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Abstract

This work addresses the problem of exploration and coverage using visual inputs. Exploration
and coverage is a fundamental problem in mobile robotics, the goal of which is to explore
an unknown environment in order to gain vital information. Some of the diverse scenarios
and applications in which exploratory robots can have a significant impact include search
and rescue missions, environmental monitoring, and space exploration. Specifically, we focus
on the aspect of finding areas of interest, also referred to as targets, in the environment.
In this thesis, we propose a deep reinforcement learning based approach relying solely on
visual observations. In particular, our method builds upon the off-policy, actor-critic, Im-
portance Weighted Actor-Learner Architectures (IMPALA) framework by including a set of
novel auxiliary tasks, i.e. Pose Estimation and Local Map Prediction. These auxiliary tasks
are inspired by Simultaneous Localization and Mapping (SLAM) approaches to exploratory
robotics problems. The intuition is to assist internal representation learning and build locale
specific knowledge by teaching the agent to predict its position and orientation, as well as
transfer the visual information to information about the its local proximity. Experiments con-
ducted in the DeepMind Lab simulation environment show improved performance over the
base IMPALA agent and demonstrate the effectiveness of these auxiliary tasks. Furthermore,
we investigate the performance of the agent, trained through various stages of curriculum,
compared to a human controlled agent. The trained agent is shown to outperform the human
in the majority of tested scenarios.
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Chapter 1

Introduction

In recent years, mobile robots and autonomous vehicles have gained an increasing popularity
due to their reduced cost, higher flexibility and improved reliability. They offer solutions to
a wide range of practical problems, including inspection and monitoring of areas of interest,
search and rescue missions, planetery expeditions, and many more. One of the major research
field regarding this topic is that of exploration and coverage. Exploration and coverage denotes
the problem of gaining information in an unknown environment through the deployment of
search strategies.

Exploration and coverage involves a wide spectrum of different aspects such as data process-
ing and storage, localization, and control. Formally, the exploration aspect refers to the task
of searching within an a priori unknown environment, whereas the coverage aspect is more
of a planning problem and refers to physically visiting an a priori known environment such
that subtasks can be performed. There is a distinctive overlap between the two aspects as
an effective exploration strategy goes hand in hand with a high coverage performance. This
work specifically focuses on autonomously searching for areas of interest, also referred to as
targets, in unknown environments. The higher the number of targets in the environment,
the larger the space the agent needs to cover in order to find all these targets. Time is of-
ten a major factor in these applications, e.g. in search and rescue missions it could be the
difference between life and death. Hence, an effective exploration strategy is of crucial im-
portance to the success of the approach. Like many real world robotics problems, exploration
and coverage comes with numerous challenges. The first major challenge is the uncertainty
aspect, native to unknown environments. It restricts the utilization of planning solutions and
often results in conservative assumptions, limiting the performance of these methods. Other
challenges include sensing capabilities, onboard hardware complexity, computational power,
communication and maintainance of communication.

Many works in the literature on this problem proposed a multi-step approach involving some
form of frontier based exploration. The idea of frontier based exploration was introduced on
Nomad mobile robots equipped with various laser rangefinders, sonars, and infrared sensors
[1]. Many other works have since followed in its footsteps [2], [3], [4]. The referred multi-
step process particularly involves detecting the boundary between the covered space and the
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2 Introduction

unexplored space, selecting the subsequent destination for the agent from the list of frontiers,
and executing a behavior/path planning algorithm to move towards the chosen destination. A
terminal condition is adopted dependent on measures regarding the remaining frontiers. This
often involves storing an occupancy grid or graph to keep track of the covered discretized
space. Frontier based exploration can be integrated with other aspects of mobile robotics
such as topological map building [4], or in a multi robot setting with wireless networking [5].
Despite their successes, the vast majority of these approaches focused on the setting in which
robots rely on some form of active range sensors. This can be limiting as we strive towards
smaller, lighter, and more energy and cost effective robots.
In this regard, vision based approaches, which rely solely on cameras, have attracted an in-
creased amount of popularity due to their low footprint, in terms of costs, power consumption,
and onboard hardware complexity. Many vision based approaches for exploration are related
to the Simultaneous Localization and Mapping (SLAM) problem, such as ORB-SLAM [6] and
LSD-SLAM [7]. SLAM is the problem of constructing and updating a map of an unknown
environment and simultaneously localize the agent within it. SLAM approaches involve many
different submodules and can become very complex as one rely on explicit map reconstruction
and accurate state estimation through filtering techniques, which is susceptible to drift and
uncertainty.
The last decade has witnessed many successes in the field of artificial intelligence, and in
particular in reinforcement learning (RL). Superhuman performance has been achieved in
arcade computer games [8], [9], and state-of-the-art algorithms have been successfully applied
to relatively simple, real world robotics tasks [10]. In this work, we seek to explore the
application of RL to the exploration and coverage problem, in the hope that it carries the
positive aspects of single camera systems, while offering a simpler approach compared to
SLAM by learning end-to-end. Reinforcement learning is a form of machine learning that
lies between supervised and unsupervised learning. Unlike supervised learning, where the
agent learns the relation between input-output pairs, RL involves an agent interacting with
an environment and receiving rewards according to its actions. Over time, by trying to
maximize the cumulative reward, the agent adapts and learns to complete a complex task.
This process resembles the natural way humans and animals learn through life. With the
rapidly evolving computer hardware architectures, combining deep learning and RL allows
one to face tougher and more extensive problems than ever before. However, while numerous
forms of success have been achieved, many required in the order of hundreds of millions of
samples to reach a desired performance. This is one of the major limiting factor of RL as it
delays the evaluation process and restricts real world integrations. In this work, we seek to
counter the sample efficiency problem by incorporating SLAM inspired auxiliary tasks as a
regularization tool to improve robustness and training performance. To further enhance the
performance of the agent, we incorporate the idea of curriculum learning. Through a gradual
increase in the complexity of the problem, we hope to teach the agent more complex skills
involved in the exploration and coverage task that the agent may not have learned otherwise.
In the following chapter, we provide the background information to reinforcement learning and
deep reinforcement learning, and cover several works in the literature to build the foundation
for our approach. Chapter 3 provides the formal setting to the exploration and coverage
problem and Chapter 4 provides a detailed description of our proposed approach following
the presented formal setting. The details to the evaluation process and the accompanying
results are presented and discussed in Chapter 5. Finally, Chapter 6 closes with the key
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takeaways from this project and provides the recommendations for future works.
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Chapter 2

Preliminaries

In this chapter, we cover the preliminaries of the proposed approach to the exploration and
coverage problem. We start by introducing the principles of reinforcement learning as a
form of machine learning involving sequential decision making in Section 2-1. Section 2-2
focuses on the the utilization of (deep) neural networks as function approximators and the
basics of deep reinforcement learning (DRL). Section 2-3 covers the challenges involved in
solving (deep) reinforcement learning problems. The related literature is then highlighted
as a foundation for our approach in Section 2-4, 2-5, and 2-6, including resolving partially
observable environments, the utilization of auxiliary losses to aid the learning process, and
the IMPALA actor-critic architecture for scalable learning.

2-1 Reinforcement Learning

Reinforcement learning is a mechanism in which an agent autonomously interacts with an
environment and adapts itself in order to optimize its behavior for a specific task, based on
feedback from the environment. This process is very similar to the adaptation process en-
countered in humans and animals. It allows organinisms to solve complex problems through
exploratory bahavior and through learning from failure and success. One can think of ex-
amples such as the process of learning to take the first steps as a child or trying to solve a
new puzzle. Due to its trial and error nature, once trained to perform a specific task, an
RL agent has the potential to adapt its behavior based on changes in the environment. This
distinguishes RL from traditional planning solutions where the behavior of agents are hand
engineered by the designer. Furthermore, an RL agent possess the intrinsic ability to deal
with uncertainty, which is often not considered in planning algorithms.

The objective of an RL agent is to learn a certain mapping from states to actions, known as
the policy π, that would allow the agent to optimally interact with the environment. The
performance measure is the cumulative reward the agent receives from the environment. It is
typically defined as the the discounted sum of immediate rewards, also referred to as return,
Rπt =

∑N
t=0 γ

trt+1, where γ ∈ [0, 1] is the discount rate regulating the importance of future
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6 Preliminaries

rewards, and N is the time horizon of the problem. The immediate rewards rt, received in
each time step t, are scalar values generated by the reward function. It is the instantaneous
feedback evaluating the transition from state x to state x′ through action a. Through the
definition of the reward function, the designer hopes to direct the learning process such that
the agent learns to accomplish the given task. Figure 2-1 shows a schematic representation
of the basic RL framework.

