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Abstract
Knowledge of the ambient loads are important for assessing the dynamic behavior of long-span bridges.
However, the assumptions in the adopted load models used in the dynamic analysis leads to uncertainties in
e.g. reliability assessments. To reduce the uncertainties, full-scale studies of the loads on existing structures
can be performed. Recently developed methods for inverse identification can estimate the unknown forces
on a structure using a limited set of dynamic response measurements and a numerical model of the structure.
In this contribution, a pilot study of full-scale force identification is performed in a practical case study of the
Bergsøysund bridge, a pontoon bridge with a floating span of 840 m. A state of the art filtering technique for
input estimation is applied to identify the wave forces on the bridge using measured acceleration data. This
article also presents a method for frequency-domain reconstruction of the wave forces, based on a parametric
wave field model from measured wave elevation data. The obtained force estimates from the two approaches
shows a reasonable agreement. The practical use of the identification techniques are reviewed from the
viewpoint of this case study and sources of uncertainties are discussed.

1 Introduction

Floating bridges with spans of 3-5 kilometers are currently being reviewed as a fjord-crossing solution in the
infrastructural project Coastal Highway Route E39 in Norway. Suspension bridges with floating towers [1] or
pontoon-type bridges [2] are two of the considered concepts. A good understanding of the dynamic behavior
of such bridges is essential to ensure the structural safety through the life-time. However, the dynamic
behavior is uncertain due to the complexity, novelty and operational environment of these structures. The
floating bridges must endure large-amplitude vibrations since the natural frequencies occur in the super-low
region (< 0.05 Hz) that is prone to wind and second-order wave forces, as well as in the frequency range of
swell and wind sea (∼ [0.05, 0.3] Hz).

In the design phase, established load models dictated by design codes are used to evaluate the dynamic
response of the structure. One approach to better understand the true loading is to perform full-scale mea-
surements. This can either be performed on the desired structure after it is built, or alternatively, on already
existing similar structures to learn about the in-operation behavior. The dynamic loads are however not possi-
ble to measure directly in full-scale, which has lead to the development of inverse methods for identification
of forces. These methods utilize response measurements together with a system model to estimate the input



forces on a structure.

This article presents a case-study of full-scale force identification on the Bergsøysund bridge, an existing
pontoon-type bridge with a floating span of 840 m. The bridge has been monitored since 2013, and the ex-
tensive measurement data has been used in for example studies of response statistics [3], operational modal
analysis [4], and full-field response estimation [5]. The force identification method used in the presented
study is a joint input-state estimation algorithm [6, 7], a popular Kalman-type filtering method. In addi-
tion, separate method for frequency-domain reconstruction of the wave forces from wave elevation data is
considered.

2 The Bergsøysund bridge

Figure 1: a) The Bergsøysund bridge seen from the northeast end; b) acceleration sensor mounted on the
truss; c) wave radar mounted on the walkway.
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Figure 2: a) Overhead view of the Bergsøysund bridge showing the locations the accelerometers and wave
radars. The compass indicates the definition of the wave direction; b) surrounding area of the bridge (Google
maps, 2018).

2.1 Description of the bridge and monitoring system

The Bergsøysund bridge (Fig. 1 a) is located on the northwest coast of Norway. The bridge is 840 m long,
and consists of a steel truss that is supported by seven pontoons. The structure is only anchored to the
ground at the ends, which makes it very flexible and susceptible to dynamic excitation from wave actions on
the pontoons. The bridge is surrounded by other islands and fjords (Fig. 2 b), causing the waves to mainly
approach from the north sector (∼ [30◦, 90◦]) or the south sector (∼ [220◦, 320◦]).



A monitoring system at the site records the triaxial acceleration response in 14 locations (Fig. 1 b) and the
wave elevation in six locations (Fig. 1 c). The positions of these sensors are shown in Fig. 2 a. More details
about the monitoring system are given in [3].

