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Abstract

Purpose

This paper presents and studies a framework for reliable modeling of diffusion MRI using a

data-acquisition adaptive prior.

Methods

Automated relevance determination estimates the mean of the posterior distribution of a

rank-2 dual tensor model exploiting Jeffreys prior (JARD). This data-acquisition prior is

based on the Fisher information matrix and enables the assessment whether two tensors

are mandatory to describe the data. The method is compared to Maximum Likelihood Esti-

mation (MLE) of the dual tensor model and to FSL’s ball-and-stick approach.

Results

Monte Carlo experiments demonstrated that JARD’s volume fractions correlated well with the

ground truth for single and crossing fiber configurations. In single fiber configurations JARD

automatically reduced the volume fraction of one compartment to (almost) zero. The variance

in fractional anisotropy (FA) of the main tensor component was thereby reduced compared to

MLE. JARD and MLE gave a comparable outcome in data simulating crossing fibers. On

brain data, JARD yielded a smaller spread in FA along the corpus callosum compared to

MLE. Tract-based spatial statistics demonstrated a higher sensitivity in detecting age-related

white matter atrophy using JARD compared to both MLE and the ball-and-stick approach.

Conclusions

The proposed framework offers accurate and precise estimation of diffusion properties in

single and dual fiber regions.
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Introduction

Diffusion-weightedmagnetic resonance imaging (DW-MRI) can provide unique information
about the integrity of white matter structures in the brain. Conventionally, the diffusion is
describedby a single rank-2 diffusion tensor [1], which is estimated from diffusion-weighted
images (DWIs). There is an ongoing debate on how to effectively characterize the diffusivities
in voxels containing complex anatomical structures such as crossing fibers. In these voxels the
diffusion profile is not adequately described by a single rank-2 tensor [2,3].
Several sophisticatedmodels for the diffusion in white matter have shown the potential to

estimate more plausible anatomical properties of complex tissue structures, for instance the
‘ball-and-stick’ model [4], the composite hindered and restrictedmodel of diffusion
(CHARMED)[5], and the neurite orientation dispersion and density imaging approach
(NODDI) [6]. Althoughmany more techniques were proposed, the aforementioned techniques
relate to our approach. A comprehensive overview is presented in [7].
The ‘ball-and-stick’ approach models the diffusion by one isotropic compartment and a set

of linear, 1D diffusion profiles. The method is widely applied and works well for reconstructing
the orientations of fiber bundles [8], even though these fiber bundles are not represented by
full, 3D diffusion profiles.
CHARMED explicitly models the apparent slow diffusing component arising from

restricted, intra-axonal diffusion (a non-Gaussian process). It yielded unbiased estimation of
the orientations of two or more fiber compartments with low angular uncertainty. However,
the application of CHARMED is challenging due to measurements at very high b-values caus-
ing both signal-to-noise ratio and scanning time limitations.
A clinically feasible technique for in vivo neurite orientation dispersion and density imaging

(NODDI) [6] was proposed. NODDI adopts a tissue model that distinguishes three types of
microstructural environment: intra-cellular, extra-cellular, and cerebrospinal fluid (CSF) com-
partments. The signal of intra-cellular diffusion is describedby zero radius cylinders [9] (like
in the ball-and-stick approach); the extra-cellular part is modeled by anisotropic, Gaussian dif-
fusion and the CSF compartment is modeled as isotropic Gaussian diffusion. Experiments
showed that quantities derived fromNODDI such as the neurite orientation dispersion pro-
videdmore specificmarkers of brain tissue microstructure than standard indices from classical,
single-tensor DTI [6].
Other methods [10] [11] [12] were proposed that also aim to recover specific tissue parame-

ters from the diffusion signal, such as cell size and cell density. However, these models are not
directly compartment-specific. Instead, a multiple-tensor model [13] describes the complex,
full diffusion shape by a weighted sum of 3D tensors. We mean with full diffusion shape the
3D probability density function representing the position of water molecules after a certain dif-
fusion time.We assume that an anisotropic Gaussian distribution (mathematically a rank-2
tensor model) accurately approximates this distribution in single fiber voxels. The ball-and-
stick model represents the diffusion as a line-like profile, thereby ignoring a ‘lateral’ diffusion
component. This is an important difference because pathology leads to an increase of the lat-
eral diffusivity, which can be measured with our representation. The model is an intuitive,
physical representation and a natural extension of the classical single tensor. Also, it does not
necessarily require extremely high b-values. Previously, we introduced an optimization frame-
work that rendered a constrained dual tensor model (DTM) as well as a set of diffusionweight-
ing parameters, such that both the diffusion shape and the diffusion orientations of crossing
fibers could be accurately estimated[3].
Unfortunately, even a constrained DTM is prone to overfitting in areas containing a single

fiber bundle, causing biased volume fractions and imprecise diffusivity estimates. As such, a
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new challenge arises: how to automatically adapt the model complexity to warrant an accurate
characterization of the underlying diffusion processes?
Many model selectionmethods were introduced in the DWI field, for instance based on

constrained spherical deconvolution (CSD) [14], the Bayesian information criterion (BIC) and
the generalization-error [15] A limitation of the CSD approach is that it requires tuning of a
threshold to reject small contributions. Furthermore, BIC is influencedby the estimated likelihood
and non-estimated factors such as the number of parameters and the sample size. The generaliza-
tion-errormethod is a non-localmodel selection technique. Importantly, all these approaches
involve model selection techniques that make hard decisions to select an appropriate model.
Automatic relevance determination (ARD) aims to eliminate the redundant parameters in a

complex model, such that the simplifiedmodel yields a better description of the data [16]. Beh-
rens [8] adopted ARD for assessing the appropriate number of fiber orientations in each voxel
for fiber tracking. This method ensures that if there is no evidence for a second fiber orienta-
tion in the data, the volume fraction attributed to this fiber will automatically be forced to zero.
ARDmethods assume a prior distribution for the model parameters. A Gaussian distribution
is a straightforward choice for a prior[16]. Such a prior may involve hyper-parameters to tune
its shape. Previous ARD approaches [8,17,18] involved marginalization (integration) over the
hyper-parameters to get a prior for each parameter separately. Such a prior is likely to be sub-
optimal for different diffusion geometries since potential correlations between the parameters
of complete models are ignored.
We present a new framework for data-acquisition adaptive estimation of the diffusion