Figure 2-1: A schematic representation of the reinforcement learning framework. At every time
step t, the agent decides to take an action based on its policy, resulting in a reward and the
transition to a new state.

As the future rewards are (possibly) uncertain, the RL problem relies on the expectation of
the cumulative reward to evaluate the behavior of the agent. The state-value function V π

is the expected return starting from state x under the policy π. It represents the policy-
based long-term desirability of a state. Another notion to infer the expected return in RL
is the action-value function Qπ, which denotes the expected return of following action a in
state x, and successively following policy π. The corresponding state-value function V π and
action-value function Qπ are formally defined as:

V π(x) = Eπ{Rt|xt = x}
Qπ(x, a) = Eπ{Rt|xt = x, at = a}

where Eπ denotes the expectation given the policy.

A fundamental aspect of RL is the Markov property. In general, the state of the environment
can be represented as a probability distribution based on all past states and actions. The
Markov assumption denotes the state being information dense, such that it entails all relevant
data of the past. Consequently, one-step dynamics are sufficient to predict the next state and
reward. An RL task satisfying the Markov property is called a Markov Decision Process
(MDP) [11]. An MDP is defined by the tuple 〈S,A,P,R, γ〉, where S represents the set of
states, A represents the set of actions available to the agent, P represents the probability
of transitioning from state x to a new state x′ through action a, R represents the reward
function, and γ represents the discount factor. The solution to an MDP is the policy, defining
the behavior in each state. Two of the best known algorithms for solving MDPs are policy
iteration [12] and value iteration [13].

An MDP is based on the assumption that the complete state of the environment is observable,
which in reality is rarely the case due to factors such as noise and disturbances, or mechanical
degradation of components. For example, Pacman can be viewed as an MDP. A poker game
on the other hand cannot, since the opponent’s cards are unknown. Likewise, the problem of
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2-2 Function Approximation with Neural Networks 7

exploration and coverage is so-called partially observable as one aims to manoeuvre within an
a priori unknown environment by solely relying on visual observations. The RL problem can
then be formulated as a Partially Observable Markov Decision Process (POMDP) [14], which
in addition to the above-mentioned tuple, maintains a probability distribution over the set of
possible states, based on a set of observations and observation probabilities.

Hence, an RL problem either seeks to optimize for the policy directly and/or for the value
function, based on which the optimal policy is determined. In general, value based methods
tend to suffer from poor convergence, as slight changes in the value space may result in drastic
deviations in the policy space. As policy based methods work directly in the policy space,
smoother learning curves can be obtained. However, they tend to suffer from high variance
and poor sample efficiency [15]. An RL algorithm in which both the policy and the value
function are optimized is called an actor-critic method [16]. Here, the actor refers to the
learned policy, and the critic refers to the corresponding value function, which evaluates the
policy adopted by the agent. Actor-critic methods seek to bring the benefits of both value
and policy based RL. Typically, the updates of the actor and the critic involve the temporal
difference error. The temporal difference error refers to the difference between the successive
value estimates, formally defined as δt := rt+1 + γV (xt+1)−V (xt). This work mainly focuses
on actor-critic reinforcement learning. Figure 2-2 represents the general architecture of an
actor-critic method.

For a more elaborate overview of RL, we refer to [17]. For the interested reader in the topic
of RL in robotics, we recommend works such as [18] for a comprehensive survey.

Figure 2-2: A schematic representation of an actor-critic agent. The agent takes an action based
on its current policy (actor), resulting in a new state and a reward. This feedback is incorporated
in the update rule for both the actor and the critic.

2-2 Function Approximation with Neural Networks

Traditionally, RL methods store and update values corresponding to the states and actions in
tabular form. The amount of memory required and the computational expense of sweeping
through the table to look up specific state-action combinations grow with the size of the state
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8 Preliminaries

and action spaces. Consequently, this becomes problematic for problems with large or contin-
uous state and action spaces. Function approximators can be utilized to address this problem.
A parameterization vector θ = (θ1, θ2, ..., θn)T is used to parametrize the value function or
policy. The function approximator is viewed as a mapping from the parameterization vector
to the space of the value function or policy. The complexity decreases as the number of pa-
rameters is significantly less than the number of state-action combinations. Transitions from
different regions of the state and action spaces activate certain parameters and contribute
towards learning these parameters. Consequently, generalization and sample efficiency can
be improved.
With the recent advances in deep learning, the use of neural networks as function approxima-
tors has become increasingly popular. Neural networks, or artificial neural networks (Figure
2-3(a)), are inspired by biological networks that constitute our sensory system and brain. The
complex interconnections of neurons allow us to process large amounts of data and extract
vital information. Similarly, an artificial neural network consists of layers of neurons. Such a
network is considered deep when it contains two or more hidden layers between the input and
output layer. This is irrespective of the number of neurons in each layer, known as the layer
size. Each neuron (Figure 2-3(b)) converts a vector of inputs {x1, x2, ..., xn} to an output
by computing the weighted sum over the inputs, and passing its biased version through an
activation function σ:

yi = σ(
n∑
i

xiwij + bi) (2-1)

The activation function introduces nonlinearities, allowing approximations of arbitrary com-
plex functions. More complexity can be introduced by increasing the number of hidden layers
or the layer sizes. While this allows the network to approximate more complex functions, it
comes at the cost of higher computational loads and the potential of overfitting, the modelling
error of fitting a particular set of data too closely.

(a) (b)

Figure 2-3: (a) A multilayer feedforward neural network with three inputs, two hidden layers,
and two outputs, and (b) a representation an artificial neuron, which enforces a nonlinear trans-
formation over the biased weighted sum of the input vector.

The nonlinear transformation is performed for each node from the input layer to the output
layer. The objective is to iteratively update the weights of the network such that the residual
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2-3 Challenges in Reinforcement Learning 9

between the predicted output y and the desired output can be minimized, based on a certain
cost function J(θ). The parameters θ represent the weights of the network. This iterative
process is referred to as training. In general, the update is performed through backpropagation
[19]. The backpropagation technique computes the gradient with respect to the network
parameters, and takes a step in the direction of the derivative which decreases the cost:
θn+1 = θn − α∂J∂θ , where α is the learning rate.

Since computing the gradient over the whole training set is computationally expensive, meth-
ods such as stochastic gradient descent are often applied. The overall gradient is estimated
by computing the gradient over randomly sampled batches rather than over the whole set.
In addition to the computational benefits, the use of mini-batches in training also allows
smoother convergence and larger learning rates. The tuning of the learning rate α is of high
importance in this aspect. Small learning rates result in slow convergence and can cause the
problem to get stuck in local minima, while large learning rates result in overshoot and can
have an unstable and diverging effect on the learning process. To address this problem, the
idea of adaptively changing the learning rate rather than utilizing a fixed parameter arose.
Common optimizers include AdaGrad [20], Adadelta [21], RMSProp [22], and ADAM [23].

2-3 Challenges in Reinforcement Learning

With the rise of DRL, state-of-the-art performances have been achieved in an increasingly
large range of problems with various degrees of complexities. Prominant examples include
the model-based AlphaGo [24] and its improved version AlphaGo Zero [25], which achieved
super human performance in the game of Go. This, at the time, was viewed as one of the
biggest breakthroughs in the field of artificial intelligence (AI) since Deep Blue [26] beat
grandmaster Garry Kasparov in the game of chess. Other examples include DQN (2015)
[8], A3C (2016) [27] and SAC (2018) [10]. Professional player performance was achieved in
the classic Atari arcade game selection as well as state-of-the-art performance in navigation
tasks in 3D environments and numerous continuous control tasks from the OpenAI Gym
environment.

However, many aspects of RL remain particularly challenging such as credit assignment,
learning stability, sample efficiency, and partial observability to name a few. For real world
problems, reward shaping proofs to be very difficult. Intuitive reward choices likely result
in sparse, noisy and delayed signals. Consequently, the learning process becomes inefficient.
Works such as [28] and [29] have shown that improper formulations of reward signals can
result in totally undesired (and unexpected) behaviors. Delayed reward signals are amongst
the causes of the presence of noise in gradient estimators. As a result, the learning curves
of DRL methods are often non-monotonic and, in particular, the agent often seems to forget
highly rewarded policies. The sparsity of rewards also has great effects on how fast the agent
can learn the representations required in order to successfully complete the task. While some
environments are relatively simple and can be solved in a small number of samples, many
problems reflecting real world scenarios may take in the order of hundreds or thousands of
millions of steps to learn an appropriate behavior. Exploration and coverage can be considered
a hard exploration robotics task and faces these challenges. This work focuses on integrating
and extending the remedies proposed in the literature for our specific problem.
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10 Preliminaries

2-4 Partial Observability

While MDPs provide a formalism for sequential decision making problems that conveys per-
fect information for an optimal behavior, many real world problems do not adhere to its
assumptions. The partially observable formulation do not adopt the perfect state assump-
tion, but relies on observations that are dependent on the state. The observations are both
spatially limited as well as temporally limited. An agent acting in a partially observable world
relies on the observations to form a belief about the actual state of the environment. In order
to function in such environments, the agent needs to build a capacity for temporal integra-
tion of observations. In other words, while a single observation may not convey sufficient
information about the state, a sequence of observation over time may.

