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Abstract

Master of Science in Applied Physics

Development of nanowire-based fluxonium devices

by Marta PITA-VIDAL

This thesis presents the design, development and first spectroscopy measure-
ments of nanowire-based fluxonium devices. We demonstrate the strong external
flux and gate voltage tunability of their spectrum, which allows to accurately tune
their first transition frequency over a range of more than 10 GHz. We also show
the nanowire fluxonium resilience to magnetic fields up to 800 mT, demonstrating
its compatibility with the creation of Majorana bound states (MBSs) at the junction
ends, what would open the door to the exploration of new physics and new techno-
logical applications. First, the emergence of MBSs in a nanowire fluxonium would
result in new Majorana signatures, obtained by radio-frequency spectroscopy tech-
niques. This would complement the current experimental evidence for the creation
of MBSs in semiconducting nanowires and would allow to characterize their cou-
pling energy scales, that are, up to date, unknown. And second, the nanowire flux-
onium devices presented here can be used for addressing a qubit whose state is
topologically protected from local perturbations. Integrating topological qubits into
a cQED platform would solve the currently existing problems of the lack of a uni-
versal set of quantum gates and reliable methods for qubit operation and readout,
establishing a path for the development of topological quantum computing.
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1

Introduction

Quantum computing1 has received increasing attention during the last couple of
decades due to its potential applications in a variety of areas. Examples of these are
faster search [2] and factorization [3] algorithms, cryptographic solutions for secure
communication [4] or an expected computational speedup of simulations of quan-
tum systems [5], [6]. From a scientific perspective, the last may be one of the most ap-
pealing promises of quantum computation and would have important consequences
in areas like Computational Chemistry, Pharmacology or Material Sciences. Being
able to simulate classically intractable systems would lead to a better understand-
ing of the dynamics of complex chemical reactions or of the folding configurations
of large molecules like proteins and would help designing medicines for targeted
purposes, new materials with specific properties, more efficient catalysts and other
chemicals.

The power of a quantum computer resides in the quantum superposition and en-
tanglement properties of its basic constituents, the qubits [1]. A qubit is a quantum
system whose state can be any superposition of two orthonormal basis states, |0〉 or
|1〉. In order to be useful for quantum computation, the qubit state must be address-
able for operation and readout and, at the same time, maintain quantum coherence
over time scales larger than the operation times. Different qubit candidates com-
pete nowadays to be the leading physical platform for quantum computation. The
most relevant solid state examples being semiconducting spin qubits, NV centers
in diamond, superconducting qubits involving Josephson junctions and topological
qubits. The latter are expected to show long quantum coherence times, due to the
intrinsic protection of their state against local noise [7], and are the qubit platform in
which we will focus in this work.

A topological qubit is based on the properties of Majorana bound state (MBS)
quasiparticles [8]. These quasiparticle excitations are predicted to appear at the
edges of some materials when their bulk enters a topological phase [9]. Both the
theoretical treatment of MBSs and their experimental realization have been shown
to be very challenging. Most efforts until now have been put into the development
and optimization of the required materials for realizing MBSs, into computational
simulations for understanding the systems and geometries where these quasipar-
ticles are expected to emerge and into the experimental implementation of simple
systems to obtain signatures of the existence of MBSs and of their basic properties.
During the last years, different works showed strong evidence of the emergence of
MBSs at the ends of semiconducting wires and a high quality of the required materi-
als. The field is now ready to take the next step and start working on the realization
of more advanced devices.

1We will not treat in detail the theory behind quantum computing in this work. More information
about the topic can be found in reference [1].
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Here, we present the first implementation and measurements of one of these
new devices, a nanowire fluxonium, which has been made with a two-fold goal. On
the one hand, it aims to constitute a system that permits the integration of a topo-
logical qubit, as a topologically protected quantum memory, in the well-established
architecture of superconducting circuits. On the other hand, it aims to provide new
signatures and completely new information about fundamental aspects of Majorana
bound states, contributing to the understanding of their physics.

Outline of the thesis

In chapter 1 we will go in detail through the theory behind a nanowire fluxonium.
We will introduce both topological qubits and the superconducting quantum cir-
cuitry typically used to implement qubits based in Josephson junctions, like fluxo-
nium. We will see how the fluxonium architecture can complete the non-universal
set of topologically protected gates on the Majorana qubit and help finding new sig-
natures and information of MBSs. After that, we will dive into the specific design
for the device studied in this work. In chapter 2 we will see how to overcome the
multiple challenges that one encounters when trying to fabricate a nanowire flux-
onium and will explain the reasons behind the specific geometries and materials
used for each of the elements that constitute the device. Finally, chapter 3 is about
the first characterization measurements carried out on a nanowire fluxonium. We
will present the measurement setup for heterodyne detection of the transmitted sig-
nal and the different spectroscopy measurements carried out that demonstrate the
strong tunability and magnetic field compatibility of our nanowire fluxonium de-
vices, opening the door to many new experiments. Let’s get started.
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Chapter 1

Physics behind a nanowire
fluxonium

As introduced, a Majorana fluxonium brings two important approaches to quantum
computing together: topological and superconducting qubits. This chapter aims to
give a brief overview of the theory and main experimental achievements in these
two fields, before presenting the idea of a nanowire fluxonium.

In section 1.1 we introduce Majorana zero-energy modes (MZMs) and describe
their main properties: topological protection and non-Abelian exchange statistics
(section 1.1.1). We then focus on their potential in the area of quantum computing
(section 1.1.2) and discuss some experimental MZM realizations (section 1.1.3).

Section 1.2 explores a very different topic: superconducting circuit qubits. It
starts by very briefly going through the main technological achievements in this
area, focusing mainly on the use of Josephson junctions as the non-linear element
(section 1.2.1) and on the development of circuit quantum electrodynamics (cQED)
to address the qubit (section 1.2.2). Among the various qubit proposals, we go into
a bit more of detail for fluxonium. This qubit did not receive as much attention as
others, like the transmon, since its development in 2012 [10], but it is ideal for our
purposes: finding new Majorana signatures and being able to address topological
qubits.

Only by the end of the chapter we will be ready to meet the awaited nanowire
fluxonium. In section 1.3 we explain how to couple a Majorana qubit and a flux-
onium together. We also go in detail through the Hamiltonian description and ex-
pected spectrum for this device (section 1.3.2) and explain how to carry out coherent
state transfer between the topological qubit and the fluxonium (section 1.3.3).

1.1 Majoranas as quasiparticle excitations

The name of Majorana particles comes from 1937, when Ettore Majorana found a
real solution to Dirac’s equation predicting the existence of a fermionic elementary
particle which would be its own antiparticle and which would therefore have zero
energy [11]. Though Ettore Majorana had particles in mind when he found the so-
lution, quasiparticle excitations at the edges of p-wave superconductors can also be
their own antiparticles and have zero energy [12]–[17]. These are known as Majo-
rana zero-modes (MZMs) or Majorana bound states (MBSs). Their properties, anal-
ogous to the ones of Majorana’s elementary particles, are from where MZMs take
their name.
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Their theoretical prediction in a condensed matter system in 1991 by Moore and
Read [18] and the simple one-dimensional model introduced by Kitaev in 2001 [9]
triggered the appearance of several proposals for the experimental realization of
such states in diverse physical systems. One of the proposals suggested the use of
semiconducting nanowires with strong spin-orbit coupling proximitized by a con-
ventional s-wave superconductor [19], [20]. This is the system in which the first
Majorana signatures were found [21] and also the one that we will use in this work.

1.1.1 Majoranas in 1D p-wave superconductors

A MZM is a quasiparticle excitation which is its own hole. If γ is its annihilation
operator, this means that it must fulfill γ† = γ. The simplest way to achieve this in
an electron-hole condensed matter system it having γ be of the form

γ = c† + c (1.1)

where c is the electron annihilation operator. This expression has a striking simi-
larity to the definition of a Bogoliubov quasiparticle in BCS formalism for s-wave
superconductors [16], [22]

γσ = uc†
σ + vcσ∗ (1.2)

where cσ is the annihilation operator of a fermion with spin σ =↑, ↓. The main dif-
ference between equation 1.1 and equation 1.2 is that, for an s-wave superconductor,
Cooper pairs are a singlet state formed by fermions with opposite spin, while the
two components of a MZM should have equal spin. This means that, even if super-
conductivity seems to help in order to obtain MZMs, conventional s-wave supercon-
ductivity is not enough. A system that would be capable of hosting MZMs would be
a superconductor with triplet pairing (a p-wave superconductor in the case of one
dimension (1D)).

Kitaev’s toy model [9], a tight-binding Hamiltonian for fermions with p-wave
pairing, is the simplest model showing that a 1D spinless p-wave superconductor
can host unpaired MZMs at its ends. The Hamiltonian for the continuum version of
Kitaev’s model reads

H =
∫

dx
{

ψ†(x)
( ∂2

x
2m
− µ

)
ψ(x) + ∆

(
ψ†(x)∂xψ†(x) + h.c

)}
. (1.3)

Here, ψ(x) annihilates a fermion at position x, µ denotes the chemical potential, m
the effective electron mass and ∆ the superconducting pairing potential.

The Bogoliubov-de Gennes (BdG) form of this Hamiltonian, for a Nambu spinor
ordered as Ψ(x) = (ψ(x), ψ†(x))T is

HBdG =
( p2

2m
− µ

)
τz + ∆pτy, (1.4)

where τi, with i = x, y, z, are the Pauli matrices acting in the electron-hole space and
p = −ih̄∂x is the momentum operator.

The excitation energies obtained by diagonalizing HBdG are

Ep = ±
√( p2

2m
− µ

)2
+ ∆2 p2 (1.5)
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which are always gapped excepting when ∆ = 0 for positive µ, or when µ = 0.
These parameter points where the gap closes correspond to topological quantum
phase transitions. If one of these parameters, µ or ∆, varies continuously in space
going from negative to positive values, a domain wall is generated at the x point
at which it passes through zero. In Box 1 we see, combining the procedures in ref-
erences [16] and [23], that such domain wall hosts a zero-energy quasiparticle ex-
citation that is exponentially localized at the interface between the topological and
the trivial regions. Furthermore, we prove that its annihilation operator γ obeys the
Majorana property γ† = γ, showing therefore that this localized quasiparticle is a
Majorana mode.

Box 1 - MZM at a topological-trivial interface of a 1D p-wave superconductor

If the chemical potential varies linearly in spacea, µ(x) = αx, the BdG Hamil-
tonian in equation 1.4, in real space and expanded to first order in p (because
relevant momenta at the domain wall are small), reads

HBdG(x) = −αxτz + ∆τyi∂x (1.6)

In order to look for zero energy excitations, we want to solve the equation
HBdG(x)Φ(x) = 0. Using the commutation relations of Pauli matrices, specif-
ically τyτy = 1 and τyτz = 2iτx, we have

2αxτxΦ(x) = ∆∂xΦ(x). (1.7)

Therefore we have

Φ(x) = exp
(αx2τx

∆
)
Φ(0), (1.8)

and expanding on the eigenbasis of τx

Φ(x) = u+exp
(αx2

∆
) (1

1

)
+ u−exp

(−αx2

∆
) ( 1
−1

)
. (1.9)

For Φ(x) to be normalizable, either u+ or u− will be zero, depending on
whether α is positive or negative, respectively. In any case we obtain a wave
function localized at x = 0, at the topological phase transition, with two
exponential tails on the sides. This is shown schematically in figure 1.1.

FIGURE 1.1: Schematic of a MZM at a topological phase transition. Green and blue
represent regions of a system with Hamiltonian 1.3 in different topological phases.
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For a normalized eigenspinor Φ(x), one can calculate its Bogoliubov operator
in terms of the original electron operators as [16]

γ =
∫

dxΦ†(x)Ψ(x). (1.10)

We do that in order to check that this zero-energy bound state is actually a
Majorana mode.

γ =
∫

dxΦ†(x)Ψ(x) =


∫

dx
√

∆
απ eiθ−exp

(−αx2

∆

)
(ψ(x)− ψ†(x)) if α > 0∫

dx
√

∆
−απ eiθ+exp

(
αx2

∆

)
(ψ(x) + ψ†(x)) if α < 0

.

(1.11)
If θ+ = 0 or π and θ− = π/2 or 3π/2, we have, in both cases γ† = γ. So the
quasiparticle excitations appearing at the interface are, up to a phase factor,
Majorana bound states.

aThe proof is analogous for any other dependence µ(x), with the only condition of it being
positive at one side of the domain wall and negative at the other side.

1.1.2 Topological quantum computation using Majoranas

MZMs are considered to be good candidates for low-decoherence quantum infor-
mation processing mainly due to two of their properties. First, they are spatially
separated and therefore, if the qubit state is encoded in the ground-state manifold of
a system with several MZMs, it will be protected from local perturbations due to this
spatial separation. Second, they exhibit non-Abelian exchange statistics: when the
positions of two Majorana bound states are exchanged, the many-body state of the
system undergoes a unitary rotation in the ground-state manifold, and these trans-
formations, in general, do not commute. These rotations, which are insensitive to
small variations on the path and final position of the MZMs, are good candidates for
quantum gates over the qubit state.

Qubit state and protected operations

Since MZMs cost no energy, the presence of N pairs of non-interacting Majorana
zero modes in a system results in a degenerate ground state. The only thing that dis-
tinguishes different MZMs is their position, we label each of them with i = 1, ..., 2N.
One can not assign a number quantum state to a MZM, however, two Majoranas can
be paired forming a fermionic mode. For j = 1, ..., N,

cj =
1
2
(γ2j−1 + iγ2j) (1.12)

is a fermionic operator1, which can be empty, nj = c†
j cj = 0, or occupied, nj = 1.

The quantum states of N pairs of Majoranas with fixed fermionic occupations can be
represented as |n1, n2, ..., nN〉 and constitute a basis of the degenerate ground-state

1One can check that this is actually a fermionic operator by seeing that it fulfills the fermionic
anticommutation relations {cj, ck} = {c†

j , c†
k} = 0 and {cj, c†

k} = δjk.
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manifold. A general superposition state of the system can be written in this basis as

|Ψ〉 = ∑
nj=0,1

αn1,n2,...,nN |n1, n2, ..., nN〉 , (1.13)

with complex coefficients αn1,n2,...,nN . In principle, the dimensionality of the manifold
of all possible ground states is then 2N . A system with 2N MZMs can therefore
encode the quantum state of N qubits.

The most important property of quantum information encoded in the the Majo-
rana manifold is its topological protection. Since its state depends only on the par-
ity, or occupation, of non-local fermions, split among Majoranas located at different
points, no local perturbation can change this quantum state and cause decoherence.
The main cause of decoherence for this type of qubits would instead be an uncon-
trolled change in total fermion parity, normally called quasiparticle poisoning.

One way of coherently changing the state of the system, and therefore imple-
menting a quantum gate, is by explicitly moving the non-interacting MZMs around
each other [8]. The adiabatic exchange of two Majoranas, γj and γk, is equivalent to
the application of a unitary operator Uj,k on the state of the system [23]–[25],

Uj,k = exp
(
± π

4
γjγk

)
=

1√
2
(1± γjγk), (1.14)

with the + or− sign depending on whether the exchange is carried out clockwise or
counterclockwise. Therefore, exchanging two Majorana modes leads to an, in gen-
eral, non-trivial rotation of the state in the ground state manifold. These operations
are normally called braiding operations. The way of carrying out this transforma-
tion is non-local and the final result depends only on the topology of the exchange
and not on details of the specific path followed by each of the quasiparticles. This is
why quantum gates based on braiding are protected against local perturbations.

Physically moving MZMs around is the only way of braiding non-interacting
MZMs. However, there are alternative experimental approaches for the realization
of non-abelian braiding operations that involve temporarily turning on and off in-
teractions between them. This can be done, for example, by using gate voltages to
control the tunnelling coupling between adjacent MZMs [26]. A different proposal
suggests to use a magnetic field control parameter rather than an electrostatic to tune
the Coulomb interaction between pairs of Majoranas, controlling the flux trough the
split junction of a transmon coupled to them [27]. In these cases the braiding opera-
tion is also topologically protected, because it depends on the sequence of Majorana
couplings and not on details of the sequence timing [27].

Even if there are several challenging points for the experimental implementation
of braiding, it seems reasonable that, due to the existence of different alternative
approaches, if big efforts were put towards this goal, it could be implemented in
the coming years. However, an important aspect to consider regarding the quan-
tum states that can be achieved by carrying out braiding operations is that the total
fermion parity of the Majorana system is fixed. The parity of a single fermionic state
j, Pj = 2nj − 1, can be either −1 or +1 depending on its occupation. One can ex-
press Pj in terms of the Majorana operators as Pj = iγ2j−1γ2j. The total fermion
parity of the system, P, is just the product of all the Pj’s, P = iN ∏N

j=1 γ2j−1γ2j. If this
parity is fixed, then only half of the degenerate ground-state manifold is accessible.
That would be a problem when trying to realize quantum gates. Braiding operations
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alone can not change P, so they can not constitute a universal set of gates if one takes
as the qubit state the state of the Majorana system defined above (equation 1.13). A
simple example of an operation that is not accessible by braiding is a single qubit
rotation [7], which would change the parity of only one of the fermionic states.

Hybrid qubits, unprotected operations and logical qubits

Many different proposals suggest ways of overcoming the problem of the lack of a
universal set of braiding operations. Some combine a topological qubit with extra
non-topological ways of implementing gates [28], [29]. It is possible, for example, to
couple the fermion parity of a part of a topological qubit to a flux qubit [28] or to a
transmon [29] to implement parity protected rotations, and also to readout the qubit.
The most recent proposals, however, define elementary units, or logical qubits, con-
taining four Majoranas γi, i = 1, 2, 3, 4 [29]–[33]. In this case, the computational
space has fixed total parity, so parity conservation in the Majorana system is an ad-
vantage rather than a problem. In these proposals, the basis states of the qubit, |+〉
and |−〉, are encoded in the parity of the first pair of Majoranas iγ1γ2. Pauli opera-
tors can be expressed as a function of γi as

x̂ = −iγ2γ3, ŷ = iγ1γ3, ẑ = −iγ1γ2. (1.15)

Individually addressing different pairs of Majoranas allows to initialize, manipu-
late and readout the qubit state. In references [32] and [33], for example, quantum
dots are used to selectively address pairs of Majoranas and achieve a universal set
of gates, some of them topologically protected.

