A UOXEL-BASED METHODOLOGY TO DETECT (CLUSTERED)
OUTLIERS IN AERIAL LIDAR POINT CLOUDS

BY
SIMON GRIFFIOEN
2018

4 -
TU Delft

MSc thesis in Geomatics for the built environment

A VOXEL-BASED METHODOLOGY TO DETECT (CLUSTERED)
OUTLIERS IN AERIAL LIDAR POINT CLOUDS

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by
Simon Griffioen

November 2018

Simon Griffioen: a voxel-based methodology to detect (clustered) outliers in aerial
LiDAR point clouds (2018)

@@® This work is licensed under a Creative Commons Attribution 4.0 Inter-
national License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was made in the:

3D geoinformation group
'i!U Delft Department of Urbanism
e Faculty of Architecture & the Built Environment

3Dgeoinfo
g Delft University of Technology

Deltares

£

Supervisors: Dr. Hugo Ledoux

Dr. Ravi Peters

ir. Maarten Pronk (Deltares)
Co-reader: Dr. Martijn Meijers

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

To obtain 3D information of the Earth’s surface, airborne LiDAR technol-
ogy is used to quickly capture high-precision measurements of the terrain.
Unfortunately, laser scanning techniques are prone to producing outliers
and noise (i.e. wrong measurements). Therefore, a pre-process of the point
cloud is required to detect and remove spurious measurements. While out-
lier detection in datasets has been extensively researched, in 3D point cloud
data it is still an ongoing problem. Especially, clustered outliers are hard to
detect with previous local-neighborhood based algorithms.

This research explores the possibilities of using a voxel-based approach to
automatically remove outliers from aerial point clouds. A workflow is de-
signed in which a series of voxel-based operations are integrated, with the
aim to detect all types of outliers and minimize false positives. Voxels can
be processed more efficiently than 3D points for two reasons: (1) A voxel-
grid can be analyzed using efficient image processing techniques; (2) Voxels
group inner points before feature extraction using neighborhood operators.
Outliers are detected in two steps. First, the source point cloud is voxelized.
Secondly, outliers are detected by computing connected components and la-
beling voxels not connected to the largest region as outliers. Simultaneously,
analysis of the point’s local density, shape (planar) and intensity minimize
classification of false positives.

The presented algorithm generally detects outliers with a higher accuracy
than previous local neighborhood-based methods. A comparison with an
existing approach shows that more outliers are detected. Above all, clus-
tered outliers are removed. However, some issues can still be improved.
First, more research is necessary to classify outliers based on non-arbitrary
decisions. This could potentially be improved by introducing supervised
learning algorithms. Secondly, more attention is required to process mas-
sive point clouds that do not fit in internal memory. This study proposes a
possible streaming solution.

ACKNOWLEDGEMENTS

I would like to thank all the people who guided me during my graduation
project. First of all, thanks to my supervisors Ravi Peters and Hugo Ledoux
for their guidance, constructive meetings and feedback, throughout the en-
tire project. I would like to thank Martijn Meijers for his feedback in the
final period of my graduation.

I also would like to thank Deltares, and specifically Maarten Pronk, for
giving me the opportunity to collaborate on my graduation project, and sup-
port my research interests. Moreover, Maarten has given me very detailed
and in-depth feedback. We had many pleasant and constructive discussions,
and his extensive knowledge of the topic helped me guiding this project.

Furthermore, I want to thank Jeroen Leusing (Het Waterschapshuis) for
sharing his knowledge about point cloud processing and for bringing me
in contact with Frank van den Heuvel (Aerodata International Surveys). I
would like to thank Frank (Aerodata), Maarten (Deltares) and Willem van
Hinsbergh (Kadaster) for handing me a various collection of datasets, which
made this research possible.

vil

CONTENTS

1

INTRODUCTION

1.1

Research motivation

1.2 Objectives & Research questions

1.3
1.4

Scope of Research . .
Thesis outline

THEORETICAL BACKGROUND
Airborne Light Detection And Ranging
2.1.1 Discrete and full waveform Light Detection And Rang-

2.1

2.2
2.3

2.4

2.5

ing (LiDAR) . .

2.1.2 Properties of LiDARdata
2.1.3 Errors in aerial laser scanning
General outlier detection approaches.
3D digital representations

2.3.1 Triangulation

2.3.2 Rasterization and Voxelization
Binary raster processing
2.4.1 Pixels, Neighborhoods & Topology
2.4.2 Connected Components Labeling
2.4.3 Mathematical Morphology

Local point statistics

2.5.1 Planarity of 3D distributed points

Previous Work—Outlier detection
3.2.1 Distance-based Methods
3.2.2 Density-based Methods
3.2.3 Distribution-based Methods
3.2.4 Clustering Methods
3.2.5 Methods based on Mathematical Morphology
3.2.6 Other Related Work
Group-based vs. point-based filter techniques
Additional intensity information
Conclusions & remarks

Overview of binary voxel-based approach
4.1.1 Method Motivation: Detecting Outliers with Connec-

4.1.2 Method Motivation: Minimize False Positives
4.1.3 A Voxel-Based Solution
4.1.4 5 Analysis Techniques

Connected Components Labeling

RELATED WORK
3.1 Existing filtering tools
3.2
33
3-4
35
METHODOLOGY
4.1
tivity

4.2 Voxelization
4.3 Local Density
4-4

4.4.1 Morphological
4.5 Lidar Point Intensity

Transformation: Closing

AN U1l U1 W N R

N

= O o o\

12
14
15
16
17
19
19

21
21
22
22
22
23
23
25
25
26
26

27

29
29

ix

X

i Contents

4.5.1 Data Statisticso oo oL
4.6 Planarity L o

5 IMPLEMENTATION & RESULTS
5.1 Structure of developed prototype
5.1.1 Data Structureso oL
5.1.2 Implementation of Algorithms
5.2 Datasets
5.3 Quality Metrics oo oo
54 Results L o oo
5.4.1 Outlier detection: overall algorithm performance . . .
5.4.2 Voxel Size Selection and Performance
5.4.3 Common Classification Problems
5.4.4 Method Breakdown—Operation Evaluation
5.5 Computation Time and scalability
551 Voxelsize
5.5.2 Sizeofdataset.
5.5.3 Memory allocations
5.6 Comparison to Existing Method

6 DISCUSSION & FUTURE WORK
6.1 Experiments with scalability issues
6.1.1 From Coarse ToFine
6.1.2 Streaming
6.2 separationbywater L L L
6.3 classification Lo L Lo oo
6.3.1 Voxel Classification Using Machine Learning
6.4 Boolean grid vs. group-based 000
6.5 Manual parameter adjustments L.

7 CONCLUSIONS & RECOMMENDATIONS
7.1 conclusions.
7.1.1 Research questions
7.1.2 Contributions
7.1.3 Recommendations & Remarks

A REFLECTION

41
41
41
42
44
44
46
46
50
52
54
55
55
56
56
57

59
59

59
60

62
64
64
64
65

67
67
67
69
69

77

LIST OF FIGURES

Figure 1.1

Figure 1.2
Figure 1.3

Figure 2.1
Figure 2.2

Figure 2.3

Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 3.1
Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

Figure 4.9
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 5.5

Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12

Figure 5.13

Figure 5.14
Figure 6.1

Raw Airborne Laser Scanning (ALS) point clouds with
different types of outliers.
Example of a voxelized point cloud.
Unsatisfactory results from density- and distance-based
outlier detection methods. 4
Laser scanning errors. 8
(a) Representing a set of irregularly distributed points
using a (Delaunay) triangulation. (b) Representing a

set of irregularly distributed points in a raster structure. 12
(a) Shared face. (b) Shared edge. (c) Shared vertex.

Figure from Wu et al. [2013]., 13
Pixel and pixel neighborhoods. 15
Neighborhoods in 3D voxel space. 16
Connected Components Labeling of binary raster. . . 16
Mathematical morphology on binary raster data. .. 17
Spatial shape properties. 20
Algorithm proposed by Sotoodeh [2007] 24

Examples of different types of outliers. (a) Clustered
outliers along the direction of the scan line (type-2.

(b) Scattered outliers (type-3). 30
Flowchart of proposed methodology. 31
Mustration of workflow with boolean grids 33
Voxel space with (i, j, k) coordinate system 34
Voxelization of example pointcloud. 35
Concave object in pointcloud. 36

Connected components labeling of example voxel grid. 37
Connected components labeling after closing of ex-

ample voxelgrid..o oL 38
Intensity histogram of example point cloud. 38
Data structures. 42
Overview of tested source point clouds 43
Step by step outlier detection of point cloud A1. . . . 47
A series of operations allows the majority of tree points

to not be falsely classified., 48
Low density object not classified as outliers because

its is connected to the surface. 48
Resultdatasat A1 49
Resultdatasat A2 49
Accuracy of dataset A1, A2, CandD. 50
Point cloud B before and after outlier removal. 51
ResultdatasetD 52
Common errors of proposed methodology. 53
Computation time of proposed methodology in terms

of voxel size and point cloud size. 55
Memory allocations for voxelization of different sized
pointclouds. Lo 56
Comparison clustered outliers with lastools. 57
Voxel size from coarse to fine. 60

Xi

xit | List of Figures

Figure 6.2

Figure 6.3

Figure 6.4

The streaming solution reads the points thrice and
pipes a spatially finalized voxel stream to the inten-
sity and planarity analysis, which then compares the
result with the Connected Components Labeling (CCL)
output, and finally writes out a cleaned point cloud. 61
(a) A river separates two land parts in the point cloud.
(b) The right half gets filtered out, as it is uncon-
nected to the largestarea., 63
The angle « between centroids p1 and p2 is below a
specified threshold. Therefore points in region 2 are
not classified as outliers. 64

LIST OF TABLES

Table 2.1
Table 3.1

Table 5.1
Table 5.2
Table 5.3
Table 5.4

Table 5.5
Table 5.6

Only non-zero values of example matrix M are stored
in a three column representation of a sparse array.

Summary of proposed outlier detection methods and
existing tools. L L oL
Overview of the datasets used for experiments
Confusionmatrix.
Confusion matrix of A2 at 0.75 m resolution.
Performance of each operation for point cloud A1

Cleaning quality with LAStools.
Cleaning quality of A1 with proposed method.

xiit

http://www.cs.unc.edu/~isenburg/lastools/

LIST OF ALGORITHMS

41 DENSITY

XV

ACRONYMS

AHN Actueel Hoogtebestand Nederland 7
ALS Airborne Laser Scanning ... xi
ccL Connected Components Labeling xii
DEM digital elevationmodel......................o 1
DIM Dense Image Matching...................... ... 4
DSM Digital Surface Model ... 1
DT Delaunay triangulation..................... ... 11

EMST Euclidean Minimum Spanning Tree

FN False Negatives ... 2
FP False POSItiVes.ouvuinii e 2
FNR False Negative Rate.............. ... i, 44
FPR False Positive Rateooiiiiiii i 44

GG Gabriel Graph

GIS geographical information system................... 11
kNN k-Nearest Neighbors, 22
LiDAR Light Detection And Ranging............................... ix
LoD level of detail i 12
NN Neural Network e 64
PCA Principal Component Analysis..................cooooiiiiiiii. 7
SVM Support Vector Machine.....................oooiiinnn, 64
TIN triangular irregular network.............. i 11
TLS Terrestrial Laser Scanning ..., 5
TN TrueNegatives........... ... i 45
TP True Positives........ ... i 32

xvil

INTRODUCTION

Laser scanners help acquiring the 3D geometry of real-world objects in an
efficient and simple way. To obtain 3D information of the Earth’s surface,
airborne LiDAR technology is used to quickly capture high-precision mea-
surements of the terrain. The generated raw point cloud reflects the charac-
teristics of a Digital Surface Model (DsM) of the measured region. Unfortu-
nately, laser scanning techniques are prone to producing outliers and noise
(i.e. wrong measurements) due to limitations of the sensor, illumination sit-
uations, and undesirable artifacts in the scene [Jenk et al., 2006; Han et al.,
2017]. Usually, elevation levels of outliers are higher or lower than their
neighboring points, i.e. they are mainly measurements that do not obey the
local surface geometry [Matkan et al., 2014]. Fig. 1.1 gives examples of ALS
point clouds with many outliers. Besides affecting the visual appearance
of the dataset, these points cause geometric differences making it unable
to achieve desired results from further processing steps, e.g. extracting a
digital elevation model (DEM) or object recognition. Therefore, a pre-process
of the point cloud is required to detect and remove spurious measurements.

While outlier detection in datasets has been extensively researched, in
3D point cloud data it is still an ongoing problem. Several methods for
detecting outliers in LiDAR data are proposed and studied. Typical methods
are designed and developed in commercial software, e.g. lastools’. Free
alternatives exist as well in the form of open source projects like Point Cloud
Library* (PCL). Often a density-based approach is offered, which depends
on the local density of the neighborhood points. The neighborhood can be
defined by various constructions, such as a volume (e.g. sphere, cube) or k-
nearest neighbors. Usually this performs well for detecting isolated points
(Fig. 1.1a), but are incapable of removing clustered outliers [Shen et al,,
2011] (see Fig. 1.1b and Fig. 1.1c) or outliers spatially close to real objects
(Fig. 1.1d). More examples and other approaches are described in § 2.2.

Removing clustered outliers requires more complex computations. How-
ever, datasets become larger—especially Airborne Laser Scanning (ALS) has
significantly increased the size of areas that now can be investigated. Not
only are the large datasets hard to handle, but it also makes the need for
manual intervention a time consuming process. A high degree of automa-
tion is desired, but efficient and effective methods are needed [Papadim-
itriou et al., 2002], i.e. large computations on point cloud data need to be
efficient.

Both scale and detection accuracy make outliers in point clouds still a crit-
ical problem. This thesis considers the problem of automatically removing
outliers from ALS point clouds.

1 https:/ /rapidlasso.com/lastools/
2 http:/ /pointclouds.org

http://lastools.org
http://pointclouds.org
http://pointclouds.org

2

| INTRODUCTION

(a) (b)

(<) (d)

Figure 1.1: Raw ALS point clouds with various types of outliers. (a) Isolated outliers.
(b) Isolated and clustered outliers. (c) Clustered cloud of outliers. (d)
Outliers spatially close to objects.

1.1 RESEARCH MOTIVATION

To effectively analyze point cloud data, it first needs to be removed from
outliers. This is necessary because raw data often includes a lot of errors.
This is an issue for everyone who needs to carefully analyze 3D point cloud
data. Deltares is a company that is facing these problems, which is why this
thesis is carried out in close collaboration with them. Deltares is a Dutch
based independent institute for applied research in the field of water and
subsoil.

Existing software tools mainly use the density-based or distance-based
approach to detect and remove outliers. However, clustered outliers re-
quire more complex computations and cannot be solved within density- and
distance-based approaches. Fig. 1.3a shows a point cloud containing clus-
tered outliers with varying local densities. Density-based methods perform
poorly on this type of noise, leaving many undetected outliers (False Nega-
tives (FN)), as is seen in Fig. 1.3b). Furthermore, low density features—such
as electricity cables (Fig. 1.3c)—may be classified as outliers (False Posi-
tives (FP)), shown in Fig. 1.3d.

Filter tools have to deal with geometrical discontinuities caused by oc-
clusions, no prior knowledge of the existence of outliers—or any statistical

1.2 OBJECTIVES & RESEARCH QUESTIONS |

(a) (b)

Figure 1.2: (a) Source point cloud. (b) Voxel structure of (a).

distribution, and varying local point densities, which makes it not a trivial
task [Sotoodeh, 2007]. Moreover, large 3D datasets ask for efficient data
processing.

Existing approaches make use of point-based techniques, where each 3D
point is analyzed based on the features from its local neighborhood. The
main drawback of this approach is the memory and execution time required
to process each point in the point cloud [Plaza et al., 2015].

A second group of techniques for 3D processing is group-based tech-
niques, which aim to speed up point cloud classification by reducing the
scene to a grid or voxel model [Plaza-Leiva et al., 2017]. Instead of extract-
ing features at the neighborhood of each point, they are extracted at each
group of points defined by a voxel. An example of a voxel model from a
point cloud is shown in Fig. 1.2.

Besides reducing the amount of data, translating it into a regular voxel
grid (i.e. a raster structure) creates opportunities to use existing image pro-
cessing techniques, such as mathematical morphology and connectivity. The
full possibilities of 3D raster processing has not been studied yet for the
identification of outliers in airborne LiDAR point clouds.

1.2 OBJECTIVES & RESEARCH QUESTIONS

This thesis explores the possibilities of using a voxel model from a point
cloud to detect outliers in different ways. The main goal is to automatically
identify outliers (i.e. isolated points—high and low, and outlying clusters)
in airborne LiDAR point clouds. This can be done by (1) using the voxel
grid as input for raster processing techniques and (2) extracting features
from groups of points defined by voxels. This study focuses on how a voxel
grid can be used in different ways to detect outliers, and how to combine
multiple operations to come to a final classification. The effectiveness of the
proposed method is assessed in terms of accuracy and speed.

It is not a goal to develop a method that will outperform (or even compare
to) the speed of existing methods, but to provide a more accurate outlier
detection tool. The corresponding main research question is therefore:

Question 1. Is a voxel-based approach a viable option to automatically detect out-
liers from aerial LiDAR point clouds?

3

4

| INTRODUCTION

(@) (b)

Figure 1.3: Unsatisfactory results from density- and distance-based outlier detection
methods. (a) Raw source point cloud with clustered outliers. (b) Poor
outlier detection of (a) by density-based method, due to varying local
point densities of outlier cloud. (c) Raw point cloud of electricity cable.
(d) Electricity cable removed by density-based method.

This question incorporates the entire process from a raw source point
cloud to a cleaned version using a voxel structure. Besides the main research
question, this study looks into individual steps and requirements and are
formulated as follows:

Question 2. How can raster processing techniques—in particular Connected Com-
ponents Labeling—be used on a 3D voxelized point cloud to detect outliers?

Question 3. What is the influence of different voxel resolutions for outlier detection
algorithms, in terms of accuracy and computation load?

Question 4. Can a series of analysis methods within a voxel model achieve higher
classification quality?

Question 5. What outlier detection quality is achievable and how to influence the
trade-off between true positives and false positives?

Question 6. What is the influence of scaling the dataset on the algorithm in terms
of time and memory?

Question 7. Can the same outlier detection algorithm be used for both point clouds
extracted from LiDAR (aerial) and Dense Image Matching (DIM)?

1.3 SCOPE OF RESEARCH | 5

1.3 SCOPE OF RESEARCH

To set the scope for this research it is important to mention that this study
will use—and test algorithms on—ALS data from natural environments. Other
laser scanning techniques (such as Terrestrial Laser Scanning (TLS)) will be
disregarded. Urban environments are only used to see the effect of differ-
ent environments, i.e. developed methods will not be specified for urban
environments. Furthermore, the main focus of this study will be on combin-
ing different methods to classify outliers in a voxel grid structure, because
this is where the most contributions can be made. On each voxel, different
methods can be applied to extract information for outlier classification. In
this thesis, it is not so much about the individual methods itself, but how to
combine all this information in a raster for outlier detection.