The literature proposes a number of ways develop the referred temporal integration. One
solution is to provide the agent with a set of successive observations rather than a single
observation [30]. While this approach is shown to perform well in relatively simple settings,
it has several drawbacks. First and foremost, the number of successive observations needed is
highly dependent on the problem. Hundreds of past observations may be required to form a
desired behavior. Secondly, an experience buffer is required to store successive observations.
As a result, the necessary memory grows with the size of the observation and with the number
of observations, causing the problem to become intractable.

Another solution is to incorporate the temporal integration within the agent itself. This can
be achieved by utilizing recurrent neural network modules [31], [32]. In particular, a long
short-term memory (LSTM) [33] can be used to form historical context. An LSTM unit
has feedback connections, unlike feedforward neural networks. This allows information to be
processed sequentially and hidden states to be retained. An LSTM unit typically consists of
a cell state, an input gate, an output gate, and a forget gate. The cell state is responsible for
retaining information throughout the sequence, while the three gates are regulators controlling
which part of the data to retain and which to forget. Recurrency allows the agent to memorize
information about past observations and learn the temporal patterns of observations.

2-5 Auxiliary Learning

In many real world problems, extrinsic rewards can often be sparse. Imagine a standing-
up problem in which a large variety of ways exists to accomplish the task and rewarding
intermediate steps becomes very challenging. Or animals having to cover a vast distance
before being able to find food. Traditional reinforcement learning approaches have been
designed with the objective of directly maximizing the cumulative reward. Due to sparse
reward signals, one often faces challenges in terms of poor sample efficiency and convergence
to local minima. The concept of utilizing auxiliary tasks arose to enhance training in these
cases. Rather than just directly maximizing the cumulative reward, the agent is augmented
with subtasks which are designed to focus on the important aspects of the problem and the
related visual features. The auxiliary tasks contribute to the learning process in the form of
additional loss terms in the optimization problem.

The idea of auxiliary learning for neural networks was first proposed to avoid local minima
[34]. Additional cost terms was later introduced to RL in the form of general value functions
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2-5 Auxiliary Learning 11

[35]. Rather than regarding the environmental rewards as in the case of the standard value
function in RL, these cost terms consider other signals. To address the sample efficiency
aspects of DRL, the concept of auxiliary learning was integrated to popular algorithms such
as DRQN [36] and A3C [32]. It is important to note that the objective of these additional
tasks is not the actual prediction performance, but rather to be utilized as an enhancement
tool for training and learning representations that are crucial to successfully achieve the
main objective. In essence, the auxiliary losses serve as a regularization measure to improve
robustness, performance and training speed.

In general, the implementation of auxiliary learning is performed by splitting the agent net-
work into multiple heads (Figure 2-4). Besides the main head responsible for the approxima-
tion of the policy and/or value function, additional heads each serve their own purpose. The
corresponding errors propagate to the shared layers of the network and all contribute to the
learning process.

Figure 2-4: A schematic representation of an agent augmented with auxiliary tasks.

For demonstration purposes, let us consider the UNREAL framework proposed by [32]. UN-
REAL extends the base A3C loss (Equation 2-2), which consists of a policy loss term (actor),
a value loss term (critic) and an additional entropy term to prevent premature convergence
to suboptimal policies.

LA3C(θ) = λπLπ + λV LV − λHEs∼π[H(π(x))] (2-2)

The authors proposed to perform auxiliary reward prediction and pixel control tasks. The
reward prediction task is formulated as a multi-class classification problem and is aimed
at learning representations related to rewarding states. The pixel control task is a regres-
sion task which provides the agent with internal rewards based on differences in consecutive
frames. This enriches the reward structure and stimulates the agent to explore. The resulting
combined loss can be formulated as in Equation 2-3, where effects of each auxiliary loss is
regulated by their respective weighting parameter. The loss function can be seperated to be
applied directly from experience (on-policy), as for the base A3C loss, or based on replayed
transitions (off-policy), as in the case of the pixel control loss.

LUNREAL(θ) = LA3C + λPC
∑
c

L(c)
PC + λRPLRP (2-3)
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Other auxiliary tasks proposed in the literature include depth and a loop closure prediction
for navigation purposes [37], terminal prediction [38], and agent modelling in a multi agent
setting [39].

2-6 IMPALA Architecture

Importance Weighted Actor-Learner Architecture (IMPALA) [40] is an off-policy, actor-critic
architectecture that maintains a policy π and a value function V π. The proposed architecture
focuses on high throughput and multi task learning for improved generalization. Contrary
to the popular A3C architecture [27], in which the actors share gradients with the learner,
the IMPALA actors communicate experiences to the centralized learner(s) (Figure 2-5). This
actor-learner decoupling allows actors to be independently distributed amongst different ma-
chines and asynchronously gather data for the training process. Consequently, the cheap
aspects of simulation can be performed in parallel, while expensive computations can be
passed on to a central GPU.

Figure 2-5: Comparison between the A3C architecture [27] and the IMPALA architecture [40].
The A3C actors compute gradients and share them with the learner while the IMPALA actors
share observations with the learner, allowing the actors and the learner to be decoupled.

The algorithm is off-policy, hence the agent learns the target policy and value function based
on data generated by the behavior policy. Each actor gathers trajectories of states, actions,
rewards, as well as the policy distribution, based on the behavior policy. After a roll-out of
n-steps, the trajectories are sent to the learner(s), which performs updates based on batches
of trajectories from all actors. Native to off-policy methods, the behavior policy employed by
the actors lags behind the policy that is being updated. In order to compensate for the lag and
to prevent the learning from becoming unstable, a novel off-policy algorithm called V-trace
was introduced by the authors. V-trace extends on the importance sampling corrections [41]
by clipping the importance sampling ratios such that variance reduction can be achieved.

Formally, we seek to learn the value function V π and the target policy π based on the trajecto-
ries (xt, at, rt)t=s+nt=s generated by the behavior policy µ. Consider a parametric representation
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of the value function Vθ and the current policy πω. The algorithm updates the value param-
eters θ and the policy parameters ω at training time s according to the following gradients:(

vs − Vθ(xs)
)
∇θVθ(xs) (2-4)

ρs∇ωlogπω(as|xs)
(
rs + γvs+1 − Vθ(xs)

)
(2-5)

where vs represents the V-trace targets for the value approximations in xs:

vs := V (xs) +
s+n−1∑
t=s

γt−1( t−1∏
i=s

ci
)
δtV (2-6)

Here, δtV := ρt
(
rt + γV (xt+1)− V (xt)

)
represents the temporal difference for V , and ρt and

ci are the truncated importance sampling weights.

ρt := min
(
ρ̄,
π(at)|xt
µ(at|xt)

)
ci := min

(
c̄,
π(ai|xi)
µ(ai|xi)

)
The truncation is assumed such that ρ̄ ≥ c̄. Furthermore,

∏t−1
i=s ci = 1 for t = s. Note that as

π = µ (on-policy), the target reduces to the on-policy n-steps Bellman target and consequently
V-trace reduces to the on-policy Bellman update. The truncated importance sampling weights
each serves a different role. While ρ̄ relates to the nature of the value function we converge
to (the fixed point of the update rule), c̄ impacts the speed of convergence to that (fixed-
point) function and does not affect the fixed point itself. For untruncated ρt (ρ̄ = ∞), we
get the target value function V π. For finite ρ̄ (ρ̄ < ∞), the fixed point lies between V π and
V µ. Hence, the variance grows with ρ̄, as the off-policy learning bias reduces for increasingly
larger ρ̄. Finally, an entropy bonus, the gradient of which is presented in Equation 2-7, is
added similar to the A3C algorithm to prevent premature convergence.

