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Abstract

The procedure to estimate the amplitude of the special wind events according to IEC

61400-1 as proposed by Larsen is reviewed. Corrections are specified that yield

larger amplitudes for the extreme operating gust (EOG) and the extreme coherent

gust with simultaneous direction change (ECD). For the ECD case, distributions for

longitudinal and lateral gust amplitudes are derived and applied in simulations to

derive the load distribution, from which the 50-year extreme load can be found.

Results are compared with the calculation with the conventional ECD: In the example

calculation, the 50-year values of both blade root bending moment and tip deflection

are smaller than the conventional values.

K E YWORD S

extreme loads, gust amplitudes, IEC, joint events, return value

1 | INTRODUCTION

In wind turbine design, all loads that occur in the turbine's life are considered: both fatigue loads and ultimate loads. Currently, International Elec-

trotechnical Committee (IEC) 61400-11 prescribes the characteristic turbulence to obtain fatigue loads and extreme deterministic wind events to

estimate the ultimate loads. These events are as follows: extreme operating gust (EOG), extreme direction change (EDC), extreme wind shear

(EWS), and extreme coherent gust with direction change (ECD). The gusts are taken to be proportional to the characteristic (90% fractile) 1-point

turbulence. They are deterministic with the wind speed being 100% coherent over the rotor plane; there is a compensation factor for rotor size to

account for cancellation of uncorrelated high-frequency speed fluctuations.

An alternative for the deterministic approach is constrained simulation, which embeds a given wind speed change in a turbulent wind field.2,3

This approach is fully physical but more difficult to use because of its stochastic nature. Nevertheless, IEC 61400 already allows the use of ran-

dom turbulence fields instead of the EOG.

An intermediate approach is to stick to the deterministic gust but use a probability distribution to set the amplitude. We will discuss this new

method, here denoted as the“gust distribution method” and compare it to the IEC method to establish the 50-year load. A strong point of this

probabilistic treatment is that the loads are extrapolated instead of gust amplitudes; after all, the 50-year load is of interest and not so much the

gust amplitude. Both in terms of fidelity and required computational effort, the gust distribution method procedure can be regarded as in between

a full probabilistic approach (via constrained simulation) and a purely deterministic one (IEC).

For the determination of the gust amplitude, the Larsen procedure4–6 will be applied. This procedure will be presented in Section 2. We will

focus on the EOG to show the principle of the derivation of gust size and on the ECD to address the issue of simultaneity of longitudinal and lat-

eral wind speed excursions. We discovered two mathematical errors in Larsen's method. This paper aims to correct those and elaborate on the

consequences of that. The derived correct expressions will be indicated by “Corrected Larsen” and are described in Section 3. Section 4 addresses
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the probabilistic treatment: The distribution of the gust amplitude is used to establish the distributions of extreme blade root bending moment

and tip deflection. A demonstration of the gust distribution method is given in Section 5. For the load calculations involved, we use the Goldwind

GW131-2300 turbine.

2 | LARSEN'S PROCEDURE

Larsen's procedure4–6 is based on the assumption that each special wind event (“gust”) is a speed excursion that happens naturally in a random

turbulence field. With various manipulations (discussed below), a Gumbel distribution for the dimensionless annual extreme ζm ¼ uem=σu (uem is

the wind speed deviation from the mean and σu is the standard deviation) is obtained as follows:

FðζmÞ¼ exp �exp � ζm
2CðzÞþ lnκT

� �� �
¼ exp �exp �ζm�m

β

� �� �
ð1Þ

The parameter m is the location parameter and the mode of the Gumbel distribution, while β is the scale parameter. If the value of the cumulative

distribution function (cdf) is set, say FðζmÞ¼0:98, the dimensionless extreme excursion ζm is found with the following:

ζmðFÞ¼m�β ln� lnFð Þ ð2Þ

The 'real' extreme excursion in m/s is as follows:

Vgust ¼ fτfDσ1ζm ð3Þ

where Vgust is the amplitude of a deterministic IEC-type gust, σ1 is the IEC characteristic turbulence (90% quantile) at speed V, and fD and fτ are

reduction factors for rotor size and for gust rise time. Hence, the speed change is ζm times the effective turbulence experienced by the rotor.

For clarity, here we bring Larsen's procedure back to seven main steps. In addition, each step is visualized with time series and probability

density function (pdf) in Figure E.2 in Appendix E. We found two errors in Larsen's method, which we discuss in Section 3; in this section, we pre-

sent the equations as given by Larsen.

Step 1. It is assumed that turbulent velocity excursions ueðtÞ (in m/s) from the 10-min mean level are not Gaussian but Gamma distributed

(at least) in the tail of the distribution with pdf*:

fue ueð Þ¼1
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πCðzÞσujuej

p exp � juej
2CðzÞσu

� �
¼ xk�1

θkΓðkÞ exp �x
θ

� �
ð4Þ

where

k¼1
2

θ¼2CðzÞσu ue ¼ uðtÞ� �U ð5Þ

The shape factor k¼1=2, the scale factor is θ¼2CðzÞσu with CðzÞ a nondimensional factor which is terrain and height dependent, and σu the stan-

dard deviation of u. With the factor CðzÞ, the distribution can be fitted to the tails of the pdf of measured turbulence; Larsen6 gives values for C

dependent on height and terrain type, C≈0:4.