Furthermore the research aims to develop an efficient method since it
should be applicable on large data sets. It is beyond the scope of this study
to benchmark different methods as much as developing a prototype which
is efficiently coded. This means a prototype is developed with Julia pro-
gramming language (used by Deltares) to run experiments, which is differ-
ent from using C++ with more capabilities. Therefore, the search for an
efficient approach will be discussed in a theoretical way. However, results
from testing several approaches can be discussed, including the effect of
increasing the size of the dataset.

1.4 THESIS OUTLINE

The thesis is structured in the following way:

CHAPTER 2 introduces the relevant theory for this thesis. It covers the fun-
damentals of LiDAR and raster processing techniques.

CHAPTER 3 describes and analyses existing approaches in point cloud out-
lier filtering from practice and literature. Difficulties with those ap-
proaches are illustrated and a comparison of general characteristics is
made.

CHAPTER 4 is used to motivate and describe a voxelized approach with
image processing methods.

CHAPTER 5 continues with the implementation and experiments of the pro-
posed approach. A set of objective metrics is defined that are used
to quantify the effectiveness of the proposed approach with respect
to its fundamental requirements. Also, a comparison with a existing
method is made.

CHAPTER 6 provides all conclusions that can be drawn based on this study.
The research questions will be answered and the most important con-
tributions are summarized. Furthermore, suggestions for future work
are made.

2 THEORETICAL BACKGROUND

This chapter provides the necessary theoretical background for this thesis.
First, the basics of airborne LiDAR ALS are given (§ 2.1), to understand why
it is unavoidable to capture point clouds without outliers. Subsequently,
general outliers detection methods are discussed (§ 2.2). Following, three
different data models are discussed that can be used for representing point
clouds (§ 2.3. Finally, processing techniques that are used for this study
to extract information from a point cloud are explained. § 2.4 summarizes
binary image processing techniques, which are extensively described in Jain
et al. [1995]; Szeliski [2011]; Shapiro and Stockman [2001]; Birchfield [2017].
§ 2.5.1 explains how Principal Component Analysis (PCA) can be used to
compute the curvature (i.e. spatial shape) of a set of points.

2.1 AIRBORNE LIGHT DETECTION AND RANGING

In 1997 a nationwide DEM of the Netherlands (Actueel Hoogtebestand Ned-
erland (AHN)') was created with up to one height point per 16 m?, using
airbore LiDAR . In the meantime LiDAR has evolved and is recognized as a
technology with many advantages and application purposes. LiDAR features
high accuracy and precision with a high level of detail. The technology is
based on a laser scanner combined with both GPS and inertial technology
to create a three dimensional set of points (point cloud). Point clouds can
easily contain up to millions of points per square kilometer. High levels of
automation and quick data capturing make it very convenient for detailed
3D-reconstruction of the real world.

2.1.1 Discrete and full waveform LiDAR

As laser pulses move towards the ground, they hit objects such as tree
branches and buildings. Some of the energy reflects off of those objects and
returns to the sensor, but some energy may continue towards the ground
surface. This allows one laser pulse to record multiple reflections.

The energy distribution—or intensity—that returns to the sensor creates
a waveform. Areas that reflect more energy create peaks in the waveform
and often represent objects such as a branch or a building. This energy
distribution can be read in two ways:

1. Discrete return LiDAR systems detect peaks and record a individual
point (discrete) at each peak location in the waveform. Every individ-
ual point is a return form one single laser pulse. A discrete system
may record 1—4 (and sometimes more) returns from each laser pulse.
Last returns are often used to quickly identify ground points.

1 http://www.ahn.nl

8

| THEORETICAL BACKGROUND

2. A Full Waveform LiDAR System records a distribution of returned in-
tensity. Full waveform LiDAR data captures therefore more information
than discrete systems, but are thus also more complex to process.

Usually LiDAR data is made available in the form of discrete points. In
this study, only this format is considered when referred to LiDAR data.

2.1.2 Properties of LiDAR data

LiDAR point cloud data is commonly stored as .1las format supported by the
Americal Society of Photogrammetry and Remote Sensing (ASPRS). Isen-
burg [2013] developed the .1laz format for point clouds which compresses
large .1as files into compact files without information loss.

Information stored on these files can vary. Obviously, point cloud data
points will at least have related x, ¥ and z coordinate values. Depending
on data collection and processing methods this can be extended with more
attributes. Most point cloud include at least an intensity value for each
return. Some also have a classification, representing the type of object the
laser returned from (e.g. ground, building, vegetation). This requires an
additional processing step and various algorithms to identify objects in ALS
data have been developed by researchers.

The input point cloud is defined as a list of n points. Each point p; is
defined as a vector with the Cartesian coordinates x, y, z (attributes such as
intensity not considered), described as:

X1 Y1 oz
pointcloud = oo

(2.1)

Xn Yn Zn

2.1.3 Errors in aerial laser scanning

Outliers are basically erroneous measurements caused by the limitations of
the laser scanner. Some well knows reasons are described in this section.
The first is caused by the footprint of a laser beam, which is an ellipse, see
Fig. 2.1a. It is possible that the beam is divided when it hits the boundary
of an object. Thus the reflection value of this point would be a weighted
average of the reflection from both surfaces, creating virtual points in be-
tween [El-Hakim and Beraldin, 1994]. A second reason can be caused by

T~ i -~ e
. puise - lAvertqged point
_aS ocation

(a) (b)

Figure 2.1: Laser scanning errors. (a) Erroneous measurement at the boundary of
occlusion. The laser foot print is split over two surfaces, by which the
point location is averaged between both. Fig. inspired by [Sotoodeh,
2006] (b) Multipath effect where a laser pulse is reflected of an object
before it returns to the scanner. Therefore, the traveled path is longer
which results in a extended point location below ground surface.

https://www.asprs.org/

2.2 GENERAL OUTLIER DETECTION APPROACHES |

surfaces with very high or low reflectance. Such surfaces, such as black ob-
jects, glasses or metals can cause bias in the distance measurement, because
the receiver cannot resolve the reflected beam [Beraldin, 2004]. The third
reason is multi path reflection, see Fig. 2.1b. When the laser beam hits a
surface under a angle, most of the beam can be deflected onto other close
surfaces and then reflected back into the receiver. This creates a false longer
distance and thus a wrong data point [Sotoodeh, 2006].

The mentioned limitations of LiDAR cause different types of outliers. Many
studies distinguish two types, high and low outliers (also positive- and neg-
ative outliers) [Kobler et al., 2007]. A third type extends the list: clustered
outliers.

1. Low outliers - These are points that normally do not belong to the sur-
face. They come from multi-path errors and errors in the laser scanner
[Sithole and Vosselman, 2004]. Normally, filters work on the assump-
tion that the lowest point belongs to the ground.

2. High outliers - These are points that also normally do not belong to
the surface. They originate from hits off objects like birds, low flying
aircraft, or errors in the laser scanner [Meng et al., 2009; Sithole and
Vosselman, 2004]. Most filters handle such outliers, because they float
high in the air far from neighboring points.

3. Outlier in cluster format - These points are similar to high and low out-
liers, but form a cluster. This makes them harder to detect, because
they are not isolated individual points. This asks for different detec-
tion methods, which many existing tools do not offer. They can be
caused by a flock of birds, but also exist due to limitations of the sen-
SOfr.

2.2 GENERAL OUTLIER DETECTION APPROACHES

Most work on outlier detection is done in the field of statistics [Barnett,
1994; Hawkins, 1980]. Algorithms in machine learning and data mining
have considered outliers, but mostly in a way to deal with them in order to
successfully run an algorithm [Angluin and Laird, 1988]. Hawkins [1980]
defines an outlier as an observation that deviates so much from other observa-
tions as to arouse suspicion that it was generated by a different mechanism. Many
studies propose methods to find these data points, but most of them suffer
from two problems. First, they are univariate, i.e. they only consider one
variable. Point cloud data is multidimensional (at least x, y, z), making it
unsuitable. Secondly, in all cases you have to perform expensive testing to
find a distribution that fits the data [Johnson et al., 1998]. This makes outlier
detection in point cloud data different than what we are used to from sta-
tistical methods. Outliers are caused from different sources and are seen as
measurements that differ from their local neighborhood, i.e. data points that
do not fit the local surface geometry [Sotoodeh, 2006]. Different approaches
are studied to identify these outlying points.

Papadimitriou et al. [2002] classifies five different categories of filters as
distribution-based, depth-based, distance-based, density-based and cluster-
ing approaches.

DISTRIBUTION-BASED METHODS deploy some standard distribution model
(e.g. Normal distribution) and classifies outliers those points that de-

9

10 | THEORETICAL BACKGROUND

viate from the model. However, for arbitrary datasets without prior
knowledge of the distribution of points (e.g. point cloud datasets),
finding the which model fits the data best. Local surface fitting ap-
proaches, for instance moving least squares or RANSAC, are also used
for outlier detection. These methods can work well when a point cloud
is dense and is obtained from a smooth surface, e.g. urban environ-
ments. Point clouds with discontinuities or high curvature areas, for
example natural environments, are not suited for surface fitting [So-
toodeh, 2007].

THE DEPTH-BASED APPROACH is based on computational geometry and
computes different layers of k-dimensional convex hulls [Johnson et al.,
1998]. Objects in the outer layer are identified as outliers. In these
approaches, based on some definition of depth, data objects are orga-
nized in layers in the data space, with the expectation that objects in
the outer layer are more likely to contain outlying points. To avoid
the above mentioned problems of distribution fitting and restriction
to univariate datasets, depth-based approaches have been developed
[Johnson et al., 1998]. However, algorithms for this method cannot
cope with large three-dimensional datasets [Sotoodeh, 2007].

CLUSTERING ALGORITHMS are not optimized for outlier detection, since the
main objective is clustering. However, they can be used for this, but
outliers are by-products, i.e. don’t belong to a cluster [Jain et al., 1999].
Teutsch et al. [2011] clusters point cloud data to identify sets of neigh-
boring points that belong to the same region. Most of the resulting re-
gions contained less than 10 points. They considered regions with less
than 1000 points outliers, and removed all regions below this thresh-
old. Sithole [2005] segments ALS data to separate terrain, house roofs,
bridges and trees. Points that do not belong to a predefined class are
labeled as outliers.

THE DISTANCE-BASED APPROACH is originally proposed by Knorr et al. [2000].
An point in a data set P is a distance-based outlier if at least a fraction
B of the points in the local neighborhood is further than r from it.
This outlier defintion is determined by two parameters, r defines the
distance and B defines a threshold for number of data points. Many
existing point cloud filters are based on this approach. TerraScan, PCL
and CGAL implemented filters which removes all points from the in-
put point cloud that do not have at least some number of neighbors
within a certain range. It performs well on 3D point cloud data to
detect isolated points. However, this can lead to problems when the
data set has both dense and sparse regions [Breunig et al., 2000].

THE DENSITY-BASED APPROACH is proposed in Breunig et al. [2000]. It was
observed that taking a global view of the dataset captures only certain
kinds of outliers. However, real-world datasets—which can exhibit a
complex structure—can have objects that are outlying relative to their
local neighborhoods. These local outliers can be seen as objects, which
depends on the local density of its neighborhood. The neighborhood
is defined by the distance to n nearest neighbors. Value # is a prede-
fined value and determines the size of a local neighborhood, used to
calculate the density. This method works without prior knowledge of
the distribution of points and handles different local point densities.

2.3 3D DIGITAL REPRESENTATIONS \

The distance- and density-based approach attract more attention for outlier
detection, because they are more appropriate for high dimensional, large
data sets [Papadimitriou et al., 2002]. This is also reflected in the avail-
able point cloud outlier detection methods on the market, e.g. TerraScan,
LAStools and PCL have routines based on distance and/or density of neigh-
boring points.

2.3 3D DIGITAL REPRESENTATIONS

LiDAR technology aims to measure the properties of the earth’s surface in
order to create a model out of it. Since we can only take a finite number
of measurements with a finite amount of accuracy, such a model is limited
to some degree. But even though a complete and accurate model seems
impossible, an approximation of the surface’s properties can be of great
use.

There are several ways to represent these measurements in a digital model.
A surface is commonly represented as a piecewise tessellation [Goodchild,
1992]. By dividing the surface in pieces it becomes possible to show it in
digital form. One approach to reconstruct a surface from a point cloud is
by triangulation of the points (§ 2.3.1). Another possibility is to divide the
space in a rectangular pieces—instead of triangles—such as with rasters (§
2.3.2).

The choice of a data model also incorporates the implementation of a data
structure. A data structure can ensure topological relations depending on
the data model. When choosing for a particular model, one should also
consider storage efficiency, scalability and speed. Note that in this thesis the
raster model lies at the core. However, a brief explanation of a triangulation
helps to motivate this choice.

2.3.1 Triangulation

Triangulation in geographical information system (GIS) refers to triangular
irregular network (TIN), which is a triangular subdivision of a plane. It is
an effective structure to model the terrain surface measured with for in-
stance LiDAR technology, which is also called a DsM. The vertices in a TIN
are formed by points in the source point cloud, creating a vector-based rep-
resentation (see Fig. 2.2a). An advantage of using a TIN over a rasterized
model is that geographical locations of sample points are represented with
a vertex in the digital model. Moreover, triangulation is adaptive to varying
point densities and patterns.

When given a set of points, there exist many candidate tessellations. For
instance, some have a higher proportion of thin, long triangles and may be
judged inferior to others. A highly desired triangulation is the Delaunay
triangulation (DT) with triangles as equilateral as possible [Worboys and
Duckham, 2004].

A TIN or DT implies topology between adjacing vertices, edges and faces.
To implement such topology a list is defined with information of each tri-
angle, its vertices—including coordinates, edges and adjacent triangles. The
implementation details are more complex than defining neighboring pixels
in a raster structure (only in a structural sense and not morphological corre-
spondence). Although vector data is useful for topology rules and network
analysis, it comes at the cost of intensive processing [Kumler, 1994].

1

12

| THEORETICAL BACKGROUND

° P - s
® *. * |
. . . f v
. . L4 -
. . | S/
. | "’
.
® . ¥
_— |
®e . . | e
\[/
. “‘s
® . ! y
(a)
L]
. ® e ¢
L] ° -
e ©
« ° .
o ®
. L]
—_
*e hd .

(b)

Figure 2.2: (a) Representing a set of irregularly distributed points using a (Delaunay)
triangulation. (b) Representing a set of irregularly distributed points in
a raster structure.

2.3.2 Rasterization and Voxelization

Raster data is a spatial model that defines space as an array of equally sized
cells in rows and columns. Every cell or pixel contains a value and location
in the the raster. The value of a pixel can be discrete or continuous, and
depends on the data acquisition method. For instance, in remote sensing, a
pixel can have an integer value for a specific land cover class. But in a LiDAR
derived DEM, each cell represents an elevation value for that location on the
earth. Therefore, the exact meaning of every cell varies and is not uniquely
defined [Fisher, 1997].

When rasterizing vector objects, each pixel can be treated as binary label-
ing of the space as empty or occupied. Figure 2.2b shows the rasterization
of point vector objects (0D).

The same can be done with all inputs embedded in three-dimensional Eu-
clidean space, i.e. x, ¥ and z coordinates. Space partitioning of LiDAR point
clouds in a regular grid can be done in the same way as rasterizing a 2D
vector object. However, opposed to TIN and Delaunay Triangulation, exact
point locations will be lost in raster cells, i.e. the voxel does not directly cor-
respond to the point coordinates. The spatial resolution or voxel size greatly
influences the voxelized reconstruction. Significant geographical features
might be lost when a large voxelsize is chosen, while other voxels might
not even contain any samples at all. Chosing a small voxel size might rep-
resent the geographical features more accurate, achieving a higher level of
detail (LoD). However, rasters can never represent a continuous space, be-
cause of discrete jumps between voxel values, i.e. voxelized objects always
have bias in the estimation of surface areas and cause misrepresentation for
objects not aligned on the grid (unless the voxels are infinitely small, which
is impossible). Moreover, The computational cost of a voxel grid can grow
cubicly with the desired level of detail [Boulch et al., 2014]. In addition, ge-

2.3 3D DIGITAL REPRESENTATIONS \

-

() (b) (©)

Figure 2.3: (a) Shared face. (b) Shared edge. (c) Shared vertex. Figure from Wu et al.
[2013].

ographical surface captured by LiDAR can differ notably between places. A
fixed spatial resolution from a regular grid disregards this variability. For
these reasons, the spatial resolution of a raster should be carefully selected,
and attune with the data samples it represents.

Figure 2.3 shows that a voxel consists of six faces, twelve edges and eight
vertices. When adjacent voxels share a face, edge or vertex they are con-
nected. These topological relations are described in § 2.4.1 in relation to
raster processing. Although, voxels are spatial cubics in 3D Euclidean space,
they are not stored as such. In contrast to a vector data set, where point lo-
cations (coordinates) are recorded explicitly, the voxels locations is defined
implicitly by its position in the array (its index). Computer systems benefit
from this structure in two ways: (1) reduced storage memory capacity, be-
cause coordinates of every voxel are not stored; (2) essentially, a raster is a
2D array and a voxel grid a 3D array, and these basic data structures are
straightforward and efficient to implement in processing algorithms.

However, the potential of a raster model for computer processing can
not be the motivation for choosing such as model. As Fisher [1997] points
out, the raster model may be the best option for real world modeling, but
the meaning of each pixel and the consequences of different samplings and
resolutions should be known.

Usually, the whole space is not filled with objects, causing many empty
voxels in a grid. It sounds obvious that iterating over objects is more efficient
than iterate over all possible voxels in a bounding box. Therefore, voxels can
be stored in two different ways:

A DENSE ARRAY: which behaves as a typical matrix where each cell in the
array represents a value. Every cell is positioned at a row and column
number, and can therefore be easily accessed. For an M x N array, the
memory required is related to M x N. In this data structure topologi-
cal relations are stored implicitly.

A SPARSE ARRAY: this is an array in which many cells have a value of zero.
Sparse arrays on a computer requires significantly less storage space.
This is realized by only storing the non-zero cells. Fig. 2.1 shows an
example where only non-zero values are stored in a three column rep-
resentation. However, the trade-off is that accessing individual cells
are not as straightforward anymore as accessing a dense array by two
indices. Also, topological relations have to be stored explicitly.

13

14

| THEORETICAL BACKGROUND

W o oo
o O O
O = O O
o o o o

Row ‘ Column ‘ Value

4 4 3 = total
1 2 1
3 3 4
4 1 3

Table 2.1: Only non-zero values of example matrix M are stored in a three column
representation of a sparse array.

The fact that a rasters is so straightforward and efficiently represented on
a computer, has given rise to many raster-based algorithms that perform
spatial analysis. This is probably also why raster data has become very
common in GIS. The next section (§ 2.4) goes into the processing of raster
data. Many processing techniques are present today for a wide range of
applications, often originated from image processing. Section 2.4 covers
only a small portion, relevant for this thesis.

Noteworthy, are the many names that are used in literature for a raster
and its cells. In this thesis, I may use raster, array, and grid interchangeably,
as well as pixel and cell (2D) and cell and voxel (3D).