−∇ω
∑
a

πω(a|xs)logπω(a|xs) (2-7)

2-7 Conclusion

This chapter provided the foundation for the thesis work starting with the basics of rein-
forcement learning as a framework for sequential decision making problems. We discussed
how deep learning techniques can be utilized to address the dimensionality and generalization
issues of traditional reinforcement learning. The challenges of deep reinforcement learning
were touched upon including credit assignment, learning stability and sample efficiency. One
way to tackle these challenges is by incorporating the concept of auxiliary learning. Auxiliary
learning is the utilization of subtasks to learn useful representations for the main task, that
would otherwise have been learned much later in the process, if at all. Auxiliary learning
is achieved by branching the model such that each additional head is responsible for its re-
spective auxiliary task. The corresponding losses propagate back to the shared layers and
contribute towards representation learning. State-of-the-art performances have been achieved
by combining auxiliary learning with algorithms such as DQN [36] and A3C [32]. In the fol-
lowing chapters, we provide a formal framework for the exploration and coverage problem and
propose to incorporate auxiliary learning with the more data efficient IMPALA actor-critic
architecture and discuss how the setup can be trained to solve the exploration and coverage
problem.
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Chapter 3

Problem Formulation

In this chapter, we present a formal framework for the exploration and coverage problem. We
consider a problem in which the agent is situated within an a priori unknown environment
and it is required to search for areas of interest, also referred to as targets. The environment
can be viewed as a 3D maze, in which the agent relies on RGB images, representing its frontal
view, to manouvre. The agent does not have access to its position within the environment,
nor does it have knowledge about the structure of the environment and the whereabouts of
the targets. The environment is considered to be deterministic.

The objective of the agent is to manoeuvre within the environment and scan for randomly
distributed (static) targets. When considering the example of a search and rescue mission,
these targets can be viewed as hotspots with a high probability of actually finding survivors.
The number of targets present in the environment is fixed and these targets do not respawn
upon the arrival of the agent. Once the agent has managed to find all targets, the environment
resets including its layout, the initial position of the agent and the position of the targets.
The episode length is kept fixed and multiple environment resets can occur during an episode.
The periods between resets are referred to as levels. The performance measure we employ is
the cumulative reward (3-1) the agent receives each episode and consequently the number of
targets it manages to find. Figure 3-1 provides an example representation of the timeline for
the described problem.

Rπt =
N∑
t=0

γtrt+1 γ ∈ [0, 1] (3-1)

The exploration and coverage task can be considered a POMDP as the agent does not have
full information about the environment. The agent can only gain knowledge about the envi-
ronment and its real states through the visual observations. As similar visual observations can
be obtained from different states, e.g. when the agent traverses along a wall while facing it,
the agent is required to make decisions under uncertainty. In other words, the projection from
the observation space to the state space is non-unique. The environment remains unknown
to the agent as it is randomized every level reset, as well as the initial state of the agent and
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Figure 3-1: An example representation of the timeline of the exploration and coverage problem.
The number of targets (gray circles) in each level, two in this example, and the episode length are
fixed. Once the agent finds all the targets, a new level starts with the same number of targets.
This process repeats until the end of the episode. An increased number of targets found in each
episode suggests an improvement in performance.

the position of targets. The POMDP can be formally defined as a tuple 〈S,A,P,R,O, T , γ〉,
where:

• S is the set of states x ∈ S. The states contain information about the agent’s experience
up until time t and the whereabouts of the agent with respect to the environment;

• A is the finite set of actions a ∈ A available to the agent;

• P is the conditional transition function between states as a result of the action taken
by the agent, formally formulated as P(xt+1|xt, at);

• R is the reward function describing the immediate rewards r the agent receives when
taken an action in a certain state. Our reward strategy is to grant a reward for each
target the agent manages to find;

• O is the set of observations o ∈ O consisting of raw images (RGB) representing the
instanteous first-person view in the environment;

• T is the conditional observation transition probability function and is dependent on the
state and the previously taken action, formally formulated as T (ot+1|xt+1, at);

• γ ∈ [0, 1] is the discount factor weighting the importance of immediate rewards versus
future rewards.

Each episode, the agent collects trajectories (sequences of observations, actions, and rewards)
based on its current policy for a certain roll-out length. Batches from trajectories of all actors
are sampled to train and update the model parameters. The latest policy update is utilized
by the agent in the following roll-out.

In the above definition, coverage is not explitcity incorporated, but rather implicitly. The
overlap between exploration and coverage lies in the fact that in order to find the targets, the
agent needs to cover parts of the environment. The more and widely distributed the targets
are in the environment, the more area (relatively) the agent needs to cover in order to find
those targets. The number of rewards at the end of the episode will be determined by the
speed at which the agent manages to find the targets. More details regarding the specific
reward structure, the action set, the set of observations and the training procedure will be
provided in 5.
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Methology

The formal setting for the exploration and coverage problem was provided in the previous
chapter. This chapter underlines the principles of our proposed deep reinforcement learning
approach to that formulation. We first provide the motivation behind our work, followed
by a detailed analysis of the components of the proposed architecture and the optimization
problem.

4-1 Motivation

Our work builds upon the IMPALA architecture by incorporating auxiliary learning. IMPALA
was shown to outperform previous state-of-the-art algorithms such as A3C, and presented
promising prospects in terms of multi-task learning and sample efficiency [40]. These aspects
form crucial steps towards generative AI and hence we seek to build on this architecture
for our approach. Specifically, we seek to explore whether the addition of auxiliary losses
can improve the learning performance as it did to other DRL algorithms such as the A3C
framework [27]. Our focus is to develop auxiliary tasks that can help the agent learn the
exploration and coverage task.

Inspired by the Simultaneous Localization and Mapping problem and approaches, we propose
a novel set of auxiliary tasks: Pose Estimation and Local Map Prediction. Intuitively, both
tasks aim at building spatial knowledge about the environment. Similar to the SLAM prob-
lem, we hope that combined, these tasks would enhance each other and provide the agent
with useful representations about the environment. The pose estimation task is specifically
aimed at building information about the state of the agent with respect to the environment.
The local map prediction task aims at building knowledge about the local proximity and its
manouvrability. We believe both tasks can potentially be beneficial for future action selec-
tions. In contrast to SLAM approaches, in which one explicitly reconstructs the map and
relies on accurate state estimations, we do not require the auxiliary losses to converge to zero
as this is not the main goal. The main objective of the algorithm is still fundementally the
search for the optimal policy and value function. The goal of the auxiliary tasks is to build
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internal state representations that the agent may not have learned otherwise or would have
learned much later in the process. Through shared network modules, the state representa-
tions learned from these tasks can influence the main policy and value function heads of the
network, resulting in a more generalized policy. Mathematically, we hope the gradients from
these auxiliary losses contribute towards faster convergence to the optimal policy and value
function. In addition to the proposed pose estimation and local map prediction tasks, we also
employ a modified version of the reward prediction task [32]. As the goal of the agent is to
learn a policy that maximizes the cumulative reward, we believe trying to learn representa-
tions while relating them to rewarding states would benefit the learning process of the policy
and value function.

Furthermore, we train the agent through a curriculum process. Humans and animals acquire
complex skills by first learning the basics of a task and gradually integrate more and harder
concepts into the learning process. By organizing the learning process in a structured and
meaningful way, one can steadily gain the desired skills. In the context of machine learning,
this is referred to as curriculum learning [42]. By teaching an agent to complete a relatively
small and easy version of the task, the essential skills required to solve the actual task can
be captured more easily in the neural network. The adaptation process then becomes less of
a shock to the agent, when confronted with the actual task. We apply this concept in the
hope of training the agent to get accustomed to various sizes of environments and various
degrees of reward sparsity. In other words, we hope the agent learns to adapt to different
environments.

4-2 Proposed Architecture

For the baseline, we utilize the deep residual model from the IMPALA paper, which originates
from [43]. The residual structure allows more complex representations to be learned and was
shown to outperform the shallow model in various settings [40].

We augment the base agent with the pose estimation and local map prediction tasks, as well
as the reward prediction task. The extended agent will be referred to as IMPALA-LM, which
stands for Localization and Mapping. In context of comparative studies presented in the
following sections of this work, the base agent will be referred to as IMPALA. Figure 4-1
presents a schematic overview of IMPALA-LM in comparison to IMPALA. Here, we provide
an overview of the architecture. For more details about the specific layers and activation
functions in the network, the reader is referred to Appendix A.

The network has an encoder-decoder structure, in which the visual features from the input
RGB image are encoded by a common residual convolutional unit. The encoded represen-
tation is the input to the different heads of the network: 1) the main LSTM unit for the
approximation of the policy and value function, which in addition also takes the previous
reward and action as inputs, 2) an additional LSTM block responsible for the estimation of
the position and orientation of the agent, 3) the local map prediction module, and 4) the
reward prediction module. This multi-head structure is common for auxiliary learning in
DRL as well as multi task learning. It allows gradients from each task to propagate to the
shared layers and contribute to the overall learning process.
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Figure 4-1: A schematic overview of IMPALA-LM, which extends the base IMPALA architecture
with the Pose Estimation, Local Map Prediction and Reward Prediction auxiliary tasks.