shape of simple and complex white matter structures.We consider the method data-acquisi-
tion adaptive as it takes properties of the data-acquisition into account such as the number of
gradient directions, the number of b-values used and the noise level. The method is based on
ARD for a rank-2 dual tensor model and assesses whether two anisotropic tensors are ‘manda-
tory’ to model the acquired diffusion-weighted signals. Our ARD estimates the mean of the a
posteriori distribution, i.e. the model parameters given the data, exploiting Jeffreys prior [19]
[20]: ‘JARD’. This data-acquisition adaptive prior is based on the Fisher’s information matrix
[21]. Previous work on ARD for diffusion-weightedMRI primarily focused on the accurate
reconstruction of fiber orientations based on the ball-and-stickmodel [8,17]. This rank-1 ten-
sor model is not appropriate for estimating the diffusion shape as reflected by a rank-2 tensor
model. The proposed JARD method is particularly suited for application in comparative stud-
ies in which the goal is to assess subtle differences in diffusion shape between patients and
matched controls.

Methods

The JARD framework for estimation of the diffusion shape processes every voxel in the same
way. It estimates the parameters of a constrained dual tensor model (DTM) by computing
the mean of the posterior distribution sampled by a Markov ChainMonte Carlo (MCMC)
approach. The algorithm is initialized by applying the constrained DTM to the measured diffu-
sion-weighted signals using maximum likelihood estimation (MLE). The prior on the parame-
ters in the MCMC sampling is based on the non-informative Jeffreys prior. This prior forces
parameters, particularly the volume fraction, towards zero when there is little to no informa-
tion in them. This will be verified experimentally in the Experiments and Results section.

Dual Tensor Diffusion Model

We assume that the diffusion in every fiber bundle is mono-exponential and Gaussian. The dif-
fusion-weighted signal in all voxels is initially modeled by a so-called dual tensor model

Reliable Dual Tensor Modelling based on Jeffreys Prior
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(DTM) [3]. This model contains signal contributions of up to two fiber bundles and an isotro-
pic component and is given by

Sθ;j ¼ S0

X

i2f1;2;isog

fiexpð� bjg
T
j DigjÞ

� �
; ð1Þ

where Sθ,j is the diffusion-weighted signal given parameter vector θ for diffusionweighting bj
in gradient direction gj and S0 the signal without diffusionweighting.D1 andD2 are rank-2
tensors to model the anisotropic diffusion in each fiber, Diso is the amount of isotropic diffu-
sion (i.e.,Diso�I3×3,Diso representing the scalar amount of isotropic diffusion), and fi represents
the volume fraction of componentDi. Note that the DTM in Eq (1) reduces to a single tensor
model (STM)–reflecting a single fiber–if f1> 0 and f2 = 0 or vice versa. The volume fraction
parameters play an essential role in our JARD scheme.

Maximum Likelihood Estimation of a constrained DTM

The measured diffusionweighted image (DWI) ~Sj;s with diffusionweighting bj in direction gj is
corrupted by Rician noise of standard deviation σ [22]. Therefore, the probability density func-
tion (PDF) for ~Sj;s is given by

pð~Sj;sjθÞ ¼
~Sj;s
s2
exp �

~Sj;s2 þ Sθ;j2

2s2

 !

I0
~Sj;sSθ;j

s2

 !

; ð2Þ

with I0(�) the zero-th order modified Bessel function of the first kind. The DWIs are statistically
independent, so that the joint probability density function pð~SsjθÞ of the signal profile ~Ss is
given by the product of the marginal distributions for the measured signals ~Sj;s in each of the
Ng diffusionweighted directions gj:

pð~SsjθÞ ¼
YNg

j¼1

pð~Sj;sjθÞ ð3Þ

Here, pð~SsjθÞ is the likelihood function of θ given ~Ss. The underlying parameter values can be
inferred by maximizing this likelihood function [23]

θ̂MLE ¼ argmaxθfpð~SsjθÞg: ð4Þ

Maximum likelihood estimation (MLE) has a number of favorable statistical properties in the
estimation of diffusion properties in crossing bundles [3]. First, under very general conditions,
MLE asymptotically reaches the Cramér-Rao lower bound (CRLB). The CRLB is a theoretical
lower bound on the variance of any unbiased estimator. Second, the MLE is consistent, which
means that it asymptotically (Ng!1) converges to the true value of the parameter in a statis-
tically well-definedway [24].
The dual tensor model given in (1) should be parameterized such that its parameter values

reside in a well-defined range. In previous work [3], we parameterized the tensorDi as follows:
Di ¼ RT

i EiRi, where Ei = diag(λi,//,λi,?1,λi,?2) is a diagonal matrix with the eigenvalues of the
tensorDi on its diagonal. The non-negativity constraint that is imposed on the estimated diffu-
sivity values is accomplished by employing an exponential mapping [3]. The matrices Ri = 1,2
describe rotations around the x–, y– and z–axes:Ri(α1–4) = Rx(α1)Ry(α2)Rz(α3±α4/2). The first
two rotations Rx(α1)Ry(α2) determine the orientation of the plane in which the first principal
eigenvectors of both tensor reside. Rz(α3 + α4/2) and Rz(α3 − α4/2) denote the in-plane rota-
tions of the first principal eigenvector of the two tensors. As such, the parameter vector to be
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estimated for a dual-tensor modelMLE becomes

θ ¼ f f1; f2; fiso|fflfflfflffl{zfflfflfflffl}
volume fractions

; l1;==; l1;?1; l1;?2
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

diagðE1Þ

; l2;==; l2;?1; l2;?2
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

diagðE2Þ

;Diso; a1; a2; a3; a4|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
fiber orientations

g: ð5Þ

However, MLE does not necessarily yield useful estimates. A potential error in the esti-
mated parameters is greatly influenced by the degrees of freedom (DOFs) and the covariance
(s) between parameters. We demonstrated that restricting the DOFs by imposing constraints
on the DTM greatly reduces the covariance between parameters. The experiments in [3]
showed that precise and accurate estimation can be achieved if we apply the following
constraints:

l1;== ¼ l2;==; ð6Þ

l1;?1 ¼ l1;?2 � l1;?

l2;?1 ¼ l2;?2 � l2;?

