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Summary
Today, the need for sustainable aviation is greater than ever before. The transition towards commer
cially viable low or zeroemission flight may be the greatest challenge facing the aviation industry to
date. Promising alternatives to fossilfuel sources are biofuels and electrical propulsion technologies.
Moreover, dragreducing improvements in wing design can both lower the emissions of fossilfuel
burning aircraft as well as boost the viability of sustainable alternatives by reducing the amount of
energy required for sustained flight. However, in recent years, the traditional aircraft and wing designs
have already become highly optimized and the efficiency returns increasingly diminished. Hence, more
radical departures from conventional designs are needed to bridge the gap towards sustainable avia
tion.

Morphing is a bioinspired technology that enables the shape of the wing to be smoothly altered in
flight. Whereas traditional wing designs are optimized for a specific flight condition, usually 50 %fuel
load cruise, active morphing wings are able to tailor their shapes for maximum aerodynamic efficiency
at any flight condition. While the wing shapes of traditional aircraft are determined long before a flight,
active morphing technologies allow us to find the optimal wing shape in flight akin to how birds feel
the air flow around them and shape their wings accordingly. Compared to the alternative of scheduling
predetermined wing shapes based on analytical models, this online form of wing shape optimization
could make active morphing wings truly adaptive and further increase their performance.

Strategies for online wing shape optimization have been proposed in the literature. These exist
ing strategies employ local models around a trimmed condition with either direct search methods or
gradientbased optimization procedures. In any case, these methods are only capable of finding lo
cal minima in the optimization landscapes and require renewed model identification before they can
be used at other flight conditions. The model identification procedures typically require sweeps of all
morphing actuators which result in increased fuel consumption and undesirable bumpiness in flight,
which negatively affects their viability for application on commercial flights. These limitations may be
overcome by continuously learning the complex relation between the morphed wing shape and its aero
dynamic performance online instead of repeatedly optimizing locally from scratch. The development of
such a framework has been the subject of this thesis work.

More formally, the aim of this thesis has been to realize the most aerodynamically efficient shape
on a seamless active trailingedge cambermorphing wing by developing a blackbox onlinelearning
shape optimization method and testing the method in a wind tunnel experiment. Although the method
ology proposed in this work can be applied to any camber morphing wing platform, its effectiveness
has been demonstrated for a particular active morphing wing named SmartXAlpha1, in the Open Jet
Facility (OJF) of Delft University of Technology.

Before the wind tunnel validation experiment, the new online wing shape optimization framework
was developed and tested on a simulation model. This model used the Vortex Lattice Method (VLM)
to simulate the aerodynamics of a distributedtrailingedgeflap adaptation of the SmartXAlpha wing
geometry. Because the VLM method neglects viscous effects, this model was augmented using cor
rections based on wind tunnel data from previous wind tunnel campaigns with SmartXAlpha. Within
the proposed optimization framework, the shape of the wing is described in terms of virtual inputs that
scale the contributions of basis shapes to describe a single curve that dictates the amount of camber
morphing across the span of the wing. The goal of the developed framework is to continuously learn
the relations between the angle of attack and these virtual inputs, and the resulting lift and drag coeffi
cients and to use this knowledge to determine the most efficient wing shape which satisfies the target
lift requirement and does not violate the morphing limits.

The online learning of thesemappings was donewith Radial Basis Function neural Networks (RBFNs),
which are locally sensitive global function approximators that are robust to measurement noise. Two
networks were trained in a minibatch training routine with the adaptive gradient descent algorithm

1The project video can be found via https://www.youtube.com/watch?v=SdagIiYRWyA&t=319s

v

 https://www.youtube.com/watch?v=SdagIiYRWyA&t=319s


vi 0. Summary

Adagrad. The resulting metamodel, also referred to as the onboard model, was queried with pop
ulations of candidate inputs by the Covariance Matrix Adaptation – Evolutionary Strategy (CMA–ES)
evolutionary optimization algorithm. The desirability of the lift and drag coefficients predicted by the
onboard model was subsequently scored using a cost function. This cost function was designed to
score predicted outputs depending on their lifttodrag ratio and the deviation from the target lift coef
ficient. Finally, the scores of the candidate solutions were used by the CMA–ES optimizer to sample
a new and improved generation of candidate solutions. This loop was continued until convergence
within each iteration of the optimization framework. The best candidate angle of attack and wing shape
combination after convergence was actuated on the “real” system. The measurements resulting from
these inputs were then used to further train and improve the onboard model.

Because of the complex relationships between the inputs and the wings’ aerodynamic efficiency,
and because of the large highdimensional input space, a large amount of data is required to learn
an accurate blackbox model. In addition, the measurement times for drag estimation are typically
relatively long, i.e., around one minute. Therefore, the onboard model is trained using a combination of
recent and historical data. In the simulation andwind tunnel experiment, an initial phase of search space
exploration and data gathering dubbed the wandering phase was performed. The pseudorandom
inputs evaluated during this phase were generated with a Sobol sequence to guarantee an even density
of data throughout the domain. In the realworld application of the framework, this phase would be
performed only once during a test flight. In the true operation phase, referred to as the optimization
phase, only themost promising inputs are actuated on themorphing wing without any further exploration
maneuvers and the onboard model is locally improved as new measurements become available.

Simulations using the augmented aerodynamic model have shown that after initially being trained on
a different wing model, the onboard model was able to adapt to the changed system. After a wandering
phase of 100 iterations, the proposed methodology was able to realize improved lifttodrag ratios for a
wide range of target lift coefficients without any further model identification maneuvers. Compared to
the unmorphed wing jig shape, the aerodynamic efficiency of the wing model was increased by 2.5%
to 14.6% for target lift coefficients between 0.25 and 1.00.

Subsequently, the proposed optimization framework was demonstrated on the SmartXAlpha mor
phing wing platform in an open jet wind tunnel. After 150 iterations of wandering, the framework was
operated in the optimization phase mode for 15 iterations with a target lift coefficient of 0.65. The an
gles of attack and wing shapes actuated during this phase converged onto the target lift coefficient
and resulted in higher lifttodrag ratios than were measured for the unmorphed jig shape. Relative
to the jig shape, the aerodynamic efficiency of the wing was improved by 8.4%. This corresponds to
a 7.8% reduction in aerodynamic drag relative to the wing jig shape at the same lift coefficient. Later
attempts with other target lift coefficients were unfortunately unsuccessful after an approximately 1.6
degree bias in the angle of attack actuation was unintentionally introduced. This bias affected both the
actuated angle of attack and the estimated lift and drag forces through an angleofattackdependent
transformation of the measured forces. However, these biases were corrected in postprocessing. The
drag reductions predicted by the onboard model after postprocessing of the data are between 6.5%
and 19.8% for target lift coefficients between 0.35 and 0.80. However, the estimations are likely to be
optimistic for the lower target lift coefficients as the prediction error for these low total drag points is
high in the relative sense. More importantly, postprocessing has provided insight into the trends in the
optimal wing shape and angle of attack combinations for varying target lift coefficients.

This thesis report details the development and testing of a novel online blackbox performance
optimization framework for active morphing wings. The proposed method extends the scope of current
stateoftheart online shape optimization methods for morphing wings by learning and optimizing a
global metamodel. This eliminates the need for repeated model excitation maneuvers for operation at
different flight conditions, which hinder the realworld application of current online shape optimization
methods. The effectiveness of the framework has been demonstrated on the SmartXAlpha active
trailingedge camber morphing wing demonstrator in a wind tunnel experiment. Moreover, due to its
blackbox nature, the proposed methodology can be applied to any active morphing wing platform
without a deep understanding of the system mechanics.

A number of recommendations for future work are made. Firstly, it is recommended that a higher
fidelity aerodynamic model of a trailingedge camber morphing wing is developed such that the method
can be tested and improved for highspeed flight. Secondly, the onboard model should be extended to
include the Reynolds and Mach numbers as inputs such that the scope of the method can encompass
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the full operational range of airspeeds of the intended platforms. Furthermore, it is recommended that
in future work, the optimization bounds are informed and adaptable. In other words, they are linked
to a trust region of the onboard model. This would make the method even more robust in realworld
applications. Fourth, it is recommended that in future work, the hyperparameters of the onboard model
are reoptimized using the newly gathered wind tunnel data. The optimal hyperparameter settings
are dependent on the data set used, and this newly gathered data set is more representative of the
distribution from which new measurements are ‘sampled’ than the old simulationbased data set on
which the initial hyperparameter optimization was based. In addition, a simplified and more elegant
formulation of the cost function is proposed to be used in future work. Lastly, some recommendations
are made regarding the changes in sensing equipment that would be necessary to apply the proposed
methodology to realworld freeflying aircraft.





Nomenclature
𝛼 angle of attack [deg]

𝜌 air density [kg ⋅m−3]

𝑅𝑒 Reynolds number []

𝛼act actuated angle of attack [deg]

𝛼c commanded angle of attack [deg]

Γ vortex strength [m ⋅ s−1]

𝜆 population size []

S𝑥𝑛 sampled Sobol sequence vector []

x0 initial solution vector

xmax search space upper bound vector []

xmin search space lower bound vector []

𝜇 dynamic viscosity [ kg ⋅ (m ⋅ s)−1]

𝜎 standard deviation []

𝜃 actuator angle [deg]

𝜀 turntable misalignment angle [deg]

𝑏 wing span [m]

𝑐 chord length [m]

𝐶L lift coefficient []

𝐶Lt target lift coefficient []

𝐶m pitching moment coefficient []

𝐷 drag force [N]

𝑓 flap angle [deg]

𝐹𝑥 force in xaxis [N]

𝐹𝑦 force in yaxis [N]

𝐿′ lift force per unit span [N ⋅m−1]

𝐿 lift force [N]

𝑙𝑐 characteristic length [m]

𝑁 number of samples []

𝑛𝑥 number of panels in the xaxis []

𝑛𝑦 number of panels in the yaxis []
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x Nomenclature

𝑆 wing surface area [m2]

𝑡 time [s]

𝑇𝑛 Chebyshev polynomial of degree n []

𝑡𝑓 objective function variation threshold []

𝑢 virtual input []

𝑉 air speed [m ⋅ s−1]

𝑥 spanwise coordinate [m]

𝑥hinge fractional chordwise hinge location []

𝑦 spanwise coordinate [m]

𝑧 vertical coordinate [m]

𝑧max vertical trailing edge displacement upper limit [m]

𝑧min vertical trailing edge displacement lower limit [m]

𝑧te vertical trailingedge displacement [m]

U input vector []
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1
Introduction

In this introductory chapter, the research is introduced and defined. First, the research background and
problem are introduced. Secondly, the research questions and the research objective will be stated.
Then, the structure of the research project is set out and finally the outline of this thesis report is
described.

1.1. Introduction to morphing and shape optimization
With the drive towards more sustainable aviation in recent years, the need for more efficient aircraft is
ever increasing. And while the first electrically propelled aircraft are making their debut, the future in
which electrical flying will be the standard in aviation is still far from being realized. Presently, the range
and endurance of electricallypropelled aircraft are typically limited due to the lower energy density
of batteries compared to jet fuel. Improvements in the aerodynamic efficiency of aircraft wing design
could both reduce the emissions caused by fossilfuelburning aircraft as well as increase the viability
of electrical alternatives.

The most aerodynamically efficient shape for an aircraft wing is dependent on the aircraft’s gross
weight, airspeed, and flight altitude. During the flight, all four of these factors tend to vary. This means
that at various moments throughout the flight, different wing shapes are optimal in terms of aerody
namic efficiency. Since conventional wings lack the ability to adapt their shape in flight, traditional wing
design has always been a compromise between efficiency and effectiveness at various flight condi
tions. Because of these conflicting wing requirements, designing a wing to perform well at one flight
condition means sacrificing performance at some other flight conditions.

Active morphing wings seek to overcome these limitations by emulating nature. Birds can efficiently
fly at a wide range of speeds by adapting their geometry to particular conditions inflight [1]. They can
sense the airflow around them and can bend, twist, and fold their wings to achieve good performance,
stability, and maneuverability in many different flight conditions. Derived from the Greek word ‘mor
phos’, which means shape, morphing is the ability to smoothly change the shape of a structure. Active
morphing wings are wings that are able to smoothly alter their shape in flight by some means of ac
tuation. Many examples of different morphing technologies have been published, including but not
limited to camber, thickness, sweep and even span morphing. A comprehensive overview of morphing
technologies can be found in [2].

However, the freedom to choose between many possible wing shapes to use inflight gives rise
to the question of what wing shape should be used at any point during a flight. The current, and
most straightforward way to determine the optimal wings shape is with the optimization of a validated
analytical model. The wing shapes are optimized for various flight conditions, and the best shape to
use at any point during the flight is selected from a lookup table based on the current flight conditions.
The major drawback of scheduling predetermined wing shapes is that this method is not adaptable. In
addition, the accuracy of the results is limited by the quality of the model used.

An interesting and promising alternative to the lookup table method is online shape optimization.
With online shape optimization, instead of predetermining what shapes are to be used, the best wing
shapes are found out during flight. In our comparison to the ways birds operate, their muscles, tendons,

1
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and feathers correspond to the servos, linkages, and flexible skin segments found on many morphing
wings. The online shape optimization method would then be analogous to some of the conscious and
unconscious processes taking place in bird brains when they are feeling the wind and are figuring out
how to best shape their wings. With online shape optimization capability aircraft too could sense and
react to their environments. This could improve the performance of morphing wing aircraft and make
them truly missionadaptive.

1.1.1. Problem statement
The goal of online shape optimization is to use measurements from the aerodynamic forces acting on
an aircraft with morphing wings to determine the optimal wing shape inflight. As illustrated in Fig. 1.1,
the online shape optimization algorithm receives data from aircraft sensors directly and produces an
estimate of the best wing shape to actuate on the morphing wings. To date, the domain of reliable and
accurate measurement and estimation of lift and drag forces in flight remains a challenging area. How
ever, within the scope of this thesis, it is assumed that noisy, but reasonably accurate measurements of
the lift and drag forces are available. Nevertheless, the aim of the optimization algorithm will be limited
to the maximization of the steadystate lifttodrag ratio in trimmed flight, rather than the instantaneous
lifttodrag ratio. This makes the previous assumption more reasonable as the steadystate lift and drag
forces can be estimated from the aircraft gross weight, constant flight path angle, and fuel flow over
longer periods of time. Furthermore, it allows the aerodynamic efficiency optimization to be combined
with other objectives such as (gust) load alleviation on the basis of time scale separation [3]. While the
optimal shape for drag reduction serves as a baseline shape that is only slowly adapted, much faster
adaptations of this baseline shape can be overlayed by the gust load alleviation optimization. This way
multiple morphing objectives can be achieved independently.

Figure 1.1: Overview of the dataflow between an online shape optimization (orange) and a morphing wing.

Although the methodology proposed in this work can be applied to any camber morphing wing
platform, its effectiveness will be demonstrated for a particular active morphing wing named SmartX
Alpha1, in the Open Jet Facility (OJF) of Delft University of Technology. SmartXAlpha is a rectangular
planform seamless active trailingedge camber morphing wing demonstrator that comprises six dis
tributed translation induced camber (TRIC) morphing modules [4].

1.2. Research questions and objectives
In this section, the research questions and objectives are presented.

1The project video can be found via https://www.youtube.com/watch?v=SdagIiYRWyA&t=319s

 https://www.youtube.com/watch?v=SdagIiYRWyA&t=319s


1.3. Research approach 3

1.2.1. Research questions
Main research question

How can the aerodynamic performance of active camber morphing wings be improved with an
adaptable blackbox online datadriven optimization strategy?

In order to further define the research and answer the main research question, the following sub
questions are formulated:

1. What are suitable modeling methods for trailingedge camber morphing wings with low computa
tional cost and sufficient accuracy for the purpose of online blackbox performance optimization?

2. What are suitable methodologies for an adaptable online wing shape optimization framework?

3. Compared to nonmorphing wings of similar geometry, what increase in lifttodrag ratio can be
achieved on active trailingedge camber morphing wings with online blackbox wing shape opti
mization?

4. What improvements to the methodology are needed to transfer the shape optimization framework
to inflight operation, and what are the challenges?

In order to enable the development and preliminary testing of the online wing shape optimization
strategy, a simulation model of a trailingedge cambermorphing wing is required. To this end, a mod
eling method needs to be identified that has low evaluation cost such that many evaluations can be
afforded, while also being able to simulate the drag mechanics that define the optimization landscape
sufficiently. Furthermore, a review of optimization methodologies and their suitability for the intended
use case of online shape optimization will have to be performed. After a suitable methodology has been
integrated, the effectiveness of the method must be experimentally validated. In the hardwareinthe
loop wind tunnel experiment the method should be demonstrated and the performance benefit should
be quantified. Lastly, with regards to future work on the topic, this thesis work aims to investigate the
major challenges and possible improvements from which the framework could benefit.

1.2.2. Research objective
The main research objective of this thesis is:

Research objective

to realize the most aerodynamically efficient shape on a seamless active trailingedge camber
morphing wing by developing a blackbox onlinelearning shape optimizationmethod and testing
the method in a wind tunnel experiment.

1.3. Research approach
The thesis project consists of four phases as shown in Fig. 1.2. The first two phases correspond to the
development of an aerodynamic model of a morphing wing and an online shape optimization method.
In the third and fourth phases, the focus is on the evaluation of the online optimization framework on
the aerodynamic model and in a wind tunnel respectively.



4 1. Introduction

Figure 1.2: Overview of the four main phases of the thesis work.

The major milestones towards the completion of these phases are as follows:

1. Develop an aerodynamic model of a trailingedge camber morphing wing.

(a) Aerodynamic solver selection.
(b) Wing shape parameterization selection.
(c) Configuration of the aerodynamic model with SmartXAlpha geometry.
(d) Aerodynamic model augmentation.
(e) develop a surrogate model.

2. Implementation of optimization framework.

(a) Select blackbox optimization method.
(b) Optimize optimization configurations.
(c) Select model type for onboard model.
(d) Create offline training data set.
(e) Optimize onboard model hyperparameters.

3. Testing of optimization framework on an aerodynamic model.

(a) Identify best shapes and corresponding performances on a nominal aerodynamic model.
(b) Simulate online shape optimization framework operation on a surrogate aerodynamic model.

4. Testing of optimization framework in wind tunnel campaign.

(a) Measure the performance of SmartXAlpha with wing jig shape.
(b) Measure the performance of SmartXAlphawith optimal shapes from the aerodynamicmodel.
(c) Measure the performance of SmartXAlpha with blackbox online shape optimization.

1.4. Thesis outline
The structure of this thesis is as follows. In chapter 2 a literature review of online wing shape opti
mization research is presented. The design and verification of the aerodynamic model and the online
shape optimization framework are discussed in chapter 3. Then, in chapter 4 a conference paper that
has been accepted by the AIAA 2022 SciTech Guidance, Control, and Dynamics conference on the
framework and simulation results is presented. The procedures followed during the subsequent wind
tunnel experiments, supportive material, and a summary of the findings are discussed in chapter 6.
Then, in chapter 5 the paper on the wind tunnel experiments that will be submitted to the IEEE jour
nal of transactions on control systems technology is shown. The results from the simulation and wind
tunnel experiments will be compared in chapter 7. Lastly, in chapter 8, the research questions will be
answered and recommendations are given for future work.



2
Literature review of online wing shape

optimization research
In this chapter, a brief history of the advancements in online wing shape optimization research is pre
sented. First, the research of NASA Dryden on the online optimization of redundant control surfaces
on conventional wing platforms is reviewed. secondly, the online optimization of fullspan distributed
leading and trailingedge control surfaces using a generating search set method is described. Thirdly,
a strategy for wing shape optimization in terms of induced drag through lift distribution matching is dis
cussed. Next, the current stateoftheart methods for online wing shape optimization of active morph
ing wings proposed by NASA Ames are reviewed. Finally, some conclusions regarding the implications
for the current thesis research are drawn.

2.1. Online optimization of redundant control surfaces
Before recently renewed interests in morphing technologies, research has been conducted on real
time adaptive configuration optimization for conventional wing platforms. Researchers from the NASA
Dryden Flight Research Center have proposed and demonstrated adaptive modelfree methodologies
for the measurementbased inflight optimization of redundant control effectors for conventional wing
aircraft.

In 1999, a practical application of an inflight, realtime, adaptive configuration optimization algo
rithm was demonstrated on an L1011 aircraft that was modified with variablecamber capability in
the form of symmetric deflection of the outboard ailerons [5]. The optimization process consisted of
a smooth lowfrequency forced excitation maneuver and regression analysis to identify drag equation
coefficients until convergence. The forced excitation maneuver was required to be slow such that quasi
equilibrium was maintained as the method assumes steadystate flight. In the drag model used, the
optimal symmetric aileron position was one of the regressionestimated coefficients [6]. The outboard
ailerons were then commanded to this optimally determined position. During the flight tests, a drag
reduction of 1% was achieved, even though the outboard ailerons only make up approximately 23%
of the L1011’s wingspan and approximately 3% percent of the total wing area. Wing platforms with a
greater range of shape adaptation are better able to harness the potential drag reductions of morph
ing. But with increasing numbers of morphing actuators and fewer constraints on the attainable wing
shapes, the corresponding optimization problems become increasingly more difficult to solve. Because
the system under consideration only numbered a single degree of freedom, the optimal input could be
directly estimated through the regression analysis. However, for complex nonlinear higherdegree of
freedom systems, such as morphing wings, this is no longer possible. Instead, a more sophisticated
optimization strategy is required.

In 1995, a periodic perturbation extremaseeking technique was proposed for direct adaptive perfor
mance optimization of subsonic transport aircraft [7]. The proposed method superimposed sinusoidal
perturbation signals with unique frequencies on each of the decision variables (control effectors). The
components of the local gradient of a performance index with respect to the decision variables were
then approximated with an online estimation of the correlation between the sinusoidal probing signals

5
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and this performance index. Subsequently, the estimated gradient was used as the search direction
to improve the performance index, and by extension the aircraft performance. While this optimization
method is gradientbased, it is based on averaging and signal integration rather than signal differen
tiation. This makes the method robust to measurement noise and biases. Velocity maximization and
fuelflow minimization modes of the algorithm were demonstrated on the NASA Dryden B720 nonlin
ear flight simulator for single and multieffector optimization cases in [8]. The peakseeking control
algorithm was designed as an addon to an existing nonlinear dynamic inversion innerloop controller
and research autopilot. The algorithm directly added biases to the deflections of the control effectors,
which were smoothly transitioned to minimize transients. During the transient response, the innerloop
controller and auto pilot adjusted the stabilators and throttle setting to maintain steadysate flight. The
resulting noisy fuelflowmeasurements were timeaveraged. The effectiveness of this steepest descent
method is heavily influenced by the tuning of the negative gain which is multiplied with the estimated
gradients to generate the next control surface commands.

In 2013, a peakseeking control approach was proposed for realtime trim configuration optimization
for reduction of aircraft fuelconsumption was proposed [9]. The methodology is based on a steepest
descent algorithm that uses a timevarying Kalman filter to estimate the gradients of the fuel flow with
respect to the control surface positions. In essence, this approach is similar to the method proposed
in [7], however, the measurement noise and biasrobust estimation of the performance gradients are
made with a Kalman filter rather than with signal correlation. The method has been demonstrated to
achieve 2.5% reduction in fuel flow to the relative trim of the aircraft by manipulating the deflections
of symmetric ailerons, trailingedge flaps, and leadingedge flaps of a nonlinear simulation model of
an F/A18 airplane. In flight tests with an F/A18 airplane, the proposed method was demonstrated to
achieve approximately 3% of fuelflow reduction relative to the baseline trim at the same flight condi
tion [10]. In these flight tests, the algorithm consistently converged onto the same solution from different
initial conditions. However, the high degrees of freedom of overactuated active morphing wing plat
forms pose highdimensional search spaces with possibly many local optima. In these nonconvex op
timization landscapes, gradient basedmethods are prone to converging on local optimal solutions [11].
While restarting the optimization procedure from different initial conditions is a commonly practiced so
lution for work on simulation models, such restart strategies are unsuitable for inflight applications to
aircraft due to the bumpiness and increased fuel consumption they cause.

2.2. Optimization with the generating set search method
In 2006, Jacobsen demonstrated realtime drag reduction on a wing model with eight leadingedge
and eight trailingedge control surfaces in a wind tunnel [12]. Because of the unreliability of derivatives
computed from the measured signals, a derivativefree generating set search (GSS) method was used.
GSS is a nonlinear iterative solver that needs to be initiated within the feasible region of the search
space and adjusts the search direction in the input space without crossing the boundaries posed by the
optimization constraints. The method generates a set of search directions around the current iterate
which are adapted to the geometry of the nearby constraints. After function evaluation in the search
directions, the current iterate is replaced when better performing points are identified. The proposed
method was generalized by taking both linear equality as well as linear inequality constraints into ac
count. Before optimization, a sweep of the control surfaces was performed to identify the parameters
of a linear lift function which poses the linear fixedlift constraints. The GSS optimizer was then able
to reduce the drag on the wing model, whilst maintaining lift for a fixed angle of attack by iteratively
adjusting the deflections of the leading and trailingedge control surfaces. The angle of attack was not
included as a free variable because of the long time required for actuation. It is noteworthy that the
same lift could potentially be achieved with an even lower drag at another angle of attack. However,
at other angles of attack, the coefficients of the linear model need to be identified again with additional
sweeps of the control surfaces. Lastly, while improved deflections were found which yielded lower drag,
these solutions possibly only represent local optima in the optimization landscape, as GSS is local in
nature [13].

2.3. Optimization through lift distribution matching
In that same year, Kolonay and Eastep demonstrated an inverse optimization technique to manipulate
the spanwise lift distribution of a combined structural and aerodynamic model of a flexible wing to mini
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mize liftinduced drag [14]. The objective function for the optimization was the sum of the square of the
errors between the desired (elliptical), and actual lift distributions at 40 spanwise locations. Iterative
optimization of an approximate problem was used to eliminate the need for the trimmed angle of attack
and the elevator deflection to participate in the design optimization as free variables. The wing models
used were comprised of 20 discrete active conformal trailing edge control surfaces distributed along
the entire wingspan. This shape adaptation capability of this kind of seamless distributed camber mor
phing model is similar to that SmartXAlpha. The optimization strategy has some important limitations
regarding practical implementations. Most importantly, the elliptical load distribution matching is only
effective for minimizing liftinduced drag. This means, that in actuality other drag components could be
increased to attenuate or even nullify the gains from the reduced liftinduced drag. An example could
be increased form drag from the fuselage because of an increased angle of attack. Furthermore, as
the strategy involves scheduling the modelbased optimal deflections, the accuracy of the methods is
limited to the quality of the model used and not adaptable. Since accurate estimation of the spanwise
load distribution in flight is very difficult, the load distribution matching strategy is not very well suited
for online performance optimization.

2.4. Online greybox shape optimization for morphing wings
Researchers at NASAAmesResearch Center have proposed online performance optimizationmethod
ologies for active morphing wings. In 2016, a realtime adaptive leastsquares drag minimization ap
proach was proposed by Ferrier, Nguyen, and Ting [15] for the Variable Camber Continuous Trailing
Edge Flap (VCCTEF) described by Nguyen et al. [16, 17]. The VCCTEF system, shown in Fig. 2.1, com
prises 19 spanwise flap sections. The discrete flap sections are connected through flexible elastomer
covering. This allows the VCCTEF to adapt its spanwise camber distribution. However, variation of
local camber is only possible between different spanwise sections, but not within a section. In contrast,
the TRIC morphing mechanism employed by SmartXAlpha allows for both inter and intramodular
variation of the wing camber allowing for smoother and more continuous control of the spanwise wing
twist.

The proposed optimization strategy used a recursive least squares algorithm to estimate the deriva
tives of the aerodynamic coefficients with respect to the system inputs, which are the parameters of
the lift, drag, and moment coefficient models. The lift and moment coefficients are modeled as linear
functions, whereas the drag coefficient is modeled as a quadratic function. These models are only
valid in the local region around the trim angle of attack. The optimal wing shape and elevator deflec
tion were then calculated from a constrained optimization problem using the NewtonRaphson method.
Constraints were posed on the lift and moment coefficients and the wing tip twist and bending.

Improvements to the model excitation method, onboard model, and optimization methods were
demonstrated in wind tunnel experiments to achieve up to 9.4% drag reduction on the Common Re
search Model (CRM) with the VCCTEF at offdesign conditions at low subsonic speeds in 2019 [18].
In 2021, simulations have also indicated that a 3.37% drag reduction is achievable using the online
optimization strategy on the CRM with a distributed miniplain flap system at Mach 0.85 [19].

Figure 2.1: An aircraft with Variable Camber Continuous Trailing Edge Flap [15].
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Whilst the coefficients of the linearintheparameters multivariate polynomial model adopted in [18,
19] can be estimated with relatively low computational cost, the model is only valid in the local region
around the trim condition. This means that in order to perform realtime drag minimization across
the entire flight envelope, the model parameters need to be reestimated at every operational point.
Another drawback of the employed model is that the model structure is fixed. However, the optimal
model order of the polynomial model in the various inputs dimensions may be different for different
flight regimes.

Moreover, the required model excitation maneuvers that comprise both angle of attack and flap
deflection inputs would induce undesirable bumpiness and structural loads. Last but not least, the
use of a local model together with a gradientbased optimization method makes the solution prone to
converge onto a local optimum.

2.5. Proposed research direction
By contrast, a global onboard model, while more difficult to identify online, could allow for continuous
drag minimization throughout the flight envelope without any additional model excitation maneuvers.
Moreover, when paired with a global optimization method, global optima with even better performance
could potentially be found. For this reason, it is proposed that a novel online optimization strategy
is investigated which attempts to maintain global knowledge of the input space. Furthermore, it is
proposed that this method should update this global knowledge online through an adaptable blackbox
model. The blackbox model should not assume a model structure based on possibly lacking a priori
knowledge of the complex nonlinear relationships it will attempt to learn, but rather be able to learn any
mapping accurately given enough data.



3
Simulation validations

In this chapter, the development and componentwise validation of the online optimization wing shape
optimization framework is decribed. An description of the aim, architecture and simulation results is
presented in the paper which has been accepted for the AIAA 2022 SciTech Guidance, Control, and
Dynamics conference (Chapter 4). This chapter does not seek to repeat the information in that chapter,
but rather to expand on it. The structure of this chapter is as follows. First, the development and
configuration of the developed aerodynamic model is described in sec. 3.1. Then the selection of the
optimization strategy and the tuning of the relevant parameters is described, and insight is provided
into the results of offline optimization on the aerodynamic model in sec. 3.2. In sec. 3.3, the selection
and configuration of the onboard model are described, and the prediction quality of offline and online
trained models are compared through parameter sweeps. Lastly, a description of the algorithm and the
phases used in the experiments is provided in sec. 3.4.

3.1. Aerodynamic model
In this section, the development of the aerodynamic model is presented. First, the aerodynamic mod
eling method and solver selection are described, followed by a description of the model geometry and
the solver configuration. Subsequently, the parameterization of the wing shape and an analysis of
the experimental data from previous campaigns used for the correction of the aerodynamic model are
presented.

3.1.1. Method and solver selection
The aerodynamic model was designed to satisfy the following objectives:

• demonstrate the functionality of shape optimization;

• predict the trends in optimal shapes;

• predict the attainable lifttodrag ratio increases (or drag reductions);

• serve as a platform for initial training of the onboard model.

From these goals, the following requirements are formulated:

1. The method should have low computational cost.

2. The method should have sufficient accuracy to serve as a starting point for the initial training of
the onboard model.

The behavior of the model should be close enough to the real morphing wing such that the trends
in the optimal shapes predicted on the model are representative of the trends in the optimal shapes of
the real morphing wing system. However, as the optimization method is designed to learn and adapt
online, the information from the aerodynamic model will only serve as a starting point. Hence, limited

9
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model accuracy is tolerable and this needs to be traded off against the associated computational time.
The computational time per evaluation is an especially important aspect of the aerodynamic model
as blackbox optimization methods, in general, require many function evaluations to converge. For
this reason it is also of paramount importance that the aerodynamic solver in which the method will
be implemented can be integrated with either Python or Matlab such that function evaluations can be
performed and processed automatically by the optimizer without any manual steps.