In this work we will explore a hybrid qubit proposal, first suggested by Pekker
et al. in 2003 [30]. It involves coupling a logical topological qubit to a fluxonium, a
type of non-topological superconducting qubit that can reliably be rotated and read
out and that will be presented in section 1.2. In section 1.3, we will go into more de-
tail on how to integrate a fluxonium and a topological qubit together and on how to
control their interaction to be able to implement gates and read out the topological
qubit state.

1.1.3 Majoranas in semiconducting nanowires

In section 1.1.1 we saw that a Majorana bound state can appear at the interface be-
tween a topological region and a trivial region of a spinless p-wave superconductor.
However, p-wave superconductors are rare in nature and not as common as su-
perconducting materials with s-wave pairing. Luckily, several proposals presented
engineered physical systems with Hamiltonians topologically equivalent to the one
in equation 1.4, obtained by combining materials with different properties. In this
section we introduce one of the simplest ones, a superconductor proximitized semi-
conductor nanowire with a strong spin-orbit coupling [19], [20], which will be the
platform used in this work.
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Main physical ingredients

In any known physical system, electrons have spin 1
2 . Therefore, any realistic Hamil-

tonian must include a spin degree of freedom. In this section we will use σ to denote
Pauli matrices acting on spin space, while τ Pauli matrices will still be acting on
particle-hole space.

For a Hamiltonian with time-reversal symmetry, states with opposite spin are de-
generate and form Kramer’s pairs. In order to break this degeneracy and be able to
obtain an effectively spineless system, time-reversal symmetry must be broken. This
can be done by applying magnetic field, which breaks Kramer’s pairs by Zeeman ef-
fect. We will include a VZσz term in the system’s Hamiltonian, where VZ = gµBB/2
is the applied Zeeman field, with B the applied magnetic field, g the g-factor of the
semiconductor and µB is the Bohr magneton.

Furthermore, for regular superconductors, superconducting pairing is of s-wave
type, it couples electrons of opposite spin. One way of effectively obtaining p-wave
pairing is using a material with strong spin-orbit interaction and coupling it to an
s-wave superconductor. By proximity effect [34], [35], superconductivity will be
induced in the semiconductor. Spin-orbit interaction gives rise to split bands with
momentum dependent spin direction that, together with the induced superconduc-
tivity and the gap open by Zeeman effect, will result on an effective p-wave pairing.

The BdG Hamiltonian for a physical system with these characteristics, with a
Nambu spinor ordered as Ψ(x) = (ψ↑(x), ψ↓(x), ψ†

↓(x),−ψ†
↑(x))T, is

HBdG =
( p2

2m
− µ+αpσx

)
τz −VZσz + ∆τx. (1.16)

Here, the last term represents spin-singlet pairing, without momentum depen-
dence, inherited from the s-wave superconductor by proximity effect. ∆ is the in-
duced pairing potential in the semiconductor. As before (eq. 1.3), µ denotes the
chemical potential and m the effective electron mass. α is the strength of the Rashba
spin-orbit coupling.

We have written the spin-orbit field along the x-direction, perpendicular to the
Zeeman field, which is along the z-direction. The spectrum of Hamiltonian 1.16 is
shown in figure 1.2 c) and d) for two different values of VZ. The rest of spectra in
figure 1.2 correspond to different parameters of the Hamiltonian being zero. As we
see, by applying a magnetic field perpendicular to the direction of the spin-orbit one
can separate spins by Zeeman effect and open a gap at zero momentum. If we tune
µ to be in the gap, there is a single band crossing the Fermi points pF and −pF in
figure 1.2, therefore the system will effectively behave as a spinless system. Since
spin-orbit interaction rotates the spin of this band as a function of momentum, the
two Fermi points have opposite spin components in the direction of BSO and s-wave
pairing induces pairing between them. The resulting state will be effectively a p-
wave superconductor.

By changing either the chemical potential µ or the Zeeman splitting VZ the sys-
tem can enter or exit the topological regime. The condition for topological supercon-
ductivity is |VZ| >

√
∆2 + µ2 [20].
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FIGURE 1.2: Energy spectrum for Hamiltonian 1.16. In panels a) - e), different spin flavours
are indicated by different colours. Dark blue and magenta indicate opposite spins in the
direction of the S-O effective field BSO. Red and light blue indicate opposite spins in the
direction of the external magnetic field B. a) For B = 0 and ∆ = 0. Bands with opposite spin
in the BSO direction split towards positive and negative momenta. The chemical potential µ
is measured with respect to the split bands crossing. b) For ∆ = 0. B, perpendicular to the
direction of BSO, opens a gap with magnitude 2VZ at the bands crossing. If the applied field
was parallel to BSO, rather than perpendicular, then the two parabolas in figure a) would
shift vertically in different directions without opening a gap. c) With the incorporation of s-
wave pairing, gaps open at the crossings between the hole lines (thin) and the electron lines
(thick). d) Same as c) but increasing the magnitude of B. The gap at p = pF, and not the one
at p = 0, dominates now the overall gap ∆ind. e) Same as d) but now with B having parallel
and perpendicular components. f) Gap at p = 0 is shown in blue. It decreases with B until it
fully closes at the topological transition and then increases again. Orange shows the gap at

p = pF and black indicates the overall gap size. Figure adapted from [36].

Material platforms

To engineer a system with the required properties presented above, it is necessary
to find separate materials that individually fulfill each of them. In this work we will
use semiconducting nanowires proximitized with a thin film of superconductor on
their surface.

A typical superconductor used for this purpose is thin proximitized Al, even if
NbTiN or other superconductors can also be used. The main challenge is having
clean and homogeneous superconductor-semiconductor interfaces to obtain a good
induced gap. Experimental studies show that semiconducting nanowires in prox-
imity to Nb or Al can inherit, by proximity effect, a superconducting gap of size
comparable to the gap of the superconductor [34], [35]. However, the softness of
the gap (i.e. the detrimental conductance inside the gap coming from unwanted
subgap states) depends strongly on the amount of disorder in the semiconductor-
semiconductor interface. If the gap is softer, the probability of thermal quasiparticle
excitations increases, so it is important to try to reduce as much as possible the na-
tive oxide and other defects on the surface of the nanowire before Al deposition. For
the first Majorana experiments in nanowires, the superconductor was deposited on
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chip, so the native oxide on the surface of the wire had to be etched away before
deposition [21], [36]. Now, much cleaner interfaces and harder gaps can be achieved
using epitaxial thin aluminum films grown in situ on the nanowire surface without
breaking vacuum [37].

Typically used semiconducting materials are InAs or InSb nanowires with spin-
orbit energy ESO = mα2/2 between 0.2 and 1 eVÅ for both of them and g-factor
of 8 − 15 and 40 − 50 respectively [17]. The material’s g-factor is one of its most
relevant parameters. A large effective Zeeman gap is favourable for protecting the
system from small perturbations. It can in principle always be improved by applying
a stronger magnetic field B. However, if B approaches the s-wave superconductor
critical field it can detriment the induced superconductivity and the relative effect
of the spin-orbit coupling. This is why large g-factors, which give greater Zeeman
splitting for the same external field, are beneficial. The magnitude of ESO, which
measures the energy of the bands crossing point with respect to the bottom of the
band, is also important. The gap at non-zero momentum in panels c) and d) of
figure 1.2 is proportional to the ratio ESO/VZ [38]. It is easy to find an intuitive
explanation for this, thinking about the reason why this gap opens. This happens
because induced superconductivity couples opposite spin components of electrons
at pF and −pF. Strong VZ intensifies the spin component in the direction of the
applied field, which is independent from momentum, while strong ESO intensifies
the spin component in the direction of the effective BSO field, which is opposite for
pF and for −pF. This is why ESO contributes to opening the gap at ±pF while VZ
contributes to closing it. Since VZ has to be large, it is also necessary to have a large
spin-orbit energy.

In this work we use Vapour-Liquid-Solid (VLS) InAs nanowires with epitaxial Al
[37] covering two out of the six wire facets. Development of the VLS growth tech-
niques during the last 50 years resulted in the current availability of high quality
crystalline nanowires of this and other materials. The typical length of InAs wires
can easily be of around 8 µm. InSb VLS nanowires of diameters of around 80 nm, but
with typical lengths shorter than the ones of InAs wires, are also available and of-
ten used for Majorana research [39]. However, its low surface energy makes it more
difficult to start the growth than for InAs. The main problem of short nanowires,
in this case of around 3 µm, is that, if MZMs emerge at their ends, they are closer
to each other than in InAs wires. This can make the MZMs wavefunctions overlap,
and therefore hybridize and split away from zero energy [40]. This effect could hin-
der some of the characteristic signatures and be also detrimental for most MZMs
applications. Something special about InSb wires is that recent development allows
for the creation of wires with shadow junctions [41]. These type of wires are useful
when one wants to study a system with a Josephson junction. In this technique, a
second wire is used to create a shadow on the proximitized aluminum during depo-
sition. Since these junctions are directly made after nanowire growth, without extra
aluminum etching steps, they can be more homogeneous and with less impurities
and defects.

As we see, different types of nanowires have different advantages and disadvan-
tages. On the one hand, InSb is a very promising option, due to its combination of
a large g-factor with a large spin-orbit interaction. However, InAs wires offer other
advantages. As we said, they are in general longer. Furthermore, they are resilient to
much higher temperatures during processing than InSb. This means that standard
processing techniques can be used for InAs wires, while new processes have to be
created and optimized in the case of InSb. Time will say which of the two materials



12 Chapter 1. Physics behind a nanowire fluxonium

is more suitable for Majorana applications.

When dealing with real nanowires there are several aspects to take into account
that are not included in the idealized one-dimensional model in equation 1.16. The
combination of B and µ values that bring the wire into the topological regime will be
more complex than the simple quadratic relation |VZ| >

√
∆2 + µ2 found before (see

figure 1.3 a)) [42]–[45]. One first aspect to consider is the three-dimensionality of real
wires. Several bands should be included when modeling a real system and will give
raise to several topological regions in B-µ space, corresponding to different bands
meeting or not the topological condition (see figure 1.3 b)). Other physical aspects
that have a big impact on the B-µ topological phase diagram are the electric field and
charge density distributions inside the nanowire. Rashba spin-orbit interaction de-
pends strongly on the electric field direction and magnitude. Its strength will change
for different gate voltages and it will have a position dependence due to inhomoge-
neous electric field inside the wire. Regarding the charge distribution, the strength
of coupling to the superconductor, and therefore to the induced superconducting
gap, will be determined by the regions where the density of states is accumulated
in the wire cross section. Including in numerical models a realistic geometry and
an appropriate treatment of electrostatics and the superconductor/semiconductor
interface has therefore a big impact on the topological phase diagram and on the
magnitude of the topological gap [44], [45]. Another physical phenomenon that is
not considered in the simplified models is the magnetic field orbital effect, which
can increase the effective g-factor by a factor of 2 or 3, as shown in references [46]
and [47]. This effect results in more complex phase diagrams, but also in the need
of lower magnetic field magnitudes to enter the topological regime (see figure 1.3 c)).

FIGURE 1.3: Topological phase diagram of idealized and realistic nanowire systems.
a) Parabolic topological phase condition calculated analytically from an idealized model
|VZ| >

√
∆2 + µ2. Figure adapted from [17]. b) and c) Phase diagrams for a model including

realistic treatment of the cross-section geometry and induced superconductivity. Orbital ef-
fect is considered in panel c) but not in b). Color scale shows the magnitude of the gap, with
orange and grey scales indicating topological and trivial regions respectively. Topological

phase transitions are shown in green. Figures b) and c) are adapted from [43].

One last experimental aspect to consider is the direction of the applied magnetic
field. As we said, it must be applied in a direction perpendicular to the one of the S-
O effective field BSO. This direction is in general unknown in a real setup. However,
we know it is the cross product of the momentum, which is along the wire, and the
electric field. Therefore, applying the external magnetic field parallel to the direction
of the wire ensures that it is perpendicular to BSO. Aligning the field along the wire
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has also been shown to be beneficial for the topological gap [43], due to conserva-
tion laws arising from mirror symmetries. This is what is typically done and what
we will do throughout this work. This direction will be denoted by z.

Experimental signatures of Majoranas

The first type of experiments looking for MBS signatures were tunneling conduc-
tance measurements of the density of states (DOS) at one end of the nanowire [21],
[36], [48]. In these experiments, differential tunnel conductance was measured at low
bias voltages applied between a metallic probe and the superconducting nanowire,
and a small gate was used to open or close the tunnel junction in between. The mea-
sured conductance comes from Andreev reflection processes at the normal metal -
superconductor interface. For a wire in the trivial regime there are no states inside
the gap, so conductance should be suppressed at low bias. However, resonant tun-
neling into a local Majorana bound state at the end of the wire is expected to result in
a 2e2/h-quantized conductance peak at the center of the gap, at zero bias. This signa-
ture allows to distinguish the topological and trivial phases. Electrostatically tuning
the chemical potential µ of the wire with a gate and increasing the external magnetic
field B, a zero-bias peak emerges a at the critical value BC =

√
∆2 + µ2, indicating

a trivial to topological transition [21], [36], [48]. Stronger evidence of this transition
has recently been given by the observation of the expected 2e2/h-quantized conduc-
tance peaks at zero-bias in InSb/Al nanowires [49].

Even if these signatures can arise from the presence of MZMs, they can not be
conclusive, since there are alternative explanations for the appearance of zero-bias
conductance peaks coming from trivial Andreev bound states in non-topological
wires [50], [51].

A second type of signature of MZMs, more relevant for the type of devices stud-
ied in this work, is the unconventional 4π-periodic Josephson effect characteristic
of junctions between two topological superconductors. The excitation spectrum of
a Josephson junction (JJ) between superconductors in the trivial state is 2π-periodic
in phase difference across the junction (or, equivalently, h/2e-periodic in the flux
threaded trough a loop containing the junction). Therefore all physical properties
of the junction have the same periodicity. However, when two topological super-
conductors form a JJ, MZMs appear at both ends and give raise to coherent single-
electron tunneling processes. In this case, the Josephson effect becomes, for fixed
fermion parity, 4π-periodic instead of 2π-periodic [9], [52], [53].

Measuring this type of periodicity change when the wire enters the topological
regime can provide new evidence of the generation of MZMs and complement the
zero-bias peaks measurements. It can in principle be probed by measuring the pe-
riodicity of any physical quantity that depends on the excitation spectrum of the
junction. One option is studying the Josephson current I = 2e ∂E

∂φ , where φ is the
superconducting phase difference across the JJ and E is the energy dispersion of the
junction excitations. However, parity changes can hinder the observation of this ef-
fect, so supercurrent measurements should be performed at a frequency higher than
the characteristic frequency of quasiparticle poisoning. One way of doing this is
studying the ac Josephson effect in the presence of a bias voltage across the junction.
In the case of 4π-periodicity, the Josephson frequency of the generated ac current
is half of the usual one for trivial superconductors at both sides of the JJ [54]. This
change in Josephson frequency has recently been shown as a function of magnetic
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field [54], complementing the set of experimental signatures of topological super-
conductivity in semiconducting nanowires.

The experimental observation of this effect in real semiconducting nanowires
with many channels is challenging because typically only one channel enters the
topological regime and gives the 4π effect, while every non-topological channel con-
tributes to the supercurrent with 2π-periodicity, which can hinder the 4π-periodic
part. The device studied in this work, the nanowire fluxonium, is compatible with
the experimental observation of this 4π-periodic Josephson effect, even in the pres-
ence of several 2π-periodic trivial channels. Experiments carried out in this device
can furthermore determine the magnitude of the interaction energy between MZMs
sitting at both sides of the junction [30]. The interest of this device lays therefore not
only on its applications for quantum computation, but also in its ability to provide
new signatures of topological superconductivity and contribute to the characteriza-
tion of JJs hosting MZMs. The nanowire fluxonium will be explained in detail in
section 1.3.

1.2 Superconducting qubits

The idea of using Josephson junctions (JJs) to realize quantum bits started already
at the end of the 90’s [55], with the creation of the first charge [56], phase [57] and
flux [58] qubits. But it was mainly after the Yale proposal for using a circuit Quan-
tum Electrodynamics (cQED) architecture to address this type of qubits [59] when
most efforts were put into the development of this new technology [60] [61]. Since
then, the celebrated transmon qubit was developed [62] and several milestones were
achieved. Two qubits were coupled using a coplanar waveguide transmission line
[63], single and multiple qubit gates were implemented [64] and simple quantum
algorithms were experimentally demonstrated [65]. In the last years, efforts were
put on finding geometries that allow scaling up easily and, above all, on increasing
gate fidelity and coherence times.

cQED has proven to be one of the best developed architectures for quantum
computing. The basic element of superconducting qubits, which determines their
physics due to its 2π-periodic Josephson effect, is the Josephson junction. Substitut-
ing a conventional JJ with a junction hosting Majoranas at its ends should therefore
fundamentally alter the behaviour of these qubits. This would allow to investigate
the behaviour of topological phases of matter taking advantage of an already well
established technology. This is what we plan to do. But let’s start by better under-
standing the physics behind superconducting qubits, with an emphasis on fluxo-
nium.

1.2.1 Josephson junction based qubits

The Josephson junction is the key element of superconducting qubits, because it
brings non-linearity into the system’s Hamiltonian, which results in an anharmonic
distribution of eigenenergies that would otherwise be evenly spaced. In this way,
the two lowest energy levels |g〉 and |e〉, whose transition can be addressed inde-
pendently from other transitions, define the two basis states of the superconducting
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qubit.

Josephson junction based qubits can be classified in two big groups, depending
on the topology of the space where the relevant degrees of freedom are defined.
These degrees of freedom are the the gauge-invariant superconducting phase differ-
ence across the junction φ and its conjugated reduced charge variable n, the number
of Cooper pairs transferred through the junction

n = −ih̄
∂

∂φ
, φ = ih̄

∂

∂n
. (1.17)

If the superconductors at both sides of the junction are isolated from each other, one
can be seen as a floating island and the other as a superconducting reservoir. In this
case the phase difference is only defined modulo 2π, since every physical property of
the junction is 2π-periodic, as we saw in the previous section. Its conjugated charge
n, the number of Cooper pairs occupying the island, must be an integer. A circuit
model for this configuration is shown in figure 1.4 a), where the two separate pieces
of superconductor (grey) are coupled via a Josephson junction (red) and a coupling
capacitor (blue).