2.4 BINARY RASTER PROCESSING

Within the field of computer vision, image processing techniques are used
for gaining high-level understanding from digital images. An image con-
tains a continuum of intensity values, or gray values. Every pixel contains
its own gray level, most commonly represented by image intensities of 256
different gray levels. Evidently, more different intensity levels allow for a
more accurate representation of the actual scene. However, this goes at the
cost of more storage. For many applications a much simpler representa-
tion is enough for extracting useful information, e.g. counting objects and
finding connected pixels [Shapiro and Stockman, 2001]. A binary image
contains only two gray values: 0 and 1. This has an advantage over color
images: computing properties of binary images tend to be less expensive
and faster than image processing systems that operate on gray level or color
images [Jain et al., 1995]. Logically, because of significantly smaller mem-
ory and processing requirements. In addition, as described in Section 2.3.2
boolean values can label empty and non-empty voxels.

In this section two basic binary vision operations are described. They will
serve as a foundation upon which we can build in later chapters. First, the
basics of image processing are described. Secondly, the connected compo-
nents labeling operator is discussed, which is used to give each separate
connected group of pixels a unique label. Thirdly, mathematical morphol-
ogy is introduced. These operators can be used for several tasks, such as
closing holes, image thinning and thickening, but most relevant for this the-
sis is to join and separate components.

2.4 BINARY RASTER PROCESSING \

row i row i row i

B[5,4]

columnjj columnj columnj
(a) (b) (c)

Figure 2.4: Pixel and pixel neighborhoods. (a) Binary image B with a true pixel at
row 5, column 4. (b) 4-neighborhood of pixel [5,4]. (c) 8-neighborhood
of pixel [5,4].

2.4.1 Pixels, Neighborhoods & Topology

Pixel

In image processing, gray scale or color images need to go through an opera-
tion to segment object pixels from background pixels. This can be a difficult
problem and will not be addressed here. For explaining the following con-
cepts, we will assume that the initial input for the tasks is a binary image B.
A pixel of a binary image B is located at row i, column j of the image array.
Subsequently, in Fig. 2.4a the value of the pixel at row i, column j is denoted
with B[, j], and can only be 0 or 1. A two-dimensional M x N image has M
rows and N columns, and is nothing more than an array with values, much
like a matrix. Arrays can have more dimensions, and essentially, every op-
eration possible for 2D arrays also works for 3D arrays. In the 3D raster
domain a pixel would be a voxel, as explained in § 2.3.2. The 3D space is
more relevant when working with 3D point clouds, but this section shall
examine 2D image arrays for simplicity. Primarily, because the key concepts
are easiest to introduce in 2D, and then can simply be extended to 3D.

Neigborhood & Topological Properties

The location of a pixel in a image array with location row i and column j is
spatially close to several other pixels. That is to say, a pixel has a common
boundary with four pixels and a common boundary or corner with eight
other pixels. This neighborhood is important in image processing, because
for many algorithms, not only the value of a single pixel, but also the values
of its neighbors are used at the same operation [Shapiro and Stockman,
2001]. The two most common neighborhoods for a pixel in a 2D digital
image are:

4-NEIGHBORHOOD: if two pixels share a common boundary, so that Ny(i,)
of pixel (i,j) includes pixels (i —1,j), (i+1,j), (i,j—1),and (i,j + 1),
which are often referred to as its north, south, west, and east neighbors
(Fig. 2.4b).

8-NEIGHBORHOOD: if two pixels share at least one corner; Ng(i, j) of pixel
(i,j) includes each pixel of the four-neighborhood plus the diagonal
neighbor pixels (i—1,j—1), (i—1,j+1), (i+1,j—1),and (i+1,j+1),
which can be referred to as its northwest, northeast, southwest, and
southeast neighbors (Fig. 2.4¢).

15

16

| THEORETICAL BACKGROUND

e

() (b) (c)

Figure 2.5: Neighborhoods in 3D voxel space. (a) 6-neighborhood. (b) 18-
neighborhood. (c) 26-neighborhood.

111 111

11 2|2 11 2|2

11 2 11 2
2|2 2(2
2 4
2 4
2 4

(a) (b) (c)

Figure 2.6: Connected Components Labeling of binary raster. (a) Source binary
raster. (b) Connected Components Labeling with 8-connectivity. (c) Con-
nected Components Labeling with 4-connectivity.

Similarly, we say a pixel is 4-connected (or 4-adjacent) to its 4-neighbors
and 8-connected to its 8-neighbors. This idea can be extended to the 3D
voxel space based on the definitions of connectivity given below:

6-coNNECTED a collection of voxels in which every voxel shares at least
one face with an adjacent voxel. (Fig. 2.5a).

18-CONNECTED: a collection of voxels in which every voxel shares at least
one edge with an adjacent voxel. (Fig. 2.5b).

26-coNNECTED a collection of voxels in which every voxel shares at least
one vertex with an adjacent voxel. (Fig. 2.5¢).

A set of pixels in which each pixel is connected to all other pixels is called
a connected component [Jain et al., 1995]. How connectedness between pixels
can be used to separate objects is further described in the next paragraph.

2.4.2 Connected Components Labeling

In computer vision CCL is used to detect regions (or objects) in binary digital
images. A connected set of pixels (i.e. pixels with the same value and
spatially adjacent) in a image is called a region, and possibly represents an
object [Jain et al., 1995]. Connected components labeling can be used in a
variety of applications, but often it is used for counting objects and compute
its characteristics (e.g. size, position, orientation and bounding rectangle)
[Birchfield, 2017]. Other applications can be separating individual letters
in a scanned document [Szeliski, 2011]. The algorithm is based on graph
theory, and therefore not limited to digital images, e.g. Heinzel and Huber
[2016] finds connected components in a voxel grid.

2.4 BINARY RASTER PROCESSING \

(b)

T
(d) (©

Figure 2.7: Mathematical morphology on binary raster data with a 3 x 3 structuring
element. (a) source binary raster. (b) Erosion. (c) Dilation. (d) Opening,
i.e. erosion followed by dilation. (e) Closing, i.e. dilation followed by
erosion.

In raster data a connected component consists of a set of pixels in which
each pixel is connected to all other pixels [Jain et al., 1995]. A connected
components labeling of a binary image, is a labeled image in which the
value of each pixel is the label of its connected component [Shapiro and
Stockman, 2001]. So, consider the binary image Fig. 2.6a. We can define 4-
and 8-connected components, depending on the type of adjacency selected.
For example, in Fig. 2.6b the components are 8-connected, resulting in three
regions and in Fig. 2.6¢ they are 4-connected resulting in five regions.

Two-pass algorithm

To compute the connected components of a raster, suppose we have binary
raster B. In order to identify connected regions, the algorithm makes two
passes. On the first pass the operator scans the raster pixel by pixel until it
comes to a point p where B(i,j) = 1. It then examines the four neighbors
that are already passed in the scan, i.e. the west, north-west, north and north-
east pixel (considering 8-connectivity) and labels the pixel p as follows:

1. If all four neighbors are 0, assign a new label to p, else

2. If only one neighboring pixel has value 1, assign pixel p with the same
label, else

3. If more than one neighboring pixel has value 1, assign the lowest label
to p and add a note to the list of equivalences.

After completing the first pass, a second scan is made through the raster,

during which each label is replaced by the label assigned to it in the equiv-
alence list.

2.4.3 Mathematical Morphology

Morphological processing changes the form or structure of a region in an im-
age. The basic operations in mathematical morphology are performed over

17

18

| THEORETICAL BACKGROUND

a neighborhood specified by a structural element (or kernel). The structur-
ing element represents a shape; it can be of any size and form represented
by another binary image, usually much smaller than the input image (i.e.
a subset of the space or grid). However, there are a number of common
structural, mostly it is an (1 x n)-window. This window is shifted over the
image and at each pixel of the image, the window is compared with the
set of the underlying pixels. Translations of the structuring element can be
placed anywhere on the image and can be used to either enlarge a region by
that shape (dilation) or to make it smaller (erosion) [Shapiro and Stockman,
2001].

The basic operations of binary morphology are dilation (Fig. 2.7¢) and
erosion (Fig. 2.7b). Dilation enlarges the source region shown in Fig. 2.7a,
erosion makes it smaller. Based on erosion and dilation, two other opera-
tions, opening (Fig. 2.7d) and closing (Fig. 2.7e), can be derived. Opening is
just another name for erosion followed by dilation, and closing is the reverse
of opening (i.e. dilation followed by erosion). A closing operation can close
up holes in the image (depending on the size of the structural element).
Opening can get rid of small portions of the region that jut out from the
boundary into the background region [Shapiro and Stockman, 2001]. The
mathematical definitions of the four basic operations are described below:

Definition 1. The dilation of binary image B with structuring element S is de-
noted by B @ S following:

B S = U Sp (2.2)
beB

The union in Equation 2.2 is a neighborhood operator. The structuring el-
ement S moves over the image array. Each time the origin of the structuring
element (i.e. the center pixel) touches a binary 1-pixel, all underlying pixels
of the structural element shape are set to 1 in the output array.

Definition 2. The erosion of binary image B with structuring element S is denoted
by B © S following:

BeS={b|b+s€BVseS} (2.3)

Definition 3. The opening of binary image B with structuring element S is de-
noted B o S following:

BoS=(BoS)®S (2.4)

Definition 4. The closing of binary image B with structuring element S is denoted
by B e S following:

BeS=(B®S)OS (2.5)

Mathematical Morphology in 3D

These raster operations can easily be translated into the 3D domain. Gorte
and Pfeifer [2004] designed a method based on 2D mathematical morphol-
ogy raster processing, and transferred it into the 3D domain. Connectivity
and neighborhood relations between voxels in a 3D raster can be established
much easier than between the original (x, y, z)-points, using morphological
operations. Closing and opening are applied to close gaps and holes, and re-
move isolated voxels. The shape and size of the structuring element controls
the maximum size of holes that can be repaired. This means that choosing

2.5 LOCAL POINT STATISTICS \

the shape of the structuring element influences the outcome of the opera-
tion. So is it possible to indicate a preferred direction for the operations, e.g.
connecting voxels above each other rather than voxels at the same height
[Gorte and Pfeifer, 2004].

2.5 LOCAL POINT STATISTICS

Outside the raster domain, point-based techniques are common where each
3D point is analyzed based on its neighborhood.

2.5.1 Planarity of 3D distributed points

Knowledge of geometric features is useful for object recognition [Plaza-
Leiva et al., 2017; Plaza et al., 2015; Zhuang et al., 2015; Xiong et al., 2011],
for instance elevation and flatness characteristics can be used to classify roof
surfaces and urban objects [Sun and Salvaggio, 2013]. In this context, the
spatial shape of a group of points inside each voxel could potentially be
useful for outlier detection. The identified types of outliers usually appear
random in the point cloud, i.e. outliers form a scattered region and rarely
fit in one plane.

Classification of geometric features based on PCA is widely used in recent
point cloud processing methods [Maligo and Lacroix, 2017; Lehtomaki et al.,
2016; Hao and Wang, 2014]. The shape of a group of points (i.e. planar, tubu-
lar or scatter shape) is identified by a dispersion indicator called covariance
matrix [Lalonde et al., 2006]. Conceptually, one fits a plane to neighbor-
hoods and measures the goodness of this fit. From a neighborhood with
N points {X;} = {(x;,y;,2))T} with X = & YN, X; the symmetric positive
covariance matrix is defined as:

1

N (X~ X)(X; - X)T (2.6)

™=

1

The matrix is decomposed into principal components for analyzing data
distribution using the eigenvectors and eigenvalues, referred to as PCA. Eigen-
values for each neighborhood are sorted in ascending order: Ag > A1 > A,.
The smallest eigenvector of this matrix will indicate the normal vector of the
plane best fitting to this neighborhood, because it corresponds to the direc-
tion of least variation. This means, in case of planar points Ag >~ A1 > A,
(Fig. 2.8b). When variation is similar in all directions, such that Ag >~ Ay =~
Ay, its region is scattered (Fig. 2.8a).

19

20 | THEORETICAL BACKGROUND

Mm?quz Aﬂ%h})lz

o]
2 A
0O OO jﬂT

(a) (b)

Figure 2.8: Geometric properties of a neighborhood, from [Lalonde et al., 2006]. (a)
Scatter shape. (b) Planar shape

RELATED WORK

Point cloud filtering has been an on-going research problem in several fields,
including computational statistics, computer graphics and more. As a result
many filtering methods have been proposed. Here, only studies associated
with large scale point cloud filtering are given attention. Methods for ALS
captured data sets are given highest priority, but also some other relevant
literature is mentioned. Firstly, common tools that are used today for filter-
ing point clouds are described (§ 3.1), § 3.2 continues to discuss previous
studies. This chapter ends with a conclusion (§ 3.5) to match the existing
methods with the goals of this thesis, and frame the gaps that need further
research.

3.1 EXISTING FILTERING TOOLS

Outlier detection and removal software is already available in different forms.

Many software products designed for LiDAR data analysis have a tool for re-
moving outliers. The following tools are widely used:

LAsTooLs ' is a software package with several different functions for LiDAR
data, e.g. classify, convert, tile and remove noise. This specific noise
detection function is called lasnoise. This tool flags or removes outliers
from .laz/.las files. The function searches for isolated points and can
be categorized as density-based approach. The tool tries to find points
that have only a few points in their surrounding 3 x 3 x 3 grid of cells
(i.e. its 26 neighbors). Cell size and maximum number of points within
the cells must be determined by the user.

POINT cLouD LIBRARY * (PCL) is open source project for point cloud pro-
cessing. It includes two outlier removal tools categorized as distance-
based approach. The first computes the mean distance to all its near-
est neighbors. When this distance falls outside an interval defined by
the global distances mean and standard deviation, it is considered an
outlier. The second method counts the number of neighbors within
a specified radius for every point. Points that do not have enough
neighbors in its radius are flagged as outliers.

TERRASCAN J is software for LiDAR data processing by TerraSolid. It has a
similar tool for outlier detection as PCL. It searches for isolated points,
by counting the number of neighbors in a specified radius. It also has
a tool for detecting low points below the ground level due to double
reflection. TerraScan is often used in practice. For example, parts of
AHN3 are removed from outliers by the help of this tool.

1 http://lastools.org
2 http:/ /pointclouds.org
3 http:/ /www.terrasolid.com

21

http://lastools.org
http://pointclouds.org
http://www.terrasolid.com
http://http://www.terrasolid.com

22

| RELATED WORK

cGaL # the Computational Geometry Algorithms Library is available under
an open source license. It contains implementations of many com-
mon point cloud processing and analyzing algorithms. Processing
includes smoothing, simplification and outlier removal. The outlier
removal function deletes a user-specified fraction of outliers from an
input point cloud. The function does this with a distance-based ap-
proach: all points are sorted in increasing order of average squared
distances to their k-Nearest Neighbors (kNN). When this value exceeds
a specified threshold, it is considered an outlier.

The available tools are able to detect outliers in an efficient way, due to
its simplicity. However, they all share one major issue: outlying clusters of
points are not identified. They also require a lot of parameter adjustment by
the user to gain maximum result.

3.2 PREVIOUS WORK—OUTLIER DETECTION

Besides the tools mentioned in § 3.1, work has also been done from a re-
search perspective and is given attention is this section. Unfortunately, out-
lier detection in ALS data is not paid much attention, and a few different
methods are proposed. Related work will be divided into one of the cate-
gories defined in § 2.2. Clearly, a substantial amount of proposed methods
can be categorized in the distance-based (§ 3.2.1), density-based (§ 3.2.2),
distribution-based § 3.2.3 and clustering (§ 3.2.4) category. Methods based
on mathematical morphology are covered in § 3.2.5. Other related work that
does not fall into a single category—or any category at all—is discussed in

§3.2.6.

3.2 Distance-based Methods

Together with density-based methods, is the distance-based approach most
implemented for filtering outliers in point cloud data. Shen et al. [2011]
detects outliers by calculating the mean distance for every point and its
k-nearest neighbors. If the average distance is larger than an adaptively pre-
defined value, the point is regarded as an outlier. Finding nearest neighbors
is a heavy computation for a large data set, such as a point cloud. There-
fore, they construct a kd-tree of an airborne LiDAR point cloud data set to
efficiently find the k-nearest neighbors. This method is also able to find clus-
ters of outliers by choosing a k larger than the cluster. Large computational
cost is often a problem when analyzing 3D data. Many processing steps
involve the local neighborhood for every point in the point cloud.

3.2.2 Density-based Methods

The density-based approach proposed by Breunig et al. [2000] is introduced
in § 2.2. Outliers can be seen as isolated points, which depends on the local
density of its local neighborhood. They introduce a Local Outlier Factor
(LOF) for each object in the dataset, which is the degree the object can be
considered an outlier. The LOF is dependent on a single parameter to de-
termine the number of nearest neighbors to define the neighborhood of an

4 https://www.cgal.org

https://www.cgal.org/

3.2 PREVIOUS WORK—OUTLIER DETECTION \

object. The algorithm compares the density of a data point, with the density
of its nearest neighbors. Subsequently, the lower the local density of the data
point, and the higher the local density of its nearest neighbors, the higher
the LOF value for this specific data point. Points with a high LOF value
are considered outliers, because they deviate from the local point density.
Sotoodeh [2006] adopted the algorithm for outlier detection in ALS point
clouds and knows implementations in Eisenbeiss [2009]. The local behav-
ior of the LOF does not suffer from varying densities in the point cloud.
The algorithm successfully detects single isolated outliers, but it does not
detect outlier clusters with the point density higher than its k-nearest neigh-
bors (where k is a predefined threshold). The detection of cluster outliers
with lower density than k seems satisfactory. While the algorithm detects a
part of outliers, the problem of the detection of the cluster outliers is still a
challenge.

3.2.3 Distribution-based Methods

Distribution of elevation values is commonly used to identify outliers as
a pre-processing step for ground filtering algorithms [Silvan-Cardenas and
Wang, 2006; Meng et al., 2009]. An elevation histogram distribution is com-
puted and shows the elevation range of ground and above-ground features.
Points with elevations out of range are considered outliers. Elevation thresh-
olds are set up to eliminate the lowest and highest tails from the distribu-
tion. Remaining outliers are detected by comparing elevation values of each
point and compare them with all its neighbors. Delaunay triangulation was
used to define the neighbors of each point. When a point is too high or too
low compared to its neighbors, it removed from the dataset. It is a popu-
lar method to quickly remove a number of outliers, but it lacks a solution
to detect clustered outliers or less obvious single outliers. This is mainly
due to an arbitrary threshold used to examine the height difference. For
example, points from trees can potentially be much higher than its trian-
gulation neighbors. Meng et al. [2009] noticed this and coped with it by
using a twice as high threshold for high outliers compared to low outliers.
Evidently, this requires many unwanted trial and error iterations to have a
satisfactory result.