Based on these requirements the Vortex Lattice Method (VLM) was selected as the aerodynamic
modeling method for the aerodynamic model. VLM is an inviscid 3D potentialflow method that divides
the wing geometry into a number of panels. A discrete horseshoe vortex of unknown strength Γ𝑖𝑗 is
located at the quarter chord of each panel. The lift and induced drag of the given geometry in a given
flow condition is then estimated through the calculation of these vortex strengths. A prime driver for
the accuracy of the VLM is the number of panels used in the discretization of the wing geometry. The
VLM aerodynamic model includes the following assumptions [20]:

1. The airflow is assumed to be incompressible. This assumption limits the model validity to air
speeds below Mach numbers less than 0.3.

2. The airflow is inviscid. This assumption limits the model validity to Reynolds numbers much
greater than 1.

3. It is assumed that no flow separation effects occur. This assumption limits the validity of the model
to angles of attack for which no flow separation occurs.

4. The effects of the thickness of the airfoil or wing on the lift and induced drag are negligible.

The primary reason for the selection of this method is the low computational cost. Even though VLM
is considered a loworder method, the methods accuracy is sufficient for the purpose of initial training of
the onboard model. Moreover, through the addition of datadriven corrections, a low order estimation
of viscous effects was included such that the tradeoff between the wing camber and the angle of attack
as mechanisms of lift induction could be simulated as well.

Solver selection For the implementation of the VLM aerodynamic model, it was decided to use an
existing aerodynamic solver. An overview of the considered solvers is shown in Tab. 3.1. In this context
the word scriptability is used to refer to the degree in which a particular solver supports automated
configuration of the geometry and evaluation of the aerodynamic solution through its own or other
programming environments. At this stage in the thesis project, the programming language to be used
for development and simulation of the online wing shape optimization framework was not yet fixed.
Therefore, both VLM solver implementations available in Matlab and Python were considered. The
widely used solver XFLR5 has no scriptability and thus was not suitable for integration in an automated
framework. However, due to its widespread use and proven implementation of the VLM, XFLR5 was
used to verify the results of the finally selected aerodynamic solver, which had only recently been
released. Therefore no published code verification examples from trusted sources were available.

The Athena Vortex Lattice (AVL) solver implementation was also not chosen because it does not
support direct scriptability in either python or Matlab. Instead, those programs can only be used config
ure runfiles for AVL. While not impossible, this option is more difficult to implement than direct scriptable
solvers with no inherent benefit. Futhermore, Flow5, a the scriptable successor to XFLR5, had to be
dropped due to the cost of it’s license. Both Aerosandbox and Tornado were viable options for the
implementation of the VLM aerodynamic model. Since, good options were available for both Matlab
and Pythonbased implementation, the final decision was made to use Python for all simulation work
based on personal preference and experience. Hence, the VLM method was implemented using the
Aerosandbox package [21] in python.

3.1.2. Geometry definition
An overview of the SmartXAlpha wing geometry and the axessystem used in the following descriptions
are shown in Fig. 3.1. The 0.5m × 1.8m rectangular halfwing comprises six morphing modules which
are seamlessly joined with a flexible elastomer skin. The bodyfixed reference frame referred to in the
following discussions originates at the leading edge of the wing root end. The positive xaxis is aligned
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Table 3.1: Overview of aerodynamic solvers.

Solver method computational cost scriptablility cost

XFLR5 VLM low none free
Flow5 VLM low Python paid
Aerosandbox VLM low Python free
AVL VLM low indirect* free
Tornado VLM low Matlab free

Figure 3.1: Primary axes of the body fixedreference frame.

with the wing chord, the yaxis is defined along the spanwise direction, and the positive direction of the
zaxis is defined perpendicular to the xyplane and in the direction of camber increase (downwards).

The Translation Induced Camber (TRIC) morphing mechanism allows for both camber and twist
morphing of the modules [22]. The exact 3D deformations of the morphing modules and the elastomer
skin between them under loads are complex and would require a high fidelity coupled aerostructural
model. Such models are computationally more expensive than the lower order VLM model selected,
and their improved accuracy is not required for the research in this thesis as explained in sec. 3.1.1.
Instead, the camber and twist morphing wing is represented by a fullspan distributedflap wing model.
In this model, the airfoil sections comprise a NACA6510 base airfoil with a singlehinged flap. The
horizontal location of the flap hinge was selected as 77% of the chord length measured from the leading
edge, and the vertical location was selected as 50% of the local airfoil thickness. The selection of the
flap hinge point was based on Digital Image Correlation (DIC) measurements of symmetric deflections
of SmartXAlpha. Fig. 3.2 shows a comparison between the baseline NACA6510 airfoil (black), the
DIC measured shape resulting from maximum upwards deflection of the trailing edge (green) and the
flapped NACA6510 airfoil (red).
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Figure 3.2: Comparison of a flapped NACA6510 airfoil and morphed airfoil shape of SmartXAlpha.

The geometry of this distributedflap wing is defined by flapped airfoil sections at 14 spanwise lo
cations 𝑦0, … , 𝑦13. The flap angles at these locations are designated 𝑓0, … , 𝑓13.These 14 spanwise wing
stations comprise the wing root, wing tip and the 12 morphing actuator locations as shown in Tab. 3.2,
where the designation m𝑖s𝑗 corresponds to the location of servo unit 𝑖 in module 𝑗.

Table 3.2: Spanwise locations of station locations on the aerodynamic model of the morphing wing.

station y [m] station (con’d) y [m] (con’d)

root 0.00000 m4s1 0.91440
m1s1 0.01448 m4s2 1.18553
m1s2 0.28553 m5s1 1.21448
m2s1 0.31448 m5s2 1.48553
m2s2 0.58553 m6s1 1.51448
m3s1 0.61448 m6s2 1.78553
m3s2 0.88553 tip 1.80000

The morphing of the airfoil section at the servo locations can be directly controlled by the respective
servos. However, no actuators are located at the wing root and tip ends of the wing, and the shape
of the wing at these locations can only be indirectly controlled and is determined by the deflections of
the adjacent actuators. Therefore, it is assumed that the spanwise variation of camber within a twist
morphing module is linear. Under this assumption, the flap angles at the root and tip location 𝑓0, 𝑓13 can
be calculated by extrapolation of the slope of the flap angle in the first and last modules respectively
as shown in Eq. (3.1)

𝑓0 = 𝑓1 − (𝑦1 − 𝑦0) ⋅
𝑓2 − 𝑓1
𝑦2 − 𝑦1

𝑓13 = 𝑓12 + (𝑦13 − 𝑦12) ⋅
𝑓12 − 𝑓11
𝑦12 − 𝑦11

(3.1)

Model inputs As described, the shape of the distributed flap model is governed by the flap deflection
vector 𝑓 ∈ ℝ14. However, on the real morphing wing, these ‘equivalent flap angles’ do not exist, and
cannot be set. Instead, in reality, the shape of the morphing wing is controlled through the actuator de
flections 𝜃 ∈ ℝ12. Hence, a conversion of the actuator angles to equivalent flap angles is needed. This
conversion is done in two steps. First, the actuator angles are used to approximate the displacements
of the wings’ trailing edge. This is done with Eq. (3.2). The slope of the trailingedge displacement
𝑧 with respect to the actuator angle 𝜃 was estimated using DICmeasurements at symmetric actuator
deflections from −25∘ ≤ 𝜃 ≤ 25∘. The contributions of the adjacent servos in the case of asymmet
ric actuation are neglected such that the trailingedge displacement 𝑧𝑖 of each servo station is only
determined by the deflection 𝜃𝑖 of the servo unit at this location.

𝑧𝑖 = 𝜃𝑖 ⋅ 5.6 × 10−4 (3.2)
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The second step is the conversion of the trailingedge displacements to their equivalent flap angles.
The geometric relation between vertical trailingedge displacement and the equivalent flap angle is
given by Eq. (3.3). Here, 𝑐 is the local airfoil chord length and 𝑥hinge is the horizontal location of the flap
hinge measured from the leading edge as a fraction of the chord length.

𝑓𝑖 = arcsin( 𝑧𝑖
𝑐(1 − 𝑥hinge)

) (3.3)

3.1.3. Solver setting configuration
One of the most critical settings of the aerodynamic solver is the selection of the geometry discretiza
tion parameters. The wing surface is discretized into a finite amount of rectangular panels. For each
panel, the vortex strength Γ of a horseshoe vortex is calculated. The discretization of the wing ge
ometry represents a tradeoff between model accuracy and computational cost. With increased panel
density, the model accuracy is increased. However, with increasingly finer meshes the accuracy return
diminishes while the computational costs increasingly increase. Therefore, the panel discretization
parameters need to be carefully selected such that the model yields accurate predictions against an
affordable computational cost. To this end, the model predictions and computational times of the model
with different discretization are compared. The discretization parameters are 𝑛𝑥 , 𝑛𝑦 which represent
the number of panels in the x and y directions respectively. In the spanwise ydimension, the shape of
the wing is described at the 14 locations shown in Tab. 3.2. That is why the parameter 𝑛𝑦 corresponds
to the number of panels per spanwise section. Hence, the minimum number of panels in the y direction
is 13, which corresponds to 𝑛𝑦 = 1. The wings shape in the following test case comprised a linear
spanwise variation of the local flap angle from the minimum to the maximum angle and an angle of
attack of zero degrees. The distribution of the panel lengths was uniform in the spanwise direction and
in the chordwise direction a cosine distribution was used to refine the mesh near the wings’ leading
and trailing edges. The resulting variations of the model outputs and computational time with these
discretization parameters are shown in Fig. 3.3.

From the predicted lift and drag coefficients, it is clear that increased values for 𝑛𝑦 have an insignif
icant effect on the model outputs compared to the effect of 𝑛𝑥. At the same time, the number of panels,
and hence the computational time grows rapidly for increased values of 𝑛𝑦. The slopes of the model
output with increased values for 𝑛𝑥 is initially large but diminishes rapidly to an almost indiscernible
slope near 𝑛𝑥 = 10. Therefore, in an effort to limit the computational time required, the democratiza
tion parameters are selected as 𝑛𝑥 = 10, 𝑛𝑦. This resulting mesh comprises 10 panels in the chordwise
direction and 13 panels in the spanwise direction, which amounts to 130 panels in total across the 1.8m
half wingspan.

An overview of the configurable aerodynamic solver parameters and their selected values is pre
sented in Tab. 3.3. The air density was selected as the sealevel air density of the International Standard
Atmosphere. An airspeed of 10 m/s was used, which was consistent with the expected wind tunnel
speed to be used in the later experiments. However, the wind tunnel experiments were performed with
a wind speed of 15 m/s. While this difference may seem significant, this is only the case for the actual
lift and drag forces. The effect on the dimensionless lift and drag coefficients is negligible in this case.

Table 3.3: Overview of the configured parameters of the aerodynamic solver.

parameter value unit

airspeed 10 m/s
air density 1.225 kg/m^3
x panels 10 
y panels 13 

Finally, the geometry described thus far is mirrored in the wing root xz plane to create a full wing.
This is done so that only the tip of the wing constitutes a ‘free’ end where the pressure difference
between the top and bottom wing surfaces is allowed to equalize, giving rise to tip vortices. In other
words, the interface between the wing root and aircraft fuselage is assumed to be ideal. While the
SmartXAlpha demonstrator is only a half wing, a full wing would be integrated into aircraft in a real
world application. During the wind tunnel experiment involving SmartXAlpha, a flow table will be used
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Figure 3.3: Variation of computational time and aerodynamic model outputs with panel mesh parameters.

to simulate the aircraft fuselage such that the pressure field will be similar to the realworld situation.
The final geometry discretization and the streamlines in an example flow condition are illustrated in
Fig. 3.4. Note that vortices characterized by the spiraling shapes of the streamlines only occur at the
two wingtip ends.

3.1.4. Virtual shape functions
In the case of overactuated active morphing wings, like SmartXAlpha, the wing shape is controlled
with many morphing actuators. And while in highdimensional input space of such a system makes
the number of theoretically possible inputs virtually limitless, in practice the achievable and desirable
deflections of the various actuators are not independent. In other words, there exists a subregion of
the input space which is of interest in practice. Hence, by limiting the problem to such a subregion of
the input space, the dimensionality of the optimization problem may be reduced at the price of little to
no reduction in the quality of the solutions found.

In the application under consideration, a certain degree of smoothness is required of desired wing
shapes if they are to be actuated on the system. This requirement constitutes a coupling between
the morphing actuators that can be exploited. And by describing a parameterized wing shape, rather
than the actuator inputs, the dimensionality of the optimization problem becomes independent from the
dimensionality of the input space of the morphing wing platform on which the framework is applied.

To this end, the wing shape is parameterized with a fifth order Chebyshev approximation. Since
these wing shape parameters are not inputs to the physical system, they are dubbed “virtual inputs”.
The five virtual inputs 𝑢1, … 𝑢5 are scaling factors that scale the first five Chebyshev polynomials of the
first kind which are shown in Eq. (3.4). The chebyshev polynomials are bounded to −1 ≤ 𝑇𝑛(𝑥) ≤ 1 on
the [−1, 1] domain. The wing shape is then given by the linear combination of these basis functions as
shown in Eq. (4.1).



3.1. Aerodynamic model 15

Figure 3.4: SmartXAlpha wing geometry and panel mesh in Aerosandbox.

𝑇0(𝑥) = 1
𝑇1(𝑥) = 𝑥
𝑇2(𝑥) = 2𝑥2 − 1
𝑇3(𝑥) = 4𝑥3 − 3𝑥
𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1 (3.4)

The five base shapes defined by the virtual inputs, rescaled onto the [0,1.8m] domain, are de
picted in Fig. 3.5. SmartXAlpha’s 12 actuator locations are indicated with the black vertical lines. The
contributions of the unit virtual inputs at each of the actuator locations are marked with the triangles
in their corresponding colors. The complexity of the basis shapes increases with their number. The
selection of the number of virtual inputs to use represents a tradeoff between the order reduction of
the optimization problem and the complexity of the describable wing shapes.
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Figure 3.6: Virtual input shape (orange) and corresponding actuator deflections (blue).

Note that the virtual shape function can reside outside the actuator limit bounds outside of the actu
ator locations. In Fiq. 3.6, this is the case between the 11th and 12th actuator positions. However, while
the virtual shape function locally ‘breaches’ the limits, none of the actuators are assigned a deflection
outside their allowable range.

3.1.5. Model augmentation data set analysis
In this section, insight is provided into the data set on which the aerodynamic model corrections were
based. This data set was collected in the Open Jet Facility (OJF) wind tunnel at Delft University of
Technology in August 2020. The data set comprised lift and drag coefficient measurements for angle
ofattack sweeps with various degrees of constant spanwise camber morphing actuated on SmartX
Alpha. While this data set does not provide insight into the optimal spanwise camber distribution, it
does hold information on the optimal tradeoff between the overall amount of camber and the angle of
attack used for lift generation in this flow regime.

From the lifttodrag ration plot in Fig. 3.7, it is evident that the highest degree of negative cam
ber morphing (cyan) offers the highest lifttodrag ratio for angles of attack greater than four degrees.
However, the aerodynamic efficiency envelope of the morphing wing is determined by the drag costs
associated with an entire range of amounts of lift production. Hence, a more compelling overview is
obtained from looking at the lifttodrag ratios against the range of operation lift coefficients.

A clear and intuitive plot is obtained by converting the lifttodrag ratio to a relative increase com
pared to a certain baseline. An example of this is shown in Fig. 3.8 for the trailingedge flap deflections
of an L1011 aircraft with a baseline of zero flap deflection. From this figure, the optimal flap settings
are clearly visible, and it can be observed that for increasing lift coefficients, increasing flap deflections
are optimal.

The same type of plot based on interpolation of the aforementioned SmartXAlpha data set is shown
in Fig. 3.9. The lifttodrag ratios are shown relative to a baseline of a constant zero actuator angle
across the span. Although the same trend in increasing lifttodrag ratio for highercamber settings
with increased lift coefficients can be observed, a large part of the operational lift coefficient range is
dominated by a single setting. For lift coefficients below 0.85, the maximum negative camber morphing
setting yields the highest aerodynamic performance. This means that in terms of the tradeoff between
the angleofattack and camber morphing as means for lift production, a spanwise reduction in camber
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Figure 3.7: Measured lift and drag coefficients for angleofattack sweeps with various constant spanwise camber morphing
settings from a previous wind tunnel campaign (August 2020) with SmartXAlpha.

Figure 3.8: Percentage of performance benefit variation with trailingedge deflections for an L1011 aircraft [23].

and a corresponding increase in the angle of attack compared to the baseline is more efficient across
the operational lift coefficient range. This can be explained by the fact that the NACA6510 airfoil already
is highly cambered. However, if the maximum amount of negative camber morphing is used across
the wing, no room is left for further spanwise camber reduction towards the wing tip, which is known
to reduce the induced drag of rectangular wing platforms without a washout. Therefore, the online
wing shape optimization procedure will have to tradeoff the benefits of a close to ideal spanwise lift
distribution and an overall amount of camber versus angleofattack balance which is efficient for the
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target lift coefficient.

Figure 3.9: Percentage of performance benefit for various constant spanwise trailingedge deflections for SmartXAlpha, relative
to the unmorphed base shape.

3.2. Optimizer
In this section the selection and configuration of the optimization procedure is described. Subsequently,
the results from direct offline optimization of the previously described aerodynamic model with the
selected optimization strategy are presented and discussed.

3.2.1. Optimizer requirements
The requirements for the optimization methodology, are derived from the main research question and
are closely related to the requirements of the onboard model as the optimizer will need to operate on
the onboard model. The following requirements were identified for the optimization method:

1. The optimization method should be a blackbox optimization method.

2. The optimization method should be capable of global optimization.

3. The computational cost of the optimization should be realistic for realtime hardware implemen
tation.

4. The optimization method should be able to handle constraints on the input and intermediate vari
ables.

Black box optimization is defined as the “study of design and analysis of algorithms that assume the
objective and/or constraint functions are given by blackboxes” [24]. Since the goal of the framework
developed in this thesis is to perform online blackbox aerodynamic performance optimization, the
modeling method selected for the onboard model will be a blackbox model. Hence, only input, output
information will be available from the onboard model. Thus, the optimizer will have to maximize the
objective function score using only function evaluations and their returned scores. Secondly, because
the onboard model will be a global model, it is important that the optimization method is also able
to overcome local minima such that the global optimum can be found on the onboard model. The
third requirement is that the optimization should have low computational cost. This requirement is
somewhat conflicting with the previous two and is therefore challenging. Finding the optimal inputs
that correspond to the global optimum of a completely unknown function using only evaluations of that
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function is challenging and will require many function evaluations and thus a significant computational
time. However, in order for the application of the optimization framework in an online setting, it is of
paramount importance that the computational time is required is as low as possible. Herein lies themost
challenging aspect of online blackbox shape optimization. However, because the goal is to optimize
the steadystate lifttodrag ratio, rather than the instantaneous lifttodrag ratio during maneuvering, a
relatively long computational time can be afforded. Since the dissipation of the transient aerodynamic
responses to shape changes and subsequent averaging of noisy lift and drag force measurements may
take upwards of one minute, an optimization time of 10 to 15 seconds is deemed to be acceptable.
The fourth requirement is that the optimization method should be able to handle both constraints on
the input and on the intermediate variables. Although the intermediate states are not of direct concern
in the blackbox strategy, some cannot be completely disregarded. Specifically, the actuator inputs to
the morphing wing are to be limited to the achievable range of ±25 degrees. However, the system
inputs that describe these are the virtual inputs. The actuator angles are determined by the combined
effects of the virtual inputs, and thus their constraints can not be handled with rectangular bounds on
the virtual input variables.

3.2.2. Optimizer selection
A categorized overview of blackbox optimization (BBO) methods is shown in Fig. 3.10. Blackbox
optimization methods can be classified into the following four main categories: direct search methods,
modelbased methods, heuristic methods, and hybrid methods.

Direct search methods evaluate points around a current point to find the location with the lowest
objective functions. Based on the objective function values, a new current point is selected for each
iteration and a new set of surrounding points is computed. The set of points can be described by a
multidimensional simplex, as is the case for the NelderMead algorithm [25], or by a discretization
in the primary axes such as in Coordinate Search (CS). The Generalized Pattern Search (GPS) is in
operation similar to CS, however, the axes that define the mesh around the current point, also referred
to as polling directions are flexible and it includes an additional search step that can help to overcome
local minima [26]. The Mesh Adaptive Direct Search (MADS) [27] algorithm is a generalized extension
of the GPS algorithm which allows an infinite set of polling directions. These direct search methods are
local in nature [13]. Therefore, they do not satisfy the requirements set for the BBO method.

Modelbased BBO methods use function evaluations to iteratively identify and optimize a blackbox
model of the objective function. Trust region BBOalgorithms fit a usually smoothmodel around a current
point, which is presumed to be accurate in a trusted subregion around the current iterate. Derivative
information is then used to find the next candidate point that lies within the trust region and improves
the objective function score. Trust region methods too are local in nature [13]. Response Surface
Methods (RSM) identify and iteratively refine a global model, such as s radial basis function [28], to
approximate the blackbox objective function. BayesianOptimization (BO) similarly also retains a global
model of the objective function. This method relies on Bayes’ theorem to determine the best point to
sample based on which points are either most likely to yield an improved value or for which points
the model is most uncertain. This way BO is able to sampleefficiently tradeoff between exploring and
exploiting [29]. Projectionbased methods identify a reducedorder model of the governing equations of
a system. For models with known governing equations, many projectionbased optimization techniques
exist. However, for the optimization of blackbox objective functions, this approach is challenging. One
published example of projectionbased BBO exists [30]. In this method, called UNIPOPT, the objective
function values were projected on a subspace that was designed using a sum of the decision variables.
However, no opensource python implementations of this algorithm exist as of yet.

Analytical methods are inherently infeasible for BBO as the objective functions are treated as black
boxes. Unsurprisingly, many BBO algorithms are heuristic methods. Among the heuristic BBOmethods
are the subclasses of stochastic and discrete methods, i.e., methods that do or do not involve random
search steps. Hitandrun, simulated annealing, particle swarm, and genetic algorithms all belong to the
stochastic subclass of heuristic BBO methods. Hitandrun algorithms were independently proposed
by [31] and [32]. In hitandrun methods, randomly generations candidate solutions are compared
to the current iterate, which is replaced if the candidate point represents an improvement over the
current iterate. Candidate solutions are generated with a step into a direction sampled from a uniform
distribution. In a generalized version by [33] the step size was also sampled from a uniform distribution
and the algorithm was proven to converge onto a global optimum under mild conditions. The simulated
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annealing algorithm was first proposed by [34] for combinatorial optimization problems and was later
extended to continuous problems. The idea of simulated annealing is based on the analogy between
optimization and metallurgic annealing process which involves the controlled heating and cooling of
materials to alter their physical properties. In contrast to many other optimization methods, simulated
annealing will with some probability accept a new incumbent solution whose objective function value is
lower than the current incumbents. This allows the algorithm tomake uphill steps and potentially escape
local minima. The probability of acceptance of a candidate solution is dependent on a “temperature”
parameter which is slowly decreased or “cooled” to zero. Despite the ability to overcome some local
minima, it is not guaranteed that the global optimum will be obtained within a finite amount of iterations
[35].

Genetic Algorithms (GA), also known as evolutionary algorithms, were first introduced by [36] and
mimic natural evolution. Populations of candidate solutions are ranked and the best candidates are mu
tated and crossed to generate a new generation of candidate solutions. Analogous to the survival of the
fittest principle in evolutionary biology, the highestquality solutions and their offspring are selected for
further consideration. GA optimization methods are not affected by discontinuities in the objective func
tion, are good for multimodal and highdimensional problems. Developments in GA have introduced
strategies that adapt the covariance matrix that is used to sample the new candidate solutions.

The Covariance Matrix Adaptation – Evolutionary Strategy (CMA–ES) proposed by [37], adapts
the search distribution to the contours of the objective function using deterministic update rules and
objective function value information from evaluated points. With a sufficiently large population size,
CMA–ES has been shown to have good global convergence properties[38].

Particle Swarm Optimization (PSO) proposed in [39] is a populationbased global global search
algorithm, which is inspired by the cooperative behavior of large groups of animals like bees. During
each iteration of the algorithm the objective function is evaluated on the locations of the particles. Apart
from their spatial location property, the particles also have velocity attributes that determine how they
will move through the search space. The particle velocities are calculated based on their previously
velocities, the best solution position for the individual particles and the entire swarm, and acceleration
coefficients.

The DIvide a hyperRECTangle (DIRECT) proposed in [40], is a Lipschitzianbased BBO algorithm
that uses estimates of the Lipschitz constant to identify potentially optimal hyperrectangles and divide
them until the algorithm converges. The objective function is evaluated at the center of each hyper
rectangle. These boxes are subdivided into thirds, once of which inherits the center of the previous
hyperrectangle for which the objective function is already known. Hyperrectangles with low objective
function values or steep objective function gradients are selected for dividing. DIRECT is guaranteed
to converge onto the global optimum if the objective function is continuous in the vicinity of the global
optimum [41]. This means that constraints for e.g. actuator saturation cannot be handled with objective
function penalties that introduce discontinuities in the objective function. Furthermore, implementations
of DIRECT are only available in Matlab and FORTRAN. Therefore, DIRECT can only be integrated with
python using a FORTRAN compiler and a pythonbased wrapper.

The Multilevel Coordinate Search (MCS) algorithm proposed in [42] also recursively divides the
optimization domain into hyperrectangles with an evaluated base point like DIRECT. However, MCS
allows this base point to be anywhere within these multidimensional boxes instead of only at the cen
ter. Each is assigned a level 𝑠, which is increased each time it is split. During every iteration, the boxes
with the lowest objective function value are split. A global search is performed by splitting lowlevel
boxes. The space within these hyperrectangles has not been thoroughly searched. The local search
is conducted by determining promising search directions with a quadratic surrogate model which al
lows for fast convergence. The hyperrectangles are divided until their levels equal the maximum limit
𝑠max. MCS uses the 𝑠max value to regulate the depth of the local search and thus the tradeoff between
searching locally and globally. As 𝑠max approaches infinity, the evaluated points form a dense and resp
resentative subset of the optimization domain, and the algorithm converges onto a global minimum [42].
However, As 𝑠max approaches infinity, so does the number of function evaluations required.

The surrogate Management Framework (SMF) method proposed in [26] integrates a pattern search
method with a surrogate model. The relatively lowfunctionevaluationcost surrogate model is used
to accelerate and guide the pattern search method. The search step alternates between evaluating
promising solutions and calibrating the surrogate model and balances local and global search.

The Stable Noisy Optimization by Branch and FIT (SNOBFIT) proposed in [43] is a heuristic method
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which combines randomness and surrogate models. SNOBFIT fits quadratic models around the in
cumbent solutions, and fits linear models around the other evaluated points. The optimization of those
models produces new candidate points for evaluation. When not enough evaluated points are available
to fit the surrogate models, random points are generated. In addition points from relatively unexplored
subregions of the domain are selected as candidates for evaluation. Soft constraints are implemented
through a penaltybased approach. No theoretical guarantees exist for reaching the global optimum
with a finite number of function evaluations.

Hybrid methods are methods that combine traditional BBO methods to overcome the limitations of
the individual methods in terms of computational cost, convergence probability, or the number of func
tion evaluations required. In general, there are three ways in which BBo methods are are combined
[24]. The result from the first (global) algorithm is the initial point for the second (local) BBO procedure.
Another way of hybrid BBO is the simultaneous operation of two algorithms that share incumbent solu
tions or function evaluation data. The third way in which BBO methods can be combined is where one
algorithm controls the outer loop, and a second BBO algorithm is sequentially called in an inner loop.

The consensus in BBO literature is that no single ultimate BBO method exists [44, 45, 13]. Each
of the available BBO methods have their restrictions, and which is the best method depends on the
nature of the problem. The restrictions of individual methods may be countered with the integration of
two complementary methods in a hybrid optimization framework.

For nonconvex problems, CMAES was found to outperform stateoftheart hitandrun, simulated
annealing, particle swarm, and other genetic algorithms [13]. CMA–ES is a very promising optimization
method due to its proven effectiveness in finding global solutions on highdimensional noisy and non
convex problems. It’s largest drawback may be the high number of function evaluations required for
optimization. Therefore, it may be useful to integrate this method with the use of a metamodel in order
to reduce number of evaluations made on the real system. Based on the review of BBO literature it
was decided to perform a practical implementation of both CMA–ES and BO to more precisely analyze
their performance on the problem at hand. BO was chosen because of its sample efficiency, owed to
the Gaussian process models which are used to tradeoff search space exploration and exploitation.

Both CMA–ES and BO were tested on the aerodynamic model to investigate their effectiveness
for wing shape optimization for active camber morphing wings as both these methods are capable of
global blackbox optimization and offtheshelf python implementations for these methods are readily
available. Bayesian optimization was performed using the implementation from the Scikitlearn pack
age [46]. The CMA–ES optimization was performed using the pycma package [47]. It was found that
both optimizers required many function evaluations. In combination with the 1 to 2 second evaluation
time of the aerodynamic model, the computational time required for direct optimization was found to
be unacceptably long for online optimization. CMA–ES was able to consistently converge onto well
performing wing shape and angle of attack combinations with an average of 2200 function evaluations.
The average computational time was approximately 45 minutes. BO does not run until convergence
but rather stops after a set number of iterations. With 1 hour of computational time, the solutions found
by the BO algorithm were inferior to the inputs identified by CMA–ES. The wing shapes did not seem
to make sense and their lifttodrag ratios were lower than those of the CMA–ES solution for the same
lift coefficients.

Therefore, it was decided to drop BO as an option for online optimization and continue with the
CMA–ES optimizer. However, in order to overcome the long computational time required, it was decided
to combine CMA–ES with a low evaluation cost global surrogate model in an innerouterloop hybrid
approach. CMAES will evaluate populations of candidate solutions on the global model in the inner
loop, and the global model will be improved using the latest system measurements in the outer loop.
The online identified global model is referred to as the onboard model. The incorporation of a low
evaluation cost global model greatly accelerates the speed of the CMA–ES optimization procedure,
thereby making the framework viable for online use.

The solutions of the direct offline optimization on the aerodynamic model using CMA–ES are pre
sented and analyzed in section 3.2.4. The selection and implementation of the onboard model is
described in section 3.3. A more comprehensive description of the hybrid optimization framework and
the fundamentals of the CMA–ES algorithm are presented in chapter 4 and 5 respectively.

3.2.3. Optimizer configuration
Describe selection of:
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1. population size 𝜆

2. initial standard deviation 𝜎0
3. initial population mean x0
4. scaling of the input variables c𝜎
5. objective function variation threshold 𝑡f
6. search space bounds xmin,xmax

The selection of the search space bounds for the optimization procedure is important because if
the optimizer is allowed to go outside the region where the model can be trusted, it will exploit the
inaccuracies of the model to find better, but unrepresentative solutions. In direct optimization of the
aerodynamic model, search space bounds were only set for the angle of attack input because the
aerodynamic model is only valid within [−2.5∘ ≤ 𝛼 ≤ 10.0∘]. The virtual inputs were not as their
magnitudes do not affect the validity of the aerodynamic model directly as long as the resulting wing
shape is within the actuator limits. These morphing actuator limits however are handled within the cost
function as the actuator angles are not model inputs, but intermediate states. In the online optimization
using the onboard model, the search space bounds were selected as the bounds of the training data
used because the accuracy of the neural networks outside the domain of their training dataset cannot
be guaranteed. The specific bounds of the inputs are shown in the min and max window columns in
Tab. 3.6.

The starting point x0 of was selected as the center of the input space, specifically x0 =
xmin+xmax

2
such that optima throughout the domain can be reached with the fewest steps required.

It is recommended in the CMAES source code manual that when a global optimum is sought after,
the initial step size is defined such that the expected location of the optimum is not far outside x0±2c𝜎𝜎0
[48]. Since the global optimum is expected to be anywhere within the domain spanned by the training
data set, the initial standard deviation and the scaling vector c𝜎 ∈ ℝ6 are selected such that x0±2c𝜎𝜎0
spans the width of the domain in each input axis using Eq. (3.6).

c𝜎 =
1
2𝜎0

[xmin + xmax

2 − xmin] (3.6)

In the simulations using the nominal and surrogate models, the global step size was selected as
𝜎0 = 3.125 and the corresponding input scaling was selected as shown in Tab. 3.4.