2.2 State-space system model in the time-domain

This section gives a brief overview of how a time-domain state-space model of a floating bridge can be
established. The bridge is discretized into nDOF degrees of freedom (DOFs), and is assumed to be excited
primarily by np wave forces. The governing equations of motion can be formulated in the frequency-domain
as follows:

− ω2
(
Ms + Mh(ω)

)
u(ω) + iω

(
Cs + Ch(ω)

)
u(ω) +

(
Ks + Kh

)
u(ω) = Lppw(ω) (1)

The vectors and matrices and their respective sizes are summarized below:

• u ∈ RnDOF : response vector

• pw ∈ Rnp : wave force vector

• Lp ∈ RnDOF×np : force selection matrix

• Ms ∈ RnDOF×nDOF : structural mass

• Cs ∈ RnDOF×nDOF : structural damping

• Ks ∈ RnDOF×nDOF : structural stiffness

• Mh(ω) ∈ RnDOF×nDOF : hydrodynamic mass

• Ch(ω) ∈ RnDOF×nDOF : hydrodynamic damping

• Kh ∈ RnDOF×nDOF : restoring stiffness

The mass, damping and stiffness matrices are obtained from a finite element model of the structure coupled
with a fluid-structure interaction model of the pontoons [8].

For purposes of force identification using time-domain filter techniques, it is common to establish a reduced-
order modal model [6]. Here, we use the modal base Φ ∈ RnDOF×nm obtained from the following eigenvalue
problem:

[Ks + Kh − ω2
j (Ms + Mh,∞)]φj = 0 , (Mh,∞ = lim

ω→∞
Mh(ω)) (2)

Φ =
[
φ1 φ2 . . . φnm

]
(3)

However, the traditional mode-based reduction approach cannot directly be applied here due to the frequency-
dependency of the hydrodynamic matrices Mh(ω) and Ch(ω) in Eq. 1, which give rise to so-called motion-
induced forces or radiation forces that are represented by convolution integrals in the time-domain. However,
Eq. 1 is still linear, and it is possible to create a high-fidelity state-space model approximation. The details
behind this type of state-space modeling, and in particular the handling of the motion-induced forces, is
given in [8] and is excluded here for brevity. The result is a time-invariant reduced-order state-space model
based on nm selected modes, given in continuous form as:

ẋ(t) = Acx(t) + Bcp(t) (4)

where p(t) ∈ Rnm contain the modal wave forces (ΦTLppw(t)) and x(t) ∈ Rns is a state vector that takes
into account the vibration modes as well as the motion-induced forces.

The output equation considering ny acceleration or displacement measurements in the vector y(t) ∈ Rny can
be established as:

y(t) = Saü(t) + Sdu(t) = Gcx(t) + Jcp(t) (5)

where Sa and Sd ∈ Rny×nDOF are used to select the measured DOFs. The special definition of the state-space
system matrices Ac ∈ Rns×ns , Bc ∈ Rns×nm , Gc ∈ Rny×nm and Jc ∈ Rny×nm are given in [8]. In our case



the state-space model of the Bergsøysund bridge is constructed using nm = 18 modes, with frequencies ωj
in the range [0.6, 4] rad/s. The total number of system states is ns = 180.

We now discretize the state-space formulation by a time step ∆t such that tk = k∆t (k = 0, 1, . . . , Nt − 1),
and consider the presence of stochastic noise:

xk+1 = Axk + Bpk + wk (6)

yk = Gxk + Jpk + vk (7)

where xk = x(tk), pk = p(tk) and yk = y(tk). Assuming the force is constant between the sample instants
(tk < t < tk+1), the discrete time system matrices can be shown to have the following definition:

A = exp
(
Ac∆t

)
, B = (A− I)A−1c Bc, G = Gc, J = Jc (8)

The following covariance relations are used to describe the white-noise processes wk ∈ Rns and vk ∈ Rny :

E[wkw
T
l ] = Qδkl, E[vkvT

l ] = Rδkl, E[wkv
T
l ] = Sδkl (9)

3 Methods for estimation of wave forces

3.1 Estimation by inverse identification algorithms

In this study we apply a joint input-state estimation algorithm [6, 7], which is a stochastic-deterministic
method utilizing the system description in Eq. 6 and 7. The algorithm is a Kalman-type filter, where the
input is unknown and thus jointly estimated with the system states. The filter equations are omitted here; the
reader is referred to the cited references for an explanation of the algorithm.