4-2-1 Pose Estimation

The pose estimation task aims at building knowledge about locale specific features and learn-
ing about the actual states of the environment. We hope this information can be encapsulated
and transferred to the main recurrent unit responsible for the policy and value function. Our
pose estimation decoder receives the representations from the convolutional module and uti-
lizes recurrency in the form of an LSTM unit. The output goes to two different heads, one for
the estimation of the position and one for that of the orientation. The LSTM unit functions
as an internal memory for the agent, allowing information to be stored about past observa-
tions and capturing encoded information about the states of the environment. Consequently,
problems caused by the partial observability aspect of the environment are lessen to a certain
degree.

While our experiments only involve planar motions in the xy-plane, we let the agent estimate
its 3D position p̂t, representing the xyz-coordinate at each time step. Although the estimation
of the z-component is unnecessary, the constant z-value helps convergence in the estimation
task. We employ the mean squared error as the loss between the estimated 3D position and
the actual position known to the designer. Due to the quadratic relation between the residual
and the loss, and the fact that the position of the agent can take on a wide range of values,
we normalize the target position by a factor hundred to prevent the loss from overpowering
the optimization problem. This factor stems from the way the environment is constructed.
More details can be found in Chapter 5.

With the orientation estimation head, we seek to estimate the planar orientation q̂ (yaw/
heading) of the agent. The yaw takes on a value in the range of (-180, 180) degrees. The
orientation prediction task is defined as a multi-class classification problem, where the 360
degrees range is divided into 12 bins of 30 degrees. Formulating the problem as a classification
task simplifies the problem and makes learning the task easier in comparison to a regression
formulation. The cross entropy is used to compare the network output with the one-hot
encoded target.
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The resulting pose estimation loss Lpose can be formulated as in (4-1).

Lpose = λp
1
N

N∑
t

(
pt − p̂t

)2
+ λq

(
− 1
N

N∑
t

qtlog(q̂t)
)

(4-1)

where λp and λq are the weighting parameters of the position and orientation losses respec-
tively, and N represents the number of training samples. The squared residual represents
total error of each sample.
Drift is one of the key problems in SLAM. Drift occurs as the robot tracks its position relative
to landmarks in the environment. Since the pose is estimated relative to the landmarks and
each landmark position possesses a measurement error, the estimation error accumulates
with time and movement of the robot. The error can be drastically reduced as the robot
returns to a previous pose and detects the same landmarks, known as loop closure, and as
the robot gains information about the uncertainty of its measurements. While our estimates
are absolute, we seek to constrain the pose estimates with a similar intension. Specifically,
we minimize residual between the difference in consecutive position estimates p̂t and p̂t−1,
and the difference in the actual consecutive positions. We call this the consistent position
estimation loss Lce, which is defined as the following mean squared loss:

Lce = λce
1
N

N∑
t

((
pt − pt−1

)
−
(
p̂t − p̂t−1

))2
(4-2)

4-2-2 Local Map Prediction

The local map prediction task is similar to the pose estimation task in the sense that it aims
at building more knowledge about the locale specific features of the environment. We hope
the agent is able to find the relation between the visual inputs and the corresponding local
proximity. As the local proximity provides information about the free and occupied space
around the agent, this information can potentially have a positive effect on future action
selections and hence contributes to the learning of the policy.
The local map prediction network is inspired by a submodule proposed in [44]. Contrary
to [44], in which additional observations are used by the agent, our network only depends
on visual observations. The network takes the encoded features from the convolutional unit
and decode the information to form a reconstruction of the local map excerpt. The local
map excerpt is a tensor representing an image of the local map structure (Figure 4-2). The
estimated pose is given as an additional input to the network. We apply a sigmoid activation
in the final layer to output the belief of the agent about the structure of the local map, i.e.
whether certain parts the local map excerpt is free or obstructed. We consider a grayscale
excerpt, where obstructed and free areas are encoded with ones and zeros respectively. The
target is the actual local map M , which is contructed dependent on the actual position of the
agent.
We utilize the mean squared error as the local map prediction loss on the residual between
the estimated local map M̂ and the target local map M :

LM = λM
1
N

N∑
t

(
M − M̂

)2
(4-3)
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Here, the squared residual denotes the total, element-wise squared difference over all pixels
between the predicted local map excerpt and the target excerpt.

Figure 4-2: A representation of the layout of the environment. The local map excerpt contains
information about the true local proximity of the agent and is utilized for the local map prediction
loss.

4-2-3 Reward Prediction

The reward prediction task has been previously proposed in [32]. The agent outputs its
belief about whether the subsequent observation would provide a negative, zero, or positive
reward, based on the past three observations. Training is performed through samples from
a replay buffer in which zero and non-zero rewards are equally represented. The idea is that
the reward prediction task resembles value learning focusing on immediate reward (γ = 0)
without biasing the policy.

Throughout this work, training is performed off-policy and we do not utilize an experience
replay buffer. Hence, rather than utilizing consecutive observations from a replay buffer to
form historical context, we opt for a recurrent unit. In fact, the reward prediction head
makes use of the same LSTM unit as the pose estimation head. As our reward strategy only
involves positive rewards for finding targets, we use a binary classification across two classes:
zero and nonzero (positive). However, as this loss is relatively easy to optimize, and due to
reward sparsity, zero rewards are overrepresented, we utilize a softmax nonlinearity as the
final layer rather than a sigmoid nonlinearity. We hope this measure prevents the network
from becoming overconfident in predicting zero rewards. The reward prediction loss can be
formulated as the following cross entropy:

Lr = λr

(
− 1
N

N∑
t

rtlog(r̂t)
)

(4-4)
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4-3 Learning Objectives

With the proposed auxiliary losses introduced, we summarize the learning objectives of the
proposed deep reinforcement learning algorithm. At the foundation, IMPALA maintains a
policy and value function, which are parameterized by θ and trained through an actor-critic
update in order to maximize the cumulative reward given in (3-1).
The updates are performed with entropy regularization based on the gradients presented in
(2-4), (2-5) and (2-7), following the base loss function:

LIMPALA(θ) = LV + Lπ + LH (4-5)

LIMPALA(θ) = λV
1
2

(
vs − Vθ(xs)

)2

+ λπρslogπθ(as|xs)
(
rs + γvs+1 − Vθ(xs)

)
(4-6)

− λe
∑
a

πθ(a|xs)logπθ(a|xs)

where vs is the V-trace target (2-6).
The extended algorithm, IMPALA-LM optimizes the combined loss function (4-7) with re-
spect to the joint parameters θ. The pose estimation, consistent position estimation, local
map prediction, and reward prediction losses Lpose, Lce, LM , and Lr respectively, have been
presented in this chapter.

LIMPALA−LM (θ) = LIMPALA + Lpose + Lce + LM + Lr (4-7)

All losses are performed based on batches of experiences from all actors. These experiences
are gathered for a certain unroll length (roll-out) based on the behavior policy employed by
the agents.
The auxiliary losses introduce a number of weighting terms as additional hyperparameters. To
mitigate the drawback of manually searching for a high performing combination of weighting
parameters, we investigate the concept of learnable parameters presented in [45]. An arbitrary
loss function with auxiliary hyperparameter λ (4-8) can be substituted by a formulation in
which α and β are the learnable parameters (4-9). This formulation is related to homoscedas-
tic uncertainty, and scales the loss terms in a probabilistic manner. Here, the learnable
parameter represents the logarithm of the variance of the respective task β := logσ2

aux. When
the variance is large, the residual term e(·) regularizes to temper the loss contribution. An
additional regularization term +(·) is used to prevent the network from predicting infinite
uncertainty (zero loss). These parameters are learned through backpropagation with respect
to the loss function.

L = Lbase + λLaux (4-8)
L = Lbasee−α + α+ Lauxe−β + β (4-9)

4-4 Conclusion

In this chapter, we provided the details to the proposed deep reinforcement learning algorithm
IMPALA-LM. Our work builds on the IMPALA actor-critic agent by incorporating a novel
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set of auxiliary tasks, namely Pose Estimation and Local Map Prediction. Additionally, we
enforce consecutive position estimates to be close to the actual relative displacement with a
consistency loss and utilize a modified version of the reward prediction task as proposed in
the literature. The agent is trained through a curriculum process, in the hope of gradually
building up the skills for the exploration and coverage task. In the following chapter, we
outline the evaluation process of IMPALA-LM and present the accompanying results.
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Chapter 5

Experiments

In this chapter, we describe the evaluation process of the proposed method and present the
findings of our project. A description of the engine in which we perform our evaluations will
be provided, followed by the details of the implementations. We present the results of the ex-
periments to evaluate the performance of IMPALA-LM compared to the base IMPALA agent.
We investigate the effects of learning auxiliary weighting terms and assess the performance
of our agent compared to a human controlled agent.