Step 2. The velocity excursion ue is transformed into a standard Gaussian variate η with the following:

ϕðηÞ¼ 1ffiffiffiffiffiffi
2π

p exp �η2

2

� �
ð6Þ

where

η¼ signðueÞ
ffiffiffiffiffiffiffiffi
uej j
Cσu

s
: ð7Þ

*In principle, the fit depends on wind speed, but apparently, one fit is done on all ðueðtÞ�UÞ=U.

2 BIERBOOMS and VELDKAMP
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Step 3. The local maxima of time series of η are considered. It is assumed that the spectrum of η is Kaimal as specified in the IEC standard.1

The result of the transformation in step 2 is that we have a standard normal process that has been studied extensively in the past (see Papoulis7

section 11-4 on the level crossing problem). The analytical expression for the distribution of local maxima ηe was first derived by Rice8 (see also

Cartwright & Longuet-Higgins9 and Davenport10). The pdf of the local extremes is (ϕ and Φ are the standard normal pdf and cdf):

fηe ηeð Þ¼ δϕ
ηe
δ

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p
ηee

�η2e
2 Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p

δ
ηe

 !
ð8Þ

This distribution has only one parameter, the bandwidth δ:

δ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0m4�m2

2

m0m4

s
ð9Þ

which is a function of the spectral moments mi of the signal, given by†:

mi ¼
ðfco
0
fiSðfÞdf ð10Þ

For a narrow banded spectrum, δ is small and for broadband spectra δ approaches unity.

Step 4. Next, the global extreme is considered by looking at the largest extreme in period T (or equivalently: of N local maxima). Note that this

largest value in period T is not constant but a variate as well. The cdf of this variate is obtained by taking the power N of the original cdf

(so implicitly assuming that the local extremes are independent). For extremes, we are interested in large values of N, and for large N, an analytical

expression for the probability density of global extreme ηem is available:

fηem ðηemÞ¼ ηem exp �exp �η2em
2

þ lnN
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p� �
�η2em

2
þ lnN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p� �
ð11Þ

Step 5. The distribution of ζm (= uem=σu ¼Cη2em) is obtained by the inverse transformation (see Equation (7)); ζm is the largest of N local

maxima:

fζm ðζmÞ¼
1
2C

exp �exp � ζm
2C

þ lnN
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p� �
� ζm
2C

þ lnN
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p� �
ð12Þ

Larsen introduces the “expected rate of local maxima” κ, which is defined by the equivalence (T is the available time):

κT¼N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p
ð13Þ

Hence, we get the following:

fζm ðζmÞ¼
1
2C

exp �exp � ζm
2C

þ lnκT

� �
� ζm
2C

þ lnκT

� �
ð14Þ

which is the pdf that corresponds to the Gumbel cdf in Equation (1) with location and scale parameters:

m¼2C lnκT β¼2C ð15Þ

Step 6. We are interested in the characteristic event, which IEC takes as the event with 50-year return period. If we consider the Gumbel dis-

tribution of the 50-year event, we can define the characteristic event as the most likely event (the mode) of the distribution of ζm. For a Gumbel

distribution, the mode is equal to the location parameter, so

†In Larsen and Hansen6, analytical expressions are provided for the moments of the Kaimal spectrum as function of cut-off frequency fco , length scale, and mean wind speed. There is a typo in

Equation (45) in Larsen5: The third term should have a factor of 3/2 instead of 2/3.

BIERBOOMS and VELDKAMP 3
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mode ζmð Þ¼m¼2C lnκT ð16Þ

Here T is the available time in which maxima occur (see below) and κ is the expected rate of local maxima:

κ¼N
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p
¼N
T
ν0
νp

ð17Þ

with ν0 the frequency of zero upcrossings and νP the frequency of local peaks:

ν0 ¼
ffiffiffiffiffiffi
m2

m0

r
νP ¼

ffiffiffiffiffiffi
m4

m2

r
ð18Þ

For the number N of local maxima, Larsen5 gives two options:

1. All local maxima

2. Only the local maxima above a threshold of 2 times the standard deviation

Larsen and Hansen6 use the second option; the number N is (Rice,8 Equations 3.6–11):

N¼ ν0Te
�1

2η
2
t ð19Þ

which for the EOG leads to (with threshold ζt ¼2):

κ¼ ν0e
�1

2
ζt
C
ν0
νP

¼ e�
1
C

ffiffiffiffiffiffiffiffiffiffiffiffi
m3

2

m2
0m4

s
ð20Þ

For the ECD, the number N is taken as (Equation B.6 in Larsen5):

N¼ T

ffiffiffiffiffiffiffiffi
mu4

mu2

r ffiffiffiffiffiffiffiffi
mv4

mv2

r
ð21Þ

With subscript u indicating the longitudinal direction and v the lateral direction. One may recognize the above expression as the product of

the two peak frequencies. Substitution leads to the following:

κ¼
ffiffiffiffiffiffiffiffi
mu2

mu0

r ffiffiffiffiffiffiffiffi
mv4

mv2

r
ð22Þ

for u-excursions and likewise for v-excursions. In the graphs in the next section, values found with Equations (20) and (22) will be indicated by

“Larsen.”
In Larsen's approach, T is the time in 50 years that the wind speed is in a 2 m/s interval around some average wind speed V. Alternatively,

one can take T to be the time in 1 year in this interval and establish the 98% fractile of the distribution of the 1-year maxima: This gives the same

result (see Appendix C).