The situation changes if the two sides of the junction are shunted together by
a piece of superconductor with a certain (finite [66]) inductance (see figure 1.4 b)).
Two φ values differing by 2π are not physically equivalent anymore, so the phase is
defined in the entire real axis. Furthermore, the number operator n has now a con-
tinuous spectrum due to the possibility of continuously displacing the Cooper-pair
condensate towards one side of the junction.

FIGURE 1.4: Superconducting qubits circuit models. a) Circuit model for the Cooper pair
box and for the transmon, corresponding to Hamiltonian 1.20. b) Circuit model for the rf

SQUID and for the fluxonium, corresponding to Hamiltonian 1.28.

We will now take a closer look to these two topologically distinct classes of
qubits, building a Hamiltonian to describe their physics. We ignore for now the
auxiliary circuitry for qubit control and readout, which will be presented in the next
section.

The Josephson and capacitive elements are common for both classes of qubits. If
the superconducting gap ∆ is greater than other relevant energy scales of the sys-
tem, such that no thermal fermionic excitations appear, only Cooper pairs tunnel
coherently across the junction and the Josephson element can be incorporated in the
circuit Hamiltonian via the Josephson energy associated with this transmission. For
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a typical superconductor-insulator-superconductor (SIS) JJ the transmission proba-
bility of all Andreev bound states in the Josephson junction is low2 and the junction
potential has a cosine dependence on φ [67]

VSIS = −EJcos(φ). (1.18)

Here, EJ is the Josephson energy, proportional to the junction critical current. EJ is
a measure of the ability of Cooper pairs to tunnel through the junction and can be
associated to an effective non-linear inductance LJ = Φ2

0/(2π)2E
J cos(φ).

The capacitive element can be described by the charging energy EC,

EC =
e2

2C
, (1.19)

which sets a second energy scale of the system. For the case of island qubits, C =
Cg + CJ is the total capacitance of the island and has contributions from both the ca-
pacitance of the junction CJ and the capacitance between the island and a gate used
to electrostatically tune its charge Cg. For inductively shunted qubits C is simply the
capacitance across the junction.

Island qubits: the Cooper pair box

One of the conceptually simplest qubits containing a JJ is the Cooper pair box. It
consists of a superconducting island coupled via a Josephson junction to a super-
conducting electrode (figure 1.4 a)). The circuit Hamiltonian in this case can be
directly written combining the Coulomb and Josephson energy contributions pre-
sented above [68], [69]

HC = 4EC(n− ng)
2 − EJcos(φ). (1.20)

Here, ng = CgVg/2e is a dimensionless charge induced by the gate with potential Vg,
also called offset charge. The factor 4 multiplying the charging energy comes from
the fact that the energy cost of transferring a Cooper pair through the junction is 4
times larger than for transferring a single electron.

If the capacitance C is low, which is the typical regime for a Cooper pair box,
then the charging energy dominates over the Josephson energy EJ . In this case, the
quantum eigenstates of the system are characterized by the number of Cooper pair
charges in the island n [68]. The qubit transitions are very anharmonic and have a
strong dependence on ng. The Cooper pair box was one of the first superconducting
qubits realized experimentally. Quantum-coherent oscillation of a Cooper pair box
prepared in a superposition of two states were first seen in 1999 by Nakamura et al.
[56]. Proving that a quantum system can be put in the coherent superposition of two
different quantum states is proving that it can act as a qubit, so that observation was
a great achievement.

The main problem of a Cooper pair box turned out to be its strong sensitivity to
gate voltage, since it implies a strong sensitivity to noise coming from offset charges.

2If one or more ABS channels has a large transparency, the junction potential has a more complex
φ-dependence. We will study this in section 1.3.
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Increasing the Josephson energy with respect to EC makes the effect of the supercur-
rent through the junction more noticeable, so the mixing of number states becomes
stronger. This makes the qubit’s spectrum less dependent on gate charge, flattening
out the charge dispersion . At large EJ/EC ratios the spectrum becomes similar to
the one of an slightly anharmonic oscillator, with the anharmonicity coming from
the nonlinear inductance of the Josephson junction. A Cooper pair box operated in
the regime EJ � EC is called transmon [62].

Inductively shunted qubits

An alternative realization of a qubit with a JJ is one for which the two sides of the
junction are connected together forming a loop, possibly including other inductive
elements. Now, the phase degree of freedom across the junction, φ, is directly re-
lated to the magnetic flux trough the loop Φext, so a junction flux variable Φ = Φ0

φ
2π

and a loop phase variable ϕext = 2π Φext
Φ0

are normally defined, where Φ0 = h
2e is the

superconducting flux quantum. The external flux constrains the flux drops across
the different elements in the loop to add up to Φext.

Probably the simplest type of flux qubit is the rf SQUID, just a loop with a
Josephson junction. The circuit model for this qubit is shown in figure 1.4 b), which
includes an inductive term (in purple) denoting the always present magnetic self-
inductance of the loop, L. Its Hamiltonian is similar to the one of the Cooper pair box
or the transmon, equation 1.20, but now, apart from the Josephson and the charging
energies, the inductive energy EL coming from L has to be included

EL =
Φ2

0
4π2L

. (1.21)

Since, as we said, the phase drop at the loop inductance is constrained to be φ −
2e
h̄ Φext, the inductive term of the Hamiltonian becomes

HL =
(Φ−Φext)2

2L
=

1
2

EL
(
φ− 2e

h̄
Φext

)2. (1.22)

Adding this element to Hamiltonian 1.20 we obtain the Hamiltonian of an rf
SQUID

H f = 4ECn2 − EJcos(φ) +
1
2

EL
(
φ− 2e

h̄
Φext

)2. (1.23)

As we said before, the presence of the inductive term breaks the phase periodicity of
the system. Since φ and n are conjugate variables, we can think of them as a position
and a momentum respectively. The EC term on the Hamiltonian would then corre-
spond to a kinetic energy, C being the effective mass. The two terms depending on
φ can be thought as a potential. EL contributes to an overall parabolic shape of this
potential, while the EJ term makes it have an oscillatory dependence on φ due to its
cosine dependence.

Different combinations of the three characteristic energies, EC, EJ and EC, result
on different properties of the qubit spectrum. The first qubits of this type had EJ/EL
slightly larger than 1. In this case, the last two terms in Hamiltonian 1.23 form a
double well potential around φ = π and the qubit states are the lowest states in
each of the wells, each of them with a different persistent current configuration.
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EJ controls the height of the potential barrier between the wells, and therefore the
strength of the mixing of the two qubit states.

Another type of qubit, similar to the one described here, was first developed in
Delft in 2000, it was called Josephson persistent current qubit or just flux qubit [58],
[70]. It included two extra junctions in the loop, so for it the potential was defined in
a two-dimensional phase space, corresponding to the phase drops in each of these
junctions. Coherent quantum state oscillations were first observed in this qubit in
2003 [71].

Some of these first qubit proposals were, with time, developed further than oth-
ers. New types of qubits also appeared afterwards. Manucharyan et al. proposed in
2009 a type of flux qubit with a very large inductance, the fluxonium [10]. A large L
brings down its inductive energy EL, making it less sensitive to flux noise. We will
study the fluxonium qubit in detail in section 1.2.3, after introducing the circuit QED
architecture, which allows to address this type of qubits with rediofrequency signals.

1.2.2 Circuit QED

Since the appearance of the first superconducting qubits, different ways of address-
ing the qubit were implemented. A capacitively coupled single electron transistor
was used to address the first Cooper pair box [56] and a dc-SQUID was used to
control and readout a flux qubit [58], for example. The current leading architecture
for addressing (operating and measuring) superconducting qubits is circuit Quan-
tum Electrodynamics (cQED). It was introduced in 2004 by Blais et al. [59]. In this
approach, the superconducting qubit is coupled to a readout resonator and qubit
control is achieved by sending microwaves to the qubit-resonator system and mea-
suring their transmission or reflection. The name cQED comes from the analogy of
this system, in which RF fotons interact with artificial multilevel systems (or atoms)
with Quantum Electrodynamics, the discipline that studies the interaction of pho-
tons of light with atoms.

Qubit-resonator interaction

The readout resonator can be modeled as a single-mode LC circuit, with inductance
Lr, capacitance Cr and resonant frequency νr = ωr/2π, ωr = 1/

√
LrCr. The typical

way of coupling the qubit to the readout resonator is via a coupling capacitor Cc,
which introduces a coupling term into the Hamiltonian of the total system HQ+r.

HQ+r = h̄ωra†a + gn(a† + a) + HQ. (1.24)

Here, HQ is the qubit Hamiltonian and h̄ωra†a is the Hamiltonian of the uncoupled
resonator, with a being the annihilation operator of a photon in the resonator. The
interacting part of the Hamiltonian links the charge degree of freedom at the qubit
n to the voltage at the resonator V = −iVZPF(a† + a), where the coupling constant
g depends on CC and is a measure of the coupling strength [59], [60]. The circuit
model for this system is shown in figure 1.5 a).

Hamiltonian 1.24 can be written in the basis of the qubit eigenstates |k〉 as

HQ+r = h̄ωra†a + h̄ ∑
j,k

gjk |j〉 〈k| (a† + a) + ∑
j

εj |j〉 〈j| . (1.25)
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With εk being the eigenenergie of the qubit eigenstate |j〉 and gjk = g 〈j| n |k〉.

FIGURE 1.5: Circuit QED. a) Circuit model corresponding to Hamiltonian 1.24, showing a
qubit capacitively coupled to a readout resonator. The qubit black box can be any of the cir-
cuit models shown in figure 1.4 for different types of qubits. b) and c) Energy levels of for the
resonator-qubit system when they are uncoupled (black) and for non-zero coupling constant
gge (brown). Here we only show two of the qubit states, |g〉 and |e〉. Panel b) corresponds
to zero detuning. Non-zero coupling lifts the degeneracy by an amount proportional to the
coupling strength. Panel c) corresponds to the dispersive regime

∣∣∣gjk

∣∣∣√n + 1 �
∣∣∣∆jk

∣∣∣∀j, k.
The resonator’s level separation depends on the qubit state, |g〉 or |e〉.

The detuning with respect to the resonator of a qubit transition |j〉 → |k〉, with
frequency ωjk = (εj− εk)/h̄, is typically denoted by ∆jk, ∆jk = ωjk−ωr. For zero de-
tuning of one of the qubit transitions, the effect of the interaction term in the Hamil-
tonian is to lift the degeneracy by an amount proportional to gjk, which depends
on the number of resonator photons n, 2gjk

√
n + 1. For large detuning of all qubit

transitions,
∣∣gjk
∣∣√n + 1 �

∣∣∆jk
∣∣∀j, k, it is common to treat Hamiltonian 1.25 with

perturbation theory. In this case, the interaction results on a pull on the resonator
frequency which depends on the state of the qubit and on the number of photons in
the resonator. This pull, or dispersive shift, is typically denoted by χi for the qubit
in state |i〉 and is a function of the ∆jk’s and gjk’s [62]. In second order perturbation
theory we have [72]

χi = nh̄ ∑
j
(

∣∣gij
∣∣2

∆ij
−
∣∣gji
∣∣2

∆ji
). (1.26)

Schematics of the zero-detuning and dispersive regimes discussed above are
shown in figures 1.5 b) and c) respectively, for qubit levels g and e only.

For the case of a Cooper pair box or a transmon, the study of the resonator-
qubit system can be very simplified due to selection rules that suppress most of the
matrix elements 〈j| n |k〉. For the transmon, only nearest-neighbour matrix elements
〈j| n |j± 1〉 are relevant. When considering only the two lowest energy states of the
qubit |g〉 and |e〉, the ones relevant for quantum computation, only gge and ge f have
an effect on the relevant dispersive shifts and simple expressions are found for χe
and χg in the dispersive regime [62], [72]

χe = nh̄

∣∣geg
∣∣2

∆eg
− nh̄

∣∣g f e
∣∣2

∆ f e
χg = −nh̄

∣∣geg
∣∣2

∆eg
. (1.27)

As we will see in the next section, this simplification is not valid for a fluxonium
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qubit, for which many virtual transitions contribute to the dispersive shifts.

Qubit control and dispersive readout

Protocols for qubit control and readout in circuit QED normally rely on the disper-
sive regime presented above. The pull of the qubit on the resonator frequency can
be used to readout the qubit state. In experiments, the resonator is capacitively cou-
pled to a feedline with two ports, for which the scattering matrix is measured. When
measuring the transmission spectrum through the feedline versus frequency, a dip
appears at the resonant frequency of the resonator. If the qubit is in state |i〉, this dip
appears at ω + χi. By measuring the transmitted amplitude or phase close to ωr one
can therefore measure the state of the qubit.

Regarding qubit control, it can be achieved by driving the qubit-resonator sys-
tem with frequency close to ωge [64], [73]. Depending on the exact pulse frequency,
amplitude and duration, qubit rotations around different axes can be realized. For
the main superconducting qubits, the cQED architecture permits realizing a uni-
versal set of gates that can be combined to obtain any desired gate on single and
multiple qubit states.

1.2.3 Fluxonium

As introduced in section 1.1.2, a fluxonium is a type of inductively shunted super-
conducting qubit [10], [74], [75]. It can be described by the Hamiltonian model pre-
sented before for an rf SQUID (equation 1.23), shown again here drifting the phase
variable by 2e

h̄ Φext for convenience

H f = 4ECn2 − EJcos(φ +
2e
h̄

Φext) +
1
2

EL
(
φ
)2. (1.28)

A fluxonium is typically operated in a regime EL � EC < EJ . Typical parameters
are EL/h ∼0.5 GHz, EC/h ∼2.5 GHz and EJ/h ∼10 GHz. Its circuit model is shown
in figure 1.4 b).

Fluxonium spectrum: intra-well plasmons and inter-well fluxons

The spectrum of fluxonium is strikingly rich. It is shown in figure 1.6 as a function
of Φext, for different values of EJ and fixed EC and EL values. State and transition
energies here and throughout this work are sometimes shown in units of frequency,
omitting the conversion factor h̄ =1.05× 10−34 m2kg/s.

Column i) shows the potential vs. φ for Φext = 0. EJ contributes to the φ periodic
part, while EL changes the magnitude of the overall parabolic shape of the potential.
The energy levels shown in the second column depend on the potential shape and
on the value of C, which is the particle mass in the equivalent mechanical system
of a particle with velocity φ̇ moving on this potential. Transition energies, which
are the quantity measured in experiments, are shown in column iii). The transitions
shown here are only the ones from the ground state to higher energy states, they are
the available transitions for a system at zero temperature, for which only the lowest
energy state is populated.
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FIGURE 1.6: Fluxonium potential, spectrum and transition energies for increasing EJ . Col-
umn i) shows the fluxonium potential in Hamiltonian 1.28, at zero external flux and for var-
ious values of EJ . Energy levels are superimposed as horizontal blue lines. Rows a), b), c)
and d) correspond to EJ/h = 1, 4, 8 and 12 GHz respectively. Column ii) shows the lowest
eigenenergies of Hamiltonian 1.28. Column iii) shows the lowest energy transitions from
the ground state to the lowest excited states, indicated with color-matching arrows in panel

a) ii). For all panels EL/h =0.7 GHz and EC/h =2.4 GHz.

For low EJ values the spectrum is very weakly anharmonic. In this case the states
are basically vibrational modes determined by EL/h =0.7 GHz and EC/h =2.4 GHz,
with some small flux modulation given by EJ . The spacing between eingenenergies
in this case is close to the plasma frequency νLC = ωLC/2π =

√
8ECEL/h, where

ωLC = 1/
√

LC. This plasma frequency is indicated in figure 1.6 a) i). For this specific
set of parameters its value is νLC =3.7 GHz.

For large EJ values the spectrum has a strong dependence on external flux and
becomes strongly anharmonic (see figure 1.6 d)). States associated with the lowest
energy transitions are no longer vibrational modes of the LC oscillator. The low en-
ergy states are in this case localized at one of the potential wells formed due to the
strong periodic EJ modulation of the potential and they are typically called fluxons.
This localization is highlighted in figure 1.6 d) i). Since these wells are spaced by
integer multiples of Φ0, a fluxon can be viewed as an integer number of flux quanta
trapped in the loop [10]. Comparing rows c) and d) we observe that, as EJ increases
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and the wells become deeper (their depth is of the order of EJ/h), tunneling cou-
pling between different fluxon states decreases. This can be seen in the reduction
of the splitting between low-energy fluxon states at Φext = ±Φ0/2 in column ii).
Transitions between fluxons localized at different wells, fluxon transitions, have a
strong Φext-dependence (see column iii) in figure 1.6). However, transitions between
different states localized in the same well have a small Φext-dependence, they are
called plasmon transitions and their frequency can be closely approximated by the
junction plasma frequency νJC, determined by EJ and EC. This plasma frequency
νJC =

√
8ECEJ/h is shown in figure 1.6 d) i).

To better understand the origin of the strong Φext-dependence of the low energy
states in the fluxonium regime, it is useful to look at figure 1.7. It shows the evolution
of the potential with external flux. For low EJ (figure 1.7 a)), the phase modulation
over the parabolic potential is small. Since the effect of Φext is only reflected as a
shift of this modulation, the potential does not change much for different values of
the external flux. For higher EJ the wells configuration depends strongly on Φext.
The lowest energy states are localized at these wells, so their energy is also affected
by Φext.

FIGURE 1.7: Fluxonium potential for two EJ values and different Φext values. The first col-
umn shows the fluxonium low energy spectrum for two different EJ values. The rest of the
panels show he fluxonium potential in Hamiltonian 1.28 at different values of the external
flux, indicated with vertical color lines on the spectra. Horizontal blue lines over the poten-
tial plots indicate the system eigenenergies at the corresponding Φext. Row a) and row b)
correspond to EJ/h =2 GHz and EJ/h =8 GHz respectively. For all panels EL/h =0.7 GHz

and EC/h =2.4 GHz, as in figure 1.6.