; ð7Þ

Diso ¼ Cfree� water; ð8Þ

f1 þ f2 þ fiso ¼ 1: ð9Þ

Eq (6) imposes that the “unrestricted” diffusivity (i.e., free diffusivity) along the fibers,
denoted by the first eigenvalues ofD1 and D2, are equal. Eq (7) states that the diffusion per-
pendicular to the fiber orientation is assumed to be axially symmetric, which models the
average shape of axons. Eq (8) defines that Diso equals Cfree–water = 3×10−3mm2s−1, the diffu-
sivity of free water at body temperature 37°C, and Eq (9) states that the two anisotropic ten-
sors plus the isotropic compartment fill the entire volume of each voxel.
Constraining the DTM cannot avoid the inherent risk of overfitting. This happens when a

complex model is fitted to simple data, e.g. fitting multiple tensors to data of a single fiber bun-
dle. Typically, this yields an increase of the variance and the covariance of the parameters, but
also leads to biased diffusivity estimates.

Automatic Relevance Determination

Bayes factors offer an alternative to model selection by the classical likelihood test [25]. It com-
putes the evidence for a model to be used in model selection.However, calculating the evidence
for any model requires integration over all model parameters, weighted by the parameter pri-
ors. This is computationally unfeasible, especially with high-dimensional parameter spaces for
which no analytical solution exists. ARD was introduced exactly to cope with such issues [16]
[8] [17] [26] [27]. Compared to the Bayes factors approach, ARD does not fit competing poten-
tial models to the data and compares them on the basis of the residual after fitting. Instead,
ARD always fits a complex model to the data and forces irrelevant parameters to zero, so that a
complex model reduces to a simpler one.
Our JARD estimates the mean of the posterior distribution of the constrainedDTM based

on Bayes’ theorem [16]. The posterior distribution pðθj~SsÞ is

pðθj~SsÞ ¼
pð~SsjθÞpðθÞ

pð~SsÞ
; ð10Þ

where pð~SsjθÞ is the aforementioned likelihood function, p(θ) the prior probability of θ in the
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DTM, and pð~SsÞ the evidence for the DTM. As the evidence term in Eq (10) is constant for any
measured signal, the posterior probability distribution in JARD becomes

pðθj~SsÞ / pð~SsjθÞpðθÞ ð11Þ

Our framework estimates the posterior distribution given the data, which is influenced by
the likelihood function and the prior. We introduce a data-acquisition adaptive prior for DTM
parameters based on Jeffreys theorem (see next subsection). It allows simplifying a complex
model to a simple model by automatically forcing volume fractions, which are not supported
by data to zero.
JARD employs a Markov ChainMonte Carlo (MCMC) technique with Metropolis-Hasting

sampling of the posterior distribution pðθj~SsÞ [28] [29]. The MCMC draws 5000 samples from
the posterior distribution in the nine-dimensional parameter space. The algorithm is listed in
Algorithm 1. It is initialized by MLE of the constrained DTM. The final JARD estimate θ̂JARD is
the mean of 3000 accepted samples after a burn-in period of 2000.
If the posterior estimates of both anisotropic fractions lie in a small interval around their

MLE value, then this would indicate that the prior did not significantly change the outcome
and that fitting the initial dual tensor model was justified. Reversely, if the posterior estimate
for one of the two anisotropic fractions does not significantly differ from zero, then its corre-
sponding tensor compartment can be treated an unnecessary parameter. In such a case, the
estimation essentially returns a ‘single-tensor’ model.

Jeffreys Prior

Methods to choose the prior for a Bayesian analysis can be divided into two groups: informa-
tive and non-informative priors [27] [30]. An informative prior expresses specific, definite
information about a variable, whereas an uninformative (or diffuse) prior expresses only gen-
eral information about a variable. We aim to introduce a new, data-acquisition adaptive prior,
which makes JARD non-informative. Specifically, we adopt Jeffreys non-informative prior
pJ(θ) which can be written as:

pJðθÞ / detðIðθÞÞ
1=2
; ð12Þ

where I(θ) denotes the Fisher information matrix given by

IðθÞ ¼ � ES
@2 lnðpðSjθ;sÞÞ

@θ@θT

� �

: ð13Þ

The Fisher information matrix I(θ) provides the amount of expected information about the
parameter vector θ in measurements. By definition, it is influenced by properties of the data-
acquisition such as the number of data points and the noise. In general, Jeffreys prior is in
agreement with one’s intuition that if a parameter is necessary, it must be supported by the
data. Poot [31] showed that the Fisher information matrix for Rice distributedmeasurements
given by Eq (13) can be efficiently computed.
We aim to exploit Jeffreys prior in Bayesian estimation to discriminate between configura-

tions that yield a degenerate or a non-degenerate model. The preferred prior must convey sup-
port for a dual tensor representation in crossing fibers, e.g. represented by two tensors at
90-degree angles. Therefore, the prior should be flat in such a configuration,making that it
only mildly affects she posterior distribution, which would peak near the initial dual tensor
parameters obtained by MLE. Reversely, consider an actual single tensor configuration, e.g. a
dual tensor model consisting of two tensors with the same shape and orientation and having

Reliable Dual Tensor Modelling based on Jeffreys Prior
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f1,2 = 0.45. In this case the dual-tensor model is degenerate and the prior must be harsh, pro-
moting a near-zero volume fraction in the posterior distribution.
In order to meet these preferred properties, we use a prior based on Jeffries prior:

pðθÞ ¼ detðIðθÞÞ� 1=2
; ð14Þ

Fig 1 illustrates the shape of the prior. Notice in Fig 1(A) that as the volume fraction f1� 0.45
the prior is rather flat. This is because in a true dual tensor configuration, there is no correlation
between the model parameters, as such yielding a maximum for det(I(θ)). Reversely, as the vol-
ume fraction f1 approaches zero to establish a single tensor configuration, there will be large
correlation between several parameters yielding a very small det(I(θ)) and in turn a sharp rise
in the prior probability. Additionally, Fig 1(B) shows that as orientation divergence α4
decreases to zero, the prior increases in the direction of f1 = 0. As such, the prior will favor a
‘simpler’ configuration (i.e. push f2 to zero) as long as the decrease in goodness of fit is more
than compensated for by an increase in the prior probability. Note that the bathtub shape of
the prior probability in Fig 1(A) indicates that the roles of the two volume fractions can be
exchanged. The deviation from a pure symmetric curve is due to the difference in FA of the
two crossing fiber bundles.
A nice property of Jeffreys prior is that it automatically adapts to data acquisition condi-