Table 3.4: CMAES scaling of the input variables where the virtual inputs describe the morphing actuator deflections.

input scaling 𝜎 unit

𝛼 1.000 3.125 deg
𝑢1 2.679 8.371 deg
𝑢2 2.793 8.728 deg
𝑢3 0.773 2.415 deg
𝑢4 0.536 1.676 deg
𝑢5 0.415 1.298 deg

The objective function variation threshold 𝑡𝑓 is used as the convergence criterion by the optimizer.
When the variation of the objective function, which is the cost function part of the framework, over all
the candidate solutions in a generation is below this value, convergence is declared. It is important that
the threshold is configured low enough such that the optimization procedure is not halted prematurely.
At the same time, an unnecessarily low variation threshold will cause the optimizer to keep going for
too long, thereby wasting precious computational time. In Fig. 3.11, the cost function value of the best
performing candidate solution after convergence is plotted against variation in 𝑡𝑓. With some margin,
the threshold for convergence was selected as 𝑡𝑓 = 1 × 10−6.

Since the threshold is defined based on the variation of the objective function, this setting is cost
function specific. If changes are made in the cost function, the convergence threshold should be reeval
uated.
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Figure 3.11: Variation of the cost function value of the best solution after convergence with different objective function thresholds.

The population size 𝜆 is an important factor in the global convergence nature of CMAES [37]. In
creasing 𝜆 improves the global search capabilities and the robustness of the optimizer, however at the
cost of reduced convergence speed. The convergence speed decreases at most linearly with the pop
ulation size [49]. Therefore the population size was selected as large as could be reasonably afforded
in terms of computational time. The population size was selected as 𝜆 = 150. Which corresponded to
an average convergence time of 10.7 seconds on a personal laptop (Intel ® Core ™ i74510U CPU, 8.00
GB RAM) and 7.5 seconds on the OJF control room computer used during the wind tunnel experiments.

Because of the inherent randomness involved in the sampling of solution candidates from normal
distributions, the optimization outputs can vary slightly between optimization runs. However, with large
enough sample sizes the optimizer should repeatedly converge onto the same solution with very minor
variations.

In order to verify the robustness of the optimizers’ convergence, the optimization of the offline
trained onboard model using CMAES with the settings configured as presented thus far is repeated
100 times. The variations of the optimal inputs on which the optimizer converged are plotted in Fig. 3.12.
The variation in the estimated optimal angle of attack is smaller than 0.004 degrees. The variations in
the virtual inputs that describe the local vertical trailingedge displacements of the morphing wing are
below 0.05mm. In conclusion, with the presented settings, the optimizer consistently converges on the
same solution with minute variations that are lower than the precision with which these inputs can be
actuated in the experiment.
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Figure 3.12: Optimal inputs repeatedly estimated with a population size of 150 for 100 optimization runs.
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3.2.4. Offline optimization
By combining the optimizer and the aerodynamic model directly, Offline optimization can be performed.
However, the large number of function evaluations needed for blackbox optimization makes this pro
cess slow. The required number of function evaluations varies between 15003000 depending on the
population size, scaling, and optimization landscape. As a result, the average time needed for direct
shape optimization was 45 minutes. This makes direct shape optimization using CMAES infeasible for
online application, especially considering the fact that measurement times for lift and drag coefficient
estimations in any experimental setup tend to be much longer than the evaluation times of the lower
order aerodynamic model used in this study. Therefore, the online identified onboard model, which
has a relatively low evaluation cost compared to either the wind tunnel or simulation experimental sys
tems, will be used with the CMAES algorithm for online shape optimization. Ideally, the online shape
optimization would be able to find the same optimal inputs, but in a much shorter time span. Never
theless, the direct and offline way of optimization does provide insight into the shape the behavior of
the optimized shapes. In the following section, the shape solutions of some of the online shapes are
shown and investigated in more detail.

Offline shape optimization shapes Figure 3.13 depicts the wing shape solutions directly computed
on the aerodynamic model offline for various target lift coefficients. The angles of attack and the virtual
inputs corresponding to these offline optimal shape solutions are shown in Tab. 3.5. Each of the shape
solutions comprises a decrease in the actuator angles, and by extension in the local camber towards the
wingtip end. Additionally, in the 6th morphing module, near the wing tip, all shape solutions command
the lowest amount of camber achievable. This corresponds to the 11th and 12th actuators hitting the−25
deg limits. Most shapes show an approximately linear slope of actuator angle reduction for the center
modules, with the exception of the solution shape corresponding to the highest target lift coefficient.
The shape solution for 𝐶Lt = 1.20 already commands the upper limit set for the angle of attack. In
order to reach an even greater target lift coefficient of 𝐶Lt = 1.35, the optimizer is forced to increase
the wings camber even more. When servo 1 in module 1, which is nearest to the wing root reaches its
upper deflection limit, the ‘ideal’ slope which is observed in the other shape solutions is compromised to
allow an increased overall amount of camber on the wing. In this case, the spanwise decrease in local
camber only starts at the fourth morphing actuator. In the case of the lowest target lift coefficient, the
calculated optimal shape commands the highest amount of negative camber morphing almost across
the entire wingspan even though the minimum angle of attack has not been reached yet, with the only
exception occurring inmodule 1. Here too, the ideal slope of spanwise camber reduction is sacrificed for
a more optimal overall amount of camber. Since the NACA6510 is already relatively highly cambered
by default, it is perhaps unsurprising that the best course of action for achieving a small amount of lift
is to decrease camber all along the wing.

It is thought that the main reason for the spanwise reduction in local camber observed towards
the wingtips is the resulting reduction of the strength of the wingtip vortices, which in turn results in
an improvement in the aerodynamic efficiency. These vortices are the result of the spanwise flow
components caused by the “leaking” of highpressure air from the bottom side of the wing around the
wingtips towards the lower pressure regions on the upper wing surface [50]. It has been well established
in the literature that optimal spanwise lift distribution in terms of the induced drag is the elliptical lift
distribution. Even though the true spanwise lift distribution is unknown in flight, or even in the later wind
tunnel experiments, the spanwise lift distribution can be calculated using the aerodynamic model in
simulation.

Table 3.5: Offline optimized input parameters for various target lift coefficients

𝐶Lt[−] 𝛼[deg] 𝑢1[deg] 𝑢2[deg] 𝑢3[deg] 𝑢4[deg] 𝑢5[deg]
0.25 1.10 24.48 0.96 0.62 0.28 0.07
0.50 3.57 21.18 5.50 1.47 0.81 0.68
0.75 5.86 16.40 11.14 1.21 1.84 0.49
1.00 8.32 12.22 15.93 0.84 2.47 0.05
1.20 10.00 7.02 21.67 0.04 3.07 0.85
1.35 10.00 3.42 30.05 6.58 5.31 3.65
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Figure 3.13: Offline optimized wing shapes of SmartXAlpha for various lift coefficients.

Spanwise lift distributions In order to investigate the spanwise lift distributions of the offlinecalculated
optimal wing shapes and their corresponding optimal angles of attack, the lift distribution is recon
structed using the vortex strengths of the individual discrete panels that make up the wing geometry
in the aerodynamic model. When the vortex strengths are known, the lift force per unit span 𝐿′ can
be calculated using the KuttaJoukowski theorem shown in Eq. (3.7). Here, Γ′ is the vortex circulation
strength per unit span, and 𝜌∞ and 𝑉∞ are the freestream air density and flow velocity respectively.

𝐿′ = 𝜌∞𝑉∞Γ′ (3.7)

Γ′ can be computed by summing the strengths of the discrete vortex panels Γ𝑖,𝑗 in the chordwise
direction at each of the 13 spanwise panel rows. When the resulting expression is divided by 1

2𝜌∞𝑉
2
∞𝑆,

the 2d lift coefficients of these spanwise locations 𝐶l𝑗 are obtained, as shown in Eq. (3.8).

𝐶l𝑗 =
∑𝑛𝑥𝑖=1 Γ𝑖,𝑗
1
2𝑉∞𝑆

(3.8)

As shown in Eq. (3.9), the total 3D wing lift coefficient 𝐶L can be obtained through the summation
of the discrete 𝐶l𝑗 in the spanwise direction.

Using Eq. (3.8) the 2D lift coefficients of the unmorphed wing shape and an optimized wing shape
are calculated. The optimized wing shape corresponds to the offline computed optimal wing shape for
a target lift coefficient of 0.75. The lift distribution of the unmorphed, or jig, shape also corresponds
to a lift coefficient of 0.75. Their spanwise lift distributions are shown in Fig. 3.14 together with the
theoretically ideal elliptical distribution defined by Eq. 3.10, where 𝐶l0 is the 2D lift coefficient at the
wing root and 𝑦 is the spanwise root coordinate measured from the wing root location. Based on the
augmented aerodynamic model, the lifttodrag ratio of the optimized wing shape is 4.6% higher than
the liftdragratio of the jig shape at the same lift coefficient.

𝐶L =
𝑛𝑦

∑
𝑗=1
𝐶l𝑗 (3.9)

𝐶l = 𝐶l0√1 − (
2𝑦
𝑏 )

2
(3.10)

The lift distribution of the optimized wing shape (green) is much closer to the theoretically ideal
elliptical distribution (red) compared to the distribution of the jig shape (blue). The optimized wing
shape entails negative camber morphing over the entire span of the wing, which corresponds to a
reduction in the lift per unit span. Nevertheless, the 2d lift coefficient at the wing root is higher for this
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shape than it is for the jig shape. This is because the angle of attack selected for optimal wing shape
is approximately 2.4 degrees higher than the jig shape’s angle of attack at 𝐶L = 0.75. However, while
closer, the distribution of the optimized wing shape does not perfectly coincide with the theoretical
optimum. A further reduction of lift at the wing tip end would be beneficial. However, the morphing
actuators near the tip are already at their maximum upwards deflections.
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Figure 3.14: Offline optimized wing shape and corresponding changes in the spanwise lift distributions.

In order to investigate the effects of the optimized shape on the span and chordwise distributions
of the lift, the discrete vortex circulation strengths are plotted at their corresponding panel locations.
The resulting vortex strength surfaces of the jig (blue) and optimized (orange) shapes are shown in
Fig. 3.15. Note that the planes that make up the surface plot do not correspond to the panels that
make up the wing geometry in the aerodynamic model directly. Rather, the vertices of the plotted
surfaces correspond to the locations of the panel onequarter points. This is also the reason why the
surfaces end slightly short of the physical edges of the wing. The spanwise trend of increased lift near
the root end of the wing, and a reduction of lift near the tip end in the optimized distribution compared
to the jig shape distribution is again apparent. However, in the chordwise direction, the differences in
the two distributions are most significant on the trailingedge side of the wing. This makes sense as the
camber morphing only takes place at the quarter chord width section of the wing nearest to the trailing
edge. However, the fact that the pressure distribution of the wing is mainly adapted on the trailingedge
side of the wing hints at another byproduct of this type of morphing. Specifically, if the pressure is
increased or decreased spanwise only near the trailing edge, the effect on the wing pitching moment
coefficient can be significant. In the case of the distribution plotted in Fig. 3.15, the optimized shape
comprises a reduction of camber across the entire span of the wing. As a result, the pitching moment
of the optimized wing is increased in the pitchup direction compared to the jig shape. Consequently
the pitching moment of the optimized wing is increased to 𝐶m = −0.33 from the jig shape’s 𝐶m = −0.38,
which constitutes a pitching moment coefficient magnitude reduction 12.9%.

In this thesis, only the isolated morphing wing is considered and the effects of morphing on the
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moment coefficient are referred to as a byproduct. However, in future work, when the framework is
applied to a complete aircraft, themoment coefficient effects can be exploited for aerodynamic efficiency
improvement through the reduction trim drag from the horizontal tail plane.
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Figure 3.15: 3D surface plot of the panel vortex strengths for the jig shape (blue) and for an offline optimization solution (orange).

3.3. Onboard model
3.3.1. Model requirements
The following requirements for the onboard model were identified:

1. The onboard model should be a blackbox model.

2. The onboard model should be capable of identifying nonlinear mappings.

3. The onboard model should be a global model.

4. The onboard model should be a relatively low evaluation cost.

5. The onboardmodel should be able to be (locally) improved online as newmeasurements become
available.
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First of all, since the research objective is to realize the most efficient wing shape on a morphing
wing using a blackbox onlinelearningbased optimization method, the onboard model should be a
blackbox model. Blackbox models only seek to approximate an inputoutput relationship, rather than
identify the internal states and mechanics of a system. Therefore, they are not limited by the degree
of understanding of the fundamental principles at play. Additionally, this allows the model structure
and solution method to be much simpler than those of complex whitebox models [51]. As a result,
the computational costs of blackbox model identifications methods are lower for a complex system,
than those of equivalent whitebox models. The disadvantages of blackbox models are that they are
unable to make use of a priori knowledge of the system and that their parameters have no physical
meaning as opposed to the parameters of analytical models and thus they provide little insight into the
mechanics at play. This also limits the blackbox models’ applicability to the domains of the data on
which they are identified, as their lack of knowledge of the true mechanics that cause the inputoutput
relationship makes them unsuitable tools for extrapolation. However, when only a faithful interpolation
of an inputoutput mapping is sought after, the blackbox modeling approach is very effective [52].

Secondly, the method selected should be able to accurately model nonlinear mappings. Since
the relationships between the angle of attack and the virtual wing shape inputs, and the lift and drag
coefficients are complex and nonlinear, it is important that the onboard model is able to capture the
nature and intricacies of these mappings.

Thirdly, in order to improve on the existing stateoftheart methods for online wing shape optimiza
tion for morphing wings, which all use local models, the onboard model should identify a global model.
The validity of the local models employed in the current stateoftheart methods is limited to a region
around a trim condition, which means that for changes in the flight conditions a new local model must
be identified every time. The model identification maneuvers required for model identification gener
ally involve sweeps of the morphing actuators and angle of attack, which cause bumpiness and flight
path deviations and therefore severely limit the applicability of these methods on commercial aviation
platforms. The need for these maneuvers could be eliminated with the identification of a global model.

Another requirement for the onboard model is that it should be able to be evaluated at a low com
putational cost. This requirement is important because the CMAES optimizer requires many function
evaluations to converge. Hence, any amount of computational time is greatly magnified, and the to
tal computational time of the optimization could quickly become unfeasibly long if a large number of
function evaluations would need to be performed at high computational costs.

In order for the online optimization method to be adaptable, it is important that the model can be
improved online based on new data. In terms of computational efficiency, it would be most ideal to
not reperform the entire modeling routine after each measurement, but rather to slightly adjust the
model parameters accordingly. Each measurement acquired only corresponds to a single location in
the multidimensional input space. Hence, each new observation sheds light on a particular part of the
domain. It would then seem appropriate to locally refine the model instead of adapting it everywhere
throughout the domain.

3.3.2. Model selection
For the independent inflight operation of the framework, it is important that the onboard model is
able to model the inputoutput relationship of the system under consideration with human supervision.
Therefore, it is preferred that the modeling method does not require the tuning of, for example, the
model order or structure online. Hence, the model should be able to capture any unknown nonlinear
mapping with a fixed model structure.

It has been well established that multilayer feedforward neural networks are universal function
approximators. In other words, with as few as one hidden layer, Artificial Neural Networks (ANNs) are
capable of approximating any measurable function from one finitedimensional space to another to any
desired degree of accuracy, provided sufficiently many hidden units are available [53]. For this reason,
it was decided to use ANNs as the basis of the global onlinelearning blackbox onboard model.

ANNs can be classified into various subclasses depending on the characteristics of their structures
and the type of activation functions they use. An overview is given in Fig. 3.16. Feedforward Neural
Networks (FFNN) are networks in which data propagates only in the forward direction. They consist of
an input and an output layer, and possibly several hidden layers in between. However, in feedforward
networks, the output signals of the neurons are only allowed to connect to neurons in subsequent
layers, and not to any neurons in preceding layers. The main advantage of FFNN is that they can be
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Figure 3.16: Overview of blackbox optimization categories.

used on difficult and complex problems; however, their main disadvantage is that the training process
normally takes a long time [54].

The output of Recurrent Neural Network (RNN) layers are connected back to their inputs. This
helps to predict the new outcome of the layer based on the previous outcome. This socalled long
shortterm memory makes RNN especially effective for dealing with sequential data. For dynamic
systems, the size of RNNs with the same approximation accuracy is is much more compact than for
FFNNs. However, in practice, they are more difficult to be trained properly. Since in this research, the
objective of the onboard model is to model the inputoutput mapping in steadystate trim conditions,
the data is not temporally related. Hence, the benefits of RNN for the handling of sequential data are
not needed for the onboard model.

Convolutional Neural Networks (CNNs) are comprised of convolutional layers preceding pooling
and fully connected layers. In the convolutional layer collection of convolutional filters (kernels) is used
for feature extraction. This allows CNN to independently learn the defining features without human
supervision. Herein lies the main advantage of CNNs [55]. This makes CNNs very effective tools for
imagebased learning. However, since the numerical inputs to the onboard model are not image
based, CNNs offer no specific benefits over FFNN in the intended use case.

The multilayer perceptron is a special case of feedforward neural network in which all layers are
fully connected. In fully connected networks, all neurons in one layer are connected to all neurons in
the adjacent layers.

ANN can also be further classified based on their activation functions. Many different types of
activation functions exist, and all have their advantages and disadvantages. The simplest type of basis
function is the linear basis function. While it is the easiest to implement and works reasonably well
on simple problems, the gradient of a linear activation function is independent of the input, which is a
problem for errorbackpropagation training. On the other hand, the sigmoid function is smooth and
continuously differentiable. However, its output is not zerocentered which causes gradient updates
to go too far in different directions. This makes optimization harder and leads to slow convergence.
The hyperbolic tangent function improves on this limitation since it is zerocentered. Therefore, the
tanh activation function is in practice preferred over the sigmoid function. The rectified linear function
(ReLu) is linear for 𝑥 ≥ 0 and is zero everywhere else. This means that a large portion of the neurons
return zero values, in other words only few neurons are activated and thus the network is sparse. This
has been found to accelerate the convergence of stochastic gradient descent training compared to the
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sigmoid and tanh functions.

𝜙𝑗(𝑥) = exp(−
‖𝑥 − 𝜇𝑗‖

2

2𝜎2𝑗
) (3.11)

Another type of feedforward neural network which is characterized by its activation function is the
Radial Basis Function neural Network (RBFN). The Radial Basis Function (RBF) shown in Eq. (3.11),
is unique in the fact that it comprises a location in space. The output of each RBF neuron depends
on the distance between the input point 𝑥− and the RBF center location 𝜇𝑗. Therefore RBF neurons
are locally sensitive. RBFNs have good generalization, strong tolerance to input noise, and online
learning ability [54]. These properties make RBFNs very effective tools for designing flexible control
systems. RBFN are recommended for function approximation problems of surfaces with regular peaks
and valleys [56]. Additionally, RBFNs aremore robust to noise in the input data than other types of multi
layer feedforward neural network types [56]. RBFNs are also particularly suitable for multiparameter
and scattered data [57]. The data gathered inflight is to be expected to be both heavily scattered and
noisy. Combined with the fact that RBFNs are locally sensitive and can thus more easily locally adapt
to new data, it is concluded that they are the preferred neural network type for the usecase of the
onboard model.

3.3.3. Offline training set
For the offline training of the onboard model, a training data set was created using the nominal aerody
namic model. The network weight produced by the offline training procedure would be used as the initial
weights, and hence serve as an initial guess, for the onboard model in later experiments. The training
data set consisted of angleofattack and virtual inputs and their lift and drag coefficients as evaluated
on the nominal aerodynamic model. The evaluated inputs were derived from a sixdimensional grid of
point which were equallyspaced within each dimension. The defining parameters of the offline training
data set grid are shown in tab. 3.6.

Table 3.6: Overview of the input bounds of the offline optimization solutions, and the selected bounds and mesh for the offline
training data set.

Parameter Solution min Solution max Min window Max window Window size Points Step
𝛼 1.096 10.000 2.500 10.000 12.500 9 1.563
𝑢1 24.478 3.425 27.268 6.215 33.483 11 3.348
𝑢2 30.050 0.956 32.959 1.954 34.913 11 3.491
𝑢3 6.576 1.475 7.382 2.280 9.662 8 1.380
𝑢4 0.276 5.312 0.835 5.871 6.705 6 1.341
𝑢5 0.681 3.646 1.114 4.079 5.193 5 1.298

In order to improve the representative quality of the data set, the data set domain was focused on
the subregion of the domain where the optimal solutions were expected to reside. This represents a
tradeoff of increased spacial sampledensity at the cost of domain width. This subregion was based on
the solutions obtained through direct offline CMA–ES optimization of the nominal aerodynamic model
described in sec. 3.2.4. The bounds of the offline training data set were selected to be 10% wider
that this subregion to provide a margin. With the number of equally space points per dimension as
presented in tab. 3.6, the total size of the training data set was 261360 data points. The evaluation of
these data points took approximately 90 hours of computational time.

3.3.4. Hyperparameter optimization
Hyperparameter Optimization (HPO), the optimization of neural network hyperparameters, has histor
ically been challenging. The training of neural networks is complex, and the (combined) effects of
adjusted hyperparameter settings cannot be analytically expressed. In other words, no shortcuts in
the form of convenient analytical expressions of the ideal hyperparameter value exist. Therefore, the
quality of a given set of hyperparameters can only be evaluated by training the network on the intended
data set. Hence, HPO represents a blackbox optimization problem.
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The simplest, yet commonpractice approach is tuning of the hyperparameters through simple trial
and error. Thismethod, however, heavily relies on the skill and experience of the engineer who performs
it and offers little confidence in the eventual results. To avoid the timeconsuming and unreproducible
process of trialanderror HPO, automatic HPO Algorithms have been proposed. Since the training of
neural networks is timeconsuming, it is very important that the blackbox optimization algorithms which
are to be used for HPO are sampleefficient. The time required for training is heavily dependent on the
size of the training data set and the number of training epochs. However, even with a small data set
and a moderate number of epochs, the time required per training run was around 2 minutes. While this
is much shorter than the 23 hours required for the offline training with the complete data set for 2000
epochs, many function evaluations are required before a good set of hyperparameters may be found.
Naturally, any optimization method that requires many function evaluations is considered infeasible for
HPO, e.g. Random, or grid search methods, or evolutionary optimization methods like CMA–ES may
simply require more than can be afforded within the time constraints of this thesis project.

Because of its sampleefficient blackbox nature, Bayesian Optimization (BO) was selected for hy
perparameter optimization. BO uses Gaussian process models of the objective function to tradeoff
exploration of regions with high uncertainty against exploitation of model knowledge by evaluating
points with the highest likelihood of being optimal in a sampleefficient way. In order to reduce the
time needed for this hyperparameter procedure, only 10% of the offline training data set was used.
This still amounted to 26136 samples. While the true optimal hyperparameter settings are data set
specific, it is expected that a network architecture that is optimized for a representative subset of the
data set may not represent the ultimate optimum, but a good configuration nonetheless. Even if the
hyperparameter optimization were conducted on the entirety of the nominal aerodynamic model data
set, the resulting architecture would still be suboptimal for the interpolation of the data set which will
be gathered in the wind tunnel experiment. Hence, the quest for the ultimate hyperparameter settings
may not only be a virtually impossible effort but a futile one as well. Therefore, the aim of this procedure
is to find sufficiently wellworking hyperparameters which may also be expected to work well for similar
data sets.

The BO hyperparameter optimization procedure was performed on training on the aforementioned
reduced data set for 100 epochs per function evaluation call of the BO algorithm. In total, the algorithm
was allowed 200 evaluations to produce an estimate of the best hyperparameters. The function call
limit was selected in accordance with the time available. A decreasing trend was observed in the speed
of the BO algorithm during optimization.

The BO algorithm was allowed to tune the number of neurons, the initial learning rate, the mini
batch size used and the adaptive learning rate optimization algorithm used. These were Adagrad [58],
Adadelta [59], Adam [60].

The HPO search space was configured as:

• number of neurons, integer ∈ [1, 1000]

• initial learning rate, float ∈ [10−4, 100]

• minibatch size, integer ∈ [2, 64]

• optimizer, integer, [1=Adagrad,2=Adadelta,3=Adam]

BOHB After the initial HPO with BO, a more advanced HPO method was also tried after the simula
tion experiments. The Bayesian Optimization – HyperBand (BOHB) proposed in [61] was implemented.
The proposed HPO algorithm combines the best features of BO and HyperBand (HB) and has been
demonstrated to outperform both BO and HB on a wide range of problems. The algorithm was config
ured on the following search space.

• number of neurons, integer ∈ [16, 1024]

• initial learning rate, float ∈ [10−5, 100]

• minibatch size, categorical [4, 8, 16, 32, 64]

• optimizer, categorical, [Adagrad,Adadelta,Adam]
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Unfortunately, due to the long computational time required, this procedure was unable to produce
results before the start of the wind tunnel experiments. However, this HPO strategy is promising and
may be used for improved hyperparameter optimization in future work.

3.3.5. Model parameter sweeps
The prediction accuracies of the offline and onlinelearned neural net models in different parts of the
sixdimensional input space are investigated by means of parameter sweeps. The offlinetrained model
was trained for 2000 epochs on the offline NACA6510 training set (261 360 samples) which was derived
from the nominal aerodynamic model, as described in section 3.3.3. The onlinetrained model was
trained over 100 iterations of pseudorandom exploration on the surrogate aerodynamic model. During
the parameter sweeps, one of the six inputs was varied while the others remained fixed and both
the neural network onboard models as well as the nominal and surrogate aerodynamic models were
evaluated at these points.

Center of the input space During the first sweep series, the input parameters which were not varied
were fixed at the center of their allowable ranges. This is the part of the domain in which the evalu
ated data points are approximately equally surrounded by training data on all sides. The lift and drag
coefficients resulting from these parameter sweeps are shown in Figs. 3.17 through 3.22. The yaxes
of the two lift coefficient and the two drag coefficient plots have been given the same length such that
the differences in prediction accuracy can be clearly viewed. From these results, two distinct trends
emerge. First of all, the estimated outputs of the offline trained onboard model (orange) are close
to the outputs computed on the nominal aerodynamic model (blue). Although not as close as the of
fline trained model and the nominal aerodynamic model, the onlinetrained neural network model (red)
which was allowed only a fraction of the training time and training set that were available for offline
training is still relatively close to the surrogate aerodynamic model (green). Secondly, most notably for
the onlinetrained model, the most accurate predictions are observed for the sweeps of the angleof
attack parameter which has the strongest influence on the lift and drag of the wing, with a decreasing
accuracy trend with the higherorder virtual shape inputs.
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Figure 3.17: Parameter sweep of the angle of attack parameter with other parameters fixed at the center of their ranges, for the
nominal and surrogate aerodynamic models and their corresponding learned neural network representations.
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Figure 3.18: Parameter sweep of the first virtual input parameter with other parameters fixed at the center of their ranges, for the
nominal and surrogate aerodynamic models and their corresponding learned neural network representations.
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Figure 3.19: Parameter sweep of the second virtual input parameter with other parameters fixed at the center of their ranges,
for the nominal and surrogate aerodynamic models and their corresponding learned neural network representations.
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Figure 3.20: Parameter sweep of the third virtual input parameter with other parameters fixed at the center of their ranges, for
the nominal and surrogate aerodynamic models and their corresponding learned neural network representations.
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Figure 3.21: Parameter sweep of the fourth virtual input parameter with other parameters fixed at the center of their ranges, for
the nominal and surrogate aerodynamic models and their corresponding learned neural network representations.
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Figure 3.22: Parameter sweep of the fifth virtual input parameter with other parameters fixed at the center of their ranges, for the
nominal and surrogate aerodynamic models and their corresponding learned neural network representations.

Outside the interpolation domain During the second sweep series, the input parameters which
were not varied were fixed at 5% over their upper limits. In this part of the domain, the evaluated data
points are not surrounded by training data points on all sides. These evaluated points are not within
the bounds of the training data, and hence, the model is not strictly interpolating, but extrapolating the
information from the training data set. The number of nearby data points is smaller and the amount
of data points is unequal in different directions. The lift and drag coefficients resulting from these
parameter sweeps are shown in Figs. 3.23 through 3.28. Compared to the parameter sweeps at the
center of the domain, an increase in model prediction error can be observed. This is most apparent
for the higher order virtual inputs. Not only are the prediction errors of the surrogate model larger for
the onlinetrained neural network in this instance, even the offlinetrained model starts to have a larger
prediction error in this case. This shows that the prediction accuracy of the neural network models
decreases outside the edges of the training set domain. Therefore, it is important that the onboard
model is not used to predict the aerodynamic coefficients of the wing shape and angle of attack inputs
outside the training data set domain. It is for this reason that the bounds of the training data set were
also used as the search space bounds for the optimizer.

3.4. Simulation procedure
In this section, the simulation procedure is explained. First, a description of the workflow of the simula
tion algorithm is given. Then, the two operational modes, or phases, used in the experiment are further
elaborated on.

3.4.1. Algorithm description
A flow diagram of the algorithm used in the simulation experiment is shown in Fig. 3.29. On startup,
the relevant modules are loaded in and the configurable parameters are read. Then, a priori data is
loaded in. These data consist of the neural network parameters, the SmartXAlpha actuator locations,
and noise data. Subsequently, the nonconfigurable parameters and objects such as the aerodynamic
model and buffers are initialized. At the start of each new iteration, the operational mode is determined
based on whether the current iteration number exceeds the set number of exploration iterations. Only
two operational modes exist, these are “wandering” and “optimization”. If the current iteration number
is smaller than the number of exploration (wandering) iterations to perform, the new iteration will be
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Figure 3.23: Parameter sweep of the angle of attack parameter with other parameters fixed at 5% over their upper limits, for the
nominal and surrogate aerodynamic models and their corresponding learned neural network representations.
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Figure 3.24: Parameter sweep of the first virtual input parameter with other parameters fixed at 5% over their upper limits, for
the nominal and surrogate aerodynamic models and their corresponding learned neural network representations.
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Figure 3.25: Parameter sweep of the second virtual input parameter with other parameters fixed at 5% over their upper limits,
for the nominal and surrogate aerodynamic models and their corresponding learned neural network representations.
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Figure 3.26: Parameter sweep of the third virtual input parameter with other parameters fixed at 5% over their upper limits, for
the nominal and surrogate aerodynamic models and their corresponding learned neural network representations.
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Figure 3.27: Parameter sweep of the fourth virtual input parameter with other parameters fixed at 5% over their upper limits, for
the nominal and surrogate aerodynamic models and their corresponding learned neural network representations.
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Figure 3.28: Parameter sweep of the fifth virtual input parameter with other parameters fixed at 5% over their upper limits, for
the nominal and surrogate aerodynamic models and their corresponding learned neural network representations.
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performed in wandering mode. A pseudorandom draw from a sixdimensional Sobol sequence is
performed and the results are rescaled onto the input variable axes. If at this point, any of these inputs
violate either the angleofattack of actuator constraints a whole new pseudorandom set of inputs is
drawn. When a satisfactory set of inputs is obtained the target lift coefficient for the current iterate is
taken from a preset schedule. Next actuator saturation is simulated by capping any inputs that exceed
their limits at their nearest bounds.

The resulting input is then actuated on the aerodynamic model and the corresponding lift and drag
coefficients are obtained. The measurements of these coefficients are simulated by imposing a noise
signal before averaging the result. Subsequently, the newest measurements and the corresponding
input are added to the memory buffer (training data set). If the buffer has reached its maximum size,
a nearestneighbor search is performed and the bestconnected sample data point in the buffer is
replaced. Then, the data in the buffer is used to train the neural networks that make up the onboard
model. Finally, the adapted onboard model is used by the optimizer to determine the most promising
inputs to evaluate next. If the iteration number of the next iteration exceeds the number of iterations set
for exploration, this newly computed “optimal” input will be actuated on the aerodynamic model during
the next iteration. Finally, after the maximum number of iterations is reached, the data are saved and
the results are plotted.

