
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

A local search approach to resolving capacity issues
in mobile cellular networks

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

Sander Gribling
Delft, the Netherlands

May 2015

Copyright c© 2015 by Sander Gribling. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

“A local search approach to resolving capacity issues in mobile cellular networks”

Sander Gribling

Delft University of Technology

Daily supervisor Responsible professor

T. Ouboter, MSc Prof. dr. ir. K. I. Aardal

Other thesis committee members

Dr. D. C. Gijswijt Prof. dr. J. L. van den Berg

May 2015 Delft, the Netherlands

Contents

1 Introduction 1
1.1 A mobile cellular network . 2
1.2 The SEMAFOUR project . 4
1.3 Problem description . 7

1.3.1 Related literature . 8
1.3.2 Outline of the optimization approach 10

2 Optimization techniques 11
2.1 Computational complexity . 11
2.2 Local search methods . 12
2.3 Properties of local search methods 16

2.3.1 Greedy search . 16
2.3.2 Simulated Annealing . 16
2.3.3 Tabu search . 17
2.3.4 Overview . 18

2.4 Integer Linear Programming & relaxations 19
2.4.1 Linear Programming . 19
2.4.2 Integer Linear Programming 20
2.4.3 Mixed Integer Linear Programming 21

3 Evaluation tools 23
3.1 Introduction to mobile cellular network evaluation methods . . . 23
3.2 Network aspects . 24
3.3 Propagation environment . 25

3.3.1 Path loss . 25
3.3.2 Shadowing . 27
3.3.3 Antenna gain . 28

3.4 Traffic handling . 30
3.5 Concluding remarks . 31

4 Local search approach 33
4.1 Cost function . 33
4.2 Neighborhood structure . 36

4.2.1 Traffic filler . 37
4.2.2 Small cell removal . 38
4.2.3 Swap . 38
4.2.4 How to select the operator 39

4.3 Acceptance criterion . 40

i

ii CONTENTS

4.4 Stopping criterion . 41
4.5 Problem zone characteristics . 41

5 Choice of initial state 45
5.1 Capacitated Facility Location Problem 46

5.1.1 An extra constraint: the best server constraint 48
5.2 Relaxations of the binary integer prorgam 50

5.2.1 Linear relaxation . 50
5.2.2 MILP relaxation . 51
5.2.3 The equivalence of the MILP and binary program 52

5.3 The dynamic slope scaling procedure 53
5.3.1 Example: dynamic slope scaling procedure applied to a

network flow problem . 56
5.4 Cell capacity estimates . 62

5.4.1 Method 1: rough estimate using SONlab 63
5.4.2 Method 2: trial-and-error 64
5.4.3 Method 3: theoretical bounds 64
5.4.4 Conclusion . 68

5.5 Numerical examples . 69
5.5.1 The MILP without the best server constraint 69
5.5.2 The MILP with the best server constraint 70
5.5.3 The dynamic slope scaling procedure 71

6 Results 77
6.1 Problem instances . 77
6.2 Algorithm parameters . 81
6.3 Numerical results . 82

6.3.1 The numerical value of the solution of the MILP 83
6.3.2 Comparison of the local search methods 84

6.4 Summary of the numerical results & reflection 88

7 Conclusions & Reflection 91
7.1 The mixed integer linear program 91
7.2 Multiple possible base stations at one location 92

A Basics of mobile cellular networks 95
A.1 General terminology . 95
A.2 Performance metrics . 100

B Tables 103

C Functions 109

D Another evaluation tool: SANlab 111
D.1 Network aspects . 111
D.2 Propagation environment . 111

D.2.1 Path loss: The COST 231-Hata model 111
D.2.2 Shadowing . 112
D.2.3 Antenna gain . 114

D.3 Traffic handling . 115
D.4 Concluding remarks . 117

CONTENTS iii

D.4.1 Further advice to a future user of SANlab 117

iv CONTENTS

Preface

Dear reader,

What lies before you is the result of my graduation work for the master Applied
Mathematics. I have had the pleasure of doing my thesis at the ‘Nederlandse
Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek’, or as most of
you know it: TNO. The topic of my thesis is a decision support system for
mobile cellular networks. This is part of the SEMAFOUR project TNO is
involved in. The decision support system is designed to help network operators
choose upgrades to the network based on predicted future bottlenecks. The
recommendation to the network operator we provide in this thesis work is based
upon a local search method. In fact, two different local search methods are
compared. A large part of this thesis focuses on the choice of the initial state.
It turns out that the computation time required by the local search methods
decreases (a lot) by choosing the initial state wisely.

Besides working on my thesis project I have also contributed to the SE-
MAFOUR project in other ways. The internal deliverable 5.3 contains a gen-
eral description, and some numerical results, of my project. It was nice to be
involved in the process of writing and rewriting (based on external reviews). I
have also contributed to the demonstrator of the decision support system. For
the demonstrator, I was involved in making the demonstration scenario. My
local search approach is used to create different solutions for the bottlenecks
that arise in the demonstration scenario. The result of this work can be found
here: [9].

A second side project to my thesis project is the development of a network
evaluation tool. In Chapter 3 I have described the previously existing evaluation
tool used in this project (SONlab). In a similar fashion I have presented my
own evaluation tool in Appendix D.

I would also like to take the opportunity to thank all my supervisors. First
of all Tanneke, my daily supervisor, thank you for forcing me to work in a more
structured way (that is, to put my plans on paper). It might seem like a small
thing, but it was really useful. Karen, Dion and Hans, thank you for all the
feedback on my thesis. It has been really useful to get input from two different
fields. Explaining the ‘other’ field to each of you helped me to understand it
better and to write it down in an accessible way. Finally, Remco, thank you for
your comments on the third chapter and all other small questions you answered
about cellular networks.

A final word to the reader: I hope you enjoy reading it as much as I enjoyed
writing it!

v

vi CONTENTS

Sander Gribling, May 2015

Chapter 1

Introduction

We all have one, a mobile phone. What most of us do not realize is how complex
a mobile network can be, and, how difficult it is to plan a good mobile network.
For instance how should a network operator best adjust the network based on
predicted traffic growth in certain areas? First of all, this is not an easy question!
Even to just understand the question we would need to know what ‘best’ means.
Most of us have used a mobile phone to connect to the internet, be it via WiFi or
3G or perhaps even through a 4G network. Most likely you have at some point
experienced a ‘bad’ connection, for instance when looking at a video on internet
it paused to buffer. A network operator wants to be able to guarantee its users a
certain performance of its network, say for instance that 99% of the time you can
achieve a data connection of 0.5 Mbps. However it is also a for-profit company,
so it wants to keep the cost as low as possible. A trade-off between these two
goals needs to be made. We will develop a method to give a network operator
advise on how to upgrade its network in case of a predicted future performance
bottleneck in such a way that the network will continue to meet its performance
standards and that it is a cost-efficient solution. Nowadays, most of the above
is done manually, based on human experiences. The method we have in mind is
highly automated. It combines input about demand and performance forecasts
into a list of promising network upgrades automatically.

In this chapter we would like to cover two subjects:

1. An introduction to mobile networks

2. The problem description

A mobile cellular network comes with a lot of terminology, a detailed descrip-
tion of this terminology would become quite lengthy. That is why we introduce
the concept of such a network using a few sketches. A detailed description of
a mobile network can be found in Appendix A. These sketches should be suf-
ficient to understand the basic concepts used in this thesis, in particular the
problem definition. This thesis is carried out at TNO as a part of the Euro-
pean SEMAFOUR project and therefore we briefly introduce the SEMAFOUR
project and its goals. From that, our problem definition follows naturally. After
defining the problem we review the literature related to this subject and finally
we give an outline of our approach to solving the problem.

1

2 CHAPTER 1. INTRODUCTION

1.1 A mobile cellular network

Figure 1.1: Sketch of a mobile cellular network.

Let us start by giving a general description of a mobile network. In Figure 1.1
we can see a sketch of a mobile network. The figure shows us three large
antennas, four small antennas, and several types of users (mobile phone, laptop,
someone in a car, a household, an office building). Each user connects to an
antenna and the area in which users connect to a certain antenna is shown as
a circle around the antenna. Of course in reality these areas are not perfect
circles, in a moment we will explain what influences their shape. First let us
look at a side view of an antenna and a user, see Figure 1.2. What we see is on
the left an antenna and on the right a user, the cone drawn from the antenna
to an area around the user represents the 3D area for which the antenna could
provide a user with a connection. Some terminology is also introduced; a user
is often referred to as User Equipment, UE, this allows us to not distinguish
between mobile phones, laptops, etc. In fact, we do not model individual users,
we mostly consider area based statistics and as such we look at Service Test
Points, STPs, which are small regions with a certain traffic intensity.

As we can see from Figure 1.2 an antenna is aimed in a certain direction,
this allows us to place multiple antennas on a single tower. Such a collection
of antenna at one location is referred to as a base station, BS. In Figure 1.3
we can see a base station and its service areas. These service areas (one for
each antenna) are usually referred to as either cells or sectors. Figure 1.3 shows
us a 3-sector base station along with the resulting cell structure. We have
indicated again our Service Test Points, a grid of squares. In Figure 1.3 we
have sketched three cells, therefore our base station has a 3-sector configuration
(three antennas). The cells do not have a nice geometric shape in our sketch,
this is because in reality they also do not have a nice shape. The assignment
of an STP to a cell is done based on the best server principle, where the best
server is defined as the antenna which provides the strongest pilot signal (a
signal broadcast at a specific frequency by all antennas at a fixed power setting).
The signal strength depends on path loss which is not uniform due to obstacles
between the antenna and UE.

1.1. A MOBILE CELLULAR NETWORK 3

Figure 1.2: Sketch of an antenna and a mobile user (User Equipment, UE), side
view.

Figure 1.3: Sketch of a top-down view of a base station with three sectors/cells
and service test points.

4 CHAPTER 1. INTRODUCTION

The other concepts that can be seen in Figures 1.2 and 1.3 are tilt and
azimuth. An antenna is aimed in a certain direction, this direction is specified
by the offset to a certain reference direction. The offset in the vertical plane is
called tilt (reference: the horizontal direction), the offset in the horizontal plane
is called azimuth.

Another aspect of a mobile network is its performance. We use simulators
to evaluate the performance of a network configuration. The performance of a
network is hard to capture in one figure since we have multiple stakeholders,
each with a different view of what a good performance is. Important examples of
stakeholders are the network operator and the users. Users can also be divided
into several categories, for example slow and fast moving users. Fast moving
users would value a fast and good transition from one cell to another (that is,
a handover), whilst slow moving users might value this as less important. It is
for this reason that we describe the performance of a network by certain Key
Performance Indicators (KPI) . Therefore, an evaluation of the performance of
a network configuration comes down to calculating the KPIs.

An important KPI we use is the load vector. The load per cell can be seen
as the ratio between the physical resources requested by the users connected
to that cell and the total available resources of that cell. The total amount of
available resources is called the available bandwidth or spectrum. The available
spectrum depends on what the operator has bought at the auction, a typical
spectrum would be the range between 1800 and 1810 MHz. The load vector is
an important measure of the networks performance as it relates to user experi-
ence (for example calls being blocked or a lower data throughput received than
requested). In Appendix A.2 we have defined the load and other KPIs that we
are interested in.

As we have mentioned above we want to evaluate the performance of a net-
work configuration. Since we use it often it is important to clarify our definition
of a network configuration.

Informal definition 1.1.1 (Network configuration). A network configuration
consists of a set of active base stations. Each base station has a location and
a number of antenna arrays. Each antenna array is of a certain type and has
parameters transmission power, tilt and azimuth.

The reader who is unfamiliar with any of the above terms we would like to
refer to Appendix A.

1.2 The SEMAFOUR project

This project is carried out at TNO as a part of the European SEMAFOUR
project, which stands for Self-Management for Unified Heterogeneous Radio
Access Networks. The SEMAFOUR project is carried out by a consortium of
companies namely: Nokia, atesio, Ericsson, iMinds, France Télécom - Orange
labs, Telefónica I+D, TNO and the Technische Universität Braunschweig. It
is partly funded through the European Commission via the funding scheme
FP7 STREP. The goals of the SEMAFOUR project are best described on the
projects website [2]. The following (in italics) is a word-for-word copy of the
projects general goals.

1.2. THE SEMAFOUR PROJECT 5

The SEMAFOUR project will design and develop a unified self-management
system, which enables the network operators to holistically manage and operate
their complex heterogeneous mobile networks. The ultimate goal is to create a
management system that enables an enhanced quality of user experience, im-
proved network performance, improved manageability, and reduced operational
costs.

In other words, the goal of the SEMAFOUR project is as follows: to cre-
ate a system which is able to automatically manage the mobile network of a
network operator. By automatic management we mean that the system should
be able to detect aspects of the network which can be improved and provide
the network operator with options to achieve such an improvement. Some of
these options could be implemented without human intervention (for example
the fine tuning of power settings of the antennas to minimize interference), oth-
ers require human interaction. The long term planning, i.e., building new sites,
usually requires some human interaction. The Decision Support System (DSS)
is part of this long term planning. The aim of the DSS is to automatically give
recommendations about network upgrades based on predictions about future
bottlenecks. The recommended upgrades should make sure that the network
will meet the operators performance standards for the at least the time frame
for which the prediction was made. The DSS consists of two parts, bottleneck
detection and recommendations for network upgrades. The first part of the DSS
consists of detecting bottlenecks based on predictions about future traffic. The
output of this first part will be the type of bottleneck and the relevant problem
area. These will serve as input for the second part. The output of the second
part will be a list of promising upgrades the operator can choose from to prevent
the predicted future bottleneck. This thesis focuses on the second part.

The second part of the DSS should give recommendations about network
upgrades. One can distinguish two different classes of upgrades: expanding ca-
pacity using the same radio access technology or migrating to a new technology.
These two classes are treated separately within the SEMAFOUR project in the
following use cases (in the same order):

• Operational Network Evolution (DSS-ONE),

• Strategic Network Migration (DSS-SNM).

This thesis is largely contained in the first use case. Given this classification we
can visualize the DSS in the diagram shown in Figure 1.4.

Another part of the SEMAFOUR project that we would like to mention is
the following objective of SEMAFOUR: To develop a demonstrator that proves,
through simulation in realistic scenarios, that the vision, concepts, methods and
algorithms developed within the project provide significant benefits for manage-
ment and operation and result in performance improvements. A key target of
this demonstrator is to provide an intuitive visualisation of the benefits in terms
of performance, efficiency and flexibility enhancements achieved by a unified
self-management system for multi-RAT, multi-layer radio access networks.

Some of the terms we see in this objective have not been explained before.
RAT stands for Radio Access Technology. LTE, HSPA and WLAN are examples
of these kinds of technologies1. In this thesis we consider LTE based networks.

1The existence of different technologies suggests that they behave in different ways. This is

6 CHAPTER 1. INTRODUCTION

Figure 1.4: Schematic representation of the DSS.

LTE stands for Long Term Evolution. The reason we mention this objective
of the SEMAFOUR project is also mentioned in the preface: the author of
this thesis has played a role in the development of one of the demonstrator
scenarios, the one relating to the subject of this thesis, and the generation of all

indeed the case. The main difference is in the way in which they assign the available resources
at a base station (bandwith, i.e. hertz) to users. In particular inter- and intra-cell interference
depend on the way the resources are assigned to users. LTE is the latest technology, it
eliminates intra-cell interference by using the radio access technology Orthogonal Frequency
Division Multiple Access (OFDMA). Further information about LTE or OFDMA can be found
in [28].

1.3. PROBLEM DESCRIPTION 7

data related to that scenario.

1.3 Problem description

As can be seen in the previous section the goal of this thesis is to provide recom-
mendations of network upgrades needed to prevent predicted future performance
bottlenecks. To be clear: the prediction of the future bottlenecks is not part of
this thesis, it has already been done within the SEMAFOUR project. Before
going into any more details about the type of upgrades available we can already
state the problem definition:

What is ‘the best way’ to alter the existing mobile cellular network in order
to prevent a predicted future bottleneck?

‘The best way’ depends on what the network operators goals are. The net-
work operator would most likely want to have a cost efficient network (upgrade)
providing a good (or the best possible) Quality of Service (QoS) or Quality of
Experience (QoE) level. The difference between QoS and QoE being that the
first is an objective measure and the second a much more subjective one. To
give an idea of how a network performs on QoS and QoE levels there are certain
Key Performance Indicators (KPIs) which can be looked at. In Section 1.1 we
introduced the concept of load. Load is a very important indicator since a high
load on certain cells is a strong indicator of an area that has a reduced QoS. A
further motivation to use load as our KPI is that other important KPIs such
as user data, throughput and blocking rate (the probability that there are not
enough resources available for a user) are strongly connected to the load of the
network.

We see that the goals of a network operator are conflicting in the sense that
a network which provides a high QoS level will most likely not be cheap and
the other way around. The weighing of performance indicators and costs of
the network (upgrade) is therefore something to which we need to pay special
attention. The weights should be determined by the operator as it reflects the
priorities they give to the KPIs.

Lastly we note that the first part of the DSS categorizes the bottlenecks
according to the following problem types:

1. Not enough coverage

2. Not enough capacity

In this thesis we consider problems arising in an existing network, coverage
should therefor not be an issue, so we consider problems of the second type.

To complete the problem description we still need to define what kind of
network upgrades we consider. First of all we note that we do not do the fine
tuning of the base stations, i.e., given a selection of base stations we do not
attempt to find the best possible configuration for each base station in terms
of power, tilt, azimuth, etc. This is because we do long term planning and
the configuration typically changes within short time spans. Hence, we assume
that for each base station we are given a configuration that is close to optimal,
or at least a reasonable choice for that location. The types of base stations

8 CHAPTER 1. INTRODUCTION

we consider are macro sites with three or six sectors and micro sites with one
sector. The macro and micro says something about the area they are designed
to cover. A macro site is typically placed at a high position and has a high
power usage (around 46 dB), so that it can serve a large area (observed range
is around 800m). Micro sites however are typically placed at a hight of around
30m and with a lower power usage (30 dB) than the macro sites, their observed
range is more around 100 to 200 meters. We consider two possible upgrades to
the network:

1. The 6-sectorization of a 3-sector site. Which means that we replace the
3-sector BS by the 6-sector BS at the same site.

2. The placement of a new micro site.

We would like to point out that although we only consider the case with two
possible upgrade types the methods we will develop (in particular the local
search heuristic) can be easily adapted to use more upgrade options. We assume
that a list of potential locations for micro sites is provided.This reflects reality
well in the sense that you simply can not build a new site on every location
(terrain restrictions, permits, etc.). It is therefore acceptable to assume that
the network operator provides a finite list of potential locations for micro sites.

A concise formulation of the problem would be the following:
Given a prediction about the future traffic demand and a list of potential net-

work upgrades, select those upgrades that make the network meet the operators
KPI requirements for the predicted traffic state, at minimum cost.

1.3.1 Related literature

The problem as we have defined it is often called the antenna placement problem
(APP). Some variations of the problem have already been considered. In most
of the available literature the radio access technology considered was different
from LTE (usually GSM or UMTS was used). When reading articles where a
simplification of the behavior of a mobile network was made, we need to keep
in mind that LTE has different properties than for instance GSM or UMTS, in
particular when simplifications of the interference are made. The complexity of
the APP is known to be NP-hard2, in [43] it is studied in an accessible way. They
simplify the APP by ignoring interference and instead assume that the resource
demand of a user to a BS is independent of the load. The possible assignment of
a user to a BS only depends on path loss and the BSs configurations. They then
relate this simplification to the problem of finding a minimum (size) dominating
set. The Dominating Set problem is shown to be NP-hard in [13], it is even hard
to approximate (no polytime3 algorithm exists with approximation ratio c log n
for any 0 < c < 1/4).

Since even approximating this simplification cannot be done in polynomial
time it seems natural to consider heuristic methods. To the reader who is not
familiar with heuristic methods: Chapter 2, introduces the methods mentioned
below.

2See Chapter 2 for an explanation of the concept NP-hard.
3See Chapter 2 for an explanation of the concept polytime.

1.3. PROBLEM DESCRIPTION 9

First of all [42] provides an extensive overview of the work that has already
been done on the antenna placement problem, often heuristic approaches are
used. In particular the authors mention that the APP is a special case of the well
known facilities location problem. In [20], [21] and [43] the APP is formulated
as a mixed integer program (slight variations between authors exist). Tabu
search is used by [15], [38], [20], and [21]. St-Hilaire et al., [38], is noteworthy
since they split the evaluation of a network configuration into multiple phases,
some of which can be solved to optimality very fast, considerably improving
the computation time needed for an evaluation. The most basic local search
method used is Greedy search, it is often compared to Simulated Annealing
and/or genetic algorithms. Articles in which a comparison between Greedy
search and Simulated Annealing is made are [10], [42], [32], and [36]. In [29]
only Simulated Annealing is considered, they do however describe and explain
the neighborhood structures they have used very thoroughly, it is for that reason
that this article has formed the first inspiration for the local search method we
have proposed in this thesis.

In [35] Tutschku introduces the concept of demand nodes. Demand nodes
can be seen as a division of the problem area in smaller areas with a fixed
demand. That means you do not look at individual users but for example at
pixels. This is also a concept we will use. In [35] the concept of demand nodes is
used to look at the coverage problem. Tutschku formulates this as the Maximal
Coverage Location Problem. This model does not take capacity into account.
In [37] the APP is considered for GSM networks. The authors propose an
algorithm that could be used to optimize the configuration of each base station.
It does so by considering each BS individually and assuming no other BSs are
active, it then selects the settings which maximize coverage whilst meeting the
capacity constraint. We consider the configuration of each base station as input,
but [37] shows how it could be obtained in another way.

The articles mentioned above mostly use a single objective. In [41] the
concept of dealing with multiple objectives is considered for the APP. Without
presenting any comparative results they mention three possibilities:

1. Combine all objectives into a single scalar value, typically as a weighted
sum, and optimize the scalar value.

2. Solve for the objectives in a hierarchical fashion, optimizing for a first ob-
jective then, if there is more than one solution, optimize these solution(s)
for a second objective. Repeat until all objectives are considered.

3. Obtain a set of alternative, non-dominated solutions, each of which must
be considered equivalent in the absence of further information regarding
the relative importance of these objectives. Domination is in the Pareto
optimality sense.

As we have mentioned before we consider a different radio access technology
than what was used in the available literature, therefore we also need a different
way to evaluate the performance of a network configuration. The doctoral work
of Kimmo Hiltunen, [34], contains a lot of work done on performance evaluation
of various network deployments. In particular simulators are considered along
with a lot of parameters which could be used as a standard for various effects.

10 CHAPTER 1. INTRODUCTION

Seeing all of the work that has already been done it is natural to ask the
following question: ‘what does this thesis add to the existing knowledge?’. In
previous work either a local search method or a mixed integer linear program-
ming formulation was used. Never both. We do combine these methods and
as such we get the best of both. Secondly, as far as we know, this is the first
time that networks based on the LTE technology are considered. We give some
insight into the network evaluation methods used, which take into account the
specifics of the LTE technology.

1.3.2 Outline of the optimization approach

The problem as defined in Section 1.3 will be solved in the remainder of this
thesis. As we have mentioned in Section 1.3.1 the problem is NP hard, even
difficult to approximate, and has been studied by other authors using heuristic
methods as well. We also use heuristics to ‘solve’4 the problem. In Chapter 2
we introduce the basic concepts of local search methods, along with a discussion
of several well known variants. We primarily focus on the development of local
search methods with a fast convergence (due to very specific neighborhoods),
the reason we do so is that each evaluation of a network configuration is time
expensive (> 10 seconds). In Chapter 4 we specify our local search methods.
A way to speed up convergence is to choose a good initial state. In Chapter 5
we discuss simplifications of the problem defined in Section 1.3 which can be
solved fast and with a good initial state as outcome. The simplification we
consider is a model where interference is not taken into account5, formulated
first as a binary integer program and later relaxed as a mixed integer linear
program. In Chapter 6 we present our numerical results, based on a set of
problem instances also defined in that chapter. Chapter 6 compares several
local search methods on their performance. Since the initial state can be a big
influence on the performance we see the initial state as a variable as well. We
consider two initial states, the first being the existing network, the second the
initial state as found using the methods of Chapter 5.

4In Chapter 2 we will note that heuristics attempt to solve a problem but are not always
successful. Nonetheless, for ease of reading, we will say that a heuristic solves a problem when
we actually mean that it attempts to solve the problem.

5In fact, it is guessed at the beginning, in the formulation of the program, independent of
the actual interference resulting from the load of each cell.

Chapter 2

Introduction to
mathematical optimization
techniques

In this chapter we present an introduction to the mathematical techniques we
use. First we explain the need for, and basic concepts of, local search methods.
We then give a comparison of the benefits and downsides of a few of the most
common local search methods (Greedy, Simulated Annealing and Tabu search).
Secondly we give an introduction to ((mixed) integer) linear programming and
relaxation techniques.

Before we continue, we note that the problem we are interested in has a
natural formulation as a minimization problem: minimize the total costs whilst
fulfilling some criterion (for example, the load of all cells must be below a certain
threshold). In this chapter we therefore also formulate everything in terms of
minimization problems. For example, when we compare two objective values
we will say that the one with a lower value is better.

2.1 Computational complexity

As we have mentioned before, we use local search methods to solve the prob-
lem described in Section 1.3. In this sentence, ‘solve’ is a slightly misleading
term since local search methods are heuristics. And heuristics in general do
not actually solve the problem. A heuristic method attempts to find a very
good solution using as much properties about the search space as possible, the
obtained solution does not need to be optimal. Later on in this chapter we will
see that the obtained solution is often a local optimum. That means that in a
small region (neighborhood) around the obtained solution it is optimal. A local
optimum which is also the best state in the search space is called a global opti-
mum and an algorithm which is guaranteed to find a global optimum is called
exact.

Heuristics in general do not provide a global optimum. Still they are some-
times used. The reason for this is that not all problems are equally difficult. For
some problems exact algorithms require too much computation time. We want

11

12 CHAPTER 2. OPTIMIZATION TECHNIQUES

to call certain types of problems ‘difficult’ and others ‘easy’. One can imagine
that even for difficult types of problems very small instances can be solved quite
fast. So giving a bound of the form too much computation time means more
than a thousand calculations are needed is not helpful (although in practice such
bounds could determine your choice of algorithm). Instead we would like to say
something about how quickly the amount of calculations needed grows when
the instance size grows1. If this rate of growth is polynomial in the instance
size we say that the algorithm used to solve this problem runs in polynomial
time (and the problem is of the class P). Problems for which an exact algorithm
exists which runs in polynomial time we call easy. Many mathematicians agree
that not all problems can be solved in polynomial time. Another important
class of problems is those problems for which a method exists to verify that a
given solution is indeed an optimal solution, this class is called NP. The afore-
mentioned belief of many mathematicians is that the classes P and NP are not
the same. The most difficult problems in NP are called NP-complete and the
problems which are at least as hard as any problem in NP are called NP-hard.
For NP-hard problems we do not expect to be able to find an exact algorithm
that runs in polynomial time.

In Section 1.3.1 we have referred to articles which say that the problem we
posed in Section 1.3 is NP-hard. As such we do not expect to be able to find
exact algorithms to solve it that run in polynomial time. It is for this reason
that we consider a heuristic approach through local search methods.