tions. This is exactly why we describe our prior as data-acquisition adaptive. For example, a
decreased number of gradient directions or an increased noise level will reduce the Fisher
information of a dual tensor model. This corresponds to larger theoretical minimum variance
and a reduced support of that model. Therefore, the curve representing the lower SNR in Fig 1
(C) (blue) starts to increase at a larger α4 than that corresponding to the higher SNR (red).
This shows that a higher SNR yields a better orientation sensitivity in detecting and estimating
crossing fibers. In effect, our prior enforces that the dual-tensor model reduces to the single
tensor representation unless there is sufficient support for two non-zero tensors in the data.
Furthermore, a higher b-value by itself enhances the support for a two-tensor representation
(see [13] [32] [33]). However, such a higher b-value usually comes with a lower signal to noise
ratio. Therefore, the effect of varying the b-values is more difficult to predict. In previous work,
we found that imaging at two b-values (1000, 3000) is appropriate for precise estimation of dif-
fusion parameters in fiber crossings.

Fig 1. Plots of the prior probability for a model of two crossing fibers (detailed parameters, see Table 1). a) Prior probability for crossing fibers at

90-degree angle as a function of f1. b) Prior probability as a function of both f1 and α4. c) Prior probability for crossing fibers of equal volume fraction as a

function of α4. The blue and red curves in subplots (a) and (c) were generated using respectively SNR = 15 and SNR = 25.

doi:10.1371/journal.pone.0164336.g001
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Algorithm1. MarkovChain Monte Carlo with Metropolis-Hastingssampling
Algorithmfor estimatingthe mean of a multivariateposteriordistribution
with our prior using a MarkovChain Monte Carlo methodemployingMetropolis-
Hastingssampling.The ‘proposal’distributionQ(θ'|θt) = θt + Δ�N(0,1)with
N(0,1)denotinga multivariateGaussiandistributionwith zero mean and
standardvariance1; and Δ the step size for parametervectorθ. The step
sizes for all parametersare: 10−5 (with unit mm2s-1) for the diffusivity
parameters,10−2 (with unit rad) for the angles,and 10−2 for the volume
fractions.
For all voxels

θ0 ¼ θ̂MLE // Initializevector
For t = 0 to N-1
θ' = Q(θ'|θt) // Draw candidatefrom ‘proposal’distribution
p(θ') = det(I(θ'))−1/2 // Calculateour prior
pðθ0j~SÞ ¼ pð~Sjθ0Þpðθ0Þ // Calculateposteriorprobability
α = p(θ0j~S)/p(θtj~S) // Calculatethe acceptanceratio
If α > = 1 then

θt+1 = θ' // Acceptthe candidatevector
Else

r = U(0,1)// Draw randomvariabler between0 and 1;
If r < = α

θt+1 = θ' // Acceptthe candidatevector
Else

θt+1 = θt; // Keep the previousvector
Endif

Endif
Endfor

θ̂ARD ¼
1

N� Nburn� in

XN� 1

t¼Nburn� in
θt // Computemean of acceptedsamplesafter burn-in

Endfor

Results

All experiments belowwere carried out on a DELL laptop computer with an Intel i7-2620CPU
@2.7GHz and 4 GB RAM running aWindows-7 64-bit operating system. Themethodwas imple-
mented inMATLAB_R2014b. The average execution time on our brain image data was 6 voxel/s.
Applying our method to one DTI volume (from dataset A, see below) took approximately one day
by parallel processing of voxels on a cluster of 12 Intel Pentium cores. Clearly, a further speedup
can be achieved by involving more cores because the execution time decreases linearly with the
number of cores. Furthermore, the presented number is measured based on interpretedMATLAB
code.We expect that a further speedup can be achieved by compiling theMATLAB code.
In the first part of this sectionwe evaluate the performance of estimating the parameters of

our constrained dual tensor model by JARD and by MLE on simulated data. We studied the
differences between JARD and MLE as a function of the volume fraction for simulated crossing
fibers under realistic conditions. Diffusionmeasurements were simulated by means of the
model presented in Eq (1). The parameters of crossing fibers are listed in Table 1 and are in
agreement with the work of Pierpaoli [34] who reported diffusivities ranging from 0.25×10−3

to 1.5×10−3mm−2 s. At the given diffusivitiesFA1 = 0.91 and FA2 = 0.67. The SNR (defined by
S0/σ) was 25 [3]. Two measurements at b = 0mm-2 s were simulated. Furthermore, 92 gradient
directions were adopted for each of two b-values (1.0�103mm−2s and 3.0�103mm−2s), homo-
geneously distributed over the surface of a sphere. These settings are identical to dataset B (see
below) and equal to those reported in [3].
In the second part of this sectionwe demonstrate the potential of the proposed framework

for some neuroimaging applications. Therefore, we evaluated the performance on varying
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types of brain datasets to verify whether a reliable estimation could be achieved.We applied
JARD and MLE to the genu of the corpus callosum (CC) representing a single fiber region
enclosed at both ends by a crossing with the corticospinal tract (CST). Subsequently, we show a
neuroimaging application of our proposed framework, i.e. automatic estimation of diffusion
properties.
Three different datasets, acquired with different acquisition protocols, were adopted to

explore the two methods. Dataset A concerned diffusion data from one subject of the Human
ConnectomeProject (HCP) [35]. The relevant acquisition parameters of this dataset were:
three b-values 1000, 2000 and 3000 s/mm2, 90 gradient directions per b-shell and three mea-
surements at b = 0 per b-shell, TE/TR 89.5/5520ms, voxel size 1.25×1.25×1.25mm3. Dataset B
was acquired from one control subject (see also [3]). The acquisition parameters: two b-values
1000 and 3000 s/mm2, 92 gradient directions per b-shell and one measurements at b = 0 per b-
shell, TE/TR 84/3800ms, voxel size 1.7×1.7×2.2mm3. Dataset C consisted of data from 24
healthy controls from an ongoing DTI study into the effects of HIV on the brain [36]. The
acquisition parameters were: two b-values at 1000 and 2000 s/mm2, 64 gradient directions b-
shell and one measurements at b = 0 per b-shell, voxel size 2.0×2.0×2.0mm3. The SNR for each
of the three datasets was found to be higher or equal than 20. This was determined by fitting a
single tensor model to a selected region of the CC, after which we took the ratio between Sυ,0
and the model residual as the estimated SNR.