3.2.4 Clustering Methods

Sotoodeh [2007] presents a new algorithm to detect single and clustered
outliers. The method works in a hierarchical setup, by first applying a global
view and then a local view on the dataset. In more detail, the first step
provides a rough global approximation of the sampling intervals over the
EMST. Initially, the Delaunay triangulation of the point cloud is computed.
The underlying topology of this graph can be used to construct the EMST (Fig.
3.1b), and in the second phase GG (a detailed motivation for these graphs
is given in Sotoodeh [2007]). Using the Delaunay triangulation structure
reduces the complexity to O(nlog n) for each. Based on edge lengths in the
EMST, tree edges not in a predefined confidence interval are pruned. This
disconnects clusters if their connecting edge is too large; creating a rough
clustering of the point cloud and eliminating global outliers (Fig. 3.1c). In
the second step, for every cluster a GG is constructed (Fig. 3.1d) and statistics
based on its edge lengths is computed. Finally, edges not in a predefined
confidence interval are removed (Fig. 3.1e). This results in removing single

23

24

| RELATED WORK

(b)

Figure 3.1: Algortihm proposed by- and figure obtained from [Sotoodeh, 2007]. (a)
Source data. (b) EMST of the source data. (c) Pruned EMST by 99% confi-
dential interval. (d) GG of the clusters of the first phase. (e) Pruned GG by
95% confidential interval. (f) Resulting dataset removed from outliers.

outliers; clusters with less point density than a threshold are also removed.
The algorithm is tested on a simulated point cloud and TLS point cloud. In
both cases it successfully detected single and clustered outliers. However,
this does require a predefined inlier cluster density, i.e. only clusters with
less points than this threshold are considered outliers, making it an arbitrary
decision. Furthermore, the choice of constructing a DT limits the scene to
a 2.5D model, which may cause difficulties in some real world situations
where objects appear above each other (e.g. electricity cables).

A similar approach to identify outliers in sonar point clouds is proposed
by Arge et al. [2010]. Although the acquisition of the data is different from
ALS point clouds, outliers appear in a very similar way. Three different types
of outliers were identified in the sonar dataset: (1) points that appear at ran-
dom above and below the seabed; sometimes in larger groups (single and
clustered noise); (2) points resulting from physical objects such as fish, form-
ing larger groups of outliers (clustered noise); (3) structural noise, often in
the form of ribbons (or strings) of points (clustered noise). The proposed
method is designed to detect all types of noise. It computes a Delaunay tri-
angulation of the points, and then removes edges of this graph (embedded
in R3) where the difference in z-coordinate is larger than a threshold. The
resulting graph is used to compute the connected components, and finally
all vertices that do not belong to the largest component are labeled as out-
liers. The motivation behind the connected components analysis can be best
described with an example. When a group of fish swim above the seabed
with a height difference more than the threshold, its edges connecting the
fish with the seabed are removed and the points on the fish form a small
connected component (and is labeled as noise). Interestingly, points on a
pipeline above the seabed with the same height difference as the fish are not
detected as outliers, because its graph is connected to the seabed at some

3.2 PREVIOUS WORK—OUTLIER DETECTION \

point, i.e. it forms the same connected component as the seabed and is thus
not labeled as noise. The same concept could potentially be used in ALS
point cloud data, where similar types of outliers occur, i.e. outliers are not
connected to the ground (e.g. birds, high and low noise).

3.2.5 Methods based on Mathematical Morphology

Mathematical morphology (described in § 2.4.3) is often used to filter LiDAR
data and separate ground points from non-ground points [Li et al., 2017b;
Quan et al., 2016; Pingel et al., 2013; Chen et al., 2007; Kobler et al., 2007; Sit-
hole and Vosselman, 2004; Zhang et al., 2003; Kilian et al., 1996]. Outliers are
seen as non-ground points and have to be filtered from the dataset. Kilian
et al. [1996] proposed a method to remove remove non-ground points using
a morphological operator on a gridded surface. This method first detects
the point with the lowest elevation within a window size after an opening
operation. Points within this window that fall a certain range higher are
labeled as ground points. The selection of the window size determines the
success of this method. Outliers are removed, but depending on the win-
dow size, also cars and trees (it was the objective of Kilian et al. [1996] to
filter all non-ground points). This method is further developed by Zhang
et al. [2003] including a progressively increasing window size to remove
objects—of all sizes—with the opening operation. An elevation difference
threshold based on elevation variations of the terrain was introduced to dis-
tinguish unwanted objects from terrain height differences. Quan et al. [2016]
and Pingel et al. [2013] used this method to remove low outliers, by using a
small window size and a high threshold for the terrain elevation difference.
Obviously, this only removes single isolated outliers. Clustered outliers can
be removed depending on the window size, but this could also remove other
objects (e.g. trees).

3.2.6 Other Related Work

Not all methods can be categorized in one class. Some studies propose meth-
ods combining different approaches. Tian et al. [2012] combines distance-
based method and density-based method, and it is effective for isolated
outliers and clustered outliers in airborne LiDAR point clouds. Outlier detec-
tion is based on a kernel density estimation. This is used to identify low and
high points. To deal with altering terrain heights, the dataset is segmented
into sections. This is done by dividing the point cloud into many blocks in
the 2D horizontal plane. For every separate block the density probability
distribution is estimated. Then a density threshold is defined to eliminate
outliers.

Another attempt to filter both single and clustered outliers from aerial
LiDAR data is done by Matkan et al. [2014]. To solve this problem, a hier-
archical iterative scheme based on cross-validation technique is proposed.
The height of every point is predicted based on an interpolation of its neigh-
boring points. The predicted height is compared with the actual height
and assigned with an error value. Error values above a threshold are con-
sidered outliers and removed in a iterative process, where the threshold is
determined by the maximum error.

25

26

| RELATED WORK

Table 3.1: Summary of proposed outlier detection methods and existing tools.

Neighborhood — Types of

Study Approach definition outliers Topology ~ Other

[Shen et al., 2011] Distance kNN h,1 ¢ No

[Sotoodeh, 2006] Density Radius h,1 No

[Meng et al., 2009] Distribution DT h, 1 No

[Sotoodeh, 2007] Cluster DT h,1 ¢ Yes

[Arge et al., 2010] Cluster N/A h,1, ¢ Yes gZiasonar
Mathematical .

[Zhang et al., 2003] Morphology Regular grid 1 No

Tool

LASTOOLS Density Regular grid h, 1 No
(a) Distance;

Pk (b) Distribution NN b1 No

TERRASCAN Density Radius h,1 No

CGAL Distance kNN h,1 No

h = high outliers
1 = low outliers
¢ = clustered outliers

3.3 GROUP-BASED VS. POINT-BASED FILTER TECH-
NIQUES

Many point cloud algorithms compute features for every point. These point-
wise techniques use the points within its local neighborhood, called the sup-
port region. There exist several ways to obtain a support region, such as
kNN or searching for all points within a defined space [Santamaria-Navarro
et al., 2014]. Generally, point-wise techniques imply a high computational
load [Plaza-Leiva et al., 2017]. Therefore, group-based techniques have been
studied to reduce the amount of data. One example is to divide the point
cloud in regular grid cells (i.e. voxels) to speed up point cloud processing.
In this case, voxels segment points prior to some point-wise feature extrac-
tion in order to avoid a costly neighborhood search. [Plaza et al., 2015] uses
voxels to group a set of points that are later used to identify spatial shape
features. Lehtomaki et al. [2016] performs principal components analysis on
a set of points defined by voxels. Plaza-Leiva et al. [2017]; Plaza et al. [2015];
Lehtomaki et al. [2016] showed an improvement in computation load by
segmenting the point cloud in voxels prior to point-wise analysis. More-
over, Plaza-Leiva et al. [2017] concludes that “voxel-based neighborhood
classification greatly improves computation time with respect to point-wise
neighborhood, while no relevant differences in scene classification accuracy
have been appreciated.”

3.4 ADDITIONAL INTENSITY INFORMATION

As discussed before, almost all existing filtering point cloud filtering meth-
ods are designed based on solely the analysis of geometrical information.

http://lastools.org
http://pointclouds.org
http://www.terrasolid.com
https://www.cgal.org/

3.5 CONCLUSIONS & REMARKS |

Other attributes such as intensity data is rarely used, while both geometri-
cal and radiometric data is simultaneously captured and available for LiDAR
point clouds. Wang and Glenn [2009] noted that utilizing both height and
intensity may be beneficial over using either data individually to separate
ground points from forested surface. Similar remarks are made by [Vos-
selman and Maas, 2010]. So, merging additional intensity data with geo-
metrical information into point cloud filtering methods has the potential to
improve accuracy and reliability.

3.5 CONCLUSIONS & REMARKS

Many studies recognize that detecting clustered noise is more challenging
than detecting isolated outliers and requires more complex detection algo-
rithms. Some attempts are made and discussed here. A few studies claimed
to successfully detect isolated and clustered noise [Sotoodeh, 2007; Arge
et al., 2010; Tian et al., 2012; Matkan et al., 2014]. However, not in ev-
ery case was this extensively elaborated and tested by the authors, which
makes it difficult to validate the results. Furthermore, not many scenario’s
in which clustered noise could appear in ALS datasets were mentioned and
thus tested. Most potential is shown in the methods proposed by Sotoodeh
[2007] and Arge et al. [2010]. Both approaches are cluster-based and utilize
some sort of topology between vertices, where other methods only consider
geometric properties of the data points and their local neighborhoods. Other
additional information to improve classification may be analyzing intensity
values.

Large computational cost is often a problem when analyzing 3D data.
Many processing steps involve the local neighborhood for every point in the
point cloud. Different studies use different approaches for constructing the
local neighborhood of a data point, such as k-nearest neighbors [Sotoodeh,
2006; Nurunnabi et al., 2015], Delaunay triangulation [Sotoodeh, 2007; Shen
etal., 2011; Arge et al., 2010] or regular cell division [Tian et al., 2012; Lietal.,
2017a]. Studies outside outlier detection, but within point cloud processing
also include voxelization [Plaza-Leiva et al., 2017; Plaza et al., 2015] or octree
segmentation [Vo et al., 2015]. Especially voxelization prior to some analysis
shows potential to reduce the computational cost.

Table 3.1 summarizes the general findings of the different outlier detection
methods that were discussed in this chapter. The first half reviews the most
prominent papers and the second half covers some available tools. NB the
colors green and red do not represent a qualification. The methods are gen-
eralized in terms of approach, how the local neighborhood is constructed,
which types of outliers can be successfully detected and if the method uses
typological relations. Interestingly, the methods that showed most potential
are both cluster-based and analyze topological relations.

27

4 METHODOLOGY

As described in Chapter 3, different approaches have tried to detect out-
liers from airborne LiDAR point clouds. Although the majority of these ap-
proaches successfully filter isolated points, previous research proves that
detecting all types of outliers (i.e. clusters) remains a challenge. Chapter 3
shows that attempts are made to filter the complete area of outliers, with
a few showing promising results. However, there is always a trade-off be-
tween removing outliers and removing good points. The voxel-based ap-
proach presented in this chapter aims to combine the concepts of raster pro-
cessing techniques, density-based methods, PCA and LiDAR intensity within
a raster data structure for efficient and coherent data analysis.

This chapter begins with an overview and motivation of the proposed
method (§ 4.1). After which every step is described in detail.

4.1 OVERVIEW OF BINARY VOXEL-BASED APPROACH

This research seeks to develop a scalable voxel-based outlier detection method
for aerial LiDAR point clouds. This section will be a step-by-step explanation
and justification of the proposed method. Different types of outliers can be
found in aerial point clouds, as discussed in § 2.1. For the design of the
proposed method I have grouped the different types of outliers as follows:

TyPeE-1 — Points that appear at random above and below ground surface
(i.e. high and low outliers); usually these are isolated points, but they
can also appear in small clusters.

TYyPe-2 — Cluster outliers—points always found in clusters and often along
the direction of the scan line.

TYPE-3 — Points randomly scattered through the point cloud with different
densities, in all probability due to error in the laser scanner.

4.1.1 Method Motivation: Detecting Outliers with Connectivity

Previous studies repeatedly mention two main complications in detecting
all types of outliers. The first is the challenge to detect clustered outliers.
Existing algorithms can successfully handle the first type of outliers from
above (if they come as isolated points), since they deviate from its local
neighbors quite significantly. For outliers from the second and third type,
effectiveness of existing methods usually depends on the size of the local
neighborhood they consider. Typically, they perform well if the neighbor-
hood is large enough to include a substantial amount of good data points to
catch the deviating trend of clustered outliers. However, these algorithms
hinge on the selection of the neighborhood size and fail when clustered out-
liers are so large that the algorithm is unable to decide which points belong

29

30 | METHODOLOGY

e
et rT AT =
cnes o mme
g

 ten Nadies 8o Bod

(a) (b)

Figure 4.1: Examples of different types of outliers. (a) Clustered outliers along the
direction of the scan line (type-2. (b) Scattered outliers (type-3).

to the surface and which points do not. A logical improvement may seem
to be increasing the neighborhood size, but since the terrain can be very
complex with many objects and varying terrain heights, local outliers are
impossible to detect. For these reasons, Arge et al. [2010] proposes a new
algorithm that is graph-based instead of neighborhood-based.

4.1.2 Method Motivation: Minimize False Positives

The second complication is that some points in the data set are of impor-
tance for the end user, but hard to distinguish from outliers (i.e. false posi-
tives are hard to separate from true positives). This seems unavoidable but
can usually be overcome by adjusting the parameters of the method. How-
ever, there remains a trade-off between true positives and false positives,
i.e. threshold fine-tuning can increase a higher accuracy of true positives
(correctly classified), but come at the cost of more false positives (wrongly
classified). [Matkan et al., 2014; Arge et al., 2010; Sotoodeh, 2007]. This calls
for more analysis of the dataset to make better judgment between the two.
Therefore, I propose a combination of methods in one single workflow to
detect all types of outliers and minimize false positives.

Inspired by this study by the work of Arge et al. [2010], and the potential
of using multiple processing techniques for better classification, I designed
the workflow shown in Fig. 4.2.

4.1.3 A Voxel-Based Solution

A point cloud is modeled as a grid where each voxel is classified as out-
lier or non-outlier. The 3D grid data structure created after voxelization of
the source point cloud lies at the core of the method. It serves as an effi-
cient and organized data model when finding neighboring cells is as easy
as searching an index. This is convenient when analyzing topological rela-
tions, which is essential for detecting clustered outliers as concluded in §
3.5. This voxel-based solution reduces data processing in comparison with
point-based approaches.

4.1 OVERVIEW OF BINARY VOXEL-BASED APPROACH | 31

Source

Analysis

Binary
Voxelgrid

Intenisty
analysis

Point Cloud Voxelization
Voxelgrid Local density —7’ VOB}':;?;‘;M ,L
r | *
Connected "
» Components voB:;?gid
Labeling
: : .
Morphological Connected 0
Operation: Components VOBQZ?“;m
Closing Labeling ¢
r 1 *
Principal 0
»| Components 7/\{03;2?;“ /L,

Map
Algebra

Classified
Voxelgrid

Clean
Point Cloud

Figure 4.2: The source point cloud is voxelized. This voxelgrid is input for five
analyses. These results together determine if a voxel contains outliers.

32

| METHODOLOGY

4.1.4 5 Analysis Techniques

To find all types of outliers and minimize false positives, different analysis
techniques need to be performed on the source point cloud. Every analysis
step can be seen as an individual operation which results in a boolean clas-
sification for every voxel stating it contains outliers or not. This means that
for every analysis, all voxels with points inside will be flagged with a true
or false boolean classification. Note that a voxel can be classified as outlier by one
operations and not by another.

In this thesis I propose five different analyses to detect outliers in a binary
grid structure:

1. Local density (§ 4.3);

2. Connected components labeling (§ 4.4);

3. Connected components labeling after a morphological closing opera-
tion (§ 4.4.1);

4. LiDAR intensity (§ 4.5);

5. Planarity—principal components analysis (§ 4.6).

This selection is based on two factors: The first selection of methods is based
on the potential found in previous studies and need to be further explored.
These include 1, 2 and 3 from above—these methods will be researched
more intensively (2 and 3) in this thesis than the second selection and are
purely focused on outlier detection. More specific, they are designed to
maximize detection of all types of outliers (True Positives (TP)).

The second selection is more experimental. Meaning, these methods add
extra knowledge about each voxel but are not specifically designed for out-
lier detection (4 and 5 from above), i.e. they are designed to minimize falsely
classified outliers (FP). One could easily choose to add, remove or even
change these methods and still use the same proposed workflow. For ex-
ample, not all point clouds have intensity attributes available, so intensity
analysis could easily be removed from the process. All these steps are con-
ceptualized in Fig. 4.3.

Together, the methods provide sufficient information to decide if a voxel
contains outliers or not. This is decided with simple map algebra, intro-
duced by Tomlin [1983]. All binary classifications (i.e. 0 for non-outlier and
or 1 for outlier) for each voxel are added together. This results in a vox-
elmap where each voxel is assigned with an integer value ranging from 0 to
5. Voxels with > 3 are classified as outlier.

4.2 VOXELIZATION \

Analysis

“

Y [/A
LK

0

y A 7

[/7 /7
y &7 77

5
X
.‘

‘ "““

Y / /2
[/] 7/
z

Q

e 2,
.’ Y /77/7
,‘\‘\‘

77/ y 7 4

(/17 /]
7 77/ 7 7 77
V INNL LA T 7
’ ‘ ¥ 7 (17
Q LY

‘ "“‘

AW

(AW

(77
7 7 7 4
(AL

Kb
e
‘ ’ Y7 7/./77

LWL WAWAY

7 77
y / £
7 7 7 4
7 77/
A\ \ 1\

Figure 4.3: Input: voxelized point cloud. Analysis: individual operations to classify
outliers. Output: add the result of all operations together.

4.2 VOXELIZATION

The first step involves creating a 3D regular grid. The process to build
this structure is based on an input point cloud in Cartesian coordinates.
In a point cloud, (x, y, z)-coordinates are stored explicitly. Additionally,
topology should be stored explicitly as well. In a 3D raster, voxel locations
are defined implicitly by the position in the grid. However, a grid also create
voxels in locations where no data points are located. Therefore, one can
decide against storing voxels without points inside to save memory space
(see § 2.3.2 to read about the difference between a dense and sparse array).
However, raster processing techniques and neighborhood operators benefit
from the raster structure and require every voxel to be stored.

The voxel value will be limited to 0 for empty voxels and 1 for voxels with
laser points inside, as explained in § 2.3.2. Crucial in this conversion is spatial
resolution, i.e. the size of one voxel. This also determines the resolution of
the 3D raster used for raster processing and how many voxels are created.
The choice of a suitable spatial resolution depends on three requirements:

1. The density of the point cloud—points of real life features should form
a connected set of voxels. When the point density of a point cloud
is low and spatial resolution is chosen too fine, gaps between voxels
appear which may cause problems during analysis (further explained
in § 4.4). On the other hand, when voxel size is chosen too large, many
points get converted into the same voxel at the cost of a lower level of
detail.

33

34

| METHODOLOGY

2. Spatial resolution determines how many and which points each voxel
contains after rasterization. When voxel size is chosen too large, it
may happen that outlying points are part of the same voxel as inly-
ing points, such that outliers can not be separated from good points
(further explained in § 4.4).

3. Processing time should be kept to reasonable amounts. Usually pro-
cessing time increases with the 3rd power of the resolution as well.