3.4.2. Experimental phases
The simulation experiments consist of two distinct phases, which are characterized by the nature of the
actuated wing shapes. During the initial exploration phase, also referred to as the wandering phase,
the wing shape and angle of attack inputs actuated are pseudorandom. During the later optimization
phase, the most promising solutions according to the optimizer are actuated.

The goal of the wandering phase is to gather a training data set and to train the global onboard
model on this data set. In this phase, a minimum amount of global data is gathered such that an
estimation of the approximate location of the global optimum can be made. Since the scope of RBFN
models is limited to the domain spanned by their training data, it is important that during the wandering
phase points throughout the entire region of interest are visited. The aim of the subsequent optimization
phase iterations is then to investigate the most promising wing shape and angle of attack combinations
on the real system and to locally improve the onboard model based on the measured system outputs.

In applications of the optimization framework to realworld aircraft, the wandering phase would also
be performed once, on a test flight. In regular operation, the optimization algorithm would operate as
it does in the optimization phase of the experiment. While the test flight data points in the training set
provide the global information necessary for the optimizer to find the region of the global optimum, the
subsequent measurements provide additional information which helps the optimizer converge onto the
realworld optimum for the given conditions.

Wandering inputs generation The angle of attack and the virtual inputs actuated during the wander
ing phase need to be distributed over the entire input domain. In order to guarantee a good distribution
of the sampled points over the domain, they are generated using a Sobol sequence. The Sobol se
quence, first proposed in [62], aims to generate an evenly multidimensional distribution for fairly small
initial sets and to generate the best uniformity of the distribution for 𝑁 −→ ∞.

The most commonly used method of pseudorandom sampling from multidimensional distributions
is Latin Hypercube Sampling (LHS) proposed in [63]. LHS methods generate more evenly distributed
samples than the Sobol sequence per dimension. The Sobol sequence, on the other hand, generates a
distribution of sampled points that is more evenly spread of the multidimensional sample space. There
fore, the advantage of LHS methods diminishes with increasing domain dimensionality. In [64], LHS
and Sobol sequence sampling were compared for the purpose of sampling point distributions for high
dimensional integration. The Sobol sequence was observed to have superior performance, i.e., fewer
sampled points were required for convergence of the high dimensional integration. Hence, because
the search domain is already sixdimensional in the current configuration, and more dimensions are
expected to be added in future work, the Sobol sequence was selected as the method for generating
the pseudorandom inputs for search space exploration during the wandering phase.

The sampling of the sixdimensional Sobol sequence is implemented through the Sobolengine in
cluded in Pytorch [65]. The sampled sixdimensional coordinate vectors S𝑥𝑛 are normalized ([0,1]).



3.4. Simulation procedure 41

The sampled inputs U ∈ ℝ6 are given by Eq. (3.12). Note both the angle of attack and the virtual inputs
are pseudorandomly sampled, i.e., U comprises 𝛼 and u.

U = S𝑥𝑛(xmax − xmin) + xmin (3.12)

The sampling of normalized points guarantees that the sampled angle of attack is within the set
bounds. However, the bounds on the actuator angles are the result of the combined virtual inputs.
Therefore it needs to be separately verified that the sampled virtual shape function inputs do not result
in a shape that exceeds the actuator limits. To this end, the 5 virtual inputs are converted to the
corresponding twelve actuator angles by evaluating Eq. (4.1) at the spanwise locations of the morphing
actuators. If any of the twelve actuator angles exceeds the±25 degree limits, the corresponding sample
is skipped and a new sample is drawn from the Sobol sequence.
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Figure 3.29: Flow diagram of online shape optimization simulation algorithm.
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Blackbox Online Aerodynamic
Performance Optimization for a
Seamless Wing with Distributed

Morphing Control
In this paper, the online wing shape optimization framework is presented, and the results from simula
tions on the aerodynamic model are discussed.

This paper has been accepted by the 2022 AIAA SciTech Guidance, Control, and Dynamics Con
ference. An updated version of this paper will be submitted to Journal of Guidance, Control, and
Dynamics.

Abstract
Morphing is a promising bioinspired technology, with the potential to make aircraft more sus
tainable through adaptation of the wing shape for best efficiency at any flight condition. This
paper presents an insimulation demonstration of a novel online blackbox performance opti
mization strategy for a seamless wingwith distributedmorphing control. The presentedmethod
seeks to extend the scope of stateoftheart online performance optimization methods by com
bining a global Artificial Neural Network (ANN) onboard model with a derivativefree evolu
tionary optimization algorithm. The effectiveness of the optimization strategy was tested on a
Vortex Lattice Method (VLM) aerodynamic model of an overactuated morphing wing that was
corrected using previously collected wind tunnel data. Simulations show that the proposed
method is able to control the morphing shape and angle of attack to achieve various target lift
coefficients with better aerodynamic efficiency than the unmorphed wing shape. The global na
ture of the onboardmodel allows the presentedmethod to find shape solutions for a wide range
of target lift coefficients without the need for additional model excitation maneuvers. Compared
to the unmorphed shape, up to 14.6% of lifttodrag ratio increases were achieved on themodel.

Nomenclature

𝐴 = amplitude
𝐴 = aspect ratio
𝐶J = cost penalty constant
𝐶L = lift coefficient
𝐶Lt = target lift coefficient
𝐶D = drag coefficient
𝐶D0 = zeroliftdrag coefficient
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𝑐 = chord
𝐷 = drag force
𝐷𝑖 = induced drag force
𝑒 = Oswald efficiency factor
𝑓 = frequency
𝐽 = cost
𝐿 = lift force
𝑆 = power spectral density
𝑇𝑖 = 𝑖𝑡ℎ Chebyshev polynomial
𝑢𝑖 = 𝑖𝑡ℎ virtual input
𝑊 = neural net weights
𝑋 = buffer model inputs
𝑥hinge = hinge location as a fraction of chord length
𝑥0 = initial solution point
𝑦 = buffer model outputs
𝑦 = spanwise coordinate
𝑍 = frequency domain signal
𝑧te = trailing edge displacement
𝛼 = angle of attack
Δ𝑓 = change in frequency
𝛿f = flap deflection
𝜙 = phase
𝜎0 = initial standard deviation
𝜃 = actuator angle

Subscripts

i = iteration
m = measured
s = saturated

4.1. Introduction
Over the past century, aircraft have become increasingly more efficient. During the 1960’s improve
ments in engine technology and wing design led to large improvements in aircraft fuel economy. In
recent years, this trend of increasing efficiency has started to stall out, as the conventional aircraft de
signs converged. In order to further reduce both the cost of flying and environmental pollution, more
radical departures from the conventional aircraft design are needed. One promising technology is active
wing morphing. Derived from the greek ‘morphos’ meaning shape, morphing technology enables the
shape transformation of the wings inflight. Morphing is far from a new technology. The Wright Flyer,
the first successful heavierthanair powered aircraft, relied on twist morphing of its fabricwrapped flex
ible wings to achieve roll control [1]. However, as aircraft flew with ever increasing speeds, higher wing
rigidity was required, which made morphing fade out in 1940’s2000’s. In recent years, morphing is
again made possible by advanced developments in material science such as shape memory alloys,
compliant mechanisms and piezoelectrics [2].

The ability to reshape the wing in flight, introduces the problem of determining what that shape
should be for a wide range of operation conditions. The current method for cruise drag minimization is
the scheduling of configuration settings through lookup tables as a function of gross weight, airspeed,
and altitude. These lookup tables generally depend on analytical models, validated with wind tunnel or
test flight data. However, different operating conditions, aircraft production variances and repairs can
result in uncertainties in the tablelookup method.

Online optimization has the potential to tailor the wing shape to any specific flight condition for
achieving the best aerodynamic performance based on inflight measurements. Much like birds, a
smart morphingwing aircraft could sense its environment and adapt its wings’ shape to achieve the
best performance in any condition, making it fully missionadaptive. However, many challenges remain
on the path towards operational smart morphing aircraft wings. To begin with, any online optimization
method is reliant on the ability to accurately evaluate the aircraft’s performance using onboard sensors.
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Furthermore, only a very limited amount of search space exploration could realistically be afforded on
a typical commercial flight. Ideally, a global optimum should be found with limited local explorations.

A Realtime adaptive least squares drag minimization approach has been proposed by Ferrier et
al. [3] for the Variable Camber Continuous Trailing Edge Flap (VCCTEF) described by Nguyen [4, 5].
This strategy uses a recursive least squares algorithm to estimate the derivatives of the aerodynamic
coefficients with respect to the system inputs. The optimal wing shape and elevator deflection are then
calculated from a constrained optimization problem using the NewtonRaphsonmethod. Improvements
to the model excitation method, onboard model and optimization methods were demonstrated in wind
tunnel experiments to achieve up to 9.4% drag reduction on the Common Research Model (CRM) with
the VCCTEF at offdesign conditions at low subsonic speeds [6]. Simulations have also indicated that
a 3.37% drag reduction is achievable on the CRM with a distributed miniplain flap system at Mach
0.85 [7].

Whilst the coefficients of the linearintheparameters multivariate polynomial model adopted in [6, 7]
can be estimated with relatively low computational cost, themodel is only valid in the local region around
the trim condition. This means that in order to perform realtime drag minimization across the entire
flight envelope, the model parameters need to be reestimated at every operational point. Moreover,
the required model excitation maneuvers that comprise both angle of attack and flap deflection inputs
would induce undesirable bumpiness and structural loads. Last but not least, the use of a local model
together with a gradientbased optimization method makes the solution prone to converge onto a local
optimum.

By contrast, a global onboard model, while more difficult to identify online, could allow for contin
uous drag minimization throughout the flight envelope. Additionally, when paired with a global opti
mization method, global optima with even better performance could potentially be found. The online
performance optimization strategy presented in this study combines an online trained global Artificial
Neural Network (ANN) onboard model, with an evolutionary optimization algorithm to improve the ac
curacy and flexibility of the existingmethods. A highlevel overview of the online optimization framework
is shown in Fig. 4.1.

Optimizer Morphing
Wing

Global on
board Model

𝐶L, 𝐶D

𝛼,u

𝛼,u
Optimizer

Figure 4.1: Highlevel overview of the online shape optimization framework.

During each iteration of the online optimizationmethod, the evolutionary optimizer uses the onboard
model to evaluate the performance of populations of wing shape and angle of attack combinations 𝛼,u
to find the most promising input combinations. The most promising input combination is actuated and
evaluated on the system once per iteration. The resulting lift and drag coefficients 𝐶L, 𝐶D are then used
to improve the onboard model for the next iteration.

This online shape optimization strategy was developed to be tested on SmartXAlpha in future wind
tunnel experiments. SmartXAlpha is an oversensed and overactuated seamless active distributed
morphing wing [8, 9]. An overview of SmartXAlpha is shown in Fig. 4.2a1.

The 0.5 m × 1.8 m rectangular half wing is made up of six Translation Induced Camber (TRIC)
morphing modules that comprise two actuators each and are seamlessly joined by a highly flexible
elastomer skin. The TRIC morphing mechanism allows for both camber and twist morphing [10]. The
ability to induce twisting of the trailingedge within each module by asymmetric actuator deflection al
lows for smoother morphing shapes than the distributed VCCTEFs. The morphing modules enable the
achievement of multiple objectives, including drag minimization, load alleviation, and flutter suppres
sion. Control strategies for simultaneous gust and maneuver load alleviation have been demonstrated
on SmartXAlpha during wind tunnel experiments [11]. Inflight drag minimization with distributed mor

1The project video can be found via https://www.youtube.com/watch?v=SdagIiYRWyA&t=319s

 https://www.youtube.com/watch?v=SdagIiYRWyA&t=319s
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(a) Overview of wing components. (b) Wind tunnel setup.

Figure 4.2: Overview of the SmartXAlpha wing demonstrator.

phing control has not been done on SmartXAlpha. This is the focus of the study presented in this
paper.

The main contributions of this paper are the presentation and first insimulation demonstration of
a novel flexible inflight performance optimization strategy for morphing wings. The method has been
tested on a VLM model that has been augmented based on previously collected experimental data
in preparation of planned future wind tunnel demonstrations. This strategy improves upon the state
oftheart by extending the scope from only the local region around a trim condition to a large range
of operational lift coefficients by using a global onboard model. The onboard model consists of two
artificial neural networks, serving as universal function approximators. Combined with a derivativefree
evolutionary optimization method, this strategy is expected to find better performing wing shapes than
the stateoftheart gradientbased optimization because it has a low chance of converging on local
optima in the optimization landscape.

The structure of this paper is as follows. The online shape optimization strategy and its individual
components are described in Sec. 4.2. In Sec. 4.3, the simulation results are presented and discussed.
Finally, the main conclusions are drawn in Sec. 4.4.

4.2. Optimization Architecture
In this section, the online shape optimization strategy and framework are presented. First, an overview
of the complete optimization architecture is given. Then each of the individual components are elabo
rated upon in the following subsections.

The architecture of the online shape optimization framework is shown in Fig. 4.3.

Onboard modelOnboard model

Optimizer

Cost function Onboard model

Input mapping Actuator saturation

System

MeasurementReplay bufferTrainer

M

𝛼,u

𝐶𝐿 , 𝐶𝐷
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𝐶𝐿𝑚 , 𝐶𝐷𝑚X𝑖 ,y𝑖

X𝑖−1,y𝑖−1W𝑖+1

Figure 4.3: Online shape optimization architecture.

The optimization procedure involves a fast and a slow loop. The optimizer, onboard model, and
cost function work together in the fast loop, marked by the shaded arrows. The optimizer evaluates
angle of attack (𝛼) and wing shape combinations (u) on the onboard model with a high frequency. The
resulting lift and drag coefficients from the onboard model are valued with a cost function (𝐽), which
is also based on the target lift coefficient (𝐶𝐿𝑡). These cost values are in turn used by the optimizer
to produce a more promising set of inputs for the next iteration of the optimization loop. Once the
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optimizer has converged onto the most promising set of inputs, they are evaluated on the system itself
in the outer loop.

The onboard model and optimizer describe the wing shape in terms of 5 virtual inputs 𝑢1, ..., 𝑢5.
However, since the shape of the morphing wing is controlled by 12 actuators 𝜃1, ..., 𝜃12, the 5×1 virtual
input vector u needs to be mapped to the 12 × 1 actuator input vector 𝜃. Next, the actuator inputs are
limited to their saturation limits of ±25 degrees. Subsequently, the wing shape and angle of attack are
actuated on the system. In this study, the cambermorphing wing was simulated with an aerodynamic
model of a wing with continuously distributed flaps. The resulting lift and drag coefficients are then
contaminated with noise to simulate forcemeasurement based estimates 𝐶𝐿𝑚 , 𝐶𝐷𝑚 . The inputs and
outputs of the latest evaluation are added to the replay buffer, with a replacement strategy aimed at
maintaining a good global coverage of the input domain in memory. The model inputs X𝑖 and model
outputs y𝑖 in the buffer make up the training set that is used to train the onboard model. The training
of the artificial neural networks that make up the onboard model results in new network weightsW𝑖+1.
From here on, a new optimization cycle is initiated with an improved onboard model.

In future operation, the network weights and replay buffer from the previous flight can be used on
the first iteration. In the simulations presented in this study, weights from previous training on a different
wing, and no initial buffer data were used to test the ability of the method to learn on a new system. In
order to partly fill the empty buffer with data spread out over the input domain, the first 100 iterations
were performed with quasirandom inputs instead of the optimizercomputed optima. This phase was
dubbed wandering phase.

4.2.1. System
Virtual inputs The system described consists of 13 inputs, these are the deflections of the 12 actu
ators and the wing angle of attack. However, instead of using the actuator angles directly as system
inputs, the optimizer and onboard model use a total of 5 virtual shape functions to describe the wing’s
shape. These virtual inputs 𝑢1, ..., 𝑢5 scale the five basis shapes described by the first five Chebyshev
polynomials of the first kind, rescaled onto the [0, 1.80] m domain, where 1.8 m is the halfwing span.
The spanwise distribution of the local actuator deflection is a linear combination of the virtual inputs
and the Chebyshev polynomials 𝑇𝑖(𝑦) as stated in Eq. (4.1).

𝜃(𝑦) =
5

∑
𝑖=1
𝑢𝑖𝑇𝑖(𝑦) (4.1)

The virtual inputs and their contributions to the actuator deflection at each actuator location are
shown in Fig. 4.4, where the triangular markers indicate the actuator positions. The translation induced
camber morphing mechanisms are modeled as a series of twistable plain flaps, whose local deflections
vary linearly between the actuators. The deflection of each actuator is in turn dictated by the virtual
inputs.

The virtual shapes reduce the 13 dimensional optimization domain for the real system to a six
dimensional one for the model, but in turn limit the number of shapes that can be formed. The basis
shape functions enforce a certain degree of smoothness in the final morphed wing shape. Their use
generally leads to smoother shapes than those resulting from 12 independent actuator deflections as
they avoid shapes with large and frequent jumps in spanwise camber.

Aerodynamic model The actuator deflections described by the virtual inputs are transformed to local
flap deflections to produce the geometry that is to be evaluated by the aerodynamic mode. First, the
local vertical displacement of the trailing edge 𝑧te is computed with Eq. (4.2), which was derived from
digital image correlation measurements of symmetric morphing on SmartXAlpha [9].

𝑧te = 𝜃 ⋅ 5.6 × 10−4 (4.2)

The local plain flap deflection angle 𝛿f is then computed using Eq. (4.3), where 𝑥hinge is the location
of the flap hinge as a fraction of the chord length.

𝛿f = sin−1 ( 𝑧te
𝑐 ⋅ (1 − 𝑥hinge)

) (4.3)
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Figure 4.4: Virtual shape functions that dictate the amount of camber morphing at each actuator location.

Between the actuator locations, where the local flap angle is specified by the virtual inputs, the local
flap angle varies linearly.

The aerodynamic performance of wing shape and angle of attack combinations are evaluated using
a Vortex Lattice Method model implemented in the Aerosandbox python package [12]. This method
is used because of its high computational efficiency and scriptability. Since, Aerosandbox is a rel
atively new opensource aerodynamic solver, and only one publication using this package exists in
literature [13], its VLM implementation is verified against that of XFLR5 using the geometry of SmartX
Alpha. Figure 4.5 shows results from the Aerosandbox and XFLR5 VLM solvers, and wind tunnel
measurements for constant spanwise actuator angle of 22 degrees. It can be observed from Fig. 4.5
that the outputs of Aerosandbox and XFLR5 VLM have high consistency.
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Figure 4.5: Comparison of VLM solvers with wind tunnel measurements for a constant actuator angle of 22 degrees.

However, VLM methods neglect the effects of viscosity and thickness, and can only be used to
estimate lift and induced drag. As a result, the models slightly overestimate the lift slope, although their
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lift predictions remain close to the wind tunnel measurements for the linear part of the lift curve. The
drag on the other hand is consistently underestimated due to the lack of viscous drag effects in the
model. Furthermore, while asymmetric flap deflections affect the lifttoinduceddrag ratio 𝐿

𝐷𝑖
through

reshaping the spanwise lift distribution, constant flap deflections along the wingspan do not affect 𝐿
𝐷i

at all. However, in order to optimize the morphing wings aerodynamic efficiency 𝐿
𝐷 , both the total drag

and the effects of flap deflections on the lifttodrag ratio should be modeled. Therefore, the model
is augmented with an estimation of the zeroliftdrag coefficient 𝐶𝐷0 and a correction to the Oswald
efficiency factor 𝑒 based on wind tunnel data. Furthermore, the use of the corrected model is restricted
to the linear part of the lift curve, −5.0 < 𝛼 < 10.0 degrees. Wind tunnel measurements from seven
angle of attack sweeps at different spanwise constant actuator angles were used to estimate 𝐶𝐷0 and
𝑒 by least squares estimation and Eq. (4.4).

𝐶𝐷 = 𝐶𝐷0 +
(𝐶𝐿)2
𝜋𝐴𝑒 (4.4)

The estimates for 𝐶𝐷0 and 𝑒 were interpolated by a 1𝑠𝑡 and 2𝑛𝑑 order polynomial respectively, as
shown in Fig. 4.6.
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Figure 4.6: Two correction functions estimated based on wind tunnel measurements.

With these corrections, and the induced drag from the Aerosandbox model, the total drag is esti
mated with Eq. (4.5), where �̄�f represents themean flap angle and 𝑒0 the efficiency factor of the constant
deflection wing shape from Aerosandbox, estimated as 0.95.

𝐶D = 𝐶D0(�̄�f) + 𝐶Di ⋅
𝑒0
𝑒(�̄�f)

(4.5)

The effects of the corrections functions are shown in Fig. 4.7 for the case of a constant 22 degree
actuator angle. Compared with the uncorrected drag polar from Fig. 4.5, the zeroliftdrag correction
yields a result that is much closer to the wind tunnel measurements. However, the drag is still under
estimated consistently. After correcting the drag predicted by Aerosandbox with both the zeroliftdrag
and the Oswald efficiency corrections, the resulting drag polar matches the wind tunnel measurements
relatively closely.

Since the corrections were estimated using wind tunnel data, their validity is limited to the wing
geometry and flow conditions that these measurements correspond to. In other words, the corrections
shown in this section are only valid for the wing profile, the planform described above, and for an
airspeed of 15 m/s at sea level air density.

Surrogatemodel For future hardwareintheloop experiments, the correctedmodel described above
is intended only to be used to train the onboardmodel beforehand. A priori knowledge about the system
is transferred with the weights of the onboard model. Although these will be adjusted during the online
learning process, fewer adjustments are required than would be in the case of learning from scratch.
In later stages of the technology, the network weights would hold the knowledge from previous flights.
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Figure 4.7: Drag polar of the corrected aerodynamic model for a constant actuator angle of 22 degrees.

In order to demonstrate the ability of the online learning shape optimization procedure to adapt to a
change in the system to be optimized, a surrogate model is used in the simulation of the online shape
optimization. The surrogate model represents a comparable, but yet distinctly different system.

The surrogate model is comprised of the same wing planform as the nominal model, but with a
NACA4312 airfoil instead. As the VLM solver does not model the effects of airfoil thickness, only the
maximum camber, and location of maximum camber are different between the nominal and surrogate
models. Because there does not exist equivalent wind tunnel data for this kind of wing, the correction
function estimation procedure cannot be repeated for the surrogate wing model. Instead, the correction
functions are altered directly. Therefore, the surrogate model does not accurately model the aerody
namics of a known wing anymore. Instead, the surrogate model represents the aerodynamics of an
unknown wing, which are relatively close to those of the nominal model. The correction functions for
both the nominal and surrogate models are shown in Fig. 4.8.
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Figure 4.8: Two correction functions for the nominal and surrogate model.

Noise simulation and filtering Realworld measurements were simulated by adding noise to the
aerodynamic model outputs. The noise realizations used were derived from sample noise measure
ments from the wind tunnel in which future hardwareintheloop experiments are planned. The Power
Spectral Density (PSD) of the original noise signal, sampled at 1000 Hz was approximated by its peri
odogram.

The power spectral density S(𝑓𝑛) is sampled at 𝑛 positive frequencies 𝑓𝑛 = [Δ𝑓 2Δ𝑓 ... 𝑛Δ𝑓]
𝑇
.

First, these power spectral densities are converted to amplitudes using A(𝑓𝑛) = √2 × S(𝑓𝑛), where
A(𝑓𝑛) is the 𝑛 × 1 amplitude vector. Subsequently, the 𝑛 × 1 phase vector 𝜙(𝑓𝑛) is built by assigning
each spectral component a random phase between 0 and 2𝜋 radians. Next, a frequency domain signal
Z(𝑓𝑛) is constructed using Eq. (4.6).
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Z(𝑓𝑛) = A(𝑓𝑛) ⋅ 𝑒𝑖𝜙(𝑓𝑛) (4.6)

Lastly, the frequency domain signal is transformed to a time domain signal using the inverse fast
Fourier transform. The resulting time domain signal, and the original noise measurement are shown in
Fig. 4.9.
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Figure 4.9: Measured and simulated lift force noise signals.

These noise realizations, although unique in the timedomain, all are made of the same spectral
components. As such, the power spectral densities of both signals are nearly identical.

Finally, the system output measurements are simulated by averaging over the 50 second noise
realization for noise attenuation.

4.2.2. Optimization
As depicted in Fig. 4.3, the optimizer does not work with the system directly, but rather on the onboard
model, which can be evaluated with much lower computational costs. The genetic optimization queries
the onboard model with a population of inputs to be evaluated. The quality of these inputs is then
determined from the models outputs using a cost function. The optimizer in turn uses this information
to generate a new group of candidate solutions. This loop is continued until the optimizer converges,
after which this most promising input can be tested on the actual system.

The objective of the optimizer is to find the set of inputs 𝛼, 𝑢1, ..., 𝑢5 that maximizes
𝐶L
𝐶D

while meeting
the target lift coefficient 𝐶Lt , and without violating the angle of attack or actuator limits. Themathematical
representation of this optimization problem is shown in Eq. (4.7), where u ∈ ℝ5×1 represents the virtual
input vector.

arg max
𝛼,�⃗�

𝐶L(𝛼,u)
𝐶D(𝛼,u)

, subject to 𝛼 ∈ [𝛼min, 𝛼max], 𝜃min < 𝜃(u) < 𝜃max, 𝐶L(𝛼,u) = 𝐶Lt (4.7)

Cost function As the optimizer queries the systemwith certain inputs, the corresponding outputs from
the system need to be valued to in turn tell the optimizer howwell the input performed. The inputs cannot
simply be scored on their associated drag, as this would tempt the optimizer into minimizing the drag, by
minimizing the lift produced. Instead, a promising angle of attack and wing shape combination should
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result in both a low drag coefficient and a lift coefficient that is very close to the target lift coefficient.
This is achieved with the cost function shown in Eq. (4.8).

𝐽(𝐶L, 𝐶D, 𝐶Lt) = −
𝐶L
𝐶D
⋅ 1
1 × 10−4 + (𝐶L − 𝐶Lt)2

⋅ 1
2 × 105 (4.8)

The cost of any set of system outputs is dependent on the lift and drag coefficients, as well as on
the target lift coefficient. The cost varies linearly with the aerodynamic efficiency 𝐶L

𝐶D
and is inverse

quadraticly related to the difference between the target and actual lift coefficients. The 1 × 10−4 and
1

2×105 terms are added to prevent the function from blowing up, and to scale the output to [−1, 0],
respectively. Two and three dimensional plots of the cost function for 𝐶Lt = 0.50 are shown in Fig. 4.10.
Note that the cost increases rapidly for any deviation from the target lift coefficient, while steps in the
dragcoefficient axis generally result in smaller cost variations. In other words, a solution that provides
low drag at a wrong lift coefficient is valued the similarly to a solution that is associated with a higher
drag at the right lift coefficient.
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Figure 4.10: Isometric (left) and topdown (right) view of the cost function for CLt = 0.50.

Additionally, the angle of attack and actuator constraints are also handled by the cost function. If a
set of inputs violates any of these constraints, then its cost becomes as shown by Eqs. (4.9) and (4.10).

𝐽 = (𝛼𝑖 − 𝛼⋆)2 + 𝐶J (4.9)
𝐽 = (𝜃𝑖 − 𝜃⋆)2 + 𝐶J (4.10)

In the case that the angle of attack of a set of inputs to be evaluated is outside the bounds [−2.5, 10.0],
the associated cost will be the square of the difference between the angle of attack 𝛼 and the middle of
the domain 𝛼⋆ = 3.75 degrees plus a large constant 𝐶J. The valid range of 𝜃 is [−25, 25] degrees, so
𝜃⋆ = 0 and Eq. (4.10) reduces to 𝐽 = (𝜃𝑖)

2 + 𝐶J. This cost penalty constant is set to 𝐶J = 10 to ensure
that the cost will always be higher than that of an input set that is not in violation of these constraints.
The square term serves to provide a gradient towards the middle of the parameter domain.

Optimizer The optimizer’s goal is to find inputs to the onboard model that minimize the cost of the
model outputs as determined by the cost function described in the previous paragraph. This optimiza
tion is performed with the Covariance Matrix Adaptation Evolutionary Strategy (CMAES) algorithm,
introduced in [14]. CMAES is an evolutionary strategy for blackbox optimization of nonlinear, non
convex, and continuous problems. It can handle multimodality and discontinuities in the function to be
optimized and has desirable global performance.

CMAES iteratively generates a population of inputs that are subsequently evaluated on the on
board model. Based on the returned costs of these candidate solutions, the mean and covariance
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matrix of the next generation’s population are adapted. This process is repeated until the variation of
the cost function converges to 1 × 10−6. In the online shape optimization procedure, a population size
of 150 was used. The middle of the input domain was used as the initial solution point x0. Furthermore,
the initial standard deviation 𝜎0 and the scaling of the input variables were selected such that x0±2𝜎0
spanned the width of the inputs domains.

The total required number of function evaluations is dependent on the population size used, and
also varies naturally due to the stochastic nature of the evolutionary strategy. Optimization with higher
population sizes generally requires fewer optimizer iterations, but also requires more system evalua
tions per iteration. With a population size of 150, an average of 180 optimizer iterations were needed
with a total number of system evaluations of 27000.

4.2.3. Onboard model
The onboard model consists of two Radial Basis Function Artificial Neural Networks (RBF ANNs) that
model the mapping of the system inputs 𝛼, 𝑢1, ..., 𝑢5 to the lift and drag coefficients. The 𝐶L and 𝐶D
networks consist of a single hidden layer with 500 and 940 centers, respectively. More approximation
power is needed for the 𝐶D network than for the 𝐶L network because of the higher degree of nonlinearity
of the drag relation compared to the lift relation.

The training of the neural networks is done with minibatch online training, with a batch size of 32.
During training, the network weights are updated using the Adagrad algorithm proposed by Duchi et
al. [15], with an initial learning rate of 0.01 and a mean squared error loss function.

The neural network models are not initialized with random weights, but rather with stored weights
from a previous training session. In future applications, such a previous training session would be the
online training performed during the most recent flight. For the simulations in this study, the starting
weights for the online shape optimization will be weights from offline training on the nominal model.
It is noteworthy that the simulated online optimization operates with the surrogate model in the loop.
Therefore, the initial weights serve only as a starting point and do not yet constitute a model that is
representative of the system to be optimized.

For the offline training of the onboard model, a data set consisting of 261,360 wing shape and
angle of attack combinations and their resulting lift and drag coefficients on the nominal model was
used, with 10% of the data being reserved for validation. Both neural nets were trained from scratch for
2000 epochs, which equated to roughly 23 hours of training time on a laptop (Intel ® Core ™ i74510U
CPU, 8.00 GB RAM).

Figure 4.11 shows the corresponding training and validation losses, converted to normalized root
mean square errors (NRMSEs) for ease of comparison.
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Figure 4.11: Training and validation losses for the lift (left) and drag coefficient networks (right) in offline training.

Even with the higher approximation power of the 𝐶D network, the NRMSE of the 𝐶L network is lower
because of the lower degree of nonlinearity in the lift relation. The loss curves of both networks still
exhibit a decreasing trend towards the end of the training session. The training cutoff at 2000 epochs
is a tradeoff between computational cost and starting point quality. The increased computational costs
of further training yield an increasingly diminished return in accuracy, and the networks are only to serve
as a starting point for the onboard model.
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The main benefit of using the onboard model instead of direct system evaluations is the low compu
tational cost. The CMAES optimizer typically requires thousands of function evaluations to converge
on an optimum. On the neural network models, hundreds of input combinations can be evaluated in
less than one second, whereas on the aerodynamic model each evaluation takes 1.5 seconds on av
erage. In other words, the indirect optimization using the onboard model is approximately 2500 times
faster than the direct optimization on the aerodynamic model.

On a realworld aircraft considerably more time would be required because of transients and noise
filtering, making this type of optimization unfeasible for direct use on the system. Both direct optimiza
tion using the nominal aerodynamic model, and indirect optimization using the offlinetrained onboard
model were performed for a number of target lift coefficients. In order to make the computational time
of the direct optimization more feasible, a population size of 9 was used for both. The resulting optimal
shapes as computed by the CMAES optimizer are shown in Fig. 4.12.
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Figure 4.12: Optimal wing shapes computed directly and indirectly on the system, for various target lift coefficients.

The optimal shapes computed by indirect optimization are very close to those computed using
the system directly. On average, the direct optimization took 44.7 minutes per target lift coefficient,
whereas the average computational time of the indirect optimization was only 3.9 seconds (about 688
times faster).