JARD versus MLE: simulation experiment

The volume fraction of the constituting compartments of a dual tensor model is a crucial
parameter for the modeling of simple and complex fiber geometries. Therefore, we evaluated
the performance of the methods as the volume fractions of the two compartments were varied.
To assess the robustness for variations in volume fraction, for each volume fraction and diver-
gences of 90 degrees and 45 degrees we generated 100 realizations with the parameters given in
Table 1. For each realization θ̂JARD and θ̂MLE were computed.
Fig 2 shows boxplots depicting the results of dual tensor estimation by JARD (red) and

MLE (blue). Since the estimation procedure assigns a random label to the first and second
tensor, we need to assign the two estimated tensors to the corresponding ground truth

Table 1. Model parameters for generating synthetic data. The units of the diffusion parameters λ are

10−3 mm2s-1.

Parameters Value (θ)

λ1// 1.480

λ1,?1 0.15

λ1,?2 0.12

λ2// 1.400

λ2?1 0.4

λ2,?2 0.38

α1,2 Random

α3 0.8 π
α4 Variable

f1 Variable

fiso 0.1

Diso 3.0

S0 250

σ 10

doi:10.1371/journal.pone.0164336.t001
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compartment. The estimated tensors are sorted by tensor similarity based on the Frobenius
norm: the tensor with the smallest Frobenius norm with respect to the ground truth of com-
partment 1 received the label 1. Fig 2A–2D) show the results for the 90° crossing. The esti-
mated volume fraction by JARD nearly ideally correlates with the ground truth over the entire
range of volume fractions, both for single fiber (f1 = 0 _ f1 = 0.9) and crossing fiber configura-
tions (f1 2 (0, 0.9)), see Fig 2A and 2B). Clearly, MLE yields a random f1 as the true volume
fraction approaches that of a single fiber configuration.
Fig 2(C) shows that the median FA1 estimation is almost identical for both estimationmeth-

ods in crossing fiber configurations, irrespective of the volume fraction. Fig 2(D) shows that
the estimated FA2 converges (almost) to the true value as the true f2 increases. The FA estima-
tion in single fibers (f1 = 0.9 _ f2 = 0.9) appears equally unbiased for both methods, but a con-
siderably larger spread is encountered with MLE than with JARD. Note that the estimated FA’s
with f1 = 0 _ f2 = 0 essentially represent degenerate measurements and are therefore not shown
in the graphs. In the absence of a ground truth this can be detectedwith JARD as the corre-
sponding volume fraction is automatically forced to (near) zero (see Fig 2 (A)). MLE does not
offer such a mechanism, which might lead to a fictitious fiber compartment.
Fig 2E–2H) show the results for the 45° crossing. This figure shows similar trends as

obtained for the 90° crossing in Fig 2A–2D), albeit with a larger spread. Specifically, for the 45°
crossing JARD yielded f1 = 0.05 ± 0.06, f2 = 0.87 ± 0.06 (mean ± standard deviation) at a true f1
of 0.0. Instead, MLE gave f1 = 0.47 ± 0.14, f2 = 0.44 ± 0.15 at true f1 = 0.0. JARD yielded FA1 =
0.89 ± 0.07 at a true f1 = 0.1 while FA2 = 0.68 ± 0.06 as the true f2 = 0.9. Alternatively, MLE
gave FA1 = 0.89 ± 0.09 at true f1 = 0.1 while FA2 = 0.64 ± 0.08 as the true f2 = 0.9. Notice that
there is not a significant bias in the FA of a tensor if its volume fraction is larger than 0.2. In
particular, the FA of a tensor is not biased in case the other component has zero volume frac-
tion, i.e. the single fiber situation. Only in the case where there is a small second component,
particularly with true f2 = 0.1 . . . 0.2, the FA of this tensor is slightly biased.
The performance of the two methods in single fiber regions is further corroborated in Fig 3.

It shows the dual tensor model estimation by JARD (red) and MLE (blue) on a single fiber with
a small isotropic compartment while only the single fiber’s FA is varied.
Fig 3(A) shows that the estimated f1 with JARD improves with increasing FA and approxi-

mates the ground truth.MLE essentially yields a random estimate of f1 irrespective of the
actual FA. Fig 3(B) confirms that the estimation of FA1 remains largely unbiased with both
methods. Clearly, the spread in the estimated FA1 with MLE is much larger than with JARD.
Particularly, JARD yielded f1 = 0.79 ± 0.08 at a true FA = 0.3 and f1 = 0.87 ± 0.04 at a true
FA = 0.95 (true f1 = 0.9). Instead, MLE gave f1 = 0.56 ± 0.17 at true FA = 0.3 and f1 = 0.52 ±
0.11 at true FA = 0.95. Furthermore, JARD yielded FA1 = 0.35 ± 0.04, at a true FA = 0.3 and
FA1 = 0.95 ± 0.01, at a true FA = 0.95. Similarly, MLE gave FA1 = 0.38 ± 0.23, at a true FA = 0.3
and FA1 = 0.95 ± 0.02, at a true FA = 0.95.
The effect of varying the fiber orientation was assessed by generating diffusionmeasure-

ments through Eq (1) using the parameter values given in Table 1, with α4 2 {0, 20°, 40°, 90°}.
For each such configuration 100 noisy realizations were generated. Subsequently, the model