: Voxel
@i, j, k)

Figure 4.4: Voxel space with (7, j, k) coordinate system

Nourian et al. [2016] describes a voxelization algorithm for vector inputs
(i.e. point cloud data). This algorithm creates a 3D bounding box from a
input point cloud. Depending on the voxel size, it then finds how many
voxels fit in each direction. For every data point, it is determined in which
voxel it is located. The location of a voxel is defined by a row, column and
plane integer number (see Fig. 4.4). Logically, the number of planes, rows
and columns are determined by the voxel size and the minimum and maxi-
mum (x, y, z)-point coordinates of the source point cloud. Only voxels with
points inside get a value 1, empty voxels 0, creating a boolean voxelgrid (1
bit values are minimal in size). This boolean voxelgrid is used for defin-
ing local point neighborhoods and raster processing techniques in further
processing steps. An example of this voxelization can be seen in Fig. 4.5a,
showing the source point cloud, and Fig. 4.5b showing its voxelgrid. In this
figure, only voxels with points inside are shown; empty voxels are left out
for clarity but are part of the boolean grid.

4.3 LOCAL DENSITY

Isolated outliers (type 1) can be successfully detected and removed by ex-
isting algorithms. Many are discussed in Chapter 3—especially distance-
and density-based approaches seem effective. The density-based method,
as described in § 2.2, is used in this study to filter isolated outliers. The mo-
tivation for using this approach is twofold: (1) ALS datasets usually do not
suffer from varying local point densities from one place to another, because
the surface is captured from the same height. (2) The voxelgrid provides a
data structure to define local neighborhoods and determine its density in an
efficient way.

Its implementation is uncomplicated and efficient when a grid is used.
Usually, finding the nearest neighbors for every data point consumes the

4.4 CONNECTED COMPONENTS LABELING |

(@) (b)

Figure 4.5: (a) source point coordinates. (b) voxelization of source point cloud.

most computation time. However, in a grid the nearest neighbors are located
in neighboring voxels and can thus be easily accessed. See Algorithm 4.1,
the algorithm starts with iterating over every data point and finding the
voxel its located in. Then, for every voxel its local neighborhood is con-
structed by its 26-neighborhood. Every data point in these adjacent voxels
are counted. When this count is lower than a threshold, the data point is
considered an outlier.

Algorithm 4.1: DeEnsITY (V, D, 7)

Input: A VoxelGrid V, dictionary D(v, p) key: voxel location v;
value: points list p, and density threshold
Output: V;: Boolean grid

1 V, <= new bit array of size VoxelGrid ;
2 for voxel v in V do
sumpoints < 0;
n <— get 26-neighborhood of voxel;
for vinn do
¢ < count points in D[v];
sumpoints < sumpoints + c;

N o U s W

@

if sumpoints < T then
L Vi[v] < true

10 return V,

4.4 CONNECTED COMPONENTS LABELING

Consider the binary grid shown in Fig. 4.7a, where outliers (type 1, p. 29)
above the surface appear. It is easy to see that these voxels are not in con-
nection with the surface voxels. For automatic separation of voxel groups

35

36

| METHODOLOGY

on a large scale, existing raster computations can be performed (§ 2.4). The
binary grid created after voxelization of the source point cloud is used to
define which voxels are connected in a computationally efficient way. This
is achieved with connected components labeling (discussed in § 2.4.2). With
CCL, regions of voxels with points inside are labeled with a unique inte-
ger, i.e. unconnected regions get different integer labels (see Fig. 4.7b). As
discussed in § 2.4.1, in a 3D grid spatially adjacent voxels are 6-, 18-, or
26-connected. Logically, when only 6-connected voxels are allowed, CCL
separates all voxels without a common face, including diagonal features.
Obviously, diagonal features exist in real-life data sets where objects are
more complex are not only horizontally and vertically oriented. Therefore,
I search in the 26-neighborhood of every voxel with points inside for con-
nected objects. When all voxels are marked with an integer of its according
region, outliers can be detected in two steps:

1. Count all region sizes to find the largest connected region;

2. Classify all smaller regions as outliers.

I assume here that the largest region of voxels will always be the ground
surface and thus not outliers. Subsequently, a cluster of outliers is also
detected, because its size is smaller than the largest region. Moreover, the
size of the cluster does not matter, which makes this algorithm effective to
detect all three types of outliers.

As one might expect, voxel size greatly influences the detection of out-
liers. A smaller voxel size translates real life objects with more detail into
the raster domain, but it also determines the distance threshold for detect-
ing outliers. In a 26-neighborhood, unconnected voxels have a minimum
distance between them of one voxel edge length. Therefore, voxel size is
the most important parameter for outlier detection. A smaller size may de-
tect more outliers, but can also cause real objects to get disconnected when
features have a low density of points, e.g. treetops with leaves and small
branches. Every object that gets disconnected from the largest region is
classified as an outlier and could decrease accuracy by an increased false
positives rate. In the next section I propose a preprocessing step based on
mathematical morphology to overcome this problem

4.4.1 Morphological Transformation: Closing

The ideal surface of a 3D point cloud is fully sampled and forms one cluster
of good points. However in practice, real life ALS datasets have various kinds

() (b)

Figure 4.6: (a) Example house. (b) Point cloud of (a). (c) Roof (red) and ground
(black) are disconnected due to occlusion.

4.4 CONNECTED COMPONENTS LABELING |

&8

(@) (b)

Figure 4.7: (a) Binary voxelgrid. (b) Labeled regions after connected components
labeling.

of complex objects including concave geometry that may cause occlusion.
For example the surface below a roof may be occluded, see Fig. 4.6. This
could disconnect the roof from the ground surface, however in practice this
occurs very rarely, because ALS often captures objects at an angle. Also
influenced by other factors, such as a too low point density for small objects
when scanned from high. Think of a tree with leaves and branches that
are too small, such that the laser pulses only hit the tree surface at certain
locations or branches occluding other branches. This causes discontinuity
in the point cloud and thus disconnected and floating clusters with different
sizes, i.e. a tree branch not connected to its trunk. Since some clusters are
still part of the surface model, they can be connected to each other. As
explained in § 2.4.3, mathematical morphology can change the structure or
form of a voxel region. Closing (dilation followed by erosion, see § 2.4.3)
is used to fill gaps between voxels (and thus laser points). The maximum
size of the gaps that can be filled this way is controlled by the structuring
element.

Structuring Elements
The structuring element controls filling of gaps in two ways:

1. By using different sizes of structuring elements, it is possible to control
the size of the gaps that are repaired. Logically, a larger structuring
element closes larger gaps.

2. By using different shapes of structuring elements, it is possible to trans-
form a region in a preferred direction, e.g. connecting points on the
same height instead of connecting higher and lower points can be
achieved with a horizontally oriented structuring element.

It is important to understand the desired goal of the morphological opera-
tion in order to adjust these parameters and enhance the dataset optimally.
In my case, I want to repair objects with gaps due to low point density or
occluded features. As mentioned before, in real world datasets objects are

37

38

() (b)

Figure 4.8: (a) Binary voxelgrid after closing operation. (b) Labeled regions after
CCL of (a).

oriented in any direction. Therefore, a 3D symmetrical structuring element
is favorable for connecting features in any direction. Observe Fig. 4.8a, here
gaps between voxels are filled with a 3 x 3 x 3 structuring element. Fig. 4.8b
shows its labeled version after CCL. Notice the difference with Fig. 4.7b—
five regions are found in the original voxelset; three regions are found after
the closing operation.

4.5 LIDAR POINT INTENSITY

Intensity values from each return are captured in most LiDAR datasets, but
rarely used for point cloud processing. As mentioned in § 3.4, merging this
information with geometrical data has the potential to increase accuracy.
Experiments with many datasets showed that outliers often have low in-
tensity values compared to the complete range. Fig. 4.9 clearly shows low
intensity values for outliers in a example dataset. The returned intensity

16000

good points
14000 4 I outliers

12000
10000 -
8000
6000
4000 -

2000 4

0l Ill
0

T T T T
10 20 30 40 50
intensity

Figure 4.9: Intensity histogram of example point cloud.

4.6 PLANARITY |

is effected by atmospheric conditions and laser sensor type. Therefore, the
range of values vary between different datasets and can not be used for gen-
eral classification, without radiometric and atmospheric corrections. These
corrections are not in the scope of this study, limiting intensity analysis to
each dataset separately.

4.5.1 Data Statistics

Based on results from experiments, voxels with low intensity values are clas-
sified as outliers. For each voxel, the average intensity of all its containing
points is compared to a threshold. This threshold is simply computed by a
measure used in statistics indicating the value below which a given percent-
age of data falls, called percentile. Percentiles represent the area under the
normal curve, so each standard deviation relates to a percentile. Due to a
heavily right-skewed distribution (refers to Fig. 4.9), data right from —1c is
not considered an outlier. This is equal to the 15.87th percentile. Obviously,
also good point can have intensity values below —1c, due to low reflectance
surfaces. Therefore, this analysis is not to detect outliers, but to identify
possible good points in order to minimize false positives.

4.6 PLANARITY

The identified types of outliers usually appear random in the point cloud,
i.e. outliers form a scattered region and rarely fit in one plane. As explained
in § 2.5.1, PCA is widely used to describe a group of points as planar, tubular
or scatter regions. Each class is defined by an equation with eigenvalues
and eigenvectors from the covariance matrix of 3D points. In the approach
described here, a point cloud is modeled as a voxel map where each voxel
is classified as a flat surface, or a scatter shape based on the 3D point inside
each voxel. Scattered regions are considered for outlier detection. Note
this method by itself would never be sufficient to detect outliers, instead it
provides useful information for later outlier classification.

The 3 by 3 symmetric covariance matrix for each voxel is determined
by a set of n inner R3 coordinates, as described in § 2.5.1. A minimal of
three points is needed to describe a plane, and only voxels with at least four
points are considered—voxels with less are not sufficient for PCA and treated
as outlier. Remember, for planar voxels Ag >~ A1 > A, (see Fig. 2.8b, p. 20).
When variation is similar in all directions, such that Ag >~ A; ~ A, its region
is scattered (see Fig. 2.8a, p. 20). In practice, the planarity of each voxel is

defined by a curvature threshold 6. Consider ¢ as an indicator of surface

Ao
ture: 0 = ————— . If ¢ is higher th 1 (gd b i
curvature: ¢ pY w o is higher than 0.1 (given by experience)

it indicates a scattered region. These voxels are considered outliers and
classified as such.

39

N =

IMPLEMENTATION & RESULTS

This chapter validates the effectiveness of the proposed voxel-based method-
ology introduced in the previous chapter. This is done by running a number
of experiments on different datasets. § 5.1 starts with implementation details
of the proposed methodology. § 5.3 gives the quality metrics that are used
to assess the results from the experiments, § 5.2 describes the used datasets,
and results are given in § 5.4. Finally, the method is compared with existing
outlier detection tools and algorithms in § 5.6.

5.1 STRUCTURE OF DEVELOPED PROTOTYPE

To test the proposed method from Chapter 4, a translation to a software
prototype is necessary. This developed prototype should run every experi-
ment on any ALS dataset and analyze the results. This is possible with Julia
(used by Deltares), which already has many available packages for point
cloud processing. Everything from this implementation is freely available,
including the algorithms I wrote (see the GitHub' repository).

5.1.1 Data Structures

This section describes the data structures that is employed in the proposed
outlier detection model. The first step involves building data structures that
are used for voxel classification. At the core of the method lies a voxel grid
data structure. The voxelization structure is initially created from a .1las or
.1laz? file as introduced in § 4.2. This process creates two data structures
(see Fig. 5.1):

1. 3-dimensional binary array. This data structure represents voxels in
a 3D spatial grid with points inside. It is used as input for raster
processing techniques.

2. Sparse voxel dictionary. This data structure describes which data
points each voxel contains. In this dictionary the key contains a tuple
of three voxel coordinates (i,], k), the value refers to a list of point
integers. This data structure is necessary to keep track of information
of all the points from the source point cloud which is redundant with
respect to the bit array. Furthermore, the sparse structure speeds up
outlier detection by only iterating over voxels with points.

These two data structures contain the necessary information for the algo-
rithms.

https:/ /github.com/SimonGriffioen/ Voxelized-point-cloud-filtering
A .1las file is an industry-standard binary format for storing airborne lidar data—.laz is a
compressed version.

41

https://julialang.org/
https://github.com/SimonGriffioen/Voxelized-point-cloud-filtering

42

| IMPLEMENTATION & RESULTS

5.1.2

Point Cloud
lasl.laz

Building data structures

| |

.) Sparse voxel
aD bl_arraf/%/ dictional’;’/

v

Qutlier detection

Figure 5.1: Data structures.

Implementation of Algorithms

All algorithms are implemented in Julia. This coding language knows many
Open Source packages that can be used, including algorithms for point
cloud- and image processing. To clarify how I developed this prototype,
I have listed all used packages and algorithms implemented by myself. Im-
portant packages I used are:

LasI0.jl—a Julia package for reading and writing .las and .laz
files.

LocalFilters. jl—this Julia package implements multi-dimensional
local filters (e.g. mathematical morphology). Specifically, it is used for
the closing operation (§ 4.4.1).

Images.jl—an image processing package for Julia. This is used for
Connected Components Labeling (§ 4.4).

Algorithms implemented by myself are available on GitHub and include:

Bounding Box—this is to find the minimum bounding box of a point
cloud (§ 4.2).

Voxelization—an algorithm to rasterize a source point cloud and cre-
ate the two data structures (§ 4.2).

Count labels—for finding the largest group of connected voxels (§
4-4).

Local Density3—for the detection of isolated outliers as explained in
§4.3.

Intensity analysis—for outlier classification by point intensity as
explained in § 4.5.

Planarity—this algorithm classifies each voxel as plane (non-outlier)

or scattered (outlier) as explained in § 4.6.

Boolean outlier detection—this last algorithm is used to make the
final classification by combining all results (§ 4.1).

3 This is almost an identical reimplementation with Julia of lasnoise from LAStools (coded in

C++).

https://julialang.org/
https://github.com/SimonGriffioen/Voxelized-point-cloud-filtering
https://rapidlasso.com/lastools/lasnoise/

5.1 STRUCTURE OF DEVELOPED PROTOTYPE | 43

(a) A1 (b) Az.

() B. (d) C.

(e) D.

Figure 5.2: Overview of source point clouds used for experiments.

44 | IMPLEMENTATION & RESULTS

Table 5.1: Overview of the datasets used for experiments

Point cloud

A1 Az B C D
Source Aerodata Aerodata Deltares AHN3 Kadaster
Technique ALS ALS ALS ALS DIM
Area (km) 0.5 X 0.5 0.5 X 0.5 0.5X0.5 0.5X0.5 0,5X0,5
N points 5.7 min 8.2 min 1.7mln 47miln 55min
Points per m> 23 33 7 19 22
Outliers Many Many Many None None
Ground truth Yes Yes No No No
Envi Vegetation, Vegetation,

nvironment Forest Urban Urban

built environment built environment

5.2 DATASETS

The algorithm presented in Chapter 4 is tested on several different point
clouds (see an overview in Fig. 5.2) to obtain a reliable result and to review
how it handles various situations. Point clouds from four different sources
are used to evaluate the proposed method, provided by Aerodata (Fig. 5.6a
and Fig. 5.7a), Deltares (Fig. 5.9a), AHN (Fig. 5.2d) and Kadaster (Fig.
5.10a). All point clouds are acquired from ALS, except from Kadaster—this
point cloud is produced with DIM* by photogrammetry software. Table 5.1
gives an overview of the different datasets that are used to evaluate the
proposed method. This variation of point clouds is selected to explore the
performance from two angles, including: (1) changing environments, such
as natural-, forest-, and urban environments; (2) different acquiring tech-
niques (ALS and DIM). The selection of datasets contain moderate to extreme
amounts of noise, as well as different features.

Datasets B, C and D do not have ground truth available. Therefore, these
point clouds are used to evaluate the False Positive Rate (FPR), which is
almost equally important as the False Negative Rate (FNR). It should be
noted that the ground truth that is available for dataset A is not the abso-
lute state of being true. The reference datasets from Aerodata are classified
with automated methods and manually checked. It is not always clear for
an operator which points should be classified as outliers, so well-cleaned
datasets may still have outliers or falsely classified outliers. This should be
considered when the accuracy is determined.

Computation time is also analyzed, therefore different sized point clouds
are selected. To evaluate the effect of increasing the point cloud size, only
computation time and memory allocations are considered—accuracy is not
assessed in this case.

5.3 QUALITY METRICS

The simplest way to assess the results of outlier detection is by visual inspec-
tion. Comparing the source dataset with the cleaned version shows roughly
if false positives and false negatives are made. But when large datasets are
classified and reliable assessment is needed, quantitative evaluation is essen-

4 Dense image matching aims at computing a depth value for each pixel of multiple overlapping
aerial images. This is a suitable alternative to airborne LiDAR for generating 3D point clouds.

5.3 QUALITY METRICS |

True Condition

total Positive Negative
Predicted Positive TP acfp Sensitivity
Condition Negative FN True Negatives (TN) Precision
FNR FPR

Table 5.2: Confusion matrix.

tial. There are many metrics that are used to measure the performance of a
classifier. The apparatus depends on the measuring scale (nominal, ordinal,
interval or ratio)[Lemmens, 2011]. When classes are attributed to objects it
is a nominal scale.

In the case of outlier detection, only two classes exist. The evaluation of
these binary classifiers is often done by constructing an error matrix, also
called confusion matrix or contingency table (see Table 5.2). Given a point
cloud, a classification gives a number of TPs (points correctly classified as
outlier), TNs (points correctly classified as non-outlier), Frs (points falsely
classified as outlier) and FNs (points falsely classified as non-outlier). These
are obtained by comparing the class of each point with the ground truth
and can be formulated in a 2 x 2 confusion matrix. From this matrix sev-
eral statistics obtained from Fawcett [2006] are computed. The sensitivity is
computed with Equation 5.1, and gives the percentages of outliers that are
detected.

Sensitivity — TP
ensitivity = TP+ EN (5.1)
Theoretically, one can classify all point (including good ones) as outliers
which results in 100% sensitivity. Obviously, this would not be a satisfac-
tory result. Therefore, more measures are necessary to assess the quality of
classification. Precision gives the percentage of detected outliers that corre-
spond with the ground truth and is computed with:

TP

P .. _
recision 7TP TP

(5-2)

Furthermore, the False Positive Rate (FPR) is used to determine the percent-
age of points that are classified as outliers, but are actually good points and
in this thesis referred to as FPR (Type-I error):

FP
False Positive Rate (FPR) = TN L FP (5.3)

Finally, the False Negative Rate (FNR) determines the percentage of reference
outliers that are not detected—also computed with 1 — sensitivity and re-
ferred to as FNR (Type-II error):

False Negative Rate (FNR) = TPlii—iNFN (5-4)

A good performing classifier has a low FPR and a low FNR. The influence of
voxel size is assessed by computing the FPR and FNR for varying voxel sizes.

45

46

| IMPLEMENTATION & RESULTS

5.4 RESULTS

This section describes the performance of the cleaning algorithm in terms of
outlier detection quality. This is done by evaluating all datasets, introduced
in the previous section, against the presented Quality Metrics. The effect of
the voxel size on the accuracy is discussed in § 5.4.1 followed by common
errors (§ 5.4.3). Subsequently, different parts of the algorithm are discussed
separately in § 5.4.4. Finally, § 5.5 evaluates the computation time of the
developed prototype.