5-1 Experiment Setup

Various environments have been utilized in previous works to evaluate visual deep reinforce-
ment learning such as VizDoom [46], Project Malmö [47] or Airsim [48]. In this work, we
make use of the DeepMind Lab environment [49]. Deepmind Lab is a 3D first-person game
platform designed for AI agent research. Similar to Doom and Malmö, the Deepmind Lab
environment involves scenes that are synthetic. The lack of realistic observations allows the
environment to be relatively simple. Consequently fast rendering speeds can be obtained al-
lowing shorter training times of AI agents, which is especially important for DRL as methods
are vastly sample inefficient. Other main benefits of the Deepmind Lab environment are its
customizability and extendability. While the observations are not realistic, we hope that,
with the rich variety, the trained agent can learn complex behaviors that are transferable to
other environments where the visuals are significantly different. Additionally, the Deepmind
Lab environment has a large supporting community and many researches in DRL have been
benchmarked using this environment [37], [32], [50].

In order to accomodate the desired training procedure, we modified one of the contributed
environments from the DMLab-30 set, called explore_object_locations. DMLab-30 is a
set of environments consisting of a large variety of different problems aimed at creating a
generalized agent through multi-task learning. The explore_object_locations environment
serves our intended problem of searching for areas of interest. In each level of the environment,
the agent is placed within a randomized maze. It is required to collect targets, represented

Master of Science Thesis Nguyen Hai Anh



26 Experiments

by apples. Upon reaching the target, defined as the relative distance between the agent and
the target, the agent receives a positive reward r = 1. The targets do not respawn upon the
arrival of the agent and the number of targets in each level is fixed. When all targets have
been found by the agent, the level resets. After each reset, the layout of the environment is
randomized, as well as the initial position of the agent and the positions of the targets. As the
episode length is also fixed, multiple level resets can occur during an episode. The measure
for evaluating the training performance is the cumulative reward, also referred to as return
(3-1). An increase in the cumulative reward as time progresses suggests the effectiveness of
the learning process. Figure 5-1 shows possible input images and the variation in visual scenes
in the environment.

Figure 5-1: The agent is subject to a variety of visual observations from the environment. Its
goal is to find targets represented by apples.

We investigate the performance of our proposed approach under various settings. In terms of
the training performance, with the cumulative reward as performance measure, we compare
IMPALA-LM and the contribution of the submodules with the base IMPALA agent. We also
go into the effects learning the auxiliary weighting parameters on the training performance
in comparison to the setting with equally weighted, fixed auxiliary scalings. In the fixed
weighting setting, the auxiliary weights are set to the natural first guess of λi = 1.0. For
comparative studies on the learning performance, we only consider Stage 1 of the learning
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process as presented in Table 5-1. For the final agent, which is used for inference, we apply
curriculum learning by gradually increasing the difficulty of the exploration and coverage task
through multiple stages. We consider the size of the environment, the density of rewards, and
the variations in visuals to be the contributing factors to the level of difficulty. The variation
in visuals refers to the different textures or themes in the environment (Figure 5-1). When
the variation equals one, the walls, floor and hallways have a similar look throughout the
environment. The details to each stage of the learning process is provided in Table 5-1.
Through the multi stage training procedure, we hope the agent is able to adapt to various
sizes of search territories, and with that sparser reward signals, as well as to variations in
visual scenes. With regards to the inference performance, we compare the IMPALA-LM
agent, trained through curriculum, with a human controlled agent. The human has access
to a similar action set as the trained agent. We hope this provides more meaning to the
training performance return value and reflects the effectiveness of the autonomous agent at
the exploration and coverage task.

Table 5-1: Stages of training. The map size follows ASCII encoding, hence a size of w×h means
the position of the agent can range from 0 to 100w and 100h respectively.

Stage Map size Number of targets Variation Training duration (frames)
1 11 x 11 8 1 107

2 11 x 11 8 1 107

3 15 x 15 8 1 207

4 19 x 19 10 5 207

5-2 Implementation Details

Similar to the original work on IMPALA [40], we employ first-person observations of 96 by 72
pixels (Table. 5-2). At each time step, the agent receives the instantaneous visual observation
from the environment. In addition to the input image, the agent also makes use of the last
action at−1 and the last received reward rt−1 as inputs. The true position and orientation of
the agent, as well as the layout of the environment are accessible to the designer. Based on
this information, we construct the target local map excerpt of 20×20 pixels, corresponding to
the local proximity of the agent. The data is used in batches of experiences (from all actors)
for the evaluation of the losses.

Table 5-2: Environment parameters for the input image and the local map excerpt in pixels.

Parameter Value
Input image width 96
Input image height 72
Local map width 20
Local map height 20

The employed action space (Table 5-3) consists of six different discrete actions: forward,
backward, move left, move right, turn left, turn right. The human has access to the same
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action set in our experiments. The respective encoding is processed internally based on a
frame rate of 60 frames per second and results in the corresponding new states and reward.
The encoding for the turning actions represent the unit pixels. With the current settings, the
agent turns approximately 8 degrees per frame.

Table 5-3: Action set used in all experiments and the corresponding Deepmind Lab encoding.

Action Deepmind Lab encoding
Forward

(
0 0 0 1 0 0 0

)
Backward

(
0 0 0 −1 0 0 0

)
Move left

(
0 0 −1 0 0 0 0

)
Move right

(
0 0 1 0 0 0 0

)
Turn left

(
−20 0 0 0 0 0 0

)
Turn right

(
20 0 0 0 0 0 0

)

Table 5-4 presents the fixed parameters used for all experiments and for both the base agent
and the extended agents. Note that we do not tune these hyperparameters for IMPALA-LM,
but rather utilize the parameters presented in [40]. As this set of hyperparameters has been
tuned extensively for the base agent, we believe using the same set of parameters provides
a fair comparison. The performance difference would be the result of the proposed auxiliary
losses rather than of a better tuned set of hyperparameters. However, it is to be noted that the
hyperparameters have been tuned to perform across the board in various different tasks rather
than specifically for our problem, and with the addition of the auxiliary losses, a different set
of hyperparameters could be a better fit for IMPALA-LM.

Table 5-4: Fixed parameters used in all experiments.

Parameter Symbol Value
Training
Discount factor 0.99
Batch size 16
Unroll length 100
Number of actors 20
Action repetitions 4
Loss
Policy loss scaling λπ 1.0
Value function loss scaling λV 0.5
Entropy loss scaling λH 0.00025
Optimizer
Learning rate 0.00048
RMSProp decay factor 0.99
RMSProp epsilon regularization 0.1
RMSProp momentum 0.0
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Given the available computational resources, we utilize a single machine setup rather than the
distributed setup. With 20 actors, an unroll length of 100 steps, and an action repeat of 4, we
reach a throughput in the lower range of 2500 to 3000 frames per second with IMPALA-LM.
The base IMPALA setup results in a slightly higher throughput, on average around 3000
frames per second. This demonstrates that the computational expense of the extended agent
is in the same order as the base agent.

5-3 Adaptive Auxiliary Weights

With the introduction of the auxiliary losses, additional hyperparameters are introduced on
top of the standard RL hyperparameters. Hyperparameter tuning can be a highly extensive
process and it is computionally expensive, even if all parameters are set similar to the base
agent. As new hyperparameters are introduced to the problem, and as changes are made to
the agents network, different combinations of hyperparameters might yield better results. To
mitigate the extensive hyperparameter tuning process, we investigate the effects of learning
auxiliary parameters [45]. Note that only the proposed pose estimation and local map predic-
tion losses are considered in this experiment. The fixed weights are set equal to one for both
auxiliary tasks and are therefore equally weighted as the policy gradient loss. We perform
the training for multiple seeds and present the average return over all seeds. The individual
results can be found in Appendix B.

Figure 5-2: A comparison of the learning curve between an agent that learns the auxiliary
weights, for the pose estimation and the local map prediction tasks, and an agent with fixed
auxiliary weights. In the latter, the weights are set to λp = λq = λM = 1 and are equal to the
weighting term of the policy gradient loss.