It is chosen to identify modal forces (p(t)) rather than the physical pontoon wave forces directly (pw(t)).
This necessary due to theoretical limitations of the number of forces that can be identified, which generally
cannot exceed the number of acceleration outputs or the number of modes in the model [9]. Note that for
algorithms with time-delayed inversion rather than instantaneous inversion, this criterion can for certain cases
be given some slack [10]. In addition, it is an advantage to use modal forces when the additional unknown
excitation from wind and traffic cannot be neglected, since any unmodelled sources of excitation conflicts
with a system description where only localized inputs are considered. The modal forces covers by definition
any kind of external loading to the system. We expect that the modal forces that are identified still should be
dominated by the wave force content, since in comparison the wind and traffic excitation are much smaller.

3.2 Frequency-domain reconstruction using wave radar data

This sections shows idea behind the frequency-domain reconstruction of the wave forces, using a parametric
model of the sea state together with a panel model of the pontoons.

We assume the sea surface elevation η(x, y, t) is a zero-mean, homogeneous and stationary stochastic pro-
cess. The wave field is described by the directional wave spectral density Sηη(ω, θ) ∈ R, where θ represents
the wave direction, which here is defined as the polar angle shown in Fig. 2. The one-dimensional wave
spectrum Sηη(ω) can be obtained by integration over the directions:

Sηη(ω) =

∫ 2π

0
Sηη(ω, θ) dθ (10)

The directional wave spectrum can be estimated from wave elevation measurements, for example by using
the DIWASP Toolbox for MATLAB [11]. This toolbox implements the Extended Maximum Entropy Prin-
ciple (EMEP) [12], a robust estimation method which utilizes the cross-spectral density of wave elevation
measurements from a distributed array of wave radars.



Figure 3: Panel model of the pontoon geometry. The numbers denotes the six local DOFs.

Provided that Sηη(ω, θ) is known and equal at all the pontoon locations (homogenenous wave field), the
cross-spectral density of the first-order wave forces on pontoonm can be calculated by the following integral:

S
p
(m)
w,i p

(m)
w,j

(ω) =

∫ 2π

0
Sηη(ω, θ)Q

(m)
i (ω, θ − αm)

(
Q

(m)
j (ω, θ − αm)

)∗ dθ, i, j = {1 . . . 6} (11)

where the asterix denote the complex conjugate and m ∈ {1 . . . 7} are indices for the seven pontoons. The
subindexes i and j denote the six local DOFs, where 1−3 are displacements and 4−6 are rotations, see Fig. 3.
Q

(m)
i (ω, θ) ∈ C is the directional transfer function relating wave elevation to the wave forces on pontoon

number m, and depends on the incoming wave direction θ. αm is the local rotation of the a pontoon with
respect to the global xy-coordinate system (α1 = 14◦, . . . , α7 = −14◦). Finally, note that the formulation
in Eq. 11 assumes the waves are fairly short-crested compared to the distance between two pontoons, which
is reasonable since in this case the distance is ∼ 105 m.

The transfer functions Q(m)
i (ω, θ) can be obtained by hydrodynamic codes. Here, we have created panel

models of the pontoons in the software HydroD WADAM [13], with a geometry similar to the one shown in
Fig. 3. The obtained transfer functions are shown in Fig. 4 and 5, using the middle pontoon (m = 4) as an
example. The export resolution for the frequency and angle is set to 0.05 rad/s and 10◦, respectively.

To establish a global picture of wave loads, the power spectral density (PSD) matrix Spwpw
(ω) ∈ Cnp×np

containing all the wave forces (np = 7× 6 = 42) is populated with the elements S
p
(m)
w,i p

(m)
w,j

(ω) from Eq. 11.

Since modal forces are identified with the inverse methods, Spwpw
(ω) can be transformed to the modal form

Spp(ω) ∈ Cnm×nm for a common basis of comparison:

Spp(ω) = ΦTLpSpwpw
(ω)(ΦTLp)

T (12)

4 Estimation of forces on the Bergsøysund bridge

4.1 Processing of the measurement data

A time series recorded 2017-10-29 12:39 with length 30 minutes is used in the full-scale identification.
The acceleration and wave data is resampled to a sample rate of 10 Hz (∆t = 0.1 s), corresponding to
Nt = 1.8 ·104 time steps. In addition, the acceleration data is low-pass filtered to only include content below
4.5 rad/s. Above this limit, the contribution to the total response is negligible, and cannot be accounted for
by the modal basis of the reduced-order state-space model. Sample time series from the wave radars and
accelerometers are shown in Fig. 6 and 7, respectively. The peak wave frequency is 2.45 rad/s, which also
leads to the highest dynamic response around this frequency.