Step 7. The physical speed excursion is found by putting the result of step 6 (the maximum ζm) into Equation (3).

3 | CORRECTED LARSEN PROCEDURE

When applying Larsen's procedure as described in the previous section, we discovered that there are two expressions that are mathematically

inconsistent; this invalidates the results shown in Larsen and Hansen.6 Here we present the correct expressions, which we denote “Corrected
Larsen.” Next, the comparison is made to the IEC extreme events.

EOG. In Larsen's procedure, only local maxima larger than two times the standard deviation are considered. In our view, this is unnecessary;

when looking at global maxima, values above the threshold are automatically obtained. One is of course allowed to choose to use a threshold, but

4 BIERBOOMS and VELDKAMP
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the way it is done in Larsen5 is not correct. In order to show this, it is necessary to go into the details of Step 4: The maximum xT within time

period T of some variate x with distribution FxðxÞ is considered. The distribution of xT is given by FNx ðxÞ with N the number of occurrences of x

within T. In case one is only interested in values above threshold t, a new variate y can be introduced which consists of all values of x larger than

t. The distribution FyðyÞ is a truncated version of Fx. Similarly, the distribution of yT , the maximum of y within T, equals FMy with M equal to the

number of y-values within T; M is typically much smaller than N. In Larsen,5 erroneously FMx is used instead of FMy . In Appendix A, it is shown that

taking a threshold into account does not make a difference for the statistics of wind extremes.

When taking the Rice distribution (Step 3), the correct number of local extremes to consider is the number of local peaks (first option in

Step 6):

N¼ νPT ð23Þ

Leading to the following:

κ¼ ν0 ð24Þ

Equation (11) simplifies to the following:

fηem ðηemÞ¼ ηem exp �exp �η2em
2

þ lnν0T

� �
�η2em

2
þ lnν0T

� �
ð25Þ

With

κT¼ ν0T¼ e lnν0T ð26Þ

Hence, the cumulative density function is (Davenport,10 section 11) as follows:

Fηem ðηemÞ¼ exp �exp �η2em
2

þ lnν0T

� �� �
ð27Þ

The frequency of local peaks νP does not enter in the final result, but instead we see the frequency of zero upcrossings ν0.

In Figure 1, it is seen that the new value for hilly terrain (Larsen corrected with κ¼ ν0, red solid line) is approximately 40% higher and more or

less fits the 50-year IEC 61400-1 Ed. 2 value with β¼6:4 around 15 m/s (solid black line with open circles) (IEC,11 Stork12). All values are calcu-

lated with the characteristic 90% fractile turbulence based on Iref = 0.16. It would be more consistent to include the turbulence distribution or

use the median instead of the 90% value; this would probably take down the “Larsen corrected” values somewhat. It is somewhat of a mystery

that hilly terrain creates larger gusts than flat terrain without this being reflected in the turbulence. The EOG gust size Vgust is now defined to be

smaller (IEC 61400-1 Ed. 41):

Vgust ¼ fDβσ1 fD ¼ 1
1þ0:1D=Λ1

σ1 ¼ Irefð0:75Vþ5:6Þ ð28Þ

With β¼3:3 rather than β¼6:4. It is not a 50-year gust but the worst gust that is supposed to coincide with operation events such as starts and

stops; in fact, it is even smaller than the previously defined 1-year gust (β¼4:8).

ECD. The ECD is a joint event with a simultaneous excursion in longitudinal direction and lateral direction. It is clear that Equation (22) cannot

be correct since it has dimension s�2—recall that κ is a frequency and must have dimension s�1 (= Hz). In Appendix B, we show that for the longi-

tudinal excursions, the number of joint local maxima ðue,veÞ that are at most τ s apart is (subscript m indicates “maximum”):

Nuv ¼2τνmuνmvT¼2τνmvNmu ¼2τνmuNmv ð29Þ

where νmu and νmv are the frequencies of the maxima. The distribution for both u and v becomes:

fGuðxÞ¼1
β
exp �exp �x�m

β

� �
�x�m

β

� �
ð30Þ

With for u excursions:

BIERBOOMS and VELDKAMP 5
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x¼ u β¼2C m¼2C lnκT κ¼2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu2mv4

mu0mv2

r
ð31Þ

And for v,

x¼ v β¼2C m¼2C lnκT κ¼2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mv2mu4

mv0mu2

r
ð32Þ

The distribution for u and v is the same as in the one-dimensional case, except that the mode m is shifted to the left (towards smaller amplitudes)

because the number of peaks in u is reduced to the number of peaks that have a v-peak close by and hence is multiplied by probability 2τνvP: only

simultaneous peaks are of interest. The same holds for the v distribution (with switched indices). Naturally, if the time interval 2τ is larger, the

number of (almost) simultaneous events becomes larger; the effect is shown in Figures 2 and 3. Both 50-year u-amplitude and the v-amplitude

increase; the wind direction change is not affected much. Larsen's expression for κ misses the time interval 2τ; it is incorrect with respect to

dimensions, but it may be regarded as having τ = 0.5 s (in which case it would correct). This may result in gusts that are too small (see Figure 2

and Appendix B for details). Larsen's values may still be conservative because it is assumed that the 50-year values of the speed excursions in u

and v occur simultaneously. However, since excursions in u and v are independent, the 50-year extreme value of u may also coincide with any

other value of v rather than the 50-year value.