Fig 2. Results of dual tensor model estimation by JARD (red) and MLE (blue) on 100 noisy realizations (SNR 25)

of two crossing fibers (divergence: 90 degrees in a-d and 45 degrees in e-h) as a function of volume fraction. The

boxplots show: a) and e) volume fraction of the first compartment; b) and f) volume fraction of the second

compartment; c) and g) fractional anisotropy (FA) of the first component; d) and h) FA of the second

compartment. The simulated model listed in Table 1 and acquisition parameters accords with Dataset B. The

boxes display the median and 25th, respectively 75th percentiles of the data distribution; whiskers extend to 1.5

times the interquartile range; values outside these ranges are indicated as individual points.

doi:10.1371/journal.pone.0164336.g002

Reliable Dual Tensor Modelling based on Jeffreys Prior

PLOS ONE | DOI:10.1371/journal.pone.0164336 October 19, 2016 11 / 24



parameters were estimated by means of MLE and ARD using both the prior from Behrens’
paper (i.e. f−1(1−f)−1) as well as Jeffreys prior, referred to as BARD and JARD respectively.
The outcome of this experiment is presented in Fig 4. It contains scatterplots of estimated

orientations of the largest eigenvectors of the tensors.
The results confirm that the three methods yield very similar performance as α4� 20°.

However, the proposed JARD clearly yields the most precise orientation estimation if α4 = 0:
the tensors with a large volume fraction assert a single orientation, while the scattered orienta-
tions all have a very small volume fraction.
Summarizing, the graphs demonstrate two things: 1) JARD facilitates accurate estimation of

volume fractions especially with increasingly unbalanced real volume contributions, in which
caseMLE grossly fails; 2) the estimation of FA by JARD shows a much narrower distribution
than by MLE, especially in single fibers

JARD versus MLE: brain imaging

To demonstrate the performance of JARD and MLE on brain data, one subject was randomly
selected from each of the three aforementioned datasets (A, B, and C). Fig 5 shows approxi-
mately corresponding coronal-views of regions of interest where the corpus callosum (CC)
crosses the corticospinal tract (CST). Specifically, it contains the JARD (left) and MLE (middle)
and FSL’s ARD [8] (ARD-FSL, right) estimates in this slice. From top to bottom are shown
data from respectively datasets A, B, and C. A single fiber region, i.e. the central part of CC, is
indicated by the yellow ellipse and the region where CC and CST cross by the green circle. For
JARD and MLE, the line segments visualize the orientations of the largest eigenvectors of the
underlying tensors and the length of each line segment is scaled by the volume fraction. For
FSL-ARD the line segments visualize stick orientations, scaled with the estimated volume frac-
tions. Therefore, we applied the command “bedpostX” in FSL with parameter values: number
of fibers = 2, weight = 1, Burn in = 1000, and switching to multi-shell model and rician noise
(leaving model noise floor off) for a comparable outcome.

Fig 3. Results of dual tensor model estimation by JARD (red) and MLE (blue) on 100 noisy realizations (SNR 25) of a single fiber and an isotropic

compartment as a function of FA. a) Volume fraction of the first compartment; b) Fractional Anisotropy (FA) of the first component. The simulated model

are listed in Table 1 and acquisition parameters accords with Dataset B.

doi:10.1371/journal.pone.0164336.g003
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Clearly, JARD forces the volume fraction of one tensor compartment nearly to zero in the
single fiber region of the CC. Evidently, MLE yields an erratic outcome regarding both volume
fraction and fiber orientation in the same region. Furthermore, notice that FSL-ARD often
returns two fiber orientations in this region. In crossings like the region where CC crosses with
CST, JARD, MLE and FSL-ARD yield a similar outcome regarding fiber orientations. These
trends can be observed for each of the three datasets.
The performance of FSL-ARD is influenced by the so-calledARD weight: a higherweight

reduces the number of secondary fibres per voxel.
Fig 6 shows the influence of the FSL-ARD weight on FSL’s performance. In this experiment,

we examined the same regions as shown in Fig 5 and used three different FSL-ARD weights.

Fig 4. Scatterplots of estimated orientations by MLE and ARD using Behrens prior (BARD) and Jeffreys prior (JARD) for with varying α4.

The two axes in each subplot represent angles (unit: π rad). The orientation of the tensor with the largest volume fraction is shown in red, the other

in gray. The intensity of each symbol is scaled by the volume fraction of the tensor.

doi:10.1371/journal.pone.0164336.g004

Fig 5. Results of our JARD (a, d, g), MLE (b, e, h) and FSL-ARD using the ball-and-stick model (c, f, i) in a region

where the corpus callosum (CC) crosses the corticospinal tract (CST) in three randomly selected subjects from

Dataset A: (a,b,c), Dataset B: (d, e, f), Dataset C (g, h, i). The length of a line segment is proportional to the

corresponding volume fractions; the colors indicate the orientation of fibers: medio-lateral (red), anterior-posterior

(green), and superior-inferior (blue)}.

doi:10.1371/journal.pone.0164336.g005
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It can be noticed that a larger FSL-ARD weight reduces the number of modeled fibers,
which is preferred in single fiber regions such as the central part of the corpus callosum.How-
ever, a larger weight simultaneously decreases the number of modeled fibers in crossing
regions. Furthermore, the proper FSL-ARD weight varies for the different datasets: 10 for data-
set A, 1 for dataset B and C. For instance, Fig 6(C) shows that weight = 10 yields goodmodel
selection in the single fiber region of Dataset A (see the red circle). However, at this same
weight spurious second fibers are not effectively restrained in Dataset B (see the red circle in
Fig 6(F)). On the other hand, at this weight no secondary fibers are detected in crossing regions
(indicated by yellow circles in (f) and (i)). Observe that our framework (as reported in Fig 5)
yields a better performance than FSL-ARD, even at the optimal weight settings, and does not
require parameter tuning.