For simplicity, only acceleration data and no displacement data is used in the inverse algorithms. In this
case, this leads to a so-called marginally stable system inversion [9]. As will be shown, this mainly results



Figure 4: The real value of the transfer functions Qi(ω, θ) (i = 1 . . . 6) for the middle pontoon.

Figure 5: The imaginary value of the transfer functions Qi(ω, θ) (i = 1 . . . 6) for the middle pontoon.

in spurious low-frequent content in the input estimates due to the lack of static-sensitive data, which is
necessary to stabilize the filter solution.

The cross-spectral density between all the six wave radar measurements, which goes into the EMEP estima-
tion, are calculated using a Welch-estimate with a section division of 512 samples and no overlap.

4.2 Force estimation results and discussion

The wave forces are now estimated using the methods presented in Section 3.1 and 3.2, respectively driven
by acceleration data and wave elevation data.

The resulting estimate of the directional wave spectrum is illustrated in Fig. 8. The waves mainly approach
from a skew angle of 65◦, coming from the fjord north of the bridge. Using the estimated directional wave
spectrum, the modal waves forces are predicted using Eq. 11 and 12, as shown in Fig. 9. The figure also shows
the PSD of the modal forces identified using the inverse algorithms. The covariance matrices Q = 10−2 · I,
S = 0, R = 10−6 · I have been prescribed as the tuning variables for the filter.

Neglecting the frequency range [0, 1] rad/s, the force estimates obtained from the two approaches are similar.
Overall, this indicates that estimates of the forces are reasonable. A direct comparison of the forces obtained
from the two methods should be interpreted with caution, however, since the methods are based on different
assumptions. Both approaches are expected to have sources of uncertainties or assumptions that in reality
are violated. The most important can be summarized as:
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Figure 6: Sample wave elevation measurement from one of the wave radars.
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Figure 7: Sample acceleration measurements from pontoon number 3 in the horizontal (y) and vertical (z)
direction. The data is low-pass filtered below 4.5 rad/s.

•• Errors on the state-space model, coming from model errors in the structural finite element model or
the model for the fluid-structure interaction.

• Sensor uncertainty in the accelerometers and wave radars, in particular for the low-frequent range
below 1 rad/s.

• EMEP estimation errors of the directional wave field, leading to for example waves approaching from
unlikely directions such as 180◦ in Fig. 8 a.

• Inhomogeneities of the global wave field in the strait cannot be detected when the wave radars are
clustered closely together (cf. Fig. 2 a).

• Multibody pontoon interaction through the fluid is not considered here. This influences the transfer
functions Q(m)

i (ω, θ), as well as Mh(ω) and Ch(ω) and so also the state-space model.

• Second-order sum and difference wave forces are not considered in the wave force reconstruction.

• Presence of additional excitation (wind or traffic) will show up in the identified forces, although their
magnitude is small when compared to the wave loads.

Further work should consider more recordings from the measurement database with various ambient wave
conditions, such as SWH, wave direction and peak frequency.
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Figure 8: a) Estimated directional wave spectrum using EMEP in the DIWASP Toolbox; b) marginal wave
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Figure 9: Auto PSD of the estimated modal forces for all the 18 modes. Both the force estimate from the
wave field reconstruction and the input estimate from the inverse identification is shown.



5 Conclusion

This paper has presented has presented a case-study of the full-scale identification of wave forces on a floating
bridge. Two different approaches was used: 1): force identification by a joint input-state estimation algorithm
using measured acceleration data; 2): frequency-domain reconstruction of the forces using measured wave
elevation data. The force estimates obtained from the two methods appear to have a reasonable agreement
when compared in the frequency-domain. The discrepancies that occur can be explained by the different
simplifications, modelling uncertainties and assumptions behind the two methods. The study shows that
different approaches for obtaining the ambient forces have advantages and disadvantages, so that the methods
can complement each other in the total assessment of the forces.
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