4 | PROBABILISTIC TREATMENT

Larsen's procedure constructs the probability distribution of the gust amplitude conditional on wind speed (and the associated speed interval) and

gives the 50-year extreme value (exceedance probability 0.02).

F IGURE 1 EOG: 50-year wind speed change as function of wind speed for hilly and flat terrain with Iref = 0.16. The IEC EOG constants are β

= 6.4 and β = 3.3 and the IEC rotor size reduction is fτ ¼1=ð1þ0:1D=ΛÞ¼0:77. Note: Larsen's values are calculated with Vave = 6.65 m/s instead
of Vave = 7.5 m/s as stated in his paper (see Laren & Hansen,6 Figure 6). Since the average wind speed influences the wind speed distribution and
hence the time T in each 2 m/s interval and the values of the extremes (see Equation (1)), for comparison, we also use Vave = 6.65 m/s here. EOG,
extreme operating gust.

6 BIERBOOMS and VELDKAMP
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F IGURE 2 ECD: 50-year wind speed change as function of time difference τ according to Corrected Larsen (Vave = 7.5 m/s, Iref = 0.16).
Original Larsen (solid lines) effectively uses τ¼0:5 s (compare to Larsen & Hansen6 Figure A.2). ECD, extreme coherent gust with direction
change.

F IGURE 3 ECD: 50-year direction change as function of time difference τ according to corrected Larsen (Vave = 7.5 m/s, Iref = 0.16). Original
Larsen (solid lines) effectively uses τ¼0:5 s (compared with Larsen & Hansen6, Figure B.1). ECD, extreme coherent gust with direction change.

BIERBOOMS and VELDKAMP 7
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The simplest way to introduce Larsen's gusts into the IEC calculation is replacing the IEC deterministic gusts by the 98% quantile values for

each wind speed (the red solid line in Figure 1); The calculation goes through as before.

An alternative is to use the conditional gust distributions at each wind speed to find the load distribution over all wind speeds. If we only

consider one interval ΔVj, we know the conditional distribution of the annual (dimensionless) extreme gust amplitude ζ (see Equation (1); for read-

ability, we only use gust amplitude and we drop the subscript m here):

Pðζi ,VjÞ¼Pðζ�Δζi j V �ΔVjÞ≈ fGuðζ,m,β,TðΔVjÞÞ Δζ ð33Þ

Obviously the probability of the associated load Lðζi,VjÞ is the same:

PðLðζi ,VjÞÞ¼Pðζi ,VjÞ ð34Þ

If we know the probabilities, we can sort the loads in ascending order and construct the cdf for each wind speed Vj:

FjðLÞ¼ FðLjVjÞ¼PðL0 ≤ LjVjÞ ð35Þ

The probability that the extreme load L0 ≤ L for all wind speeds Vj is the product of all conditional cdfs:

PðL0 ≤ LÞ¼PðL0 ≤ LjV1Þ �… �PðL0 ≤ LjVjÞ �… �PðL0 ≤ LjVnÞ ð36Þ

or

F1yearðLÞ¼
Yn
j¼1

FjðL,VjÞ ð37Þ

Another possibility is to use the gust distributions for all wind speeds to find the full load distribution directly. Repeat the steps below M times

(Monte Carlo method):

1. Draw a random wind speed V

2. Draw a random gust amplitude ζ

3. Convert to real gust amplitude Vgust

4. Do a load simulation with (V,Vgust)

5. Extract the extreme load L.

Each sample has probability P¼1 ⁄ M. In this method the time T that goes into the Gumbel distribution of the gust amplitude does not depend

on the wind speed distribution but must be set to a fixed value. If we choose T = 1 h, we will get the distribution of hourly extremes. From this,

the hourly cdf can be constructed by sorting the loads. Because there are N¼365:25 �24¼8766 random draws every year, the annual cdf is as

follows:

F1yearðLÞ¼ FN1hðLÞ ð38Þ

with N = 8766. Note that the Gumbel distribution is the limiting case for the largest of many extremes (occurring over a long time), so the time T

must probably not be too small. Alternatively, we can go through all combinations of the parameters ðV,ζÞ on a predefined grid. The probability of

(the load at) a particular grid point given by a wind speed V and dimensionless gust amplitude ζ:

PðV,ζÞ≈ fVðVÞ fζðζÞ ΔVΔζ ð39Þ

The construction of the (hourly) cdf of the loads is done as before in the Monte Carlo approach, except that the probabilities are different. IEC

(and Larsen) is essentially assuming that the load is a monotonous function of the gust amplitude, and one only needs to do a few calculations

with the 50-year wind event to find the 50-year load. The advantage of working out the load distribution with the gust distribution method is that

it is guaranteed that the correct 50-year load is obtained, even if the load is some nonmonotonous function of the gust.