It can be observed that the agent that learns the auxiliary weights slightly outperforms the
agent with fixed auxiliary weights. This result suggests the effectiveness of learnable auxiliary
hyperparameters. Consequently, further evaluations will be performed using auxiliary weights
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learned by the agent. However, as the comparison is performed with respect to one set of
auxiliary weights, we cannot conclude that this method produces the best possible results for
the extended agent. It is to be considered a tool to alleviate the burden of searching for a well
performing set of parameters and the need to repeat the process when new auxiliary losses
are introduced or changes are made to the network architecture. It functions as a regulator
for the contribution of each term to the overall optimization problem. Since it is difficult to
evaluate the effects of the gradient from each respective auxiliary loss term, we believe this
is beneficial.

5-4 Baseline Comparison

In this section, we demonstrate the effectiveness of the proposed auxiliary losses and compare
the training performance of IMPALA-LM to the base IMPALA agent. The weighting param-
eters for all the auxiliary losses are learned by the agent. The following figure presents the
average result over multiple seeds.

Figure 5-3: A comparison between IMPALA-LM, with different combinations of auxiliary losses,
and the base IMPALA agent. The auxiliary weights are learned by the agent.

The learning curves demonstrate that IMPALA-LM outperforms the base agent. For example,
with the auxiliary pose estimation and local map prediction losses (yellow curve), the agent
requires almost 40% fewer number of samples in comparison to the base agent to reach an
average return of 8, which is the total number of target in each level.

While all versions of IMPALA-LM outperform the base IMPALA agent, we can observe that
the addition of the reward prediction loss and the consistency loss does not enhance the
training performance. If anything, the addition of these losses has a diminishing effect. There
are multiple potential contributing factors to this phenomenon. First, the additional gradients
do not contribute towards driving the optimization problem to its (global) optimum. While
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the intuition is to build useful representations with auxiliary tasks, it is not trivial to know
when a task contributes positively to the optimization problem. The additional gradients
might have a negative effect on the convergence of the policy. On the same note, the auxiliary
tasks may be too difficult for the agent to learn, resulting in highly variable gradients from
training step to training step. While the auxiliary weights are learned, this learning process
does not directly involve the relative gradients, but it is rather the result of the total loss.
Works such as [51] proposed measures to tune the auxiliary weights based on the relative
gradients. In [51], the cosine similarity between the gradients is used as adaptive auxiliary
weights. Second, the auxiliary tasks do not capture useful internal state representations
as hoped. We have experimented with more complex architectures in the hope that more
information can be encapsulated in the network, as well as regularization measures such as
dropouts to prevent overfitting. However these experiments had varying degrees of success
and provided no significant improvements. Hence, the current network structure might be at
cause. Third, adding extra loss terms increases the complexity of the optimization problem.
The increase in complexity may be to the extent that it outweights the positive effects of the
additional gradients. This can potentially cause the agent to not learn anything more often
than without the additional heads and loss terms. Furthermore, as we are dealing with moving
targets rather than fixed targets as in supervised learning, and the optimization problem is
highly dependent on the data distribution, the average over four different seeds might not be
enough to paint an accurate picture.

5-5 Curriculum Learning

Through a curriculum process, we seek to increasingly build the skills required for the agent to
successfully accomplish the exploration and coverage task. The different stages of curriculum
are provided in Table 5-1. Figure 5-4 presents the results to the curriculum learning process.
As the previous section has shown, the reward prediction and consistency losses do not have
a significant effect on the learning performance, hence this experiment only involves the pose
estimation and local map prediction task.

Stages 1 and 2 are similar, hence, as the performance increases throughout Stage 2, the agent
has not yet reached the steady-state in terms of performance. In stages 3 and 4, we see a
significant dropoff in returns as the sparsity of reward signals increases while the episode
duration stays unchanged. While Stage 3 shows a recovering agent that learns perform better
over time, Stage 4 shows a steady learning curve. A dropoff in returns is to be expected
as the density of targets in the environment is decreased. We expect training the agent for
a longer duration in the earlier stages, such that the exploration skills improves for those
environments, will better on the learning performance in the latter stages. The danger of
increased sparsity is that as the timespan between reward signals significantly decreases, the
agent might largely deviate from a previously well performing policy and end up delearning.

5-6 Human Level Comparison

In order to gain more insights on the returns achieved by the agent presented in previous
sections, we analyze the performance of the trained agent against a human controller. We
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Figure 5-4: The learning curve of the curriculum learning process.

conduct experiments in which the human has access to the same six-tuple action set as the
agent. The experiments are performed in three different environments of different complexities
as presented in Table 5-5. Test 1 and Test 2 are taken in the same environment as Stage 1
and Stage 4 of the curriculum learning process respectively. Test 3 lies in between the two in
terms of complexity. Note that the reward density in Test 3 is on a similar scale compared
to Test 1 (240% increase in area and 225% increase in the number of rewards).

The results in Figure 5-5 show the distribution of the inference score or return over ten
different runs. In the case of the trained agent, the score of each run represents the mean
over 10 episodes.

Table 5-5: The settings to the inference experiments.

Test Map size Number of targets Episode duration (seconds)
1 11 x 11 8 90
2 19 x 19 10 90
3 17 x 17 18 120

In Test 1, we can observe that the agent slightly outperforms the human controller. Interest-
ingly, Test 3 shows a similar phenomenon. We believe by having trained the agent on various
different layouts, subject to variations in visual observations, and with varying degrees of
reward sparsity, the agent is able to adapt to this new environment. Eventhough the size
of the environment is larger, the density of rewards is approximately similar in these two
tests. In Test 2, where the agent was previously shown to struggle with the low density of
reward signals, we see that the performance of IMPALA-LM is inferior to the human con-
trolled agent. In Appendix B, we present additional results on the inference performance of
the trained agent by plotting the trajectory for examples of each of the three environments.
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Figure 5-5: A comparison between the inference performance of an agent, trained through the
described curriculum, and of a human controlled agent with a similar action set.

Our observation is that the agent is highly effective in gathering targets when the density is
relatively high and when targets are present in packs, in other words distributed in groups of
several targets. Possibly, it is because the agent is more direct when targets are observed, while
a person might be less efficient in controlling the movement towards the target. This suggests
that the agent has learned the essential skills of recognizing the targets and controlling its
movement towards them.

However, the agent seems to lack an effective exploratory strategy to search for vastly dis-
tributed targets. When the targets are very sparse and highly distributed across the environ-
ment, it is increasingly important to remember all the routes one has traversed to minimize
the time spent going over the same paths. Moreover, we noticed that high scoring runs in
these environments involve a slightly different set of skills. A direct approach involving mostly
translations is less effective than strategies in which one scans an open space through turns
and manouvres to the subsequent open spaces to repeat the process. We believe these high
level skills is where the agent has missed the mark. A potential contributing factor could be
that the agent has been biased towards a direct manouvre strategy through the training in
denser signalled environments. In addition, not enough historical information may have been
captured through the recurrent unit to effectively search for the unexplored areas. Using re-
currency on different timescale might have a possitive effect as the agent needs the shortterm
vision to translate locale specific information to an appropriate action, but also the longterm
memory to recognize previously traversed paths.

Furthermore, an important distinction between IMPALA-LM and a human controlled agent
is that the human is much more consistent. The agent might reach a very high score one time,
but underperforms on another. This is also visible from the variance in the learning curves
presented in previous sections. While it is inherent to RL and its trial and error nature, this
phenomenon can also be what is referred to as catastrophic forgetting [52] in the literature.
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When presented with new data, the agent might abruptly forget previously well performing
policies.

5-7 Conclusion

This chapter presented the setup to evaluate the learning performance of the proposed ap-
proach, as well as its inference performance. We discussed the different aspects to learnable
auxiliary parameters and showed that an agent learning the weighting terms in addition to
the prediction tasks outperforms an agent with a fixed set of auxiliary weights. IMPALA-LM
was shown to outperform the base IMPALA agent, suggesting the positive contributions of
our proposed auxiliary tasks. However, with the addition of a loss contraining consecutive po-
sition estimates and a reward prediction loss, the learning performance is not improved. We
discussed several potential contributing factors to this observation. IMPALA-LM, trained
through a curriculum process, was shown to outperform a human controller in two out of
three scenarios. However, the reoccurring phenomenon is that the agent achieves a high per-
formance when the targets are relatively dense, but struggles when the time between reward
signals is much larger than previously experienced.
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Chapter 6

Conclusions and Recommendations

This chapter summarizes the findings of this thesis. Moreover, it touches on the remaining
challenges and provides an outlook for future works.