The parameter regime typically referred as fluxonium regime is the one for which
the first transition |g〉 → |e〉 is of fluxon type, between fluxons localized at different
wells, and for which the lowest energy well hosts at least two states, allowing for
plasmon transitions [75]. The spectrum shown in figure 1.6 row d) is a good exam-
ple of this regime. In this case, the qubit states |g〉 and |e〉 are fluxon states and the
fluxon-like transition |g〉 → |e〉 can be flux-tuned over the entire frequency range
typically accessible in experiments. At low external applied flux the qubit |g〉 state
can be thought as a persistent current state in the fluxonium loop, while the |e〉 state
corresponds to a superposition of persistent currents in opposite directions. For
Φext = ±Φ0/2, however, the two lowest energy states are the even and odd super-
positions of persistent currents flowing in opposite directions.
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Sources of decoherence

The relaxation and dephasing times (T1 and T2) depend on the susceptibility of the
qubit to different loss mechanisms and on the noise of the system’s parameters.

Susceptibility to different loss mechanisms depends, in different ways, on the
point in external flux at which the qubit is operated [76]. It originates from the cou-
pling of φ to a bath that can dissipate energy at the frequency of the qubit transition.
Such a bath can be modeled as a frequency dependent admittance and the relaxation
rate for transition 〈j| → |k〉 can be estimated with Fermi’s golden rule [75]–[77]

Γij =
1

(2e)2 |〈j| φ |k〉|
2SIY(ωjk) (1.29)

Where SIY is the spectral density of the current noise in the admittance Y modelling
the loss bath.

The total qubit relaxation rate is the sum of Γeg corresponding to different loss
mechanisms and it determines T1, its inverse. One of these mechanisms is the Pur-
cell effect, which comes from the coupling of fluxonium to the 50 Ω feedline via the
resonator. Relaxation due to Purcell effect is only relevant when the qubit transition
is close to the resonator frequency [76].

Other contributions are capacitive loss and inductive loss. The first comes from
a real part of the impedance at the the surface of dielectrics in coupling and shunt
capacitors and increases linearly with frequency. The second originates from a lossy
permeability (with a real part) and is inversely proportional to frequency. Due to
their frequency dependence, these two dissipation mechanisms are expected to be
more relevant at Φext = 0 and Φext = ±Φ0/2 respectively, the points where ωge
reaches its maximum and minimum values.

A different loss mechanisms, which has been shown to be the leading source
of decoherence for fluxonium [77], is quasiparticle tunneling across the junction.
Equilibrium quasiparticle population decreases exponentially with temperature, but
non-thermal quasiparticles are still present at low temperatures due to cosmic rays,
radioactive decay of materials in the cryostat, infrared photons coming from the ex-
terior of the cryostat and other (some of them unknown) sources. The dissipation
effects due to quasiparticles can however be reduced by operating the fluxonium at
certain flux points. Qubit T1 times have been shown to increase by more than one
order of magnitude between Φext = 0 and Φext = ±Φ0/2 [77]. At Φext = ±Φ0/2
fluxonium becomes insensitive to loss due to tunneling of quasiparticles across the
junction. This is due to destructive interference of hole-like and electron-like tunnel-
ing channels at that flux point.

From expression 1.29 we see that by reducing the matrix element |〈e| φ |g〉| of the
qubit transition one can increase T1. For transmon and other qubits this matrix ele-
ment needs to be high enough because, as we saw in equation 1.27, it determines the
magnitude of the dispersive shift. This is the case for fluxonium, for which higher
transitions influence the dispersive shift strongly, as we will see in the next section.

Qubit dephasing can also be produced by noise in different system’s parameters,
as fluctuating offset charges, external flux noise or variations in EL, EC or EJ .

Shunting the Josephson junction with a dc connection eliminates the qubit sen-
sitivity to constant offset charges, characteristic of island qubits. This is due to the
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possibility of a continuous displacement of the Cooper pair condensate can com-
pensate any offset charge. We can see this by applying a gauge transformation
ψ′(φ) = eingφψ(φ)3 to Hamiltonian 1.28, which makes it equivalent to the same
Hamiltonian with an offset charge ng [66]. This protection eliminates most problems
coming from 1/ f charge noise in other types of qubits. We should note, however,
that a large shunting inductance does not protect against high frequency ac charge
noise [66].

It would be too easy if we could get rid of charge sensitivity without paying
anything in return. Including a flux knob on the system makes it sensitive to external
flux fluctuations due to the strong dependence of the qubit transition on Φext. Φext =
0 and Φext = ±Φ0/2 are however sweet spots where flux variations do not have an
effect to first order (see figure 1.6).

Supercurrent fluctuations of the junction (or EJ fluctuations) can also change the
qubit frequency and lead to dephasing [75]. For regular fluxonium the value of the
supercurrent is not expected to vary, due to the fixed geometry of the junction. As
we will see in section 1.3, this will not be the case for the devices studied in this work
due to major differences between our junctions and regular SIS junctions. Sensitivity
to EJ fluctuations can be reduced by operating the fluxonium qubit at a flux sweet
spot for EJ somewhere between Φext = 0 and Φext = Φ0/2, which must exist due to
the opposite effect of changing EJ at Φext = 0 and Φext = Φ0/2.

Other circuit parameters, as EC and EL could show fluctuations in our device due
to vortices appearing in the corresponding circuit elements at non-zero magnetic
field. Measures taken to reduce this effect will be discussed in chapter 2.

Matrix elements

As we saw in section 1.2.2, the matrix elements of qubit transitions have a strong
impact on the dispersive shift of the resonator. We have just seen that they also in-
fluence the coupling to different sources of decoherence. In this section we take a
look at the magnitude and flux dependence of number and phase matrix elements
for the lowest energy transitions of fluxonium. Figure 1.8 shows matrix elements for
the same EJ values for the spectra in figure 1.6.

As we see, 〈g| n | f 〉 and 〈g| φ | f 〉 are zero at Φext = 0 and Φext = ±Φ0/2. This
occurs because at Φext multiple of Φ0/2 the state wavefunctions have a well defined
φ-parity due to the symmetry of the potential. Figure 1.9 shows the amplitude of
the first three energy levels wave functions as a function of both flux and charge.
Ground ψg(φ) and second excited ψ f (φ) states are symmetric with respect to coordi-
nate inversion at these flux points, explaining the suppression of the matrix elements

〈g| φ | f 〉 =
∫ ∞

−∞
dφψg(φ)ψ f (φ)φ (1.30)

and |〈g| n | f 〉| ∝ |〈g| φ | f 〉| [75]. We expect to observe this suppression of the matrix
elements as a forbidden |g〉 → | f 〉 transition at zero and half flux in the spectra.

We can also observe that the matrix element 〈g| φ |e〉 is strongly enhanced close
to half flux (Φext = ±Φ0/2). This is due to the strong hybridization of the two fluxon

3In is not possible to do the same for and island qubit, like the transmon. Due to the 2π phase
periodicity its wavefunction this gauge transformation can only be carried out for integer values of ng
in this case (which proves the transmon insensitivity to integer offset charges).
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states when the two lowest energy fluxon wells have equal depths.

FIGURE 1.8: n and φ matrix elements for fluxonium transitions as a function of external
flux. Matrix elements shown correspond to the three lowest transitions staring from the
ground state shown in figure 1.6 iii). Higher color intensity denotes lower energy transitions.

For all panels EL/h =0.7 GHz and EC/h =2.4 GHz.

FIGURE 1.9: Amplitude of fluxonium wavefunctions for the three lowest energy states
at zero external flux. a) As a function for reduced charge n. b) As a function of phase.
|g〉 = |0〉, |e〉 = |1〉 and | f 〉 = |2〉. Symbols + and − indicate even and odd parity of the
wavefunction, respectively. Circuit parameters are EL/h =0.5 GHz and EC/h =2.5 GHz and

EC/h =9.0 GHz, similar to the ones for figure 1.6 d). Figure adapted from [10].
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Circuit QED with fluxonium

In this work we will use a shared inductance to couple the fluxonium to the readout
resonator. Capacitive coupling (see figure 1.10 a)) has been shown to lead to capaci-
tive loss at the surface of the coupling capacitor dielectric and to increase relaxation
rates [76]. We expect therefore to get rid of this loss mechanism by switching to in-
ductive coupling. As shown in figure 1.10 b), a piece of inductance of the fluxonium
loop is shared with the inductive part of the resonator. In chapter 2 we will see how
this is implemented in experiments.

FIGURE 1.10: Circuit model for a fluxonium circuit coupled to a single mode resonator.
Coupling circuit elements are shown in yellow. a) Capacitive coupling to the n degree of
freedom via a coupling capacitor CC. b) Inductive coupling to the φ degree of freedom via a

shared inductance LC.

Inductive coupling leads to similar effects as the ones discussed in section 1.2.2.
Now, the matrix elements relevant for the dispersive shifts are the phase matrix el-
ements (see left column of figure 1.8). Contrary to the case of a transmon qubit, for
fluxonium there are no selection rules that suppress the dependence of the disper-
sive shift χ on transitions to high energy levels. Fluxonium dispersive shifts have
been studied up to fourth order perturbation theory by Zhu et al. [72] and have been
shown to have contributions from matrix elements for transitions in which the state
of interest is not even involved.

Of interest for calculating the dispersive shifts at the |g〉 and |e〉 qubit states is
the |g〉 → | f 〉 plasmon transition. As we see in figure 1.8 the matrix element for the
fluxon |g〉 → |e〉 transition is lower than 〈g| φ | f 〉, away from half-flux. For not very
large ∆g f ’s, the latter transition contributes dominantly to the dispersive shift. If the
qubit is operated having the readout very detuned from the fluxon transition, but
close to the intra-well plasmon transition, which remains at a small frequency win-
dow for all flux values, one can avoid relaxation by Purcell effect without suffering
from a low dispersive shift.

Figure 1.11 shows the χg dispersive shift on the resonator, for two different read-
out frequencies and for the four different EJ values discussed in previous figures.
Column i) corresponds to the readout close to the first transition and detuned for
the second. Column ii) shows the opposite case. As we mentioned, for the fluxo-
nium regime (row d)) the reduced matrix element for the |g〉 → |e〉 fluxon transition
results in a suppressed χg when the resonator is detuned from other transitions (see
fig 1.11 d) i)). Far from the fluxonium regime the |g〉 → |e〉 is not suppressed, due to
the absence of deep fluxon wells. As a consequence, coupling of the qubit transition
to the readout is much stronger (see fig 1.11 a) i)).
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FIGURE 1.11: Numerically computed dispersive shifts χg for an inductively coupled
fluxonium-resonator system. The choice of EL, EC and (row-dependent) EJ parameters is
the same as in figures 1.6 and 1.8. Each column corresponds to a different value of the read-
out frequency. Readout for column i) is chosen to be detuned from the |g〉 → | f 〉 transition
and close to the |g〉 → |e〉 transition. For column ii) readout is close to the |g〉 → | f 〉 transi-
tion. Green lines denote qubit transitions. Continuous (dashed) black line denotes readout
transition for the coupled (uncoupled) system. Diagonalization of the inductively coupled

Hamiltonian is carried out following the method in reference [78].

More interesting may be to take a look at the difference in dispersive shifts for
fluxonium in state |e〉 and |g〉 respectively, since this determines, together with the
matrix element 〈g| φ |e〉, the visibility of the |g〉 → |e〉 transition in two-tone spec-
troscopy measurements. A large

∣∣χe − χg
∣∣ facilitates characterizing the fluxonium

spectrum and also reading out of the qubit state. Figure 1.12 shows
∣∣χe − χg

∣∣, av-
eraged over Φext, for different EJ and readout frequency νr values. Panel a) cor-
responds to νr detuned from the second transition, as in column i) in figure 1.11.∣∣χe − χg

∣∣ in this case is much larger for small EJ due to the absence of fluxon wells.
As EJ goes up,

∣∣χe − χg
∣∣ decreases, what reduces the visibility of the |g〉 → |e〉 transi-

tion at low readout frequencies. In panel b) we see that, for νr close to ωg f ,
∣∣χe − χg

∣∣
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FIGURE 1.12: Numerically computed difference in dipersive shifts χe and χg for fluxo-
nium. a) and b) show the EJ dependence of average

∣∣χe − χg
∣∣ for readout frequency far and

close to ωg f respectively. c) and d) show the νr dependence of average
∣∣χe − χg

∣∣ for small
and large EJ values. Diagonalization of the inductively coupled Hamiltonian is carried out

following the method in reference [78].

is larger in average. Panels c) and d) show the evolution of average
∣∣χe − χg

∣∣ in fre-
quency, for two values of EJ . At low readout frequencies the dispersive shift is large
in both cases. For low EJ this is due to the combination of a large |g〉 → |e〉 matrix
element with a low detuning ∆ge. For high EJ the average dispersive shift increases
at low frequencies due to the strong contribution of 〈g| φ |e〉 at half flux, but it is low
at other flux points. When νr gets close to the plasmon transition (at around 12 GHz
in this case), there is a spike in

∣∣χe − χg
∣∣ due to the contribution of 〈g| φ | f 〉.

When coupling fluxonium to the readout resonator, apart from the effect of the
qubit on the resonator frequency, we should also take into account shifts of the qubit
transitions due to the presence of the resonator, specially when fitting experimental
data. This effect is shown in figure 1.13, obtained following the coupled Hamilto-
nian diagonalization procedure of reference [78]. Shifts of the fluxonium transitions
with respect to the bare frequencies are stronger for low EJ values. This is is due to
the stronger influence of the fluxonium inductance L on the energy levels when EJ
is low. Seen from the fluxonium part, coupling to the readout effectively changes
L, affecting the transition energies. As expected, this effect is more prominent when
increasing the coupling strength (see figure 1.13 ii)).

1.3 Nanowire fluxonium

A nanowire fluxonium, the device studied in this work, is a regular fluxonium in
which the Josephson junction has been replaced by a semiconducting nanowire with
two superconductor proximitized sections leaving a gap in between: the junction.
An schematic of the nanowire Josephson junction is shown in figure 1.14 b). If the
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FIGURE 1.13: Transition frequencies of the inductively coupled resonator-fluxonium sys-
tem. Each row corresponds to a different EJ value, analogously to figures 1.6, 1.8 and 1.11.
Different columns correspond to different shared inductance LC over resonator inductance
Lr ratios, 0.2 for i) and 0.4 for ii). Resonator transitions starting from zero photons are in-
dicated with black lines. Continuous green lines denote transitions of states localized at the
fluxonium part. Dashed green lines are included for comparison with the bare resonances
of fluxonium with the same circuit parameters. Diagonalization is carried out following the

method in reference [78].

two superconducting sections are driven into the topological regime, four Majorana
bound states emerge at their ends, forming a qubit (see section 1.1). A circuit model
for this device is shown in figure 1.14 a), where the two grey sections represent the
topological parts of the wire.

The nanowire fluxonium was first proposed by Pekker et al. [30]. They saw that
replacing the conventional junction by a junction hosting MZMs alters the spectrum
of the qubit due to the 4π-periodic Josephson effect and that this spectrum strongly
depends on the parity state of the Majorana qubit. In this section we will see how
to use a nanowire fluxonium both to find new signatures of MZMs and to realize
coherent state transfer between the topological qubit and the fluxonium.



30 Chapter 1. Physics behind a nanowire fluxonium

FIGURE 1.14: Nanowire fluxonium. a) Circuit model for a nanowire fluxonium in the
topological regime, corresponding to Hamiltonian 1.38. b) Schematic (not to scale) of the
nanowire Josephson junction showing in yellow the cutter gate that is used to electrostat-
ically tune the transmission of the Andreev bound states at the junction and in brown the

gates that tune the chemical potential of the topological sections.

1.3.1 Nanowire Josephson junction

Without considering for now any topological effect on this device, we already notice
a main difference with respect to a fluxonium with an SIS junction. A superconductor-
nanowire-superconductor (SNS) Josephson junction does not necessarily have the
cosine potential showed in equation 1.18 for an SIS junction. Until now, since we
only considered SIS junctions, which are typically the junctions used in regular su-
perconducting qubits, it was safe to assume that the transmission probability of all
Andreev bound states (ABSs) was low. In this limit, as we will see, the φ dependence
of junction potential can be safely approximated by a cosine. In a semiconductor
wire junction this is not necessarily the case. A more general expression, if the junc-
tion is short (i.e. much shorter than the superconducting coherence length), takes
into account the contributions from different transmission channels. Previous work
has demonstrated the possibility of using SNS junctions as the nonlinear element in
superconducting qubits [79]–[82]. In order to better understand the similitudes and
differences between these devices and qubits based on traditional SIS junctions, we
will very briefly discuss here the basic physics of ABSs at a Josephson junction.

An Andreev bound state is a fermionic mode localized at the junction that ap-
pears as a result of constructive interference of Andreev reflection processes [83].
The energy of a (degenerate) ABS with transmission probability T and at zero field
is [84]

EABS(φ) = −∆
√

1− Tsin2(φ/2). (1.31)

Here, ∆ is the induced superconducting gap in the nanowire. Each ABS contributes
to tunneling of Cooper pairs across the junction. The Josephson supercurrent gen-
erated by the phase dependence of an ABS energy can be directly calculated as
IABS = Φ0

2π
∂EABS

∂φ . A typical SNS junction has several Andreev bound states that con-
tribute to its total current and are normally seen as different transmission channels.
The junction potential can be expressed as the sum of the energies of all ABS con-
tributing to the junction conductance.