5.4.1 Outlier detection: overall algorithm performance

First, the overall performance of the proposed algorithm is discussed in
terms of the noise types identified in § 4.1. Observe Fig. 5.6 to visually
inspect the cleaning of dataset A1. Type-1 noise is removed effectively as
is seen in Fig. 5.3. These high and low isolated outliers (type-1) provide
a useful example to get intuition about how and why the algorithm works.
Consider the voxelization in 5.3b, where connected components are labeled
with colors. Its easy to see that outliers (colored voxels) are not connected
in the voxel grid with the terrain (black voxels). This is a strong indication
for outliers, moreover the same points do not form a plane or have high
intensity values. Fig. 5.3c shows the detected outliers and are removed from
the point cloud in Fig. 5.3d. In this case, detecting outliers is straightforward
when (almost) all operations classify it as such.

For the same reasons this algorithm also handles cluster noise (type-2)
well. Different from type-1 noise is that these outliers have a higher local
density. As long as these clusters are far enough from the surface, they are
classified as outliers.

Type-3 outliers are found to be the most difficult to detect, because they
often appear close to the terrain and have high local densities. However, the
algorithm still removes most of this noise very well. This is clearly shown
by observing the cleaning of dataset A1 in Fig. 5.6.

Dealing with Challenging Situations

The above situations of how this algorithm handles outliers are the most
straightforward situations. However, in many cases it is harder to separate
outliers from good points. When outliers (clusters or isolated) move closer
to the surface, as such that they are connected to the terrain, they are not
separable from real objects (e.g. vegetation). Similarly, real objects scanned
further from the terrain can be unconnected and possibly seen as outlier.
An example is shown in Fig. 5.4a, where tree tops are disconnected from
the terrain. Only connected components labeling would classify these tree
tops as outliers. However, a closing operation can connect tree voxels with
terrain voxels, local point density is not low and LiDAR intensities do not
match with outliers, allowing the algorithm to keep most of the points and
only falsely classify a minimum of good points as outliers. By maintaining
the unconnected trees after cleaning, clearly shows the advantage of using
multiple methods.

5.4 RESULTS | 47

(c) (d)

Figure 5.3: Section from point cloud A1. (a) Point cloud with type-1 outliers. (b)
Connected components labeling of (a)—every color represents a compo-
nent (black is the terrain). (c) Outliers that are detected. (d) Cleaned
point cloud.

48

| IMPLEMENTATION & RESULTS

VoATRO R e i B GT eT BE S TP

(@) (b)

Figure 5.4: (a) Low local point density between treetops and ground (A1). (b)
Cleaned version of (a)—all outliers and a few tree points are removed,
because they are not connected to the terrain. The use of multiple oper-
ations allows the majority of tree points to not be falsely classified.

The proposed method also handles common challenging situations in-
tuitively by design. By constructing a voxel grid and defining connected
parts it deals with deviating terrain heights without the need to set any
local thresholds. A steep slope in the scene does not affect outlier detec-
tion, as long as the terrain is connected. Handling complex terrain without
any problems is a huge advantage compared to neighborhood-based meth-
ods which use local height thresholds. Similarly, features scanned below
the ground surface (e.g. a ramp to a subfloor artefact) causes no problems,
whereas existing methods could classify points below ground as outliers.

!
L]
:
!
.

@ % %o o0

Figure 5.5: Low density object not classified as outliers because its is connected to
the surface.

Another complex situation that is handled well by this method is illus-
trated in Fig. 5.5. Street posts like this are difficult to separate from outliers
for two reasons. First, the point density is very low due to a small object sur-
face (density-based methods). Second, together with points scanned signifi-
cantly higher than its local neighborhood may cause problems for distance-
based and morphological methods. However, points on the street post will
be part of the same connected part as the surface, because it physically con-
nects to the ground. This enables the proposed method to distinguish real
objects from outliers.

5.4 RESULTS | 49

(b)

Figure 5.6: Point cloud A1. (a) Raw. (b) After outlier removal.

(b)

Figure 5.7: Point cloud A2. (a) Raw. (b) After outlier removal.

False Positive Rate

False Positive Rate

50

2.0%

| IMPLEMENTATION & RESULTS

5.4.2 Voxel Size Selection and Performance

Now that we have a better understanding and feeling of how and when the
algorithm works, we can take a more detailed look into the performance.
The voxel size selection obviously has a major influence on the performance
in both accuracy and computation time (computation time is discussed in §
5:5)-

By studying datasets A1 and A2z the sensitivity of the classifier can be
determined for different voxel sizes. For both examples shown in Fig. 5.6
and Fig. 5.7 a voxel size of 0.75 m is used. The performance per voxel size
is illustrated in Fig. 5.8. Logically, a smaller voxel size results in a higher
sensitivity. However, with a too fine resolution (small voxel size) gaps will
appear which causes more features to be unconnected, and thus a high FPR.
This trade-off between a low FPR or a low FNR is well illustrated in both Fig.
5.8a and Fig. 5.8b.

100% 0.5% 100%

—h— FPR ,—&— FPR
—o— FNR —o— FNR

1.5%

1.0%

0.5%

1%

0.8%

0.6%

0.4%

0.2%

0%

0.4% 80%
75%

0.3% 60%

50%

0.2% 40%

False Positive Rate
False Negative Rate

False Negative Rate

25%
0.1% 20%

v + + T + 0% 0% ' * * T * 0%
1.0 15 2.0 25 3.0 0.5 1.0 1.5 2.0 25 3.0
Voxel size (m) Voxel size (m)

(a) A1 (Aerodata). (b) A2 (Aerodata).
2%
10%
%

6%

False Positive Rate

4%

2%

' ' ' ' ' 0% " ' " ' " '
1.0 1.5 2.0 25 3.0 0.5 1.0 15 2.0 2.5 3.0
Voxel size (m) Voxel size (m)

(c) C (AHN). (d) D (Kadaster).

Figure 5.8: Outlier classification differences between ground truth and the auto-
matic voxel-based cleaning. Note left axis: FPR. Right axis: FNR.

True Condition

n = 8,275,821 Positive Negative
Predicted Positive 66,204 3,740 Sensitivity = 60.6
Condition Negative 43,668 8,162,209 Precision = 95.3

FNR = 39.7 FPR = 0.04

Table 5.3: Confusion matrix of A2 at 0.75 m resolution.

5.4 RESULTS |

(@ (b)

(<) (d)

Figure 5.9: Point cloud B before and after outlier removal. (a) Point cloud B before
cleaning with high type-1 outliers and type-3 outliers in clusters. (b)
Cleaned version of (a). All outliers removed except one cluster penetrat-
ing the terrain in the centre. (c) Side view of (a). (d) After outlier removal
of (c), clearly showing the remaining cluster noise in the center.

For datasets A1 (Table 5.6) and A2 (Table 5.3), the results are very convinc-
ing. At 0.75 m resolution 82.17% and 60.26% of the outliers were removed,
while only 0.13% and 0.04% of the points were falsely classified as outliers.
Up to 1 m, the cleaning process is very effective. Smaller than 0.75 m and
larger than 1 m causes a FPR or FNR that is very high. It is as expected, when
considering a larger voxel size the FPR decreases and the FNR increases.

For dataset B there was no manually classified reference dataset available.
Nonetheless, visual inspection shows that at voxel size 0.75 m (8.7% of the
points are classified as outliers), the method effectively cleans many outliers
from a very noisy dataset (Fig. 5.9). All type-1 outliers and most of type-3
outliers are removed (no type-2 outliers in this dataset). However, a large
cluster of type-3 outliers penetrates the terrain and is not removed after the
cleaning process as seen in Fig. 5.9b and Fig. 5.9d (further explained in §
5.4.3).

Point cloud C is used to test the voxel-based method on a urban landscape.
This dataset is outlier-free and can thus not be used to assess the sensitivity
of outlier classification. However, its still very useful to evaluate the FPR for
different scenes. Fig. 5.8c shows a very convincing FPR of only 0.02% at a
voxel size of 1 meter. The FPR increases to 0.12% at 0.75 m and 1.05% at 0.50
m. Also by visual inspection, 0.50 m seems to be a too small resolution for
accurate outlier classification, causing complete features (e.g. roofs, trees,
lampposts) being removed. There is no difference noticeable between an
urban landscape or a natural environment in terms of FPR.

The cleaned dataset of point cloud D (Fig. 5.10a) can be seen in Fig.
5.10b. This point cloud differs from the previous ones in terms of acquisition
technique—dense-matching instead of ALs—and no intensity information is

51

52

| IMPLEMENTATION & RESULTS

(a) (b)

Figure 5.10: Point cloud D. (a) Raw point cloud D. (b) After outlier removal. Falsely
removed features are indicated with circles.

available. The voxel-based method can cope with this by simply removing
the intensity analysis from the workflow. The source point cloud is free of
outliers so the FNR is not tested.

This experiment shows that a dense-matched point cloud is less suitable
for the proposed voxel-based cleaning method. A FPR of 11.9% (voxel size
= 0.50 m) is substantial larger than LiDAR point clouds tested in this thesis.
Observing Fig. 5.8d shows that the FPR decreases with a larger resolution—
5.3% (75 cm) and 2.65% (1 m). The consequence of classifying a large portion
of false positives is that complete features are removed from the dataset. By
observing the resulting point cloud (Fig. 5.10b), it can be seen that complete
roofs and trees are removed (Fig. 5.11d). An acceptable FPR (0.64%) occurs
at a 1.5 m resolution. However, we learned from previous tests that the
FNR at 1.5 m is rather high, assuming the dataset contains similar types of
outliers.

5.4.3 Common Classification Problems

Previous experiments showed several common problems that caused an in-
creased FPR or FNR. Different situations causing these errors are explained
here separately.

1. False Positive Rate

An increased FPR means good points are classified as outliers and thus
wrongly removed from the dataset. Some findings are listed below:

e In most cases, a small voxel size (< 0.75 m) is not beneficial and results
in parts of the surface being disconnected from the rest of the terrain.
This is due to low local point densities, as happens near tree trunks.
Fig. 5.4a shows several treetops in the dataset with low point densities
at the trunks. As a result, several good points are classified as outliers.

e Although a larger resolution (> 0.75 m) definitively decreases the FPR
between the optimal range of 0.75-1 m these problems still occur. Fig.
5.11 gives two examples where this happens. The first shows street
posts (Fig. 5.11a) that have a small surface and thus (close to) zero

5.4 RESULTS | 53

(a) (b)

(e)

Figure 5.11: Common errors. (a) Street posts captured incomplete causing gaps. (b)
Cleaned version of (a)—street posts are removed, because they are not
connected to the terrain. (c) Top layer of vegetation is captured leaving
empty space below. (d) Vegetation is wrongly removed after outlier
detection. (e) Side view of A2; small fraction of type-3 noise remains
below the surface after outlier removal.

hits from laser pulses. The surface that does reflect is hard to separate
from outliers and filtered out in this case (Fig. 5.11b).

e Similarly, vegetation is wrongly removed from dataset D (Fig. 5.11d).
These objects are classified as outliers, because they are not connected
to the surface, i.e. the objects are floating. This occurs more often with
dense-matched point clouds (D) than LiDAR point clouds. LiDAR has
the potential to provide much richer spatial information about canopy
characteristics in three dimensions. The reason behind this is that one
emitted laser pulse can record the range to multiple targets, whereas a
camera is limited to one data point per pixel. This is best demonstrated
with an example of a tree. A laser pulse penetrates the tree and reflects
on multiple features, including the ground. A camera only captures
the top layer of a tree, leaving an empty space below (Fig. 5.11¢).

54 | IMPLEMENTATION & RESULTS

Table 5.4: Performance of each operation for point cloud A1 and A2.

A1 Method TP FP FN FNR FPR
Density 47,331 2,688 35,580 42.92 0.05
CCL 69,008 166,908 13,912 16.78 2.95
CCL after closing 66,257 5,726 16,663 20.10 0.10
LiDAR intensity 78,558 2,145,036 4,362 526 37.89
Planarity 76,473 1,369,805 6,447 7.77 24.20
Overall 68,134 7,109 15,475 18.66 o0.12

A2
Density 50,142 2,875 59,730 54.36 0.04
CCL 69,073 11,317 40,799 3713 0.14
CCL after closing 64,194 1,730 45,678 41.57 0.02
LiDAR intensity 75,983 532,129 33,889 31.84 6.52
Planarity 85,240 2,786,722 24,632 22.42 34.13
Overall 66,204 3,740 43,668 39.74 0.05

2. False Negative Rate

Ideally, the method removes all outliers from the dataset automatically. In
practice is this almost impossible. Even when detecting outliers manually it
is not always clear to separate outliers from inliers when they appear very
close to real world features. However, these situations have very little effect
on the dataset, because usually it concerns just a handful of points.

e In the same context, this voxel-based method does not make the cor-
rect decision when outliers appear near the surface, i.e. within less
than a voxel size distance away. The outliers are in this case physically
connected to the surface and therefore part of the surface. This can
cause a high FNR when considering a cluster touching the surface. An
example of this can be seen in Fig. 5.11e, where a group of outliers is
not filtered out, because they connect to the ground.

e Similarly, Fig. 5.9d shows a smile-shaped noise cluster penetrating the
surface and is therefore not classified as outliers.

e Depending on the distance between outliers and inliers, a smaller
voxel size can decrease the FNR. However, this would cause a higher
FPR, as explained in the previous section.

5.4.4 Method Breakdown—Operation Evaluation

To understand if the method benefits from using multiple methods, each
single operation needs to be evaluated. This section gives a detailed look
into the performance of each individual operation that is selected for this
thesis. As mentioned before, the selection of operations is a choice I made
based on several expectation explained in Chapter 4. However, it is possible
that an operation is redundant or not effective and thus not beneficial for
the overall method. To investigate this, the FPR and FNR is computed for
each operation and used to study how this effects the final classification.
Table 5.4 describes the performance of each operation for dataset A1 and
A2. It is easy to see that none of the operations have similar performance

Computation time (s)

5-5 COMPUTATION TIME AND SCALABILITY \

results. This indicates that no operation is redundant. Moreover, the per-
formance of the overall method outer performs each single operation when
considering both FPR and FNR. Especially the FPR seems to benefit from
using multiple methods.

This is in expectation with the initial design motivation. The first three
operations are to detect outliers and the last two to minimize false positives.

5.5 COMPUTATION TIME AND SCALABILITY

There are two factors that influence the scalability of the method in terms
of computation time and memory allocations: (1) voxel size; (2) size of
dataset. This section evaluates both for different sizes. Fig. 5.12 shows
computation times for each operation. The experiments shown in these
figures are derived on a HP EliteBook 8570w with an Intel Core i7-3630QM
CPU @ 2.40GHz and 8 Gb RAM.

551 Voxel size

The number of voxels m in a 3D raster increase cubically (3rd power) for ev-
ery time resolution s (i.e. voxel size) halves. Computation time may become
unpractical when resolution is chosen too fine. Therefore, algorithmic per-
formance is bounded to O(n3) for an input n expressed in distance/voxel
size. This means n gets twice as big, every the voxel size halves. Fig. 5.12a
demonstrates the influence of the voxel size (point cloud has 2.5M points).
Operations which are solely dependent on the number of voxels (i.e. CCL,
density analysis) entail a O(n%) time complexity, as is shown in the graph.
For voxelization, planarity and intensity analysis, the number of points in-
side each voxel influences the complexity, i.e. a coarser resolution may result
in less voxels, but include more points per voxel.

—¥— Density -¥-- Density
— CCLI 5001 —m— CCLI
=% CCL Il - CCLII

—A— Intensity —A— Intensity
—4— Voxelization 400 { —4— Voxelization

300

Computation time (s)

100

L [L L

2 3 4 5 6 10M 20M 30M 40M 50M 60M 70M
Voxel size (m) Points

(a) (b)

Figure 5.12: Computation times. (a) Time per spatial resolution. (b) Relation be-
tween computation time and size of point cloud (resolution of grid = 2
m).

55

56

| IMPLEMENTATION & RESULTS

2.00Gb

1.75Gb

1.50Gb

1.25Gb

1.00Gb

0.75Gb

Memory allocations (Mb)

0.50Gb

0.25Gb

10M 20M 30M 40M 50M 60M 70M
Points

Figure 5.13: Memory allocations for voxelization of different sized point clouds.

5.5.2 Size of dataset

Point cloud size (i.e. number of points) effects computation time in a similar
way. Voxelization of a larger point cloud results in more voxels and thus
more computations. Computation time of the proposed method grows lin-
ear with the number of voxels, i.e. O(m) for m is number of input voxels.
However, in practice datasets do not scale per voxel. Instead, increasing the
area size from 1 km x 1 km to 2 km X 2 km grows the number of voxels
exponentially. This experiment is shown in Fig. 5.12b for a resolution of 2
m; it shows how computation time increases for larger datasets (voxel size
is fixed). The plotted datasets are related to 0.5 km, 1 km, 1.5 km and 2 km
squared tiles, because the number of voxels actually depend on the bound-
ing box of the dataset (and voxel size) and not the number of points the
cloud contains.

Both voxel size and increasing the dataset results in more voxels and thus
more computations. However, comparing Fig. 5.12b and Fig. 5.12a shows
different time complexities. This is simply, because in practice choosing a
twice as large point cloud (area), usually results in more voxels in only x
and y direction. Therefore is the performance bounded to O(d?) (when d
is expressed in edge length of the bounding box), on the condition that the
terrain is flat. This is what can be seen in Fig. 5.12b for operations solely
dependent on number of voxels. Whereas voxel size influences the number
of voxels in x, y and z direction.

5.5.3 Memory allocations

As seen in the previous section, building the voxel grid structure takes up
for most of the computation time. It also accounts for the largest memory
allocations. Fig. 5.13 shows a linear relationship between the number of
points and memory allocations. At around 7o millions points 2.0 Gigabytes
of memory needs to be reserved for the execution of the algorithm. Com-
pared to only a few hundred Kilobytes for CCL on a binary grid is this a lot.
Meaning, in this case a computer with 8 Gb of RAM would run out of mem-
ory with a point cloud of roughly 280 million points. Because the algorithm
is dependent on reading the point cloud into the memory, the effect of voxel
size is almost negligible in this matter.

True Condition

n = 5,743,977 Positive Negative

Predicted Positive 62,821 5,699 Sensitivity = 75.7
Condition Negative 20,099 5,655,358 Precision = 91.7

FNR = 24.2 FPR = 0.10

Table 5.5: Cleaning quality with LAStools.

True Condition

n = 5,743,977 Positive Negative

Predicted Positive 68,134 7,109 Sensitivity = 82.2
Condition Negative 14,786 5,653,948 Precision = 90.6

FNR = 17.8 FPR = 0.12

Table 5.6: Cleaning quality of A1 with proposed method.

56 COMPARISON TO EXISTING METHOD

There are several outlier filtering tools freely available. Some of the issues
these have are discussed in § 3.1. A comparison of methods can highlight
these issues and emphasize on where the designed voxel-based method
outer performs existing tools.

In this comparison LAStools (see § 3.1) is compared to my method. Both
filter tools are used to clean dataset A1. A grid resolution of 0.75 m is used
for each case. Furthermore, best results with LAStools were obtained with a
density threshold of 3. Table 5.5 and Table 5.6 show the quality performance
of LAStools and my method.

In this case, LAStools performs worse in terms of FNR. My method de-
creases the FNR with 39% with respect to LAStools. Both methods perform
similar in terms of FPR.