2.2 Local search methods

In this section we explain what a local search method is. First of all let us
consider the following general minimization problem:

minimize
x

f(x)

subject to x ∈ U.
(2.2.1)

where U is some subset of Rn and f : Rn → R is some function. The key
characteristic of a local search method used to solve this problem is that it is
an iterative procedure which starts with some x0 ∈ Rn (not necessarily feasible)
and in each iteration i attempts to move to an xi with some relation to xi−1;
xi has to be a neighbor of xi−1 (a proper definition of a neighbor will be given
later on). The move is accepted if xi is a ‘better’ solution than xi−1, if the move
is rejected we take xi = xi−1. The point xi is called a state. This leads to the
definition of a local search method:

Definition 2.2.1 (Local search method). A local search method is an iterative
procedure in which a neighbor of the current state is evaluated. If it meets
the acceptance criterion it is accepted and we move to that state. If it is not
accepted we do not change the current state. This process is repeated in the
next iteration.

1As an example of an instance size, consider the problem of sorting n numbers from smallest
to largest. The size of an instance would be n. So for an algorithm to run in polynomial time
the running time must be bounded by a polynomial in n. To the reader who would like to
know more: the Wikipedia page on time complexity is a good starting point.

2.2. LOCAL SEARCH METHODS 13

In Algorithm 1 we have given the pseudo code of the generic local search
method.

Algorithm 1. Local search method.

Input:
A neighborhood N (x) for each x ∈ X where X is the state space,
a method SELECT to select a neighbor from a neighborhood,
an acceptance criterion ACC depending on the current and previous state,
a stopping criterion STOP depending on (potentially) all previous states and
an initial state x0.

Initialization:
Use SELECT on N (x0) to select a neighbor x∗0.
if ACC(x∗0, x0) == true then

Set x1 = x∗0
else

Set x1 = x0

end if
Set i = 1
while STOP (x0, x1, . . . , xi) == false do

Use SELECT on N (xi) to select a neighbor x∗i .
if ACC(x∗i , xi) == true then

Set xi+1 = x∗i
else

Set xi+1 = xi
end if
i:= i+1;

end while

Output:
The best state xi.

In the definition of a local search method we mention an acceptance criterion,
it is defined as follows.

Definition 2.2.2 (Acceptance criterion). An acceptance criterion is a rule used
to decide if the move to the evaluated neighbor of the current state should be
made.

The acceptance criterion greatly determines the performance of the local
search method. In fact the acceptance criterion is what distinguishes two im-
portant classes of local search methods differ. We will describe these two classes
and their acceptance criteria as examples below.

Example (Greedy search). A Greedy search method uses the most basic accep-
tance criterion: a neighbor is accepted if it has a lower cost than the current
state.

Example (Simulated annealing). This type of method uses a slightly more elab-
orate acceptance criterion. If a neighbor has lower cost than the current state

14 CHAPTER 2. OPTIMIZATION TECHNIQUES

it is always accepted, if it has a higher cost it is accepted with the following
probability:

P (e, e′) = exp(−e
′ − e
Tk

) (2.2.2)

Where e is the cost of the current state, e′ the cost of the evaluated neighbor
and Tk a parameter known as the cooling temperature depending on the iteration
number k. The name cooling temperature indicates the relation between the
metallurgic process of annealing. The cooling temperature is assumed to decrease
in the number of iterations. This makes the probability that a worse solution
is accepted increasingly smaller. The reason to sometimes also accept if the
neighbor is a worse solution is to escape local optima.

By now we have mentioned it a few times, a local search method moves from
one state to another. The direction in which we move is determined by what the
neighbors of the current state are. These neighbors are called a neighborhood.

Definition 2.2.3 (Neighborhood). A neighborhood is a set of solutions which
are related to the state by some predefined operator or by any of a few operators.

There is of course the question of what would make a neighborhood a good
neighborhood? From the definition it seems that any selection of solutions
can form a neighborhood, however not every selection should result in a good
search method. Before answering this question we first give a few examples of
neighborhoods to get more familiar to the concept.

Example (Neighborhood). A standard example for a neighborhood is one for
the Travelling Salesman Problem (TSP). The TSP is the problem of finding a
shortest route between a given set of cities such that each city is visited once and
the last city is equal to the first city. A state s can be noted as a permutation
of the cities. A possible neighbor of s could then be a state s′ in which two of
the cities have swapped places in the permutation.

The following is a (first version of a) neighborhood used in the project.

Example (Neighborhood SmallCellRemoval). This neighborhood allows us to
remove unnecessary sites from our network configuration. To determine which
sites are unnecessary we first determine the average load per site. We do this by
summing the load of all cells belonging to a site and dividing it by the amount of
sectors (cells) the site has. We then sort the average loads per site and consider
the active site with the smallest average load. If this load is less than 0.35 we
adjust this site according to the following rules:

• If the site was a 6-sector site we reduce it to a 3-sector site.

• If the site was either a 3-sector site or a micro site we remove it completely.

The above are all examples of neighborhoods derived by the use of one
operator. In the last example we could extend the neighborhood by defining
another operator which does more or less the opposite: it adds an upgrade to
the network around a site with a load above the threshold.

Now back to the question, what would make a neighborhood a good neigh-
borhood? Ideally it would contain the global optimum and nothing else, since

2.2. LOCAL SEARCH METHODS 15

then we would only need to make one step before we are done. It is clear that
this will never be the case if you decide to use a local search method. The goal
in designing neighborhoods is however to approximate this situation as well as
possible. By using the structure of the problem it is often possible to make
sure that at least some part of the neighborhood is expected to have a better
objective value than the current solution. Designing a good neighborhood or
good neighborhoods also means that you do not want to restrict yourself to
solutions that are sub-optimal. A good neighborhood structure would make the
search space connected. In this context connected means that from any state
it is possible to make a walk to any other state where each step moves to a
neighbor.

This brings us to a bit of terminology. The following two definitions will be
useful when discussing our local search methods and the results later on.

Definition 2.2.4 (iteration). The proces of selecting a neighbor, randomly,
of the current state and evaluating its performance. The iteration ends by
either accepting or rejecting the neighbor which provides the state for the next
iteration.

This definition is a very important one since it is not the only way to select
the next state. An alternative way would be to evaluate all neighbors of the
current state and then select the next state based on their objective values. We
choose to not evaluate all neighbors since an evaluation is time expensive.

Definition 2.2.5 (run). We call a run the application of the local search method
to the problem. By this we mean the entire proces from initial solution to final
solution. For now we end our local search method after a fixed number of
iterations. Eventually we will also implement different stopping criteria (for
example not finding an improvement for 50 iterations).

A final and important question is: When does a local search method ter-
minate? Ideally it would only terminate when the optimal solution is found
and also as soon as the optimal solution is found. This would mean that the
algorithm needs to be able to recognize an optimal solution. In many cases
where local search is used this is not the case. This means that we need to have
some kind of criterion which can be used to determine if the algorithm should
terminate.

Definition 2.2.6 (Stopping criterion). A stopping criterion for the algorithm
is a criterion evaluated in each iteration, if it is fulfilled the algorithm stops.

We will now present examples of types of stopping criteria.

Example (Stopping criteria).

• A predefined number of iterations is reached.

• A predefined computation time has been exceeded.

• Not finding an improvement for a certain number of iterations.

• Not finding a (relatively) large improvement for a certain number of iter-
ations, i.e. compare the cost of the best found solution k iterations ago
with the cost of the best found solution at the moment.

16 CHAPTER 2. OPTIMIZATION TECHNIQUES

• The distance between consecutive improving solutions is small. This would
require the definition of a meaningful metric on the solution space.

• If the optimal value is known the algorithm could terminate upon finding
a solution with that value or relatively close to that value.

This list of stopping criteria is not complete. Often a combination of different
stopping criteria is used. Usually one of the first two criteria is used together
with another one. The first two ensure that the algorithm does not go on forever.

In the next section we discuss in more detail the Greedy, Simulated Anneal-
ing and Tabu search classes. We have not yet seen Tabu search in an example,
it will be introduced and explained in the next section.

2.3 Properties of various types of local search
methods

In this section we describe various types of local search methods. For each
method we will list its key characteristics and the advantages and disadvan-
tages of the method. In the previous section we have used Greedy search and
Simulated Annealing as examples of search methods, the third class we will
discuss is that of Tabu search methods.

2.3.1 Greedy search

A Greedy search method uses the most basic acceptance criterion: a neighbor is
accepted if it has a lower cost than the current state. There are no restrictions
on the neighborhoods. There is no use of memory, that is: information about
the previous states is not taken into account when selecting the next state. The
main advantage of this class is that it is easy to implement, it also does not
use any search history which simplifies the selection process. A well known
disadvantage is its tendency to get stuck in local optima. This type of method
can be compared to a person climbing a mountain. In this analogy a better state
would be a higher position on the mountain. A move between states would be
literally taking a step. The acceptance criterion means that a step can only be
taken uphill. If the mountain is nice and smooth, with only one peak, this kind
of walk would bring you to the peak, the global optimum. But if the mountain
has multiple peaks, with different heights then it is clear that once a person
reaches a peak it stops. The first peak visited is not necessarily the highest
peak, which means we can end up in a sub-optimal state.

2.3.2 Simulated Annealing

Similar to Greedy search the typical Simulated Annealing method does not have
any restrictions on the neighborhoods nor does it use any memory. This type
of method uses a slightly more elaborate acceptance criterion. If a neighbor has
lower cost than the current state it is always accepted, if it has a higher cost it
is accepted with the following probability:

P (e, e′) = exp(−e
′ − e
Tk

) (2.3.1)

2.3. PROPERTIES OF LOCAL SEARCH METHODS 17

Where e is the cost of the current state, e′ the cost of the evaluated neighbor and
Tk a parameter known as the cooling temperature depending on the iteration
number k. The cooling temperature is assumed to decrease in the number
of iterations. This makes the probability that a worse solution is accepted
increasingly smaller. The reason to sometimes also accept the neighbor if it is a
worse solution is to escape local optima. Going back to the previous analogy of
a hill climber this type of acceptance criterion would mean that the hill climber
would sometimes move to a lower position, in the hope that later on it can
move to a higher position than where it was. The longer the person is already
climbing the less likely he is to move to a lower position. A further introduction
of this method is given in [45].

The advantage of the method is already mentioned, it is possible to escape
a local optimum. In [17] some important disadvantages are mentioned at the
end of the (lengthy) article. The cooling temperature has to be chosen in such
a way that it decreases sufficiently fast to allow acceptable running times but
at the same time it has to provide enough freedom to allow the algorithm to
escape local optima. The best choice depends on the problem type and size,
which means it is very difficult to get exactly right without experimentation.
Especially when there are only a limited number of iterations available the
benefits from this method will be negligible compared to the Greedy search
category. In [22] some convergence results are shown. They look at the process
as a Markov chain and show that under certain conditions on the initial choice
of the cooling temperature and the rate of decay of the cooling temperature
there is asymptotic convergence to an optimal solution. This result does require
some properties from the neighborhood structure, it requires the search space
to be connected in the sense that every state can be reached from any state
with a positive probability. For the readers more familiar to Markov chains this
makes the Markov chain irreducible. Another article which looks at convergence
results (with similar findings) is [27].

Finally we note that both Simulated Annealing and Greedy search belong to
the broader class of threshold algorithms (also introduced in [22]). The general
form of a threshold algorithm is the same as our description of a local search
method with the following acceptance criterion:
When in state i we accept neighbor j if

f(i)− f(j) < tk

where tk is the threshold in iteration k.
We can see that this comes down to Greedy search when we take tk = 0 for

all k and to Simulated Annealing when we take

tk =

{
∞ with probability exp(− e′−eTk

)

0 else

2.3.3 Tabu search

In [24] Glover was the first to introduce Tabu search. In [25] the method of Tabu
search was discussed with as an example the capacitated plant location problem,
in a later chapter we will remark that the problem this thesis focuses on is closely

18 CHAPTER 2. OPTIMIZATION TECHNIQUES

related to that problem. Tabu search is inherently different from the previous
two classes since it does use knowledge about the previously visited states. The
aim of this method is to avoid cycling between states. It does so by declaring
certain moves forbidden, i.e. tabu, based on the previous steps. These forbidden
moves are stored in a tabu list which is updated after each iteration. There is
a lot of freedom in deciding which moves should be forbidden. The easiest
example is to declare the previous state tabu. This can easily be extended by
letting the tabu list contain the last m explored solutions. In the case that your
neighborhood consists of several operators2 you could also declare an operator
tabu. This could for example be useful when you see that the application of one
operator has been rejected multiple times in a row, you could declare it tabu
and hope that another operator will provide a better solution, after that you
could remove it again from the tabu list.

Tabu search is often used with the greedy acceptance criterion, but other
acceptance criteria could be used as well. When this is the case often a combi-
nation between that method and the phrase ‘with memory’ is used, for example
Simulated Annealing with memory.

An important observation is that in the case of the greedy acceptance cri-
terion we could run into a problem with our local search. Suppose we reach
the optimum in some iteration k. In every following iteration we will reject the
move and subsequently our tabu list could potentially grow to contain the en-
tire neighborhood of the optimum. In that case the algorithm should of course
terminate. Since we do not know beforehand if we have reached the optimum
it is common practice to restart the method from a random solution when this
situation occurs (unless the stopping criterion specifies otherwise).

The intended advantage of Tabu search compared to Greedy search is the
ability to learn from previous ‘mistakes’ (rejections) and thereby focus on the
more promising areas of the search space. There lies a challenge in choosing
the tabu list in such a way that the search does not become too restricted to a
certain direction whilst learning as much as possible from previous ‘mistakes’.

2.3.4 Overview

In the previous section we have given a short introduction to the methods Greedy
search, Simulated Annealing and Tabu search. The first one is the most basic
method, it is therefore often used to benchmark the others in articles where
a comparison is made. Its disadvantage is that it might get stuck in local
optima. Simulated Annealing attempts to avoid local optima by selecting a
worse neighbor with a certain probability, where the probability decays with
the number of iterations. There exist some asymptotic convergence results but
in practice the method is mostly valuable when a large number of iterations
is acceptable. The Tabu search method attempts to learn from the previous
states and/or attempted neighbors by declaring certain moves forbidden. It
should avoid cycling completely. This property does come at a cost: memory
storage. In some applications this is not a problem, the required memory is
negligible (in the application in this thesis this is the case).

The way to design a good neighborhood structure has not yet been discussed.
Since the design of a neighborhood is very problem specific it is not possible to

2Previously also described as a neighborhood structure consisting of multiple neighbor-
hoods, an operator refers to a neighborhood.

2.4. INTEGER LINEAR PROGRAMMING & RELAXATIONS 19

say something useful for general problems (other than what we have mentioned
in the previous section), in Chapter 4 we will design a neighborhood structure
for the problem this thesis deals with, described in Chapter 1. We do want to
stress that the design of a good neighborhood is crucial to the performance of
the methods described above.

A concluding remark about local search methods: the methods described
above are sometimes called meta-heuristics since they are in fact a heuristic
way to steer the heuristic process of searching locally.

2.4 Integer Linear Programming & relaxations

Linear programming has been proven to be a very important mathematical op-
timization technique. In Chapter 5 we use related techniques to find a good
initial state for our local search method. In this section we introduce the reader
to linear programming, (mixed) integer linear programming and binary pro-
gramming. For each of the mathematical programs we will give its general
formulation and, to illustrate, we treat a toy numerical case throughout this
section.

2.4.1 Linear Programming

Linear Programming, LP, consists of mathematical programs for which the ob-
jective function is linear and the constraints are written as a linear system. In
Equation (2.4.1) the general form of an LP is given where c ∈ Rn, A ∈ Rm×n
and b ∈ Rm. Note that the inequality Ax ≤ b is a vector inequality, for us this
means that each coordinate has to satisfy its inequality.

minimize
x

cTx

subject to Ax ≤ b
x ≥ 0

(2.4.1)

The feasible region of a mathematical program is defined as the set of
points which satisfy the constraints. In the general LP formulation this is equal
to

{x ∈ Rn : Ax ≤ b, x ≥ 0}.
The following is a very simple example of an LP problem.

minimize
x

−x1 + x2

subject to x1 + 2x2 ≤ 3
1

2
x1, x2 ≥ 0

(2.4.2)

This example uses two variables (x1, x2) and has three constraints (x1+2x2 ≤ 3 1
2

and x1, x2 ≥ 0). As we have only used two variables we are able to draw the
feasible region, see the blue region in Figure 2.1. That this is indeed our feasible
region can be seen quite easily. First of all we have the constraints x1, x2 ≥ 0
which indicate that our feasible region is contained in the non-negative quadrant
of the (x1, x2)-plane. Secondly the constraint x1 +2x2 ≤ 3 1

2 induces a boundary

20 CHAPTER 2. OPTIMIZATION TECHNIQUES

x1

x2

1 2 3 4

1

2

Figure 2.1: The feasible region of the system given in Equation (2.4.2).

line x1 + 2x2 = 3 1
2 . We can clearly see that this boundary line intersects the

x1-axis at x1 = 3 1
2 and the x2-axis at x2 = 1 3

4 . Since (0, 0) also satisfies the
constraint x1 + 2x2 ≤ 3 1

2 we clearly have the blue region in Figure 2.1 as our
feasible region.

2.4.2 Integer Linear Programming

It can happen that the LP formulation presented in Equation (2.4.1) is inade-
quate for the problem you want to solve. Suppose for instance that the example
of the previous paragraph, Equation (2.4.2) represents the problem of deciding
how many apples (x1) and oranges (x2) to buy to minimize the amount of or-
anges minus the amount apples. Any non-integer point in the feasible region
would represent a meaningless solution, assuming you cannot buy half an apple
for instance. To model this problem correctly we would require x1 and x2 to be
integer, i.e., we add the constraint x1, x2 ∈ N. Adding such a constraint to our
general LP formulation gives us an Integer Linear Program, ILP.

minimize
x

cTx

subject to Ax ≤ b
x ≥ 0

x ∈ Nn

(2.4.3)

Adding such a constraint to the example of the previous paragraph gives us
the following ILP.

minimize
x

−x1 + x2

subject to x1 + 2x2 ≤ 3
1

2
x1, x2 ≥ 0

x2, x2 ∈ N

(2.4.4)

2.4. INTEGER LINEAR PROGRAMMING & RELAXATIONS 21

x1

x2

1 2 3 4

1

2

Figure 2.2: The red dots indicate the feasible region of the ILP in Equa-
tion (2.4.4), the shaded area is the feasible region of the corresponding LP
problem.

The feasible region of this ILP can be seen in Figure 2.2. Note that the
optimal solution of the ILP (2.4.4) is the point x1 = 3, x2 = 0 with cost−3 whilst
the optimal solution of the same problem without the integrality constraint (see
(2.4.2)) was x1 = 3 1

2 , x2 = 0 with cost −3 1
2 . It is not a coincidence that

the ILP yields a higher cost than the corresponding LP obtained by relaxing
the integrality constraints (for minimization!). The process of relaxing certain
constraints is called relaxation. The goal of a relaxation is to make the problem
easier to solve. For instance relaxing an ILP to an LP allows you to solve
the LP with the simplex method (in practice a fast solution method), whereas
the simplex method is not available for ILPs. Of course the obtained optimal
solution of a relaxation is not always valid for the original problem, the relaxed
constraint can be violated by the optimal solution of the relaxation (this is the
case in the example above). In Chapter 5 we will use relaxations often, we
will pay special attention to what it means for a potential solution to relax a
constraint.

Remark (Binary programming). An integer linear program with the added con-
straint that all variables are bounded between zero and one is called a Binary
Program or sometimes a 0− 1 integer linear program. Binary programming is
an NP-hard problem, it was one of Karps 21 NP-complete problems [33]. Since
integer linear programming is a generalization of binary programming it is also
an NP-hard problem.

2.4.3 Mixed Integer Linear Programming

A generalization of both linear programming and integer linear programming
is Mixed Integer Linear Programming, MILP. In a MILP we have two sets of
variables, the first we allow to be continuous, as in an LP problem, the second
we restrict to the integers, as in an ILP problem. The general formulation is

22 CHAPTER 2. OPTIMIZATION TECHNIQUES

x1

x2

1 2 3 4

1

2

Figure 2.3: The red lines indicate the feasible region of the MILP in Equa-
tion (2.4.6), the shaded area is the feasible region of the corresponding LP
problem.

given below.
minimize

x,y
cT1 x+ cT2 y

subject to A

(
x
y

)
≤ b

x, y ≥ 0

y ∈ Zn2

(2.4.5)

where c1 ∈ Rn1 , c2 ∈ Rn2 , A ∈ Rm×(n1+n2) and b ∈ Rm.
In the example LP problem, Equation (2.4.2), we can for instance require

x1 to be integer. This yields the following problem:

minimize
x

−x1 + x2

subject to x1 + 2x2 ≤ 3
1

2
x1, x2 ≥ 0

x2 ∈ N

(2.4.6)

with a feasible region as in Figure 2.3.

Chapter 3

Evaluation tools

The formulation of the problem in Section 1.3 clearly shows that a method to
evaluate the performance of a network configuration is needed. In the remainder
of this thesis we will use one evaluation tool. This tool is called SONlab and
was developed by atesio [3].

In this chapter we give some background information on network evaluation
tools. First of all we explain different classes of network evaluation tools: static
and dynamic simulators and a static analysis. SONlab is of the third type. The
remainder of this chapter discusses SONlab. In the preface to this thesis we
have already mentioned it, during this thesis work another evaluation tool was
developed. It is of the same type as SONlab: a static analysis tool. We have
described this tool in Appendix D. We would advise the reader to read this
chapter and whenever you see a model you can take a look at Appendix D and
see how we did it.

The models used in SONlab can be divided in three categories:

1. The network aspects

2. The propagation environment

3. The traffic handling

This chapter will describe these three categories in this order.

3.1 Introduction to mobile cellular network eval-
uation methods

There are different ways to evaluate a mobile cellular network. Each has its own
advantages and disadvantages. In this section we will highlight these.

The first way to look at a mobile cellular network is to take a snapshot of a
situation and calculate the KPIs based on that snapshot. This method is called
a static simulation. Calculating the KPIs based on one snapshot means that
you can be very unlucky if for example the snapshot contains a lot more users
than there are active on average. A way to avoid this, and the second way to
look at a network, is to consider a larger time frame. The larger time frame can
be measured by taking multiple snapshots at different times, a small time step

23

24 CHAPTER 3. EVALUATION TOOLS

apart. The resulting evaluation is called a dynamic simulation. A dynamic
simulation can also take into account mobility of users because the different
snapshots are correlated. It is trivial that a dynamic simulation of a network
requires more computation time than a static one. These two methods are
called simulators because they take snapshots of a simulation of the network.
The third way to look at a mobile cellular network is called a static analysis. A
static analysis does not look at individual users but at area based statistics. The
area based statistic that we use is the average call length, or in other words: the
average traffic demand. As the name suggests we are interested in the average
traffic demand in a certain area. That means that we divide the total area under
consideration in small regions. In the remainder of my thesis we will call these
regions pixels or service test points. Each pixel is has a certain average traffic
intensity. The computations that we do based on these pixels are very similar
to what is done in a static simulation, if we see the pixels as the active users
in the snapshot. In Appendix A we discuss these computations in more detail.
The load that we compute in this way is not the actual load at any moment
in time but rather an average. From now on we will call this average load
again load for simplicity. Taking the average load over a certain period of time
means that we lose some data about the peak loads. If the average load is, for
example, 0.7 then there can be moments where the actual load approaches one.
A situation where the load approaches one is highly undesirable since this would
cause serious problems for users in that area (calls being blocked for example).
In our optimization approach we take this into account by using a threshold
which must not be exceeded that is lower than one. In the remainder of this
thesis a threshold of 0.6 is used, but this is actually an input that should be
provided by a network operator.

3.2 Network aspects

The mobile cellular network is formed by two sides: a demand an a supply.
The demand is formed by the users in a network. As we have mentioned

earlier SONlab looks at area based statistics so the demand is formed by a
pixel map of the traffic distribution. It is unclear which units the traffic
distribution in SONlab has. In [18] the following explanation is given (on page
52). The traffic intensity map in SONlab should be seen as a relative intensity
map. A linear scaling factor is applied to get to an offered traffic map in which
each pixel has a certain level of offered traffic in bps. The scaling factor is
a parameter we can change before starting our simulations. The problem is
that only one scaling factor would actually correspond to bits per second. In
Section 5.4 we discuss this problem in more detail and there we explain how we
dealt with it. If the input is truly in bits per second then the amount of traffic
a base station can handle is way too low. An input in terms of Mbps would be
more realistic.

The supply side is formed by the base stations. We refer the reader to
Appendix A if any of the following concepts are unclear. Each base station
consists of several antenna’s aimed in a different direction. Each antenna has a
set of parameters:

• A location. That is, (x, y, z)-coordinates. Where the z coordinate is the
height above ground level of the antenna.

3.3. PROPAGATION ENVIRONMENT 25

• An azimuth.

• A tilt.

• A power setting.

• An antenna type.

The importance of the antenna type will become clear in the next section when
we describe the antenna gain. The scenarios we have used in SONlab use one
antenna type per type of base station and three types of base stations: 3-sector
macro, 6-sector macro and micro.

Another aspect of the network is the performance. This is captured in
the Key Performance Indicators (KPIs), that we have described in Section 1.1.
SONlab is able to provide us with the load per cell. Further output that can be
obtained is:

• A pixel map with the received Signal to Interference plus Noise Ratio
(SINR)

• A pixel map with the maximum data rate a user could receive

• Per pixel a list of the strength and cell ID of the strongest received refer-
ence signals

• Per pixel a list of the assignment probabilities of the pixel to the cells
mentioned above

3.3 Propagation environment

Radio waves propagate through a medium and therefore there is a certain loss
in signal strength between the transmitted signal at the base station and the
received signal by the user. This loss can be seen as the sum of several losses
(when signal strength is considered in decibel). The first and largest loss is
due to distance and terrain influences (buildings, trees, etc.), for this we use
path loss models. These path loss models give an average loss. However there
is also variation from this average. This is modeled with shadowing. The last
loss is confusingly called the antenna gain, it reflects the radiation pattern of
an antenna. In this section we discuss these three types of losses in this order.

3.3.1 Path loss

A path loss model is used in SONlab to get an average loss of signal strength
between transmission at the base station and reception by the user. However,
we use pixels instead of individual users. The path loss we obtain is thus an
average path loss over the entire pixel. The path loss first of all depends on the
distance between the base station and user. This relation is a decay in distance
of the form dα where d is the distance and α a constant usually between 3 and
4. The path loss is also influenced by the terrain between the base station and
user. For illustration, in Figure 3.1 we have given a sketch of the propagation
paths that are possible between a mobile user and antenna.

26 CHAPTER 3. EVALUATION TOOLS

Figure 3.1: Radio propagation.

SONlab uses detailed information about the terrain between a base station
and user. In fact, this is the main reason why SONlab provides such realistic
analysis. In Section 2.3 of [18] the path loss models used in SONlab are de-
scribed. The path loss is calculated using a ray tracing model1. The ray tracing
model is divided in two sub-models:

• A vertical plane model that accounts for losses in the vertical plane be-
tween base station and user

• A multi-path model that accounts for losses experienced due to signals
reaching the user from multiple directions not exactly at the same time.

The vertical plane model distinguishes between two cases: there is a direct
line of sight from antenna to user or not. See also Figure 3.1. If there is a direct
line of sight, then for small distances free space propagation loss is used (a decay
cubic in the distance) and for larger distances a version of the Okumura-Hata
model is used. In Appendix D we discuss the simulator developed during this
thesis work. It uses the Okumura-Hata model as well and therefore we would
like to refer to that appendix for a description of the Okumura-Hata model. If
there is no direct line of sight there is a diffraction loss for propagation over
rooftops.