Replay buffer During the online minibatch training, the onboard model is trained on a set of training
data kept in memory in the replay buffer. This buffer consists of a history of evaluated inputs and
their corresponding lift and drag measurements. Since the onboard model is adjusted to adapt to this
data, the contents of the buffer are of critical importance. If the training data set lacks data points in a
region of the domain, then the neural nets will unlearn the previously learned from points in this region.
This phenomenon, known as catastrophic forgetting was first described in [16]. Therefore, a simple
firstinfirstout training set buffer will not be sufficient to learn and retain an accurate global onboard
model.

Instead, the replacing of old data points when the buffer is full is based on a nearest neighbor search
on all points in the buffer inspired by the coverage maximization strategy described in [17]. The data
point with the lowest mean euclidean distance to its 10 closest neighbors is replaced with the latest
available data point. This replacement strategy aims to maximize the coverage domain of the training
set by replacing the data points in regions of high data density and holding onto samples in data scare
regions of the domain.

In the future, the adaptation speed could be further improved by also prioritizing newer data points
to older ones in the more densely populated areas of the domain. During the relatively short simulations
presented in this study, the maximum buffer size was not reached. However, for longer operation on
an aircraft it would be a critical part of the online optimization strategy.

4.3. Simulation Results and Discussions
In this section, the results from two simulation runs are presented. During the first simulation, the
online optimization algorithm was run for 15 iterations with a fixed target lift coefficient of 0.75. During
the second simulation, 275 iterations of online shape optimization were simulated with a target lift
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coefficient varying between 0.25 and 1.25 and the aerodynamic efficiency of the resulting wing shapes
was compared to that of the wing jig shape. The wing Jig shape is defined as the shape of the wing at
rest, with all morphing actuators set to zero deflection. The wing jig shape does not have any twist.

4.3.1. Single target lift coefficient
The online shape optimization framework was run for 115 iterations, of which the first 100 were per
formed in wandering mode and the rest in optimization mode. The inputs that were evaluated on the
system are shown in Fig. 4.13, where the optimization phase is marked with a red background. As
expected, both the angle of attack and the virtual inputs vary within their bounds with no recognizable
pattern during the wandering phase. The cost associated with these pseudorandom inputs is generally
high, with one notable exception at iteration 26, where the resulting lift coefficient was relatively close
to the target lift coefficient by coincidence. Quickly after the algorithm enters the optimization phase
at iteration 101, the inputs plateau. At iteration 102, a shape is tried that results in higher cost than
the shape from the previous iteration. Subsequently the inputs move away from this location and, the
associated cost falls down and stabilizes.
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Figure 4.13: Input history for wandering and optimization (red background) with 𝐶Lt = 0.75.

More insight into the inner workings of the optimization algorithm is provided by the optimal inputs as
calculated by the optimizer, shown in Fig. 4.14. The optimal angle of attack, and optimal virtual inputs
remain unchanged for the first 32 iterations of the wandering phase. During this period, the onboard
model is adapting based on the measured system outputs. However, the optimal combination of inputs
has not changed yet.

At iteration 32, the algorithms estimation of the optimal input changes with a sudden jump for the first
time as the global minimum has been overtaken by a different input. Subsequently the estimation of
the optimal inputs changes repeatedly as the onboard model keeps training on an increasing number
of data points and starts to represent the system more accurately. The fact that the optimal inputs only
change slowly during the optimization phase, where estimated optimal inputs are evaluated on the
system, indicates that the onboard model has captured the trends in the exploratory data quite well
during the wandering phase. Two spikes in estimated optimal input can be observed at iterations 99
and 102. These two points correspond to an input that seemed promising based on the onboard model
at the end of the wandering phase, but once tested on the system actually yielded a lower performance
than expected. After evaluation on the system, this input combination does not show up in the optimal



56
4. Blackbox Online Aerodynamic Performance Optimization for a Seamless Wing with Distributed

Morphing Control

20 40 60 80 100

5

10
an

gl
e 

of
 a

tta
ck

, 
de

gr
ee

s

20 40 60 80 100
25
15
5
5

15
25

vi
rtu

al
 in

pu
t, 

de
gr

ee
s 1st virtual input

2nd virtual input

3rd virtual input

4th virtual input

5th virtual input

Figure 4.14: Optimal inputs as calculated by the optimizer for a target lift coefficient of 0.75.

inputs in later iterations.
The wing shapes evaluated on the system during both phases are shown in Fig. 4.15. The pseudo

random shapes span the full actuator domain. The optimal wing shape starts out with only minor
changes in camber near the wing root, as compared to the wing’s jig shape. Towards the tip of the
wing, the camber of the wing is decreased until the actuators in the tip module hit their maximum
negative deflection angles of 25 degrees. This morphing shape brings the spanwise lift distribution
of this zerotwist rectangular planform wing closer to the theoretically ideal elliptic lift distribution and
thereby reduces the induced drag.
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Figure 4.15: Morphing shapes evaluated on the system in the wandering and optimization phase.

One of the optimization phase shapes looks rather different from its counterparts. This is the shape
that was tried on iteration 102 and resulted in an increase in cost compared to the previous iteration.
In the following iterations, it was not repeated.

4.3.2. Varying target lift coefficient
In order to investigate the ability of the online shape optimization algorithm to find optimal inputs for dif
ferent target lift coefficients without repeated exploring, the optimization phase was extended to include
two repeated series of steps and a window of gradual changes in the target lift coefficient as depicted
in Fig. 4.16. The quality of the solutions actuated on the system were also evaluated by comparing
their lifttodrag ratios to those of the wing jig shape.

From iterations 100 to 160, the target lift coefficient is increased by 0.25 every 15 iterations. The
steps in target lift coefficient are marked with dashed vertical lines. As a direct result of the steps in
target lift coefficient, steps in the computed optimal angle of attack and virtual inputs can be seen at
the corresponding iterations. For the duration of the steps, the optimal inputs are stable. The cost
associated with the corresponding system outputs is also stable, although it is more noisy due to the
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Figure 4.16: Optimal inputs computed during the wandering and optimization phases.

added measurement noise.
Between iterations 175 and 275 the target lift coefficient is decreased from 1.25 to 0.25 in steps

of 0.01. As expected, the optimal angle of attack and mean camber of the optimal shape decreases
as the target lift coefficient decreases. The first virtual input, which contributes a constant amount of
camber morphing along the wingspan, decreases until it nears the negative actuator limit of 25 degrees
between iterations 175 and 248. Meanwhile the second virtual input, which represents a linear increase
in spanwise camber morphing, becomes less negative. Here the optimizer increases the negative 𝑢2
input because the lower 𝑢1 inputs leaves less room for spanwise lift reduction before the actuators at
the wing tip hit their maximum negative deflections. Between iterations 248 and 275, virtual inputs 𝑢2
through 𝑢5 are decreased to zero so that 𝑢1 can all the way to the 25 degree actuator limit. In other
words, for the target lift coefficient of 0.25, the optimizer sacrifices the increased lift induction efficiency
of a more elliptical spanwise lift distribution for an overall less cambered airfoil. This makes sense
since the airfoil already is relatively highly cambered, which is more efficient for producing higher lift
coefficients.

After iteration 275, the same steps in target lift coefficient are repeated. The optimal inputs are
almost the same between the runs, with the exception of 𝐶Lt = 0.50 during iterations 290305. Even
though the inputs are different in this case, the costs are very similar. The average cost during iterations
115130 is 0.475 with a standard deviation of 0.011, whereas the average cost during iterations 290
305 is 0.481 with a standard deviation of 0.018. This again highlights the importance of accurate lift
and drag estimations. Any combination of inputs can only be determined to be more efficient as long as
the difference is measurable. In simulations without simulated measurement noise, the revisited target
lift coefficients yielded the same inputs.

The lift coefficients and lifttodrag ratios measured during the wandering and optimization phases
are shown together with those of the jig shape in Fig. 4.17. As shown in Fig. 4.17, the quasirandom
shapes from the wandering phase produce lower lifttodrag ratios than the jig shape in roughly 80%
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of the cases. Many possible shape variations exist that are aerodynamically inefficient, whereas only
a smaller subset of shapes yield better aerodynamic performance. By chance, some random inputs
perform comparably or even better than the jig shape.
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Figure 4.17: Performance comparison of the jig shape and the online optimization shapes.

With the exception of only two data points, the optimization points all outperform the jig shape in
terms of aerodynamic efficiency. Although, for those two data points, the aerodynamic model output
without simulated measurement noise does outperform the jig shape. Another effect of the measure
ment noise can be observed in the decreasing spread of the optimization point cloud with increasing
lift coefficient. Naturally, as the lift and drag coefficients become larger, the lifttodrag ratio becomes
less sensitive to measurement noise. The clustering of optimization points at the target lift coefficients
that were repeated for multiple iterations indicate that the optimizer is able to achieve the target lift
coefficient very closely whilst also outperforming the jig shape.

As mentioned before, the relatively highly cambered airfoil is naturally efficient at inducing higher lift
coefficients. Which is why the highest performance increases from active wing morphing are observed
for low lift coefficients (0.250.50). At 𝐶L = 0.25 the lifttodrag ratio is increased with approximately
14.6%. At higher target lift coefficients, less increase in aerodynamic efficiency can be gained from
changing the average amount of camber. At 𝐶L = 1.00 the lifttodrag ratio is increased with approxi
mately 2.5%. Due to the rectangular planform, and absence of twist in the jig shape, reshaping of the
spanwise lift distribution closer to an elliptical distribution yields aerodynamic performance increase at
all lift coefficients.

4.4. Conclusions
In this study a novel online learningbased blackbox approach to active morphing wing shape opti
mization was presented. Its objective is to maximize the steadystate lifttodrag ratio for a given target
lift coefficient using lift and drag measurements. The presented method combines an onlinetrained
artificial neural network (ANN) onboard model with an evolutionary optimization algorithm. This opti
mization strategy was tested in simulation on a surrogate model of a seamless camber morphing wing
and its performance was compared to the performance of the wing jig shape. Before optimizing, the
algorithm was allowed to explore the optimization space with pseudorandom inputs for 100 iterations
in the wandering phase. Subsequently, in the optimization phase, the onboard model was used by the
optimizer to find the optimal wing shape and angle of attack to achieve the target lift coefficient on the
surrogate wing model.

During the wandering phase, the radial basis function neural networks were able to sufficiently
learn the mapping between the angle of attack, wing shape, and the resulting aerodynamic forces as
to facilitate the optimizer to find wing shapes that outperformed the jig shape in terms of aerodynamic
efficiency. Due to the global character of the onboard model used, the presented method was able to
find wing shape and angle of attack combinations with lifttodrag ratio increases of up to 14.6% for a
wide range of target lift coefficients without needing further exploration.
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No published examples exist of blackbox online shape optimization methods for morphing wings.
To the best of the author’s knowledge, this paper presents the first blackbox online shape optimization
approach for morphing wings. This datadriven approach is more adaptable, and potentially able to
realize higher performance than conventional shape scheduling by lookup tables. The morphed wing
shape could be tailored in flight to maximize the performance of the particular aircraft under consider
ation, rather than the performance of a model built from previous test fight data on a similar aircraft.
Furthermore, the approach seeks to improve on existing local greybox methods by retaining the infor
mation learned in a global onboard model so that a smooth and direct transition to another operating
condition can be made. In other words, a desirable estimate for optimal inputs at other operation con
ditions is available without needing to excite the system at those conditions for model identification
first.

In the present case the input space of the onboard model is comprised only of the wing shape and
angle of attack. In actuality, the mapping of these parameters to the lift and drag coefficients is also
influenced by the Reynolds number and Mach number. This limits the scope of the onboard model to
the region where the variations of these coefficients with respect to the Reynolds and Mach numbers
are small. However, due to the blackbox nature of the onboard model, future studies could, with little
effort, incorporate the Reynolds and Mach numbers as additional inputs to expand its scope to the
full flight envelope of the intended platform. In future work, the presented online shape optimization
strategy will be tested on the SmartXAlpha seamless morphing wing in wind tunnel experiments.
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Online Aerodynamic Performance

Optimization for a Morphing Wing with
Distributed Sensing and Control

In this paper the wind tunnel experiments using the online wing shape optimization framework on
SmartXAlpha are presented, and the results are discussed.

This paper will be submitted to the IEEE Transactions on Control Systems Technology.
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On-line Black-box Aerodynamic Performance
Optimization for a Morphing Wing with

Distributed Sensing and Control
Tigran Mkhoyan, Student Member, IEEE, Oscar Ruland, Roeland De Breuker, Xuerui Wang

Abstract—Inspired by nature, smart morphing technologies
enable the aircraft of tomorrow to sense their environment and
adapt the shape of their wings in-flight to minimize fuel con-
sumption and emissions. A primary challenge on the road to this
future is how to use the knowledge gathered from sensory data to
establish an optimal shape adaptively and continuously in-flight.
To address this challenge, this paper proposes an architecture
for online black-box aerodynamic performance optimization for
active morphing wings. The proposed method integrates a global
online-learned radial basis function neural network (RBFNN)
model with an evolutionary optimization strategy. The actual
wing shape is sensed via a computer vision system, while the
optimized wing shape is achieved via distributed control. The
effectiveness of the optimization architecture was experimentally
evaluated on an active trailing edge camber morphing wing
demonstrator with distributed sensing and control in an open jet
wind tunnel. Compared to the unmorphed shape, a 7.8% drag
reduction was realized, while achieving the required amount of
lift. Further data-driven predictions have indicated that even
higher reductions in drag are achievable and have provided
insight into the trends in optimal wing shapes for a wide range
of lift targets.

Index Terms—morphing, neural networks, evolutionary op-
timization, black-box optimization, vision-based control, wind
tunnel experiment

I. INTRODUCTION

RECENT trends in aviation highlight the ever-increasing
need for fuel economy and sustainability. Active morph-

ing technology can offer significant benefits over conventional
wing designs. Due to conflicting requirements [1], conven-
tional wings are only optimized for a single flight condition
(such as cruise). By contrast, the ability to morph wings into
a desirable shape can allow aircraft to actively improve flight
performance across the full flight envelope. In aeronautics,
morphing has been historically investigated from the early
days of heavier-than-air flight. Demonstrated in the 1900s by
active roll control of the Wright Flyer in low-speed flights [2].
Current advancements in smart materials and actuators such
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as shape memory alloys, compliant mechanisms, and piezo-
electrics [3] have allowed inventing more elaborate designs
capable of achieving higher flight speeds.

While many challenges exist in designs of morphing mech-
anisms, the key challenge to efficiently benefit from active
morphing during in-flight operation an adequate a shape
optimization strategy that is highly adaptive and capable of
overcoming local minima in the optimization landscape.

The currently practiced method of “determining” the op-
timal wing shape is through the selection of a wing shape
from an offline-determined and fixed look-up table. However,
the relationship between the wing shape and aerodynamic
efficiency is highly nonlinear and depends on many uncertain
parameters, which typically makes the look-up table method
suboptimal. By contrast, a promising method is online data-
driven nonlinear optimization, which can tailor the wing shape
adaptively and optimally to any specific flight condition, like
birds do [4].

Online shape optimization strategies for active morphing
wings have been investigated extensively in the literature. In
[5], a generative set search method was used to optimize the
positions of eight leading and trailing edge control surfaces
at a fixed angle of attack (AOA) to reduce the drag on a
wind tunnel model. This local black-box optimization strategy
uses a linear lift coefficient model, the parameters of which
have to be identified before optimization through sweeps of the
control surfaces for the given AOA. A primary disadvantage
of this direct search method is the high likelihood of local
optima encounters, contributed by the local scope of the
linear lift model and the search character. In [6], a real-
time adaptive least squares drag minimization approach has
been proposed for the Variable Camber Continuous Trail-
ing Edge Flap (VCCTEF) concept [7]. This strategy uses a
recursive least-squares algorithm to estimate the derivatives
of the aerodynamic coefficients with respect to the system
inputs. The optimal wing shape and elevator deflection are
then calculated using the Newton-Raphson method from a
constrained optimization problem. Improvements to the model
excitation method, onboard model, and optimization methods
were demonstrated in wind tunnel experiments to achieve up to
9.4% drag reduction on the Common Research Model (CRM)
with the VCCTEF at off-design conditions at low subsonic
speeds [8]. Simulations have also indicated that a 3.37% drag
reduction is achievable on the CRM with a distributed mini-
plain flap system at Mach 0.85 [9]. While the proposed linear-
in-the-parameters multivariate polynomial model has a low
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computational cost, a significant shortcoming is that the model
coefficients are only valid around a trimmed equilibrium. The
implications of this approach are that the model parameters
need to be re-estimated at every operational point to perform
real-time drag minimization throughout the flight envelope.
Other challenges of this approach are, the necessity of re-
identification by model excitation maneuvers (sweeps in AOA
and control surfaces), assumption of model structure (e.g.
polynomial model, order) and local nature of gradient-based
optimization, causing increased fuel consumption and compro-
mised ride comfort during the flight, reducing the adaptability
of the gray-box model to different flight regimes and local
optima encounters in the search domain [10]. .

Overcoming these issue with local optima and gray-box
model structure can be achieved with online black-box model
identification and global optimization methods. This will yield
the following benefits: (i) global wing shape solutions can be
found, yielding even better drag reductions, (ii) no additional
model excitation maneuvers or changes to the model structure
will be needed for operation at different flight conditions. The
global optimization approach, however, does not come without
challenges.

Global optimization methods generally require more objec-
tive function evaluations than gradient-based methods, which
makes them impractical for direct application to complex
aerodynamic shape optimization. Low evaluation cost global
surrogate models may provide a solution by sample-efficiently
generalizing the information gathered via onboard sensors
[11], [12]. Widely used methods for surrogate modeling in
the literature are Polynomial Regression (PR) [13], Artificial
Neural Networks (ANNs) [14], [15], radial basis function
(RBF) models [16], and Gaussian process (GP), also referred
to as kriging [17], [18]. Evolutionary optimization methods,
combined with aerodynamic surrogate models, have been
effectively utilized as global black-box optimization method
for aerodynamic shape optimization problems [19], [20]. In
[21] further improvement to local minima have been proposed
by two-stage approach for aerodynamic wing planform design,
using global kriging surrogate model and an evolutionary
gradient-based optimization

A critical factor for global and adaptable in-flight opti-
mization is the online identification of surrogate models. A
surrogate-assisted evolutionary optimization framework was
proposed in [22], combining data-parallel global GP model
and RBF models to accelerate convergence of gradient-based
evolutionary optimization algorithm. In online data driven
framework, ANNs are a suitable candidate for function ap-
proximation due to their adaptability and ability to approx-
imate complex non-linear functions. However, designing an
ANN-based approximation strategy requires problem-specific
training, suitable network structure and tradeoff between com-
putational cost and accuracy. RBF neural network structure
has demonstrated faster learning and higher accuracy over
multi-layer perceptron (MLP), for global model identification
of nonlinear dynamics in power systems [23].

This paper proposes an online performance optimization
strategy which, integrates a data-driven global ANN onboard
model, with an evolutionary algorithm for global optimization

to achieve effective and adaptable online performance opti-
mization.

To obtain actual shape of the morphing wing in real-
time, vision-based control is proposed in this study. Previ-
ous research, conducted on non-invasive motion tracking of
flexible and morphing systems subject to gust excitation, has
demonstrated effectiveness and high flexibility with vison-
based systems [24]. Similar setups have also been used
as a stabilization system for flapping-wings [25], obstacle
avoidance for UAVs [26], and flight maneuvering tracking
[27]. This methodology and corresponding framework with
distributed control architecture is validated experimentally on a
seamless morphing wing, the SmartX-Aalpha, in the Open Jet
Facility (OJF) of Delft University of Technology. The SmartX-
Alpha is an over-actuated and over-sensed morphing wing
demonstrator with six distributed translation induced camber
(TRIC) morphing modules [28]1. An overview of the proposed
online optimization framework is shown in Fig. 1.

The paper is organized as follows. Section II presents
the online optimization methodology. An online optimiza-
tion framework for with real-time vison-based control of the
morphing wing is proposed in Sec. III. Section IV describes
the wind tunnel experimental setup and procedures. The ex-
perimental results are presented in Sec. V. Conclusions and
recommendations are discussed in Sec. VI.

II. OPTIMIZATION METHODOLOGY

A. Chebyshev Polynomials

To maintain a degree of smoothness in the actuated wing
shapes, and decouple the dimensionality of the optimiza-
tion problem from the input dimensionality of the morphing
wing, the shape of the wing is parameterized. The spanwise
distribution of camber increments that constitute a morphed
wing shape is described using Chebyshev polynomials. Many
equivalent definitions of the Chebyshev polynomials of the
first kind Tn(x) exist, the simplest of which is Tn(x) =
cos(n ·arccos(x)), where n is a non-negative integer [29]. The
expansion of this expression yields a sequence of polynomials
which are orthogonal in the interval [−1, 1], and where each
polynomial Tn(x) is of degree n. Within this interval, each of
the polynomials is also bounded within −1 ≤ Tn(x) ≤ 1.

B. Covariance Matrix Adaptation – Evolutionary Strategy

The optimization of the onboard model outputs is performed
with the Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) algorithm, proposed in [30]. CMA-ES is an evo-
lutionary optimization strategy for black-box optimization of
nonlinear non-convex continuous problems. With sufficiently
large population sizes, CMA-ES has desirable global search
performance [30]. CMA-ES iteratively samples populations
of candidate solutions from a multivariate normal distribution
N (m,C), which is uniquely identified by its mean m ∈ Rn
and covariance matrix C ∈ Rn×n [31]. Based on the returned
costs of these candidate solutions, the mean and covariance

1The project video can be found via https://www.youtube.com/watch?v=
SdagIiYRWyA&t=319s
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Fig. 1. Online shape optimization architecture diagram with components of the optimization algorithm marked in gray.

matrix of the next generation’s population are deterministically
adapted. This process is repeated until the variation of the cost
function converges to below a set threshold.

With g the generational counter, the kth offspring from the
subsequent generation g + 1 is sampled from a multivariate
normal distribution N , which is dependent on the current
generation’s mean search distribution value m(g), overall
standard deviation or step size σ(g), and covariance matrix
C(g) as shown in Eq. (1):

x
(g+1)
k ∼ N (m(g), (σ(g))2,C(g)) for k = 1, . . . , λ (1)

The distribution of N (m(g), (σ(g))2,C(g)) is equal to
m(g)+σ(g)N (0,C(g)). From this expression, the influence of
the three parameters is more apparent. m(g) shifts the center of
the multivariate normal distribution in a n-dimensional space,
σ(g) scales the size of the distribution, and C(g) adapts the
shape of the distribution. During each iteration of the algorithm
m(g),σ(g), and C(g) are updated based on the object parameter
variations.

As shown in Eq. (2), the mean of the next generation is a
weighted average of the µ best scoring search points from the
sample x

(g+1)
1 , . . . ,x

(g+1)
λ . In other words, the center of the

next generation’s distribution is shifted in the average direction
of the best performing candidates:

m(g+1) =

µ∑

i=1

wi x
(g+1)
i:λ (2)

The adaptation equation for the covariance matrix is shown
in Eq. (3), below:

C(g+1) = (1− ccov)C(g) +
ccov

µcov
p(g+1)
c p(g+1)T

c︸ ︷︷ ︸
rank-one update

+ ccov

(
1− 1

µcov

)

×
µ∑

i=1

wi

(
x
(g+1)
i:λ −m(g)

σ(g)

)(
x
(g+1)
i:λ −m(g)

σ(g)

)T

︸ ︷︷ ︸
rank-µ update

(3)

Here, ccov and µcov are the learning rate for updating the
covariance matrix and weighting parameter between rank-one
and rank-µ updates, respectively.

The rank-µ update uses information from previous gen-
erations to improve the reliability of the covariance matrix
estimator for small population sizes. The rank-one update
exploits the directional information from past generations
using the evolution path p

(g+1)
c .

The evolution path is a sum of successive steps as defined
as follows:

p(g+1)
c = (1−cc)p(g)

c +
√
cc(2− cc)µeff

m(g+1) −m(g)

σ(g)
(4)

, where cc is the learning rate for cumulation for the rank-
one update, and µeff is the variance effective selection mass
in Eq. (5), below:

µeff =

(
µ∑

i=1

w2
i

)−1
(5)

The overall standard deviation σ(g) scales the size of the
search distribution based on the length of the evolution path
compared to its expected length under random selection as
shown in Eq. (6):

σ(g+1) = σ(g) exp


 cσ
dσ




∥∥∥p(g+1)
σ

∥∥∥
E ‖ N (0, I)‖

− 1




 (6)

In this equation, cσ and dσ are the learning rate for the
cumulation for the step size control and a damping parameter,
respectively. The scaling of the distribution with σ(g) can
be used to either broaden the distribution’s search space or
to focus it. When an evolution path is relatively long, the
successive steps are roughly in the same direction and the step
size should be increased so that fewer iterations are needed
to cover the distance. Conversely, when the evolution path is
short, the successive steps, at least partially, cancel each other
out and the step size should be decreased [31].

C. Radial Basis Function Artificial Neural Networks

The global surrogate model, herewith referred to as the
onboard model, approximates the mappings from the angle
of attack and wing shape inputs to the lift and drag coefficient
outputs using two Radial Basis Function Neural Networks
(RBFNNs). These types of NNs, first introduced by [32], use
RBF as activation function and are widely used as function
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Fig. 2. Single-hidden-layer radial basis function neural network architecture.

approximators, particularly suitable for multi-parameter and
scattered data [33] (e.g. aerodynamic flight data).

The architectures of the two single-hidden-layer RBFNNs
used in this study are shown in Fig. 2. The six inputs to the
networks are the angle of attack α and the five virtual inputs
that describe the wing shape u1, . . . , u5, and their respective
outputs are the lift and drag coefficients CL, CD.

The RBFNNs consist of three layers. The first layer is the
input layer. It transfers the 6-dimensional input data to each of
the n nodes in the subsequent (hidden) layer, consisting of n
neurons with RBF activation functions. Equation (7) represents
the hidden unit activations given by the basis functions φj
(e.g., Gaussian basis functions). These depend on the input
activations from the previous layer x, and on the parameters
µ and σj [33], where µ represents the RBF location in Rk
and σj the RBF radius.

φj(x) = exp

(
−‖x− µj‖

2

2σ2
j

)
(7)

Both the center locations and the radii of the RBF basis
functions are determined by the network training process. In
the third (linear output) layer, the activations of the hidden
layer neurons are multiplied with their respective weights wj
and summed to form, together with a bias parameter, the
network output. These weights and the bias parameter are also
determined by the training process.

D. Adaptive Gradient Descent

The quality of an ANN model with a specific set of network
parameters is expressed in a prediction error metric (loss).
Gradient descent is a commonly used algorithm for stepwise
optimisation of network parameters by iteratively approach a
loss minimum. The next set of network parameters at timestep
t are given by θt+1 = θt − η∇θtJ(θt), where ∇θtJ(θt) is
the gradient of the loss function with respect to the network
parameters, and η is the learning rate, which determines the
size of the steps taken.

The critical parameter, responsible for convergence of the
training, is the learning rate η. In methods such as stochastic
gradient descent (SGD), the tuned value of η is problem-
specific, lower values corresponding to slow convergence rate
and higher values faster rates and higher risk to divergence.
Adaptive gradient descent (AdaGrad) is a widely used method
for automatic tuning of η, generally yielding improved training
[34]. . The AdaGrad optimizer adapts one learning rate for
each dimension using historical data as shown in Eq. (8):

θt+1,i = θt,i −
η√

Gt,ii + ε
· gt,i (8)

Here, gt,i is the gradient of the loss function w.r.t. parameter
i at time t, and Gt,ii is the cumulative sum of the squares of
the past gradients as shown in Eq. (9):

Gt,ii =
t∑

τ=1

g2τ,i (9)

The Gt,ii in the denominator in Eq. (8) is responsible for
gradual diminishing of η, based on gradient histories.

III. OPTIMIZATION ARCHITECTURE

In this section, the optimization strategy is presented. First,
an overview of the architecture is described, followed by more
detailed explanations of the individual components.

An overview of the optimization architecture is shown
in Fig. 1. The optimization method involves a fast model
optimization inner loop and a slower system evaluation outer
loop. In the fast loop, the evolutionary optimizer uses the
onboard model to estimate the performance of generations
of candidate angle of attack and wing shape combinations
α,u. The estimated performance ĈL, ĈD of these candidate
solutions is scored with a cost function J(CL, CD, CLt), where
CLt is the target lift coefficient, and this information is fed
back to the optimizer so that a new generation of improved
candidate solutions can be generated.

After the optimizer has converged on a single “most promis-
ing” input, it will be actuated on the physical system. First,
the virtual shape inputs u1, . . . , u5 are transformed to the
reference trailing edge displacements at the twelve actuator
locations zref ∈ R12. The angle of attack is converted to a
reference turntable angle with ψref = α − ε, where ε is the
angular difference between the relative wind direction and the
turntable’s zero angle direction. Then, the reference table angle
and trailing edge displacements are sent to the turntable and
morphing controllers, respectively. The morphing controller
uses the TE (Traling Edge) displacement feedback zm from the
vision system to steer the TE displacements to their reference
values by controlling the morphing actuators θ. The vision
system uses five infra-red cameras to track the positions of
markers on the wing to determine the amount of trailing-edge
displacement realized.

After the controllers have converged and the intended wing
shape and angle of attack are actuated on the system, the
resulting aerodynamic forces are measured using a force
balance which is mounted to the turntable. The resulting
measurements Fxm ,Fym

are transformed to the lift and drag
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coefficients CLm , CDm . Both the inputs used, and the resulting
aerodynamic coefficients, are added to the training set which
is kept in memory. Lastly, the outer loop is completed by
training the onboard model, which results in updated model
parameters wi+1. The key blocks in Fig. 1 are elaborated in
Sec. III-A-Sec. III-E.

A. Morphing Wing

The central block in the diagram represents the autonomous
morphing wing system. The wing has six distributed transla-
tion induced camber (TRIC) modules, allowing independent
camber and span-wise twist morphing of local span segments
[28]. The skin is actuated by an internal mechanism, allowing
smooth and seamless morphing along the chord. The morphing
target shape is commanded with 12 high-performance Volz
DA-22-12-4112 servos per module (two per module) embed-
ded in the wing box, allowing the trailing edge bottom skin to
slide in chord-wise and span-wise direction along a guided
sliding interface. This is illustrated in Fig. 3. To limit the
adverse aerodynamic impacts from gaps introduced between
independently moving adjacent surfaces, elastomeric skin seg-
ments are integrated between the modules. The elastomeric
skin is tailored to allow sufficient flexibility for symmetric and
differential actuation (inter and intra module) of ±25 degree
for each servo unit. The rotational motion is converted to linear
sliding motion through a ball joint linkage system, which
results in morphing of the airfoil from its nominal NACA6510
aerodynamic jig shape [28].

Seamless morphing
modules

Piezoelectric
actuators

Actuator pair
(module 2)

Elastomeric skin

y
x

-z

Sliding interface

Integrated
actuator

Wingbox

Root clamp

Fig. 3. Morphing wing actuation mechanism and coordinate system.

Because of nonlinear backlash effects in the morphing
mechanism, the nominal NACA6510 aerodynamic jig shape
can not be consistently realized with only zero degree actu-
ation of the servo units. Since the effects of the nonlinear
backlash are dependent on the actuation history, a standard
actuation maneuver is included in the jig shape definition.
The jig shape is defined as the shape of the wing after
a pre-designed maneuver, which consists of a 20 degree
doublet input to all servos, followed by a constant zero degree
actuation command to all servo units.

B. Optimization Algorithm

The goal of the optimization procedure is to realize the
highest lift-to-drag ratio for a given target lift coefficient using

measurements of the aerodynamic forces. The optimization
algorithm comprises three main parts – namely the cost
function, onboard model, and the optimizer – shown on the
left side in Fig. 1. A pseudocode description of the online
optimization algorithm is given by Algorithm 1.