6-1 Summary

Exploration and coverage refers to the search and gathering of important information in un-
known environments. This work specifically focuses on finding areas of interest, also referred
to as targets, in such environments with an autonomous agent. Autonomous agents possess
the potential to be more efficient and effective than humans and allow humans to be pulled
out of the equation when lives may be at risk.

While traditional methods often require various forms of active range sensors or can swiftly
rack up in hardware complexity, the development in computer vision techniques and artificial
intelligence offers promising prospects of deploying single camera systems without loosing the
exploratory capabilities. Particularly, our work focuses on reinforcement learning techniques.
Reinforcement learning is a sequential decision making process where the agent learns to solve
complex tasks through trial and error, a process very similar to the way humans and animals
learn. By shaping the external feedback from the environment, one can direct the learning
process in order to teach the agent solve a certain problem. With the recent advances in deep
learning, the integration of deep neural networks as function approximators in reinforcement
learning paves the way to tackle high-dimensional control problems without the requirement of
modelling the system. However, deep reinforcement learning, and its applicability in the real
world, is limited by the excessive need for vast amounts of interactions before the agent is able
learn an appropriate behavior. In this thesis, we explore the technique of auxiliary learning
to enhance the learning process. By introducing relatively easy subtasks, we hope to build
useful internal representations that the agent would not have learned otherwise, or would have
learned much later in the process. Specifically, we introduce the Pose Estimation and Local
Map Prediction tasks to build locale specific knowledge and relate the visual observations
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to the structure of the local proximity. We name the proposed agent IMPALA-LM, which
extends the state-of-the-art IMPALA algorithm.

Our experiments show that by learning to estimate its pose and local structure concurrently to
finding the optimal policy, the agent manages to reach certain levels of performance earlier in
the learning process compared to the base IMPALA agent. In particular, IMPALA-LM learns
to find all the targets with almost 40% fewer training samples on average than IMPALA, in
our baseline comparison. We show that finding appropriate implementations of auxiliary
tasks and a well performing set of hyperparameters can be challenging, as the contributions
of the auxiliary losses to the main problem are not trivial. This is apparent as the additional
consistency loss and reward prediction loss did not have a positive effect on the learning
performance. A balance between the potential sample efficiency benefits and the increase in
complexity of the optimization problem should be found. The IMPALA-LM agent, trained
through a curriculum process, marginally outperforms a human controlled agent in two out
of three tested scenarios. In the third scenario, when confronted with increasingly sparse
signalled environments, the agent seems to lack the exploratory capabilities to search for all
obstructed targets. This demonstrates that eventhough IMPALA-LM outperforms IMPALA
in terms of the learning performance, and the learned exploratory behavior works for relatively
simple cases, enhancements are necessary in order to generalize this behavior to more difficult
environments. We believe that in essence, the agent has learned to recognize the targets and
effectively manouvre towards them in the early stages of the curriculum process. This direct
behavior is beneficial when the number of targets is relatively high, as the likelihood of
observing a target is relatively. In the scenario that targets are highly distributed and sparse,
we believe a more observant, high level behavior is required, which the agent has failed to
learn in the latter stages of curriculum. This failure may be caused by the curriculum process
itself, as it can bias the agent too much towards a certain behavior.

6-2 Recommendations

Auxiliary learning presents an interesting perspective on the sample efficiency problem of
deep reinforcement learning techniques. It overlaps the subfield of multi-task learning and
offers insights to the transfer of knowledge from one (sub)task to another. This thesis only
presents a small contribution in terms of a novel set of auxiliary tasks for the exploration and
coverage problem, and potentially for other mobile robotics problems. The major challenges of
auxiliary learning lie in the design of appropriate tasks, finding a well performing combination
of tasks, and tuning the respective weighting parameters. Throughout this thesis, we have
mentioned several works that use the relative gradients as a measure for the effectiveness of
auxiliary losses [53], [51]. We believe the research into understanding the actual contribution
(of combinations) of auxiliary losses and adapting the weighting parameters accordingly is
of high importance. The design of new auxiliary tasks that can potentially be beneficial for
reinforcement learning problems in general rather than task specific, deserves equal attention.

With regards to our implementation, we are interested in whether training the agent such
that convergence in performance is reached in the early stages of curriculum will have more
positive effects when transferring to more challenging environments. As the ultimate goal
is an agent that can generalize across different environments, training the agent in other
environments, including those with more realistic scenes, environments with outdoor scenes,
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or those with various degrees of luminosity, forms an important aspect. By increasing the
variety in visuals, the adaptivity of the agent can be enhanced. Furthermore, the integration
of multi timescale recurrency is be interesting, as the agent can benefit from various forms of
abstractions acquired on both shortterm as well as longterm.

The results in this work have been presented with the intension of portraying the contribution
of the proposed auxiliary tasks from the start of training. An interesting research direction
is to investigate the effects of integrating (pre-trained) auxiliary tasks in different stages of
training. On the same note, the combination of auxiliary learning with other measures for
the sample efficiency problem, such as hierarchy or human feedback is an interesting frontier.
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Appendix A

Agent Architecture
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A. Overview of the architecture. The input image with 3 channels (RGB) goes through the
shared convolutional encoder and is fed to each decoder: the core head for the policy and
value function, the pose estimation head, the reward prediction head, and the local map
prediction head.

B. Convolutional module. The module consists of three blocks, each outputing 16, 32, and
32 channels respectively. Each block is made up of a convolutional layer with stride 1 and
3x3 filters, followed by a max pooling layer with 3x3 filters and stride 2, followed by two
residual blocks. Each residual block consists of a relu nonlinearity, a convolutional layer with
3x3 filters, a relu nonlinearity, and another convolutional layer with 3x3 filters. The output
of each the residual block is summed with its input to form the input for the next residual
block. The output of the residual module is nonlinearied with a relu activation and finally
passes through a fully connected layer of 256 neurons with a relu nonlinearity.

C. Core decoder outputing the policy and value function. The module consists of an LSTM
layer with 256 neurons. Its input is made up of the past action and reward, the output from
the convolutional module, the output from the auxiliary LSTM, and the pose estimation
output.
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D. Pose estimation decoder. The output from the convolutional module is the input to the
LSTM unit with 128 neurons. The output is splitted into two heads. One for the position
decoder consisting of a multilayer perceptron with 128 and 3 neurons respectively and a relu
activation after both layers. The reason the output layer has a relu activation is to force the
predictions to the positive domain as the position can only be positive in the implemented
environment. The final layer of the orientation head has 12 neurons and a softmax activation
for outputing the belief about the binned orientation.

C. Reward prediction decoder. The module consists of a multilayer perceptron with a layer
of 64 and a layer of 2 neurons with a relu and a softmax activation respectively. We hope to
prevent the network from becoming overconfident in predicting zero rewards as the softmax
nonlinearity does not allow zero outputs. The input comes from the same LSTM layer as the
pose estimation decoder.

F. Local map prediction decoder. The module has two fully connected layers with 256 neurons
with relu nonlinearities. The second layer takes in the pose estimation as additional input.
The final layer represents the pixels of the local map excerpt which in our experiments is
20x20. The final layer is activated with a sigmoid activation function to output the belief
about the structure of the map excerpt (0 for unobstructed and 1 for obstructed).
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Additional Results

In this appendix, we present the individual results to the presented experiments. These results
show four different seeds, the average to which has been presented in the main section of the
thesis.
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B-1 Adaptive Auxiliary Weights

(a) (b)

(c) (d)

Figure B-1: Individual results adaptive auxiliary weights. Only the pose estimation and local
map prediction losses are utilized. The fixed weight setting entails λi = 1.
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B-2 Baseline Comparison

(a) (b)

(c) (d)

Figure B-2: Individual results baseline comparison. All IMPALA-LM implementations are with
learned auxiliary weights.
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B-3 Exploration Trajectory

In this section, we present trajectory examples to demonstrate the behavior of the agent in
the environment.

Figure B-3: Trajectory of IMPALA-LM in Test 1. In this example, the agent manages to find all
8 targets in the environment.

Figure B-4: Trajectory of IMPALA-LM in Test 2. This example demonstrates that while the
agent manages to find 5 targets in the beginning (left), it struggles to get more feedback signals
and starts to wander around until the end of the episode (right).
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Figure B-5: Trajectory of IMPALA-LM in Test 3. This example shows that the agent recognizes
targets and directly traverses towards them efficiently (left). As the agent tries to find the next
target, it observes a target that is in its sight, and opt to move towards it. However this target
is further away than a target that was not directly in its sight. As a result, the agent struggles
to find the obstructed target located behind its back and makes unnecessary movements before
being able to find the next target (transition from left to right).
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