The multi-path model represents losses in the horizontal plane. It uses even
more detailed information about terrain since reflections and scattered paths
off of buildings are considered. Reflected paths are considered up to the second
reflection, with a maximum image source distance of 1 km. Scattered paths
are only considered when the transmitter and receiver are within 500 m of each
other. This multi-path model can only be applied when detailed 3D information
is available, within the SEMAFOUR project such data is available for a certain
region in Hannover.

If the reader is interested in more information about the models used in
SONlab we would like to refer to Section 2.3 of [18] and the references therein.

1We are only interested in the outdoor path loss, since in our scenario all users are outdoors
(see Chapter 6 for a description of the scenario). In [18] there is also some reference to an
outdoor-to-indoor loss.

3.3. PROPAGATION ENVIRONMENT 27

3.3.2 Shadowing

In the previous subsection we have described the path loss model used by SON-
lab. This path loss model is an approximation of the real path loss in several
ways. There is an error in the way obstacles are taken into account and the path
loss is given per pixel but there can be variability within a pixel. Shadowing is
used to model the variance of the path loss that occurs due to these errors.

Roughly speaking shadowing can be divided into two classes: fast and slow
shadowing. The latter is also called long-term shadowing. Fast shadowing, or
multi-path fading, is due to moving objects and thus acts on a small timescale.
We use area based statistics in our user model, that means we average over
time. The fast shadowing is thus averaged out (the mean is assumed to be 0).
Slow shadowing is the one we are interested in. From now on we simply say
shadowing when we mean slow shadowing. Shadowing is modeled as a stochastic
variable which can be added to the calculation of the received field strength.
For each point on our grid we have, for each BS, a shadowing term.

If we consider one user (or test point) and one antenna we have one shad-
owing term S′. It is widely accepted (and supported by measurement studies)
that S′ follows a log-normal distribution when represented in linear units. In
[44] a theoretical basis is given for choosing the log-normal distribution. This
means that if we consider the field strength in dB, and call the corresponding
shadowing S, we have that S follows a normal distribution. So S ∼ N(0, σ2)
where typically σ ≈ 6 dB for urban environments.

One user, however, receives the pilot signal from many base stations, say base
station 1 up to k. For each base station we then have a shadowing term: Si ∼
N(0, σ) for i = 1, . . . , k. It is then interesting to look at the joint distribution
of S = (S1, . . . , Sk). S is again normally distributed, but then by a multivariate
normal distribution. That is

S ∼ Nk(0,Σ)

where Σ is a matrix giving the covariance between the variables. We have

Σ = σ(S, S) = E[(S − E[S])(S − E[S])T] = E[SST]− E[S]E[S]T .

Note that on the diagonal this just reduces to the variance of each of the Si.
The Si all capture a correction upon the signal loss experienced over the area

between the base station and mobile user. These areas are not disjoint, they
overlap in the region close to the mobile user. The Si are therefore correlated,
this type of correlation is called cross-correlation. In Figure 3.2 we have sketched
the situation with two antennas. Here φ is the angle between the two line of
sight paths, d1 and d2 are the respective distances from antenna 1 and 2 to the
mobile user. The smaller the angle, the greater the overlap and therefore we
would like to see a high correlation for small angles. On the other hand there is
also the distance to consider, if both antennas are located at the same distance
from the mobile user we expect the correlation to be largest. This is because
when the distances are the same the fraction of the area close to the user over
the entire area between the base station and user is the same. Remark that for
two sectors belonging to the same base station the correlation has to be one
(since the above mentioned areas are the same).

In the previous paragraph we have indicated that there needs to be corre-
lation between the shadowing terms of different base stations for one user (or

28 CHAPTER 3. EVALUATION TOOLS

UE

Ant1

Ant2

d1

d2

φ

Figure 3.2: A situation with two antenna (1 and 2) and a mobile user (UE).

test point). However, since the test points themselves are related as well (they
cover a geographic region), we would also expect correlation between test points
which are close to each other. In the literature this is called auto-correlation .
The term ‘auto’ is a little bit confusing since we are talking about two different
test points. The origin of the term auto-correlation lies in the following point of
view. Two different test points can be viewed at as being the same user, moving
at a certain speed, at different times.

This is unfortunately all we can say about the shadowing in SONlab. We
know that SONlab uses a log-normal shadowing term however we do not have
access to any specific information about the distribution or the correlations we
have mentioned above (we even do not know if they assume correlation). In
Appendix D we show how shadowing can be modeled and is modeled in the
evaluation tool we developed.

3.3.3 Antenna gain

The last loss we need to discuss is confusingly called a gain: the antenna gain.
The antenna gain accounts for the directivity of the antennas. Antennas are
aimed in a certain direction and users are not always exactly in that direction.
The line between user and antenna has a certain offset (angle) in the horizontal
and vertical direction compared to the direction the antenna is aimed at. In
Figure 3.3 we have shown an example radiation pattern. The last two graphs
show that the antenna gain can be divided in a horizontal gain and a vertical
gain. The horizontal gain is the gain experienced due to the offset in the azimuth
direction, the vertical gain is due to the offset in the tilt direction.

SONlab does not use all these details about the radiation pattern. It uses
approximation formulas. One of them, the horizontal gain, is presented in [26].
The horizontal gain is also used in the evaluation tool described in Appendix D.
The horizontal gain Gh(φ) [dB] depends on the angle in the horizontal plane
between the center of the beam and the line between base station and user (in
degrees). It is given by:

Gh(φ) = Gm −min(12

(
φ

HPBWh

)2

, FBRh)

where Gm [dB] is the maximum gain, HPBWh[deg] is the horizontal half power

3.3. PROPAGATION ENVIRONMENT 29

Figure 3.3: Radiation pattern of a 90 degree sector antenna. Source: Cisco.com,
[4].

beam width and FBRh[dB] is the Front Back Ratio2 in the horizontal direction.
For the vertical gain SONlab uses a model different from the one described

in [26]. The model SONlab uses is described in [18] and is as follows:

Gv(θ) = max (a(θ, θe), SLLv)

where SLLv [dB] is the Side Lobe Level and

a(θ, θe) = 20 · 10 log(C(θ) ·B(θ, θe))

with C(θ) = sin(θ)3 and

B(θ, θe) =
1

Nd

sin(Nψ2)

sin(ψ2)

with ψ = 2πd
λ (cos(θ)− cos(θe)). In these formulas θ is the analog to φ in the

vertical plane and θe is the electrical tilt of the antenna (set to zero in our
simulations!).

Remark. As we have mentioned before, SONlab uses a path loss model that takes
into account multi-path propagation. The antenna gain formula presented in
this subsection has to be applied to each of these propagation paths!

In Figure 3.4 we make a link between the approximation formulas and the
radiation patterns we see in Figure 3.3. It is clear that the proposed formulas
do not capture the small variations but the general picture remains intact. The
figure shows the horizontal gain.

2The Front Back Ratio and Side Lobe Level will not be discussed in detail, from the
formulas it should be intuitively clear what they mean.

30 CHAPTER 3. EVALUATION TOOLS

Figure 3.4: Comparison of the approximation formulas for the horizontal an-
tenna gain to the radiation pattern of the Kathrein 742215 model. Source:
[26].

3.4 Traffic handling

The assignment of users, or User Equipment (UE), to cells (cell assignment)
is based on the best server principle. The best server of a user is determined
as the cell for which the pilot signal reaching the user is the strongest. The
pilot signal, also called a reference signal, is a signal that all cells broadcast at a
specific frequency and a certain power setting. In the previous section we have
thoroughly explained the losses that the reference signal experiences between
transmission and reception. In particular we have seen that there is a stochastic
aspect in our modeling: shadowing. SONlab therefore does not determine the
best server deterministically, instead it provides an assignment probability of a
pixel to a cell.

Once the cell assignment is completed the KPIs need to be calculated. In

3.5. CONCLUDING REMARKS 31

this thesis we are interested in the load. In Appendix A.2 we have explained the
load vector. There, we arrive at a fixed point problem. Atesio, the creators of
SONlab, provided us with a link to the article Analysis of Cell Load Coupling
for LTE Network Planning and Optimization [31].

In [31] the problem of determining the load of each cell in a network config-
uration was considered specifically for the LTE technology. They arrived at the
same fixed point problem as we did in Appendix A.2. Let us denote this system
by

ρ = f(ρ) (3.4.1)

where ρ is the load vector. The function f maps the demand of each pixel in
a cell to the load of that cell, based on the load of all other cells. In [31] they
find the solution to this non-linear system by solving the following minimization
problem:

min 1T ρ

s.t.ρ ≥ f(ρ)

ρ ∈ Rn+

This problem is shown to be a convex optimization problem. It is shown that
the optimal solution (if it exists) is indeed a fixed point of the mapping f and
is even unique. In [30] a more thorough explanation of the model used in [31]
is provided.

The fixed point problem is formulated using a deterministic cell assignment.
However, SONlab uses assignment probabilities. These assignment probabilities
can be used to create a fractional assignment of pixels to cells. Based on this
fractional assignment the fixed point problem can be solved (in the function f
the contribution of each pixel to each base station can be multiplied with this
fraction).

3.5 Concluding remarks

The evaluations in the remainder of this thesis are performed with SONlab.
As we have mentioned earlier the computation times SONlab requires are not
too large. In Appendix B, Table B.1 an overview is given of typical computa-
tion times of various SONlab functions. The total computation times we see
are roughly 40 seconds (except for the first step in which all cells had to be
reconfigured). The functions we need from SONlab are in each iteration the
Retrieve load function and in the first iteration of each instance the Get traffic
grid function. This means that the total computation time in SONlab is usually
less than 10 seconds per iteration (excluding the post-processing of the output
data, i.e., the selection of a neighboring state).

32 CHAPTER 3. EVALUATION TOOLS

Chapter 4

Local search approach

The problem defined in Section 1.3 has been shown to be NP-hard1. Therefore
we consider heuristics to solve the problem2, in particular we look at local search
methods. Let us briefly recall our objective and state space.

Our goal is to find a network configuration for which the evaluation of a
predicted traffic intensity pattern yields an acceptable performance (several KPI
have to meet a minimum standard) against minimum financial cost. Our state
space consists of a list of candidate sites with possible upgrades at each site.
The existing network is a part of this list, but there are also some potential new
sites. The possible upgrades we consider are the following. On new sites we can
build a micro site and existing 3-sector sites can be upgraded to 6-sector sites
(a process called 6-sectorization).

In this chapter we present our local search methods and explain how they
can be generalized to use a concept called problem zones. We will present
our local search methods by defining their key characteristics (cost function,
neighborhood structure, acceptance criterion and stopping criterion, in that
order). The presentation will be based on the basic greedy search method. The
acceptance criterion and neighborhood structure have been varied and at the
end of each of these sections the variations are discussed.

4.1 Cost function

Like any optimization method, the local search method needs a cost function
to be able to compare different states. In our case, the cost function consists
of two parts: one part measures the performance of the network and one part
gives a measure to the financial cost of the selected network. The financial costs
are based on the costs of the individual upgrade options, assumed to be given
as operator input. Performance measures depend on the KPIs which triggered
the DSS. If there are multiple KPIs (e.g. load, throughput), we enter the realm
of multiobjective optimisation. To start we would combine the different KPIs
into a single objective function by choosing a weighting factor for the different

1See Section 2.1 for an explanation of NP-hardness and Section 1.3.1 for references to
articles proving the NP-hardness.

2Recall that we use solve in the context of heuristics even though heuristics do not always
find a global optimum.

33

34 CHAPTER 4. LOCAL SEARCH APPROACH

KPIs and adding them. Overall, the cost function will be constructed such that
we search for upgrade options that satisfy the KPI targets against minimum
financial costs.

As mentioned before, the cost function comprises of both financial costs and
costs in terms of system performance or QoS. One part of our performance
measure is the maximum cell load over all cells. Let us denote this maximum
as Max load. We want to find a solution where this maximum load lies below
a predefined threshold (set to 0.6 in our scenarios). The following cost achieves
this goal:

max(Max load− 0.6, 0).

Another performance measure is based on the second KPI discussed in Ap-
pendix A.2, the overload traffic.

The overload traffic metric assigns to each pixel a fraction of its traffic in-
tensity demand which is ‘too much’ for a cell with a load above the threshold.
The second performance measure we have considered is the sum over all pixels
of the overload traffic metric. The sum over all pixels reflects the performance
problem in a nice way. If there are a lot of pixels with a certain overload, the
performance of the network should be valued as worse than when there are less
pixels with that overload. Also if one pixels has a certain overload the perfor-
mance of the network should be worse when that pixel has a higher overload (if
we keep all other pixels fixed).

The financial costs of a network configuration can then be modeled as the
sum over the various site types of the weight of the type times the number of
active sites of that type. That means that we count the number of active 3-
sector, 6-sector and micro sites and add them with the given weights. Of course
each network operator could use its own weights.

Nokia has provided us with reasonable weights3, presented in the PhD thesis
of Claudio Coletti [14]. The cost can be divided into three categories, the Capital
Expenditures (CAPEX), the Implementation Expenditures (IMPEX) and the
Operational Expenditures (OPEX). CAPEX denotes the investment costs (in
terms of equipment), money which has to be spent only once. IMPEX relates
to the costs made installing the equipment (site acquisition, deployment), this
is also money which has to be spent only once. OPEX on the other hand is
about returning costs, it envelops, amongst others, site rental, maintenance and
electricity costs. In Table 4.1 the CAPEX, IMPEX and OPEX (one year) of
several network upgrade options can be found (with the data from Fig. C.1 in
[14]).

The costs presented in Table 4.1 can be combined into what is called the
Total Cost of Ownership (TCO). As in [14] we take

TCO = CAPEX + IMPEX + 4 ·OPEX.

From the formula it is clear that we take the costs over a four year period (as
the OPEX is multiplied by four). The TCO is then scaled to a relative TCO in
such a way that the cheapest option has weight one. In Table 4.2 we present the
TCO and relative TCO. In the remainder of this thesis we will use the relative
TCO as weights to calculate the financial cost of a network.

3The cost estimates given are purely used for academic purposes. Even though Nokia has
provided us with this information it does not mean that these numbers are also used by Nokia

4.1. COST FUNCTION 35

Type of upgrade CAPEX IMPEX OPEX
(in 103 e) (in 103 e) (in 103 e)

Newly deployed LTE site 46 53,5 19,82
LTE site (reuse HSPA site) 35 9 10,92
LTE upgrade to 2nd carrier 26,5 5,75 2,31
Micro (High Cost) 8,5 6,45 7,79
Micro (Low Cost) 7,5 2,45 2,03

Table 4.1: CAPEX, IMPEX and OPEX in thousands of Euros for several net-
work upgrade options.

Type of upgrade TCO (in 103 e) relative TCO
Newly deployed LTE site 178,78 9,9
LTE site (reuse HSPA site) 87,68 4,9
LTE upgrade to 2nd carrier 41,49 2,3
Micro (High Cost) 46,11 2,6
Micro (Low Cost) 18,07 1

Table 4.2: TCO in thousands of Euros and the relative TCO of several network
upgrade options.

Finally, the financial costs and performance costs are integrated into one
cost function. Remember we have chosen to formulate our problem as a min-
imization problem, our cost function should reflect this. We want to force the
local search method to provide us with a solution which meets the KPI require-
ments, therefore any state which does not meet the requirements should have a
cost higher than that of any state which does meet the requirements. We have
chosen to do this in the following way4.

• If the state meets the KPI requirements, then only the financial costs play
a role. Based on the total number of upgrades available an upper bound
on the financial costs is known. For ease of implementation we have scaled
our financial costs such that the upper bound is much less than 10. This
allows us to use 10 as an upper bound on the financial costs in each of our
instances. This means that we do not have to change the upper bound
each time we consider a new instance.

• If the state does not meet the KPI requirements, then we look at the
performance measure. To ensure that the costs in this case are higher
than that of the previous case we add a constant 10. The cost in this case
will be:

Cost performance(X) =
∑

pixels i

Overload Traffici·I(Overload Traffici > O∗)

(4.1.1)
where I is the indicator function, O∗ is a threshold on the overload,
and Overload Traffici is the overload traffic measure as described in Ap-

4Note that this is not the only way that we can ensure that feasible states have a lower
cost than infeasible states.

36 CHAPTER 4. LOCAL SEARCH APPROACH

pendix A.2.3:

Overload Traffici = D(xi) ·
∑

cellsj:ρj≥ρ∗
p(xi, j) ·

ρj − 0.6

ρj
(4.1.2)

where xi is pixel i, D(xi) is the demand of pixel i, ρj is the load of cell j,
ρ∗ is the threshold load and p(xi, j) is the assignment probability of pixel
i to cell j.

In formulas this gives us the following cost function:

Cost(X) =

{
C ·∑i∈{site types} wi · (#sites of type i) if X satisfies KPI requirements

10 + Cost performance(X) else.

(4.1.3)
Here C is the constant we use to scale our financial costs such that the upper
bound is much less than 10. In our scenarios we take C = 1/100.

An important aspect of the search algorithm is the evaluation of the cost
function in order to assess potential network upgrades. We use the SONlab
simulation tool to determine the performance components of the cost function
for a given state (network configuration) under the expected (future) traffic
demand. SONlab provides a good trade-off between the speed at which the
performance metric can be evaluated and the accuracy of the results. For more
information about SONlab and simulators in general we refer to Chapter 3.

4.2 Neighborhood structure

The second and perhaps most important aspect of a local search method is
the definition of the neighborhood structure. We have defined three different
operators who together define the neighborhood structure. The neighborhood of
a state will comprise of all states which can be obtained by applying one of the
operators to the current state. Based on the current state we have to choose one
of its neighbors to evaluate in the next iteration. We can not do an exhaustive
search of the neighborhood due to time constraints so instead we will pick one
according to a certain probability distribution. There first will be a certain
probability to select each of the operators and then the operators themselves
favor certain neighboring states based on the evaluation of the current state.
In the remainder of this section we describe the three operators along with the
distributions they use to select a neighboring state, finally we also describe the
way to select an operator. The first two operators we describe are inspired by
Hurley [29] and adapted to our state space.

The three operators are named and summarized as follows:

• Traffic filler ; designed to improve the capacity of the network,

• Small cell removal ; designed to reduce the financial costs by undoing un-
necessary previously selected upgrades,

• Swap; designed to add some flexibility to the method in the situation
where the current state meets the KPI requirements. The goal is to reduce
financial costs by removing an expensive upgrade and replacing it by a
cheaper upgrade.

4.2. NEIGHBORHOOD STRUCTURE 37

Let us make one important remark before we continue. All of our local
search methods draw without replacement from the neighborhood. That means
that we keep a list of upgrades previously attempted and rejected, the upgrades
from this list are ignored in later iterations (until a state is accepted, then we
clear the lists). They are simply removed from the respective lists we mention
in the description of the operators. This already comes close to a Tabu search
method (see Section 2.3.3), but as it is the most logical thing to do we still call
this our Greedy search method. Our Tabu search method will declare certain
operators as forbidden.

4.2.1 Traffic filler

The Traffic filler operator is designed to improve the capacity of the network.
As described in the introduction of this chapter we have two options available
to reach this goal. We can perform 6-sectorization on 3-sector sites and we can
install new micro sites. The question is which option do we consider and for
which site? The input to this operator consists of the lists of sites currently
active (one for each type) and of a location related to the problem area. This
location depends on the problem characteristics, in particular the overload traffic
measure. We then do the following:

1. The cell with the maximum load is identified. If its load is below the
threshold, a failure of this neighborhood is reported and the operator
terminates. This means the problem with respect to load is resolved.

2. If the maximum load is above the threshold and that cell belongs to a
3-sector site, 6-sectorization on that site is performed. If it was already a
6-sector site, a different site has to be altered.

3. Select a type of upgrade to perform. The distribution used is a proba-
bility of 0.6 to select 6-sectorization and a probability of 0.4 to select the
activation of a micro site.

4. Based on the selected upgrade we compile a list of sites of that type.
If the selected action is the activation of a micro site we consider micro
sites that are no further than 1000m away from the problem location.
Similarly, if we had elected to do 6-sectorization, we ignore 3-sector sites
further away than 1500m of the problem location. These ranges are based
on an optimistic estimate of the maximum range of a macro/micro site
and the distance to the problem area. Based on other characteristics of
the problem area obtained by the overload traffic measure the distances
mentioned could be altered. This will be discussed in Chapter 6.

5. The selection of the specific site is based on the list obtained in the previous
step and is done according to the following probability distribution: site
j from the list is selected with probability

P (j) = C · e−2·dj

where dj [km] is the distance of site j to the problem area and C is a
constant used to make the sum of the probabilities over the list equal to
one. The probabilities are chosen in a way as to give a higher probability

38 CHAPTER 4. LOCAL SEARCH APPROACH

to sites closer to the problem location. Being close to the problem location
will most likely mean a larger impact on the problem.

4.2.2 Small cell removal

The Small cell removal operator is designed to reduce the financial costs by
undoing unnecessary previously selected upgrades. The question of which pre-
viously selected upgrade was unnecessary is difficult to answer. We can only
determine if it was unnecessary by undoing it and evaluating again. The task
at hand is thus to select a site for which the upgrade proves to be unnecessary.

1. The selection is done based on the KPI load. The load is computed at
a cell level and the upgrades are done on a site level. Our first step is
therefore to define the site load, a metric on a site level, as the average
load of the cells belonging to a site.

2. From the list of active sites we then select one according to the following
probability distribution: site j is selected with probability

P (j) = C · e−2·site loadj

where site loadj is the site load of site j and C is a constant used to make
the sum of the probabilities over the list equal to one. The distribution is
chosen such that sites with a lower site load have a higher probability to
be selected.

3. The previously performed upgrade of the selected site is undone. That is
a 6-sector site will become a 3-sector site again and a micro site will be
deactivated.

4.2.3 Swap

The Swap operator is designed to add some flexibility to the method in the
situation where the current state meets the KPI requirements. The goal is to
reduce financial costs by removing an expensive upgrade and replacing it by
a cheaper upgrade. In principle this could also be done by first removing the
expensive upgrade (for example by the Small cell removal neighborhood) and
then in the next iteration perform a less expensive upgrade. The problem is
that the removal of the expensive upgrade without the immediate replacement
could lead to a state which does not meet the acceptance criterion (for example
because the KPI requirements are met with the current state but not with the
neighbor). Performing both steps in one iteration, as this operator does, solves
that problem. To add some extra flexibility the operator is allowed to swap two
upgrades of the same type (i.e. cost).

The formulation of this neighborhood will be more generic than those of the
first two operators because in this case being more generic is easy and helps to
understand what happens.

1. First the costs of all upgrade options need to be known. With C(i) we
denote the cost of upgrade option i. The probability with which we choose
to remove an upgrade of option i is equal to

P (i) =
C(i)∑
i C(i)

.

4.2. NEIGHBORHOOD STRUCTURE 39

Note that this probability is chosen such that options with a high cost
have a high probability of being chosen.

2. Once the type of upgrade to remove is chosen we select a type of upgrade
to do. The probability distribution we choose is the following. We sort
the upgrade options with a lower cost than the selected option in the first
step, from high to low. The most expensive option gets a weight of one,
the second most expensive a weight of two, the third most a weight of
three and so on. The probability with which we choose each option is
then its weight divided by the sum of all weights. Remark that we can
only select a type of upgrade to perform if its cost is lower than that of
the type to be removed (no strict inequality, the same type can also be
selected).

3. The choice of site to remove is then done in a similar way to the Small cell
removal operator. From the list of active sites we select one according to
the following probability distribution: site j is selected with probability

P (j) = C · e2·site loadj

where site loadj is the site load of site j and C is a constant used to make
the sum of the probabilities over the list equal to one. Note the difference
lies in the positive exponent instead of the negative one in Small cell
removal, this is because for this neighborhood it makes more sense to
adjust important sites (those with a low load can probably be removed
using Small cell removal).

4. The choice of site to upgrade is done as in the Traffic filler operator with
the type of upgrade already determined, as location we take the coor-
dinates of the removed site in the previous step. These coordinates are
chosen such that the replacement has a good chance to keep the KPIs
at the same level. In the situation where the type of upgrade to be per-
formed is the same as the one to be removed, we, of course, do not allow
an upgrade to be performed on the same site as where we removed an
upgrade.

4.2.4 How to select the operator

By now it should be clear that the selection of an operator greatly determines
which neighbors can be selected. We do something similar as what was done
in [29], we select the operator based on the evaluation of the current state. We
always attempt the Traffic filler operator. If it fails we know that the current
state meets the KPI requirements (this was already known, but since it is also
the first criterion checked by the operator it can just as well be tested by the
operator). If it is successful we select that neighbor. Traffic filler is the only
operator capable of providing an improvement in capacity (assuming Swap can
not, because cheaper options are less effective) and as such it is logical to attempt
this operator first. Next we have a distinction between two of our local search
methods. The first one, our basic greedy method, selects Small cell removal with
a probability of 0.75 and Swap with a probability of 0.25. Our second method, a
2-step approach, only uses the Traffic filler and Small cell removal operators, so

40 CHAPTER 4. LOCAL SEARCH APPROACH

it always chooses Small cell removal after the Traffic filler has been attempted.
The 2-step approach has not yet been introduced, it will be introduced in the
next section about acceptance criterion.

Our basic greedy method has a probability distribution with which it chooses
the operator. This probability was briefly investigated. We tested the greedy
method on one scenario, the basic traffic scenario, with three different distribu-
tions (25 − 75%, 50 − 50% and 75 − 25%). The above mentioned distribution
seemed to perform slightly better than the other two. In Figure 4.1 we have
shown the numerical results on which we base our conclusions. In that Figure
we see the cost function (averaged over 5 runs) of the Greedy method with the
swap neighborhood using the three probabilities given above. The distribution
we have selected corresponds to the green line which can be seen as the line
corresponding to the lowest costs in almost each iteration5.

Figure 4.1: Cost function of the Greedy method with the swap neighborhood.
Scenario: the basic traffic scenario. Runs: 5.

4.3 Acceptance criterion

The third aspect of our local search method is the acceptance criterion. In
Section 2.2 the acceptance criterion was defined as a rule used to decide if the
move to the evaluated neighbor of the current state should be made. In that
same section several examples were provided of typical acceptance criteria. We
have implemented two different acceptance criteria:

1. A neighbor is only accepted if it has a cost at most that of the current
state.

2. A neighbor is accepted if it has a cost at most that of the current state.
If the best state evaluated meets the KPI requirements we can also tem-
porarily accept a state where the criterion will be as follows. If state xi

5Note that these results use a different cost function from the one mentioned in this chapter.
The cost function used in these runs was based on the load per cell. A decrease in cost is,
however, still an improvement. Therefore we can also compare the methods with this cost
function.

4.4. STOPPING CRITERION 41

was feasible we temporarily accept the neighbor as state xi+1. The neigh-
bor of the temporary state xi+1 is then accepted if it has a cost lower than
that of state xi. If the neighbor of temporary state xi+1 is not accepted
we resume our process with xi+2 = xi.

The first acceptance criterion is used in what we call our greedy search
method. The greedy in ‘greedy search method’ thus refers to the greedy nature
of the acceptance criterion. The second acceptance criterion is a variation upon
our greedy acceptance criterion which aims to provide some extra freedom in
the situation where a feasible state has already been found and we are looking
to reduce the financial cost. The thorough reader will notice that the goal of the
second criterion is the same goal as that of the Swap operator. We will therefore
never use both in the same method. In Section 4.2.4 we have mentioned our
second method called the 2-step approach. The 2-step approach uses the second
acceptance criterion and its neighborhood structure is defined by the operators
Traffic filler and Small cell removal. The 2-step approach evaluates the network
in between the two steps of removal and placement of an upgrade (hence the
name). This extra evaluation in-between provides extra information about the
effect of the removal of the upgrade on the networks performance on which the
selection of the new upgrade can be based. The performance of the greedy
method and that of the 2-step approach is compared in Chapter 6.