Algorithm 1: Online performance optimization.
Input: α, vritual inputs u1, . . . , u5
Output: CL, CD
while running do

while averaging Fx, Fy do
while ε > 1× 10−6 do

Populate target candidate space;
Obtain initial CL, CD Estimate;
Evaluate score;

end
Transform u1, . . . , u5 → z1, . . . , z12;
Command wing α and z1, . . . , z12;

end
Update buffer;
Retrain onboard model;

end

During each iteration of the optimization procedure, the
evolutionary optimizer generates a population of candidate
solutions and queries the onboard model with their angle of
attack and wing shape combinations α,u. In turn, the onboard
model predicts the steady-state lift and drag coefficients result-
ing from each of these inputs, and the cost function scores the
desirability of these predicted outputs based on the target lift
coefficient CLt . Subsequently, the scores of the evaluated input
combinations are used by the optimizer to generate a more
promising population of input combinations. This cycle is
repeated with a frequency of approximately 15 Hz, depending
on the population size and available computing power. This
process continues until the optimizer converges onto a single
most optimal angle of attack and wing shape combination.
This input combination is then actuated on the real system and
the resulting measurements are subsequently used to improve
the onboard model.

1) Virtual Inputs: Within the optimization algorithm, the
shape of the wing is represented by the virtual inputs
u1, . . . , u5 rather than the trailing edge displacements at the
twelve actuator locations directly. These virtual inputs scale
five basis shapes, which are described by the first five Cheby-
shev polynomials of the first kind (Sec. II-A), re-scaled onto
the [0, 1.80] m domain, where 1.8 m is the half-wing span.
In other words, the five virtual inputs are the coefficients of a
fifth-order Chebyshev approximation of the spanwise camber
distribution function that describes the morphed wing shape.
This distribution function is given in Eq. (10):

z(y) =
5∑

i=1

uiTi(y) (10)

Even though the virtual input parameterization is used to
describe the wing shape within the optimization framework,
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Fig. 4. Virtual input basis functions.

it is the local trailing edge deflection that directly cause the
measured aerodynamic performance. The local trailing edge
displacement zi at the actuator i is given by zi = z(yi), where
yi is the spanwise position of the actuator measured from the
wing root. The shapes described by these basis polynomials
and their contributions to the amount of camber at the actuator
locations are shown in Fig. 4.

By using the virtual inputs to describe the wing shape to
dictate the trailing edge displacements at the actuator locations,
the dimensionality of the optimization problem is reduced
from 13 to 6 (five virtual shape inputs and one angle of
attack input). This significantly reduces the computational load
of the optimization, and also makes the computational load
independent of the number of actuators on the morphing wing.
Furthermore, the basis functions also serve to enforce a certain
degree of smoothness in the final shapes.

2) Optimization Problem: The goal of the online shape
optimization is find the most aerodynamically efficient wing
shape and angle of attack combination without altering the
intended flight path of the aircraft. The maximization of the
aerodynamic efficiency CL

CD
results in reduced fuel consumption

of the aircraft. Additionally, the right amount of lift force must
be induced in order to maintain level flight. This constraint is
posed by the target lift coefficient CLt . Thus, the objective of
the optimizer is to find the set of inputs α, u1, . . . , u5 that
maximizes the lift-to-drag ratio CL

CD
on the onboard model

while meeting the target lift coefficient, and without violating
the angle of attack or trailing edge displacement limits.

The mathematical representation of this optimization prob-
lem is shown in Eq. (11), where u ∈ R5×1 represents the
virtual input vector:

arg max
α,u

CL(α,u)

CD(α,u)

subject to α ∈ [αmin, αmax],

u1, . . . , u5 ∈ [umin,umax],

z1, . . . , z12 ∈ [zmin, zmax],

CL(α,u) = CLt

(11)

Because of the backlash effects in the actuation mechanism,
the required actuator angles for any given wing shape are not
unique and are unknown beforehand. Therefore, limits were
imposed on the commanded local z-displacements of the trail-
ing edge at the actuator positions z1, z2, . . . , z12 rather than
on the actuator angles. The maximum absolute displacement

achievable at any actuator position is dependent on the actua-
tion of the neighboring actuators. Actuator pairs that deflect in
unison are able to effectuate larger trailing edge displacements
than actuator pairs that deflect in opposite directions. The
minimum and maximum local vertical displacements allowed
for the optimizer were selected as −10 mm and 10 mm
respectively. This was done not to completely prevent all
occurrences of actuator saturation, but rather to eliminate wing
shapes that would not be achievable. The virtual inputs were
constrained by the bounds of the data on which the onboard
model is trained, as the ANN are not capable of extrapolating
outside the data domain. The virtual inputs and angle of attack
bounds pose constraints on the inputs and are implemented
directly as constraints on the input space. By contrast, the TE
displacement bounds and target lift coefficient pose constraints
on intermediate and output variables and are implemented
indirectly through the cost function scoring.

3) Optimizer Configuration: The CMA-ES algorithm was
used to solve the optimization problem posed by Eq. (11).
A relatively large population size of λ = 150 was used to
improve the global search performance of the algorithm. The
middle of the input domain was used as the initial solution
point x0. To allow global convergence, the standard deviation
σ0 and the scaling of the input variables were selected such
that x0 ± 2σ0 spanned the width of the domain in each
of the input axes (approximate neighborhood). A suitable
cost function variation convergence threshold was found at
1 × 10−6, such that optimizer yielded adequate convergence
without impacting the computational time. The computational
time was further reduced by parallel query of (150) candidate
solutions.

4) Onboard Model: The onboard model on which the
candidate solutions from the optimizer are evaluated com-
prises two single-hidden-layer RBFNNs. These networks are
continuously improved with training being performed each
iteration using training data kept in memory in the replay
buffer. After balanced tradeoff between approximation power
and computational load, the lift and drag coefficient networks
were configured with 500 and 940 neurons, respectively. The
higher neuron count in the drag coefficient network (higher
approximation power) was deemed necessary due to nonlinear-
ity in the virtual input parameters (i.e. dependency on specific
allocation setting), versus proportional relationship between
lift and camber increase for the lift coefficient.

5) Buffer and Training: The online training of the networks
is performed with mini-batch gradient descent with a mini-
batch size of 32. During training, the RBF center locations,
radii, network weights, and the bias parameter are updated
using the Adagrad adaptive gradient descent algorithm with a
mean squared error loss function. The initial learning rates for
both networks were configured as 0.01.

The training data, comprised of previously evaluated inputs
and their lift and drag coefficients, is stored in a buffer. Since
the onboard model’s parameters are adjusted to minimize the
loss on the training data, the contents of the buffer are of
critical importance. If the training data set lacks data points
in a region of the domain, then the neural nets will unlearn
the previously learned information from points in this region.
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This phenomenon, known as catastrophic forgetting was first
described in [35]. Therefore, a simple first-in-first-out training
set buffer will not be sufficient to learn and retain an accurate
global onboard model.

Instead, the replacement of old data points when the buffer
is full is based on a nearest neighbor search on all points
in the buffer, inspired by the coverage maximization strategy
presented in [36]. The data point with the lowest mean
euclidean distance to its 10 closest neighbors is replaced
with the latest available data point. This replacement strategy
aims to maximize the coverage domain of the training set by
replacing the data points in regions of high data density and
holding onto samples in data scare regions of the domain.

The buffer, containing approximately 240 samples, was
selected such as to ensure that the memory was not depleted
for a given measurement frequency (1 new measurement every
70 seconds) during a ≈ 4.5 hrs total measurement time. For
commercial aircraft operation with long operational times,
adequate adjustment of this buffer may be necessary.

6) Cost Function: The system outputs are CL, CD The cost
function is chosen such as to maximize the lift-to-drag ratio,
while limiting the error between the actual and the target lift
coefficient. Hence, the cost function depends not only on the
system outputs, CL, CD, but also on the target lift coefficient.

The cost function (Eq. (12)), consist of three terms and
defined as follows:

J(CL, CD, CLt) = −CL

CD︸ ︷︷ ︸
efficiency

· 1

1× 10−4 + (CL − CLt)
2

︸ ︷︷ ︸
deviation from lift target

· 1

2× 105︸ ︷︷ ︸
scaling

(12)
Here, a minus sign is added to the first term is, the lift-to-

drag ratio, to yield a more negative cost value (lower indicating
a more desirable system output) for higher ratios. A scaling
value is added to the second term, the inverse of the squared
error between the actual lift coefficient and the target lift
coefficient, to prevent singularities for small error values. The
efficiency and lift target terms are multiplied rather than added,
such that a low cost can only be achieved when high efficiency
and the correct amount of lift are achieved simultaneously.
Lastly, the third term serves to scale the cost function output to
be in [−1, 0]. As an example, the cost function for CLt = 0.50
is shown in Fig. 5.

lift coefficient0.40 0.45 0.50 0.55 0.60
drag coefficient

0.0250.1000.1750.250

cost

0.00

0.25

0.50

0.75

1.00

CLt

Fig. 5. The cost function for CLt = 0.50.

It can be observed from Fig. 5 that a solution that deviates
from the target lift coefficient is undesirable even if it provides
low drag.

Additionally, the constraints on the vertical TE displace-
ments z1, . . . , z12 are also handled in the cost function. If
the local TE displacement at any of the actuator locations is
outside the bounds, the cost of the associated inputs becomes
as shown in Eq. (13):

J = max(|z|)2 + CJ (13)

Here, CJ is a large positive constant such that the cost will
always be higher than those of inputs that do not violate the
constraints. The square of the maximum absolute local TE
deflection provides a cost gradient to aid the evolutionary
optimizer in steering the populations of candidate solutions
back to the feasible space.

C. Vision System

1) Vision-based Shape Reconstruction: A real-time vision-
based system is developed to meet a critical aspect of backlash
compensation, and the optimization control strategy, namely
accurate knowledge of the morphing wings’ shape. The vari-
able of interest to the controller is the local vertical displace-
ment of the wing trailing edge with respect to a body-fixed
coordinate system. Due to the relatively stiff wing box design
(Sec. III-A), the body-fixed coordinate system, FB , is chosen
to be near the root of the wing in the wing box section, with
origin OB . The displacement of the trailing edge, denoted as
the z = [z1, z2, ..., z12]T along 12 stations of the span, is
reconstructed in the FB frame in real-time by means of a 5-
view vision-based tracking system. Each morphing module is
fitted with a pair of active Infrared (IR) light-emmiting diodes
(LEDs), with 3 additional markers for the definition of FB , as
illustrated in Fig. 7. An overview of the vision-based tracking
pipeline in the experimental setup is shown in Fig. 6.

zi(t)

rBC(t)

C++ OptiTrack API engine

DSIM Synchronisation

C++ client function.NET client / Simulink API engine

α(t) rotation

table rotation

CAMCAMCAM
Filtering 3D Recon-

struction
Coordinate
Transform

Controller

Fig. 6. Real-time vision-based tracking pipeline with continuous morphing
wing turntable rotations.

2) 3D Reconstruction: The n-view 3D reconstruction prob-
lem is concerned with finding the optimal estimation of an
object X̂ in a 3D global coordinate frame (i.e., locations in the
x, y and z-axes), which is observable in noisy x̄1, x̄2, . . . , x̄n
points correspondence in n camera views. The point cor-
respondences x̄i are generally defined by markers in u, v
coordinates of a 2D image plane and transformed to a camera
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fixed reference frame, FC via triangulation [37]. Prior to
this process, several successive image processing steps are
implemented to refine observation of point correspondences.
The most common setup for triangulation is a calibrated
2-view stereo camera setup, which was demonstrated in a
previous study for reconstruction of flexible wing motion
[24]. However, the tracking accuracy and redundancy can be
improved with the addition of more camera observations (> 2).
As highlighted in [24], this is particularly beneficial for objects
subject to adverse environmental conditions in the wind tunnel
(flow conditions and mechanical vibrations), where calibration
drift can be accumulated over time. Therefore, a five-camera
setup was used in this study.

The principle of n-view reconstruction relies on back-
projecting the 3D point onto the respective camera views, al-
lowing to define a minimization problem for the re-projection
error, E =

∑n
k=1 ||xk − x̄k||2. The n-view minimization

problem is commonly solved by an expanded linear system of
equations similar to singular value decomposition (SVD) in a
Direct Linear Transform (DLT) procedure [38]. Global opti-
mization methods can be applied, such as, algebraic, matrix
inequality and the L∞ approach [39]. More computationally
intensive methods are applied, such as bundle adjustment,
when the camera calibration parameters are not known a priori
and included in the minimization problem [37], [38]. This
study does not focus on the development of a particular n-
view triangulation method. In our setup, a proprietary 3D
point cloud reconstruction engine is used by OptiTrack API
system [40] in real time. Multi-camera calibration is performed
by wandering process, resulting in an average calibration error
of 0.25 mm for all cameras. The accuracy of a similar setup
has been verified in [41].
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Fig. 7. Experimental setup of the vision based-control system.

3) Coordinate Transformation: To arrive at the desired
control input for the controller, a final step is performed in the
3D reconstruction: a coordinate system transformation from
the system, FC with an origin OC , to the frame, FB with
an origin OB as illustrated in the 3D view of Fig. 8. Here,
the coordinate frames and their respective origins, located
at approximately 2 meters away, are connected by a vector
rBC . The transformation FC → FB is performed by a
successive translation, followed by 3-axis rotations in pitch,

roll, and yaw axes (θ,φ,ψ). Due to continuous rotation of
the turntable and thus frame FB attached to it (Fig. 8), the
transformations are performed continuously in real-time. The
applications for processing, reconstructing and accessing the
data are written in low level C++ programming language for
best performance. The average total processing latency of the
complete processing pipeline as shown in Fig. 6, was found
to be in the range of 5-7 ms, which is smaller than the control
sampling interval (16.67 ms).
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Fig. 8. 3D orientation of the cameras with respect to the morphing wing
positioned in the wind tunnel.

D. Online Shape Compensation

In experimental valuations for the morphing wing design,
nonlinear backlash was observed which limited the range of
travel of the morphing trailing edge and maximum attainable
positive or negative camber and thus the desired shape. Owing
to the backlash, the output of the morphing mechanism, which
is the trailing edge displacements zi, not only depends on
the actuator inputs at the current time instant but is also
determined by the actuation history, leading to an undesirable
hysteresis phenomenon [42].

To compensate for backlash, we proposed a vision-based
adaptive nonlinear incremental control approach. A data-
driven incremental model is constructed online based on the
input and output data. This identified model is then used by
a nonlinear dynamic inversion controller for shape command
tracking. Compared to a controller that only uses a feedforward
input–output mapping, this approach decreases the tracking
errors by more than 62% in spite of external disturbances. In
view of its effectiveness, this control approach is applied for
shape realization in current research.

E. Aerodynamic Force Transformation

As the force balance is mounted to the turntable, it rotates
with the turntable. Consequently, all measured forces are in
the body-fixed reference frame FB , shown in Fig. 8. The lift
and drag forces are defined as the components of the total
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aerodynamic force perpendicular and parallel to the relative
wind. Therefore, the measured axial Fx and normal Fy forces
must be transformed into the aerodynamic reference frame to
obtain the lift and drag forces as follows:

[
L
D

]
=

[
sinα cosα
− cosα sinα

] [
Fx
Fy

]
(14)

Note in Eq. (14) that the positive axial force direction is
defined into the relative wind, rather than along the relative
wind direction. The lift and drag coefficients CL, CD are
defined as CL ≡ L

q∞S and CD ≡ D
q∞S , where S is the wing

area and q∞ the dynamic pressure.

IV. EXPERIMENTAL DESIGN AND SETUP

To assess the performance of the proposed online shape
optimization architecture, an experiment was conducted with
the SmartX-Alpha at the Open Jet Facility (OJF) located at
the Aerospace Engineering Faculty of the Delft University of
Technology.

wind tunnel

optimiser

Synchronization [1kHz]

[200 Hz]

servo pair

RS485 [60 Hz]

control box

clamp

USB hub

DSIM / Ethernet

Vision system

elastomer

[1 kHz]

.NET
[250 Hz] [60 Hz]

[200 Hz][200 Hz]

controller

Fig. 9. Experimental apparatus with various hardware, software, and vision-
based control components. The green, red, and blue lines represent mechani-
cal, electrical, and synchronization paths, respectively.

1) Apparatus: The experimental apparatus is shown in Fig.
9. The system consists of the SmartX-Alpha wing, mounted
vertically on an actively controlled turntable system, and
placed in front of the wind tunnel test section. The operational
point was selected as V = 15 m/s. The wing is clamped on
a three-axis external balance measurements system, allowing
to measure root reaction forces and moments at 1000 Hz.
The shape command and the resulting lift distribution are
achieved by twelve high-performance servos, connected to an
array of RS-485 devices communicating serially via the RS-
485 protocol. The update rate is constrained by the physical
USB host interface with a fixed time delay of 15 ms. The
actuation angles of the servo are constrained to ±25◦ as to
not exceed the physical limits of the morphing system.

2) Real-time Synchronization: To command the experimen-
tal system, various hardware and software components are
needed to cooperate coherently and share data in real-time.
To facilitate this, a distributed data-sharing architecture was
developed based on the decentralized communication princi-
ple, which allows parallel integration of hardware and soft-
ware components in various programming languages (Python,
Matlab, Simulink, C++, .NET, etc.) and various communica-
tion protocols (RS485, Ethernet, ModBus). The architecture
software is developed in C++ with the real-time D-SIM
framework, connecting several PC nodes over a local Ethernet
network [43]. D-SIM is a software framework, written in
C++, that facilitates the synchronization of real-time variables
(e.g., Fx, Fy, zi) over a distributed Ethernet network. The
resulting synchronization architecture allowed synchronization
depicted in the bottom part of Fig. 9. This approach provides
several key benefits over conventional centralized systems: (i)
running hardware and software processes in parallel at non-
uniform sampling rates with a 1 kHz synchronization of shared
variables between processes; (ii) mixing various programming
languages and protocols for various experimental components;
(iii) scalability and easy to modify system structure.

3) Vision-based Shape Control: A vision system combined
with a nonlinear compensator is responsible for ensuring that
the desired commanded shape is achieved globally. An array
of IR-LEDs of type 3528 850NM WLP PLCC2, characterized
by 850 nm wavelength is installed on the wing bottom surface
and powered by a 2V direct current (DC) power supply.
The brightness is actively controlled by the IRF520 Power
metal–oxide–semiconductor field-effect transistor (MOSFET)
dimmer circuit. Five Primex41 4.1 megapixel IR cameras are
responsible for marker tracking at a frame rate of 250 frames
per second (FPS) [40]. The shape-reconstruction algorithm is
written in C++ and deployed on Dell Optiplex 7400 desktop
system.

4) Turning Table: In order to continuously control the angle
of attack of the wing, a real-time control command loop has
been implemented. The Franke turning table of type LTB 400
is equipped with a brushless TC-60-1.3 1.3 Nm motor with
encoder and breaking system. The table angle is measured by
an MSR 40 MOR rotary encoder. The servo is controlled by a
proportional–integral–derivative algorithm whose parameters
are tuned to provide smooth table angle command tracking
while satisfying servo rate and position limits. The servo
commands are communicated via RS232 protocol over the
USB controller. A .NET-based software control interface is
developed to set control parameters and received the encoder
feedback signal, which is interfaced to the synchronization
framework in real-time at 200Hz.

A control flow timeline is shown in Fig. 10, responsible
for the operation of various system components during the
measurement phase. The order and measurement conditions
of the performed runs are shown in Tab. I. The three types of
runs performed are baseline, wandering, and optimization. The
baseline runs are AOA sweep with a fixed (jig) wing shape,
to establish a performance baseline. During the wandering
phase runs, pseudo-random (PR) inputs were actuated on
the system to explore the input space for onboard model
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Fig. 10. Control flow and timeline of the experimental system.

TABLE I
EXPERIMENT TEST MATRIX, MEASUREMENT WITH ANGLE-OF-ATTACK
BIAS IN GRAY (PR = PSEUDO-RANDOM, PO = PERCEIVED OPTIMAL).

CLt α wing shapes type no. samples

- sweep jig shape baseline 18
- PR PR wandering 150

0.65 PO PO optimization 15

- sweep jig shape baseline 18
- PR PR, reduced bounds wandering 57

0.40 PO PO optimization 30
0.75 PO PO optimization 30
0.90 PO PO optimization 40

identification. Throughout the optimization runs, the optimal
angles of attack and wing shapes established by the optimizer
were commanded to maximize the lift-to-drag ratio.

After the first optimization run, the zero angle of the
turntable was reset by a necessary reconfiguration of the
turntable hardware and software as part of the shut-down and
start-up procedure. The shift in the turntable zero position was
approximated by matching the force balance readings to earlier
established benchmarks through variation of the table angle.
However, later analysis revealed this approximation method
to be less accurate than was supposed at that time. Post-
processing of the measurements using Algorithm 2 showed
that the shift in the table angle zero position was overestimated
by approximately 1.6 degrees. As a result, the true angles of
attack, and through the angle-of-attack-dependent transforma-
tion, the lift and drag coefficients of the second wandering
phase were unintentionally biased. These biases were found
to negatively affect the performance of the later optimization
runs. These known biases were corrected in a later post-
processing, yielding the correct wing shape predictions.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, the experimental results are discussed. First,
a performance baseline is established, and the measurements
from the wandering phase are presented in subsection V-A.

Then, in subsection V-B, the results from online optimization
for a single fixed target lift coefficient of 0.65 are elaborated
upon. Finally, a post-experiment simulation using experimental
data is used to make a more general prediction about the
potential drag reductions achievable at a wider range of target
lift coefficients in Sec. V-C.

A. Baseline and Wandering Phase

A performance baseline was established by measuring the
aerodynamic forces of the wing jig shape at various angles
of attack. This wing jig shape was realized by performing
the shake maneuver (simultaneous actuation sequence of all
modules from [25,-25,0]) without wind. Subsequently, forty-
second averaged force measurements were taken at table
angles from −18 to 10 degrees in increments of two degrees at
a wind speed of 15 m/s. Since the zero position of the turntable
did not coincide with a zero AOA, the true aerodynamic
angles of attack of these measurements were unknown. The
angular difference ε between the commanded turntable angle
ψ and the aerodynamic angle of attack α, was estimated using
the iterative approach outlined in Algorithm 2. During this
procedure, the turntable misalignment constant ε is iteratively
estimated by matching the measurement-based estimated zero-
lift angle of attack α̂CL=0 to the theoretical zero-lift angle of
attack α∗CL=0. This theoretical zero-lift angle of attack was
determined to be −6.5570 degrees, with an evaluation of the
Smart-X-Alpha geometry using the 3D panel viscous solver
XFLR5 v 6.48.

The angular misalignment was estimated to be ε = −9.5789
degrees. This value was used to actuate the turntable based
on the desired aerodynamic angle of attack during subsequent
measurements.

The performance baseline was established by interpolation
of the jig shape measurements with a 16th degree polynomial.
This relatively high model order was selected because single
low order polynomials represent a poor fit of the performance
curve which is linear for only one section of the domain. The
validity of this interpolation in the region of interest was not
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Algorithm 2: Table angle correction estimation.
Input: ψ,Fx, Fy, α∗CL=0

Output: ε
Function calcAlpha(ψ, ε):

α = ψ + ε
Function estAlpha0(α, Fx, Fy):

Transform Fx, Fy → CL, CD;
Fit 1st order polynomial;
Estimate zero lift angle of attack α̂CL=0;

Function updateError(α̂CL=0):
ε = α̂CL=0 − α∗CL=0;

while ε < 1× 10−8 do
Evaluate ε = ε+ 0.5 · ε;
/* output cascaded through functions */

updateError (estAlpha0 (calcAlpha));
end

compromised by Runge’s phenomenon [44] as the bounds of
the jig sweep measurements are much wider than the region
of interest. Both the jig shape measurements and the fitted
model, within the region of interest, are shown in Fig. 11.
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Fig. 11. Wing jig shape baseline performance measurements (orange dots),
wing jig shape performance fitted model (orange line), and performance
measurements from pseudo-random exploration (blue).

During the wandering phase, where the actuation space was
explored with pseudo-random inputs. Out of the 191 inputs
evaluated, the last 57 were generated with reduced bounds on
the virtual shape inputs because the hitherto evaluated shapes
frequently led to saturation for the majority of the morphing
servos. These last measurements were performed after the
angle-of-attack bias described in Tab. I was introduced.

Figure 11 shows the performance of the inputs explored
in the wandering phase. Naturally, the performances of the
pseudo-random wandering inputs are distributed around the
jig shape performance curve. While the jig shape curve serves
as a baseline, the distribution of the wandering phase perfor-
mances roughly indicates the physical bounds of the attainable
performance with active morphing for SmartX-Alpha.

B. Online Optimization

After the first 150 wandering phase measurements with
nominal bounds were taken, 15 iterations of online wing shape
optimization were performed with a target lift coefficient of
CLt = 0.65.

The lift and drag coefficients measured during the online
optimization experiment are shown in Fig. 12. During the first
six iterations of online optimization, the discrepancies between
the targeted and the measured lift coefficients are relatively
large: ±0.25. At the same time, the measured drag coefficients
also fluctuate considerably. This is to be expected, as the total
drag is dominated by the lift-induced drag contribution.

Furthermore, wing shapes evaluated initially appear subop-
timal, attributed to the observation of increased amounts of
camber near the root and tip. While the instantaneous optimal
shape is not known exactly, it should be expected to follow
an elliptical distribution, with decreased amounts of camber at
those locations. Note that for a rectangular planform and no
wash out angle, a decreasing (less camber) twist distribution
would result in an elliptical distribution, hence reduced wing
tip vortices and induced drag [45]. Due to pressure leakage
at the root interface, a smaller amount of spanwise camber
reduction is expected.
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Fig. 12. Measured lift and drag coefficients, and selected wing shapes from
online optimization with a target lift coefficient of 0.65 for 15 iterations.

After iteration six, the measured lift coefficient approaches
the target lift coefficient. The largest measured deviation from
the target lift coefficient was 0.056, which was measured at
iteration 11. At the same time, the increase in drag coefficient
relative to the drag coefficient of the jig shape at the same
lift coefficient decreases below zero. This means that the
wing shape and angle of attack combinations evaluated from
iteration seven onward not only realized a lift coefficient close
to the target, but did so with lower drag than the wing jig shape
as well. Consequently, the relative increase in the lift-to-drag
ratio is also positive for these iterations.
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The most desirable performance was measured for the input
combination evaluated during iteration 12. The measured lift
coefficient during this iteration was 0.642. The measured lift-
to-drag ratio at this iteration was 10.015. This corresponds
to an 8.4 % increase in lift-to-drag ratio compared to the jig
shape performance at this lift coefficient. This is equivalent to
a 7.8 % drag reduction compared to the wing jig shape at the
same lift coefficient.
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Fig. 13. Shape evaluated at iteration 12 during online optimization with a
target lift coefficient of 0.65.

The wing shape evaluated at iteration 12 is shown in Fig 13.
This shape comprises maximum positive camber between 1.4
and 1.6 m from the wing root, which corresponds to module
5, a steep decrease at the wing tip, and a gradual reduction of
the local camber towards the root end of the wing. It is mainly
the reduction of the local camber near the wing ends, which
is supposed to reduce the strength of the wing tip vortices,
that results in the observed improvement in the aerodynamic
efficiency. These vortices are the result of the spanwise flow
components caused by the “leaking” of high pressure air from
the bottom side of the wing around the wing tips towards
the lower pressure regions on the upper wing surface [45].
While the wing-root-fuselage interfaces of aircraft usually do
not allow this kind of pressure leakage, the interface between
the wing root and flow table in our set up was not airtight.
An approximately 1 cm wide clearance gap existed between
the wing root and the flow table, which was needed to allow
free rotation of the wing as the flow table was not part of the
assembly rotated by the turntable. It is also noteworthy that the
commanded shape shown in Fig. 13 differs from the realized
wing shape where the commanded amount of differential TE
displacement within one module exceeds the twist morphing
limit of the TRIC module.

Nevertheless, the optimal location of the maximum camber
is expected to be in between the wing root and the center of
the wing, which corresponds to an interpolation between the
elliptical distributions associated with wings with one and two
free ends. Hence, it is thought that even though the given shape
already offers a 7.8 % drag reduction over the wing jig shape
for this target lift coefficient, even more efficient wing shapes
do exist. An advanced efficient wing shape is made using the
measurements from the second wandering phase, which were
bias-corrected in post-experimental processing. These results
are discussed in the following section.

C. Experimental Data-driven Optimization Predictions

To improved estimation of the optimal shape and the cor-
responding drag reduction and sample from more target lift
coefficients, the online training was simulated using exper-
imental data collected during wandering phase. Additionally,
the following post-processing was performed on the wandering
phase measurements:

1) The samples measured after the angle-of-attack bias was
introduced in the turntable, were corrected.

2) Samples whose tracking signals did not fully converge
within the measurement window, or were not recorded,
were omitted.

After post-processing, 25 % of the samples were reserved
for validation. The remaining samples were fed to the op-
timization algorithm on a per-sample basis to simulate the
wandering phase experiment. The validation set samples were
used to estimate the predictive accuracy of the trained model.

With a target lift coefficient of 0.65, the optimal wing
shape as computed by the optimizer on the trained onboard
model, was as shown in Fig. 14. With an angle of attack of
0.8 degrees, the predicted lift-to-drag ratio of this shape was
10.35. This corresponds to a predicted aerodynamic efficiency
improvement of 11.1% compared to the wing jig shape.
Furthermore, the shape shown quite closely represents the
expected optimal shape described in Sec. V-B, with a gradual
reduction of airfoil camber towards the free wing tip end, and
a more moderate amount of camber reduction at the root end
as a result of pressure leakage at the root intersection.
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Fig. 14. Post-experiment simulation based optimal shape for CLt = 0.65.

The predictive accuracy of the trained onboard model was
evaluated using error measures computed on the validation
data set. The standard deviations of the prediction errors, Root
Mean Square error (RMSE), and their normalized counterparts
are shown in Tab. II. The Normalized Root Mean Square Error
(NRMSE) of both the lift and drag coefficient RBFNN models
are close to each other. The NRMSE values were normalized
using the domain width of the corresponding output variables,
i.e. NRMSE = RMSE/(ymax − ymin). Since the lift-to-drag
ratio is not approximated with a dedicated neural network,
but by the ratio of two estimated outputs, the lift-to-drag ratio
NRMSE is higher. In conclusion, based on the relatively small
training set data, the onboard model is able to predict the lift
and drag coefficients of the validation data set samples with an
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TABLE II
MODEL ERROR MEASURES ON VALIDATION DATA SET.

RMSE [-] NRMSE [%]

CL 0.0147 2.34
CD 0.0026 2.50
L/D 0.2818 7.75

average prediction error that is approximately 2.5 % of their
respective domain widths.

In order to investigate the trend in the estimated optimal
wing shape for different target lift coefficients, the shape
optimization was also conducted for target lift coefficients of
0.35, 0.50, and 0.80. The predicted optimal shapes for these
lift coefficients are shown in Fig. 15. In general, the maximum
amount camber morphing is commanded at approximately
one-quarter span, with a gradual reduction approaching the
minimum camber limit towards the wing tip. Additionally, a
more modest reduction of camber is observed towards the wing
root end. For higher target lift coefficients, the area under the
virtual shape curves, which can be thought of as the overall
amount of camber, is increased.
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Fig. 15. Post-experiment simulation based optimal shapes for four target lift
coefficients.

For active camber morphing airfoils, the amount of lift
generated can be changed with changes of both the angle of
attack and the airfoil camber. Hence, multiple combinations
of the angle of attack and camber morphing can be employed
to realize any given target lift coefficient. However, due to
the underlying aerodynamics, these different solutions will not
necessarily come with the same drag penalties. Computational
Fluid Dynamics (CFD) simulations for active camber morph-
ing airfoils have shown that the trailing edge deflection of
camber morphing airfoils for best lift-to-drag ratio increases
with increasing lift coefficients [46]. In the case of a three-
dimensional distributed active camber morphing wing, target
lift coefficients can be realized with different combinations
of the angle of attack and the spanwise camber distribution.

Earlier wind tunnel experiments on SmartX-Alpha have shown
that for constant spanwise camber morphing, the optimal
amount of trailing edge displacement also increases with
increasing lift coefficients. Therefore, the trend of increasing
overall camber of the predicted optimal distributions with
increasing target lift coefficients conforms to the expectations.