VSNS(φ) = −∆
N

∑
i=1

√
1− Tisin2(φ/2). (1.32)
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In the limit of Ti � 1 for all i we can Taylor expand the square root and approximate
VSNS(φ) as

VSNS(φ) ' −N∆ +
∆ ∑N

i=1 Ti

2
sin2(φ/2) = −∆ ∑N

i=1 Ti

4
cos(φ) + constant (1.33)

recovering the cosine potential presented before. Comparing this expression with
equation 1.18 we obtain EJ ' ∆ ∑N

i=1 Ti/4.
For a semiconducting junction, transmission probabilities are not always neces-

sarily much smaller than 1. Spectroscopy measurements in ballistic semiconducting
nanowires show channels with transmission up to 0.9 [85]. Still, as we will see in the
measurements in chapter 3, this will not have a strong impact on the spectra, which
at low energies can normally be considerably well fitted assuming a cosine depen-
dence of the Josephson term in the Hamiltonian. What is going to be more relevant
for us is the dependence of EJ on the superconducting gap ∆ and on the transmis-
sion probabilities Ti. This dependence is not important in typical experiments with
regular superconducting qubits, because there ∆ and the Ti’s are fixed. This will not
be the case for us, the ∆ and Ti’s dependence of EJ will result on a strong variation
of the nanowire fluxonium spectrum with external magnetic field and cutter gate
voltage.

Magnetic field dependence of EJ

In order to drive the superconducting sections of the wire into the topological regime
one needs to apply a magnetic field. A combination of different effects will lead to
a suppression of the induced gap with B. Since EJ is proportional to ∆, we expect to
see a reduction of EJ when going up in field.

One of the most direct effects of the magnetic field is a suppression of the gap in
the parent superconductor which induces ∆ in the nanowire [67]. This dependence
has the form

∆(B) = ∆(B = 0)

√
1− B2

B2
C

, (1.34)

where BC is the critical magnetic field. However, this effect is not expected to be
the leading one in this system due to the small shell thickness of the proximitized
aluminum, which leads to an Al critical field much greater than the bulk one.

As we saw in figure 1.2 f), the combination of Zeeman effect and spin-orbit in-
teraction also leads to a reduction of the induced gap. A detailed treatment of the
experimentally observed field dependence of the ABS energies, taking these two ef-
fects into account, is discussed in reference [85]. The authors carry out spectroscopy
measurements of the ABSs and show that Zeeman and spin-orbit have a big impact
on the supression of the ABS energies with field. They observe a strong reduction of
the ABS energy at B in the order of hundreds of mT, shown in figure 1.15 b).

Other effects of a parallel B can also be taken into account. As we discussed in
section 1.1, the orbital effect due to magnetic field threading flux quanta through
the nanowire cross section has a strong impact on the induced gap [43], [45]. This
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FIGURE 1.15: Cutter gate and parallel magnetic field dependence of EJ . Panels a) and
b) show spectroscopy measurements of ABSs in an aluminum proximitized InAs nanowire
junction, at φ = π. Figures adapted from [85]. Panels c) and d) show supercurrent measure-
ments of a NbTiN-InSb nanowire-NbTiN junction. The sudden differential resistance change
from almost 0 to several kΩ determines the critical current, and can be linearly mapped to
the value of EJ . Figures adapted from [86]. Panel a) shows how ABS appear sequentially
as Vc is increased. This results in the non-monotonical overall increase of the critical current
shown in c). B = 0 for both a) and c). Panels b) and d) show, respectively, the reduction of

EABS and IC with parallel magnetic field B.

effect contributes quadratically to the gap dependence on B

∆(B) = ∆(B = 0)
(
1− B2

B2
∗

)
. (1.35)

where B∗ = Φ0/A and A is the cross sectional area of the nanowire. We can see
this effect in the results of numerical simulations in figure 1.3. The magnitude of the
topological gap decreases considerably when orbital effect is considered (panel c))
with respect to when it is not (panel b)).

Furthermore, magnetic field can induce interference between the one-dimensional
modes at the junction. Supercurrent supression due to this effect was experimentally
and numerically studied by Zuo et al. [86] carrying out resistivity measurements
across the junction. The critical current IC can be directly mapped to EJ . Since the
ABS supercurrent is IABS = Φ0

2π
∂EABS

∂φ we have that, for a cosine phase dependence

of the Josephson effect, IC is proportional to EJ , IC = Φ0
2π EJ . Figure 1.15 d) shows

the strong suppression of the critical current, at magnetic fields parallel to the wire
of the order of hundreds of mT, observed in Zuo et al. experiments. We expect a
similar behaviour for EJ in our measurements, which will have a strong impact on
the nanowire fluxonium in-field spectroscopy.
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Cutter gate dependence of EJ

Since EJ also depends strongly on the transmission probabilities of the channels, be-
ing able to change the transparency of the junction would allow to tune EJ without
having to change the external field. For this reason we include a cutter gate which
can be used to electrostatically tune the electron density at the semiconducting junc-
tion. This gate is shown in yellow in figure 1.14 b).

It is difficult to deterministically predict in advance the exact value of EJ corre-
sponding to a given gate potential Vc, due to the different contributions from various
channels. The general trend observed in this work agrees, however, with previous
observations in similar systems [80], [85], [86]. At low, typically negative, Vc, the
junction is fully depleted. As Vc increases, different ABSs enter the superconducting
gap one by one, but their energies increase and decrease in an oscillatory way, due
to a non-monotonic dependence of the channel transmissions on Vc [85] (see figure
1.15 a) and c)). This translates, for our measurements, on a non-monotonic increase
of EJ as the gate potential is increased.

In all the superconducting qubits shown above, EJ of a single junction is fixed
by its geometry and material properties, and can not be changed after fabrication. A
typical way of including some flexibility in EJ in the case of SIS junctions is replacing
the single JJ by a dc SQUID containing two JJs and using the flux threaded through
this loop to control the effective EJ value. Using, instead, an SNS junction, as in this
case, allows to uncouple the knob for EJ from the control of the external flux through
the loop Φext. Gate noise could, however, become a new source of decoherence, due
to its direct influence in EJ . The non-monotonic dependence of EJ on cutter voltage
allows to find sweet spots (local maxima or minima of EJ(Vc)) where this decoher-
ence rate is minimized.

ABS state dependence of EJ

At zero field each ABS level is degenerate (Kramers degenerate at the time-reversal
invariant φ points 0 and π). Depending on its occupation it can be in four different
fermionic many-body configurations [87]. Two of these configurations have even
parity: the ground state and the doubly excited state with energy 2|EABS| above it.
The other two states, singly excited, have odd parity and are spin-degenerate. Their
energy is |EABS| above the ground state. At non-zero field the degeneracy of the
odd-parity states is broken, but there are still four possible states for a single ABS,
two with odd parity (|1〉 and |2〉, with energies E1 and E2 respectively) and two with
even parity (|V〉 and |P〉, with energies 0 and E1 + E2 respectively) [88].

Depending on the state of an ABS, its contribution to the total EJ is different. If it
is in the vacuum state |V〉, it contributes as shown before, with EJ,i ∼ ∆Ti/4. How-
ever, if it is excited thermally or by a photon to its |P〉 state, then the contribution
to the total Josephson energy changes sign. An Andreev channel can also change
parity via quasiparticle poisoning event and be excited to an odd state. In this case,
it doesn’t contribute to the total EJ because its energy does not depend on phase.

Therefore, both parity conserving excitations and quasiparticle poisoning events
can result in an effective change in EJ . If these transitions happen in a time scale
small compared to the measurement time, spectral lines corresponding to different
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values of EJ could in principle be observed simultaneously in spectroscopic mea-
surements.

The dynamics of ABS many-body configuration in Al/InAs nanowire junctions
has been studied in reference [89]. They find characteristic time scales for ABS par-
ity switching and for |V〉 ↔ |P〉 switches of around 160 µs and 3.2 µs respectively,
both at ∼30 mK. Their study corresponds to a single ABS with high transmission
(Ti ∼ 0.98), so the extracted time scales are specific for that case. However, they
can be taken as an order of magnitude estimate of the measurement time in which
simultaneous effects from different effective EJ values will be observed in our ex-
periments. The typical measurement time of a nanowire fluxonium spectrum is of
the order of minutes or even hours. For cases in which at least one ABS has a big
transmission, and therefore contributes strongly to the spectrum, this effect could
potentially have a big impact on the experimental observations.

1.3.2 Spectrum of a nanowire fluxonium

The circuit model for a nanowire fluxonium is shown in figure 1.14 a). For now, we
neglect the possible interaction between MZMs localized next to the junction (inner
Majoranas, γ1 and γ2) and away from the junction (outer Majoranas, γ0 and γ3).
The Hamiltonian for this system will therefore be the one for a regular fluxonium
(equation 1.28) with the VSNS potential instead of the cosine EJ term and with an
extra term coming from the coupling between inner Majoranas

H = 4ECn2 − ∆
N

∑
i=1

√
1− Tisin2(φ/2)− EMiγ1γ2cos

(φ

2
)
+

1
2

EL
(
φ− 2e

h̄
Φext

)2.

(1.36)
The new energy scale EM =

√
TM∆, with TM the transmission of the topological

channel, denotes the magnitude of the coupling between γ1 and γ2, which depends
on the amount of overlapping of their wavefunctions.

In what follows we will study the spectrum of a nanowire fluxonium, focusing
first on the effect of high transmission channels and afterwards on the Majorana
coupling. We will ignore in both cases the auxiliary circuitry for control and readout
discused in previous sections (i. e. we will consider only the uncoupled fluxonium).

Zero field

At zero field both superconducting sections of the wire are in the trivial regime, so
EM = 0. The system’s Hamiltonian is very similar to the one for a regular fluxonium,
studied in section 1.2.3.

H = 4ECn2 − ∆
N

∑
i=1

√
1− Tisin2(φ/2) +

1
2

EL
(
φ− 2e

h̄
Φext

)2. (1.37)

Figure 1.16 shows fluxonium spectra for a single channel with increasing trans-
mission T. We plot, together in each panel, spectra for different ∆ values, but with
fixed effective EJ = ∆T/4. As we see, the effect of high transmission is more no-
ticeable at higher energies, specially for large EJ . Having a single channel with high
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transmission can therefore strongly affect the fluxonium spectrum, and should be
taken into account when interpreting the spectroscopy data.

FIGURE 1.16: Transition energies for fluxonium with a high transmission channel, ob-
tained by diagonalization of Hamiltonian 1.37 with N=1. Different EJ values are indicated
on the titles of different panels. Continuous lines denote transitions corresponding to a co-
sine EJ term and they are equal to the spectra in figure 1.6. Dashed lines correspond to
different T values, starting from T = 0.1 for the darkest color and increasing in steps of 0.2

until T = 0.9 for the brightest color. All transitions shown start from the ground state.

Topological regime

Now, we focus on the effect of the Majorana interaction across the junction, assum-
ing a cosine dependence of the EJ term. We neglect for now the coupling to outer
Majoranas γ0 and γ3.

H = 4ECn2 − EJcos(φ)− EMiγ1γ2cos
(φ

2
)
+

1
2

EL
(
φ− 2e

h̄
Φext

)2 (1.38)

Figure 1.17 shows the effect of a non-zero EM on the potential, for different par-
ities of iγ1γ2. The potential is now 4π-periodic in external field, instead of 2π-
periodic, as in the trivial case. We can see this comparing figure 1.7 to figure 1.17.
In the first case, the potential shape is identical for ϕext = 0 and ϕext = 2π, while a
non-zero EM term changes this periodicity.

Assuming fixed total fermion parity of the four MZMs −γ0γ1γ2γ3 = ±1, the
state of the topological qubit embedded in the fluxonium circuit is determined by
the parity iγ1γ2 = ±1 (see discussion around equation 1.15). As shown in figure
1.18, the qubit state is encoded in the nanowire fluxonium spectrum, which can be
seen as two copies of the trivial fluxonium spectrum, shifted in opposite directions
depending on the state of the topological qubit. The separation is more clear for
larger EM values. The horizontal shift is proportional to EM/EL, for EM values lower
than π2EL. At EM = π2EL, the minima with opposite parity, which would be at
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FIGURE 1.17: Evolution of the nanowire fluxonium potential for increasing EM . This
evolution is shown for a range of EM values, starting from EM = 0 (black lines) and un-
til EM = 2π2EL (brightest color lines). Different columns indicate different external field
and different rows correspond to different iγ1γ2 parity, even for the top (red) row and odd
for the bottom (blue) one. Black lines show the trivial fluxonium potential, and are therefore
equal for both parities. For all panels EJ/h =8 GHz, EL/h =0.7 GHz and EC/h =1.0 GHz,

as in figure 1.6 row c).

FIGURE 1.18: Evolution of the nanowire fluxonium spectrum and transition energies for
increasing EM . Left column shows the lowest eigenenergies of Hamiltonian 1.38, for two
different values of EM. Red and blue colors indicate even and odd parity iγ1γ2, respectively.
Right column shows the lowest energy parity-conserving transitions from the ground state
to the lowest excited states, indicated with color-matching arrows in the panel b). For all

panels EJ/h =8 GHz, EL/h =0.7 GHz and EC/h =1.0 GHz, as in figure 1.6 row c).

ϕext = π in the trivial case, reach ϕext = 0 and ϕext = 2π. For EM > π2EL the two
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minima stay at these same flux positions.
Depending on the state of the topological qubit, different transitions are available

(figure 1.18 c) and d)) and the corresponding dispersive shifts change. This allows
to carry out fast readout of the qubit state using standard superconducting qubits
techniques.

Finite size effects

Due to the finite length of real nanowires and the spatial extension of the Majorana
wavefunction, outer and inner Majoranas wavefunctions can also overlap4. This can
lead to coherent junction parity oscillations, mixing the two parity-dependent sets
of lines in the spectrum. This effect can be modeled including two extra terms in the
Hamiltonian [30]

H = 4ECn2−EJcos(φ)−EMiγ1γ2cos
(φ

2
)
+E01

Miγ0γ1 +E23
Miγ2γ3 +

1
2

EL
(
φ− 2e

h̄
Φext

)2

(1.39)
Here, E01

M and E23
M are the coupling strengths between inner and outer Majoranas

at both sides of the junction, and are not necessarily equal. These iγ0γ1 and iγ2γ3
couplings correspond to x and y interactions in the topological qubit (see equation
1.15).

Figure 1.19 shows the eigenenergies and transition energies for Hamiltonian 1.39
for two different values of E01

M = E23
M. As we mentioned, including these coupling

terms results in anticrossings between energy levels with different parities, with a
gap size proportional to the strength of the finite-size couplings. This gives raise to
extra transitions, involving states with different iγ1γ2 parity, which where forbidden
before.

1.3.3 cQED with a nanowire fluxonium: implementation of quantum gates

Labels to the quantum states in figure 1.19 are assigned by comparison to the spec-
trum without E01

M and E23
M couplings. If these couplings are weak, which can be

achieved using long wires, these states are strongly hybridized at the anticrossings,
but almost separable away from them. Therefore, staying at flux points far from an-
ticrossings, the quantum state of fluxonium and topological qubit can be addressed
reliably and independently.

In order to realize single qubit gates on the topological qubit, one option is to
drive transitions on the spectrum that change only the topological qubit state. To
realize a rotation around x, for example, one can excite the |−〉 ↔ |+〉 transition.
However, as we see in figure 1.19, its frequency depends in principle on the state of
the fluxonium qubit (i.e. ω|g,−〉↔|g,+〉 and ω|e,−〉↔|e,+〉 are different). One way of solv-
ing this issue is increasing the value of EJ , which makes ω|g,−〉↔|g,+〉 and ω|e,−〉↔|e,+〉
be degenerate over a range of Φext values. This is shown in figure 1.20, which shows
the same spectra but for EJ/h = 14 GHz instead of 8 GHz. By using standard cQED
techniques and driving the qubit with a pulse with frequency close but slightly de-
tuned from the |−〉 ↔ |+〉 transition frequency, it is also possible to realize other
single qubit rotations, like the Hadamard gate [59]. Furthermore, one can achieve
coherent quantum amplitude exchange between the |−〉 and |+〉 qubit states by flux

4We do not consider here the coupling between non-neighbour Majoranas.
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FIGURE 1.19: Nanowire fluxonium spectrum and transition energies including inner to
outer Majorana coupling terms Different rows correspond to difference value of E01

M = E23
M,

indicated in the titles. Left column shows the lowest eigenenergies of Hamiltonian 1.39 in
black, superimposed to the corresponding levels in the absence of these couplings (red or
blue dashed lines depending on the iγ1γ2 parity. Right column shows transitions from the
ground state (in black) and from the first excited state (in grey), again, superimposed to
the parity-conserving transitions in the absence of inner-outer couplings. In a) the energy
levels are labeled by comparison with the decoupled spectrum. For all panels EJ/h =8 GHz,

EL/h =0.7 GHz, EC/h =1.0 GHz and EM/h =2.0 GHz.

pulsing into the avoiding crossing at Φext = Φ0/2, where these two states mix sig-
nificantly. At this point coherent oscillations between the two states occur naturally,
by characterizing the coupling and pulsing for the correct amount of time, one can
also achieve a controlled rotation around the x axis.

By driving other transitions in this spectrum it is also possible to realize gates
involving both the topological qubit and the fluxonium qubit. Being able to realize
a SWAP gate, exchanging their states, would permit carrying out any gate available
for fluxonium on the topological qubit. The simplest way of implementing a SWAP
gate is by directly applying a π-pulse at the frequency of transitions |g,−〉 ↔ |e,+〉
and |g,+〉 ↔ |e,−〉 when they are degenerate. As before, this degeneracy appears
only at a range of Φext values, which becomes larger as EJ is increased (see figures
1.19 and 1.20).

It could be that the matrix element of this direct transition is to low, making it
difficult to realize a SWAP gate by driving it. An alternative is to use a combination
of cNOT gates. If cNOTF and cNOTM are, respectively, the cNOT gates having the
fluxonium qubit and the Majorana qubit as a control, the SWAP gate can be imple-
mented combining them: SWAP=cNOT FcNOT McNOT F. The cNOTF gate can be
implemented applying a π-pulse at frequency ω|g,+〉↔|e,+〉. The cNOTM gate can be
implemented by applying a π-pulse at frequency ω|e,−〉↔|e,+〉 at a flux point where it
is not degenerate with ω|g,+〉↔|g,−〉.
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FIGURE 1.20: Same as figure 1.19 but now with EJ/h =14 GHz instead of 8 GHz. Increasing
the value of EJ increases the flux range over which some transitions are degenerate with
each other. We observe this in the case of the |g,−〉 → |e,+〉 and |g,+〉 → |e,−〉 transitions,

and also for |g,+〉 → |g,−〉 and |e,−〉 → |e,+〉.