4.4 Stopping criterion

In Section 2.2 the term stopping criterion was introduced and some examples
were provided. We have chosen to implement a combination of some of the
examples we gave in that section. We use the following stopping criterion:

Stop if a fixed number of iterations is reached or if no improvement has been
found for a predefined number of iterations.

The first number should be chosen such that if the search moves towards a
good local optimum it is not interrupted before finding it, whilst on the other
hand it should be low enough to keep the computation time acceptable in case
we are not moving in such a direction. This number is difficult, if not impossible,
to determine it depends very much on the structure of the search space. We
choose it such that the maximum amount of iterations in a run leads to an
acceptable running time. Our choice is to do no more than a hundred iterations.
In Chapter 6 we will see that a hundred iterations is not always enough to avoid
stopping promising searches prematurely.

The number of iterations without an improvement after which we stop de-
pends on the size of the neighborhood of a state. This part of the stopping
criterion should answer the question: ‘after how many rejected neighbors do we
conclude that we are in a local optimum?’. In Chapter 6 we will explain which
stopping criterion was used.

4.5 Further research: incorporating problem zone
characteristics

The local search methods as we have described them in this chapter all look
for a feasible state in more or less the same way: identify the area (pixel) with

42 CHAPTER 4. LOCAL SEARCH APPROACH

the largest problem and attempt to reduce the size of the overall problem by
choosing upgrades around that area. This is reflected in both the cost function
and in the neighborhood structure. The cost function is a summation over all
pixels of the overload traffic metric, this can be seen as a way to describe both
the amount of pixels with an overload and the average overload (in pixels with
overload). To lower the cost function can thus be seen as reducing the size of
the overall problem. The selection of a neighbor is based on the location of the
pixel with the highest overload; upgrades that are closer to the location have a
higher probability to be chosen6. The reasoning behind this is as follows: if in
each step we reduce the overload in the pixel with the largest problem, then in
the end we have reduced the entire problem. In theory this could lead to a very
ineffective procedure since we have several types of upgrades all with a different
radius in which they effect the problem.

Example. Suppose we create a problem area by introducing a localized hotspot
with a lot of potential micro sites very close to it and one macro site slightly
further away. Suppose the hotspot requires several micro sites to be activated to
deal with the extra demand, but using only one macro site would also suffice.
Selecting upgrades based on the above criterion would mean that the macro site
only has a very low probability to be selected (there are a lot of micro sites closer,
i.e., a lot of sites with a higher probability). This would mean that the procedure
is not likely to obtain the best solution of selecting the macro site, that is, we
could say it is ineffective.

We have dealt with this by introducing a distribution with which we first
select the type of upgrade to be attempted. By doing so we account for the
differences in performance of the upgrade types.

Up to this point we have only used information about the problem size
(that is, we have used the total amount of overload traffic). The results of this
thesis will form a part of the Decision Support System (DSS) developed in the
SEMAFOUR project. Another part of the DSS focuses on detecting bottlenecks
and characterizing them as problem zones. The definition of a problem zone as
proposed in the SEMAFOUR project is the following:

Informal definition 4.5.1 (Problem Zone). A problem zone is a connected
area where in each pixel a certain sub-critical performance threshold is exceeded
and at least in one pixel a higher, critical, threshold is exceeded.

In Figure 4.2 we illustrate this definition. In this thesis we have also used
something much like a problem zone. We only consider the overload above a cer-
tain threshold and the neighborhood operators are focused on the area with the
highest overload traffic (which can be seen as the area where a critical thresh-
old is exceeded). The only characteristic we do not use is the connectedness.
This characteristic could help our heuristic: suppose we have two disconnected
problem zones, it might be easier to apply our search method to each of the
problem zones separately and then combine the obtained solution. The local
search methods we have described earlier can be easily adapted to treat sepa-
rate problem zones. The only changes required are to the cost function and to

6In the previous sections we have discussed the operators that define the neighborhood
of a state. The operators Traffic filler and Swap use a probability depending on the dis-
tance between upgrade and peak problem location. The impact of these distributions on the
performance of the search methods has not been investigated.

4.5. PROBLEM ZONE CHARACTERISTICS 43

Figure 4.2: Problem zone detection. Source: Deliverable 5.3 of SEMAFOUR.

the method of selecting the area with the highest overload traffic. For both of
these aspects it would suffice to limit the computations to the problem zone.
The total overload in the cost function can be limited to the problem zone by
limiting the summation to those pixels that lie within the problem area. As
location of the highest overload traffic we can take the pixel with the highest
overload traffic within the problem zone.

An important future research question is to investigate when it is beneficial
to treat problem zones separately and when it is not. The reason that it can be
beneficial in some cases is that, by only looking at one problem zone instead of
multiple at the same time, the union of all neighborhoods seen during a run of
the local search method contains fewer base stations. That means that with a
fixed number of iterations we search a larger part of it. However, it can be not
beneficial if the two problem zones are too close to each other. In that case it
might be so that one upgrade would suffice to remove both problem zones. In
that case it would not be beneficial to treat the problem zones separately.

44 CHAPTER 4. LOCAL SEARCH APPROACH

Chapter 5

Choice of initial state

In the previous chapter we have described a local search approach to the problem
of finding a network configuration which meets certain network performance
standards for a predicted future traffic state. In general, a local search method
can benefit from choosing a good initial state. That is, an initial state that
already takes into account (some of) the structure of the problem. In this
chapter we attempt to find a good initial state.

Recall the concise formulation of the main problem of this thesis (given in
Section 1.3):

Given a prediction about the future traffic demand and a list of potential net-
work upgrades, select those upgrades that make the network meet the operators
KPI requirements for the predicted traffic state, at minimum cost.

In this chapter we use the KPI load (see Appendix A.2) and we have the
requirement that the load of each cell has to be below a certain threshold.

We try to find a good initial state by simplifying the above problem and for-
mulate it as a mathematical optimization problem. First, the link is made to the
capacitated facility location problem (also known as capacitated warehouse lo-
cation problem or capacitated plant location problem). The capacitated facility
location problem will be formulated as a binary program. We will see that the
solutions of this binary program do not translate back to good solutions of the
original problem. This is used as a motivation to add an extra type of constraint
to the model. The resulting binary program is not easy to solve to optimality
for relevant mobile network sizes, hence we consider several relaxations of the
binary program. Some relaxations will not provide us with meaningful results.
However, there is one promising relaxation, which is to a mixed integer linear
program.

The mixed integer linear program is solved with an exact solver. However,
the exact solver we use is available under the ZIB academic license, which is
not meant for commercial use. Hence, we also consider a second procedure to
‘solve’ the mixed integer linear program. The procedure is called the dynamic
slope scaling procedure and it has first been presented in [19] for the Fixed
Charge Network Flow Problem (FCNFP). We will apply the same procedure to
our mixed integer linear program. The dynamic slope scaling procedure is also
mathematically interesting. In [19] numerical tests showed a maximum relative
optimality gap of 0.65%, which is very small. The procedure was, however,

45

46 CHAPTER 5. CHOICE OF INITIAL STATE

applied to a flow problem, while we consider a more general type of problem.
The results obtained by the exact solver will be compared to those obtained by
the dynamic slope scaling procedure.

5.1 Capacitated Facility Location Problem

The Capacitated Facility Location Problem (CFLP) is the problem of finding
an assignment of lowest cost of customers (or goods) to facilities where there is
a certain cost for assigning a customer to a specific facility and a fixed cost for a
facility being used. This problem is well studied. In [40] an accessible overview is
given of the work done until 1995. In [40] it is noted that exact methods for large
instances require great computational efforts, due to the binary constraints of
the values involved. Hence a smart enumeration needs to be done. Our problem

Figure 5.1: A small example of a network. The triangles denote the base sta-
tions. The ones marked red are available for 6-sectorization. The small circles
denote service test points. The large circles denote the service areas of the base
stations.

can be simplified and formulated as a CFLP in the following way. To have a
picture in mind, consider Figure 5.1. The service test points form the set of
customers, I, each with a certain demand which can be viewed as the requested
traffic intensity in that area. The possible base stations form the set of facilities
J . Note that on some locations we have several possible base stations (3- or 6-
sector). We therefore have a set J3/6 ⊂ J×J in which each element represents a
pair of a 3-sector site and 6-sector site that are on the same geographic location.
We denote the use of the facilities by the variables yj ∈ {0, 1}, j = 1, . . . ,m and
the assignment of customer i (i = 1, . . . , n) to facility j by xij ∈ {0, 1}. Note
that we only have variables xij for the pairs (i, j) for which a connection is
possible (i.e. when the received signal strength is sufficient for a connection).
We therefore define the set Ji as the set of base stations that can serve STP i.
Likewise, for base station j we define the set Ij ⊆ I to be the set of service test
points which could be connected to base station j. For each base station j we
have a fixed capacity capj . The capacity of a base station should be seen as the

5.1. CAPACITATED FACILITY LOCATION PROBLEM 47

amount of traffic demand it can handle. This will be discussed in more detail
in Section 5.4. The service test points i have a traffic demand di. Finally we
have a cost cj for the use of base station j, but we do not have a cost for the
assignment of service test points to base stations. We assume that cj ≥ 0 for
all j ∈ J . For ease of reference we have summarized the above in (5.1.1).

I . . . {i : i is a service test point}
J . . . {j : j is a possible base stations}
Ji . . . {j ∈ J : STP i can be assigned to base station j}

J3/6 . . . {(j, j′) ∈ J × J : j and j′ are possible 3- and 6-sector BSs at one location}
Ij . . . {i ∈ I : service test point i can be served by base station j}
xij . . . variable denoting if STP i is assigned to BS j (1) or not (0)

di . . . the traffic demand of test point i [Mbps]

yj . . . variable denoting if base station j is active (1) or not (0)

cj . . . the cost of base station j. We assume cj ≥ 0.

capj . . . the capacity of base station j [Mbps]
(5.1.1)

Remark. In the remainder of this text an index i will be used for anything
related to a service test point and the index j will be used for a base station.

The problem we arrive at can be stated as a binary program as follows:

min
∑
j∈J

cjyj

s.t.
∑
j∈Ji

xij = 1, ∀i ∈ I (5.1.2)

∑
i∈Ij

dixij ≤ capj , ∀j ∈ J (5.1.3)

yj + yj′ ≤ 1, ∀(j, j′) ∈ J3/6 (5.1.4)

yj ≥ xij , ∀i ∈ I, j ∈ J (5.1.5)

yj , xij ∈ {0, 1}, ∀j ∈ J, ∀i ∈ Ij (5.1.6)

We will explain the constraints shortly. Equation (5.1.2) denotes the need of
every service test point to be served by a base station. Combined with Equa-
tion (5.1.6) this tells us that all traffic from a test point is handled by a single
base station. We do not allow a test point to divide, say, half its traffic to one
base station and the other half to another base station. This reflects reality
in the sense that the assignment of a customer is done based on the strongest
received signal, so if we take a group of customers, which are in the same ge-
ographical area, together they will all be served by the same base station (as
long as the area, i.e. pixel, is small enough). Equation (5.1.3) is the capacity
constraint for a base station. We need the sum of all traffic assigned to the base
station to be below its capacity. Equation (5.1.4) forces the problem to choose
between either a 3-sector or a 6-sector site on the same geographic location
(both is not a possibility in reality). Equation (5.1.5) ensures a site to be active
in the case that a customer is assigned to it. Indeed, if there is an i such that
xij = 1, then yj = 1 by (5.1.5). If xij = 0 for all i, then (5.1.5) reduces to

48 CHAPTER 5. CHOICE OF INITIAL STATE

yj ≥ 0 which holds for yj since it is binary. Another way to model this is with a
so called big-M notation. We can replace Equation (5.1.5) by mjyj ≥

∑
i∈I xij

where mj is chosen as the number of customers which can be assigned to the
base station. It is straightforward that this formulation has the same effect on
yj as the one stated above. The last constraint in Equation (5.1.6) forces the
variables to be binary; a customer can be either assigned to a base station or
not and, similarly, a base station can be active or not.

Remark. One, very important, assumption is made in Equation (5.1.3). We
assume that a traffic demand at customer i has the same influence on the ‘ca-
pacity’ of each base station. In reality, also the distance of the customer to the
base station and the interference caused by other base stations determines the
effect that traffic from a customer has on the load of the base station. In fact,
in Appendix A.2 we have seen that the load computation depends heavily on
the received Signal to Interference plus Noise Ratio (SINR) and from Chapter 3
we know that the SINR depends heavily on both distance and interference. In
Section 5.4 we discuss methods to estimate the capacity of a base station in
terms of bps in traffic demand that it can serve. Recall that we want to find a
good initial state for our local search methods. The quality of the initial state
obtained by this binary program is largely determined by the accuracy of the
capacity estimates.

5.1.1 An extra constraint: the best server constraint

In Section 5.5 we have solved a mixed integer linear program (MILP) relaxation1

of the binary program we have presented above. The results indicate a flaw in
our modeling: pixels are not necessarily assigned to the base station providing
the strongest pilot signal. In practice, however, this is the case, see Appendix A.
We therefore improve our model by adding the constraint that pixels have to be
served by their best server. Fortunately, we can add linear constraints to our
model that ensure that pixels are assigned to the correct base station. Consider
a pixel i, let (ji1 , ji2 , . . . , jiL) = S(i) be a list of the L strongest signals received
in pixel i in the order strong to weak. Define the following constraints:

yjil +

L∑
k=l+1

xijik ≤ 1, l = 1, 2, . . . , L− 1 (5.1.7)

The new constraint is designed to make sure that a pixel is assigned to the first
base station of the list that is active. Indeed, assume base station jih is active,
for an h ∈ {1, 2, . . . , L − 1}, that is yjih = 1. Then the h-th constraint tells us
that ∑

k=h+1

xijik ≤ 0

and since we have xij ≥ 0 for all existing pairs of i and j we get xijik = 0
for all k ≥ h + 1. This means that pixel i cannot be served by a base station
providing a weaker signal than station jih if jih is active. Also note that when
yjih = 0 the constraint does not restrict our solution since each pixel can only
be assigned to a total of one base station, that is,

∑
j∈J xij = 1. Therefore,

adding this type of constraint results in a model in which each pixel is assigned

1Analogous to the MILP proposed in Section 5.2.2.

5.1. CAPACITATED FACILITY LOCATION PROBLEM 49

to its best server. We will call this type of constraint the best server constraint.
The resulting binary program can be found below.

min
∑
j∈J

cjyj (5.1.8)

s.t.
∑
j∈S(i)

xij = 1, ∀i ∈ I

∑
i∈Ij

dixij ≤ capj , ∀j ∈ J

yjil +

L∑
k=l+1

xijik ≤ 1, ∀i ∈ I,

l = 1, 2, . . . , L− 1,

(ji1 , ji2 , . . . , jiL) = S(i),

yj + yj′ ≤ 1, ∀(j, j′) ∈ J3/6

yj ≥ xij , ∀i ∈ I, j ∈ J
yj ∈ {0, 1}, ∀j ∈ J
xij ∈ {0, 1}, ∀j ∈ J, ∀i ∈ Ij

Note that (5.1.8) is no longer a capacitated facility location problem.
We update (5.1.1) with the above notation:

I . . . {i : i is a service test point}
J . . . {j : j is a possible base stations}

J3/6 . . . {(j, j′) ∈ J × J : j and j′ are possible 3- and 6-sector BSs at one location}
Ij . . . {i ∈ I : service test point i can be served by base station j}

S(i) . . . (ji1 , ji2 , . . . , jiL), a list of the L strongest received signals in pixel i.

Ordered from strongest to weakest.

xij . . . variable denoting if STP i is assigned to BS j (1) or not (0)

di . . . the traffic demand of test point i [Mbps]

yj . . . variable denoting if base station j is active (1) or not (0)

cj . . . the cost of base station j

capj . . . the capacity of base station j [Mbps]
(5.1.9)

Note that the set Ji is replaced by the ordered set S(i).
We have solved the binary program for the network shown in Figure 5.1

using Matlab and its function bintprog, the exact solution was found in under
a second for this small network. For the larger instances2 in which we are
interested, Matlab was not able to give an exact solution within its standard
maximum computation time of 8 hours. The purpose of this simplification is to
find a good solution fast. Therefore, we are not interested in a method with a
computation time of at least 8 hours. In the next section we propose relaxations
of the above binary program. The aim of performing relaxations is to decrease
the required computation time. A good relaxation should, however, still provide
meaningful information about (5.1.8).

2Around 150 BSs, 1500 STPs, at most 10 possible connections for each STP.

50 CHAPTER 5. CHOICE OF INITIAL STATE

5.2 Relaxations of the binary integer prorgam

In this section we discuss two relaxations of the binary program defined in
(5.1.8). In discussing the relaxations the two important questions to keep in
mind are (1) are there good solution methods3 to this problem? (2) does the
solution of the relaxation give sufficient information about the original problem?

5.2.1 Linear relaxation

The first and most natural relaxation is the following. We replace the binary
constraints by the linear bounds 0 ≤ yj , xij ≤ 1,∀i ∈ I, j ∈ J . This would
transform the binary program into a linear program which can be easily solved
using for example the simplex method. However, the following example will
show that the solution of this relaxation no longer gives useful information.

Example (Non-integrality of the polytope). Consider a situation with one site,
with the option of a 3- or 6-sector base station and one service test point where
the demand is higher than the capacity of the 3-sector site. Let y3 to denote
the use of the 3-sector site and y6 that of the 6-sector site. Let cap3 = 3 and
cap6 = 6, c3 = 1 and c6 = 2 be the respective capacities and costs of the 3- and
6-sector base station. Let the demand of the service test point be d1 = 4. We
assume that the 6-sector base station provides a stronger signal to the service
test point than the 3-sector base station. Taking the above mentioned relaxation
of (5.1.8), this results in the following program:

min y3 + 2 y6

s.t. x13 + x16 = 1,

4 x13 ≤ 3,

4 x16 ≤ 6,

y3 + x16 ≤ 1

y3 + y6 ≤ 1,

y3 ≥ x13,

y6 ≥ x16,

0 ≤ y3, y6, x13, x16 ≤ 1

The unique optimal solution is y3 = 3/4, y6 = 1/4, x13 = 3/4, x16 = 1/4, with
cost 5/4. This clearly demonstrates that the vertices of our polytope are not all
integral. Translating this fractional solution back to a selection of base stations
is not easy; both sites have a strictly positive value. In this small example the
only feasible selection is clearly the 6-sector site. But in general it is not clear
how a fractional solution can be rounded to an integral solution.

From this example, we can conclude that a relaxation of all binary variables
does not always lead to useful information. In the next paragraph we, therefore,
only relax a subset of the binary variables.

3A good solution method should work well in practice. That is, for most instances provide
an exact solution in reasonable time. Therefore, the simplex method would be considered
good, but for instance exhaustive enumeration not. See also Chapter 2.

5.2. RELAXATIONS OF THE BINARY INTEGER PRORGAM 51

5.2.2 MILP relaxation

The second relaxation we consider is an option in between the original problem
and the linear program proposed in the first relaxation. Starting from (5.1.8),
we relax the binary constraints on the xij by replacing them with the linear
bounds 0 ≤ xij ≤ 1. The resulting problem is of the class mixed integer linear
programs (MILP).

min
∑
j∈J

cjyj (5.2.1)

s.t.
∑
j∈J

xij = 1, ∀i ∈ I
∑
i∈Ij

dixij ≤ capj , ∀j ∈ J

yjil +

L∑
k=l+1

xijik ≤ 1, ∀i ∈ I,

l = 1, 2, . . . , L− 1,

(ji1 , ji2 , . . . , jiL) = S(i),

yj + yj′ ≤ 1, ∀(j, j′) ∈ J3/6

yj ≥ xij , ∀i ∈ I, j ∈ J
yj ∈ {0, 1}, ∀j ∈ J
0 ≤ xij ≤ 1, ∀j ∈ J, ∀i ∈ Ij

The Matlab version we are working with (R2012b) does not have a built in
MILP solver. We therefore use an online solver. The NEOS Server [8] offers the
SCIP solver4 [11]. The SCIP solver is a non-commercial solver for mixed integer
programming, its use is however restricted to research purposes under the ZIB
Academic License. This means that TNO is not allowed to use the method.
It is used solely for the purpose of this thesis5. The SCIP solver was at first
unsuccessful in solving this MILP, it required a running time of more than 10
hours (which is the maximum on the NEOS Server). We therefore replaced the
constraints

yj ≥ xij , ∀i ∈ I, j ∈ J (5.2.2)

by the constraints

|Ij | · yj ≥
∑
i∈Ij

xij , ∀j ∈ J (5.2.3)

in the hope that reducing the number of constraints was sufficient to allow a
quick solution with SCIP. This proved to be insufficient. The required computa-
tion time was still more than 10 hours. A final attempt to reduce the number of
constraints was made by replacing the capacity constraints and the constraints
in Equation (5.2.3) by the constraints∑

i∈Ij

dixij ≤ capj · yj , ∀j ∈ J. (5.2.4)

4The CPLEX LP format [5] was used as input for the NEOS Server. In short, this means
that we have written the MILP in a text file of this specific format, using the input data
retrieved from SONlab.

5At the end of this section we mention alternatives that TNO could use.

52 CHAPTER 5. CHOICE OF INITIAL STATE

These constraints are valid replacements. Indeed, if yj = 0 then xij = 0 for all
i ∈ Ij , as was previously imposed by constraint (5.2.3), and if yj = 1 then the
sum of all demand requested of j is less than its capacity. The resulting MILP
can be seen below.

min
∑
j∈J

cjyj (5.2.5)

s.t.
∑
j∈J

xij = 1, ∀i ∈ I
∑
i∈Ij

dixij ≤ capj · yj , ∀j ∈ J

yjil +

L∑
k=l+1

xijik ≤ 1, ∀i ∈ I,

l = 1, 2, . . . , L− 1,

(ji1 , ji2 , . . . , jiL) = S(i),

yj + yj′ ≤ 1, ∀(j, j′) ∈ J3/6

yj ∈ {0, 1}, ∀j ∈ J
0 ≤ xij ≤ 1, ∀j ∈ J, i ∈ Ij

This MILP can be solved quickly by the SCIP solver. For the instance sizes we
are interested in (around 150 BSs, 1500 STPs, at most 10 possible connections
for each STP) the observed computation times were less than a minute; perfectly
acceptable for the purpose of this simplified model.

As mentioned before, the SCIP solver cannot be used by TNO in this project.
The input to the SCIP solver has been given in the CPLEX LP format [5]. The
features of the CPLEX LP format we have used are reportedly also implemented
in the GLPK package6, which is a free solver, according to Gurobi [7]. As
it is a free solver the GLPK package could provide an alternative for TNO.
Another alternative will be presented in the next section. The MILP can be
approximated using the dynamic slope scaling procedure presented in [19].

5.2.3 The equivalence of the MILP and binary program

An interesting observation we have made while solving these MILPs is that the
solution was, in fact, integer for each instance. This means that we actually
solved the corresponding binary program! It turns out that we can actually
prove that this is always the case.

Theorem 1. The solution of the mixed integer linear program (5.2.5) is in fact
binary.

Proof. The proof comes down to a simple observation. The best server con-
straint tells us that a pixel cannot be assigned to a base station that does not
provide the strongest pilot signal. From the uniqueness of the best server we

6GLPK stands for GNU Linear Programming Kit. More information about GLPK can be
found in [6].

5.3. THE DYNAMIC SLOPE SCALING PROCEDURE 53

therefore get that xij = 0 for all but one j. The first constraint, repeated below
in (5.2.6), then tells us that this non-zero xij has to be equal to one.∑

j∈J
xij = 1, ∀i ∈ I (5.2.6)

That means that in a solution all xij are in fact binary. In the mixed integer
linear program these are the only continuous variables, all others are binary.
We can thus conclude that the entire solution vector is binary.

An immediate corollary of this theorem is that the mixed integer linear pro-
gram, (5.2.5), and the binary program it is a relaxation of, (5.1.8), are equiva-
lent.

5.3 The dynamic slope scaling procedure

Our motivation to investigate the dynamic slope scaling procedure comes from
the numerical results in [19]. In that article the performance of the dynamic
slope scaling procedure on the fixed charge network flow problem is investigated.
Unfortunately no optimality (or approximation) guarantees can be given. They
did however test the procedure on problems of various sizes, for the largest
problem for which an exact solution was also found (using branch and bound)
the relative error was 0.65% (which was the worst relative error they found).
That the largest relative error was found in the largest problem indicates that
for larger problems the relative error might be worse. The computation times
were very low, for the problem sizes for which they were also able to solve it
exactly (around 37 nodes, 335 arcs) the computation time was about 0.1 second
(whereas branch and bound took 538 seconds). For large-scale problems the
computation times of course grew, but are still quite acceptable. For a problem
with 202 nodes and 10200 arcs the solution was found in about one minute.
Note that the amount of variables we have (roughly 15000, see Chapter 6) is
comparable to the 202 nodes and 10200 arcs situation.

Remark. In [19] the dynamic slope scaling procedure was formulated and tested
on the fixed charge network flow problem. This is not exactly the same problem
as the model we presented in Section 5.1; we have an extra ‘priority’ constraint
on the assignment of users to cells. It is therefore interesting to see how well the
dynamic slope scaling procedure performs on the model presented in Section 5.1
compared to an exact solver such as SCIP. The results will be shown at the end
of this section.

In [19] the dynamic slope scaling procedure for the Fixed Charge Network
Flow Problem is presented. In this section we explain the dynamic slope scaling
procedure. In particular, we first give a general explanation of the method. To
illustrate the performance of the method we then present a small example. We
then apply the method to the MILP presented in (5.2.5). Finally we test the
procedure on several of the problem instances that we also use to test the local
search methods7.

In [19] the dynamic slope scaling procedure is formulated for the Fixed
Charge Network Flow Problem, but we will see that the formulation of the

7These problem instances will be defined in Chapter 6.

54 CHAPTER 5. CHOICE OF INITIAL STATE

procedure can be done without using any properties of a flow problem8. It can
be formulated for any mixed integer linear program where the integer variables
are 0 − 1. As such we will state the method for a general mixed integer linear
program with the added restriction that all variables are bounded by zero and
one (see Section 2.4). To recall, a general mixed integer linear program, MILP,
has the following structure:

minimize
x,y

cT1 x+ cT2 y

subject to A

(
x
y

)
≤ b

x, y ≥ 0

x ∈ Rn1

y ∈ Zn2

(5.3.1)

where c1 ∈ Rn1 , c2 ∈ Rn2 , A ∈ Rm×(n1+n2) and b ∈ Rm. We replace the last
constraint by y ∈ {0, 1}n2 to obtain:

minimize
x,y

cT1 x+ cT2 y

subject to A

(
x
y

)
≤ b

x, y ≥ 0

x ∈ Rn1

y ∈ {0, 1}n2

(5.3.2)

In Algorithm 2 we present the pseudo code of the dynamic slope scaling
procedure applied to a MILP with all its integer variables binary, i.e., to (5.3.2).
The method will be explained afterwards.

8For now we do not need to clarify what the Fixed Charge Network Flow Problem, FCNFP,
is, in the following paragraph we will briefly introduce it and use it as an example to illustrate
the dynamic slope scaling procedure.

5.3. THE DYNAMIC SLOPE SCALING PROCEDURE 55

Algorithm 2. Dynamic slope scaling procedure.

Data:
c1 ∈ Rn1 , c02 ∈ Rn2 , A ∈ Rm×(n1+n2) and b ∈ Rm.