8 BIERBOOMS and VELDKAMP
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5 | LOADS CALCULATED WITH ECD

For an example calculation with ECD, we use the Goldwind GW131 turbine of which the main characteristics are as follows: rated power

2300 kW at 9 m/s, rotor diameter 131 m, hub height 125 m, and rotor speed 5–12.3 rpm. For the simulations, we use the Flex5 aeroelastic code,

which relies on the mode shape approach for fast calculations: we use eight bending modes and one torsion mode for the blades and 2�2 modes

for the tower. In the calculation, we assume that the wind regime is IEC class II with average wind speed Vave = 8.5 m/s and turbulence class A

with Iref = 0.12. The wind is deterministic, and average wind speed and reference turbulence only enter the calculation indirectly by influencing

the distribution of the ECD amplitude.

5.1 | IEC method

According to IEC 61400-1 Table 21, the speed increase for the ECD is 15 m/s and the change in direction is ΔVdir ¼�720=V. The ECD must be

investigated for the interval ½Vrat�2,Vratþ2�, but here we consider all wind speeds 6≤V ≤15 m/s. The representative load case at some wind

speed is the average of the extreme values found for simulations with different rotor azimuth starting angles. Results are given in Figures 4 and 5.

F IGURE 5 Maximum tip deflection at tower passage under extreme coherent gust with direction change (ECD) as function of initial wind
speed according to IEC 61400-11 (normalized with the average maximum tip deflection at 10 m/s).

F IGURE 4 Maximum blade root bending moment under extreme coherent gust with direction change (ECD) as function of initial wind speed
according to IEC 61400-11 (normalized with the average maximum bending moment at 10 m/s).

BIERBOOMS and VELDKAMP 9
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5.2 | Gust distribution method

To get the load distribution, we calculate the maximum combined blade root bending moment Mxy for all points on a 3D grid with wind speed

(in m/s) V¼ ½4 :1 :20� and dimensionless excursions ζu ¼ ζv ¼ ½1 :0:5 :10�. In total, there are 17 �19 �19¼6137 grid samples. The probability for

each sample (given wind speed Vj and wind speed interval ΔVj) is as follows:

PðV,ζu,ζvÞ≈ fζuðζuÞfζvðζvÞΔζuΔζv ð40Þ

where f is the pdf, the wind speed interval ΔV¼1 m/s and the dimensionless speed excursion interval Δζu ¼Δζv ¼0:5. Because the grid is large,

we will see loads with low probabilities for unlikely combinations: The exceedance probability graph extends down to approximately

p50 ¼3�10�4. The cdf of the annual load extreme is found by multiplication of the cdfs for individual wind speeds.

For each combination ðV,ζu,ζvÞ, the actual wind speed changes are calculated with Equation (3) with C¼0:4 and Iref ¼0:12. For ζu and ζv the

probability distributions are recalculated for each wind speed V. For the parameter κ in the probability distributions of the ζu and ζv gust ampli-

tudes, a maximum difference in start time of τ¼0:5 s is used (see Equations (29)–(32)); in the load calculations, gusts are assumed to start simulta-

neously. After the calculation, the loads are sorted and the cumulative distribution established. In this example, we have the following settings:

• Wind regime used is Class II with Vave ¼8:5 m/s and k¼2

• The turbulence (used as input for the gusts) is set according to IEC with Iref ¼0:12 (but the wind field has no turbulence)

• Only positive wind direction changes are considered (wind direction changes from North to East)

• Speed and direction changes are simultaneous.

The annual maximum loads are given by the light blue line in Figure 6 and its Weibull fit (in dark blue). The 50-year load (or characteristic load)

is the load that has exceedance probability:

PðS≥ S50Þ¼0:02 ð41Þ

which is once every 50 years. The load is found at the intersection of the dark blue curve and the horizontal red dotted line; the characteristic load

Schar is further indicated by the vertical black dotted line. The load is Schar ¼0:84, which is 16% smaller than the conventional load found with the

F IGURE 6 Distribution of blade root bending moment with probabilistic calculation.

10 BIERBOOMS and VELDKAMP
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IEC 50-year gust. However according to the background document to IEC 61400-11 (see Dalsgaard Sørensen & Stensgaard Toft13), for probabilis-

tic design, we must apply additional uncertainty to the distribution of the simulated annual extreme loads. As example, we use the following:

SX ¼XexpXaeroS ð42Þ

where Xexp is the exposure correction accounting for uncertainty in wind conditions at the turbine site (lognormal distribution with COV¼0:15)

and Xaero is the uncertainty in the aerodynamic model, for example, in the values of the lift coefficient (Gumbel distribution with COV¼0:10). We

can transform the blue line by multiplying each load with a random factor or we can use an analytical approach to transform the curve. Doing this

leads to (intersection of black curve and red dotted line in Figure 6) the following:

SX,char ¼1:15¼1:36 Schar ð43Þ

This is close to the load factor that must be applied according to IEC 61400-1 (1.35) which should account for uncertainty in conventional design.