A SWAP gate would be useful from the points of view of quantum computing
with both superconducting qubits and topological qubits. First, due to the expected
long coherence times of topological qubits, they could be used as quantum memo-
ries of the information processed in the superconducting circuitry. Having a simple
way of realizing a SWAP gate would allow to directly exchange the processed infor-
mation in fluxonium and store it in the Majorana qubit. Second, as we said before,
braiding operations are topologically protected but they do not form a universal set
of quantum gates. Being able to exchange the state of the topological qubit with
fluxonium allows to complement these protected braiding operations with (unpro-
tected) extra operations carried out on the fluxonium qubit.
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Chapter 2

Design and fabrication

Figure 2.1 shows our overall chip design together with zoomed-in schematics of the
most relevant elements in it. In this chapter we aim to explain the reasons for the
incorporation of each of these elements in our design and the considerations behind
the choice of their specific geometry and materials.

FIGURE 2.1: Chip design overview. White and light blue regions are thin (9 nm-thick)
NbTiN. Pink indicates regions that have been etched out from the thin film. Brown shows
thick NbTiN regions. Orange indicates dielectric windows. a) Schematic showing the whole
2× 7 chip containing four nanowire fluxonium devices coupled to a feedline. One flux-bias
line and three gate lines arrive to each of the devices. b) Enlargement of one of the de-
vices showing the resonator, fluxonium, flux-bias line and gate lines. c) Enlargement of the
fluxonium region showing the gradiometric design, gate jumps and fluxonium to resonator
inductive coupling. d) Enlargement of the junction region showing the pre-patterned gates,

dielectric window, wire, contacts, and capacitor.

Device fabrication starts by sputtering a 9 nm-thick film of NbTiN on a high re-
sistivity (>10 000 Ωcm) Si(100)/SiN(Low-stress-LPCVD) substrate. Relevant char-
acteristics of this film are detailed in section 2.1. After that, most of the structures
are defined by ebeam lithography and SF6/O2 reactive ion etching. Everything that
is shaded in pink in figure 2.1 is etched out. In this step we define a lumped-element
readout resonator and a superinductance loop to obtain the high inductance needed
to shunt the fluxonium junction. Details of these structures are given in sections
2.2 and 2.3 respectively. In section 2.3 we also present the parallel-plate capacitor
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used to obtain the wanted capacitance across the junction. Last fabrication step be-
fore nanowire deposition consists in sputtering thick (100 nm) NbTiN to make most
of the elements shaded in brown in figure 2.1 (CPW feedline, flux-bias lines, gates
bond pads, top capacitor plate and gate jumps). The designs of the flux-bias line and
gate lines are explained in sections 2.4 and 2.5 respectively. Section 2.6 presents the
nanowire deposition and junction etch details.

One last fabrication step right before measurement is wire bonding the chip.
During this step, gate lines are connected to the dc lines on the PCB, the feedline is
connected to the input and output coaxial lines and the flux-bias lines are connected
to four extra coaxial ports. Apart from this, on-chip aluminum bonds crossing over
control lines are included (not shown in figure 2.1). They connect interrupted re-
gions of ground plane. This way, spurious modes are suppressed and the current
from the flux bias lines is redistributed across the ground plane, reducing cross talk
between different qubits and other unwanted effects.

2.1 NbTiN thin films on Si/SiN

In order to obtain an EL of around 0.6 GHz we need an inductive element with a
high inductance (of around 100 nH). However, we want it to have a low enough
stray capacitance Cs such that its self-resonant frequencies do not interfere with the
frequency window of interest (between 1 and 12 GHz in our case). We therefore
want Cs to be smaller than 1/(200 · 10−9 · (2π · 12 · 109)2)F ' 0.9 fF. This inductor
would have an impedance of Z =

√
L/Cs ' 15kΩ, much greater than the super-

conducting resistance quantum RQ = 6.5 kΩ. A superconducting element with this
characteristics is called a superinductor [74]. The inductance L of a radio-frequency
circuit element measures the energy generated as a response to a current through
it E = 1

2 LI2. This energy is typically stored in a magnetic field around the circuit
element and defines the regular magnetic self-inductance Lm. However, this induc-
tance always comes together with a stray capacitance Cs, associated to the electric
field around the circuit element. The Z =

√
Lm/Cs impedance is restricted by the

electromagnetic parameters of vacuum to be of the order of the vacuum characteris-
tic impedance Zvac = 377.0Ω, much smaller than RQ. This means that one can not
obtain a superinductor relying only on magnetic inductance [75], [90].

One way to implement a superinductor is to use Josephson junction arrays [10],
[74]–[76], [91]. For excitation frequencies well below the plasma frequency of each
junction, the array effectively behaves as a linear inductive wire. This happens be-
cause the phase drop across each of the junctions is small and the sinusoidal current-
phase relations can be approximated to first order. If the array is sufficiently long
and the parasitic capacitance to ground of the sections between junctions is small
enough, one can reach the superinductance regime.

An alternative approach is to use disordered superconductors with a high kinetic
inductance [90], [92], [93]. This is what we have done in this work. In what follows,
we explain what is kinetic inductance and how to implement a superinductor with it.

2.1.1 Kinetic inductance

As we said, Lm measures the energy stored in the magnetic field as a response to
a current. Any current comes also together with some kinetic energy stored in the
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motion of the charge carriers Ek. The inductance that measures this kinetic energy is
called kinetic inductance Lk. We have

Ek =
1
2

Lk I2. (2.1)

The kinetic energy of the charge carriers can be expressed as

Ek =
1
2

ρlAmev2 (2.2)

where ρ is the density of the Cooper pair condensate, l and A are the length and
cross section of the conductor, me is the electron mass and v is the carrier velocity.
Comparing with equation 2.1, we have

Lk =
me

ρe2
l
A

. (2.3)

This type of inductance is in principle present in any conductor and contributes to
the impedance with ZLk = ω me

ρe2
l
A , at frequency ω. However, for normal metals the

Drude resistance RD = me
τρe2

l
A , where τ is the momentum relaxation time, dominates

ZLk up to the terahertz range [74]. Only for superconductors with ωτ � 1 the inertia
of charge carriers becomes relevant.

The greater the disorder in the superconductor, the lower ρ and the greater the
kinetic inductance. Examples of disordered superconductors with high kinetic in-
ductance are Nb, NbN [90], NbTiN [93], [94] and TiN [95]. In our case we use a
NbTiN thin film to fabricate the superinductor shunting the junction (section 2.3.2)
and also the inductive part of the readout resonator (section 2.2).

The value of Lk is strongly dependent on temperature. For temperatures much
smaller than the critical temperature TC we can estimate Lk knowing only the value
of TC and the sheet resistance at room temperature Rs [90],

Lk(T � Tc) '
Rsh

2π21.76KBTC
. (2.4)

The thinner the film the lower its TC and the greater its Rs. Therefore, thinner films
have larger kinetic inductances. Also, as shown in equation 2.3, longer and nar-
rower strips have larger Lk. There are multiple reasons why a narrow and thin strip
is more convenient to fabricate our superinductance loop. First, if the film thickness
t and width W are small, the field compatibility increases (details in the next section),
and being able to operate at fields of around 1 T is essential to enter the topological
regime with the currently available materials. Second, if the film inductance is high,
the same total inductance can be achieved by using a shorter strip, which will have a
lower stray capacitance to ground and therefore a resonance frequency further away
from the region of interest. And third, the shorter the loop the smaller the area en-
closed by it, and as a consequence the lower the sensitivity to flux noise.

We therefore use the thinnest film that maintains a high enough homogeneity of
material parameters. In order to investigate the optimum thickness we deposit films
with t ranging from 8 to 22 nm maintaining the same deposition parameters for all
of them and varying only the sputtering time. Measured TC and Rs values, together
with the corresponding Lk are shown in table 2.1 for different film thicknesses.
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t (nm) TC (K) Rs (Ω/2) Lk (pH/2)
7 7.2 348 67
9 7.6 199 36
11 8.5 153 19
22 9.7 66 9.7

TABLE 2.1: Measured critical temperature TC and sheet resistance
at room temperature Rs and extracted kinetic inductance Lk (using

equation 2.4) for NbTiN films with different thicknesses t.

Kinetic inductance depends very strongly on t, and therefore also on the depo-
sition time. This time is controlled manually, and differences of around 1 s can have
an impact on Lk of tens of pH/2. The deposition rate also varies over time, even
maintaining the same deposition parameters. This means that it is very difficult to
predict the kinetic inductance of a film before deposition. The film used for the fab-
rication of the fluxonium devices measured in this work (chapter 3) has a thickness
of around 9 nm, which, for the sputtering recipe used in this work, corresponds to a
deposition time of 20 s and a kinetic inductance of around 41 pH/2.

2.1.2 RF properties

To characterize the RF properties of the film, we fabricate lumped-element resonators
capacitively coupled to a coplanar waveguide feedline. We measure transmission
S21 through the feedline around the resonances. By comparing the resonant fre-
quency to S21 simulations done with Microwave Office we can extract the value of
the film Lk. Furthermore, by fitting the transmission data around the resonance, we
extract the resonator internal quality factor Qi, which is a measure of the loss at the
dielectric below the superinductor.

FIGURE 2.2: Extraction of LK by comparing measured S21 (panel b)) with Microwave Of-
fice simulations (panel c)). Absolute value of the background transmission is not expected
to be equal in both cases, due to the presence of attenuators, filters and amplifiers that are
not taken into account in simulations. Measurement in b) is taken at 270 mK Panel a) shows

the geometry of the simulated chip.

Figure 2.2 shows a comparison between the measured S21 versus frequency and
the corresponding simulation for a chip with the same geometry. For this specific
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example, the calculated LK of the film (using he analytic formula 2.4) was 25 pH/2.
Comparing the measured resonant frequencies to the simulation results for differ-
ent Lk values, the best agreement was found for Lk =29 pH/2. The corresponding
resonance frequencies are shown in table 2.2.

Measured frequencies (GHz) Frequencies from simulations (GHz)
3.79 3.83
4.23 4.21
4.43 4.46
5.13 5.12

TABLE 2.2: Comparison between measured resonant frequencies and
simulations using Lk =29 pH/2.

The small difference between the analytically estimated Lk value for the NbTiN
film and the one obtained with simulations was observed for all films studied. The
reason for this may be an increase in kinetic inductance for the narrow strips that
form the resonators (see section 2.2) with respect to the one measured for an ex-
tended film, due to a greater disorder close to the strip edges.

FIGURE 2.3: RF characterization of NbTiN film at B = 0 and T = 270 mK. a) Example of
a resonance measured for different input powers. b) Internal (orange) and coupling (green)

quality factors extracted from fits of the resonance, as a function of input power.

In order to extract the film internal quality factors we fit the measured resonances
with the diameter correction method (DCM) [96], which was shown to be better than
other fitting methods when the asymmetry of the resonance is high (if the feedline
is mismatched for example), since it accounts for a rotation of the resonance circle
in the complex plane plus a diameter growth. This is done in practice by allowing
Qe to have an imaginary part. Figure 2.3 shows the power dependence of one of
the resonances together with the quality factors extracted form the fits. The position
and shape of the resonance stays almost fixed in the power range studied here. This
indicates the absence of non-linear effects in this range of powers, and validates the
single-mode resonator approximation that we did in chapter 1. Qi’s extracted range
between 104 and 105 for different films and powers, indicating that the dielectric
losses are low and that the quality of the film is good enough for the intended ap-
plications. Regarding the coupling quality factors Qc, also extracted from these fits,
they range between 103 and 2 · 103 for the resonators used in this work.
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2.2 Lumped element readout resonators resilient to magnetic
field

We optimize the geometry of the readout resonators to minimize vortex generation
and movement, and therefore to be able to operate at in-plane magnetic fields of the
order of 1 T maintaining the high internal quality factors Qi found for B = 0.

Vortices appearing in regions that carry microwave currents can alter the dis-
tribution of these currents and change the magnitude of the resonator inductance.
If the dynamics of these vortices is unstable, frequency fluctuations can reduce the
resonators Qi. Furthermore, since vortices cores are no longer superconducting, the
presence of vortices in our resonator could cause energy dissipation and also con-
tribute to the decrease of Qi.

Different approaches have been taken in previous works to deal with these type
of effects. One option is prepatterning holes in the thin NbTiN film [97]–[99]. Holes
act as defects that pin the vortices and prevent them from moving. This has been
shown to increase Qi by several orders of magnitude for CPW resonators [99]. A
second alternative is to use narrow superconducting strips to prevent the formation
of vortices [93], [94]. Our design combines these two methods. We use lumped-
element readout resonators with a mainly inductive part and a mainly capacitive
part. The highest current (inductive) part is very narrow (200 nm) and the capacitive
part, which has a larger area, has artificial pinning sites of radius 40nm. The geom-
etry of these resonators is shown in figure 2.4. Figure 2.5 d) shows the simulated
current distribution at the resonant frequency. As we see, most of the current is lo-
calized in the narrow meandering part.

FIGURE 2.4: Readout resonator. a) Lumped element resonator coupled to the fluxonium
superinductance loop. b) Enlargement of the coupling point. Shared inductance is around

20 % of the total resonator inductance. c) SEM image of the holes for vortex pinning.

2.2.1 Narrow strips to minimize the appearance of vortices

Vortex generation and dynamics on narrow type-II superconducting strips has been
studied by several groups [100]–[102], finding that there is a critical field Bk below
which no vortex trapping occurs when the device is cooled down in field. Different
models predict different expressions for the magnitude of this critical field. How-
ever, even if the prefactor A of order 1 varies for different publications, the strip
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width W dependence is consistently found to be of the form

Bk = A
Φ0

W2 (2.5)

with Φ0 = h̄
e being the magnetic flux quantum. These models make two main as-

sumptions. First, that the Pearl length Λ = 2λ2
L/t, where λL is the London penetra-

tion depth and t the film thickness, is much larger than W. And second, they assume
that the superconductor coherence length ξ is much smaller than W.

Regarding Λ � W, it is always fulfilled if the cool-down happens in field, be-
cause then the relevant λL is the one at TC, when vortices are generated. In our case
we turn the field on at base temperature, so λL has a much smaller value than the
one at TC and for typical superconductors the condition is not necessarily satisfied
if the strips are very narrow. However, for disordered superconductors the effective
field penetration depth λe f f is larger than λL [67, p. 3.10.4]. For our 9 nm NbTiN film
with TC = 7.7 K and resistivity ρ = 350 µΩcm we have [103, Appendix 9.2 (d)] [67,
Eq. 3.120]

λe f f =

√
h̄ρ

πµ0∆0
' 220nm (2.6)

and therefore Λ ' 10 µm. Here, µ0 is the vacuum permeability and ∆0 ' 1.76KBTC
is the superconducting gap at T = 0.

Regarding the assumption ξ � W, for a disordered superconductor and at zero
temperature we have [103, Eq. 9.28]

ξ0 =

√
Φ0

2πBc2

' 6 nm (2.7)

where we have used a (non-measured for this specific film) typical upper critical
magnetic field Bc2 of 10T.

This means that we can use the expressions for the vortex nucleation critical
fields for strip widths 6nm�W � 10µm.

As we said, for our resonators we have W = 200nm. Taking A = 1.65 from
reference [102] an using equation 2.5, we have a vortex critical out-of-plane field of
Bk = 1.65 ·Φ0(Tm2)/(200 · 10−9)2T = 83mT. We could do the same to estimate the
vortex critical in-plane field, taking now as W the thickness of our film (9 nm). We
obtain critical in-plane field of 40T. We have to consider, however, that in this case
W ' ξ so we do not longer fulfill the conditions for the validity of the expression for
Bk and this number is only a coarse estimate.

These results agree with the measurements of narrow strip NbTiN resonators
very similar to ours in reference [94]. They find that the performance of the 8nm-
thick 200nm-wide resonator is affected by magnetic field. The fields needed to shift
the resonant frequency by a 1% are in their case ∼5 T for in-plane field case and
∼120 mT for out-of-plane.

DC signatures of Majorana states in InAs nanowires have been found at in-plane
fields lower than 1 T [21], [40] and typical perpendicular fields in our experiments
can go up to 2 mT during flux tuning and field alignment. We can therefore safely
say that our resonators are compatible with the field conditions necessary to enter
the topological regime.
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FIGURE 2.5: Current distribution at different resonant frequencies. a) Simulated S21 trace
for four different devices coupled to the same feedline. Apart from resonances situated at
the expected resonator resonant frequency, extra resonances appear at higher frequencies. b)
Current distribution in one of the devices at the higher resonance. Most current is localized
at the fluxonium superinductance loop. c) Same as b) but now for a frequency point with
high transmission. Most current is now localized at the waveguide. d) Same as b) but now
for the higher resonant frequency. Most current is now localized at the thin meandering part

of the resonator.

2.2.2 Artificial pinning sites to trap vortices

Regarding the capacitive part of the resonators, we use interdigitated capacitor plates
to increase capacitance while maintaining a small footprint. Still, this part is wider
than the meandering part (it has uninterrupted regions of up to 16.8× 22.0 µm )),
big enough for vortices to generate in the capacitor plates. The vortex critical field
corresponding to a width of 17 µm is just 11 µT. Only the earth magnetic field is
already 49 µT in Delft [104] so vortices are for sure going to be trapped in the plates
during cooldown.

This effect would not be a big problem in principle, since these vortices will ap-
pear only away from the areas carrying the highest currents (see figure 2.5). Even so,
we decided to incorporate holes in this region to minimize effects coming from the
vortices movement (figure 2.4 c)). They are arranged in an hexagonal pattern with
a distance between holes of 320 nm and a hole radius of 40 nm. This corresponds
to a hole density of 12 µm−2. In reference [99] it has been shown that vortices are
strongly pinned by holes up to a threshold out-of-plane field for which each hole is
filled with a single vortex. For our hole density this field would be ∼ 20mT, higher
than the maximum out-of-plane field we achieve in a typical experiment.

2.3 Design for EC and EL

As we discussed in chapter 1, the magnitude of EJ can be tuned using the cutter gate.
However, EC and EL are fixed by design.
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We aim for an EC of around 2.4 GHz and an EL of around 0.7 GHz. To obtain
the wanted EC we include a parallel plate capacitor across the junction (figure 2.6 a),
section 2.3.1). The high inductance necessary for EL comes from a long meandering
NbTiN path shunting the junction (figure 2.6 b), section 2.3.2).