As long as the morphing limits are not reached, both the
best overall amount of camber and the ideal spanwise lift
distribution, which is elliptical for induced drag reduction, can
be achieved simultaneously. Comparing the camber distribu-
tions for CL = 0.35 and CL = 0.50, the largest difference
between the two distributions is an an increased, nearly linear
camber offset along the entire wing span. For the CL = 0.50
distribution, the fourth and fifth servo units have already
reached their upper limits. Unlike previous shapes, no linear
offset is observed, rather a redistribution starting from the fifth
servo unit. This observation can be explained by the conflict
between larger camber needed for higher lift coefficients and
desire to maintain ideally shaped spanwise lift distribution, as
the morphing saturation limit is reached locally. The needed
target lift increment is compensated by the remaining servos
(i.e. where increasing camber is still possible) at the cost less
ideal distribution. It can be noted that, as long as the area
under the curve is comparable, alternative shape are possible,
potentially yielding a better tradeoff in terms of total drag.

TABLE III
ANGLES OF ATTACK AND AERODYNAMIC COEFFICIENTS CORRESPONDING

TO PREDICTED OPTIMAL WING SHAPES.

CL [-] CD [-] L
D [-] α [deg] CD reduction [%]

0.35 0.02762 12.67 -2.50 19.8
0.50 0.04188 11.94 -1.05 17.4
0.65 0.06282 10.35 0.81 11.1
0.80 0.09023 8.87 2.97 6.5

The angles of attack, and lift and drag coefficients of the
predicted optimal shapes are given by Tab. III. It can be
seen that over 6.5 % of drag reduction has been successfully
achieved for all the tested target lift coefficients.For the lower
lift coefficients, the associated drag is also lower, meaning that
the relative error of the drag coefficient prediction becomes
larger, and the maximum lift-to-drag ratio may be optimistic.
However, with more data, more accurate neural network mod-
els could be identified in the future such that more accurate
predictions can be made on the highest achievable lift-to-drag
ratios. For operational online shape optimization, the exact
predicted outputs are of lesser importance as long as the
optimal inputs are predicted correctly.

VI. CONCLUSIONS AND RECOMMENDATIONS

A strategy for online black-box shape optimization for
active distributed camber morphing wings has been proposed
and tested on a seamless distributed camber morphing wing
demonstrator known as SmartX-Alpha in an open jet wind
tunnel. The proposed online optimization method combines
a global onboard RBFNN model with an evolutionary opti-
mization strategy to find the wing-shape and angle-of-attack
combination that maximizes the aerodynamic efficiency at
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commanded targeted lift coefficient. Compared to the unmor-
phed NACA6510 airfoil base shape, a drag reduction of 7.8%
was achieved on SmartX-Alpha for a target lift coefficient of
0.65.

To assess more target lift coefficient inputs, additional off-
line optimization was performed on the experimental data. The
analysis showed that under the presence of morphing limit
saturation of, the optimizer accepted a deviation from the ideal
lift distribution (nearly linear twist distribution towards the
tip) and compensated with the remaining servos to meet the
higher target lift coefficients. Drag reductions were observed
between 6.5 % and 19.8 %, with the highest corresponding to
lower lift coefficients. Due to relatively larger drag coefficient
error, the maximum predicted drag reduction are believed to
be optimistic.

A significant benefit of the proposed optimization frame-
work lies in the ability to operate online, eliminating the
need for model excitation maneuvers at every trim condition,
such as is the case with existing online gray-box methods
employing local models. Since the method is inherently black-
box, it is independent of the system, easy to adapt to other
morphing wing platforms. To further increase the adaptability
and accuracy of the framework, it is suggested to expand the
input space of the model with additional lift/drag dependent
inputs, such as Reynolds number and Mach number.

For the application of the optimization framework to real-
world commercial aircraft, no further changes to the op-
timization architecture are needed. To extract the aerody-
namic forces, an alternative must be used for the force-
balance. Possible alternatives are strain gauges, fiber optics
or a combination thereof [47]. Additionally, model based load
estimation from other measurable parameters such as, angle of
attack, flight speed, altitude and fuel flow are possible. Lastly,
our experimental IR cameras set-up can be converted to a
fuselage-mounted in-flight vision tracking system as has been
experimentally validated in [48]. With these changes in the
sensing equipment, the proposed optimization architecture can
be applied to real-world aircraft in the future.
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[44] C. Runge, “Über empirische funktionen und die interpolation zwischen
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6
Wind tunnel experiments

In this chapter a comprehensive description of the wind tunnel experiment is presented. The aim of
this chapter is not to repeat the description of the experimental setup and the findings presented in the
IEEE journal paper (chapter 5), but rather to present additional supportive material. The structure of this
chapter is as follows. First, the adaptations of the online optimization framework from the configuration
described in chapter 3 for use in the wind tunnel experiment are discussed in section 6.1. Next, the
measurement routine and testing order are elaborated on in section 6.2. In section 6.3 the results of
post turntable actuation bias optimization runs are shown. Finally, a bias correction is performed in
postprocessing and the corrected data is used to simulate the online wandering part of the experiment
in section 6.4.

6.1. Framework adaptations
Compared to the simulation experiments described in chapter 3 and 4, a number of changes weremade
to set up for the wind tunnel experiment. Because of nonlinear backlash effects which were discovered
to be present in the morphing mechanism of the SmartXAlpha demonstrator [66], the actuator angles
𝜃1, … , 𝜃12 do not relate to the actual wing shape in a onetoone mapping. Instead, the realized wing
shape is determined not only by the actuator positions but also by their positional histories. Since the
developed online optimization framework relies on the assumption that a onetoone mapping between
the system inputs and outputs exists, these nonlinear backlash effects would introduce large uncertain
ties that would be detrimental to the success of the method in the wind tunnel experiment. Therefore, it
was decided to use the wing shape as the input to the onboard model instead of the actuator positions.
Even though the actuator angles no longer have a onetoone mapping to the wing shape because of
the nonlinear backlash effects, the relationship between the aerodynamic coefficients and the actual
wing shape remains unaffected. Instead of the actuator angles, the vertical trailingedge displacements
at the 12 servo locations 𝑧1, … , 𝑧12 were used as the new model inputs in the wind tunnel experiment.
However, the following complications remained:

1. The true trailingedge displacements are unknown.

2. The trailingedge displacements can only be controlled through the morphing servos

3. The relationship between the actuators and the trailingedge displacements is complex and non
linear.

In order to deal with the first of these, a setup consisting of five InfraRed (IR) cameras was used
to track the locations of 27 markers attached to the morphing and nonmorphing parts of the wing.
A comprehensive description of the IR camera and marker setup and the trailingedge displacement
estimation routine is given in chapter 5. In order to compensate for the backlash effects, a nonlinear
dynamic inversion controller was implemented. In this new setup, the inputs to the onboard model,
and thus the outputs of the optimization procedure were the commanded trailingedge displacements.
These commanded reference displacements constituted the reference values to which the controller

77
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steered the displacement estimations from the IR vision system. A diagram detailing the integration
of and flow of information between the optimization framework and the other software and hardware
components of the experimental setup is shown in chapter 5.

Optimizer reconfiguration Because the inputs to the optimization framework blackbox system were
changed from the actuator angles to the reference vertical trailingedge displacements, some adapta
tions to the online optimization framework were required as well. The virtual inputs which used to
describe a curve dictating the commanded actuator angles in degrees at the spanwise locations were
adapted to describe a curve that dictates the commanded amount of vertical trailingedge displacement
in millimeters. Hence, the units and the domain of the virtual inputs were changed. The actuator an
gles in degrees were converted to the local vertical trailingedge displacements in m with the empirically
fitted relation in Eq. (3.2).

Table 6.1: CMAES scaling of the input variables where the virtual inputs describe the vertical trailingedge displacements.

input scaling 𝜎 𝑥min 𝑥0 𝑥max unit

𝛼 1901.85 3.1951 2.50 3.75 10.00 deg
𝑢1 1.92 0.0032 0.014 0 0.014 m
𝑢2 2.14 0.0036 0.014 0 0.014 m
𝑢3 1.00 0.0017 0.014 0 0.014 m
𝑢4 0.86 0.0014 0.014 0 0.014 m
𝑢5 0.65 0.0011 0.014 0 0.014 m

Because these changes have altered the input domain, the parameters of the optimization proce
dure need to be updated accordingly. The new global CMAES step size was selected as 𝜎0 = 0.00168,
and the specific scaling of the input variables was updated as shown in Tab. 6.1. Not only the units
of the virtual input bounds were converted, but a new set of bounds was selected altogether since
the input space region of interest was different from simulation cases described thus far. This will be
further elaborated in the following section. The lower and upper bounds of the virtual inputs were all
set to 0.014 and 0.014 m respectively. This corresponds to the minimum and maximum achievable
training edge deflections for symmetric 25degree actuator actuation according to DIC measurements.
However, as the commanded trailingedge displacement at any location is the result of a combination
of the virtual inputs, these bounds do not prevent actuator saturation. Rather, they serve to constrain
the optimization algorithm to only operate within the search space domain that is accurately covered
by the onboard model. Without these constraints, the optimizer would be able to exploit the poor
extrapolation ability of the neural network model to find extremely wellscoring solutions outside the
region spanned by the training data of the onboard model. The high scores of these solutions, how
ever, would be the result of a significant underestimation of the drag coefficient by an inaccurate model
rather than a realworld optimal wing shape. Hence, these types of solutions are undesirable and the
optimizer should be prevented from converging on them.

Onboard model and wandering phase Due to the blackbox nature of the onboard model, very
few adaptations were necessary to make the onboard model ready for operation in the wind tunnel.
Nevertheless, one important change was made that affected the region of the search space spanned
by the model as mentioned in the previous paragraph.

Since artificial neural networks are very effective tools for data interpolation, but are very poor ex
trapolation tools, the region of the domain on which the model can be trusted in determined by the
bounds of the training data. The training data for the online optimization is gathered online, during a
onetime wandering phase dedicated to search space exploration and during all subsequent optimiza
tion iterations. During the optimization iterations, the sampled points will be directly determined by the
most promising solutions found by the evolutionary optimizer. Hence, the points sampled during the
optimization iterations are locally concentrated and are unknown beforehand. Therefore, the domain
coverage of these points cannot be guaranteed. Consequently, a minimum coverage of the input space
region of interest should be achieved during the exploratory wandering phase.

For the simulation experiments, the region of interest of the virtual shape functions was determined
from unbounded direct optimization on the aerodynamic model. This type of optimization required
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approximately 45 minutes of computational time per target lift coefficient. The measurement times in
the wind tunnel setup are approximately 40 times longer than the computational time required for the
evaluation of the aerodynamic model. Moreover, the limited time available in the wind tunnel facility is
very precious.

Regardless, the region of interest defined for the simulation experiment should not be used for the
wind tunnel experiment as that would come with the inherent assumption that the differences between
the optimal shapes of the simulation model and the wing demonstrator in the experimental setup are
negligible. However, this should not be expected. A notable difference between the simulation and the
experimental setup is the flow situation around the wing root. While the aerodynamic model assumes
a perfect wingfuselage interface with no pressure leaks, the situation in the experimental setup is
different. A closeup of the wing root in the experimental setup is shown in Fig. 6.1.

Figure 6.1: Closeup of the wing root and horizontal flow table interface during the wind tunnel experiment.

Themorphing wing was mounted vertically, and the aircraft fuselage was mimicked by the horizontal
surface of a table (black) with a circular insert (transparent) that rotated freely with the wing. Because
the wing’s chord length exceeds the diameter of the insert, the wing’s leading and trailing edges extend
beyond the insert and are directly over the black nonmoving part of the “simulated fuselage”. In order
to allow the wing to rotate freely to make angleofattack changes, a clearance gap between the wing
root and the simulated fuselage had to be maintained throughout the experiment. As a result, some
degree of pressure leakage from the region of higher pressure on the wing’s bottom surface to the
lower pressure region at the wing’s upper surface is to be expected.

In the case that no simulated fuselage would be present the root end of the wing would behave
essentially a free, similar to the wing tip end. In that case, the expected optimal wing shape would
be symmetrical with maximum camber occurring at the spanwise midpoint of the half wing and would
elliptically decrease towards both the wing root and tip ends. The clearance gap definitely allows some
degree of pressure leakage but it is not thought to be wide enough to make the flow situation around the
wing root completely similar to that around a free wing end. The optimal wing shapes corresponding
to this setup are expected to be somewhere in between the described free end optimal shapes and
the ideal root interface optimal shape solutions are shown in Fig. 3.13. However, the exact extent to
which the clearance gap will shift the optimal shapes from ideal root end optimal shapes to free root
end optimal shapes is unknown. Therefore, it was decided to select the widest possible bounds on the
virtual inputs for the wandering phase such that any shape achievable on the morphing wing platform
would be within the scope of the onboard model. While this wider training data set domain extends
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the scope of the onboard model, it is at the price of a lower data resolution. Hence, a tradeoff is made
between model accuracy and model scope.

During the wind tunnel experiments, two wandering phases were performed. The inputs actuated
during these wandering phases were sampled with sixdimensional Sobol sequences as described in
section 3.4.2. During the first wandering phase, the sampled inputs spanned the domain bounded by
the variable bounds shown in Tab. 6.1. The minimum and maximum local vertical trailingedge dis
placements were set to 10 mm and 10 mm respectively as it was thought that larger trailingedge dis
placements were likely to lead to actuator saturation on the current version of SmartXAlpha. Although
previous DIC measurements on SmartXalpha showed that training edge displacements of ±14 mm
were achievable with symmetric actuation, these displacements could not be reproduced with the cur
rent version of SmartXalpha. It is supposed that the observed reduction in achievable trailingedge
deflection between the two versions of the wing has been the result of performed maintenance. Man
ual maintenance activities such as the stiffening of the sliding interface and the regluing of the pickup
point of the actuation mechanism may have decreased the maximum realizable vertical trailingedge
displacements of the modules. Since the trailingedge displacements are directly mattered in terms of
actuator saturation and aerodynamic response, the individual virtual inputs are allowed to take greater
values than are allowed for the trailingedge displacements as long as they partially cancel out at the
actuator locations such that the commanded trailingedge displacements are within the set bounds.

During the first wandering phase, it was observed that the actuated shapes often led to actuator
saturation. Therefore it was decided to perform a second wandering phase with reduced 𝑧ref limits.
Additionally, the points sampled in this second wandering phase were focused onto a narrower region
of the domain where to optimal solutions were expected to reside. As was observed in the simula
tions, the virtual inputs corresponding to the more complex higherorder Chebyshev polynomials have
a more narrow range in smooth shapes. As the number of extrema within the fixed domain increases
proportionally to the order number of the Chebyshev polynomials, their respective slopes increase as
well as can be clearly seen at the last spanwise module in Fig. 3.5. Therefore, higher values for the
higherorder virtual inputs decrease the smoothness of the shapes. However, it is expected that the
true optimal shapes are relatively smooth. In this second wandering phase, the pseudorandomly sam
pled input shapes were limited to 𝑧min = −8mm and 𝑧max = 8mm. The bounds of the individual virtual
inputs 𝑢1, ⋯ , 𝑢5 were narrowed to ±11.2, 11.2, 10.5, 9.8, and 9.1 mm respectively.

During the first wandering phase, 150 iterations were performed. During the second wandering
phase, with reduced bounds, an additional 57 measurements were performed.

6.2. Measurement routine
The startup procedure of the online shape optimization wind tunnel experiment was as listed below.

1. turntable to zero position;

2. force balance debiasing;

3. all morphing servo’s to zero degrees;

4. vision system calibration (optional);

5. backlash controller debiasing (optional);

6. wind tunnel startup;

7. wind speed set to 15 m/s;

8. online optimization algorithm start.

The first step was the resetting of the turntable to zero degrees of table angle for a consistent
baseline. Then the noisy and nonzero mean force balance readings were debiased such that their
means were zero. If required, the IRcamera vision system was calibrated, in which case debiasing of
the backlash controller was also required. In hindsight, the biases observed after calibration of the vision
system were likely caused by the fact that morphing servos were always set to zero degrees before
calibration. However, due to the nonlinear backlash effects, the wing shape corresponding to uniform
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zero actuator inputs was not consistent. Hence, the baseline fromwhich the vision system estimated the
trailingedge displacements changed with each calibration, which manifested as the observed biases
for the controller. The next steps were the startup of the wind tunnel and the configuration of the
desired wind speed, which was 15 m/s. With all sensing equipment calibrated and the wind speed
having converged to its set target, the online optimization was finally started.

Baseline measurements With the adaptations to the optimization framework and the experimental
procedure as described so far, a number of wandering and optimization phase runs were performed
as well as a baseline performance measurement routine with the wing jig shape. The full test matrix
is shown in chapter 5. This baseline comprised an angle of attack sweep from 18 to 10 degrees.
The purpose of the jig shape measurements is twofold. First, as mentioned before, the lift and drag
measurements of the jig shape serve as the performance baseline to which the performance of the
online optimized wing shapes will be compared. Secondly, the jig shape measurements are used to
estimate the constant angular difference between the zeroposition of the turntable and the aerody
namic angle of attack. Specifically, a firstorder polynomial is fitted to the linear part of the lift curve and
the corresponding zerolift angle of attack is compared to the theoretical zerolift angle of attack. This
theoretical zerolift angle of attack was determined to be −6.5570 degrees, with an evaluation of the
SmartXAlpha geometry using the 3D panel viscous solver XFLR5 v 6.48. Since the transformation of
the force balance measurements in the bodyfixed reference frame to the lift and drag forces defined
in the aerodynamic reference frame also depends on the aerodynamic angle of attack, the angular
difference 𝜀 between the commanded turntable angle 𝜓 and the aerodynamic angle of attack 𝛼, was
estimated using the iterative approach outlined in Chapter 5. The computed angular difference was
𝜀 = −9.5789.

Wandering phase As described in the preceding section, a total of 207 wandering phase iterations
were performed using two sets of sampled wandering data points. During the experiment, the algorithm
operated continuously and in theory, the wandering phase measurements could have been performed
without pausing. However, in practice, the experiment often needed to be halted. In most cases, the
controller was observed to suddenly command seemingly arbitrary and extreme deflections of some of
the morphing actuators. These were caused by a loss of tracking information from the vision system.
This in turn would be caused by the system losing track of one of the IR markers and thereby the
rigid body defined by it. However, as the experiment progressed some vision system settings were
adapted and these instances became increasingly rare. In the instances where the measurements had
to be aborted, the wind tunnel was kept running. After reacquisition of the target marker by the vision
system, the experiment could be restarted within several minutes. For some shapes, the marker loss
was observed to repeat. In these cases, the corresponding shape was skipped rather than repeated a
third time. The measurement timestamps of groups of wandering phase measurements are shown in
Tab. 6.2. The last four rows correspond to runs of continuous operation. The first two rows correspond
to groups of 10 measurements each.

Table 6.2: Measurement timestamps of grouped wandering phase measurements.

iteration date

from to from to

1 57 26Apr 17:19 19:26
58 65 28Apr 12:40 13:13
65 100 28Apr 13:26 14:03
101 110 28Apr 14:13 14:23
110 120 28Apr 14:27 14:37
130 150 28Apr 15:06 15:28
141 207 29Apr 15:41 17:06

Turntable reset On April 28th, at the end of the day, the turntable was not set to zero before the
turntable controller was shut down. On startup on the next day, the zero angle of the turntable was
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found to have shifted. By matching the force balance readings of the jig shape to their previously
measured values, the difference in the table angle was estimated to be approximately 10.5 degrees.
On the last day of the experiments, another jig shape angle of attack sweep was performed so that a
more accurate estimate of 𝜀 could be computed in postprocessing.

Optimization After the wandering phases with the nominal and reduced bounds, the online optimiza
tion algorithm was operated in the optimization mode for various target lift coefficients. The target lift
coefficients, number of iterations performed and the timestamps of the optimization experiments are
shown in Tab. 6.3.

Table 6.3: Measurement properties and timestamps for the optimization phase measurements.

𝐶Lt Iteration Date Start time End time

0.65 15 28Apr 18:21 18:39
0.75 15 29Apr 13:15 13:32
0.75 30 29Apr 13:34 14:14
0.40 30 29Apr 14:19 14:54
0.90 30 30Apr 11:54 12:30
0.40 30 30Apr 12:34 13:10
0.75 30 30Apr 13:13 13:49

In each of the optimization experiments, the onboard model weights and the training set buffers
were initialized with the weights and buffer contents that resulted at the end of the latest wandering
phase. Even though in operation on realworld aircraft the training samples added to the buffer during
operation in optimization mode are of course retained, for the purpose of the wind tunnel experiments
the various optimization runs were given the same “starting points” for the sake of comparability. The
first online optimization experiment was conducted with a target lift coefficient of 0.65 and was con
tinued for 15 iterations. This experiment took place after the wandering phase measurements with
nominal bounds, but before the wandering phase with reduced bounds was performed. Hence, only
the wandering phase measurements from iterations 1150 were in the buffer. Note, that this experi
ment also took place before the zero position of the turntable was changed through an unprocedural
shutdown.

6.3. Post turntable bias optimization results
The results from the successful optimization run performed before the angle of attack actuation bias
was introduced has been discussed in chapter 5. In this experiment, a 7.8 % drag reduction, relative
to the wing jig shape was achieved on SmartXalpha. However, during the optimization phase experi
ments performed after the 28th of April, no drag reductions were achieved relative to the wing jig shape.
It, therefore, seems that, although the resetting of the turntable zero position was approximately com
pensated, a significant bias remained which had a prominent adverse effect on the performance of the
online shape optimization algorithm. The true extent of the bias introduced into the data will be further
investigated in section 6.4. In this section, the results of an unsuccessful optimization run are shown.

The estimated lift and drag of the wing shape and angle of attack combinations evaluated during
online optimization with a target lift coefficient of 0.90 are shown in Fig. 6.2. It takes many iterations
before the estimated lift coefficient somewhat converges onto the target lift coefficient. This indicates
that the onboard model was initially unable to accurately predict the mapping between the system
inputs and the lift coefficient. With the gathering of more data and online training, the onboard model’s
ability to predict the lift coefficients seems to have improved. Nevertheless, compared to the wing
jig shape, at the same lift coefficient, the estimated drag coefficients of all of the evaluated inputs
were higher instead of lower. While a slowly decreasing trend in the amount of relative drag increase
can be observed, the actuated inputs do not outperform the wing jig shape before the experiment
was halted after 30 iterations. In conclusion, there initially seems to be a large mismatch between the
system output estimates predicted by the onboard model and the estimated system outputs. However,
with more data collection and online learning, the model prediction error does decrease. Although
this decreasing trend was observed, the experiment was halted due to time constraints. Since data
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Figure 6.2: Results from online shape optimization after the introduction of the tablebias with a target lift coefficient of 0.90.

collection was rather slow (1 min.) due to the time required for transient aerodynamic effects to settle
and the long measurement time required to average out the substantial measurement noise, big data
collection could not be afforded. Moreover, in realworld applications in flight, the methodology should
yield drag reductions within few iterations, as was observed in the April 28 experiment.

6.4. Post processing and simulation
6.4.1. Effects of angle of attack bias
In postexperiment processing of the last set of jig shape measurements (post table bias) the angle
between the turntable zero position and the aerodynamic angle of attack 𝜀 was estimated using the
estimation routine described in chapter 5. With this procedure, the angular difference between the
aerodynamic angle of attack and the turntable zero angle was estimated to be 𝜀 = 8.9019 degrees.
This improved estimation of 𝜀 represents a more accurate estimation than the manual force balance
matching performs in the wind tunnel on the day the new bias was discovered. At that time 𝜀 was
estimated to be approximately 10.5 degrees. This means that the initial estimation of 𝜀 was off by
approximately 1.6 degrees. Hence the angles of attack actuated during the last wandering phase with
reduced bounds, and all but one of the optimization runs were approximately 1.6 degrees lower than
supposed. On top of that, the supposed angles of attack were also used to transform the measured
forces in the bodyfixed reference frame to the aerodynamic reference frame using Eq. (6.1). Hence,
both the actuated angles of attack and the estimated lift and drag coefficients of the actually actuated
inputs were off for these measurements.

[LD] = T(𝛼) [𝐹𝑥𝐹𝑦] = [
sin𝛼 cos𝛼
− cos𝛼 sin𝛼] [

𝐹𝑥
𝐹𝑦] (6.1)

Due to the angleofattackdependent nonlinear transformation that is part of the lift and drag estima
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tion method, the effect of the turntable bias on the estimated lift and drag forces is more complex than
the effect that an angleofattack shift has on the true lift and drag forces. As has been shown for the
wing jig shape, changes in angle of attack with a fixedwing shape follow a curve in the lifttodrag ratio
versus lift coefficient plot. An example can be seen in the green jig shape curve in Fig. 4.17. Positive
steps in angle of attack cause greater lift coefficients, and generally result in lower lifttodrag ratios, ex
cept for the lower lift coefficients 𝐶L < 0.4. For these lower lift coefficients, increases in angle of attack,
and by extension increases in the lift coefficient lead to increases in the lifttodrag ratio. For these lift
coefficients, the amount of change in lifttodrag ratio increases with smaller lift coefficients. The effect
of the introduced turntable bias is different, however, it can be deduced from a set of measurements
that were repeated, with the same shapes, after the turntable zero position was reset.
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Figure 6.3: Uncorrected estimated lifttodrag ratios from repeated wandering phase measurements from before (blue) and after
(orange) the turntable reset bias.

In Fig. 6.3, the estimated lifttodrag ratios versus the estimated lift coefficients of both sets of itera
tions 141 through 150 of the wandering phase are shown. The dashed lines connect the measurements
that correspond to the same wing shapes. First of all, the effect of the bias is very pronounced in the
vertical axis. The estimated lifttodrag ratios of the biased measurements are mostly lower than their
unbiased counterparts. The apparent shifts in lifttodrag ratios between the samples with the same
wing shapes seem to exceed the lifttodrag ratio differences between surrounding samples of the same
set. In other words, the effect of the turntable bias on the estimated aerodynamic efficiency is stronger
than the effects of different wing shapes for similar lift coefficients. Note that the differences between
the two sets of measurements are twofold. While the same shapes were actuated, the angles of attack
are off by approximately 1.6 degrees, and the transformation of the measured forces is also affected.
Based on the first of these, a more consistent and more dominant leftward horizontal shift would be
expected owing to the lift reduction that is caused by the lowered angle of attack. However, this effect
seems to be overshadowed by the second effect. While the angleofattackdependent transformation
does not affect the total aerodynamic force, it does greatly affect the decomposition of this force into
the lift and drag components. The effect of a change in the angle of attack used for the transformation
with fixed forces 𝐹𝑥 , 𝐹𝑦 is shown in Fig. 6.4. During the experiments, the commanded angle of attack
was assumed to be equal to the true angle of attack, and hence the commanded angle of attack was
used for the transformation of the measured forces. Since, the truly actuated angle of attack was ap
proximately 1.6 degrees lower, the angle used for the transformation was approximately 1.6 degrees
too high. As shown in the graph, this corresponds to a 1.65 decrease in the estimated lifttodrag ratio.
In summation, the observed effects of the turntable bias on the estimated lifttodrag ratios are caused
by a combination of a variable, but consistently negative transformation error and a variable error due
to the actuation error. This last error has a negative lifttodrag ratio contribution for most samples, with
the exception of the samples that have small lift coefficients.

Because (i) the lifttodrag ratio estimation error caused by the angleofattack bias is larger than
the lifttodrag ratio variation of the pseudorandom wing shapes with similar lift coefficients, and (ii)
the biased data made up only 27.5 % of the training set, it is perhaps unsurprising that in the post
turntable bias optimization experiments, the onboard model was not able to accurately predict the
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Figure 6.4: Change in estimated lifttodrag ratio as function of change in angle of attack used for the transformation for wandering
phase iteration 141.

bestperforming shapes. Looking back at Fig. 6.3, it would be challenging for any method to accurately
predict the locations of the orange dots based on a data set which is for 72.5 % made up by the blue
dots.

6.4.2. Post measurement tablebias correction
In further postprocessing of themeasurement data, the samplesmeasured after the zero position of the
turntable was reset were corrected. This correction was performed by first correcting the commanded
angle of attack 𝛼c to obtain the actually actuated angle of attack 𝛼act with 𝛼act = 𝛼c + Δ𝜀, where Δ𝜀 =
−1.5981 degrees. Next, the original averaged force balance measurements in the bodyfixed reference
frame �̄�𝑥 , �̄�𝑦 were again transformed to the lift and drag forces defined in the aerodynamic reference
frame with the angle of attack dependent transformation shown in Eq. (6.1) using the actuated angle
of attack.

The resulting biascorrected repeated measurements from wandering iterations 141 through 150
are shown in Fig. 6.5. Here, the large and consistent discrepancy in the lifttodrag ratios observed for
the two sets of measurements in Fig. 6.3 is no longer visible. In contrast with Fig. 6.3, without the color
coding, the two sets of measurements would be indiscernible in Fig. 6.5. Nevertheless, the observed
differences between the unbiased and biascorrected measurements are cannot be used to quantify
the overall measurement error in the experimental setup. Although the transformation error has been
corrected, the actuation error has not been corrected. Since the effect of the actuation error actually
affects the aerodynamics and by extension, the measured signals rather than the postprocessing of
these signals, this type of error, although of known origin is impossible to correct.
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Figure 6.5: Uncorrected estimated lifttodrag ratios from repeated wandering phase measurements from before (blue) and after
(orange) the turntable reset bias.
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The differences between the connected samples in Fig. 6.5 are the combined effects of the mea
surement error and the −1.5981 degree error in the angle of attack actuation. The effects of steps in
angle of attack for the same shape cause steps along the aerodynamic efficiency curve of that wing
shape. The exact shapes of the efficiency curves are different for each of these shapes and are un
known. The unique efficiency curves of various wing shapes attain their maximum values at different
lift coefficients, as some shapes are more efficient for producing either low or high amounts of lift. It
is precisely by cherrypicking the best sections of the various efficiency curves through using different
shapes that active morphing wings are able to achieve high aerodynamic efficiency for any lift coeffi
cient. However, even though the exact efficiency curves are unknown, they can are expected to be
similar to the efficiency curve of the jig shape, shown in black. Therefore, it can be verified that the
corrected samples represent steps along the approximate direction of the jig shape and no clearly
discernible biases remain.

The aforementioned bias corrections were made to all of the postturntablezeropositionreset
measured wandering samples. The uncorrected lifttodrag ratio estimations are shown in Fig. 6.6a. In
this graph, the unbiased and the biased sample distributions are clearly separated. The same samples,
after correction of the angleofattack bias induced transformation error, are shown in Fig. 6.6b. The
biased and subsequently corrected data points are overlapping with the earlier measured data points
that were not biased. The lowest lift coefficients of the distribution of the corrected samples are some
what smaller than the lowest lift coefficients of the unbiased samples. Although the commanded angles
of attack of both sets of pseudorandom inputs were sampled using the same bounds, the actuated an
gles of attack of the last 57 iterations were approximately 1.6 degrees lower than their commanded
angles of attack. On average it also seems as though the lower lift coefficient samples of the corrected
set have slightly lower lifttodrag ratios than the unbiased samples. The exact cause of this remaining
difference cannot be definitively proven. However, the observed behavior indicates that an increased
zerolift drag coefficient could be the culprit. As lower lift coefficients, in general, have a lower total
drag, the lifttodrag ratio becomes increasingly more sensitive to the zerolift drag coefficient at low lift
coefficients, while at higher lift coefficients the zerolift drag coefficient makes up a relatively small por
tion of the total drag. Since, the two sets of measurements were gathered on different days, with other
measurements being performed in between, it is not implausible that a small drag increasing change,
such as the partial detaching of pieces of tape from the wing surface, may have occurred.

6.4.3. Further data set cleaning
In addition to the correction of the angle of attack actuation bias, the tracking signals of the vision
system were also critically reviewed to improve the overall quality of the data by filtering out samples
for which the tracking of the reference signals was unsatisfactory.