(a) (b) (c)

Figure 5.14: Comparison cleaning of clustered outliers. (a) Source point cloud with
clustered outliers. (b) Cleaned with LAStools. (c) Cleaned with pro-
posed method.

The most striking example of performance difference is for type-2 outliers
(clusters), as seen in Fig. 5.14a. The limitations of LAStools are easy notice-
able for this situation; clustered outliers are not cleaned well, as is shown in
Fig. 5.14b. Many outliers are not detected, because of a high local density
in a cluster. However, Fig. 5.14c shows that the binary voxel-based method
completely removes type-2 outliers.

http://www.cs.unc.edu/~isenburg/lastools/
http://www.cs.unc.edu/~isenburg/lastools/
http://www.cs.unc.edu/~isenburg/lastools/

DISCUSSION & FUTURE WORK

This chapter elaborates on a few possible improvements for the proposed
method. For some issues I propose a solution. However, they are not in-
cluded in the methodology, because the solution (a) needs more research;
or (b) is a theoretical solution and is not yet implemented in the prototype
version.

An assessment and a comparison to existing tools showed the proposed
method is able to detect all types of outliers effectively. However, a few
points of discussion can be identified. This chapter dicusses the following:
scalability of the method (§ 6.1), separation by water (§ 6.2), confidence of
final classification (§ 6.3), binary raster processing vs. point-wise feature
extraction (§ 6.4) and manual parameter adjustments (§ 6.5).

6.1 EXPERIMENTS WITH SCALABILITY ISSUES

In practice the scalability is limited by the number of voxels (determined by
resolution or point cloud size)—in terms of computation time—and size of
the point cloud—in terms of memory allocations. Moreover, there are two
situations that I came across for which I propose a solution. § 6.1.1 handles
very high and low outliers, and § 6.1.2 presents a streaming solution to
handle point clouds larger than your RAM allows.

6.1.1 From Coarse To Fine

In some cases, outliers appear very high and/or low in the dataset (Fig.
6.1a). This leaves large areas of empty space between good points and points
that need to be removed. All this space is filled with voxels and results in
unnecessary computations that are done on these voxels. The point cloud
shown in Fig. 6.1a covers a 0.5 x 0.5 km area and contains very high and low
outliers. Therefore, the dimensions of the bounding box are: 0.5 x 0.5 x 4.5
km. A grid with a 1 meter resolution would contain more than 1 billion
voxels.

The solution to prevent the algorithm from constructing many unneces-
sary empty voxels, is to first build a grid with a coarse resolution followed
with the desired resolution. A coarse resolution creates less voxels, but
still removes all of the very high and low outliers (and thus leaves a much
smaller bounding box). After the first iteration, a finer resolution is chosen
to run the method with the desired level of detail.

Fig. 6.1c shows much improvement after completing a first iteration with
a resolution of som. This grid contains only 9,000 voxels, but still removes
the very high and low outliers (Fig. 6.1b). The resulting point cloud is input
for the second iteration with a resolution of 1m. The gridded point cloud
now only contains 9.7M points (instead of 1B). This finer resolution allows
to remove the remaining outliers (Fig. 6.1¢).

59

60

| DISCUSSION & FUTURE WORK

(a) (b) (c)

Figure 6.1: From coarse to fine. (a) Raw point cloud with very high and low outliers.
(b) First iteration of outlier removal with 50 m resolution. (c) Second
iteration, with 0.75 m resolution.

6.1.2 Streaming

Massive point cloud datasets could easily overload the memory of most
commodity computers, as explained in § 5.5.3. Instead of loading the entire
dataset into memory, streaming solutions are proposed. Streaming algo-
rithms sequentially read a stream of data, pipe it to a processor and free up
the memory after the data is processed.

Usually, streaming can only succeed when a portion of points have spa-
tial coherence. Meaning, when some spatial operation (e.g. constructing a
Delaunay triangulation) has to be done on the points there has to be a cor-
relation between their location in space and location (index) in the stream.
Therefore, studies propose to first sort (e.g. hilbert sort) the points before
streaming.

Isenburg et al. [2006] avoids a heavy sorting step by including finalization
tags in the stream that indicate when no more points in the stream will fall
in specified regions. The finalizer reads a stream of raw points three times
from disk. During the first pass it computes and partitions the bounding
box into equal cells. During the second pass it counts the number of points
for each cell. And a third pass to add a finalization tag into the stream
whenever a cell’s count is reached. Then, a spatially finalized point stream
pipes to a processing step.

The proposed methodology to detect outliers has no streaming solution.
Therefore, a theoretical implementation is given here (see Fig. 6.2). This
streaming solution is split in two tasks. One for processing the binary grid
using Connected Components Labeling CCL. A second for the group-based
processing. Both solutions have different requirements, because CCL needs
global specifications to compute connected regions, whereas the group-based
operations only require local information.

1. Streaming Points into Binary Grid

The first streaming solution benefits from the binary regular grid structure
and is not dependent on spatial coherence. Binary rasterization of an input
point cloud reduces the storage size to a minimum, because every grid cell
only needs 1 bit (to store a 1 or 0). Therefore, massive point clouds that

6.1 EXPERIMENTS WITH SCALABILITY ISSUES |

Reading point cloud Analysis

9
)

X
XX

XX
0’:00

RS
Istpass e ° L, ° |—» ==’==’
N2
N’
$3SB<3dy | [voxel Location
’.': +pointindices Visualization
2ndpass e ° ° ° ° ‘ — == (dictionary)
NS, @ Count points
inside voxel
3rdpass e °« o, o . | /Classification

Figure 6.2: The streaming solution reads the points thrice and pipes a spatially fi-
nalized voxel stream to the intensity and planarity analysis, which then
compares the result with the CCL output, and finally writes out a cleaned
point cloud.

are too large for the memory could be completely read into memory when
represented in a binary array.

In this case, the streaming algorithm only has to fill this binary grid with
points from the stream, and is thus independent of spatial coherence. After
streaming is completed, a binary grid remains that fits completely in the
memory which then can be used for further processing.

Although, this only requires one pass over the input stream (assuming
a bounding box can be created from the point cloud’s metadata), all point
cloud processing is limited to the raster space and therefore, not comparable
to the streaming solution of Isenburg et al. [2006].

This could be implemented as follows:

e The first step is to create an empty (all zeros) 3D binary voxelgrid
from the bounding box * as explained in § 4.2. Two data structures are
built for this, including a binary array representing the voxelgrid and
a dictionary to describe which data points each voxel contains.

e Then the stream pipes to the binary grid. For each point four actions
are done:
1. the voxel that contains the point changes from 0 to 1.

2. the voxel location (i, j, k)—and the point’s index it contains—are
added to the dictionary, as well as the count.

3. re-calculate average intensity of point cloud with new point.
4. remove point from memory before a new point from the stream

is read.

e When the stream is complete, the resulting binary grid is of equal size
as before the stream.

e This grid is then used for the connected components labeling algo-
rithm and closing operation, which results in the first outlier classifi-
cations.

1 According to the American Society for Photogrammetry & Remote Sensing (ASPRS) minimum
and maximum ¥, y, z coordinates can be stored in the public header of a .1las file. When this
information is not available an extra iteration over the points in necessary to find these locations
and construct the bounding box.

61

62

| DISCUSSION & FUTURE WORK

2. Streaming for Group-Based Processing

This completes all processing in the raster space, and only analysis of the
group-based points (i.e. density, intensity and planarity) is required. Group-
based analysis only succeeds if the input stream has sufficient spatial co-
herence. Accordingly, a slightly different streaming method can be used,
inspired by the work of Isenburg et al. [2006]. Implementation details are
given below:

e This solution continues with the regular grid and dictionary created
during the first pass.

e A second pass is necessary, which buffers all the points in each cell
until the cell’s counter reaches zero. When a cell reaches zero, all
inner points are placed in the output stream.

e The output stream is then piped to planarity- and intensity analysis,
and is classified as described in § 4.6 - Planarity and § 4.5 - Lidar Point
Intensity.

e This classification is then compared with the binary classification from
the first pass. As described in § 4.1.4, it decides if the voxel contains
outliers or not, writes it to the output file, and frees its memory.

One advantage is the output can be piped to a visualization tool. Data
begins to appear in an early stage while still consuming input, by doing
all (fast) raster processing first and then piping it to (slow) group-based
operations.

However, an observant reader might object that creating an empty binary
grid from the point cloud’s bounding box—and keep it in memory—sets a
limit to the size of the input point cloud. This is a disadvantage, however
memory requirements for binary arrays are very limited allowing voxeliza-
tion of massive point clouds with commodity computers.

An experiment with dataset A1 shows the memory requirements for a
streaming solution. Point cloud A1 has a size of 180 Mb. After voxelization,
the binary grid has a size of 5.1 Mb for 500 x 500 x 179 (44.8 M) voxels. A
computer with 8 Gb’s of RAM is capable to easily handle billions of voxels.
Although, this solution allows to process substantially larger datasets, there
is a limit. Therefore, a fully streamed solution for computing connected
components for over a trillion voxels is given in Isenburg and Shewchuk
[2011], which can be addressed in future work.

6.2 SEPARATION BY WATER

Rare cases where rivers separate land in the target area can cause problems
for the proposed outlier detection method, because the two land-parts get
unconnected.

Most of the aerial lidar sensors use a wavelength in the infrared. In-
frared wavelengths get rapidly absorbed by water. Therefore, water surfaces
may have no measurements. In the point cloud dataset this can cause large
gaps, as is seen in Fig. 6.3a. Gaps and unconnected parts result in an in-
creased FPR-as explained in § 5.4.3—because they are wrongly filtered out
(Fig. 6.3b).

In this section I propose a theoretical solution, which is also practical to
implement in the proposed method.

6.2 SEPARATION BY WATER |

(b)

Figure 6.3: (a) A river separates two land parts in the point cloud. (b) The right half
gets filtered out, as it is unconnected to the largest area.

Consider Fig. 6.4, which is a side view of the same point cloud shown
in Fig. 6.3a. A river splits the land surface into region 1 and region 2. By
computing the incline between the two regions, an assumption about the
position related to each other can be made. Regions with negligible incline
relative to the ground surface (region 1) will also be considered as ground.
This is done with the following steps:

o After finding the largest connected component G as explained in § 4.4,
compute its centroid Sg.

e Select all regions with a volume larger than a specified threshold (only
consider possible large land areas).

e For each selected region R find the centroid Sk and compute the in-
cline a between S and Sg.

e Consider regions with « smaller than a specified threshold as ground
surface and not as outlier.

Following these steps, region 2 has a a of 1.1° and is not classified as
clustered outlier. Similarly, unconnected higher and lower regions have a
larger a and are very likely to contain outliers.

This experiment showed promising results for handling situations where
rivers split the target area. However, more research has to be done. Al-
though, measuring incline can be very effective in flat areas, it may be less
helpful in sloped areas. This may require to measure the incline in a differ-
ent way. Instead of finding the centroids, find the two points closest to each

63

64

| DISCUSSION & FUTURE WORK

region 2

region 1

Figure 6.4: The angle a between centroids p1 and p2 is below a specified threshold.
Therefore points in region 2 are not classified as outliers.

other on both regions. Because water is also flat in sloped areas, this incline
should also be negligible.

6.3 CLASSIFICATION

This section discusses the final outlier classification, which uses map algebra.
The method described in § 4.1.4, simply sums all boolean classifications and
classifies each voxel where sum > 3 as outlier. Although it works very
well with the selected operations for this study, this threshold is arbitrary
and might not hold up when more or less operations are used. Moreover,
all operations have equal weight, even though CCL is far more effective to
detect outliers than intensity- or planarity analysis.

6.3.1 Voxel Classification Using Machine Learning

Alternatively, supervised learning classifiers can be exploited to detect out-
liers. Statistical binary classification is widely studied in the field of machine
learning. Machine learning methods can predict the probability, given a
new observation, to which predefined class it belongs. Plaza-Leiva et al.
[2017]; Plaza et al. [2015] successfully used Support Vector Machine (SVM)
and Neural Network (NN) to classify voxels based on the spatial distribu-
tion of inner points.

Such a classifier measures characteristics, also called features, of the input
data. Choosing informative and independent features is a crucial step for
effective classification [Bishop, 2006]. The five operations presented in this
thesis extract useful features that can be used to train a classifier. The set
of features observed in this thesis can be used to describe a feature vector,
which is then a five-dimensional vector that represents a voxel. However,
training such a classifier requires training data containing classified outliers.
Developing a supervised outlier classifier can be addressed in future work,
when this data is available.

64 BOOLEAN GRID VS. GROUP-BASED

Issues with point cloud processing often include memory requirements and
efficiency (speed) (see § 5.5 and § 6.1). Although, it is not a main goal of
this study to present a efficient and fast outlier detection tool, it is essential

()5 MANUAL PARAMETER ADJUSTMENTS |

for commercialized processing tools. Moreover, certain design choices are
based on the desire for fast processing, such as the use of a binary grid.
Therefore, aspects that are less efficient should not be ignored.

Logically, the choice for a series of operations requires more computations
and is thus less efficient. Computation time is even more influenced by
operations going back to the point level, instead of processing the binary
grid. This is shown in Fig. 5.12, where operations only using the binary
grid (i.e. CCL), significantly outperform operations on a group of points (i.e.
density, intensity, planarity).

This method makes use of the grid structure to group points prior to
analysis. However, a solution where all processing is done in the raster
space could speed up the method significantly. Image processing is an active
and large research field. Although many raster processing techniques are
reviewed for this study, advanced computer vision algorithms were out of
scope for this thesis.

65 MANUAL PARAMETER ADJUSTMENTS

Manual input from the user is almost unavoidable and can be seen as a
drawback. Many point cloud processing tools rely on tuning several pa-
rameters in order to achieve better results (also concluded in Chapter 3).
Therefore, tools should achieve good results while minimizing user input.

This study uses several thresholds to process the data and are arguably
manual parameters. These include:

o Voxel size;

Density threshold in local neighborhood (number of points);

Threshold for outlying intensity values;

Curvature threshold to define planar surfaces;

Outlier classification threshold with boolean algebra (also discussed
in § 6.3).

This study showed that voxel size has a great influence on the outcome.
Attempts to automate voxel size selection needs further research. A list of
resolution criteria is given in § 4.2. Also, Fig. 5.8 showed good results with a
resolution between 0.75 and 1.0 meter for the analyzed datasets. This range
holds for point clouds with different densities.

65

CONCLUSIONS &
RECOMMENDATIONS

This chapter gives the conclusions from this study. First the research ques-
tions are answered in § 7.1.1. Secondly, the main contributions (§ 7.1.2) are
given. Finally, the recommendations are summarized in § 7.1.3.

7.1 CONCLUSIONS

This graduation project described an algorithm for removing (clustered) out-
liers from aerial LiDAR data. The algorithm can distinguish outliers from low
density features, as opposed to algorithms that base their decisions only on
local neighborhoods. It showed that a voxel structure in combination with
raster processing techniques allow for effective and efficient point cloud
analysis. However, voxelization of the source point cloud requires a careful
selection of the resolution to achieve the desired results. Furthermore, a
streaming solution can be developed, which makes the method suitable for
processing large areas.

Even though the detection quality is improved compared to existing meth-
ods, a few issues need more attention. The major criticism on the voxel-
based approach, as developed in this thesis, is the arbitrary selection of anal-
ysis techniques and the final classification by combining them, as is stated in
§ 6.3. Moreover, three operations (density, intensity, planarity) make use of
the voxel structure by grouping inner points prior to analysis (group-based
analysis), instead of analyzing the binary grid itself (which CCL does). This
could be argued as a drawback, because processing a binary grid is far more
efficient than processing group-based points.

Nevertheless, this study showed the benefits of combining different opera-
tions to classify outliers. It showed substantial improvement by minimizing
false positives, while detecting more outliers than existing tools. Addition-
ally, a gridded solution is presented to combine all methods and analyze the
data in a coherent way.

7-1.1 Research questions

All research questions are answered here. It starts with answering the sub
research questions and concludes with the answer to the main research ques-
tion.

e Question 2. How can raster processing techniques—in particular Connected
Components Labeling—be used on a 3D voxelized point cloud to detect out-
liers?

Outliers can be detected from binary voxelized point clouds in three
steps. First, the CCL algorithm separates voxels in different regions.
Second, count all regions sizes. Third, classify all voxels not connected
to the largest region as outliers.

68

| CONCLUSIONS & RECOMMENDATIONS

A preprocessing step to fill gaps proved to enhance the dataset in order
to classify less False Positives. By using the closing operator (mathe-
matical morphology) on a bit voxelmap, the dataset is restructured
in such a way that gaps between unconnected regions may get filled.
Doing this before the CCL algorithm may result in less fragmented re-
gions.

Question 3. What is the influence of different voxel resolutions for outlier
detection algorithms, in terms of accuracy and computation load?

Voxel size has a great influence on accuracy of the proposed method.
A resolution larger than 1 meter is too coarse to capture the details in
the environment. Moreover, a larger voxel size aggregates a bigger set
of points into one voxel and may include outliers close to the surface.

On the other side, a resolution chosen too fine (<0.75 m) causes a sig-
nificant increase in False Positives due to discontinuities in the voxel
model. Experiments showed best results between 0.75 m and 1 m res-
olution.

Voxel size also heavily influences computation time. The number of
voxels in a 3D raster increases with the 3rd power of the resolution
(when expressed in voxels/distance). A too fine resolution (< 0.75 m)
may cause unpractical running times. This adds to the argument of
not using a voxel size smaller than o.75 m. Based on accuracy results,
a resolution of 0.75-1.0 seems desired.

Question 4. Can a series of analysis methods within a voxel model achieve
higher classification quality?

Yes, the False Positive Rate can be decreased significantly.

Firstly, intensity analysis shows great potential in achieving better clas-
sification results. However, more research is required to sustain the
claimed correlation between outliers and intensity values. Also, better
statistical models could be exploited for outlier separation.

Secondly, planarity analysis decreases the FPR in specific cases where
unconnected man made (flat) objects are classified as outliers

Question 5. What outlier detection quality is achievable and how to influ-
ence the trade-off between True Positives and False Positives?

The proposed method can achieve very satisfactory results in terms
of both TP and FP. For two datasets 82 % and 60 % of the outliers
were successfully removed, while only 0.13 % and 0.04 % of points
were falsely classified as outliers. All identified types of outliers are
detected, including clusters.

In some special cases the method is not able to clean outliers well.
When outliers are spatially close to the surface its hard to separate
them from the good points. Also, when a cluster of outliers is con-
nected to the surface, they are not removed.

The trade-off of TPs and FPs can be minimized by choosing a suitable
voxel size. Moreover, analysis such as intensity and planarity can iden-
tify good points from wrongly classified outliers.

Compared to an existing tool lastools, the proposed method yielded
better results in terms of both TPs and Fps.

7.1 CONCLUSIONS |

e Question 6. What is the influence of scaling the dataset on the algorithm in
terms of time and memory?

The method scales linear in both time and memory when input is
defined by voxels and points. This means the computer can run out
of memory when the dataset is too large. In this case, a streaming
solution can be implemented which allows the algorithm to process
massive point clouds.

e Question 7. Can the same outlier detection algorithm be used for both LiDAR
(aerial) datasets and DIM datasets?

