaluation via Cauchy’s
formula is straightforward. Upon combining the contributions
from G and G� and introducing the parameter � as the new
variable of integration, we achieved the mapping of the inner
integration from � to � . In the obtained integral expression
consisting of integrals with respect to u and � , we change the
order of integrations. The thus obtained inner integral with
respect u is carried out analytically, which leads to the integral
resembling the form of Laplace transformation (see Eq. (6)).
Consequently, with the aid of Schouten-Van der Pol theorem
[14, p. 1056] relying on Lerch’s uniqueness theorem [23,
Appendix], the inverse Laplace transform can be effectuated
at once. This leads to a convolution-type integral with respect
to � that can be evaluated in closed form, again. Pursuing this
approach, we �nally arrive at the TD original of (31) in the
following form

�(x; y; z; t) =

(

(c2
0t2 + %2 � x2) log

�
c0t + (c2

0t2 � %2)1=2

%

�

� 2c0t(c2
0t2 � %2)1=2

)
H(x)H(c0t � %)

4�

�

(

(c2
0t2 + %2 � x2) log

�
c0t + (c2

0t2 � %2)1=2

R + jxj

�

� 2c0t(c2
0t2 � %2)1=2 + 4jxj(c0t � R=2)

)

�
sgn(x)H(c0t � R)

8�
; (32)

where R = (x2 + %2)1=2, % = (y2 + z2)1=2 and sgn(x) =
2H(x)�1. With reference to the standard TL theory assuming
a relatively small conductor’s height over the ground plane, it
can be observed that

�(x; 0; a; t) � �(x; 0; 2z0; t)
TL
’

log(2z0=a)
2�

	(x; t); (33)

as z0 # 0 and a � z0, where [7, Eq. (17)]

	(x; t) = 1
2 (c2

0t2 � x2)H(x)H(t); (34)

for all x 2 R and t 2 R. These results are used in the main
text to construct TD impedance arrays pertaining to various
thin-wire antenna con�gurations.
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