It is encouraging that there is a good fit, but it must be stressed that this is just one example and it may be a coincidence; Results of probabilistic

calculations tend to be sensitive to the choices made.

For the tip deflection, we find similar numbers: the 50-year deflection without additional uncertainty is 0.93 and with uncertainty 1.28 (see

Figure 7).

6 | CONCLUSIONS

The method proposed by Larsen is reviewed; it is found that the calculation of the frequency of peak events is not correct. If the correct fre-

quency of maxima is used, the speed excursions of longitudinal turbulence become significantly larger (Figure 2).

The exceedance probability curves of the maximum blade root bending moment and the maximum tip deflection under ECD are established

by doing calculations on a grid with points ðV,ζu,ζvÞ. In the example calculation, the blade root bending moment is 84% of the conventional value

and the tip deflection 93%.

F IGURE 7 Distribution of maximum tip deflection with probabilistic calculation.

BIERBOOMS and VELDKAMP 11
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If uncertainties for exposure and aerodynamics are incorporated, the 50-year load increases by approximately 1.35 which happens to be the

usual load factor in IEC 61400-1. Hence, the consistency of probabilistic calculation according to the background document 13 is confirmed

(at least within the simple framework used here).

Future research should include validation of the character of turbulence (for prediction of extreme excursions can it be assumed to be Gauss-

ian or not?) and verification of the gust distribution method with long-term load measurements.
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APPENDIX A: USE OF A THRESHOLD

Larsen5 gives two options for the number of local extremes to be used (see Figure A.1):

1. All local maxima

2. Only the local maxima above a threshold t¼2σ

It will be shown that both options lead to the same result. To demonstrate that, it is convenient to consider the exceedance probability

Q¼1�F. We start with the first option.

Without a threshold. The exceedance probability QN of the largest of N values of the local maxima ηe can be approximated by (for large

values of ηe) the following:

QNðηemÞ¼1�FNðηemÞ¼1�FNðηemÞ¼1�ð1�QðηemÞÞN ≈1�ð1�NQðηemÞÞ≈NQðηemÞ ðA1Þ

With ηem the global maximum.

With a threshold. The variate of the second option will be indicated by ϵ. Its distribution is given by a truncated Rice cdf Ft which can be

derived from the original cdf F (for arguments larger than t):

FtðϵÞ¼ FðϵÞ�FðtÞ
1�FðtÞ ðA2Þ

And thus, the exceedance probability Qt is as follows:

QtðϵÞ¼1�Ft ðϵÞ¼1�FðϵÞ
1�FðtÞ ¼

QðϵÞ
QðtÞ ðA3Þ

For large values, the exceedance probability Q can be approximated by (Equation (6.6) in Cartwright and Longuet-Higgins9) as follows:

QðηÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p
e�η2=2 ðA4Þ

F IGURE A .1 Wind signal with threshold.

BIERBOOMS and VELDKAMP 13
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The number M within a period T that the threshold is exceeded (level crossing) is given by Rice8 (Equations 3.6–11):

M¼ ν0Te
�t2=2 ðA5Þ

The exceedance probability QtM of the largest of M values of ϵ can be approximated by (generalization of Equation (A1)) the following:

QtM ðεmÞ≈MQt ðεmÞ ðA6Þ

With ϵm being the global maximum. With the aid of Equations (A3), (A4), and (17), we obtain

QtMðϵmÞ≈ ν0Te
�t2=2 QðϵmÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1�δ2
p et

2=2 ≈ νPTQðϵmÞ≈NQðϵmÞ ðA7Þ

The same result is obtained as in case of the option “Without a threshold”; see Equation (A1)

APPENDIX B: FREQUENCY OF JOINT EVENTS

The probability of a wind speed V in between U and UþdU is given by the following:

PðU<V <UþdUÞ¼ fðUÞdU ðB1Þ

with f being the Weibull density (usually). The probability that the wind speed V is exactly equal to some specific value (i.e., with a range dU¼0) is

equal to 0. In the same way, the probability of events (like local maxima of two independent random variables) happening exactly simultaneously

is equal to 0. This implies that we have to introduce a fixed distance in time τ for which we consider events to be simultaneous; one may think of

a distance of (say) 1 s. The expression for the frequency of a local maxima (peaks) of a Gaussian random variable was derived by Rice8:

F IGURE A .2 Rice distributions: normal and truncated.