JARD versus MLE: Fractional Anisotropy along the CC

Fig 7 shows the estimated FA along the Genu of the corpus callosum (GCC) in one subject
from dataset B. The GCC is indicated by the yellow trajectory superimposed on the red-colored
structure of the inset. Notice that the center of the GCC is a single fiber bundle but there is a
crossing with the CST at its lateral sides. The FA along the tract was estimated by the proposed

Fig 6. Results of FSL’s ball-and-stick parameter estimation for three different FSL-ARD weights. The ROIs

and datasets are the same as in Fig 5.

doi:10.1371/journal.pone.0164336.g006
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JARD framework (red) and MLE (green).We had to select the tensor compartment that corre-
sponds to the GCC since the labels assigned by MLE and JARD are random. To solve this, the
FA belonging to CC was selected based on “front evolution” [37]. In front evolution, the esti-
mated tensor of one compartment is randomly chosen as the reference tensor. Then, the tensor
of a neighborhoodvoxel with the smallest Frobenius norm to the reference tensor receives the
same label. After processing all neighbors of the current front as such, these neighbors become
the new reference tensors for the next iteration. The green (MLE) and red (JARD) areas indi-
cate the uncertainty in the estimated value as quantified by the square root of the CRLB.
Confirming the above findings, estimation by JARD yields a rather constant FA with small

variance. In contrast, MLE yields FA values with a larger variance, particularly in the central
part of GCC.We attribute this to overfitting.

Fig 7. Estimated FA by JARD (red) and MLE (green) as a function of position along the genu of the corpus callosum (GCC

trajectory is indicated by the yellow arrow on the inset). The estimated uncertainty (indicated by the colored background) was

calculated by +/- the square root of the Cramer-Rao lower bound. The trajectory along the GCC consists of a single fiber region in the

middle (30–70) and enclosed by crossing fibers region (with CST) on both ends. The figure displays the FA of the estimated tensor

compartments assigned to the GCC by front evolution for both JARD and MLE.

doi:10.1371/journal.pone.0164336.g007
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JARD versus MLE: Dual-tensor FA and volume-fraction maps

FA as well as volume-fractionmaps have been used to detect white matter changes [38] [37].
Here, we will display FA and volume fractionmaps generated by JARD and MLE and point
out the differences.
Specifically, Fig 8 shows color-coded RGBmaps encoding FA in the red channel and the

corresponding volume fraction in the green channel. Left images show the outcome by JARD,
right images by MLE; top images reflect the first tensor, bottom images denote the second ten-
sor. The ordering of the tensors was performed by front evolution [37].
Regarding the JARD outcomes, one can observe that in Fig 8(A) and Fig 8(C) grey matter is

dark, representing both small f1, FA1 and small f2, FA2. Furthermore, in Fig 8(A) single fiber
regions, particularly the central part of CC, are yellowish due to simultaneously large f1 and
FA1; in Fig 8(C) the regions are greenish because of a small f2. In Fig 8(A) crossing fiber regions
are yellowish again reflecting large f1 and FA1; in Fig 8C) these regions are slightly more green-
ish, because of the smaller f2.
In contrast, MLE does not specifically force the volume fraction of one tensor to zero in sin-

gle fiber and gray matter regions. Therefore, the corpus callosum in Fig 8 (D) contains more
yellow spots than Fig 8(C) that reflect large f2,FA2. At the same time gray matter regions in Fig
8(B) and 8(D) contain reddish spots due to the small FA for substantial volume fractions f1, f2.
In general, Fig 8 confirms that MLE estimation is not able to automatically cope with single

fiber regions whereas JARD suppresses the volume fraction of one tensor in such areas. In a
region in the corpus callosum (indicated by the red circle) we measured FA1 = 0.94 ± 0.05, f1 =
0.96 ± 0.03 and FA2 = 0.93 ± 0.06, f2 = 0.04 ± 0.01 (mean ± standard deviation) using JARD.
Similarly, we measured FA1 = 0.95 ± 0.04, f1 = 0.65 ± 0.12 and FA2 = 0.94 ± 0.04, f2 =
0.47 ± 0.14 after MLE. In a region with crossing fibers (indicated with the blue circle) we mea-
sured FA1 = 0.87 ± 0.02, f1 = 0.66 ± 0.01 and FA2 = 0.94 ± 0.04, f2 = 0.37 ± 0.03 using JARD.
Similarly, we measured FA1 = 0.88 ± 0.02, f1 = 0.66 ± 0.02 and FA2 = 0.94 ± 0.05, f2 =
0.36 ± 0.03 using MLE.

TBSS based on dual tensor FA and volume-fraction maps

For a statistical analysis of the FA and volume fractions with age, we included the healthy con-
trols from dataset C [36]. The subjects aged between 45 and 50 (12 subjects, mean-age: 46.2,
standard deviation 1.49) and those aged between 65 and 75 (12 subjects, mean-age: 68.2, stan-
dard deviation 3.72) were selected from the full control group. All data was registered to the
MNI152 standard space using FNIRT [39]. We used the version of FNIRT that is implemented
in FSL (version 5.0.7). Subsequently, differences between the two age groups were analyzed by
means of the classical TBSS technique, i.e. single tensor analysis, [38] as well as the extended
TBSS method for the dual tensor models [39]. Compared to the classical TBSS method, the
extended TBSS technique employs ‘front evolution’ to avoid swapping of the two anisotropic
components between the different images. Extended TBSS was used to analyze differences in
the dual tensor volume fractions (comparable to [37]) as well as differences in the dual tensor
FA maps between the two age groups. Importantly, our approach facilitates such a separate
analysis of tensor volume and shape. Notice that the volume fraction used in [37] is a different
variable, representing the stick strength in a ball-and-stickmodel.
Fig 9 shows an axial slice containing multiple areas with crossing fibers and regions with

just a single fiber. Fig 9(A) shows the classical, single tensor TBSS analysis and Fig 9(B) shows
the extended TBSS analysis of the volume fraction estimated from FSL’s ball-and-stickmodel.
Fig 9C and 9E contain the extended TBSS analysis of the dual tensor FA maps, and Fig 9D and
9F) the extended TBSS analysis of the dual tensor volume fractionmaps. The dual tensor
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estimations in Fig 9C and 9D were obtained by JARD, those in Fig 9E and 9F by means of
MLE. The red-yellow colored regions in Fig 9A–9F identify regions where the differences are
significant.