Initialization:
Solve (5.3.2) with the above data and the constraint y ∈ {0, 1}n2 replaced by
y ∈ [0, 1]n2 . Let x0, y0 be the obtained solution vector.
From now on we denote by xn, yn and cn the n-th iterates of respectively the
solution and cost vectors.
Set k := 1

Main step:
while stopping criterion is not fulfilled do

for i = 1 : n2 do

(
ck2
)
i

=


(c02)i

yk−1
i

if yk−1
i > 0

Mk
i if yk−1

i = 0

where Mk
i = max{

(
cl2
)
i

: 0 ≤ l ≤ k − 1}.
end for
Solve

minimize
x,y

cT1x+ (ck2)Ty

subject to A

(
x
y

)
≤ b

x ≥ 0

0 ≤ y ≤ 1

Let xk, yk be the obtained solution vectors.
k := k + 1;

end while

Output:
The final solution vectors xk, yk.

The dynamic slope scaling procedure can be characterized by three aspects:
the initialization, the main step and the stopping criterion. We will discuss
them in this order.

The initialization of the dynamic slope scaling procedure comes down to
solving (5.3.2) with the input data and the constraint y ∈ {0, 1}n2 replaced by
y ∈ [0, 1]n2 . This means that in the first LP that we solve we use c02 as the cost
vector for the variables y that are intended to be binary. This is also an option
mentioned in [19]. The fixed charge network flow problem allows the cost of
flow f on an arc to be of the form

c(f) =

{
a+ b · f if f > 0

0 if f = 0

56 CHAPTER 5. CHOICE OF INITIAL STATE

where a, b ∈ R. The initializations of the dynamic slope scaling procedure that
are considered in [19] are the following. Take either c02 = a

fmax
or c02 = b. If we

look back at (5.3.2) then we see that we have b = 0. Taking the initial cost of all
base stations equal to zero does not make sense, it would ignore all differences
between types of base stations. By noting that fmax = 1 in (5.3.2) we can see
that our initialization corresponds to the one proposed in [19].

The main step in the dynamic slope scaling procedure is the update of the
cost function. For the variables yi (that is, those intended as binary variables)
we check if the LP-optimal solution in the previous iteration, yk−1

i , was positive.
If so, we redefine the cost of that variable for the next iteration. The update is
done in such a way that if yk−1

i was very small (but positive), then the cost in
the next step will be very high (recall that we assume that all costs are positive).
In the fixed charge network flow problem this means that if an arc has a high
startup cost (a fixed charge) then a small flow over that arc has a high cost
per unit in the next iteration, the intended result is that this small flow will be
distributed over other arcs that still below their capacity.

In the main step there is also the number Mk
i . In principal any large number

forMk
i could work. In [19] two empirical updating schemes forMk

i are discussed:

1. Mk
i is equal to the highest cost (of that variable) used in previous itera-

tions, i.e., Mk
i = max{

(
cl2
)
i

: 0 ≤ l ≤ k − 1}.

2. Mk
i is equal to

(
cl2
)
i

where l < k was the last iteration in which yli > 0

(with Mk
i =

(
c02
)
i

if such an iteration does not exist).

It is noted that both schemes work well on most problems they tested, but for
problems which required a large number of iterations (empirically more than a
hundred) the last one performed slightly better. We have implemented the first,
because we do not use a large number of iterations.

A stopping criterion needs to be determined as well. In [19] a very natural
stopping criterion is used: stop when a fixed point is reached. Since we do not
want to get stuck in an infinite loop we add a restriction on the number of
iterations. This idea is very similar to the stopping criterion we have used in
our local search methods, see Section 4.4. In Section 5.5 we will present a
numerical comparison between the exact solution of the MILP and the dynamic
slope scaling procedure. At that point we will comment on the number of
iterations used.

5.3.1 Example: dynamic slope scaling procedure applied
to a network flow problem

The workings of the dynamic slope scaling procedure can be best illustrated
with a small example. In [19] the dynamic slope scaling procedure is formulated
for the fixed charge network flow problem, since network flows can be easily
visualized we have chosen to use it as an example.

Let us give a brief introduction to the network flow problem. A network flow
problem is the problem of finding flow values for the arcs of a directed graph
such that in each node the demand is met, there is conservation of flow and
the total cost of the flow is minimized. The fixed charge network flow problem

5.3. THE DYNAMIC SLOPE SCALING PROCEDURE 57

allows the cost of flow f on an arc to be of the form

c(f) =

{
a+ b · f if f > 0

0 if f = 0

where a, b ∈ R. The constant a explains the ‘fixed charge’ part of the name, it
is a fixed charge required to use a specific arc (it can be seen as a startup cost
of sorts). The arc has a certain capacity fmax.

We will now present an example fixed charge network flow problem to which
we have applied the dynamic slope scaling procedure. We consider a situation
with three base stations and three service test points. The possible connections
between users and base stations can be seen in Figure 5.2. The base stations
all have the option to be either a 3-sector or 6-sector site. A 3-sector site has
capacity9 equal to 3 and cost equal to 1. Likewise, a 6-sector site has capacity
equal to 6 and cost equal to 3. The 6-sector site has double the capacity and
thrice the cost of a 3-sector site, hence we favor a solution with as much 3-sector
sites as possible. The demand vector b of the service test points is shown above
the nodes, respectively 1, 2 and 2. A quick calculation shows that the total
demand is low enough to, in theory, be handled by two 3-sector sites (which
would be the solution of lowest cost). It is easy to verify that by using base
stations 2 and 3 a feasible solution of this cost exists (assign STP1 and STP2
to BS2 and STP3 to BS3). We have not explained yet how we would be able to
handle the choice between a 3- or 6-sector base station at the same site, this can
be done using the construction shown in Figure 5.3, this would yield the actual
network flow problem denoted in Figure 5.4. As we can see Figure 5.4 is quite
complicated, therefore we use Figure 5.2 for the visualization in the remainder
of this example.

In this example we would like to show if and how the dynamic slope scaling
procedure would find a solution of lowest costs, starting from a different flow
(with higher cost). For this we need to define a different, sub-optimal, flow.
In Figure 5.4 such a flow is given by the uninterrupted arcs (the dotted arcs
represent possible alternative assignments of STPs to BSs). It is not hard to
see that this assignment completely determines the flow. We see that BS3 has
to supply a flow of 4, which means that it is a 6-sector site, BS1 only carries a
flow of 1 so it is a 3-sector site.
Iteration 1:

We define the cost function as stated above. That means, for most arcs we
take the cost equal to the original cost in the network, only since BS3 carries
a flow of 4 we need to modify the arcs belonging to it. The arc corresponding
to the 3-sector part (see Figure 5.3) carries a flow of 3, so we divide its cost
by 3 to get a cost of 1/3. The arc corresponding to the 6-sectorization of that
3-sector site carries a flow of 1, so we should divide its cost by one. Similarly
the arcs corresponding to the 3-sector site of BS1 also carry a flow of 1, so their
costs should be divided by one. Solving the corresponding LP problem yields
a solution in which the flow over BS3 is reduced to a value of 3. This is done
by reducing the flow between BS3 and STP2 by 1, this demand of STP2 now
flows through the arc (BS2,STP2). This means that the cost of the network is
reduced from 4 (one 3-sector BS plus one 6-sector BS) to 3 (three 3-sector BSs).

9Capacity, cost and demand is used without looking at appropriate units.

58 CHAPTER 5. CHOICE OF INITIAL STATE

BS1

BS2

BS3

STP1

Demand = 1

STP2

Demand = 2

STP3

Demand = 2

Figure 5.2: Mobile network, example FCNFP.

The arcs between base stations and service test points which carry a positive
flow together with the flow value:

(BS1, STP1) 0.8137

(BS2, STP1) 0.1863

(BS2, STP2) 1

(BS3, STP2) 1

(BS3, STP3) 2

In Figure 5.5 we can see the results of the first iteration. The uninterrupted
arcs indicate a positive flow over the arc and the red arcs indicate a change from
the previous situation.
Iteration 2:

The cost function is updated based on the existing solution. The resulting LP
problem is solved and provides us with the optimal solution, shown in Figure 5.6.
The arcs between base stations and service test points which carry a positive
flow together with the flow value:

(BS2, STP1) 1

(BS2, STP2) 1

(BS3, STP2) 1

(BS3, STP3) 2

We can recognize that this is the solution we are looking for: it is of cost 2.
To show that this is indeed a fixed point of the problem we have to update the
cost function again and solve the resulting LP problem. Doing this shows that
the flow does not change anymore. Hence we have reached a fixed point.

5.3. THE DYNAMIC SLOPE SCALING PROCEDURE 59

Figure 5.3: A 3- or 6-sector base station splitted with its cost and capacity
defined.

Conclusion:
We can see that the dynamic slope scaling procedure was indeed able to find

a minimum cost flow for this network problem. The predicted behaviour was
indeed observed: we favor 3-sector base stations and, when two base stations
have a enough slack to assign an STP (in our example STP1) we assign the STP
to the base station with the highest flow. This resulted in being able to close
one of the 3-sector base stations.

60 CHAPTER 5. CHOICE OF INITIAL STATE

S BS2in

BS23

BS26

BS13

BS1in BS16

BS36

BS3in BS33

STP 1

Demand = 1

STP 2

Demand = 2

STP 3

Demand = 2

Figure 5.4: Initial state of an example FCNFP.

5.3. THE DYNAMIC SLOPE SCALING PROCEDURE 61

BS1

BS2

BS3

STP1

Demand = 1

STP2

Demand = 2

STP3

Demand = 2

S T

Figure 5.5: Positive flows (uninterrupted lines) and possible alternatives (dotted
lines) after one iteration. In red the changes with respect to the previous solution
are shown.

BS1

BS2

BS3

STP1

Demand = 1

STP2

Demand = 2

STP3

Demand = 2

S T

Figure 5.6: Positive flows (uninterupted lines) and possible alternatives (dotted
lines) after two iterations. In red the changes with respect to the previous
solution are shown.

62 CHAPTER 5. CHOICE OF INITIAL STATE

5.4 Cell capacity estimates

We would like to define the ‘capacity’ of a cell in terms of bits per second of
traffic demand (from the user side) we expect it to be able to handle without
problems10. The motivation to do so should be clear from the earlier parts
of this chapter; all optimization models proposed from Section 5.1 onwards
depend heavily on this. Up to now, we have usually worked with the load of
a cell as an indication of how ‘busy’ the cell was, i.e. what percentage of its
physical resources was used. In Section A.2, we have discussed the load of a
cell and related concepts in more detail. The physical resources of a cell are
the available bandwidth in hertz. The available bandwidth is known; it is the
amount of bandwidth the operator bought at the auction11. So, we want to
find a relation between the amount of bits per second requested by a user and
the amount of hertz a cell needs to supply this demand. This would give us an
indication of the capacity of a cell.

In this section we present three different methods to define the capacity
of a cell in terms of bits per second of traffic demand. The first method is a
rough estimate based on a scenario analysis using SONlab. The second method
is a very practical approach. The third method is the more theoretical one.
The third method is able to provide us with a theoretical upper bound on the
capacity under certain assumptions.

Before describing the three methods it is useful to recall a bit of theory,
described in more detail in Appendix A.2. The theory will motivate the different
approaches we take.

The relation between traffic demand and hertz required is not as clear cut
as one would hope, it depends on the interference level at the users location.
That is, it depends on the Signal to Interference plus Noise Ratio, SINR. The
relation is via the well known Shannon formula (also known as part of the
Shannon-Hartley theorem):

Rbps = B · 2 log(1 + SINR) (5.4.1)

where Rbps is the amount of bps a user could receive if it could use the full
bandwidth B [Hz] under a given SINR. The SINR is taken as its linear value,
not, as it is commonly noted, in dB. To have an idea of how the SINR (in
dB) relates to Rbps consider Figure 5.7. In the next paragraph we will see an
example where the SINR varies between 1 and 40 dB (see Figure 5.8).

The next step is to compute the fraction of the bandwidth requested by this
pixel. We do this by dividing its demand Dbps by the theoretical maximum
received data rate Rbps:

Dbps

Rbps

The load of a cell is then the sum over all pixels assigned to that cell of their
required fraction of bandwidth. In Appendix A.2 we have explained that the
load of a cell influences the SINR received at a pixel and hence the load compu-
tation is in fact a fixed point problem. The binary program formulation in this
section circumvents this fixed point problem by assuming a fixed influence of

10For us, without problems means that the load of each cell remains below the threshold of
0.6.

11In this thesis a bandwidth of 10 MHz is used.

5.4. CELL CAPACITY ESTIMATES 63

Figure 5.7: A plot of the relation between SINR [dB] and R [bps] given in
Equation (5.4.1). We use B = 1.

the traffic demand of a pixel on the load of a cell. This implicitly means that we
are making assumptions on the level of interference at each pixel. In Subsection
theoreticalbounds we will make these implicit assumptions explicit in order to
provide theoretical bounds on the capacity (under certain assumptions).

5.4.1 Method 1: rough estimate using SONlab

Our first method was used to get a rough estimate of the order of magnitude
we should look for. The method was very simplistic, we considered one scenario
(the same as in Section 5.5). We took the sum of all traffic offered and divided
it by the sum of the load of each cell. The total traffic offered was 93.97 Mbps,
the sum over all loads was 17.02. We want to note that we took the offered
traffic such that the maximum load was only slightly below our threshold of 0.6
and realistically distributed. The relative intensity map was designed within
the SEMAFOUR project using methods described in [18], as such we will not
discuss whether it is a realistic scenario or not, we just assume so.

From the numbers given above we can come up with a traffic demand per
cell which would result in a load of 1 (i.e. all resources are used):

93.97

17.02
= 5.52Mbps

since we do not allow a load of 1 but instead take a maximum load of 0.6 this
would give us a capacity per cell of 0.6 · 5.52 = 3.3 Mbps.

It is very important to note that by doing this division we implicitly assume
that the load of one cell is independent of the load of another cell. In reality
this is not the case since a higher load of a neighboring cell causes a higher
interference level the cell and thereby a higher load of the cell. Another way
to look at it is that by increasing the demand in one cell we also raise the load
of all neighboring cells to a certain extent. A second assumption we implicitly

64 CHAPTER 5. CHOICE OF INITIAL STATE

make in this method is that on average the fractions of demand experiencing
certain SINR levels are the same for each cell. Both of these assumptions are
rather big (for the second one, see for example Figure 5.8). This motivates us
to call this method a rough estimate.

5.4.2 Method 2: trial-and-error

The second method is a very practical approach. In the end of this section
we will discuss the three methods and the need for this method will become
apparent. This method is also based on the scenario as described in Section 5.5,
for this scenario we have determined a scaling factor which gave us a maximum
load slightly below the threshold. This means that we know that the MILP
applied to this scenario should have the existing network as feasible (and hence
optimal) configuration, while lowering the capacities slightly would result in
upgrades to be selected.

The method gives us a capacity per cell of 2.09 Mbps. Note that this is
roughly two thirds of the capacity obtained using method 1. An explanation of
this difference is the following. In our MILP (5.2.5) we take each base station as
a variable, also pixels are assigned to base stations instead of cells. This means
that in our MILP we use a capacity per base station which is the amount of
cells of that base station times the capacity of a cell. If traffic is distributed
homogeneously this is the same. By traffic being distributed homogeneously
we mean that in the actual network each cell of a base station would have the
same load. In that case exceeding the capacity of a base station would mean
that each cell of that base station exceeds its capacity. Hence the obtained
capacity is indeed the correct estimate. However, if traffic is not distributed
homogeneously it could be the case that traffic that is in reality assigned to
cell 1 of a base station is now handled using the capacity of, say, cell 2. The
following example shows that if the load is not the same for each cell of a base
station, then we find an underestimate of the capacity per cell.

Example. Take a base station with two cells. Let the capacity of each cell be 1.
The total offered traffic to cell 1 is 1 and to cell 2 is zero. Then, in our MILP
(5.2.5), it would suffice to take a capacity for the base station of 1. Which means
a capacity per cell of 1/2. Since then all demand can be supplied (1/2 by cell 1,
1/2 by cell 2).

5.4.3 Method 3: theoretical bounds

We have mentioned earlier Shannon’s formula which relates the SINR to a the-
oretical maximum amount of bits per second which can be received from a cell.
This theoretical maximum however excludes the need for all kinds of overhead
in the system (cyclic prefixes, overhead caused by the pilot signal, etc.). In [39]
these kinds of overhead are studied for LTE they propose a correction factor
η where η ≈ 0.6. We would also like to note that our base stations use a 2x2
MIMO configuration. This will also be noted in Chapter 6 when we discuss the
scenario, but it is useful to take it into account in this section as well. MIMO
stands for Multiple-Input Multiple-Output. In short12, MIMO can be described

12For more general information about MIMO, the reader could for instance look at the
(english!) wikipedia page on MIMO. It gives an accessible description of the MIMO concept.

5.4. CELL CAPACITY ESTIMATES 65

as a way of configuring your antenna array’s for each sector in such a way that
you get two more or less separated channels between sender and receiver (who
also has two antenna’s, hence the last two in 2x2 MIMO). In [39] the impact
of the MIMO configuration is also mentioned. Important for us is that this
doubling of channels means that the cell capacity should also be doubled. This
all leads us to a corrected Shannon bound, which we will denote by Smax, of the
following form:

Smax = 2 · η ·B · 2 log(1 + SINR) (5.4.2)

where η is the correction factor proposed in [39], B is the available bandwidth
and SINR is used in its linear form. For later use we would like to define

Cmax := 0.6 · Smax

as our capacity including our wish to not exceed a load of 0.6.
Now let us consider Smax as a function of the SINR. We can clearly see that

it is an increasing function of the SINR. This observation will play a key role. If
we can give an upper bound on the SINR then we automatically get an upper
bound on the Smax and thus on Cmax. If we take for instance a maximum SINR
of 40 dB we get

Cmax = 0.6 · 2 · 0.6 · 106 · 2 log(1 + 10
40
10) ≈ 9.56[Mbps].

This bound is quite high, but it assumes that each pixel has an SINR of 40 dB,
which is not realistic. See for example Figure 5.8, the SINR map of the scenario
used in methods 1 and 2. A better bound can be found by using smaller intervals
to which the SINR of the traffic demand belongs. We can then take the upper
bounds of these intervals to get a Cmax per interval and then average the results
in a good way. Abusing notation a little bit we denote by Cmax (SINR) the
capacity we would get if all our bandwidth served pixels with a certain SINR.
This leads us to a better bound of the form shown below.

Definition 5.4.1 (Weighted Corrected Shannon Bound). Let I = {I1, I2, . . . , Ik}
be a set of intervals with disjoint interior and such that for all x ∈ Ii, y ∈ Ii+1

we have x ≤ y (i = 1, 2, . . . , k − 1). Furthermore let SINRi be the supremum
of interval Ii for i = 1, 2, . . . , k. We define C∗(I, λ), the Weighted Corrected
Shannon Bound, as:

C∗(I, λ) =

k∑
i=1

λi · Cmax(SINRi) (5.4.3)

where λi ≥ 0 for all i and
∑k
i=1 λi = 1.

The following two examples should clarify this bound.

Example (Weighted Corrected Shannon Bound). Suppose that of the traffic
demand assigned to a cell 20% experiences an SINR below 10 dB, 40% between
10 and 20 dB, 20% between 20 and 30 dB and the remaining 20% between 30 and
40 dB. The weighted bound given in Equation (5.4.3) then gives us the following
upper bound:

Cmax = 0.2·Cmax(10)+0.4·Cmax(20)+0.2·Cmax(30)+0.2·Cmax(40) = 5.76 Mbps

66 CHAPTER 5. CHOICE OF INITIAL STATE

Figure 5.8: The SINR map of the 3x5km2 Hannover region using the basic
scenario with scaling factor 0.026.

Example (Weighted Corrected Shannon Bound, Example 2). Suppose that of
the traffic demand assigned to a cell 50% experiences an SINR below 10 dB,
25% between 10 and 20 dB, 20% between 20 and 30 dB and the remaining 5%
between 30 and 40 dB. The weighted bound given in (5.4.3) then gives us the
following upper bound:

Cmax = 0.5·Cmax(10)+0.25·Cmax(20)+0.2·Cmax(30)+0.05·Cmax(40) = 4.35 Mbps

The importance of the Weighted Corrected Shannon Bound will become
clear from the next two theorems.

Choosing the best weights and categories in the Weighted Corrected Shannon
Bound is not an easy task. Even for a given set of intervals choosing the weights
in an optimal way is difficult. The optimal weights depend on the distribution
of traffic amongst cells, these are not known until a network configuration is
chosen (which is the output of the MILP). What helps however is the following:

Theorem 2. Take a fixed set of intervals I as in Definition 5.4.1 and weight sets
{λi}ki=1 and {λ′i}ki=1 satisfying λi, λ

′
i ≥ 0 for all i and

∑k
i=1 λ

′
i =

∑k
i=1 λi = 1.

If for each n ∈ {1, 2, . . . , k} we have:

n∑
i=1

λi ≤
n∑
i=1

λ′i (5.4.4)

5.4. CELL CAPACITY ESTIMATES 67

then the following inequality holds: C∗(I, λ) ≥ C∗(I, λ′).
Intuitively this theorem can be viewed as follows: the weighting λ is a more

optimistic view of the situation than the weighting λ′, in terms of the SINR
received by a user.

Proof. As we have noted before Cmax(SINR) is an increasing function of the
SINR. The intervals are fixed and satisfy a certain ordering: for all x ∈ Ii, y ∈
Ii+1 we have x ≤ y (i = 1, 2, . . . , k − 1). The desired inequality now follows by
a combination of the above with inequalities 5.4.4. We start with C∗(I, λ′).

C∗(I, λ′) =

k∑
i=1

λ′i · Cmax(SINRi) (5.4.5)

=

k∑
i=1

λi · Cmax(SINRi) +

k∑
i=1

(λ′i − λi) · Cmax(SINRi)

= C∗(I, λ) +

k∑
i=3

(λ′i − λi) · Cmax(SINRi) +

2∑
i=1

(λ′i − λi) · Cmax(SINRi)

≤ C∗(I, λ) +

k∑
i=3

(λ′i − λi) · Cmax(SINRi) +

2∑
i=1

(λ′i − λi) · Cmax(SINR2)

In the last inequality we use Equation (5.4.4), this gives us λ′1 − λ1 ≥ 0 and
the inequality Cmax(SINR1) ≤ Cmax(SINR2). This step can be generalized and
repeated (induction!). We use the following:

n∑
i=1

(λ′i − λi)Cmax(SINRn)+(λ′n+1 − λn+1)Cmax(SINRn+1)

≤
n+1∑
i=1

(λ′i − λi)Cmax(SINRn+1)

where we use Equation (5.4.4) to get
∑n
i=1(λ′i − λi) ≥ 0 and the inequality

Cmax(SINRn) ≤ Cmax(SINRn+1)

which holds for all n = 1, 2, . . . , k−1 since Cmax(SINR) is an increasing function
of SINR.

So from inequality (5.4.5) we get using the argument above:

C∗(I, λ′) ≤ C∗(I, λ) +

k∑
i=1

(λ′i − λi)Cmax(SINRk) (5.4.6)

The last step we need to make is the following observation. For λ and λ′ we
have the following equality ∑

i=1

λ′i =
∑
i=1

λi(= 1).

So in Equation (5.4.6) the right most term vanishes. This gives us the inequality
we need:

C∗(I, λ′) ≤ C∗(I, λ)

68 CHAPTER 5. CHOICE OF INITIAL STATE

Now that we have Theorem 2 we can prove the main result of this method.

Theorem 3 (Lower bound). Consider a traffic scenario and a set of intervals I.
Let λ be an optimistic weighting as in Theorem 2, that is a weighting for which
we know that the actual weighting λ′ in each potential cell satisfies Theorem
2. Then the solution of the MILP formulated in Section 5.1,(5.2.5), using cell
capacity C∗(I, λ), forms a lower bound to the solution of the problem described
in Section 1.3.

Proof. C∗(I, λ) is an overestimate of the capacity in bits per second per cell.
Now take a feasible network configuration for the problem defined in Section 1.3,
that is a network in which the maximum load of a cell is 0.6. Consider the same
network configuration in the MILP, with the same assignment of pixels to cells.
The choice of C∗(I, λ) and the fact that it is an overestimate of the capacity of
each cell show that each cell in the network configuration does not exceed its
capacity in the MILP. Furthermore SONlab also assigns pixels to the cell provid-
ing the strongest signal. Hence each feasible solution of the problem defined in
Section 1.3 is also feasible for the MILP. Since the MILP is a minimization prob-
lem this shows that the solution to the MILP is a lower bound to the problem
defined in Section 1.3.

The strength of this theorem lies in the ability of the network designer to be
able to choose such an optimistic weighting λ. This is however also the greatest
drawback to this method; the network designer has to choose such a weighting.
can be used in the MILP to provide us with a lower bound on the optimal
value of the problem presented in Section 1.3, under certain If we, for example,
assume the traffic distribution in all cells will satisfy the distribution mentioned
in the first example of this paragraph, then we can use a capacity of 5.76 Mbps
in our MILP. Theorem 3 then shows that the solution of the MILP will be a
lower bound to the problem defined in Section 1.3.

5.4.4 Conclusion

In this section we have seen three methods to estimate the capacity of a cell.
The first method requires assumptions that can hardly be justified. The third
method improves upon the first by allowing us to make more reasonable assump-
tions. The third method allows one to make a trade-off between the strength
of the assumptions and the quality of the estimate. By making more detailed
assumptions the estimate of the cell capacity becomes better, but making de-
tailed assumptions requires a lot of knowledge about the distribution of traffic
and the cell lay-out. A big advantage of the third method is that it does give
a guaranteed upper bound on the cell capacity, but under certain assumptions.
The second method also makes certain assumptions just like the first method.
However, it does so at a base station level instead of a cell level. Moreover,
the second method is the only method that explicitly takes into account our
modeling of the network configuration in terms of base stations instead of cells.
A final advantage of the second method over the third method is that it is not
vulnerable to a change of units of the offered traffic. The last point is important
since, as we have mentioned in Chapter 3, we are not sure about the units used
in the traffic intensity map. We treat them as if they are Mb’s but they could
also be 2Mb’s for all we know.

5.5. NUMERICAL EXAMPLES 69

In Chapter 6 we have chosen to use our estimate obtained via the second
method.

5.5 Numerical examples

In this section we will present numerical examples for the methods and for-
mulations we have seen in this chapter. Where possible we will use the same
scenario.

We start with an illustration of the performance of the original binary pro-
gram, i.e., the binary program without the best server constraint. To show that
the best server constraint has the desired effect we will then illustrate the per-
formance of the model with this constraint. To that same scenario we will apply
the dynamic slope scaling procedure. The dynamic slope scaling procedure will
show to be unsuccessful in solving the MILP.

5.5.1 The MILP without the best server constraint

The scenario we use is the 3 × 5 km2 Hannover region presented as the basic
scenario in Appendix B.2. The traffic intensity grid has a few outliers in terms
of traffic demand (pixels with a demand around 1). This makes it difficult to
see the pattern clearly. In Figure 5.9 we have replaced all data points by the
minimum of 0.1 and the original data point. The bottleneck in this scenario is
a load of 0.814 for cell 43 belonging to site 22, all other sites have a load below
the threshold of 0.6. In the examples in this section we have used the following

Figure 5.9: The traffic intensity grid capped at 0.1 on the 3× 5 km2 Hannover
region.

70 CHAPTER 5. CHOICE OF INITIAL STATE

costs:

1. the existing network is assumed to have cost zero,

2. performing a 6-sectorization on a 3-sector site has cost one and,

3. building a new micro site has cost 5.