14 BIERBOOMS and VELDKAMP

 10991824, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/w

e.2914 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [10/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



νp ¼
ffiffiffiffiffiffi
m4

m2

r
ðB2Þ

For a small time interval Δt, the probability of a local maximum of u inside that interval is as follows:

Pup ¼Δt

ffiffiffiffiffiffiffiffi
mu4

mu2

r
ðB3Þ

This can be understood as follows. If the frequency of maxima is νp [Hz], there are νpT maxima in time T. If we take a smaller time interval Δt, the

average number of maxima within that interval is as follows:

Pup ¼Δt=TðνpTÞ¼Δtνp: ðB4Þ

Because νpΔt<1, we can view this number as a probability. To have a joint event, a local maximum of v should be within a distance τ of the

local maximum of u. Suppose the maximum for u occurs at tðumaxÞ, then for simultaneity, we must have the following:

tðumaxÞ� τ ≤ tðvmaxÞ≤ tðumaxÞþ τ ðB5Þ

Therefore, we have to consider a time interval of 2τ. The probability of a local maximum of v inside such an interval is as follows:

Pvp ¼2τ

ffiffiffiffiffiffiffiffi
mv4

mv2

r
ðB6Þ

The events are independent so the probability of a local maximum of v being within a distance τ of the u-maximum is as follows:

F IGURE B .1 Mean frequency of joint local maxima as function of time difference τ (red line); the green dashed line corresponds to τ¼1=νvp.
Note: (1) To obtain different values of the peak frequencies, a cut-off frequency (of the Kaimal spectrum) of 5 and 10Hz has been applied for the
u and v component respectively. (2) Larsen's expression cannot be shown because it has no time constant τ.

BIERBOOMS and VELDKAMP 15
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Puvp ¼PupPvp ¼Δt

ffiffiffiffiffiffiffiffi
mu4

mu2

r
2τ

ffiffiffiffiffiffiffiffi
mv4

mv2

r
ðB7Þ

This leads to the frequency of the joint events:

τ� 1
νvp

: νp ¼ lim
Δt!0

Puvp
Δt

¼2τνupνvp ¼2τ

ffiffiffiffiffiffiffiffi
mu4

mu2

r ffiffiffiffiffiffiffiffi
mv4

mv2

r
ðB8Þ

This relation holds for small τ, assuming νup ≤ νvp (and vice-versa). For large values of τ, the mean frequency will be equal to the upper limit:

τ� 1
νvp

: νp ¼ νup ¼
ffiffiffiffiffiffiffiffi
mu4

mu2

r
ðB9Þ

This upper limit makes sense since the frequency of joint events can never be larger than the smallest of the frequencies of the individual events.

The above relation is shown in Figure B.1. The theoretical value is compared with a count: After random wind signals have been generated for u

(longitudinal) and v (lateral), the maxima are extracted and the time at which they occur. It is now a matter of going through all u-maxima and

checking if there is a v-maximum within distance τ (i.e., jtðvmaxÞ� tðumaxÞj< τ). The frequency fðτÞ is the number of combined maxima divided by

the total time.

APPENDIX C: : MODE AND RETURN VALUE FOR GUMBEL DISTRIBUTION

If the distribution of annual extremes is known, some characteristic value must be chosen for design. The IEC definition is ‘[the value that has] an

annual probability of exceedance of 1/N (“return period”: N years)’ (IEC,1 definition (3.19)). This presents a problem with the N¼1 year return

period: According to the definition, the exceedance probability would be 1 and hence the extreme would be zero. In his article, Larsen6 estimates

the most likely value (the mode of the distribution). We briefly discuss why this approach is correct.

The final distribution (step 5) is a Gumbel distribution. Let us consider the distribution of the gusts for one wind speed interval, for example,

ΔV¼9�11 m/s. Then the total time T1 in 1 year is given by the chosen wind speed distribution (T1 ¼365 �24 �3600 � ðFð11Þ�Fð9ÞÞ), and the

Gumbel cdf of the annual extreme ζm is (compared with Equation (2)):

F1ðζmÞ¼ exp �exp � ζm
2C

þ lnκT1

� �� �
ðC1Þ

with terrain constant C and frequency of local extremes κ. We are interested in the TN-years value, for which

F1ðζmÞ¼1� T1

TN
¼ exp �exp � ζm

2C
þ lnκT1

� �� �
ðC2Þ

Solving for ζm yields:

ζm ¼2C lnκT1� ln � lnð1� T1

TN
Þ

� �� �
≈2C lnκTN ðC3Þ

We recognize the mode of the distribution of the TN-years maxima:

FNðζmÞ¼ exp �exp � ζm
2C

þ lnκTN

� �� �
ðC4Þ

Hence, instead of calculating the F1 ¼0:98 value of the distribution of 1-year extremes, we can take the mode of the distribution of 50-year

extremes. Check: Some representative numbers are a follows: Vave ¼6:65 m/s, V¼10 m/s, ΔV¼2 m/s, C¼0:466 (hilly), T1 ¼3:8�106 s, T50 ¼
1:9�108 s, ν0 ¼0:013 Hz. This yields for the dimensionless excursions using the 98% fractile of F1 and the mode of F50, respectively (without

reduction factors for rotor size and gust rise time):

16 BIERBOOMS and VELDKAMP
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ζmðF1Þ¼13:709 ζmðF50Þ¼13:719 ðC5Þ

The difference is less than 0.1%; hence, it is reasonable to use the mode as the characteristic value. The second edition of IEC 61400-111 gives

gust sizes for the 1-year return time and for the 50-year return time as (dimensionless values) follows:

g1 ¼4:8 g50 ¼6:4 ðC6Þ

If we assume that g1 is the mode of the distribution of 1-year extremes and g50 is the 98% value, then we can derive that this distribution is as

follows:

F1ðgÞ¼ exp �exp �g�m1

β

� �� �
ðC7Þ

with m¼ g1 ¼4:8 and β¼0:410. Now the distribution of the N-years extremes is related to the distribution of 1-year extremes as follows (assume

independence):

FNðgÞ¼ FN1 ðgÞ¼ exp �expð�g�m1

β
Þ

� �� �N

¼ exp �exp �g�ðm1þβ lnNÞ
β

� �� �
ðC8Þ

Which means that the distribution is shifted to the right with the new location parameter mN:

mN ¼m1þβ lnN ðC9Þ

This is shown in Figures C.1 and C.2 for N¼50. As expected, the horizontal shift in gust size is β lnN¼1:6 and the vertical shift in exceedance

probability for large g is a factor of 50.