No, Dense Image Matching (DIM) usually has more gaps in the dataset
than LiDAR datasets due to occlusion. A fragmented voxel model is
not beneficial for the detection of outliers using CCL.

And finally, the main research question is answered:

e Question 1. Is a voxel-based approach a viable option to automatically detect
outliers from aerial LiDAR point clouds?

Yes, based on the quality metric and experiments presented in this
study, it can be concluded that the proposed voxel-based approach per-
forms well in terms of outlier detection accuracy (minimizing both FPR
and FNR). A comparison showed higher classification accuracy than ex-
isting distance-/density-based methods. Furthermore, the method is
suitable for the implementation of a streaming solution, which would
allow the method to process massive point clouds.

7.1.2 Contributions
The main contributions of this thesis are:

e Designing a voxel-based solution to detect outliers from aerial LiDAR
point clouds. This study extensively explores different processing tech-
niques and integrates them into a voxel-based methodology.

e From the processing techniques used in this thesis, most contributions
are made on using connected components to detect outliers. This in-
cludes dealing with gaps/holes in the data and selecting an effective
resolution for the voxelgrid.

o This study presents a new method to detect clustered outliers, which
is an ongoing problem. A literature (and related work) review influ-
enced the design of using image processing techniques on a binary
grid. This study showed the effectiveness of using these methods,
which can be used for many other point cloud analysis and classifica-
tion problems in a efficient way.

7.1.3 Recommendations & Remarks

This section gives a few recommendations, that can be helpful when re-
searching this topic.

First of all, it is challenging to detect all outliers without classifying false
positives. Extracting more features may be unwanted, as this requires more
computations and is possibly redundant. In essence, the goal is to remove

69

70

| CONCLUSIONS & RECOMMENDATIONS

outliers from point clouds as efficient and effective as possible. An advan-
tage of the proposed method is that it is very suitable to be incorporated in
a tool, and make the user’s workflow more efficient. A user interface could
allow the operator to quickly review the result in cluster format, instead
of point by point. So even if the tool miss-classifies certain clusters, it can
quickly be recovered.

The same can be argued for the problem of rivers separating the land
in some areas (see § 6.2). Extra analysis can overcome this problem, but
the separated cluster can also simply be reclassified by the user. Therefore,
instead of only aiming for a errorless classifier, it should also be considered
how the tool will be used. This also requires special attention regarding
manual adjustment of parameters (see § 6.5).

Secondly, the datasets used in this study all showed a relation between
LIDAR point’s intensity and being an outlier. This information is not ex-
ploited by other outlier detection algorithms, although it proved to be ben-
eficial. However, a more advanced statistical model is needed and can be
addressed in future work. This also requires a study to investigate the cor-
relation between intensity and outliers in aerial point clouds.

Thirdly, statistical binary classification is widely studied in the field of ma-
chine learning. Moreover, computer vision research actively studies learning-
based methods. These methods can be explored with rasterized point clouds
(see § 6.3.1). This thesis already showed that simple image processing tech-
niques can be effective.

BIBLIOGRAPHY

Angluin, D. and Laird, P. (1988). Learning from noisy examples. Machine
Learning, 2(4):343-370.

Arge, L., Green Larsen, K., Mglhave, T., and van Walderveen, E. (2010).
Cleaning massive sonar point clouds. In Proceedings 18th SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
pages 152-161. ACM.

Barnett, T. L. (1994). Outliers in Statistical Data. JOHN WILEY & SONS INC.

Beraldin, J.-A. (2004). Integration of laser scanning and close-range pho-
togrammetry — the last decade and beyond. In The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Science Con-

gresss, pages 972—983.
Birchfield, S. (2017). Image Processing and Analysis. Cengage Learning.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag.

Boulch, A., de La Gorce, M., and Marlet, R. (2014). Piecewise-planar 3d
reconstruction with edge and corner regularization. Computer Graphics

Forum, 33(5):55-64.

Breunig, M. M., Kriegel, H.-P,, Ng, R. T, and Sander, J. (2000). LOF: Iden-
tifying Density-Based Local Outliers. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data. ACM Press.

Chen, Q., Gong, P, Baldocchi, D., and Xie, G. (2007). Filtering airborne laser
scanning data with morphological methods. Photogrammetric Engineer-
ing & Remote Sensing, 73(2):175-185. includes method for filling missing
data (water). Good explenation of filter outliers with morphological op-
erators.

Eisenbeiss, H. (2009). UAV photogrammetry. PhD thesis.

El-Hakim, S. F. and Beraldin, J. A. (1994). Integration of range and intensity
data to improve vision-based three-dimensional measurements. In El-
Hakim, S. F.,, editor, Videometrics III. SPIE.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition
Letters, 27(8):861-874.

Fisher, P. (1997). The pixel: A snare and a delusion. International Journal of
Remote Sensing, 18(3):679—-685.

Goodchild, M. E (1992). Geographical data modeling. Computers & Geo-
sciences, 18(4):401—408.

Gorte, B. and Pfeifer, N. (2004). Structuring laser-scanned trees using 3d
mathematical morphology. In International Archives of Photogrammetry
and Remote Sensing, volume 35, pages 929-933.

71

72

| BIBLIOGRAPHY

Han, X.-E, Jin, J. S., Wang, M.-]., and Jiang, W. (2017). Guided 3d point
cloud filtering. Multimedia Tools and Applications.

Hao, W. and Wang, Y. (2014). Classification-based scene modeling for urban
point clouds. Optical Engineering, 53(3):033110.

Hawkins, D. (1980). Identification of Outliers. Springer Netherlands.

Heinzel, J. and Huber, M. (2016). Detecting tree stems from volumetric TLS
data in forest environments with rich understory. Remote Sensing, 9(1):9.

Isenburg, M. (2013). Laszip: lossless compression of lidar data. Photogram-
metric Engineering & Remote Sensing, 79(2):209—217.

Isenburg, M., Liu, Y., Shewchuk, J., and Snoeyink, J. (2006). Streaming
computation of delaunay triangulations. ACM Transactions on Graphics,

25(3):1049.

Isenburg, M. and Shewchuk, J. R. (2011). Streaming connected component
computation for trillion voxel images.

Jain, A. K., Murty, M. N,, and Flynn, P. J. (1999). Data clustering: a review.
ACM Computing Surveys, 31(3):264-323.

Jain, R., Kasturi, R., and Schunck, B. G. (1995). Machine Vision.

Jenk, P, Wand, M., Bokeloh, M., Schilling, A., and StraSer (2006). Bayesian
point cloud reconstruction. Comput Graph Forum, 25(3):379—388.

Johnson, T., Kwok, I, and Ng, R. T. (1998). Fast computation of 2-
dimensional depth contours. In 4th International Conference on Knowledge
Discovery and Data Mining, pages 224-228.

Kilian, J., Haala, N., and Englich, M. (1996). Capture andevaluation of air-
borne laser scanner data. In International Archives of Photogrammetry and
Remote Sensing, pages 383—388.

Knorr, E. M., Ng, R. T,, and Tucakov, V. (2000). Distance-based outliers:
algorithms and applications. The VLDB Journal The International Journal
on Very Large Data Bases, 8(3-4):237—253.

Kobler, A., Pfeifer, N., Ogrinc, P., Todorovski, L., Ostir, K., and DZeroski, S.
(2007). Repetitive interpolation: A robust algorithm for DTM genera-
tion from aerial laser scanner data in forested terrain. Remote Sensing of
Environment, 108(1):9—23.

Kumler, M. P. (1994). An intensive comparison of triangulated irregular
networks (TINs) and digital elevation models (DEMs). Cartographica:
The International Journal for Geographic Information and Geovisualization,

31(2):1-99.

Lalonde,].-E, Vandapel, N., Huber, D. E, and Hebert, M. (2006). Natural ter-
rain classification using three-dimensional ladar data for ground robot
mobility. Journal of Field Robotics, 23(10):839-861.

Lehtomaki, M., Jaakkola, A., Hyyppa, J., Lampinen, J., Kaartinen, H., Kukko,
A., Puttonen, E., and Hyyppa, H. (2016). Object classification and recog-
nition from mobile laser scanning point clouds in a road environment.
IEEE Transactions on Geoscience and Remote Sensing, 54(2):1226-1239.

BIBLIOGRAPHY |

Lemmens, M. (2011). Geo-information. Springer Netherlands.

Li, X., Zhang, Y., and Yang, Y. (2017a). Outlier detection for reconstructed
point clouds based on image. In 2017 First International Conference on
Electronics Instrumentation & Information Systems (EIIS). IEEE.

Li, Y, Yong, B., van Oosterom, P., Lemmens, M., Wu, H., Ren, L., Zheng,
M., and Zhou,]. (2017b). Airborne LiDAR data filtering based on
geodesic transformations of mathematical morphology. Remote Sensing,
9(11):1104.

Maligo, A. and Lacroix, S. (2017). Classification of outdoor 3d lidar data
based on unsupervised gaussian mixture models. IEEE Transactions on
Automation Science and Engineering, 14(1):5-16.

Matkan, A. A., Hajeb, M., Mirbagheri, B., Sadeghian, S., and Ahmadi, M.
(2014). SPATIAL ANALYSIS FOR OUTLIER REMOVAL FROM LIDAR
DATA. ISPRS - International Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, XL-2/W3:187-190. good introduc-
tion to lidar and outliers in general.

Meng, X., Wang, L., Silvan-Cérdenas, J. L., and Currit, N. (2009). A multi-
directional ground filtering algorithm for airborne LIDAR. ISPRS Jour-
nal of Photogrammetry and Remote Sensing, 64(1):117-124.

Nourian, P, Gongalves, R., Zlatanova, S., Ohori, K. A, and Vo, A. V.
(2016). Voxelization algorithms for geospatial applications: Computa-
tional methods for voxelating spatial datasets of 3d city models contain-
ing 3d surface, curve and point data models. MethodsX, 3:69 — 86.

Nurunnabi, A., West, G., and Belton, D. (2015). Outlier detection and robust
normal-curvature estimation in mobile laser scanning 3d point cloud
data. Pattern Recognition, 48(4):1404-1419.

Papadimitriou, S., Kitagawa, H., Gibbons, P., and Faloutsos, C. (2002). LOCI:
fast outlier detection using the local correlation integral. In Proceedings
19th International Conference on Data Engineering (Cat. No.o3CH37405).
IEEE.

Pingel, T. J., Clarke, K. C., and McBride, W. A. (2013). An improved sim-
ple morphological filter for the terrain classification of airborne LIDAR
data. ISPRS Journal of Photogrammetry and Remote Sensing, 77:21-30.

Plaza, V., Gomez-Ruiz,]J. A.,, Mandow, A., and Garcia-Cerezo, A. (2015).
Multi-layer perceptrons for voxel-based classification of point clouds
from natural environments. In Advances in Computational Intelligence,
pages 250—261. Springer International Publishing.

Plaza-Leiva, V., Gomez-Ruiz,]J., Mandow, A., and Garcia-Cerezo, A. (2017).
Voxel-based neighborhood for spatial shape pattern classification of li-
dar point clouds with supervised learning. Sensors, 17(3):594.

Quan, Y., Song, J., Guo, X., Miao, Q., and Yang, Y. (2016). Filtering LiDAR
data based on adjacent triangle of triangulated irregular network. Mul-
timedia Tools and Applications, 76(8):11051-11063.

Santamaria-Navarro, A., Teniente, E. H., Morta, M., and Andrade-Cetto, J.
(2014). Terrain classification in complex three-dimensional outdoor en-
vironments. Journal of Field Robotics, 32(1):42—60.

73

74

| BIBLIOGRAPHY

Shapiro, L. and Stockman, G. (2001). Computer Vision. Prentice Hall.

Shen, J., Liy, J., Zhao, R., and Lin, X. (2011). A kd tree based outlier detection
method for airborne lidar point clouds. In 2011 International Symposium
on Image and Data Fusion. IEEE.

Silvan-Cérdenas, J. and Wang, L. (2006). A multi-resolution approach for
filtering LiDAR altimetry data. ISPRS Journal of Photogrammetry and
Remote Sensing, 61(1):11—22.

Sithole, G. (2005). Segmentation and Classification of Airborne Laser Scanner
Data. PhD thesis, TU Delft, Publications on Geodesy, 59. Publication of
Netherlands Geodetic Commision.

Sithole, G. and Vosselman, G. (2004). Experimental comparison of filter
algorithms for bare-earth extraction from airborne laser scanning point
clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 59(1-2):85—
101.

Sotoodeh, S. (2006). Outlier detection in laser scanner point clouds. In
The international archives of the photogrammetry, remote sensing and spatial
information sciences, volume 36, pages 297—302. ISPRS.

Sotoodeh, S. (2007). Hierarchical clustered outlier detection in laser scanner
point clouds. 36.

Sun, S. and Salvaggio, C. (2013). Aerial 3d building detection and modeling
from airborne LiDAR point clouds. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 6(3):1440-1449.

Szeliski, R. (2011). Computer Vision. Springer London.

Teutsch, C., Trostmann, E., and Berndt, D. (2011). A parallel point cloud
clustering algorithm for subset segmentation and outlier detection. In
Remondino, F. and Shortis, M. R., editors, Videometrics, Range Imaging,
and Applications XI. SPIE.

Tian, X., Xu, L., Li, X,, Jing, L., and Zhao, Y. (2012). A kernel-density-
estimation-based outlier detection for airborne LiDAR point clouds. In
2012 IEEE International Conference on Imaging Systems and Techniques Pro-
ceedings. IEEE.

Tomlin, C. D. (1983). A map algebra. In Proceedings of the 1983 Harvard
Computer Graphics Conference, pages 127-150.

Vo, A.-V,, Truong-Hong, L., Laefer, D. F,, and Bertolotto, M. (2015). Octree-
based region growing for point cloud segmentation. ISPRS Journal of
Photogrammetry and Remote Sensing, 104:88-100.

Vosselman, G. and Maas, H.-G. (2010). Airborne and terrestrial laser scanning.
Whittles Publishing.

Wang, C. and Glenn, N. (2009). Integrating LiDAR intensity and elevation
data for terrain characterization in a forested area. IEEE Geoscience and
Remote Sensing Letters, 6(3):463—466.

Worboys, M. and Duckham, M. (2004). GIS: a Computing Perspective, Second
Edition. CRC Press.

BIBLIOGRAPHY |

Wu, B, Yu, B, Yue, W, Shu, S., Tan, W., Hu, C., Huang, Y., Wu, J., and Liu,
H. (2013). A voxel-based method for automated identification and mor-
phological parameters estimation of individual street trees from mobile
laser scanning data. Remote Sensing, 5(2):584—611.

Xiong, X., Munoz, D., Bagnell,]. A., and Hebert, M. (2011). 3-d scene anal-
ysis via sequenced predictions over points and regions. In 2011 IEEE
International Conference on Robotics and Automation. IEEE.

Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L,, Yan, J., and Zhang, C.
(2003). A progressive morphological filter for removing nonground
measurements from airborne LIDAR data. IEEE Transactions on Geo-
science and Remote Sensing, 41(4):872-882.

Zhuang, Y., Liu, Y., He, G., and Wang, W. (2015). Contextual classification of
3d laser points with conditional random fields in urban environments.
In 2015 IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS). IEEE.

75

A REFLECTION

This section aims to reflect on this study related to the main aspects of the
Geomatics for the Built Environment (MSc.) program from Delft University
of Technology. Geomatics is the science concerning (1) data acquisition,
(2) data management, (3) data analysis, (4) data visualization, and (5) data
quality. This graduation project shows knowledge of all five aspects.

Data acquisition is done with LiDAR. Although, all data is collected and
provided by third parties, specifications and details are explained in § 2.1.

Data storage-/management is structured by using .las and .laz files.
Properties are given in § 2.1.2. Julia scripts are used to read and write the
data. Moreover, an alternative way of reading the data for better memory
requirements is discussed in § 6.1.2 Streaming. Finally, different data models
are discussed in § 2.3.

Data analysis covers the largest part of this thesis and is discussed theoret-
ically (§ 2.4) as well as implemented in a workflow (Chapter 4 and Chapter
5)-

Data visualization is an important part, because of the visual aspects of
point cloud data. Therefore, visualizations are present in many steps.

Finally, data quality is assessed in two ways. First, the input data is dis-
cussed in § 5.2. Secondly, an assessment of the processed point clouds is
given in § 5.4.

77

COLOPHON

This document was typeset using IXIEX. The document layout was gen-
erated using the arsclassica package by Lorenzo Pantieri, which is an
adaption of the original classicthesis package from André Miede.

	1 Introduction
	1.1 Research motivation
	1.2 Objectives & Research questions
	1.3 Scope of Research
	1.4 Thesis outline

	2 Theoretical background
	2.1 Airborne Light Detection And Ranging
	2.1.1 Discrete and full waveform LiDAR
	2.1.2 Properties of LiDAR data
	2.1.3 Errors in aerial laser scanning

	2.2 General outlier detection approaches
	2.3 3D digital representations
	2.3.1 Triangulation
	2.3.2 Rasterization and Voxelization

	2.4 Binary raster processing
	2.4.1 Pixels, Neighborhoods & Topology
	2.4.2 Connected Components Labeling
	2.4.3 Mathematical Morphology

	2.5 Local point statistics
	2.5.1 Planarity of � distributed points

	3 Related work
	3.1 Existing filtering tools
	3.2 Previous Work—Outlier detection
	3.2.1 Distance-based Methods
	3.2.2 Density-based Methods
	3.2.3 Distribution-based Methods
	3.2.4 Clustering Methods
	3.2.5 Methods based on Mathematical Morphology
	3.2.6 Other Related Work

	3.3 Group-based vs. point-based filter techniques
	3.4 Additional intensity information
	3.5 Conclusions & remarks

	4 Methodology
	4.1 Overview of binary voxel-based approach
	4.1.1 Method Motivation: Detecting Outliers with Connectivity
	4.1.2 Method Motivation: Minimize False Positives
	4.1.3 A Voxel-Based Solution
	4.1.4 5 Analysis Techniques

	4.2 Voxelization
	4.3 Local Density
	4.4 Connected Components Labeling
	4.4.1 Morphological Transformation: Closing

	4.5 Lidar Point Intensity
	4.5.1 Data Statistics

	4.6 Planarity

	5 Implementation & Results
	5.1 Structure of developed prototype
	5.1.1 Data Structures
	5.1.2 Implementation of Algorithms

	5.2 Datasets
	5.3 Quality Metrics
	5.4 Results
	5.4.1 Outlier detection: overall algorithm performance
	5.4.2 Voxel Size Selection and Performance
	5.4.3 Common Classification Problems
	5.4.4 Method Breakdown—Operation Evaluation

	5.5 Computation Time and scalability
	5.5.1 Voxel size
	5.5.2 Size of dataset
	5.5.3 Memory allocations

	5.6 Comparison to Existing Method

	6 Discussion & future work
	6.1 Experiments with scalability issues
	6.1.1 From Coarse To Fine
	6.1.2 Streaming

	6.2 separation by water
	6.3 classification
	6.3.1 Voxel Classification Using Machine Learning

	6.4 Boolean grid vs. group-based
	6.5 Manual parameter adjustments

	7 Conclusions & Recommendations
	7.1 conclusions
	7.1.1 Research questions
	7.1.2 Contributions
	7.1.3 Recommendations & Remarks

	A Reflection