The capacity of the sites is chosen as C · 3, C · 6 or C for respectively a 3-sector,
6-sector or micro site. The constant C will be referred to as the capacity scaling
constant. In Section 5.4 we took a closer look at the capacity scaling constant,
when applicable we will use the results of this section.

In Section 5.1 we have proposed a binary program in Equations (5.1.2)
through (5.1.5). This binary program was relaxed to a MILP in the same way
as in SubSection 5.2.2.

The solution of the MILP, using capacity scaling constant C = 0.72, has been
visualized in Figure 5.10. The selected upgrades are a 6-sectorization of sites
65 and 73. The evaluation of the chosen upgrades with SONlab showed that
the maximum load of a cell in will be 0.805, which is a negligible improvement
of the original bottleneck of 0.814 (the cell with the maximum load remains
unchanged).

We can see in Figure 5.10 that the selected upgrades are not exactly where
we would expect. Both upgrades are selected far from a region with high traffic.
In fact, there are other (active) 3-sector sites closer to the high traffic intensity
regions than the ones we selected. As we know a pixel should be assigned
to a base station providing the strongest pilot signal. This means that the
sectorization of sites 65 and 73 does not solve the bottleneck at site 22 since site
22 provides a stronger signal to the areas with high traffic intensity.

In Section 5.1.1 we therefore added a constraint to the binary program to
ensure that a pixel is served by its best server, this resulted in the binary
program seen in (5.1.8).

5.5.2 The MILP with the best server constraint

In Section 5.2.2 we presented the mixed integer linear program relaxation of
the binary program with the best server constraint. This MILP can be seen in
(5.2.5).

The solution of the MILP using the same capacity scaling constant (C =
0.72) as in the previous paragraph resulted in 12 sites to be 6-sectorized. This is
not comparable to the amount of upgrades selected in the previous paragraph13.

We have applied (5.2.5) to one of our scenarios that has very clear hotspots,
namely instance 7 of Chapter 6. The capacity scaling constant we used is the
same as the one we found with method 2 of Section 5.4: 1.09. In Figure 5.11
we can see the result. It is very clear that in this case the base stations closest
to the hotspots are selected to be upgraded. For the sake of comparison we
would like to mention that the computation time on the NEOS server was 3.75
seconds, although the same MILP for other instances has been seen to take up
to a minute to solve. A relation between the optimal value and the computation
time seems to exist; the higher the longer the required computation time. This is

13However, it is a logical outcome! We restrict the assignment of users to test points and
thereby we force the MILP to select more upgrades.

5.5. NUMERICAL EXAMPLES 71

Figure 5.10: Selected BSs by the MILP relaxation of the binary program (5.1.2)-
(5.1.5) plotted over the traffic intensity grid. The green triangles represent
existing 3-sector sites. The red circles represent micro sites (not selected). The
larger yellow triangles are the upgrades selected by the MILP.

likely because more upgrades need to be selected. Further testing could confirm
this, but since computation times of around a minute are perfectly acceptable
for us we did not look into it.

5.5.3 The dynamic slope scaling procedure

In Section 5.3 we have presented the dynamic slope scaling procedure. This
procedure has been applied to the same scenario as was used in the previous
subsection.

We first applied it with the cost updating scheme as in Algorithm 2. The
result was a very fast convergence (more on that later), but unfortunately not a
useful solution. In Figure 5.12 we have shown a part of the solution. In the figure
we see the results of the first five iterations for the variables corresponding to the
first thirty macro base stations (i.e., the yki in Algorithm 2 for i = 1, . . . , 30, k =
1, . . . , 5). We chose this subset of the variables since it represents the (non-zero
part of the) solution well; for the 63 macro 3-sector base stations the results
were similar (the peak variable had a value of 0.9136), all micro base stations
and 6-sector sites are not selected (values in the range of 10−15, i.e., machine
precision).

We have mentioned above that these results are not very useful. The reason
is that we intend the base station variables to be either 0 or 1 and the solution
shows them in the range of roughly 0.4 to 0.9. That means there is no logical

72 CHAPTER 5. CHOICE OF INITIAL STATE

Figure 5.11: Selected BSs by (5.2.5), with capacity scaling 1.09, plotted over
the traffic intensity grid. The green triangles represent existing 3-sector sites.
The red circles represent micro sites (not selected). The larger yellow triangles
are the upgrades selected by the MILP.

way to get any information from the variables. Furthermore, the solution has a
(much) lower cost than the solution found in the previous paragraph (namely,
no sectorizations selected instead of three). This result means that we have to
take a closer look at the dynamic slope scaling procedure.

The dynamic slope scaling procedure attempts to steer the intended binary
variables towards binary values by updating the cost function. The update is
done in such a way that a non-binary value for a variable leads to a higher cost
associated with that variable in the next iteration. This higher cost in the next
iteration for all variables that were in the previous iteration non-binary, should
steer the LP problem towards a solution with fewer non-binary variables. In [19]
we can see that this works quite well for a fixed charge network flow problem.
However, we have an extra type of constraint that cannot be modeled in a fixed
charge network flow problem: the best server constraint (5.1.7). This constraint
has the following form:

yjil +

L∑
k=l+1

xijik ≤ 1, l = 1, 2, . . . , L− 1

where (ji1 , ji2 , . . . , jiL) are the base stations that provide the strongest signals
to service test point i, in the order strongest to weakest. This constraint gives
the assignment of users to base stations more freedom if the variables yj are
not equal to one. In fact, if the variables yj are as in Figure 5.12 we have a lot

5.5. NUMERICAL EXAMPLES 73

of freedom to assign pixels to base stations that do not provide the strongest
signal. This means that the LP problem now balances two objectives:

1. find a solution of lowest value, i.e., distribute the demand as evenly as
possible over the base stations,

2. find a solution where all intended binary variables are indeed binary.

These two objectives are clearly not aligned with each other. The result shown
in Figure 5.12 shows that the current cost updating scheme tends towards the
first objective. We have attempted to steer towards the second objective by
adjusting the cost function slightly: we have added 1 to the cost associated
with each base station variable. We have done so because the three sector macro
sites previously had cost zero and hence the updating scheme did not have any
effect (explaining the fast convergence we saw). Note that this changes the
problem so we are no longer able to compare it with the results of the MILP.
But it is interesting to see if in this case the solution becomes binary for the
base station variables. Indeed, the results are shown in Figure 5.13 for the first
thirty variables and five iterations. The results show that most variables tend
to either approximately zero (everything below 0.001 is regarded as being zero)
or one with few exceptions (2 non-binary variables in total). This is indeed
what you would expect; most base stations use all of their capacity. We still see
that all variables other than the macro 3-sector sites are zero. This might seem
strange, since there are only two non-binary base stations selections we expect
most traffic to be handled by the best server. So one could expect to see a result
similar to the solution of the MILP. Instead we observe no selected upgrades.
We took a closer look at the variables that are non-binary and they correspond
to base stations 22 and 91. In particular site 22 is a very important site in our
network, it is the macro site in the middle of the region where micro sites can
be built. A fractional opening of this site means that a large part of the traffic
can still be assigned to a base station other than the best server. This explains
why we still do not observe any selected upgrades.

The result obtained with this strictly positive cost function seems better at
first but we still see that the dynamic slope scaling procedure balances between
the two above mentioned objectives. To steer our solution more towards the
second objective we have adjusted the cost updating scheme as follows:

(
ck2
)
i

=

A ·
(c02)i

(yk−1
i)

3 if yk−1
i > 0

Mk
i if yk−1

i = 0

where Mk
i = max{

(
cl2
)
i

: 0 ≤ l ≤ k − 1}. Note the cubic influence of yk−1
i .

Tested values of A are 1, 10 and 102. This adjusted cost updating scheme should
give an even higher penalty to non-binary variables than the original scheme.
The hope is that this will force all base station variables to be binary. The
result of this adjustment is however similar to the above result; base station 22
is still opened fractionally in all three cases.

Conclusion:
This example shows that the dynamic slope scaling procedure is not capable

of giving a good approximation to the MILP presented in (5.2.5). This result

74 CHAPTER 5. CHOICE OF INITIAL STATE

can only be explained by the best server constraint. After all, without this
constraint our problem is in fact a fixed charge network flow problem and as
such the results in [19] show that the dynamic slope scaling procedure should
be a reasonable approximation. The best server constraint however introduces
a conflicting interest. If the intended binary variables are indeed binary we have
less freedom in the assignment of pixels to base stations and hence we need more
upgrades. However, if the intended binary variables are not binary we have a
lot of freedom and we might require less upgrades. The conflict is thus between
the intended binary variables being binary and finding a solution of lowest cost.

Since the dynamic slope scaling procedure does not lead to a good approx-
imation of the optimal value of the MILP we will use the exact solution of the
MILP in the next chapter.

5.5. NUMERICAL EXAMPLES 75

Figure 5.12: Dynamic slope scaling procedure applied to instance 7 of Chapter 6.
The first thirty variables (macro base stations) are shown for five iterations.

76 CHAPTER 5. CHOICE OF INITIAL STATE

Figure 5.13: Dynamic slope scaling procedure applied to instance 7 of Chapter 6,
with adjusted cost function. The first thirty variables (macro base stations) are
shown for five iterations.

Chapter 6

Results

In the previous chapters several methods have been developed to solve the prob-
lem posed in Section 1.3. In this chapter we present numerical results obtained
using these methods. In particular we investigate the performance of our greedy
method with the swap neighborhood versus the greedy method with the 2-step
approach. These methods have been thoroughly described in Chapter 4. An-
other important parameter that we have varied is the choice of initial state. We
compare the performance of the above mentioned local search methods using
two initial states. (1) the existing network and (2) the network as chosen by
the methods of Chapter 5. In a local search method the initial state can be
a big influence on the performance and, in particular, the running time. In
Chapter 5 we formulated the problem posed in Section 1.3 as a mixed integer
linear program. The solution to this mixed integer linear program will form the
second initial state.

We will compare the two methods (each with two initial states) by analyzing
their performance on a set of problem instances.

The structure of this chapter is as follows. We first give a detailed descrip-
tion of the problem instances. Secondly, we discuss some parameters in the
algorithms that had not been chosen yet. Thirdly, we present and compare the
numerical results for each of the methods. Finally we will briefly summarize our
results.

6.1 Problem instances

We have based our problem instances on one scenario that was made available
to us in SONlab. This scenario has a list of potential macro and micro sites.
It is important to note that for all problem instances we use the same list.
What we do change is the traffic intensity grid. In this section we first describe
the existing scenario. Then we explain how we designed our set of problem
instances. We also give a detailed description of the problem instances.

The scenario we base our problem instances on covers a 3x5km2 Hannover
region that is also used in the SEMAFOUR project. The area covers both the
center of the city as well as some more rural areas. The scenario further consists
of a list of potential base stations and an existing network configuration (which
is part of that list). The reason we use this scenario is that it was available in

77

78 CHAPTER 6. RESULTS

SONlab and we decided to use SONlab because of its great level of detail.
As we have mentioned before, we will create the different instances by varying

the traffic map. We therefore present the original traffic intensity map. The
traffic intensity map was created by TUBS. The abbreviation TUBS stands for
TU Braunschweig (one of the partners in the SEMAFOUR project). The traffic
intensity map was made available to us in SONlab in the collection ‘busy hours’
with subkey ‘2013.05.10T16:00’. We will refer to this map as the basic traffic
intensity map. We refer the reader to Chapter 3 for more a more detailed
description of how this traffic intensity map was created and what it represents.
The basic traffic intensity grid contains a few outliers. It is therefore difficult to
see the variations clearly. To show the pattern we have, in Figure 6.1, replaced
all data points by the minimum of 0.1 and the original data point. The key
characteristics of the scenario can be found in Table 6.1. The same holds for
the computation of the antenna gain. The application of the antenna gain to
the predicted paths is called antenna masking. The outdoor ray-tracing path
loss prediction has been discussed in more detail in Chapter 3.

Scenario LTE 1800
Area Coordinates E: 4344500 . . . 4347500

N: 5805000 . . . 5810000
RATs / Layers LTE (2 layers: macro + micro)
Existing network Macro only
Macro cells LTE 1800

Transmission power: 46 dBm
Micro cells LTE 1800

Transmission power: 30 dBm
Path loss prediction Pre-calculation of (TUBS outdoor ray-tracing

+ antenna masking) → masked prediction
Traffic TUBS traffic intensity map + hotspots

Table 6.1: Scenario specification.

As we can see in Table 6.1 the scenario has potential macro and micro site
locations built in, these can be seen in Figure 6.2. The green triangles represent
the macro sites, the green circles the micro sites. The existing network is
formed by the 3-sector macro sites only, so there are no micro sites active. The
upgrade options we consider are the following:

• A 3-sector macro site can become a 6-sector macro site (6-sectorization).

• A micro site can be activated.

The traffic grid as we have presented it above is the basis for the prob-
lem instances we have created. We have created the problem instances using
the following procedure. We start from the basic traffic intensity map and
add a certain traffic demand using the functions Add Hotspot, scale rectangle
and scale rectangle2. The pseudo code of these functions can be found in Ap-
pendix C, Functions 1, 2 and 3. The resulting traffic map is then evaluated for
two network configurations. First, the existing network (that is: all 3-sector
macro sites but no micro sites) and secondly the network with all possible up-
grades selected (that is: all 6-sector macro sites and all micro sites active). The

6.1. PROBLEM INSTANCES 79

Figure 6.1: The traffic intensity grid capped at 0.1 on the 3x5km2 Hannover
region.

evaluation with the existing network should show a clear problem area. The
second evaluation should show no bottleneck. The reason we perform this last
evaluation is to ensure that the problem instance can be solved by selecting all
upgrades. It is thus a feasibility check for the problem instance.

Remark. In the above feasibility check we assume that adding a site to the net-
work configuration leads to extra capacity in the network. However in practice it
might be the case that activating a new site without adjusting the power settings
of neighboring base stations might lead to a lower capacity. Calling a problem
instance feasible only if the network with ‘all upgrades selected’ does not show
a bottleneck means that we might call certain problem instances infeasible that
can, in fact, be solved by a subset of all upgrades. This does not mean that our
feasibility check does not check if the instance is feasible, it merely means that
our feasibility check is not the best one possible1.

The specifics of the 19 problem instances that we have defined can be found
in Appendix B, Table B.2. As an example we have represented instance 7
graphically in Figure 6.3. In that figure we see the network lay-out as we have
seen it earlier together with two circles in which we have added additional traffic
(in the form of a Gaussian bell curve, for more details see Appendix B). From
the figure it is clear that it is not likely that micro sites will be activated to solve
this problem, as the micro sites are far away from the created hotspots. This
is not the case for all of the problem instances as can be seen in Appendix B.
The problem instances can be divided in two groups; those of which we expect
the problem to be solved with the use of micro sites and all others. We expect
a problem instance to require the use of micro sites if the hotspots are created
within the region where potential micro sites are located and they are small
enough in terms of range to be handled by a micro site. Using this categorization

1For two feasibility checks A and B we call A a better feasibility check than B if for all
problem instances A classifies an instance feasible if B does so.

80 CHAPTER 6. RESULTS

Figure 6.2: The network lay out plotted over the intensity grid on the 3x5km2

Hannover region. The green triangles represent macro sites, the green circles
micro sites.

we can say that the first 7 instances probably do not require the use of micro
sites and instances 8 through 19 might require the use of micro sites.

6.2. ALGORITHM PARAMETERS 81

Figure 6.3: The network lay out with a representation of the areas where traffic
was added.

6.2 Algorithm parameters

The methods described in Chapter 4 require some parameters to be set. In this
section we will give these settings and explain why we chose them in this way.

First of all, there is the traffic filler neighborhood. As we have mentioned
in Chapter 4, we need to define two distances. The first distance describes how
far a macro site can be from the pixel with the highest overload such that we
should still consider it in the neighborhood. The second distance does the same
for micro sites. Since our problem zone can be (and usually is) much larger
than the single pixel with the highest overload we have chosen these distances
rather large. We consider macro sites within 5 km from the pixel with the
highest overload and micro sites within 1 km. These distances are larger than
the observed ‘ranges’ for macro (resp. micro) sites, see for instance Chapter 5
Figure 5.8. As we have mentioned, this is because our problem zone has a larger
diameter than the single pixel we base our location upon. An interesting point
for further research would be to investigate the relation between the size of the
problem zone and the distances we use. Which characteristic of the problem
zone could best represent the size is, as of yet, unknown. Candidates include the
performance cost function, the diameter of the problem zone, and, the largest
distance of pixels within the problem zone to the pixel with the highest overload.

Secondly there is the swap neighborhood. In the description in Chapter 4
we mention in the first point a probability to select a type of upgrade that we
should remove. The distribution we proposed in that section would come down
to the following distribution (using the costs given in Chapter 4):

P(select a 6-sector site) =
2.3

2.3 + 1
≈ 0.7, P(select a micro site) =

1

2.3 + 1
≈ 0.3.

Instead we have used the following distribution:

P(select a 6-sector site) = 0.6, P(select a micro site) = 0.4.

82 CHAPTER 6. RESULTS

The reason we use this distribution is a historical/practical one. We started
testing our methods before the correct prices were known so we used a good
guess.

The final setting of the local search methods we need to discuss is the stop-
ping criterion for the local search methods. We have chosen this number by
running our greedy method for several instances with a very large number of
iterations. The instances we have used are numbers 12, 13 and 19. We used
the data to determine the maximum amount of rejections that was followed by
an acceptance. The number we obtained was 12 iterations. Even though not
each state has the same size of neighborhood the instance sizes are comparable
and as such we can base our stopping criterion on this number. The number
was obtained with a small amount of instances and runs. Hence, due to the
stochasticity of our methods, we cannot say with certainty that 12 is enough.
Therefore we choose a slightly larger bound: 15 iterations.

Remark. The cost function can also be seen as a parameter of the algorithm.
In Chapter 4 we have explained that we use estimates of the financial cost as
given to us by Nokia [14]. This is however a parameter the network operator
should adjust.

6.3 Numerical results

The greedy method with the swap neighborhood and the greedy method with
the 2-step approach have both been applied to all 19 problem instances. To test
the influence of the initial state we ran the algorithms with two different initial
states:

1. the existing network (i.e., only all 3-sector macro sites are active),

2. the network selected by the MILP formulated in Chapter 5.

So in total we could say that we have four methods to test. As we have said,
we have applied these methods to all of our problem instances. Because of the
stochastic aspects of the methods we ran them more than once: we ran them
three times for each instance2.

We want to compare the methods on three aspects:

1. the solution value of the best state found,

2. the time it takes to find that state,

3. the number of neighbors we accept before we find that state.

The first aspect we will measure per run and average over the runs. That means
that we get an averaged best found solution value per instance per method. To
get an idea of the spread between runs we will also present the best found
solution (value) per instance per method (i.e., the best of all runs). For the
sake of completeness we also give the number of macro/micro sites selected (for
respectively 6-sectorization or deployement). We will measure the time it takes

2We will sometimes see a large difference between the best and the average solution value.
This indicates that we should perform more runs. However, since each run is quite time-
expensive, we were not able to do so.

6.3. NUMERICAL RESULTS 83

to find the best state in the number of iterations needed. Since the computation
time per iterations is almost constant, this is a good measure of the running
time of an algorithm. The third aspect is mainly of interest when comparing
the greedy method with the swap neighborhood to the 2-step approach. The
idea is that the 2-step approach will need less accepted neighbors because it has
more information to determine the search upon.

6.3.1 The numerical value of the solution of the MILP

The MILP formulated in Chapter 5 has been solved for each of the problem
instances. In Table 6.2 we present the solution value per instance, note that the
solution value directly translates to the number of 6-sectorizations and micro site
activations selected. Since the results showed only 6-sectorizations we omitted a
zero column for the activated micro sites. Two instances resulted in an infeasible
MILP and for two other instances we observed a solution value of zero. A
solution value of zero indicates that the existing network satisfies the capacity
bounds. However, since we know that there is a problem zone in the SONlab
evaluation, this means that the capacity bounds are too large in these instances
(not tight). Therefore, for these four instances the MILP does not provide an
initial state other than the existing network. In the tables presented in the next
subsection we excluded these instances.

Instance # 6-sectorizations selected by the MILP Sites selected
1 Infeasible
2 0
3 0
4 Infeasible
5 1 73
6 2 28, 50
7 3 28,38 and 73
8 2 28, 58
9 2 28, 58
10 2 28, 58
11 1 58
12 1 58
13 1 58
14 2 28, 58
15 2 28, 58
16 2 28, 58
17 2 28, 58
18 2 28, 58
19 2 28, 58

Table 6.2: The amount of upgrades selected by the MILP per instance.

In later subsections we will see that the amount of upgrades selected by
the local search methods is always larger than that of the MILP. This further
indicates that the capacity bounds we use are rough estimates at best.

84 CHAPTER 6. RESULTS

6.3.2 Comparison of the local search methods

In Appendix B, Tables B.4, B.5, B.6 and B.7, we have given the numerical results
for respectively the greedy with swap and the 2-step approach. The first two
tables show the results of the methods with as initial states the existing network
and the last two tables those of the methods with as initial state the solution of
the MILP. In this section we will analyze the numerical results. We first briefly
comment on whether or not the number of iterations used was sufficient. Then
we will compare the local search methods. We have compared the local search
methods and use of initial states in the following ways:

1. for each search method we compare its performance per instance using
the two different initial states: the existing network or the solution of the
MILP

2. we compare the 2-step approach to the greedy method with the swap
neighborhood on all instances (using both initial states)

Recall, we expect that the 2-step approach will need less accepted neighbors
because it has more information to base the search upon. So in the above men-
tioned point (2) we are mainly interested in the number of accepted neighbors.

Instances with a lot of traffic demand

In the above mentioned tables we can see that there are several instances for
which the average number of iterations required to find the best solution in a run
is close to 100. Recall that we force our local search methods to stop after 100
iterations, regardless of whether or not a local optimum is reached. Therefore,
if the average number of iterations after which the best solution is found is close
to 100 we can conclude that the local search method stopped before reaching a
local optimum. For us this is the case for instances 12, 15 and 17. If we look in
Table B.2 at the description of these instances we see that these instances have
the largest traffic demand. The three instances are all formed by an increase of
the traffic demand in the micro area. Instance 12 also introduces three small
hotspots and one larger hotspot (small and large refer to the range). Instances
15 and 17 on the other hand create a narrow, but very high, peak. These three
instances are the only instances with these characteristics. We can conclude
that for these three instances the maximum number of iterations was too low,
for both initial states. We had hoped that the initial state selected by the MILP
would speed up convergence and perhaps keep the number of iterations needed
below 100. This was not the case. If we look at the third and fourth columns in
Tables B.4, B.5, B.6 and B.7, then we see that the best solution requires a lot
of upgrades. Table 6.2, however, shows that the MILP only selected one or two
upgrades for these instances: a lot less. It is therefore not an unexpected result.
At a later point we will discuss the value of using the solution of the MILP as
initial state we will come back to this.

Infeasible instances

For instances 4, 5 and 7 both local search methods are unable to find a feasible
solution. But not because the maximum number of iterations was reached.

6.3. NUMERICAL RESULTS 85

The local search methods concluded that the problem itself was unfeasible. For
instance 4 this claim is correct, we redid the feasibility check and indeed the
problem turned out to have a high overload even with all upgrades selected,
this can be attributed to a programming error. Instances 5 and 7 also have very
high load in the feasibility check, around 0.607. When designing the problem
instances we assumed this would be ok, since we also use a certain threshold
for the overload. However, the results show that this slight overload on cell
level still leads to an unacceptable overload on pixel level. This does not make
these instances useless. It is still interesting to see what the MILP did for these
instances. We can see that the MILP was feasible for both instance 5 and 7
and we respectively select 1 and 3 sites to upgrade. Although 3 is the largest
number of upgrades selected by the MILP, these numbers do not stand out when
we compare them to the other instances. From this we can conclude that the
solution of the MILP does not provide much insight in how close to infeasibility
an instance is. Instance 4 did show an infeasible MILP, but so did instance 1
and that instance did prove to be feasible.

Instances where the initial state provided by the MILP is an improve-
ment

Another set of instances that is of special interest is formed by the instances
6, 14, 16 and 19. In these instances we see a significant improvement on the
number of accepted neighbors required to find the best solution. With the
solution of the MILP as initial state we consistently need only two changes.
In Figure 6.4 we have displayed this in a bar graph. It should be noted that
(average) best found solution value using the initial state obtained from the
MILP is, per method, equally good as that found using the existing network as
initial state. The figure clearly shows that the number of accepted neighbors

Figure 6.4: The average number of accepted neighbors for each of the four
methods on instances 6, 14, 16 and 19.

reduces substantially when we use the initial state obtained through the MILP.

86 CHAPTER 6. RESULTS

In the above figure we have only shown the number of accepted neighbors. We
could also look at the number of iterations required, but this gives a similar
pattern. In Figure 6.5 we have shown both the required number of accepted
neighbors as the number of iterations for instance 18. In fact, the only instances

Figure 6.5: The average number of accepted neighbors and iterations for each
of the four methods on instance 18.

in which the use of the solution of the MILP did not lead to a time improvement
are the ones mentioned in the first two paragraphs (those that either require
more than 100 iterations or are infeasible).

The greedy method with the swap neighborhood versus the 2-step
approach

The second comparison we would like to make is between the greedy method
with the swap neighborhood and the greedy method with the 2-step approach.
As we have mentioned earlier, we would expect these methods to behave differ-
ently in terms of the number of accepted neighbors (because the 2-step approach
bases its search on more information). In terms of best solution value found we
do not expect (and do not see) a structural difference. In Figure 6.6 we have dis-
played the difference in solution value between the two methods for all instances
and initial states. On the horizontal axis we have the instances (first with the
existing network as initial state), on the vertical axis the difference (swap minus
2-step). We are interest in the distribution among non-zero differences in the
categories negative and positive. Therefore we omitted all instances that gave
a zero difference and, since the names are not important, we did not label the
horizontal axis. To not skew the data we also removed the infeasible instances.
The resulting graph shows that in 8 instances the greedy method with the swap
neighborhood performed better, in 6 instances the 2-step approach gave a better
solution. Note that the ratio is more or less the same for both initial states (this
cannot be seen in the graph, but the reader could verify this using the tables in

6.3. NUMERICAL RESULTS 87

Figure 6.6: The difference in average solution value for the search methods
greedy with swap minus the 2-step approach.

Appendix B). We do want to point out that when there is a difference in perfor-
mance on instance the difference is usually small when the greedy method with
swap neighborhood performs worse, while the in the other case the difference
seems larger.

From a mathematical point of view, it is not surprising that the best found
solution value is more or less the same for both methods. After all, if we are in a
feasible state3 the swap neighborhood is identical to the combined neighborhood
of the 2-step approach: namely remove one upgrade and replace it with another.
Therefore the local search methods have the same freedom of movement. What
is different is the probability distribution with which a neighbor is selected.

In terms of accepted neighbors we expected to see a difference between the
greedy method with the swap neighborhood and the 2-step approach. When we
look at the difference (again swap minus 2-step), in Figure 6.7, we see however
that there is no structural difference. If anything, we could say that the method
with swap neighborhood requires slightly less accepted neighbors. However the
differences are in general so small that it can also be the result of stochasticity
in the methods.

3In an infeasible state we cannot use the swap neighborhood. Likewise, in an infeasible
state, we will never temporarily allow a step in the 2-step approach.

88 CHAPTER 6. RESULTS

Figure 6.7: The difference in average solution value for the search methods
greedy with swap minus the 2-step approach.