FIGURE 2.6: Design for EC and EL. a) SEM image of the parallel plate capacitor determining
EC. The black window is the SiN used as capacitor dielectric. b) SEM image of the high

kinetic inductance long meandering path that determines EL.

2.3.1 EC: parallel plate capacitor

To determine the geometry of the capacitor that fixes EC we simply use the equation
for the capacitance of a parallel plate capacitor C = εrε0A/d. Where ε0 = 8.85 · 10−15

is the permittivity of vacuum, εr is the dielectric constant, A is the plate area and d
is the distance between plates.

Relating this capacitance to EC using equation 1.19, and assuming a square plate
with side l, we obtain this relation between l and EC

l =

√
e2d

2εEc
. (2.8)

We use, as dielectric, 29 nm-thick PECVD SiN, which is expected to have a dielectric
constant of around εr ∼ 8. In order to have EC/h =2.4 GHz we need therefore
l =1.8 µm (see figure 2.6 a)).

Variations of d and εr with respect to the expected values may change the value
of EC. For this reason, we try to use stable fabrication recipes and characterize the
dielectric thickness and dielectric constant after deposition. Knowing the value of
EC in advance as well as possible provides a good initial estimate of the fit parame-
ters when fitting the fluxonium spectra afterwards.

2.3.2 EL: superinductance meandering path

EL is determined by the kinetic inductance and geometry of a superinductance loop
shunting the junction. Invoking equation 1.21, we see that in order to have EL/h
around 0.7 GHz we need a value of around 110 nH for the loop inductance.

We take 50 nm for the width of the meandering path that forms this loop. This
is the thinnest width that allows maintaining homogeneity along the superinduc-
tor strip without risk of having it break. It is desirable to have it as narrow as
possible for different reasons. First, to avoid the formation of vortices and there-
fore minimize decoherence effects resulting from changes in the value of EL. The
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critical out-of-plane field for vortices is, using equation 2.5 with W = 50 nm, Bk =
1.65 · Φ0(Tm2)/(50 · 10−9)2T = 1.3 T, large enough to completely avoid the forma-
tion of vortices in the loop. Second, to reduce the total length of the superinductor
and minimize the loop area (which reduces the effect of magnetic field noise on the
external flux, helping also to reduce decoherence). Having a shorter strip is also
beneficial because it reduces the stray self-capacitance of the loop. These are also the
reasons why we aim for a high film kinetic inductance, having a larger LK reduces
the needed strip length, decreasing both self-capacitance and flux noise.

A second design aspect to consider is the separation between meanders. In this
case they are separated by a distance 10 times larger than the path width. This con-
tributes to the minimization of the stray-capacitance, avoiding the self-resonance
frequency of the superinductance loop to end up inside the frequency window of
interest. In figure 2.5 we showed the simulated S21 resonances for the resonator-
fluxonium system. We see that, appart from the expected resonator resonances
around 5 GHz, extra resonances appear at higher frequencies. The localization of
the current in the fluxonium loop at these resonances (figure 2.5 panel b)) suggest
they originate from this unwanted effect. For the final design, the ground plane was
brought further away from the fluxonium loop, reducing capacitance and therefore
bringing the loop resonance to higher frequencies.

As for the case of EC before, it is important to estimate the value of EL as well as
possible before measurement. For this reason, we fully characterize the fabrication
recipes in advance and monitor the path width for different devices to know EL as
precisely as possible.

2.4 Gradiometric design and flux-bias line design

Another important aspect of our design is the gradiometric shape of the superin-
ductance loop. It helps both diminishing the device sensitivity to global flux noise
and decoupling the global magnetic field knob for the topological regime from the
flux knob that tunes the fluxonium spectrum. This design consist on doubling the
superinductance loop symmetrically at both sides of the junction and is shown in
figure 2.7. Ideally, the two symmetric sub-loops have exactly the same area (figure
2.7 a)). The presence of a global magnetic field noise would result in equal fluxes
in both loops of the gradiometer, resulting in two propagating currents in the same
direction that would cancel each other at the shared branch, where the junction is
placed. This effect would therefore cancel the influence of any global flux noise over
the phase across the junction, eliminating an important source of decoherence.

This gradiometric topology, however, does not cancel local flux. This has a down
side, it does not get rid of sensitivity to local flux noise coming from isolated spins
or unwanted current flowing close to the loop. However, it allows us to tune the
effective flux Φext by having an asymmetric flux-bias line that couples much more
strongly to only one of the loops (figure 2.8). A dc current I is sent through the flux
line, which is shorted to ground at its end (see the zoomed out design in picture 2.1).
The mutual inductances between the line and each of the two loops (MA and MB)
determine the flux that is thread through them as a consequence of the current.

ΦA = IMA ΦB = IMB (2.9)
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FIGURE 2.7: Gradiometric design. a) Schematic representation of two symmetric loops and
global flux noise cancellation. b) SEM image of the loop, with gates and capacitor breaking

the symmetry.

Knowing MA and MB one can calculate the current needed to thread an effective
flux of one flux quantum Φ0

Φ0 = ΦA −ΦB = I(MA −MB)→ I =
Φ0

MA −MB
. (2.10)

FIGURE 2.8: Flux-bias line design. a) Optical image of the 100 nm thick NbTiN flux-bias
line. The fluxonium loop, being much thinner and narrow, is difficult to distinguish in an
optical image. b) Simplified model of the flux-bias line and the two loops for numerical

calculations using FastHenry.

We calculated numerically the mutual inductances MA and MB for various flux-
bias line designs. Figure 2.8 b) shows the simplified geometry used for the sim-
ulations. The design shown here is one of the possibilities that result in a larger
difference in mutual inductances. Applying equation 2.10 we obtain 1 mA for the
current needed to drive a difference of one flux quantum through the two loops. To
avoid problems coming from a low critical current of the line, we fabricate it with
a 100 nm-thick film, much thicker than the one used for other structures in the chip
(see 2.8 a)).

We fabricated devices with this fluxline design, which has the line only 500 nm
away from the fluxonium loop. However, devices with an alternative design, with
a less coupled line for which a current of 13 mA is needed, where also fabricated. A
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less coupled line results both in a lower contribution to the loop capacitance and in a
lower sensitivity to noise coming from possible vortices generating at the line. Both
designs will be studied in experiments.

One last point to consider is the possibility of using the out-of-plane component
of the fridge magnet to drive a flux. In principle, this should not be possible due
to the gradiometric design. However, in practice the loops will not be totally sym-
metric, due to extra elements like the capacitor and the gate lines (figure 2.7 b)). The
magnetic field corresponding to a flux quantum through one of the 12×11 µm loops
is 15 µT. Due to the always present asymmetry in the gradiometer, using a field
some orders of magnitude larger than this could lead to the effective flux difference
between loops.

2.5 Gate-lines design

In order to tune the potential at the junction and at the proximitized section, one
needs at least three independent gate lines arriving at the junction position. The
central gate, the cutter, tunes the junction conductance, and therefore the value of
EJ . The chemical potentials of the two superconducting sections of the wire are con-
trolled independently by two extra bottom gates, the plunger gates. Their purposes
is to drive the superconducting sections into the topological regime. Ideally each
gate influences only the wire section above it. In practice, however, one always ob-
serves cross-talking between gates. After characterizing this effect experimentally
one could create digital gates combining the potential of the three to maintain EJ
fixed when the plunger gates are tuned.

FIGURE 2.9: Gate lines design. a) Gates jump to cross over the superinductance loop. Black
window is the 29 nm-thick SiN dielectric used to separate the gates from the loop section. b)
Gate bonding pad showing the LC on-chip filter and to wire bonds. c) Enlargement of the

capacitive part of the filter.
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Since the wire position is surrounded by the gradiometer in all directions, the
gate-lines have to bridge the inductor. One possibility would be to use air bridges.
However, in this work we use a dielectric patch, which may lead to losses but is
easier to fabricate. This is shown in figure 2.9 a), where the 9 nm thin gate lines are
interrupted at the edges of the dielectric and reconnected using 100 nm-thick NbTiN
patches.

Figure 2.9 also shows the LC filters included on chip right after the gate bond-
ing pads. They are formed by a long spiraling strip of thin NbTiN, that constitutes
the inductive element, and an interdented section with a high capacitance to ground
(enlarged in figure 2.9 c)). These filters reduce any unwanted high frequency noise
arriving to the gates.

2.6 Nanowire deposition and junction etch

VLS InAs nanowires are grown vertically in a growth chip, from which they are
transferred into the processed chip using a micromanipulator under an optical mi-
croscope. The wire is deterministically deposited on top of the three gates covered
by SiN dielectric, ensuring that both wire ends lay on top of the prepatterned con-
tacts.

FIGURE 2.10: Nanowire junction. a) SEM image of the InAs nanowire deposited on top of
the gates and contacted at both ends with NbTiN contacts. b) Enlargement of the junction

region, showing the 80 nm-long junction aligned on top of the cutter gate.

Most fabrication steps are done before nanowire deposition, minimizing the post-
deposition steps, that can detriment the wire quality, as much as possible. Two of
this steps are junction definition and contacts deposition. The junction is made se-
lectively removing a section of the Al shell by wet chemical etching. A resist mask is
created and the chip is immersed in warm Transene D for some seconds. By control-
ling precisely the temperature and immersion time, different junction lengths can be
achieved. All junctions in this work have a length of around 80 nm (figure 2.10 b)).

Together with the junction etch, two Al sections at both ends of the wire are
also removed, uncovering the parts of the wire that will be contacted. After that,
two NbTiN contacts are deposited, overlapping the wire end and the prepatterned
contact to the loop.
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After this, the device is wire bonded and ready to be loaded in the fridge and
measured.
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Chapter 3

Spectroscopy measurements

Before being able to operate the nanowire fluxonium as a qubit, realizing quan-
tum gates useful for quantum information, different characterization measurements
must be carried out. This chapter presents the characterization measurements that
have been realized until now on the first generation of devices, both at zero field and
applying an in-plane magnetic field.

We will start by introducing the details of the measurement setup, focusing on
how the drive and readout signals arrive to the chip and on the treatment of the
output signal before digitalization (section 3.1). After that, in section 3.2, we will go
through the simplest measurements that can be done, measuring the transmission
for fluxonium in equilibrium and studying the effect of fluxonium on the resonator.
The device can be further characterized at zero field using two-tone spectroscopy
to excite the qubit to higher energy levels. These measurements are presented in
section 3.3. Finally, we present the study of the device field compatibility, with par-
ticular focus on the field dependence of EJ . With this we will end the chapter in
section 3.4.

3.1 Measurement setup

Experiments are performed in a dilution refrigerator with operating temperatures
of around 10-20 mK, low compared to the relevant energy scales in order to reduce
unwanted effects coming from thermal noise of the order of KBT. Figure 3.1 shows
the measurement setup, including the fridge wiring and the electronics at room tem-
perature.

Four different RF sources are used, each for a different purpose. Two of them
are used to generate the readout and the drive tones, that together form the input
signal. A third source is slightly detuned from the readout tone and is used as local
oscilator (LO) for heterodyne interferometry purposes. The last source is used as a
pump for the TWPA amplifier included in the output line [105], [106]. DC blocks are
included at the output of each RF source, to make sure that no DC signals enter the
fridge.

The readout tone, which is typically set at a frequency close to the resonator reso-
nance frequency, and the qubit drive, used to excite the different energy levels of the
device, are merged together and sent through the input line. This line is attenuated
at different temperature stages before arriving to one of the launchers of the on-chip
feedline. A variety of other lines also arrive to the chip. The current generated with
Yokogawa current sources is sent to the flux-bias lines via four filtered and attenu-
ated coaxial lines. Regarding the gates, they are connected via low-pass filtered DC
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FIGURE 3.1: Schematic diagram of the fridge wiring at cryogenic and room temperatures.
Different background colors indicate different temperature stages. Qubit drive and readout
tone arrive at the chip through a common line, the input line, which is attenuated at differ-
ent temperature stages. The output signal is amplified inside the fridge, downconverted to

25 MHz and digitalized.
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lines to multiple DC voltage sources with a range of ±10 V. The output RF signal
leaves the fridge through a line containing two circulators that protect it from high
temperature noise coming from the higher temperature stages. The output line is
also amplified, at base temperature with a TWPA and at higher temperature stages
with two more amplifiers.

Figure 3.1 also shows the room temperature heterodyne interferometry setup.
The output readout signal is mixed with the LO tone, detuned from the readout fre-
quency by 25 MHz. A reference signal at the same frequency and phase as the input
readout tone, indicated as Reference in figure 3.1, is also mixed with the LO. Both
downconverted signals are then band-pass filtered around 25 MHz and digitalized
using an Alazar ATS9360. Comparing the frequencies and amplitudes of both sig-
nals, the complex trasmission S21 is calculated.

To control the in-plane and out-of-plane magnetic fields we use a vector magnet,
not included in figure 3.1. Maximum fields are around 6 T in the direction of the wire
and in the in-chip direction perpendicular to the wire, and around 1 T out-of-plane.
The magnet is connected to a room temperature high-voltage source.

3.2 S21 measurements

The most simple measurement that can be done in this setup is the measurement of
the transmitted amplitude |S21| of a single microwave tone at a fixed frequency. This
measurement probes the position of the resonator frequency, which varies due to
the dispersive shift from fluxonium in its ground state (see section 1.2.2). Figure 3.2
shows the idea behind this type of measurement. A signal with complex amplitude
V1 and frequency ω is sent through the chip and a second signal at the same fre-
quency, with amplitude V2, is detected at its output. Transmission S21 is calculated
as V2/V1 and its amplitude is typically expressed in dB.

FIGURE 3.2: Transmission measurement. a) Schematic of the elements involved in an S21
measurement. b) Detected signal versus frequency when the resonator is in resonance with
one of the fluxonium transitions. The bare resonance of the uncoupled resonator is indicated
with a dashed line. c) Same as b) but for the dispersive regime. The resonance is shifted by

χg with respect to its bare value when fluxonium is in the |g〉 state.

In an ideal S21 experiment one would observe a flat transmission excepting for
four resonances coming from the four resonator in the chip. Figure 3.3 shows a
transmission trace for the chip presented in this work. In this case, we observe some
extra resonances and ripples that may come from the use of a thin non-impedance-
matched feedline where standing waves can appear and from non flat behaviour of
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different filters in the input and output lines.

FIGURE 3.3: S21 trace versus readout frequency. Four of the observed resonances corre-
spond to the four readout resonators and can be identified comparing the measurement to

S21 simulations.

As we mentioned in chapter 1, the pull on the resonator depends strongly on the
detuning of many fluxonium transitions. Several parameters of the system affect the
distribution of fluxonium energy levels, so by varying them we expect to observe a
shift in the pull over the resonator. In sections 3.2.1 and 3.2.2 we will zoom into one
of the resonances and study its dependence on cutter gate voltage and external flux,
respectively.

3.2.1 EJ dependence

As discussed in detail in section 1.3.1, by tuning the cutter gate voltage Vc we expect
to observe a non-monotonic increase in the value of EJ , starting from a very low one
at negative gate voltages and stabilizing again when Vc is of the order of 1 V.

FIGURE 3.4: S21 trace versus readout frequency and cutter gate voltage. The avoiding
crossings with fluxonium transitions at intermediate gate voltages agree with the expected

non-monotonic increase of EJ .

This type of measurement is shown in figure 3.4. As expected, the position of
the resonance varies with gate voltage. For negative Vc and up to Vc ∼ 225 mV the
position of the resonance is stable at 4.58 GHz. We interpret this regime as a low
EJ regime where the lowest energy transitions are at low frequencies below the res-
onator (see simulated spectra at different EJ values in figure 1.11). At intermediate
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Vc some avoided crossings are observed. They correspond to different fluxonium
transitions getting in resonance with the resonator as EJ increases. Sometimes the
avoided crossings indicate that the fluxonium level comes from below the resonator
and other times from above. This agrees with the expected non-monotonic depen-
dence of EJ on cutter. At large Vc’s the resonance stabilizes again at a lower frequency
of around 4.54 GHz, agreeing with the stabilization of the supercurrent at high cutter
voltages observed in previous work [86].

3.2.2 External flux dependence

To study the external flux dependence we stay at a fixed cutter voltage close to an
avoided crossing, for which the fluxonium transitions are expected to be close to
the resonator. For the chip presented here, the flux-bias line design was the most
uncoupled one, presented in section 2.4, so it is not possible to explore a large Φext
using the flux-bias line. Instead, we do it by applying an out-of-plane field Bx of
the order of 1 mT with the fridge magnet. Figure 3.5 shows these measurements for
three Vc points.

FIGURE 3.5: S21 trace versus readout frequency and external flux. Panels a), b) and c) are
taken at Vc = 432 mV, 950 mV and 1710 mV respectively.

These measurements can be compared to column i) in figure 1.11, agreeing with
the expected behaviour of the resonator pull when increasing EJ , with the dispersive
shift becoming smaller for larger EJ values when the resonator is detuned from the
second fluxonium transition. For the lowest EJ data, we observe dispersive shift dif-
ferences as large as 30 MHz for different flux points. An out-of-plane field of around
550 µT results in one effective flux quantum (Φext = Φ0). Comparing this to the 15 µT
needed to thread a flux quantum trough one of the two symmetric loops, proves the
effectiveness of the gradiometric design, which reduces the effect of global flux noise
by more than one order of magnitude.
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3.3 Two-tone spectroscopy

As mentioned in section 1.2.2, the state dependence of the dispersive shift can be
used to read out the state of the qubit. This state dependence can also be used to
experimentally characterize the fluxonium spectrum. Fixing a readout tone at the
bottom of the resonance for the system in equilibrium and using a second drive
tone with variable frequency, one can detect different transitions. When the drive
frequency does not match any fluxonium transition, the monitored transmitted am-
plitude of the readout tone will be low. If the drive tone frequency matches one
of the fluxonium transitions that start from a populated state, it will drive Rabi os-
cillations. The change in occupation probabilities of the different states results in a
change on the resonator pull. In this case the readout tone will not be at the bottom
of the resonance anymore, showing a peak in transmission. An schematic for a two-
tone measurement is shown in figure 3.6.