Fig 8. Color-coded output displaying the FA (green channel) and the corresponding volume fraction (red

channel) for ARD and MLE. The tensor compartments were classified into first and second by front evolution. FA

of first tensor and its corresponding volume fraction by JARD (a) and by MLE (b); FA of the second tensor and its

corresponding volume fraction by JARD (c) and by MLE (d). A percentile stretch was performed on the data for

more contrast. This stretching put the 5% lowest signal values to zero and the 5% highest values to 1; the

remaining values were linearly mapped in between. The red circle indicates a single fiber region, the blue circle a

region with crossing fibers.

doi:10.1371/journal.pone.0164336.g008
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It can be observed that the single tensor approach does not detect significant differences in
the crossing fiber regions indicated by the red ellipse (Fig 9(A)). By comparison, the analysis of
FSL’s ball-and-stickmethod yields remarkably more regions with significant differences, par-
ticularly in fiber crossings such as in the red ellipse (Fig 9(B)). The JARD method (Fig 9C and
9D)) finds slightly more significant differences compared to both the classical approach and
FSL’s ball-and-stickmethod in single tensor regions, see the right part of the green circle (Fig
9C and 9D)) and also in the a blue circle (Fig 9(D)). This signifies that the superfluous parame-
ters are effectively eliminated by JARD in single fiber regions. In single fiber regions the
extended TBSS analysis based on MLE (Fig 9E and 9F)) yields smaller regions with significant
differences compared to the classical approach (Fig 9(A)). We attribute this to the large vari-
ability in such regions that we already observedwith MLE e.g. in Fig 2. Furthermore, we found
the expected similarities regarding detected differences in crossing regions (e.g. the red circles)
between theMLE and JARD. This indicates that Jeffreys prior does not affect the MLE outcome
in such regions. All significant differences are negative, i.e. reduced FA and volume fraction
with increasing age. This outcome confirms the finding that significant age-related white mat-
ter atrophy was found in the corpus callosum [40].

Discussion

We developed a new framework for estimating the parameters of a constrained dual tensor
model in diffusion-weightedMRI. It automatically determines to what extend the diffusion in
a voxel should be modeled by one or two rank-2 tensors. In essence, the complexity of the
model is implicitly inferred with JARD in a Bayesian probabilistic manner. An initial guess of
the diffusionmodel is obtained by fitting a dual tensor model to the data with MLE. Subse-
quently, a new automated relevance determinationmethod assesses whether two tensors are
‘mandatory’ to model the data. If this is not the case, the volume fraction of the superfluous
tensor automatically reduces to (nearly) zero.
The proposed framework extends previous work by Behrens et al and Jbabdi et al [38] [37].

A crucial difference is that we employ a rank-2 tensor model, whereas the previous works con-
cerned ball-and-stickmodels. As such, we aim to recover the full diffusion shape. In FSL 5.0.9,
released after the initial submission of this manuscript, bedpostx was extended to include axi-
ally symmetric tensors (see http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/WhatsNew#anchor1). This
might reduce the number of voxels where bedpostx finds multiple fibers in the corpus callosum
(as in Fig 5). However, our model still differs from this new bedpostx in two important ways:
(1) bedpostx forces both tensors to have the same perpendiculardiffusivity and hence FA, and
(2) our prior is data-acquisition adaptive. Furthermore, an important novelty of our work is
that Jeffreys non-informative prior is exploited in JARD, yielding an alternative for previously
used informative priors. It facilitates accurate and precise estimation of the volume fractions as
well as the diffusion properties with a DTM in single fiber and crossing fiber regions. Jeffreys
prior is based on the Fisher’s information matrix which accounts for properties of the data
acquisition, such as diffusionweighting b-value, the gradient directions and the effective SNR.
Therefore we call this method data-acquisition adaptive.
We demonstrated that both in a central part of the corpus callosum (single fiber) as well as

in a region where the corpus callosum crosses with the corticospinal tract, the configuration

Fig 9. Results of TBSS on the two age groups of dataset C: classical, single tensor TBSS analysis (a);

extended TBSS analysis of the volume fractions derived from FSL’s ball-and-stick model (b); extended

TBSS analysis of the fiber-specific FA and volume fraction maps given by JARD (c, d) and MLE (e, f). Red-

Yellow (region/tract) indicates where the FA or the volume fraction of the younger subgroup is significant

larger than that of the older subgroup.

doi:10.1371/journal.pone.0164336.g009
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inferred by our method corresponds to the expected neuro-anatomy [41] [42]. The proposed
framework has been compared with direct MLE of the same dual tensor model. Several differ-
ences between the proposed framework and MLE were observed. In regions that were consid-
ered to contain just a single fiber, MLE typically inferred a large volume fraction for both
tensor components (see Fig 5). Here, the proposed framework yielded a single tensor represen-
tation by diminishing the volume fraction of the second tensor component. Furthermore, the
FA estimated by MLE showed much more variation than the FA estimated by JARD in such a
region (Fig 7). In regions that were considered to contain crossing fibers, the results of MLE
and JARD were similar.
There are a few limitations of our method. Firstly, we assume a mono-exponential decay

along the eigenvectors of the three compartments up to b = 3000 s/mm2. Measuring at higher
b-values will certainly introduce sensitivity to different compartments such as the myelin sheet
[33] with the associated restricted and hindered diffusion [5]. In the latter case, the Gaussian
diffusion assumption is no longer valid. However, investigating such non-Gaussian diffusion is
beyond the scope of this work. As such, we follow [3] and [43]. Secondly, recent studies
reported the presence of a three-way crossing of fiber bundles [14] [44]. In our framework a
dual-tensor model is employed to characterize voxels encompassing crossing fibers. The reason
for limiting the number of anisotropic components to two is the limited SNR in our HARDI
data. Notice that whereas [14] and [44] only recover the fiber orientation, we aim to recon-
struct the full diffusion shape, which requires a higher SNR. In [3] we showed that estimating a
dual rank-2 tensor model already requires HARDI at two b-values, data of sufficient SNR, and
somemodel restrictions. The latter is needed to ensure stability as the number of model param-
eters may approach or even surpass the number of degrees of freedompresent in the data.
Therefore, fitting a triple rank-2 tensor model to voxels with a three-way-crossing will be even
more challenging [13]. Developingmethods for estimation of the diffusion properties in three-
way-crossing fiber bundles will remain an important challenge for future research.
Diffusion imagingmay reveal several aspects to white matter integrity: (I) locations of alter-

ations; (II) which fiber tract is affected; (III) the exact change in diffusion. Previously, many
solutions were already proposed for the first two aspects. Our work focused on all three aspects.
Particularly, our frameworkmay aid a more accurate characterization of the diffusion shape.
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