The twelve commanded local vertical trailingedge deflections serve as the final reference signal
values for the controller to steer the 12 measured local vertical trailingedge displacements from the
vision system. Because of the backlash hysteresis phenomenon, the oneminute controller cycles start
with a doublet input to consistently shake the wing trailing edge. Then, the reference signals transition to
their final constant values through a sigmoidal step. The reference signals reach their final values after
approximately 11 seconds into the controller cycle. However, the convergence time of the controller
varies per commanded shape as motions of the trailing edge at the 12 spanwise stations are coupled.
From 20 seconds into the cycle until the cycle end at 60 seconds, the measured aerodynamic forces
resulting from the actuated shape are averaged. During this period, the wing shape should remain
constant, i.e., all tracking responses should be stationary. The tracking signals of all wandering phase
measurements were visually inspected to ensure their timely convergence.

An example of a tracking signal which did not converge within the measurement window is shown in
Fig. 6.7. During the averaging period, the wing shape should not change anymore, as is the case at the
first servo location in module two shown in orange. However, the tracking signal of the second servo
location (purple) indicates an undesirable movement of the trailing edge. For this reason, this data
point was not used for the postdatadriven simulated wandering experiment. Note that the tracking
signals should converge to a constant value, but not to the exact reference signals indicated by the blue
and yellow lines. Due to the calibrationdependent tracking biases described in section 6.2, a constant
offset is observed when in fact, the tracking error has converged to zero. Therefore, the flatness of the
tracking signals was inspected rather than their differences from their tracking signals.

In general, it was decided to omit the samples for which the difference between the minimum and
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(a) Comparison of the estimated aerodynamic efficiencies of all the wandering phase measurements before correction.
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(b) Comparison of the estimated aerodynamic efficiencies of all the wandering phase measurements after correction.

Figure 6.6: Effects of the post experimental turntable bias correction on the estimated lifttodrag ratio versus lift coefficient
distributions for the wandering measurements.

maximum tracking signal values during the last 40 seconds of the controller cycle was greater than
1.5 mm for any of the tracking signals. In total 28 measurements were omitted. For wandering phase
iterations 1 through 57 no tracking signal data was saved. Therefore, these samples were also omitted
so that the tracking convergence could be guaranteed for the data used.

6.4.4. Experimental Datadriven Optimization Predictions
The cleaned and biascorrected data were used to reperform the wandering phase part of the wind
tunnel experiment in simulation. Because only the transformation error of the angle of attack actuation
bias was corrected, the actuated angles of attack were still different from the commanded angles of
attack for wandering phase iterations 150 through 207. However, these data points could still be used
because their actually actuated angles of attack were known. The purpose of the wandering phase
experiment is the exploration of the search space. The used inputs are pseudorandom and their
exact values are not of interest, but rather the underlying mapping from wing inputs to aerodynamic
performance is. The remaining data was divided into training and validation data sets with a 75%/25%
split.

During the simulated wandering phase experiment, the optimization algorithm operated similarly to
the wind tunnel experiment. However, rather than actuating pseudorandom inputs of the wing and
sending the averaged force balance measurements, the estimated lift and drag coefficients from the
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Figure 6.7: Example of a desirable (orange) and a undesirable (purple) tracking signal response in module 2 at wandering phase
iteration 176.

inputs are fed to the optimization algorithm directly from the training data set. With this architecture, the
online optimization algorithm is unable to evaluate new input as there is no actual wing system or model
present. Therefore, the optimization phase experiment cannot be simulated this way. However, this
setup is suitable for simulating the wandering phase with the same inputs as used in the wind tunnel
experiments. Lastly, in contrast with the wind tunnel experiment, in the wandering simulation, the best
inputs were estimated by the optimizer using the onboard model during each iteration.

The Mean Squared Error (MSE) losses of both the lift coefficient and the drag neural networks on
the training and validation data sets are shown in Fig. 6.8. The training of the neural networks started
from iteration 32, which is when the first iteration where the number of samples in the buffer was greater
or equal to the minibatch size which was also 32. Each iteration of the algorithm includes 25 epochs
of learning on the training data set. As expected, the training losses are consistently lower than the
validation errors. The addition of newmeasurements to the training data set every 25 epochs manifests
as step increases in the training loss. After each step, the training loss subsequently decreases with
some noise due to the network weights being adapted to minimize the loss on the expanded training set.
The validation losses on the other hand are not so sensitive to the addition of the new measurements.
However, with the slow increase in the amount of training data, the generalizability of the trained model
also slowly increases, i.e., the validation loss slowly, but certainly decreases. This trend indicates that
with more training data, the onboard model could be improved even further.

The most optimal system inputs for a target lift coefficient of 0.65 as computed by the optimizer
on the onboard model during the simulated wandering phase experiment are shown in Fig. 6.9. The
marked bounds on the inputs are dictated by the bounds of the training data for the onboard model,
which are bounds on the wandering data points. At iteration 32, when the online training starts, large
steps in all computed optimal inputs are observed. Subsequently, the optimal inputs slowly transition
as the online training of the onboard model continues. The final optimal wing shape was shown in
chapter 5. The first virtual input 𝑢1 gradually increases to 3.8mm at the end of the simulation. The
positive value for 𝑢1 indicates an increase in mean camber across the wing as can be observed in
Fig. 3.5. The second virtual input 𝑢2 decreases to −4.4 mm which results in a spanwise decrease in
camber towards the wing tip end. The third virtual input decreases to its negative limit at −7.5 mm,
which corresponds to an increase in camber in the spanwise center and an equal decrease of the local
camber towards both the wing root and tip ends. The fourth virtual input is decreased to −0.7 mm,
which corresponds to a small decrease in camber in module 2 and at the wingtip, and a small increase
in camber at the wing root and in module 5. 𝑢5 decreases to −2.2 mm, which corresponds to camber
decreases at the wing ends and center, and an increase at 16 wingspan from both ends of the wing.

The normalized root mean square errors of both neural networks were shown in chapter 5. However,
these metrics only indicate the prediction accuracy of these networks on the entire validation data
set. They do not provide insight into the distribution of the prediction errors on this set. The absolute
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Figure 6.8: Training and validation losses of the lift and drag coefficient neural networks during simulated wandering.
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Figure 6.9: Evolution of the computed optimal inputs during simulated wandering, with limits marked by the red dashed lines.
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prediction errors of lift and drag coefficient networks are not correlated with the lift and drag estimates.
However, for smaller drag coefficients, the drag prediction error becomes larger in the relative sense.
Coincidentally, for small drag coefficients, the lifttodrag ratio becomes more sensitive to the drag
prediction error. The variation of the absolute lifttodrag ratio error on the validation data set with the
estimated drag coefficient is shown in Fig. 6.10. A clear trend of increasing absolute lifttodrag ration
prediction error with smaller drag coefficient values can be observed. While the prediction errors are
randomly distributed and can have both positive and negative contributions to the predicted lifttodrag
ratios, the optimizer, by its very nature will converge onto the point with the highest lifttodrag ratio and
thus find points where the lifttodrag ratio is overestimated. Therefore, the predicted lifttodrag ratios
presented in chapter 5 are expected to be optimistic.
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Figure 6.10: Variation of the absolute lifttodrag ration error on the validation data set with the estimated drag coefficient.

As established earlier, the onboard model can be further improved with more training data. In real
world operation on an aircraft, the training data set would bemany times larger than 71 samples. The 71
samples in this case, are the result of the combined effects of the relatively long (1 min.) measurement
time, the removal of samples with undesirable tracking signals, and the reservation of 25% of data points
for validation. Furthermore, in the optimization mode, the computed optimal inputs are of interest rather
than the predicted performance. Since during this phase the predicted optimal inputs are actuated on
the system and the resulting performance is measured, the exact predicted performance is of little
importance.



7
Discussions

In this chapter a comparison is made between the results from the simulation and wind tunnel exper
iments. First, the optimal wing shapes identified in both experiments are compared, followed by a
comparison and explanation of the performance of the optimal shapes. Lastly, a comparison is made
to the performance measured in a previous wind tunnel campaign.

7.1. Optimal shapes
spanwise distribution When comparing the optimal wing shapes found in the optimization of the
simulation model and in the optimization performed on the SmartXAlpha hardware in the wind tunnel
experiment, some differences are observed. First of all, the simulation optimal shapes show elliptical
distributions where the camber monotonically decreases towards the wingtip (free end) only.

The best performing wind tunnel optimal shapes show camber buildoff towards both the wingtip and
root. This effect has likely been caused by pressure leakage at the wing root due to an approximately
1 cm wide clearance gap between the wing root and the flow table surface in the wind tunnel setup.
This makes flow around the wing different from that of a perfect wingfuselage intersection and a little
closer to the flow around a free end.

wing camber versus angle of attack Since both the wing camber and the angle of attack can be
adapted to realize a certain amount of lift, an infinite number of possible angleofattack and wing shape
combinations exist that will satisfy a given lift requirement. However, the drag associated with these
various combinations differs and thus the lowest drag combination is desired. As previously discussed,
the ideal spanwise lift distribution is either a single or double elliptical shape depending on the wing root
and fuselage intersection. The preferred spanwise lift distribution and the preferred overall amount of
camber be conflicting. Hence, the optimal wing shape is ultimately a tradeoff between a good spanwise
lift distribution and a good angleofattack versus overall wing camber tradeoff.

In the optimal wing shapes found in the simulation experiments with the developed aerodynamic
model, the general trend in the camber versus angle of attack tradeoff is that relatively high angles
of attack with camber reducing morphing actuation are favored. Although increased airfoil camber is
generally a more efficient mechanism of lift induction than angle of attack increments at low Reynolds
numbers, the baseline NACA6510 airfoil is already relatively highly cambered. This tradeoff is also
consistent with the trends shown in the wind tunnel data from previous campaigns on which the aug
mentation of the aerodynamic model was based as was shown in Sec. 3.1.5. For low target lift coeffi
cients, it was observed that the optimizer favored an almost completely uniform and maximal spanwise
reduction of the wing camber. This wing shape was far from elliptical. This indicates that in the case of
the aerodynamic model, the benefits of a more appropriate amount of camber for the low lift coefficient
outweighed the benefits that more elliptical lift distributions could have had. This makes sense since
the elliptical lift distribution reduces the induced drag component. This component is naturally smaller
for low lift coefficients. The shapes for higher target lift coefficients were found to be increasingly more
elliptical. However, only the highest target lift coefficient shape used the full morphing range. This was
needed to meet the target lift coefficient, as the maximum allowable angle of attack had already been
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reached. The other observed optimal shapes in the simulations do not use the full morphing range
because the drag penalty from increased amounts of camber was found to not outweigh the reduction
in drag from an increased spanwise decrease in camber. Hence, the ellipticalness of the camber dis
tributions is sacrificed for lower overall amounts of camber. The word ellipticalness is taken to mean
the degree to which a given shape resembles an ellipse.

In the optimal shapes identified from the wind tunnel experimental data, a different trend in the trade
off of overall wing camber and the spanwise lift distribution was observed. In the tradeoff between the
angle of attack and the overall amount of camber, these optimal solutions on average comprised higher
amounts of camber, with the maximum amount of camber being close to the allowable upper limit, and
generally lower angles of attack than the simulationbased solutions for the same lift coefficients. These
shapes were found to make use of almost the entire morphing range. This indicates that in reality, it
is beneficial to actuate as much spanwise decrease of camber as possible within the actuation limits.
For increasing lift coefficients, it was observed that increased overall amounts of camber were used
by slightly reducing the ellipticalness of the camber distribution. However, the full allowable range of
morphing is used in each instance.

From these comparisons, it can be concluded that although the simulation model included similar
drag source dynamics such that the ability of the optimization framework to optimize this tradeoff could
be demonstrated, the exact optimal solutions were different. A probable cause for the observed dif
ference in the exact locations of the optima in the search spaces of the simulation and wind tunnel is
the low accuracy with which the viscous effects are modeled in the aerodynamic model. The aerody
namic model is based on the inviscid vortex lattice method and thus viscous effects were neglected by
default. However, a loworder estimate of the viscous effects was included through the model augmen
tation based on wind tunnel data from a previous wind tunnel campaign. Without this augmentation,
no camber versus angle of attack tradeoff dynamics would be present in the aerodynamic model. The
model augmentation introduced an estimate of the effects of the overall wing camber on the zerolift
drag and the Oswald efficiency factor through first and secondorder polynomial functions in the mean
equivalent flap angle. This augmentation neglected the intricacies of the spanwise distribution of the
camber and other 3D effects. However such information was also not contained in the data set which
comprised only measurement with constant spanwise camber morphing settings.

Nevertheless, as discussed in Sec. 3.1, the precise prediction of the optimal wing shape and angle
ofattack combinations was never the intended purpose of the aerodynamic model. Instead, the aero
dynamic needed to simulate representative camber versus angle of attack tradeoff dynamics such that
the effectiveness of the proposed strategy could be demonstrated. This has been achieved. It should
also be noted that in this thesis the aerodynamic model has only been used for preliminary design and
testing of the proposed online wing shape optimization methodology. In other words, the aerodynamic
model has served as a digital playground and learning environment for the proposed framework. How
ever, the final validation of the effectiveness of the method has been evaluated using the SmartXAlpha
demonstrator in a realworld wind tunnel experiment. The results from this experiment have shown that
the proposed methodology was able to adapt to this new environment and realize improved aerody
namic performance using new wing shapes. Lastly, it should be mentioned that the difference between
the simulation and wind tunnel experimental optima once again highlights the importance of realworld
experiments in wind tunnels or test flights for the maturation of promising new technologies.

7.2. Estimated performance

The estimated performance of the optimal shapes during offline optimization on the nominal aerody
namic model is lower than the bestperforming measurements from the wind tunnel experiments. The
reason for this underestimation of the morphing wings’ performance can be traced back to the data set
which was used to correct the inviscid aerodynamic model.
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Figure 7.1: Comparison of the lifttodrag ratios of measured during the wind tunnel campaign, the predicted performance of the
offline optimized shapes and the lifttodrag ratios measured in the previous wind tunnel campaign.

In Fig. 7.1, the predicted performance of three optimal shapes computed on the nominal aerody
namic model are shown (dark red), as well as the performance of the jig shape during the previous wind
tunnel campaign (black), and the performancesmeasured during themore recent wind tunnel campaign
described in this thesis. From this figure, it is evident that the measurements of the jig shape in the
two wind tunnel campaigns are not fully in an agreement. The older lifttodrag ratio measurements are
lower than most of the more recently measured lifttodrag ratios with the only exceptions near 𝐶L = 0.2
and near 𝐶L = 1.0. Additionally, the discrepancy between the two measurement sequences varies with
the associated lift coefficient, with the largest discrepancy being observed near 𝐶L = 0.35. Hence, it is
only natural that the prediction based on a model built from the older measurements underestimates
the lifttodrag ratios of the optimal shapes. However, while it is impossible to definitively prove what
the causes of these discrepancies are, some differences in the measurement setups which have likely
contributed to the measured discrepancy are known.

1. Between the wind tunnel campaigns, some changes have been made to SmartXAlpha during
maintenance, which have resulted in a reduced range of achievable trailingedge displacement.

2. Due to the backlash in the morphing mechanism, the true shape of the wing may have been
slightly different between the measurements campaigns. If the jig shape shaking maneuver is
performed under aerodynamic loading, the shape after the shaking maneuver is also inconsistent.

3. The portion of the drag caused by the cleanliness of the wing surface was different between the
wind tunnel campaigns. Pieces of tape were used to secure exposed wiring and IR markers to
be used for wing shape estimation by the vision system. Differences in the number, size, and
placement of the various pieces of tape on the wing surface and at the wing tip are also a source
of drag discrepancy. Especially pieces of tape that partially detach from the wing can have an
adverse effect on the total drag measured.

4. The tip end of the wing is open by default. During the most recent wind tunnel campaign, this
open end was closed off using flexible tape. However, the applied tape could not fully cover the
entire movement range of the TRIC module during morphing. Manual taping is first of all incon
sistent and, moreover, the quality of the seal degrades over time under motions of the morphing
mechanism.

5. The clearance gap between the horizontal flow table and the wing root was different between the
two series of experiments. During the wind tunnel campaign described in this thesis, a consider
able amount of time and effort was put into minimizing the width of this gap while still allowing free
rotation of the wing. The reduction of this gap at the wing root has resulted in a reduction of pres
sure leakage at this location compared to previous wind tunnel experiments and has therefore
naturally enhanced the efficiency of the wing.
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The observed differences likely are the combined result of these differences. However, the prime
factor is thought to be the reduced root clearance gap width. The larger increase in difference in lift
todrag ratio between the two wind tunnel campaigns for lower lift coefficients indicates a reduction
in zerolift drag coefficient in the second wind tunnel campaign. While this is a constant factor, the
sensitivity of the lifttodrag ratio to a fixed “drag penalty” increases with a lower total drag, and thus
with lower total lift. The zerolift drag differences may primarily have been caused by differences in
the surface cleanliness in the two campaigns. However, the behavior of partially separated pieces of
tape is more dynamic in nature and their effects are harder to predict. However, even if they are to
reach a steadystate equilibrium, this equilibrium may be dependent on the angle of attack and even
the actuated wing shape.

(a) Loose tape discovered at one of the infra red marker
locations

(b) Loose tape discovered on the bottom surface near the wing tip.

Figure 7.2: Two examples of pieces of tape that were found to have been partially detached from the wing during the experiment.

Morphing limits The maximum achievable trailingedge deflections during the wind tunnel campaign
were lower than those used in the simulation model. While the morphing limits configured in the sim
ulation model were derived from accurate Digital Image Correlation (DIC) measurements, these mea
surements were not performed on the most recent version of SmartXAlpha. During maintenance, the
interface between the sliding surfaces was made stiffer and the pickup point of the morphing mecha
nism was reglued. These changes to the SmartXAlpha hardware have resulted in a reduction of the
maximum trailingedge deflection that can be achieved. Between these different versions of SmartX
Alpha, the actuation ranges of the morphing actuators are unchanged, however, the amount of vertical
trailingedge displacement resulting from these actuator deflections has changed.

This has resulted in a slight discrepancy between the amount of morphing realizable in the simula
tion model and the wind tunnel experiment. However, other previously discussed factors have greater
contributions to the differences between the simulation model and the real SmartXAlpha demonstrator,
and this discrepancy can be tolerated. As discussed in chapter 5, this has also resulted in discrepan
cies between the commanded and actuated wing shapes during the wind tunnel experiment since the
achievable trailingedge displacements were overestimated. Consequently, saturation of the morphing
actuators occurred relatively frequently.



8
Conclusions and recommendations

In this chapter, the conclusions of the thesis research are presented, followed by the recommendations
for future work on the online wing shape optimization framework.

8.1. Conclusions
In this section, the conclusions of the thesis work are drawn. The research questions from sec. 1.2.1
are revisited and answered. Lastly, the research objective from sec. 1.2.2 is reviewed.

1. What are suitable modeling methods for trailingedge camber morphing wings with low
computational cost and sufficient accuracy for the purpose of online blackbox perfor
mance optimization?
In this thesis, a Vortex Lattice Method (VLM) was used to model the aerodynamics of a trailing
edge camber morphing wing. The geometry of themorphed wing was represented with a fullspan
distributed continuous flap wing. This model allows for spanwise twisting of the trailingedge flaps
without discontinuities or gaps between these discrete flaps.
VLM is a loworder inviscid aerodynamic method, which allows for lowcomputational cost, and
thus fast evaluation. However, the inviscid nature of the method limits the validity of the model
to small angles of attack, where no flow separation occurs. However, due to the fact that the
target conditions are prolonged flight in steadystate conditions, these lower angles of attack also
correspond to the primary region of interest. Additionally, the VLM methods are suitable methods
for the prediction of lift and induced drag. The zerolift drag, which primarily originates from
viscous effects rather than the pressure distribution cannot be modeled with a VLM.
To this end, the VLM aerodynamic model was augmented using functions of the zerolift drag
coefficient and the Oswald efficiency factor based on wind tunnel measurements from a previous
campaign. With these corrections, the model predictions are much closer to the realworld mea
sured data for SmartXAlpha. However, high predictive accuracy is not the primary requirement
of the method as for the purpose of testing an online blackbox performance optimization frame
work, it is primarily important that the mechanics of the morphing wing model are similar to those
of a realworld trailingedge camber morphing, rather than that the exact prediction or optimal
inputs are close to the realworld counterpart. The inherent tradeoffs in the shape optimization
of trailingedge camber morphing wings are the reshaping of the spanwise lift distribution and
the choice of camber versus angle of attack increments as the mechanics of lift production. With
the distributed flap VLM model and the fitted correction functions respectively, these inherent
tradeoff mechanics are represented in the proposed model.

2. What are suitable methodologies for an adaptable online wing shape optimization frame
work?
Due to the high costs of system evaluation, inflight wing shape optimization methodologies
should be very sampleefficient. Furthermore, any such methodology should also be robust to
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measurement noise as aerodynamic force measurements are noisy in nature. Additionally, in
order to allow for online operation, the computational cost of the method should be small. In
other words, the computational time required should be small compared to the time required for
measurement. Furthermore, a truly adaptable optimization framework should be able to learn
any complex relationship between the system inputs and outputs, and also be able to update its
knowledge, and by extension its shape solutions to changes in the system. Lastly, under prac
tical considerations, it is highly desirable that the scope of the method is wide enough such that
optimization can continuously take place even as the flight conditions vary. Ideally, there would
be no need for model excitation maneuvers in flight.
In this thesis work, the required sample efficiency was realized by using a hybrid modelbased
evolutionary optimization strategy, thereby decoupling the learning and optimization objectives of
the proposed framework. A lowcost surrogate or metamodel was learned online and continu
ously updated, and simultaneously the optimization procedure operated on this model to estimate
the best wing shape within considerably less time than would be required for direct optimization
of the system.
This onboard model comprised singlehiddenlayer artificial neural networks (ANN). These are
universal function approximators that can, with enough parameters, approximate any continuous
nonlinear function. These ANNs comprised Radial Basis Function (RBF) activation functions.
These RBF networks are locally sensitive and more robust to noise than other ANNs. The neu
ral network models are trained online on a global data set comprising both historical and recent
measurement data. The Covariance Matrix Adaptation – Evolutionary Strategy (CMA–ES) opti
mization method was used for its robustness to noise and good global optimization performance.
Together with the global onboard model, it allows the framework to predict wellperforming wing
shape and angle of attack combinations for various flight conditions without renewed input space
exploration maneuvers.

3. Compared to nonmorphing wings of similar geometry, what increase in lifttodrag ratio
can be achieved on active trailingedge camber morphing wings with online blackbox
wing shape optimization?
It has been shown in simulation that online blackbox shape optimization can be used to increase
the lifttodrag ratios of rectangular planform active trailingedge camber morphing wings at low
speeds by 2.5% − 14.6% depending on the operational lift coefficient. The main mechanism of
drag reduction for rectangular planform active morphing wings whose jig shapes do not comprise
washouts is the reshaping of the spanwise lift distribution to more closely approach an elliptical
distribution, which is theoretically ideal in terms of induced drag.
The general trend in the camber versus angle of attack tradeoff is that relatively high angles
of attack with camber reducing morphing actuation are favored. This is owed to the relatively
high degree of camber in the baseline NACA6510 airfoil. The tradeoff is also consistent with
the trends shown in the wind tunnel data from previous campaigns on which the augmentation
of the aerodynamic model was based. Analysis of these measurements with constant spanwise
cambermorphing of various degrees showed that themaximum achievable camber reduction was
aerodynamically most efficient for lift coefficients up to 0.85 and that the second most camber
reduction setting was most efficient for the remainder of the operational range. Nevertheless,
the particular computed optimal solutions are not primarily of interest, but rather the ability of the
blackbox optimizationmethod to identify these optima online regardless of the internal mechanics
at play. Herein lies the inherent strength of blackbox optimization, which requires no particular
knowledge of the complex inner dynamics of the system to be optimized.
Finally, the performance of the blackbox online wing shape optimization strategy for active cam
ber morphing wings has been validated in a wind tunnel experiment. It has been experimentally
demonstrated that a lifttodrag ratio increase of 8.4% can be realized on SmartXAlpha at 15m/s
with a lift coefficient of 0.65 using the proposed method. This constituted a 7.8% decrease in
aerodynamic drag compared to the wing jig shape. In contrast to the optimal wing shapes found
in simulation, the experimentbased optimal wing shapes comprised a secondary reduction of
the local camber near the wing root end. This trend is consistent with the theoretical effects of
pressure leakage caused by the existence of a clearance gap between the wing root and the
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fuselage surface. Additionally, the optimal shapes for other target lift coefficients have been pre
dicted using the optimization framework in simulation with the most recent wind tunnel data. In the
tradeoff between the angle of attack and the overall amount of camber, these optimal solutions
on average comprised higher amounts of camber, with the maximum amount of camber being
close to the allowable upper limit, and generally lower angles of attack than the simulationbased
solutions for the same lift coefficients. These tradeoffs are consistent with the trends described
in the literature for low Reynolds number flows.

4. What improvements to the methodology are needed to transfer the shape optimization
framework to inflight operation, and what are the challenges?
To begin with, a major challenge to any online aerodynamic performance optimization method
ology lies in the sensing of the aerodynamic forces. Naturally, no performance optimization is
possible if the performance of the system cannot be accurately measured. The main challenge of
blackbox online global shape optimization for aerodynamic performance is to learn the complex
relations between the shape inputs and the aerodynamic forces from few and scattered data in
an adaptable way. Due to the significant measurement noise, even in steadystate aerodynamic
flow situations, the system is naturally expensive to evaluate. Measurement times of around one
minute are common practice in wind tunnel experiments, and it stands to reason that they would
be even longer in the lesscontrolled inflight environments outside laboratories. Hence it is of
the utmost importance to the success of any blackbox online wing shape optimization strategy
to extract as much information as possible from each precious measurement.
A proven approach to sampleefficiently generalizing the knowledge from individual data points
is through the identification of surrogate models. Local graybox models typically constrain the
model structure to more efficiently estimate the parameters given the assumed model structure.
Blackbox surrogate models, which are not based on any assumptions in model structure and can
generally approximate any nonlinear mapping generally need more data points to be functional.
On account of their scope global models also tend to need more data than their local scope
counterparts. Hence, the primary challenge of the identification of a global blackbox model for
expensivetoevaluate systems is the sheer amount of data required.
In the work described in this thesis, this hurdle is overcome by retaining previously measured
samples. This solution does come at a price. By combining new and old data to quench the
surrogate model’s “hunger for data”, some adaptability or rather an adaptation speed is sacrificed.
The heavier the reliance on older data in this tradeoff, the less sensitive the model identification
procedure will be to the latest measurements, and hence the lower the adaptation speed will
be. However, the radial basis function neurons used in this thesis work are locally sensitive
and are therefore able to locally adapt the model to new measurements. In contrast, with a
global basis function surrogate model, each new data point would only be a drop in the proverbial
ocean of historical data. In addition, the speed of adaptation was further improved with a targeted
data management strategy. This strategy aims to retain historical data in scarce regions of the
domain and favors new measurements over historical data in more densely populated areas of
the domain.
In future work, it may be interesting to investigate the merits of a weighted loss function based
on sample aged. However, one should be cautious while doing so and guard against adversely
affecting the generalizability of the model by assigning too much importance to few samples.
Other improvements that should be made to the optimization framework are the inclusion of the
Reynolds and Mach numbers as input variables, renewed hyperparameter optimization using
the newly gathered experimental data, and the implementation of trustregion bounds into the
optimization constraints. These are discussed in greater detail in the following section.

Research objective Finally, the research objective presented in Sec. 1.2.2 is reviewed once more.
The goal of the thesis research was to:

“to realize the most aerodynamically efficient shape on a seamless active trailingedge cam
ber morphing wing by developing a blackbox onlinelearning shape optimization method
and testing the method in a wind tunnel experiment”.
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During the work described in this thesis, a blackbox online shape optimization methodology has
been developed and evaluated on both simulationmodels and on a seamless distributedmorphing wing
demonstrator in a wind tunnel experiment. The proposed methodology was successful in realizing a
7.8% reduction in the aerodynamic drag of the morphing wing while achieving the targeted lift coefficient
in the wind tunnel experiment. With these results, the research objective has been achieved.

8.2. Recommendations
Based on the results of the work described in this thesis and the conclusions drawn, The following
recommendations for future work are given.

1. As the inviscid aerodynamic model used in the simulation experiments only accurately model lift
and liftinduced drag, it is recommended that a higher fidelity aerodynamic model is used in future
work. While this type of model, with corrections based on previously gathered windtunnel data,
was sufficiently accurate for the demonstration of the online optimization framework, the total drag
prediction was not accurate enough to precisely predict the realworld optimal tradeoff between
camber and angle of attack. Especially if the scope of the framework is expanded to include
highspeed flight, the aerodynamic model needs to be able to sufficiently accurately model Mach
effects.

2. The onboard model is identified under the assumption that an invariant inputoutput relationship
exists within the training data. However, in actuality, the relationship between the angle of attack
and wing shape, and the steadystate lift and drag coefficients is also variable with changes in the
Mach and Reynolds numbers. Therefore, the validity of the onboard model, in its current form, is
limited to the region where the variation of this mapping with respect to the Reynolds and Mach
numbers is negligibly small. In order to further expand the scope of the onboard model, and by
extension that of the online optimization framework, the Mach and Reynolds numbers should be
included as additional inputs to the onboard model in future work so that the scope of the method
can encompass the entire flight envelope.

3. Since the strength of the neural network models strictly lies with the interpolation of data, and their
ability to make generalizable predictions does not extend to the extrapolation of data, caution
should be exercised in the “blind” optimization of their outputs. Parameter sweeps of trained
models have shown that indeed the accuracy of the trained models is highest near the center
of the domain spanned by the data, and a slight decreasing trend in predictive accuracy was
observed towards the edges of the domain. Moreover, the predictive accuracy of the model
starts to degrade much faster when crossing the boundaries of the training data set domain.
The optimizer should therefore be guarded against exploiting model deficiencies in regions of
low model accuracy. In this thesis work, the optimizer was restricted to operating strictly within
the bounds of the training data set. However, by determining the trust region of the model online,
more informed and adaptive optimization bounds could be maintained in future work. In this case,
a low accuracy model would result in a more restricted optimization space, and therefore in less
complex, but still improved wing shapes rather than in more complex but bogus shapes that yield
undesirable performance.

4. In this thesis, the hyperparameter optimization was performed based on data from the aerody
namic model. However, the final goal of the onboard model was to approximate the inputoutput
relationship of the data obtained during the wind tunnel experiments. Because ideal network pa
rameters are dataset dependent, the hyperparameters used were likely not optimal for the task.
However, a data set of various angles of attack and wing shapes, and their resulting steadystate
aerodynamic coefficients exists has been gathered during the wind tunnel experiments described
in this thesis. Therefore, in future work, this new data set, which is more representative of the
real inputoutput mapping, should be used for hyperparameter optimization so that an even better
model may be realized. In addition, it is recommended that a more advanced hyperparameter
optimization strategy such as Bayresian Optimization – HyperBand is used to further improve the
tuning of the onboard model hyperparameters.

5. The deviation from the target lift coefficient term in the cost function comprises the negative in
verse of the error. This peculiar formulation is a remnant from a previous version, which was
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designed as a reward function to be maximized. These inverse error relationships are undesir
able since such terms can “blow up“ when the error takes on particularly small values. A small
number was thus added to the denominator to limit the effect of this phenomenon. However,
for the minimization objective, the negative inverse term is no longer needed. Instead, a more
elegant form of the cost function is recommended for future work. The negative inverse of the
squared lift error can simply be replaced by the squared lift error. This formulation is simpler and
needs not to be safeguarded against blowing up.

6. Lastly, it is recommended that some changes in sensing equipment are made in future work to en
able the application of the methodology to realworld aircraft. Since an external forcebalance as
used in the experimental setup described in this thesis cannot be applied to a freeflying aircraft;
these forces will have to be estimated using other onboard sensors. In the steadystate equilib
rium conditions for which the optimization framework is proposed, the lift and drag forces balance
the weight and thrust forces. These forces can be estimated using the gross aircraft weight, pitch
angle, angle of attack, fuel consumption rate, and the engine’s ThrustSpecific Fuel Consumption
(TSFC). The gross aircraft weight can be calculated from the aircraft’s gross takeoff weight and
the fuel burned. These are known quantities on commercial airliners, as are fuel consumption rate
and the angles of attack and pitch. The TSFC varies with flight speed and altitude, which are also
known. Additionally, the experimental IR cameras setup used in this work can be converted to
a fuselagemounted inflight vision tracking system as has been experimentally validated in [67].
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