FIGURE 3.6: Two-tone spectroscopy measurement. a) Schematic of the elements involved
in a two-tone measurement. In contrast to what is shown in figure 3.2, now the readout
frequency ωr is fixed and the frequency ω of a second drive tone is varied. b) When the drive
frequency matches one of the fluxonium transitions, the pull on the resonator changes and
its resonance moves from its initial position (in dark blue) to a shifted position in frequency
(light blue). c) When the drive tone matches one of the fluxonium transitions, one observes

a peak in the transmission of the readout tone.

The drive tone can be varied over a large frequency range. However, since it
arrives to the qubit trough the resonator, which attenuates signals away from its res-
onance frequency, it can be that drive powers much larger than the readout power
are needed to excite the qubit. Figure 3.7 shows a two-tone measurement at fixed
gate and external flux. The frequency readout tone is fixed at the bottom of the res-
onance when the system is not being excited, shown in figure 3.7 a). Panel b) shows
the resulting peak in readout transmission versus qubit drive tone. As mentioned,
the power needed to observe the resonator resonance is much lower than the one
needed to excite the two-tone transition.

3.3.1 EJ and external flux dependence

Observing a peak in two-tone does not automatically mean that a fluxonium tran-
sition is being excited. It could be, for example, that some other multilevel system,
with a transition at that specific frequency, is coupled to the resonator. In order to
make sure that the observed peak comes from a fluxonium transition we can check
whether it responds to the different knobs available for tuning the spectrum: cutter
gate voltage and external flux.

Figure 3.8 shows this dependence for two different peaks observed in two-tone
spectroscopy. The change in intensity in the background of panel a) is due to a shift
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FIGURE 3.7: Two-tone trace versus drive frequency. Panel a) shows the resonator at equi-
librium. The readout frequency is fixed at ωr/2π = 4.544 GHz and a peak is observed if the
system is driven at ω/2π = 7.94 GHz with a second tone, shown in panel b). Readout and

drive powers are −60 dBm and −20 dBm, respectively.

FIGURE 3.8: Two-tone trace versus drive frequency and cutter voltage or flux. a) Cutter
gate dependence of a peak observed in two-tone spectroscopy. Color scale is in dB. b) Exter-

nal flux dependence of a two-tone peak. Color scale is linear.

in position of the bottom of the resonance with cutter. In order to avoid this effect in
the spectra shown in the next section, which is expected to be larger because they are
taken over a larger flux range, the readout frequency is updated at every different
flux and cutter point.

3.3.2 Spectra at different EJ values

Combining the two available knobs for tuning the energy spectrum, we can obtain
spectra over a full Φext and at different EJ values. Figures 3.9, 3.10 and 3.11 show
three different spectra taken at different cutter gate values. Each two-tone measure-
ment is compared with an overlapped spectrum obtained by diagonalization of the
coupled Hamiltonian following the method in reference [78]. All overlapped spec-
tra share the same EC and EL values, since they are fixed by design, and only EJ is
allowed to vary. For the fits we use EC/h =2.4 GHz, EL/h =0.7 GHz and a shared
inductance that is 20% of the resonator inductance. It is worth mentioning that this is
a very constrained fitting problem, since we are fitting several flux dependent tran-
sitions with a single free parameter EJ .
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FIGURE 3.9: Spectrum at Vc = 447 mV. a) S21 measurement vs readout frequency and flux
showing the dispersive shift on the resonator. b) Two-tone signal versus drive frequency and
flux. Readout frequency is the minimum of the resonator resonance for each external flux
point. Overlapped white lines indicate transition frequencies for the inductively coupled
system with EC/h = 2.4 GHz, EL/h = 0.7 GHz and EJ/h = 0.58 GHz. Suppression of the

|g〉 → | f 〉 transition can be observed around zero and half-flux.

Figure 3.9 shows the fitted spectrum for EJ/h = 0.7 GHz. Transitions |g〉 → |e〉
and |g〉 → | f 〉 match satisfactorily two flux-dependent lines in the spectrum. How-
ever, the line appearing at around 2.5 GHz is not fitted properly with this spectrum.
As expected, we observe holes in the visibility of the |g〉 → |e〉 at integer multiples of
half-flux, agreeing with the forbidden transition due to the even parity of the states
involved (explained in section 1.2.3). This can also be clearly seen in figure 3.10.

Specially in figure 3.10, but also in 3.11 we can observe a transition appearing as
an inverted peak only visible at around half-flux, similar to the observations in ref-
erence [79]. We interpret this spectroscopy line as the |e〉 → | f 〉 transition. For high
EJ values the frequency minimum reached by |g〉 → |e〉 at around Φext = Φ0/2 can
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FIGURE 3.10: Spectrum at Vc = 871 mV. Same as figure 3.9 but now with EJ/h =6.9 GHz.
Transition |e〉 → | f 〉 is now visible due to the thermal population of the |e〉 state around

half-flux.

be below ωge/2π = 1 MHz. For a typical temperature of 50 mK, with a characteris-
tic energy KBT/h =1 MHz the occupation of the |e〉 state starts being noticeable at
equilibrium. The observation of this transition in a small window around zero flux
gives therefore an estimate for the electron temperature of around 50 mK.

Overlapping spectra with different EJ

An interesting effect observed in several spectroscopy measurements for this device
is a doubling of some of the lines, resulting in a superposition of two spectra corre-
sponding to the same EC and EL, but with a different EJ . This effect can be seen in
figure 3.12, in which both the dispersive shift on the resonator and the two-tone data
can be fitted with two different EJ values, indicated with different colors. The ori-
gin of the superimposed spectra may be oscillations of the value of EJ in a timescale
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FIGURE 3.11: Spectrum at Vc = 1032 mV. Same as figure 3.9 but now with EJ/h =
9.0 GHz.Visibility of the |g〉 → |e〉 transition is lower than for lower EJ values. This is due to

the large detuning of the |g〉 → | f 〉 transition from the readout resonator.

faster than the measurement time. One possible reason for this is an electrostatic im-
purity close to the junction with an unstable charge. This would cause electrostatic
instability at the junction, resulting in different effective gate potentials correspond-
ing to different EJ values. A second explanation is the change of parity of one of
the Andreev bound states at the junction. If an ABS state is excited, the value of EJ
will change, as we saw in section 1.3. If the transmission of the ABS is large, this
can result in a noticeable effect in the measured spectra. If this is the case, we can
study the temporal dynamics of quasiparticle poisoning of ABSs by doing time do-
main measurements in the double spectroscopy lines. This will be discussed in the
outlook of this work.
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FIGURE 3.12: Spectrum at Vc = 650 mV. Two overlapping spectra corresponding to different
EJ values are observed. White fitting lines correspond to EJ/h = 7.3 GHz and orange lines

correspond to EJ/h = 5.0 GHz. In both cases EC/h = 2.4 GHz and EL/h = 0.7 GHz.

Mapping EJ vs. cutter gate

Maintaining the flux fixed and measuring the two-tone transmission versus drive
frequency and cutter gate voltage Vc is an interesting measurement to study the de-
pendence of EJ on Vc. This is shown in figure 3.13 for Φext = 0. For fixed EC/h =
2.4 GHz and EL/h = 0.7 GHz, the frequency of the |g〉 → |e〉 transition increases
monotonically with EJ , so one can map the measured transitions to their correspond-
ing EJ values. Figure 3.13 shows a non-monotonic increase of EJ with cutter, which
agrees with the trend observed in previous supercurrent and spectroscopy experi-
ments (see figure 1.15).
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FIGURE 3.13: Two-tone spectroscopy versus drive frequency and cutter gate. Oscillations
of the frequencies of the lowest energy transitions at Φext = 0 are observed, as expected.

3.4 In-plane magnetic field compatibility

In-plane magnetic fields of the order of 1 T are needed to enter the topological regime
[21], [40]. For this reason, our device performance should be resilient up to at least
these magnetic fields. Measurements presented in this section are carried out at in-
plane fields with some degrees of missalignment with respect to the wire direction.

3.4.1 Spectroscopy measurements up to 300 mT

Two-tone spectra like the ones presented in the previous section were measured at
fields up to 300 mT. Two examples are shown in figure 3.14.

FIGURE 3.14: Spectra at non-zero in-plane magnetic field. a) Spectrum taken at B = 185
mT and Vc = 940 mV. Overlapped transitions correspond to a system with EJ/h = 6.1 GHz.
a) Spectrum taken at B = 300 mT and Vc = 1260 mV. EJ/h = 4.7 GHz in this case. EL and

EC are the same as for previous fits.
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EJ is found to decrease strongly with field, agreeing with the supercurrent de-
crease with field observed in reference [86]. This effect prevents entering the fluxo-
nium parameter regime at large fields. In the outlook section we will see how the
design could be changed to account for this decrease in EJ and be able to stay in the
fluxonium regime up to higher field values.

Measurements similar to the ones realized at zero field to map out EJ versus cut-
ter can also be done at non-zero field. Figure 3.15 shows an example of this. The
trend observed is similar to the one in figure 3.13.

FIGURE 3.15: Two-tone spectroscopy versus drive frequency and cutter gate at 300 mT
in-plane. Same as figure 3.13 but now at non-zero in-plane magnetic field.

3.4.2 Resonator compatibility at higher fields

What made it more complicated for this device to obtain clear spectroscopy data at
high fields was a broadening of the readout resonator peak.

Figure 3.16 shows an example of this effect. For low magnetic fields (panels a)
and b)) the resonator resonance stabilizes at around 4.54 GHz at high cutters and has
a depth similar to the one at zero cutter. Maintaining the readout tone at the bottom
of this resonance, one can carry out two-tone spectroscopy measurements (as shown
in figure 3.14). As the in-plane field is increased, the avoided crossings at intermedi-
ate cutters are still observed (panels c)-e)). However, the readout resonance at large
cutters becomes blurry and less deep. For this reason spectra could not be taken
at larger fields for this specific device, even if the avoided crossings indicate that
the fluxonium is still resilient and cutter-tunable up to at least 800 mT. This broad-
ening may be related to the observed decrease in EJ , due to an stabilization of the
spectral lines closer to the resonator when EJ is low. A change in the device design
that allows staying in the fluxonium regime up to higher magnetic fields could help
decreasing this unwanted effect. For larger fields, the avoided crossings are not ob-
served anymore due to the low value of EJ (panel f)). We should however note that
the position of the resonance at zero cutter does not change or become much worse
in the range of fields studied. This indicates that the lumped element resonators
used for readout are resilient to fields of the order of the ones needed to enter the
topological regime. If the fluxonium design is changed to compensate the low val-
ues of EJ in field, spectroscopy could be done up to larger fields. We plan to do this
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for future devices.

FIGURE 3.16: Resonator compatibility at high in-plane fields a)-f) S21 measurements of the
resonator versus cutter at increasing in-plane fields, indicated in the title for each panel.
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Conclusion and outlook

The work presented in this thesis includes the design, fabrication and initial charac-
terization of a Majorana fluxonium in the trivial regime. It has been shown that all
relevant parameters of the model for this device can be experimentally controlled.
The values of EC and EL are fixed by design, while the external flux, the Josephson
energy, the chemical potential in the topological sections and the external in-plane
magnetic field can be tuned in situ and independently.

The main characterization measurements that have been carried out are the two-
tone spectra in the whole Φext range, both at zero field and in the presence of an
in-plane field. The next step in characterization of the trivial device will be the mea-
surement of coherence times of the different states. By studying the dependence of
T1 and T∗2 on EJ , Φext and B, we will be able to study different sources of decoherence
and try to adapt the design and measurement conditions to minimize their effect.

The main purpose of the development of this device is the study of topological
effects of MZMs coupled at both sides of the junction. This will be the main focus of
the future experiments in this device. It is possible, however, to realize interesting
non-topological experiments in this platform, which will also be briefly introduced
here.

Search for Majorana signatures

The main motivations of this project are the study a junction between two topologi-
cal segments and the realization of a qubit with topologically protected states. Next
steps are therefore going to be taken in this direction.

MZMs signatures are detectable with standard cQED techniques, by sitting at a
fixed point in external flux and cutter voltage and monitoring a transition in the
spectrum while the plunger gate voltages are varied. If the chemical potentials
are such that a topological phase appears at both superconducting sections of the
nanowire, a splitting of the first transition line will be observed. The magnitude
of this splitting will be proportional to the inner Majorana coupling EM, so observ-
ing such splitting would directly provide new information on the physics of MZMs.
Apart from the doubling of a spectral line, a second clear signature of both sections
entering the topological regime would be the observation of a shift in the flux sweet
spot of the |g〉 → |e〉 fluxonium transition. Once one of these signatures is locally
detected, one could take a whole spectrum versus Φext and drive frequency and, by
fitting it, extract the values of EM, E01

M and E23
M. The former determines the mag-

nitude of the shift and the two latter determine the magnitude of the gaps at the
anticrossings.

However, the observation of these effects is not expected to be easy. It is already
challenging to tune a single section of wire into the topological regime (as shown
in references [44], [45]). Having two independent plungers to tune two different
sections doubles the dimensionality of the space in which we will need to look for
topological signatures. A non-realistic-at-this-stage solution for this problem would
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be the incorporation of DC contacts at the end of the wires. This would permit the
detection of a topological transition in each of the sections independently, using DC
techniques, reducing the search space enormously. This would also be interesting
for correlating DC signatures of Majoranas with the signatures coming from this ex-
periment, giving stronger evidence of the topological origin of the observed effects.
It would however be extremely challenging to incorporate these DC elements in this
device, and due to their effect on the electrostatic environment they would detriment
the performance of the device in RF. Four extra cutters would be necessary to pinch
off the wire and effectively remove either the DC connection or the loop connection.
The wire should also split in two sections at its ends, something that would be easier
to realize in a SAG platform [107]. The correlation of DC and RF signatures is left
as a long term goal for the moment when the device is controlled better and when
material platforms are developed further.

Apart from the characterization of energy scales associated with MZMs, we in-
tend to realize single-qubit quantum operations both on the topological qubit and
on the fluxonium qubit, and also the two-qubit SWAP and cNOT operations. A first
step in this direction will be the realization of gates in the trivial fluxonium at zero
field and the characterization of their fidelity. More complex gates are a long term
goal which requires the detection of topological signatures first.

Alternative materials and possible design changes

In parallel to the realization of physics experiments in the platform developed in this
work, we plan to realize some design changes, explore new materials and continu-
ously adapt the device design to the requirements learned from new measurements.

As discussed by the end of chapter 3, the decrease of EJ with field should be
kept in mind when designing for specific EJ/EC and EJ/EL ratios. As we saw, the
reduced value of EJ in field did not permit maintaining the fluxonium transitions at
high frequencies when increasing B. For this reason, we plan to increase the size of
the parallel plate capacitor for future devices, reducing therefore the fixed value of
EC (see equation 2.8).

Further design changes that could be considered in the future are the incorpora-
tion of air bridges and qubit drive lines. Air bridges connect the different pieces of
ground plane together with a material resilient to large magnetic fields, what would
avoid the potential problems arising from the thick aluminum wires used currently,
that can lose superconductivity when increasing the field. Using extra lines to drive
the qubit would allow to experimentally separate the lines used for addressing the
qubit and for readout, avoiding having to send signals through the resonator to ex-
cite the fluxonium transitions.

Regarding alternative materials, a first possibility, which was discussed in detail
in chapter 1, is the use of InSb nanowires instead of InAs ones. Their lager g-factor
and shadowed junctions make them a more promising material for the detection of
topological signatures at the junction. The next generation of devices will include
devices with some design changes adapted for this material platform. Since InSb
VLS nanowires are typically shorter than InAs ones, contacts must be brought closer
together. Furthermore, due to the fixed position of the shadow junction in these
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wires, it is not possible to deterministically place them aligned to a pre-patterned
cutter gate. For this reason, future InSb devices will have a global gate that controls
the electrostatic potential of the whole wire and wrapped gates deposited in a later
step to independently control the plunger and cutter potentials.

Other interesting materials to explore are different superconductors with a high
kinetic inductance. ALD TiN, for example, offers some advantages with respect to
the currently used sputtered NbTiN [95]. ALD deposition times are normally con-
trolled automatically, while the sputtering time in the current fabrication process is
controlled by the user. The current variation of film parameters between different
depositions would decrease in the case of ALD, making the device fabrication more
systematic and is performance easier to predict. Another property of ALD deposi-
tion is the homogeneity of the resulting film thickness across the wafer. The kinetic
inductance and TC of current devices depend strongly on the location of the chip in
the original wafer, with a bigger film-thickness for chips coming from the center of
the wafer than for devices coming from close to its edge. The Lk values correspond-
ing to a given film thickness are also larger for TiN than for NbTiN, reported to be
larger than 200 pH/2 for a 9 nm-thick ALD TiN film in reference [95].

Other experiments on the Majorana fluxonium platform

Apart from pursuing the main objective of studying the behaviour of a Majorana
fluxonium in the topological regime, different experiments that do not require any
topological effect can be realized in parallel.

There is still a lot to understand about the physics of Josephson junctions in semi-
conducting materials, specially in the presence of spin-orbit coupling and Zeeman
effects. With a Majorana fluxonium we can study the gate and field dependence of
the current-phase relation of a semiconducting junction, both at zero field and in
the presence of a magnetic field, contributing to the understanding of the physics of
Andreev bound states.

Due to the observation of superimposed spectra corresponding to different EJ’s,
it would also be possible to study the dynamics of quasiparticle poisoning of ABSs.
Large quasiparticle poisoning times at the junction are needed to realize topologi-
cal qubits with large coherence times. Studying the dependence of the poisoning
rates on different parameters would allow to minimize decoherence sources in this
and other topological qubits. This type of doubling of the spectral lines can also be
useful to study the number of high transmission channels at the junction, increasing
the input power one can excite the different channels and count them based on the
number of lines appearing in the spectrum. A reduced number of channels at the
junction is preferred to study topological signatures in a Majorana fluxonium, since
all channels contribute to the EJ term, while only a single channel contributes to the
EM coupling strength. Characterizing the dependence of the ABS channels on gate
and field would therefore contribute to a better understanding of the nanowire flux-
onium device and to the characterization of its optimum operational points.
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