6.4 Summary of the numerical results & reflec-
tion

In the previous section we have presented the numerical results. We have seen
that for both local search methods it is beneficial, for the computation time, to
use the initial state obtained from the MILP. In terms of solution value there
is no difference between the two initial states (i.e., the existing network versus
the solution of the MILP).

Remark. Although in our tests we did not observe a difference in solution value,
we did observe a difference in computation time. Therefore, if in a situation the
computation time is limited, then it is to be expected that choosing the initial
state wisely will also improve the solution value.

We have also compared the two local search methods, i.e., the greedy method
with the swap neighborhood and the 2-step approach, but we did not find large
differences. If anything, the results show a slightly better performance of the
greedy method with the swap neighborhood. But I would recommend further
testing before drawing any conclusions. Recall that we expected the 2-step
neighborhood to require less accepted neighbors. After all, we designed it to use
additional information about the problem zone created by removing an upgrade,
in order to search more in the good direction (in this case both literally and
figuratively). The numerical results however did not confirm this. This can be
caused by two things:

1. Further testing is required on the existing instance database. After all,
performing more runs of both methods would mean that the averages
converge. These true averages might make the comparison more clear.

2. The instances do not cover all possible problem zone configurations.

6.4. SUMMARY OF THE NUMERICAL RESULTS & REFLECTION 89

Option one does not seem likely, since if it were the case, then we would expect
to see at least some indication of it in our limited number of runs. We would
like to further clarify why option two might be the case. This is again linked
to our expectation of the performance of the 2-step approach. We believe that
the current scenario (i.e., the locations of potential sites) does not allow enough
freedom to create problems where it is useful to have the extra information about
the problem zone. That is, we would like our search algorithm to be in a state
as in Figure 6.8. The situation we sketch is the following. One site gets removed
(either in the first step of the swap neighborhood or in the first step of the 2-step
approach) and its removal causes a high overload further away from the removed
site. The swap neighborhood would then select a site to activate that is close to
the removed site, while the 2-step approach would (correctly) select one close to
the newly formed problem zone. In the current scenario it is for one not possible

Figure 6.8: Sketch of a situation where the 2-step approach might perform
better. The red triangle is a (macro) site that is being removed. This would
cause a problem zone indicated by the area of which we showed the boundary
in black. The swap neighborhood would select one of the green (micro) sites,
the 2-step approach one of the blue (micro) sites.

to completely remove a macro site, we can only undo a 6-sectorization. In itself
this would not be a problem: the same situation can also occur when shutting
down a micro site (which is possible). However, the potential micro sites are
not located close enough to let a situation like in Figure 6.8 occur. The new
problem zone would at worst lie around the green micro sites, such that both
the swap neighborhood and the 2-step approach would choose from the same
set of micro sites (with roughly the same probability distribution).

90 CHAPTER 6. RESULTS

Chapter 7

Conclusions & Reflection

The previous chapters have been about one question. We will repeat it here,
from the problem description:

What is ‘the best way’ to alter the existing mobile cellular network in order
to prevent a predicted future bottleneck?

In Chapters 4 and 5 we introduced the mathematical techniques that we
have used: local methods combined with a smart choice of the initial state. In
Chapter 6 we presented a comparison between the local search methods, with
either the existing network or a smart(er) choice of initial state. The numerical
results showed that the two local search methods, the greedy method with the
swap neighborhood and the 2-step approach, performed equally well on the test
instances. We did see an improvement in terms of computation time when we
used the initial state obtained with the methods from Chapter 5. The main
question of this thesis can thus be answered in the following way. The ‘best
way’ to alter the existing mobile network can be found using either of the local
search methods, as long as the initial state used is that obtained from the MILP
presented in Chapter 5.

The best way that we have found in this thesis is not necessarily the best way
possible. In fact, we can see several components that can be improved upon. In
the next sections we will address two topics that could lead to improved methods.
These topics do, however, require further research. In the interest of pointing
out further research: in Section 4.5 we have indicated how something called a
problem zone can be used to help our local search methods. Also, in Appendix D
we present the evaluation tool that was developed during this graduation work.
At the end of that appendix we point out areas of improvement for that tool.

7.1 The mixed integer linear program

The mixed integer linear program that we have presented in Chapter 5 uses the
base stations as variables. This leads to on one hand a natural formulation of
the problem but on the other hand it also creates a problem. In Section 5.4
we have addressed the issue of finding suitable capacity estimates. It turns out
that this can best be done on a cell level instead of on a base station level. In

91

92 CHAPTER 7. CONCLUSIONS & REFLECTION

Section 5.4.4 we have also remarked on why we did choose base stations as our
variables: it is unclear what the units are in the traffic intensity grid used by
SONlab. The method we used is a very rough estimate of the capacity of a
base station. It is based on the following: pixels are distributed homogeneously
over the cells of a base station, once they are assigned to that base station.
This automatically means that theoretical bounds will be hard to give on a
base station level. So, to a future researcher we would recommend to try to
find a good sense of which units are used and then use the mixed integer linear
program on a cell level. The code to write the mixed integer linear program
on a cell level is already available, only the right capacity estimates are needed.
For the interested reader, we already applied this mixed integer linear program
on cell level to several of our instances. We used the capacity estimates found
in Section 5.4 method 1. This method did not provide good results, way too
much upgrades were selected. In fact, a lot of the instances resulted in infeasible
programs, the feasible programs provided too much upgrades compared to the
local optima found using the local search methods. This indicates that the
averaging we did in method 1 does not provide a good estimate: the estimate
is too low. Method 3 could be used as an alternative, provided that the right
conversion from Mbps to the units used in SONlab can be determined.

7.2 Multiple possible base stations at one loca-
tion

So far we have dealt with at most two possible base stations at one location:
macro sites can either have 3 sectors or 6. It is however a natural question to ask
how the methods presented can be extended to use a list in which an arbitrary
(but finite) number of potential base stations can be placed at one location.
This is a very relevant question! In such a list we could for example store
different rotations of the 3- and 6-sector sites, such that the azimuth becomes a
parameter. Another important option is to include several copies of a potential
base station with different power settings. Let us discuss our search method
from the initialization to the end. The binary and mixed integer linear program
formulated in Chapter 5 contain a constraint of the following form:

yj + yj′ ≤ 1, ∀(j, j′) ∈ J3/6 (7.2.1)

This constraint is actually a specific instance of a broader class of constraints.
Namely one in which for each location L we have a set of base stations KL that
can be placed on that location with constraint:∑

j∈KL

yj ≤ 1

It is clear that (7.2.1) is a specific instance of this broader class. Indeed, we can
take the sets KL to be the pairs (j, j′) ∈ J3/6 corresponding to location L.

The local search methods would, however, need to be rewritten (drastically).
If we speak about several possible azimuths on one location, then it might be
possible to adjust the traffic filler neighborhood in a logical way. There is one
azimuth that best corresponds to the problem area. However, it is unclear how
the local search methods could deal with different power settings. In [29], on

7.2. MULTIPLE POSSIBLE BASE STATIONS AT ONE LOCATION 93

which we initially based our methods, they do deal with different power settings.
We would suggest to extend our neighborhood with something similar to what
is done in [29].

94 CHAPTER 7. CONCLUSIONS & REFLECTION

Appendix A

Basic elements of a mobile
cellular network

We begin by defining some terminology specific to telecommunications networks.
We make a distinction between definitions commonly used in the literature and
terminology we use at TNO. The concepts in the second category, marked as
Informal Definition, could also be defined formally, but we choose not to do so.
The goal of the second category is to explain the concepts in as much detail as
is needed for this thesis.

A.1 General terminology related to mobile net-
works

A telecommunications network can be looked at from two different perspectives,
the demand side (i.e. the user perspective) and the supply side (i.e. the net-
work operator perspective, the infrastructure). The demand comes from users
connected to the network. In literature related to the LTE technology (more
on that in Section 1.2) users are referred to as User Equipment, the following
definition is commonly used.

Definition A.1.1 (User Equipment (UE)). User equipment is any device used
by a customer demanding a connection to the network at a specific location and
with a certain data rate (in bits/s).

In this project we are not interested in such detailed information, instead
we look at area based statistics. Following the notation used in [29] we consider
Service Test Points.

Informal definition A.1.2 (Service Test Point (STP)). A Service Test Point
is a location demanding a connection to the network and a certain data rate (in
bits/s). This data rate is the accumulation of the data rates requested by users
in a certain region around the location.

The size and shape of the region around the location can vary. As shape
we use squares, with as center the above mentioned location. The size of the
squares is usually 10 by 10 meters. This will be the smallest size we use, however

95

96 APPENDIX A. BASICS OF MOBILE CELLULAR NETWORKS

to speed up computations we occasionally use a larger size. The concept of an
STP is not always described with the words Service Test Point, for example [35]
introduces the term demand node with the same definition.

The supply side of the network can be summarized as a set of equipment at
certain locations providing the connection and data rates requested by the users.
The more elaborate discussion of the supply side will run along the following
path. First we look at the locations. Secondly we describe the equipment we
can place at these locations. Thirdly the terms associated with the connection
made between users and the equipment. As a fourth and final topic we discuss
some metrics used to evaluate the performance of the network.

As mentioned we start by first define the locations we use and more impor-
tantly what options we have at these locations.

Informal definition A.1.3 (Site). A place where a base station can be located.

In general multiple types of base stations can be build at a certain location,
i.e. multiple sites could be tied to the same location. However, only one type of
base station can actually be build at each location. Note that a list of sites in
a network would be a discrete list. This definition raises the question of what a
base station is. This brings us to the second point on our path.

Definition A.1.4 (Base station (BS)). A base station is a collection of equip-
ment, at one location, which facilitates the communications between user equip-
ment and a network.

In 3G networks base stations are also frequently called node B’s, likewise in
LTE the abbreviation eNodeB (evolved Node B) is widely used. We will not
discuss in detail the collection of equipment mentioned above, the only thing we
want to mention is the antennas. Below we give an informal definition of what
an antenna means to us.

Informal definition A.1.5 (Antenna). An antenna is a piece of equipment
which is able to transmit data in a focused beam and at a certain power level.

In Figure A.1 we can see what it means for an antenna to transmit in a
focused beam1. The half power beam width, θ3dB in Figure A.1, is a measure
for how focused the radiation pattern of the antenna is. The half power beam
width is equal to twice the angle between the center of the beam and the angle
at which you only receive half the power you could have received at the same
distance in the center of the beam. Different antennas have a different half
power beam width. Since an antenna is directive it is important to know where
it is aimed at. The horizontal angle we call the azimuth, the vertical angle the
tilt.

Definition A.1.6 (Azimuth). The angle in the horizontal plane between the
center of the beam and some fixed reference direction.

The fixed reference direction in the definition above could for example be
north.

1A distinction can be made between omni-directional antennas (which transmit to all
directions with the same intensity) and directive antennas (which have a radiation pattern as
in Figure A.1). The class of antennas we are interested in is the latter so from here on we
consider all antennas to be of the directive type.

A.1. GENERAL TERMINOLOGY 97

Figure A.1: A model of the radiation pattern of an antenna. The half power
beam width is shown with the angle θ3dB .

Definition A.1.7 (Tilt). The angle in the vertical plane between the center of
the beam and some fixed reference direction

It is standard to assume the reference direction of tilt to be the horizontal
direction.

The radiation pattern we can see in Figure A.1 makes it reasonable to assume
that only users which are in a certain direction from the antenna are likely to
be linked to it. This brings us to the third point on our path and the term cell
or, as it is sometimes called, sector.

Definition A.1.8 (Cell/Sector). The geographical region in which all users (or
STPs) are connected to the same antenna array.

Note that a cell does not need to be a connected region. Using this definition
it makes sense to speak about a cell belonging to a base station when the antenna
array in question belongs to the base station.

Now that we know the definition of a cell we still need to know how the
assignment of users to base stations is done. This is based on the best server
principle, where the best server of a user is determined as the antenna for which
the pilot signal reaching the user is strongest. The pilot signal is a signal which
all antenna broadcast at a specific frequency and a certain power setting. The
strength with which a signal reaches a user depends on the propagation of radio
waves. This is highly influenced by the terrain (buildings, roads, trees, cars, etc.)
between the BS and the user. In practice, propagation is therefore something
which cannot be determined with certainty without measurements and these
measurements are only valid until something or someone moves. This is why
path loss models need to be used. In Chapter 3 and Appendix D we discuss two
network evaluation tools and the models they use.

As we have mentioned before different types of antennas have a different
type of half power beam width. Based on the previous paragraph, it is not hard

98 APPENDIX A. BASICS OF MOBILE CELLULAR NETWORKS

to imagine that if the half power beam width is smaller (and the same power
setting is used) then the cell will be narrower as well (in this context narrower
should be intuitively clear, more precisely we could say that the cell is mostly
contained in a smaller cone originating at the antenna). Having more than one
cell per base station is very efficient in reducing the costs, however having too
many cells means the interference from adjacent antennas will be high. The
number of directions used is also the number of sectors of a base station. The
number of sectors of a base station is thus equal to the number of antenna
arrays with a (pairwise) different directionality.

We consider base stations with 1, 3 or 6 sectors. In the case of 3 sectors
the directions will differ by 120◦, in the case of 6 sectors by 60◦. When using
a 6-sector base station it is evident that antennas with a smaller half power
beam width are preferred. Table A.1 provides some example settings based on
the specifications of two Kathrein Scala Division antenna types (the 40◦Dual
Beam Single Band Panel Antenna for the 6-sector case and the Kathrein 742215
model for the 3-sector case). It is important to note that during the project we

#Sectors G m HPBW h HPBW v
3 18 dB 65◦ 6.2◦

6 20 dB 43◦ 14.5◦

Table A.1: Values used in the antenna gain formula’s for 3- and 6-sector sites.

will not vary the antenna type, we will use one antenna type per class of base
stations (1-,3- or 6-sectors).

The second parameter determining the cells is the transmission power of the
antenna, PBS . The unit we use is decibels (this holds for all future references
of power). We will shortly refresh the readers understanding of this unit. The
decibel is a dimensionless unit, it says something about the ratio between two
units. We say that the ratio R in decibels (dB) between to units I and I0 is
equal to

R = 10 ·10 log

(
I

I0

)
[dB]

In our case we consider power levels, which are given in terms of Watts. The
reference intensity I0 which is used as a standard in the field is 1 mW.

Conversely when we know the ratio between two intensities in decibels we
know the ratio between the intensities by the formula

I

I0
= 10R/10.

There are two reasons for why we use the unit decibel instead of Watt. The
first is that in terms of decibels the power levels become more easily comparable.
For example the transmission power is usually around 46 dB whilst the receiver
sensitivity of a user is around −90 dB, in terms of Watts this is 104.6 vs 10−9

mW. The second and perhaps most important reason is that there are various
losses between the transmission and reception, by using the logarithmic scale
we can use addition instead of multiplication. Since we use it quite often: a
loss in intensity of 50% is equal to a loss of about 3, 010 dB, which we usually
approximate by 3 dB.

A.1. GENERAL TERMINOLOGY 99

To give an idea of how the power level changes between transmission and
reception at the user end we give the following relation:

Informal definition A.1.9 (Received power). The power received at a user,
P r [dB] can be given by the following formula (all variables use the unit decibel):

P r = PBS +GA−LA+GM −LM −Gh(φ)−Gv(θ)−PL− IPL−CL−BL+S

where

• PBS is the power usage of the base station (BS)

• GA, LA are the antenna gain and loss respectively. They depend on the
type of antenna.

• GM , LM are the receiver gain and loss respectively for users. Their sum
is usually taken as 0 dB [1].

• Gh(φ) and Gv(θ) depict the loss due to the radiation pattern not being
uniform, depends on the horizontal angle φ and the vertical angle θ be-
tween user (STP) and BS (approximating formulas exist and will be given
in the discussion of my own simulator).

• PL is the path loss.

• IPL is the outdoor to indoor penetration loss, this depends on the material
of the walls. Since we only consider outdoor users we can set it to 0 dB.

• CL is the cable loss. The power usage of a BS is measured at ground level,
before the actual transmission in the antenna you lose some power in the
cables. This typically is around 3 dB.

• BL is the body loss. A typical user holds his/her phone close to their
body, which means that part of the signal travels through the body, hence
there is a loss here as well. A value of 3 dB is often used.

• S is a stochastic variable for shadowing. S ∼ N(0, σ) where σ ≈ 6 dB.
This variable arises because we have to approximate the path loss. More
details about this variable are given in Chapter 3.

As we can see the transmission power of a base station is a parameter, we
will distinguish two types of base stations: those with a high transmission power
of 46 dB and those with a low transmission power of 30 dB. In terms of sites
these two types form respectively the macro and micro sites. Intuitively the
macro/micro can be understood as the size of the area in which the sites signal
is received. There are other differences between macro and micro sites. Base
stations at macro sites are usually placed at a high altitude (100m or higher)
whilst base stations at micro sites are closer to street level (around 30m). Below
we will give an informal definition of macro and micro sites.

Informal definition A.1.10 (Macro sites). A base station located at a high
altitude (> 100m), a transmission power of around 46 dB and either 3- or 6-
sectors.

Informal definition A.1.11 (Micro sites). A base station located at a low
altitude (around 30m), a transmission power of around 30 dB and 1 sector.

The final step along our path is to look at various measures of the perfor-
mance of a telecommunications network.

100 APPENDIX A. BASICS OF MOBILE CELLULAR NETWORKS

A.2 Performance metrics of a mobile network

The performance of a telecommunications network can be measured in various
ways (e.g. the load, call blocking rate or user data throughput. The meaning of
these terms will become clear at the end of this section). The key performance
indicator (KPI) we consider is the load. The load of a network is a vector, each
cell has its own load. This load per cell can be seen as the ratio between the
physical resources requested by the users connected to that cell and the total
available resources of that cell. The total amount of available resources is called
the available bandwidth or spectrum. The available spectrum depends on what
the operator has bought at the auction, a typical spectrum would be between
1800 and 1810 MHz. Below we give a more thorough description of how the load
vector can be computed. We will come to the conclusion that the computation
of the load of each cell is a fixed point problem.

Definition A.2.1 (Load). The load of a cell can be given as a fraction be-
tween the amount of Herz requested by the users assigned to that cell and the
bandwidth, B [Hz], available.

ρ =

∑
pixels p assigned to the cell (#Hz requested by pixel p)

B

A pixel is assigned to the cell which provides it with the highest pilot signal (a
signal which all BSs broadcast at the same strength).

The number of Herz requested of a base station by a pixel is a complicated
number to calculate. It depends strongly on the Signal to Interference plus
Noise Ratio (SINR) received at the pixel.

Definition A.2.2 (SINR). Given the received power at an STP by all BSs we
can calculate the SINR (Signal to Interference plus Noise Ratio) for each BS at
that STP:

SINR =
P r

I +N

where P r is the received signal, I [dB] the interference generated by the sur-
rounding BSs and N [dB] the noise factor.

The noise factor is usually approximated by the following formula:

N = 10 · 10 log(k ·B · T) +NR

where k [J/K] is Boltzmann’s constant , B [Hz] is the available bandwidth, T [K]
the temperature and NR the noise number of the receiver (around 8 dB). For the
temperature we will assume 290K, the available bandwidth can be something
in the range of 10− 20 MHz (this depends on what the operator bought at the
auction, it is part of our scenario description). The interference is the sum over
all other cells of their load times the power received from that BS. The reason
that we take the load as a factor in this calculation is that, on average, a BS is
transmitting at full power for that percentage of time.

The amount of bps a base station can provide to the pixel can be found via
Shannon’s formula:

Rbps = 0.6 ·B · 2 log(1 + SINR)

A.2. PERFORMANCE METRICS 101

where SINR is taken as its linear value, not in dB.
We can then compute the fraction of the bandwith requested by this pixel:

Dbps

Rbps

The load of a cell is then the sum over all pixels assigned to that cell of their
required fraction of bandwidth.

Now remember that the SINR depends on the load of all other cells. So the
load of all cells depends on the load of all cells! This means we are looking at a
fixed point problem. This fixed point problem is illustrated in Figure A.2. With
an estimate ρi of the load of each cells we can find a new estimate of the load
ρi+1 by using the old one to estimate the SINR for each pixel and then compute
the new load via the above calculations.

Figure A.2: Illustration of the fixed point problem of calculating the load of cell
j.

The desired outcome is that the sequence (ρi)i∈N converges, in practice this
is the case.

The above assumes that a user always receives the amount of data it requests.
However when the load of a cell approaches one it can happen that there is not
enough bandwidth available to provide the required amount of data to the user.
In that case either the user data throughput (the data the user actually receives)
is less than what it requested. Or the call of that user is blocked by the cell.
The probability that a call is blocked by its cell is called the blocking rate. The
blocking rate is strongly connected to what we at TNO have called the overload
traffic, which is a measure of how much of the traffic intensity is handled by an
antenna with a load above the threshold.

Informal definition A.2.3 (Overload traffic). The overload traffic Overload
is a metric assigning to each pixel the amount of demand handled by a cell with
a load above the threshold.

Overload Traffici = D(xi) ·
∑

cellsj:ρj≥ρ∗
p(xi, j) ·

ρj − 0.6

ρj
(A.2.1)

102 APPENDIX A. BASICS OF MOBILE CELLULAR NETWORKS

where xi is pixel i, D(xi) is the demand of pixel i, ρj is the load of cell j, ρ∗ is
the threshold load and p(xi, j) is the assignment probability of pixel i to cell j.

Appendix B

Tables

Simulation time step:
Computation step: 1 2 3 4 5
Get landcover map 1,72 0,00 0,00 0,00 0,00
Pre0001 2,88 0,00 0,00 0,00 0,00
Complete calculation 63,33 36,43 38,25 40,18 36,50
Retrieve traffic 34,60 14,64 14,70 15,25 14,69
Retrieve load 5,69 1,18 1,17 1,23 1,18
get max datarate 8,61 8,48 9,49 8,25 8,90
get ctoi 9,34 8,53 9,20 12,02 8,22
traffic.get grid 4,90 3,47 3,58 3,32 3,40
Saving load/traffic 0,03 0,03 0,03 0,03 0,03
Calculating bottleneck 0,05 0,00 0,00 0,00 0,00
Connecting to the server 0,04 0,17 0,15 0,13 0,23
Second time connecting to server 0,04 0,00 0,00 0,00 0,00
Third time 0,15 0,00 0,00 0,00 0,00

Table B.1: Running time for 5 simulation steps of the ’busy hour’ traffic grid.

103

104 APPENDIX B. TABLES

Instance number: Function: Location: Peak: Range:
1 Add Hotspot 35 1 300
2 Add Hotspot 89 0.75 250
3 Add Hotspot 89 1 150

Add Hotspot (2 + 12 + 41)/3 0.5 100
4 Add Hotspot 91 1 300

Add Hotspot (2 + 12 + 41)/3 0.5 100
5 Add Hotspot (9 + 73 + 91)/3 0.5 150
6 Add Hotspot (50 + 38)/2 0.75 150
7 Add Hotspot (9 + 73 + 91)/3 0.5 150

Add Hotspot (50 + 38)/2 0.75 150
8 scale rectangle Micro 1.5
9 scale rectangle Micro 1.35

Add Hotspot (43 + 85)/2 0.4 50
10 scale rectangle Micro 1.35

Add Hotspot (43 + 85)/2 0.4 50
Add Hotspot (1 + 7)/2 1.5 25
Add Hotspot (52 + 54)/2 1.5 25

11 scale rectangle Left Micro 2
12 scale rectangle Left Micro 2

Add Hotspot (5 + 89)/2 1.5 35
Add Hotspot (3 + 52)/2 1.5 35
Add Hotspot (15 + 69)/2 2 25
Add Hotspot (2 + 12)/2 0.7 350

13 scale rectangle2 Micro 0.075
14 scale rectangle Micro 1.5

Add Hotspot (44+67)/2 1.5 50
15 scale rectangle Micro 1.5

Add Hotspot (85+92)/2 3.5 50
16 scale rectangle Micro 1.5

Add Hotspot (2+41)/2 2.5 50
17 scale rectangle Micro 1.5

Add Hotspot (57+92)/2 4.5 50
18 scale rectangle Micro 1.5

Add Hotspot (44+67)/2 1.5 50
Add Hotspot (7+14)/2 1.5 50

19 scale rectangle Micro 1.5
Add Hotspot (2+62)/2 1.5 50
Add Hotspot (7+14)/2 1.5 50

Table B.2: Problem instances. The locations are mostly given in terms of site
coordinates, for example location (50+38)/2 is in the middle of the line between
site 50 and site 38. The locations Micro and Left Micro are defined in Table B.3.
The functions are defined in Appendix C.

105

Micro Left Micro
xmin 4345300 4345300
xmax 4346700-10 (4345300 + 4346700)/2 - 10
ymin 5806400 5806400
ymax 5807900-10 5807900-10

Table B.3: Definition of locations Micro and Left Micro.

Instance Best solu-
tion value

Macro # Micro Average
solution
value

Average
ac-
cepted
neighbors

Average
itera-
tions

1 0,023 1 0 0,023 2 2
2 0,106 2 6 0,118 28,67 53,33
3 0,102 4 1 0,11 32 60
4 41,41 15 2 41,86 15,67 33,33
5 12,29 8 0 12,78 13 51,67
6 0,069 3 0 0,077 26,67 45,67
7 13,13 12 2 13,13 15 40
8 0,046 2 0 0,046 3 3
9 0,046 2 0 0,046 3 3
10 0,046 2 0 0,046 3 3
11 0,046 2 0 0,046 3 3
12 0,466 12 19 0,473 56,33 96,33
13 0,069 3 0 0,072 20,67 30,33
14 0,069 3 0 0,079 14,33 24,67
15 0,076 2 3 0,145 46,33 80,67
16 0,069 3 0 0,069 7,33 11
17 0,089 3 2 0,264 62,33 96,67
18 0,079 3 1 0,09 23 39
19 0,069 3 0 0,076 16,33 26,33

Table B.4: Greedy method with the swap neighborhood. The initial state used
is the existing network. The averages are taken over all 3 runs.

106 APPENDIX B. TABLES

Instance Best solu-
tion value

Macro # Micro Average
solution
value

Average
accepts

Average
itera-
tions

1 0,092 4 0 0,115 21,67 42,67
2 0,086 2 4 0,162 39,67 70
3 0,132 4 4 0,152 45 76,33
4 41,41 16 2 41,42 19,67 43,67
5 12,29 8 0 12,78 10,33 37,33
6 0,069 3 0 0,069 25,67 52
7 13,13 13 2 22,22 15 30,33
8 0,046 2 0 0,046 3 3
9 0,046 2 0 0,046 3 3
10 0,046 2 0 0,046 3 3
11 0,046 2 0 0,046 3 3
12 0,42 10 19 0,466 51,33 90
13 0,069 3 0 0,072 23,33 34
14 0,069 3 0 0,072 17,67 33
15 0,089 3 2 0,164 46,33 79
16 0,069 3 0 0,101 15,67 24
17 0,076 2 3 0,11 56,67 82,67
18 0,079 3 1 0,092 30,33 54,67
19 0,069 3 0 0,069 24,67 33

Table B.5: Greedy method with the 2-step approach. The initial state used is
the existing network. The averages are taken over all 3 runs.