F IGURE C .1 Gumbel probability density.

BIERBOOMS and VELDKAMP 17
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APPENDIX D: : GAUSSIAN TURBULENCE

In the Larsen model, it is assumed that turbulent velocity excursion is not Gaussian but Gamma distributed. If we assume that turbulence is Gauss-

ian (something that is commonly done in a fatigue analysis), we can still use the Larsen model but now without the transformations in steps 2 and

5. The cdf corresponding to the pdf in Equation (11) is as follows:

Fηem ðηemÞ¼ exp �exp �η2em
2

þ lnðN
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p� �� �
ðD1Þ

The T-return value can be obtained by inverting the cumulative distribution corresponding to Equation (D1). The T-return value ηeT equals

(Cartwright and Longuet-Higgins,9 Equation (6-6)):

ηeT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p
Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnν0T

p
ðD2Þ

Hence, the T-return value is (almost) equal to the mode of the distribution of the largest of N local maxima. Another choice as characteristic value

could be the mean value; due to the asymmetry of the distribution, the mean value is larger than the mode (Cartwright Equation (6–14),9 Daven-

port p19010):

ηem ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnν0T

p
þ γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lnν0T
p ðD3Þ

Here, γ ≈0:5772 is the Euler–Mascheroni constant. This expression is often used in wind engineering applications. Davenport10 also provides the

standard deviation:

F IGURE C .2 Gumbel exceedance probability.

18 BIERBOOMS and VELDKAMP
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σηem ¼
π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lnν0T

p ðD4Þ

Larsen's (corrected) expression for the mode (or 50-year value) is (Equation (16)):

modeðζmÞ¼mL ¼2C lnν0T ðD5Þ

And the mode based on Gaussian turbulence is (Equation (D2)):

modeðζmÞ¼mR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnν0T

p
ðD6Þ

The ratio of the Larsen and the Rice number is as follows:

mL

mR
¼C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnν0T

p
ðD7Þ

As an example, take Vave ¼6:65 m/s, V¼10 m/s, ΔV¼2 m/s, ν0 ¼0:013, T50 ¼1:9�108,C¼0:337 (flat terrain), then the ratio is 1.83. It is not

clear whether the non-Gaussianity of turbulence is enough to explain the difference. In case one wants to apply the Corrected Larsen procedure,

it is essential that it is first determined by site measurements whether the local turbulence is better described by a Gamma distribution or by a

Gaussian one. See Figure D.1.

F IGURE D .1 Figure 1 with Gaussian mode added (green).
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APPENDIX E: : VERIFICATION OF INTERNAL CONSISTENCY OF THE LARSEN PROCEDURE

In this appendix, we verify whether Larsen's (corrected) method is internally consistent. For the test, we generated 105 turbulent time series of

T¼6�104 s each (about 17 h) with a time step of 0.1 s. The turbulence is based on the Kaimal spectrum and made to be Gamma distributed

according to Equation (4). Each time series has one global maximum, and the histogram of the 105 global maxima is shown in Figure E.1, together

with the mode estimates according to Equation (16). In the “corrected Larsen” method, κT¼ ν0T¼0:0154 �6�104 ¼923, while in the original

Larsen method, κT¼5:77�10�4 �6�104 ¼35. The mode according to “corrected Larsen” equals 7.68 m/s (red line) and coincides with the mode

of the histogram; it deviates less than 0.2% from the exact value of 7.69 derived with the Gumbel distribution arising from the parent Rice distri-

bution. For completeness and clarification, the time series of each of the steps from Section 2 are given in Figure E.2 as well as the corresponding

histograms and distributions. Figure E.2 has time series on the left and histograms on the right. Note that in Step 4, the exact distribution (green

dotted line) coincides with “Davenport” (Equation (11)).

F IGURE E .1 Distribution of 105 global maxima (T¼6�104 s, U¼10 m/s, C¼0:4, fco ¼0:05 Hz; this leads to δ¼0:89, σ¼1:41 m/s, ν0 ¼
0:0154 Hz, νP ¼0:0337 Hz, and N¼ νPT¼2021).

20 BIERBOOMS and VELDKAMP
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F IGURE E .2 Verification of Larsen's method. Left: time series of 60 s containing the global maximum, right: histograms. From top to bottom:
(1) Original Gamma distributed signal and pdf of all values. (2) Signal transformed to Gaussian. (3) Local maxima of the Gaussian signal. (4) Global
maxima of the Gaussian signal (Davenport distribution). (5) Signal back transformed; Gumbel distribution of global maxima.
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