Instance Best solu-
tion value

Macro # Micro Average
solution
value

Average
accepts

Average
itera-
tions

5 12,29 8 1 12,43 11,67 40,67
6 0,069 3 0 0,069 2 2
7 13,12 12 2 13,29 16,67 56,33
8 0,046 2 0 0,046 3 4
9 0,046 2 0 0,049 3 3,67
10 0,046 2 0 0,054 2,67 4
11 0,046 2 0 0,046 2 2
12 0,433 11 18 0,466 52 96
13 0,069 3 0 0,084 21 31,67
14 0,069 3 0 0,069 2 2
15 0,112 4 2 0,156 34,33 74,33
16 0,069 3 0 0,069 2 2
17 0,112 4 2 0,115 65,33 99
18 0,079 3 1 0,082 11,33 18
19 0,069 3 0 0,069 2 2

Table B.6: Greedy method with the swap neighborhood. The initial state used
is the solution to the corresponding MILP. The averages are taken over all 3
runs.

107

Instance Best solu-
tion value

Macro # Micro Average
solution
value

Average
steps

Average
itera-
tions

5 12,72 13 0 12,92 13 40,67
6 0,069 3 0 0,069 2 2
7 13,13 13 2 13,16 16,67 41,33
8 0,046 2 0 0,046 3 5,67
9 0,046 2 0 0,046 3 4,33
10 0,046 2 0 0,046 3 5
11 0,046 2 0 0,046 2 2
12 0,506 12 23 0,54 49,33 97,67
13 0,069 3 0 0,069 18,33 28,33
14 0,069 3 0 0,069 2 2
15 0,109 3 4 0,193 41,33 91
16 0,069 3 0 0,069 2 2
17 0,076 2 3 0,203 61 99
18 0,079 3 1 0,08233 9,33 17,33
19 0,069 3 0 0,069 2 2

Table B.7: Greedy method with the 2-step approach. The initial state used is
the solution to the corresponding MILP. The averages are taken over all 3 runs.

108 APPENDIX B. TABLES

Appendix C

Functions

Function 1. Add Hotspot

Input:
Peak, range, centerx, centery, grid

Round centerx and centery to a precision of pixel size (10 m)

Processing:

newgrid := grid;

for all pixels do
d:= distance of pixel to (centerx,centery)
if d ≤range then

newgrid.data(pixel) := newgrid.data(pixel) + peak · exp(− d2

100·range);
end if

end for

Output:
newgrid

109

110 APPENDIX C. FUNCTIONS

Function 2. scale rectangle

Input:
scale, xmin, xmax, ymin, ymax, grid

Processing:

newgrid := grid;

for all pixels do
if pixel lies within the rectangle xmin:xmax by ymin:ymax then

newgrid.data(pixel) := scale · newgrid.data(pixel)
end if

end for

Output:
newgrid

Function 3. scale rectangle2

Input:
scale, xmin, xmax, ymin, ymax, grid

Processing:

newgrid := grid;

for all pixels do
if pixel lies within the rectangle xmin:xmax by ymin:ymax then

newgrid.data(pixel) := scale
end if

end for

Output:
newgrid

Appendix D

Another evaluation tool:
SANlab

Here we would like to describe the mobile cellular network evaluation tool that
was developed during this thesis project: SANlab. This tool was developed with
the following goal in mind: to provide a fast evaluation of a network configu-
ration. As such the models used in SANlab often use less detailed information
than the ones used in SONlab. We finally did not use SANlab for the following
two reasons. One, the computation time of SONlab proved to be acceptable for
our local search methods1. Two, it is not easy to define a realistic scenario and
in SONlab a network configuration and traffic pattern were already available. I
want do describe it here for two reasons. One, I learned a lot from developing
this tool, so maybe the reader can learn something too. Secondly, as this is my
thesis, it should reflect the work that I have done. Developing this tool certainly
took some time.

In the description of SANlab we follow the same structure as in Chapter 3.
However, since we have already given the general descriptions of the models we
use in that chapter, here we will only describe the models we used.

D.1 Network aspects

The traffic distribution is given in the form of a pixel map, just like in SONlab.
However, we do know the units. The traffic demand per pixel is given in bits
per second. The base stations are modeled exactly as in SONlab.

D.2 Propagation environment

D.2.1 Path loss: The COST 231-Hata model

In SANlab we have implemented the COST 231-Hata path loss model presented
in the final report of the COST 231 project, [16]. We use this model since it

1For an overview of the computation times required by the various functions of SONlab see
Table B.1 in Appendix B. That these times are acceptable follows from the results obtained
in Chapter 6.

111

112 APPENDIX D. ANOTHER EVALUATION TOOL: SANLAB

does not use too detailed information and its validity ranges cover the ranges
we intended to use it for. We do not use very detailed information because this
is not always readily available and secondly the goal of my own simulator was
to be faster than SONlab, which forces us to use a more simplistic model.

The path loss (PL) model can be summarized by the following equations:

PL = A+B · log(d) + C

A = 46.3 + 33.9 log(fc)− 13.82 log(hb)− a(hm)

B = 44.9− 6.55 log(hb)

a(hm) = (1.1 log(fc)− 0.7)hm − (1.56 log(fc)− 0.8)

C =

{
0 in small and medium-sized cities,

3 in metropolitan areas.

(D.2.1)

In the above fc [MHz] is the frequency, hm [m] the height of the mobile user,
hb [m] the height of the antenna and d [km] is the distance between the user
and antenna. The determination of the constant C is not clearly defined, for
example what would happen if the antenna is in a metropolitan area but the
user in a suburban area? In such a case the area around the user could be
leading since that is the area where the radio wave reaches the height range of
the user.

This model was tested (in [16]) in realistic environments, the validity ranges
that followed from those tests are the following:

• Frequencies between 150 and 2000 MHz.

• The antenna height may be between 30 and 200 meters.

• The user heights may be between 1 and 10 meters.

• Distance between site and user should be between 1 and 20 km.

These validity ranges are almost suited for our needs. The only one we need to
violate is the last one. The (horizontal) distance between an antenna and user
could be as low as 10 meters. As we can see from the model, distances between
zero and one kilometer cause the first logarithm in path loss to be negative.
Since this model is very simplistic we choose to solve this problem in a very
simple way, we lower bound the path loss by a so-called minimum coupling loss
of 70 dB. This should result in a more realistic path loss for smaller distances.
The choice for a value of 70 dB was made based on Section 4.5.1 of [1].

From the model in Equation (D.2.1) it should be clear that the COST 231-
Hata model does not use detailed information about the environment. The only
information about the environment which is taken into account is the distinction
between small and medium sized cities and metropolitan areas. This means
that building heights, trees, etc. are only taken into account on that level, as
an expected average for the area type around the user.

D.2.2 Shadowing

In Chapter 3 we were only able to give a general description of shadowing since
we do not have access to the exact models used. In this subsection we describe
the models that we have used for the correlation between the normal-distributed

D.2. PROPAGATION ENVIRONMENT 113

(in dB!) shadowing terms. As we have mentioned in Chapter 3, there are two
types of correlation that we have to describe:

1. cross-correlation

2. auto-correlation

We will discuss the models that we have implemented for both.
First the cross-correlation. In [46] various correlation models are considered.

The authors of [46] recommend the following model because it captures the
properties described in Section 3.3.2. The model they recommend is proven to
give a positive semidefinite, psd, covariance matrix2.

For two antennas and a mobile user with angle φ (see Figure 3.2) and dis-
tance ratio R (= 10| log10(d1/d2)| in Figure 3.2) the correlation between the two
shadowing terms is given by

h(φ,R) = hΘ(φ)hR(R)

where

hΘ(φ) =

{
a− (a− b) φφ0

if φ ≤ φ0,

b if φ > φ0

with 0 ≤ b < a ≤ 1 and 0 < φ0 ≤ 180. And

hR(R) = max(0, 1−R/R0)

with R0 > 0 and usually in the range [6 dB, 20 dB]. They suggest taking
a = 1, b = 0. The parameters R0, θ0 can then be used to fit the model to
measurements. For θ0 a value of 60 or 75 degrees is suggested in [46].

Remark. This means that two antenna from the same base station indeed have
correlation equal to one. After all we have θ = 0 so hΘ(θ) = a = 1 and
hR(R) = max(0, 1−R/R0) = max(0, 1) = 1.

Secondly the auto-correlation. The model of auto-correlation suggested by
Szyszkowicz in [46] is the most widely used one. It is an exponential model
where only the absolute distance between two STPs is taken into account:

h(d) = e−d/d0

where d is the Euclidean distance between two testpoints and d0 > 0 is a
parameter called the decorrelation distance. This model has been shown to
always give a psd correlation matrix. Measurement studies, [44], indicate that
the spatial 50% decorrelation distance of shadow fading is less than 10 meters
for urban micro cells, 120 meters for urban macro cells, and 50 to 400 meters
for suburban macro cells.

Implementation. The auto-correlation can be computed without any prob-
lems, distances between pairs of test points are known. The auto correlation
matrix Kauto can then be formed using the model in the previous paragraph.

2Recall the definition of the covariance matrix Σ:

Σ := σ(S, S) = E[(S − E[S])(S − E[S])T] = E[SST] − E[S]E[S]T .

It should be clear that a covariance matrix is by definition positive semidefinite. So any model
of the cross-correlation should also give a psd covariance matrix.

114 APPENDIX D. ANOTHER EVALUATION TOOL: SANLAB

The cross-correlation is a little more complicated. We need the angle between
each pair of antennas for each test point. This angle can be found using the
relation

v · u = ‖v‖‖u‖cos(θ)
where θ is the angle between the two vectors u, v. We also need the ratio
|10 log10(di/dj)| where di, dj are the distances from the test point to the an-
tennas i and j, these are all known. For each test point we then have a cross-
correlation matrix Kcross,STP .

Now the question is how do we combine the two? We construct the joint
normal distribution as follows. We first take independent normally distributed
variables Xi,STP ∼ N(0, σ) for each test point and each BS. Then we write

Kauto = CautoC
T
auto,

this can be done by Cholesky decomposition (since Kauto is psd). We assume
positive definiteness, so we have that Cauto is of the same size as Kauto. We can
then incorporate the auto-correlation by defining the variables

Yi,: = CautoXi,:

for each i. The notation Xi,: is used to denote the vector consisting of Xi,STP

for all STPs. Next for each STP we have a cross-correlation matrix Kcross,STP .
Again we assume positive definiteness and write

Kcross,STP = Ccross,STPC
T
cross,STP

by Cholesky decomposition. Then we define

S:,STP = Ccross,STPY:,STP

The Si,STP then form our shadowing terms.
During the preprocessing stage a realization of the shadowing terms is taken.

This realization is then used to model the inhomogeneity of the environment.

Comments on SONlab and shadowing. We know that SONlab uses as-
signment probabilities of pixels to cells. Since the only probabilistic aspect of
the models used in SONlab is the shadowing we have to assume the assignment
probabilities are related to the shadowing terms. Broadcasting a pilot signal
from all base stations together and taking into account the path loss estimate
and antenna gain would give the mean signal strength at a pixel, this can be
added to the shadowing term to find a probability distribution on the signal
strength from each antenna to each pixel. The assignment probability to cell j
can then be defined as the chance that cell j provides the strongest signal at
that pixel.

D.2.3 Antenna gain

We would like to note that using a very detailed radiation pattern (also called:
antenna diagram) is would be pointless in SANlab. It would lead to a false sense
of accuracy since the inaccuracy of the path loss model is larger than the small
variations we see in Figure 3.3.

D.3. TRAFFIC HANDLING 115

In SANlab we have used approximation formulas that were presented in the
paper of Ericsson, [26]. The approximation formula for the horizontal gain is
used both in SONlab and in SANlab, we therefore refer to Chapter 3 for its
formula. The antenna gain in the vertical direction, Gv(θ) [dB], is given by the
following formula:

Gv(θ) = max(−12

(
θ

HPBWv

)2

, SLLv)

where SLLv [dB] is the Side Lobe Level and HPBWv is the half power beam
width in the vertical direction. θ is in radians, it depicts the angle in the vertical
plane between the horizontal plane and the user, minus the tilt.

Table D.1 provides some example values based on the specifications of two
Kathrein Scala Division antenna types (the 40◦Dual Beam Single Band Panel
Antenna for the 6-sector case and the Kathrein 742215 model for the 3-sector
case). These values are used in SANlab.

#Sectors G m HPBW h FBR h HPBW v SLL v
3 18 dB 65◦ 30 dB 6.2◦ -18 dB
6 20 dB 43◦ 30 dB 14.5◦ -18 dB

Table D.1: Values used in the antenna gain formula’s for 3- and 6-sector sites.

Figure 3.4 compares the proposed model to the radiation pattern of the
Kathrein 742215 model.

The antenna gain in the vertical direction is clearly different from the one
that is used in SONlab. An analysis of the difference between the two different
vertical gain models does not lie within the scope of this thesis, for the reader
who is interested in doing such an analysis [26] and [12] form a good starting
point, these papers describe the respective models.

D.3 Traffic handling

In Chapter 3 we have described the cell assignment process in SONlab. The
cell assignment process in SANlab is very similar. The only difference is that
we do not use the full shadowing distribution. Instead, for one scenario, we
take a realization of the shadowing and use that as if it is the true correction
on the path loss that was required. This allows us to deterministically assign
pixels to cells. The load computation is based on the same fixed point problem.
However, we solve it in the iterative way described in Appendix A.2.

As an illustration of SANlab we would like to present Figures D.1 and D.2.
To create Figure D.1 we have imported the scenario that we have also used in
Chapter 6, with SONlab. With that scenario we made a signal strength map.
Note that this map is created without shadowing. In Figure D.2 we did take
into account shadowing. This time for a fictional scenario with only one 3-sector
base station. We took a very small half power beam width to clearly show the
directivity of the antennas.

116 APPENDIX D. ANOTHER EVALUATION TOOL: SANLAB

Figure D.1: The signal strength map of the SEMAFOUR scenario used in Chap-
ter 6, as calculated with SANlab. Without shadowing. There is no difference
between the red and green circles other than the color.

Figure D.2: The signal strength map of a scenario with one active 3-sector site.

D.4. CONCLUDING REMARKS 117

D.4 Concluding remarks

We can compare the evaluation tool described in this appendix to the one de-
scribed in Chapter 3. We can see that the main difference is in the path loss
model used. The one in SONlab uses much more detailed information. Also,
we do not have access to specific information about the shadowing models used
in SONlab. But since the shadowing is a correction on errors made in the path
loss model it stands to reason that there will be some differences in that aspect
as well.

D.4.1 Further advice to a future user of SANlab

Both SONlab and SANlab offer the opportunity to give a large list of potential
base stations and perform a certain preprocessing. This preprocessing can be
seen as calculating all aspects of the propagation environment. Doing this in a
separate stage beforehand is very useful when you want to evaluate a certain
scenario for more than one network configuration (as we do in this thesis). The
reason that this works is that for all the propagation models we can take a subset
of the base stations and still satisfy the model. For path loss and antenna gain
it is clear that this works. To see that it also works for shadowing we note that
a principal submatrix3 of a covariance matrix is the covariance matrix of the
remaining subset of variables.

The path loss model we used might not be the best fit for your needs. Please
confirm that it is indeed valid for the ranges you are interested in. If it does
not, then [23] might be a good place to look for improvements.

This evaluation tool was developed by someone who is not a telecommuni-
cations expert. Although I have tried to use only referenced values it would be
wise to check if they agree with your intentions. In the cell assignment code you
will find a receiver sensitivity (with reference), these values are quite recent so
they might not agree with standards set by for example the 3GPP [1].

3A principal submatrix of a square matrix A is a square matrix B obtained by removing a
set of columns and the same set of rows from the matrix A.

118 APPENDIX D. ANOTHER EVALUATION TOOL: SANLAB

Bibliography

[1] 3GPP Specification 36.942. www.3gpp.org/dynareport/36942.htm.

[2] About the SEMAFOUR project. http://www.fp7-semafour.eu/en/about-
semafour/.

[3] atesio. www.atesio.com.

[4] Cisco radiation patterns. http://www.cisco.com/c/en/us/products/collateral/wireless/aironet-
antennas-accessories/prod white paper0900aecd806a1a3e.html.

[5] CPLEX LP format. lpsolve.sourceforge.net/5.5/CPLEX-format.htm.

[6] GNU Linear Programming Kit. www.gnu.org/software/glpk/#downloading.

[7] Gurobi. www.gurobi.com.

[8] NEOS Server, SCIP Solver. www.neos-
server.org/neos/solvers/milp:scip/CPLEX.html.

[9] Public deliverables of the SEMAFOUR project. http://fp7-
semafour.eu/en/public-deliverables/.

[10] A. Molina, G.E. Athanasiadou, A.R. Nix. The Automatic Location of Base-
Stations for Optimised Cellular Coverage: A new combinatorial approach.
IEEE Vehicular Technology Conference, 1:606–610, 1999.

[11] Tobias Achterberg. Scip: Solving constraint integer pro-
grams. Mathematical Programming Computation, 1(1):1–41, 2009.
mpc.zib.de/index.php/MPC/article/view/4.

[12] Z. Altman, B. Begasse, C. Dale, A. Karwowski, J. Wiart, Man-Fai Wong,
and L. Gattoufi. Efficient models for base station antennas for human
exposure assessment. Electromagnetic Compatibility, IEEE Transactions
on, 44(4):588–592, Nov 2002.

[13] Carsten Lund, Mihalis Yannakakis. On the Hardness of Approximating
Minimization Problems. Journal of the Association for Computing Ma-
chinery, 41(5):960–981, 1994.

[14] C. Coletti. Heterogeneous Deployment Analysis for Cost-effective Mobile
Network Evolution: An LTE Operator Case Study : PhD Thesis. Radio
Access Technology Section, Aalborg University.

119

120 BIBLIOGRAPHY

[15] C.Y. Lee, H.G. Kang. Cell Planning with Capacity Expansion in Mobile
Communcations: A Tabu Search Approach. IEEE Transactions on Vehic-
ular Technology, 49(5):1678–1691, 2000.

[16] E. Damosso, L.M. Correia, Information Market European Commission.
DGX III ”Telecommunications, and Exploitation of Research.”. COST
Action 231: Digital Mobile Radio Towards Future Generation Systems :
Final Report. EUR (Series). European Commission, 1999.

[17] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, Catherine Schevon.
Optimization by Simulated Annealing: An experimental evaluation; Part 1,
Graph Partitioning. Operations Research Society of America, (6):865–892,
1989.

[18] Dennis M. Rose et al. D2.4: Definition of Reference Scenarios, Modelling
Assumptions and Methodologies, June 2013. Non-public report of the SE-
MAFOUR project.

[19] Dukwon Kim, Panos M. Pardalos. A solution approach to the fixed charge
network flow problem using a dynamic slope scaling procedure. Operations
Research Lettters, 24:195–203, 1998.

[20] E. Amaldi, A. Capone, F. Malucelli, C. Mannino. Optimization problems
and models for planning cellular networks. Handbook of Optimization in
Telecommunication, pages 879–901, 2006.

[21] E. Amaldi, P. Belotti, A. Capone, F. Malucelli. Optimizing base station
location and configuration in UMTS networks. IEEE, 2011.

[22] Emile H. L. Aarts, Jan H. M. Korst, Peter J. M. van Laarhoven. Local
Search in Combinatorial Optimization. John Wiley & Sons Ltd.

[23] V. Erceg, L.J. Greenstein, S.Y. Tjandra, S.R. Parkoff, A. Gupta, B. Kulic,
A.A. Julius, and R. Bianchi. An empirically based path loss model for
wireless channels in suburban environments. Selected Areas in Communi-
cations, IEEE Journal on, 17(7):1205–1211, Jul 1999.

[24] Fred Glover. Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research, 13(5):533–549, 1987.

[25] Michel Gendreau. An introduction to tabu search. In Fred Glover and
GaryA. Kochenberger, editors, Handbook of Metaheuristics, volume 57
of International Series in Operations Research and Management Science,
pages 37–54. Springer US, 2003.

[26] F. Gunnarsson, M.N. Johansson, A. Furuskar, M. Lundevall, A. Simons-
son, C. Tidestav, and M. Blomgren. Downtilted base station antennas -
a simulation model proposal and impact on hspa and lte performance. In
Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 68th, pages
1–5, Sept 2008.

[27] Bruce Hajek. Cooling schedules for optimal annealing. Mathematics of
operations research, 13(2):311–329, 1988.

BIBLIOGRAPHY 121

[28] H. Holma and A. Toskala. LTE for UMTS - OFDMA and SC-FDMA Based
Radio Access. Wiley, 2009.

[29] Stephen Hurley. Planning Effective Cellular Mobile Radio Networks.
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 51(2):243–
253, 2002.

[30] I. Siomina, A. Furuskar, G. Fodor. A mathematical framework for statisti-
cal QoS and capacity studies in OFDM networks. In IEEE 20th Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications.

[31] Iana Siomina, Di Yuan. Analysis of Cell Load Coupling for LTE Network
Planning and Optimization. IEEE Transactions on Wireless Communica-
tions, 2012.

[32] J. Yang, M. E. Aydin, J. Zhang, C. Maple. UMTS base station location
planning: a mathematical model and heuristic optimisation algorithms.
Communications, IET, 1(5):1007–1014, 2007.

[33] Richard M. Karp. Reducibility among combinatorial problems. In Pro-
ceedings of a symposium on the Complexity of Computer Computations,
held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York., pages 85–103, 1972.

[34] Kimmo Hiltunen. The Performance of Dense and Heterogeneuous LTE
Network Deployments within an Urban Environment. PhD thesis, Aalto
University School of Electrical Engineering.

[35] K.Tutschku. Demand-based Radio Network Planning of Cellular Mo-
bile Communication Systems. Research Report Series 177, University of
Würzburg, Institute of Computer Science.

[36] L. Hu, I.Z. Kovács, P. Mogensen, O. Klein and W. Störmer. Optimal New
Site Deployment Algorithm for Heterogeneous Cellular Networks. IEEE,
2011.

[37] Larry Raisanen. A permutation-coded evolutionary strategy for multi-
objective GSM network planning. Journal of Heuristics, 14(1):1–21, 2008.

[38] M. St-Hilaire, S. Chamerland, S. Pierre. A tabu search algorithm for the
global planning problem of third generation mobile networks. Computers
& Electrical Engineering, 34(6):470–487, 2008.

[39] P. Mogensen, Wei Na, I.Z. Kovacs, F. Frederiksen, A. Pokhariyal, K.I.
Pedersen, T. Kolding, K. Hugl, and M. Kuusela. Lte capacity compared to
the shannon bound. In Vehicular Technology Conference, 2007. VTC2007-
Spring. IEEE 65th, pages 1234–1238, April 2007.

[40] R. Sridharan. The capacitated plant location problem. European Journal
of Operations Research, 87:203–213, 1995.

[41] Roger M. Whitaker, Larry Raisanen, Steve Hurley. A Model for Con-
flict Resolution between Coverage and Cost in Cellular Wireless Networks.
Proceedings of the 37th Annual Hawaii International Conference on System
Sciences, 2004.

122 BIBLIOGRAPHY

[42] Roger M. Whitaker, Steve Hurley. Evolution of Planning for Wireless
Communication Systems. Proceedings of the 36th Hawaii International
Conference on System Sciences, 2003.

[43] Rudolf Mathar, Thomas Niessen. Optimum Positioning of base stations for
cellular radio networks. Wireless Networks, 6:421–428, 2000.

[44] J. Salo, L. Vuokko, H.M. El-Sallabi, and P. Vainikainen. An additive model
as a physical basis for shadow fading. Vehicular Technology, IEEE Trans-
actions on, 56(1):13–26, Jan 2007.

[45] Scott Kirkpatrick. Optimization by Simulated Annealing: Quantitative
Studies. Journal of Statistical Physics, 34(5/6):975–986, 1984.

[46] S.S. Szyszkowicz, H. Yanikomeroglu, and J.S. Thompson. On the feasibil-
ity of wireless shadowing correlation models. Vehicular Technology, IEEE
Transactions on, 59(9):4222–4236, Nov 2010.

Index

2-step approach, 41

Acceptance criterion, 13, 40
Antenna, 96
Antenna Placement Problem, APP, 8
Auto-correlation, 28
Azimuth, 4, 96

Base Station, BS, 2, 96
Binary Programming, 21, 47

Capacitated Facility Location Problem,
CFLP, 46

CAPEX, 34
Cell, 97
Cost function, 33
Cross-correlation, 27

dB, 98
Decision Support System, DSS, 5, 42
Dynamic Slope Scaling Procedure, 53

Fixed Charge Network Flow Problem,
FCNFP, 54

Front Back Ratio, FBR, 29

Greedy search, 13, 16, 37, 41

Half Power Beam Width, HPBW, 28

IMPEX, 34
Integer Linear Programming, ILP, 20
Iteration, 15

Key Performance Indicator, KPI, 4, 7

Linear Programming, LP, 19, 50
Load, 4, 62, 100
load, 7
Local optimum, 11
Local search method, 12
Long Term Evolution, LTE, 6

Macro site, 99
Max load, 34
Micro site, 99
Mixed Integer Linear Programming, MILP,

21, 51, 54

Neighborhood, 14, 36
NEOS, 51
Network configuration, 4
NP-hard, 12

OPEX, 34
Overload traffic, 101

Pilot signal, 30
Polynomial time, 12
Positive Semidefinite, psd, 113
Problem zone, 42

Quality of Experience, QoE, 7
Quality of Service, QoS, 7, 34

Radio Access Technology, RAT, 5
Run, 15

SCIP, 51
Sector, 97
SEMAFOUR, 4
Service Test Point, STP, 2, 95
Shadowing, 27
Side Lobe Level, SLL, 115
Signal to Interference plus Noise Ratio,

SINR, 62
Simulated annealing, 13, 16
Simulators, 23
SINR, 100
Site, 96
Small cell removal, 38
Stopping criterion, 15, 41
Swap, 38

Tabu search, 17, 37

123

124 INDEX

Tilt, 4, 97
Total Cost of Ownership, TCO, 34
Traffic filler, 37

User Equipment, UE, 2, 30, 95

	Introduction
	A mobile cellular network
	The SEMAFOUR project
	Problem description
	Related literature
	Outline of the optimization approach

	Optimization techniques
	Computational complexity
	Local search methods
	Properties of local search methods
	Greedy search
	Simulated Annealing
	Tabu search
	Overview

	Integer Linear Programming & relaxations
	Linear Programming
	Integer Linear Programming
	Mixed Integer Linear Programming

	Evaluation tools
	Introduction to mobile cellular network evaluation methods
	Network aspects
	Propagation environment
	Path loss
	Shadowing
	Antenna gain

	Traffic handling
	Concluding remarks

	Local search approach
	Cost function
	Neighborhood structure
	Traffic filler
	Small cell removal
	Swap
	How to select the operator

	Acceptance criterion
	Stopping criterion
	Problem zone characteristics

	Choice of initial state
	Capacitated Facility Location Problem
	An extra constraint: the best server constraint

	Relaxations of the binary integer prorgam
	Linear relaxation
	MILP relaxation
	The equivalence of the MILP and binary program

	The dynamic slope scaling procedure
	Example: dynamic slope scaling procedure applied to a network flow problem

	Cell capacity estimates
	Method 1: rough estimate using SONlab
	Method 2: trial-and-error
	Method 3: theoretical bounds
	Conclusion

	Numerical examples
	The MILP without the best server constraint
	The MILP with the best server constraint
	The dynamic slope scaling procedure

	Results
	Problem instances
	Algorithm parameters
	Numerical results
	The numerical value of the solution of the MILP
	Comparison of the local search methods

	Summary of the numerical results & reflection

	Conclusions & Reflection
	The mixed integer linear program
	Multiple possible base stations at one location

	Basics of mobile cellular networks
	General terminology
	Performance metrics

	Tables
	Functions
	Another evaluation tool: SANlab
	Network aspects
	Propagation environment
	Path loss: The COST 231-Hata model
	Shadowing
	Antenna gain

	Traffic handling
	Concluding remarks
	Further advice to a future user of SANlab

