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Chapter 1 

Introduction 

1.1 The doubly censored Incubation Time of AIDS 

The incubation time of a di se ase is defined as the time interval between time of infection 
and time of manifestation of clinical disease. In case of AIDS, many studies can not identify 
the date of infection with the human immunodeficiency virus (HIV) , the virus which causes 
AIDS. Then the incubation time of AIDS (= time to AIDS) is defined as the time interval 
between the time of seroconversion, the appearance of antibodies against HIV, and the time 
of diagnosis of AIDS. The incubation time of AIDS is of interest for several reasons. It is 
important to find significant covariates of the incubation time, i. e. factors that do have an 
infiuence on the duration of the incubation time. Furthermore, the incubation time is of 
interest for its key role in the method of backcalculating for estimating the number of HIV 
positive individuals in the population (see [2]) , and in the development of mathematical mo
dels of the epidemic. 

For statistical analysis it would be ideal to know exactly the time of seroconversion and the 
time of diagnosis for all participants in a cohort study on AIDS. However, due to the periodic 
screening and limited follow-up time of participants both time points are likely to be censo
red. In fact, in every study a person 's seroconversion moment is only known to have occurred 
af ter time u of the last seronegative test and before time v of the first seropositive test. The 
time interval (u , v] is called the seroconversion interval. For some cases the last negative test 
is not available, then for time u we may take a lowerbound for the moment of seroconversion. 
The moment of AIDS diagnosis z is known exactly or is right censored if the diagnosis has 
not yet been observed. This kind of censoring is of ten referred to as double censoring, since 
both the begin point and the end point of the incubation time can be censored, see figure 
1.1. Therefore, with double censoring two time sc ales play a role in statistical inferences: 
the seroconversion time scale, usually the calendar time scale on which the seroconversion 
intervals are situated, and the incubation time scale, the time scale on which the incubation 
time lives, which ranges from 0 to 20 years, or more. 

1 
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Figure 1.1: Double censoring: Moment of seroconversion is interval censored and moment of 
AIDS is possibly right censored 

Outline of this report 

The remaining part of this introduction gives an overview of the available data in Amsterdam. 
Chapter 2 deals with the methods that are already used in the analysis of the incubation time. 
Chapter 3 is devoted to the nonparametrie approach of double censoring and the calculation 
of the estimators. In chapter 4 we will discuss how to include seroprevalent cases into the 
analysis of the incubation time. Chapter 5 will discuss how to use parametric models for 
doubly censored data and the summary will summarize the main results. 

1.2 The Amsterdam Cohort Studies 

In order to study the incubation time and several other aspects of the Human Immunodefi
ciency Virus (HIV) infection and AIDS, several cohort studies were started in Amsterdam in 
the early eighties. A detailed description of the Amsterdam cohort studies can be found in 
[4,6,13] 

The HOM-study 

The HOM-study consists of homosexual men living mainly in and around the city of Amster
dam. The study was started in October 1984. Men were recruited trough announcements 
in the gay press, advertisements and by word of mouth. Only those who were free of AIDS 
symptoms were allowed to enter the study. Until April 1985 748 men entered the study of 
whom about one third was already seropositive; these men are called seroprevalent cases. 
We only know that the seroconversion of these men took place between the start of the HIV 
epidemie and their entrance into the study (between October 1984 and April 1985). For the 
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start of the HIV epidemie we chose 1980. This is based on the study in [7], where it is shown 
that the number of HIV infections before 1980 is very low. Therefore the seroprevalent cases 
result in wide seroconversion intervals of more than 4 years. Between April '85 and February 
'88 only seronegative men could enter the study. Together with persons who wh ere negative 
at the start of the study this resulted in a so-called seroconverter group of over 100 men 
with narrow seroconversion intervals of a few months width. Af ter 1988 both seropositive 
and seronegative men could enter the study. Seropositive men who entered the study at th is 
stage have very long seroconversion intervals , since we only now that seroconversion took 
place between 1980 and sometime af ter 1988. Figure 1.2 shows the seroconversion intervals 
for the HOM-study ordered by the left endpoints of the intervals, it clearly shows the three 
different groups: the seroprevalent cases entering in 84/85, the seropositives entering af ter 
1988 and the seroconverters. Seropositives were seen every 3 months. Clinical, epidemiologi
cal and social scientific data are collected with standardized questionnaires and by physical 
examination. Blood samples are drawn and cryo preserved for virological and immunological 
tests. 

Seroconversion Intervals 
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Figure 1.2: Seroconversion intervals for the HOM-study 
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The HBvac-study 

The HBvac-study consists of homosexual men who have participated in a clinical trial to test 
the efficacy of a hepatitis B vaccine, the so-called HBV studies [3]. A total of 800 men were 
enrolled, 120 of these 800 men entered the HOM-study in 1984. In the HBV studies blood 
samples were taken and stored at a regular basis. In 1990 part of the men who participated in 
the HBV studies were asked to participate in an HIV-1 follow-up study and HIV-1 antibody 
testing of specimens collected and stored between 1982 and 1990. The seroconversion intervals 
of 89 men were found via stored blood samples or via follow-up. Figure 1.3 shows these 
intervals ordered by the left endpoint of the intervals. We see that the majority of the 
individuals were already seropositive in 1990. For some of those individuals a last negative 
test could only be restored from the blood samples, resulting in long seroconversion intervals 
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Figure 1.3: Seroconversion intervals for the HBvac-study 
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The IDU-study 

The IDU-study consists of injecting drug us ers and was started at the end of 1985. At 
that time only one drug user had been reported with AIDS. However, studies in the US 
[17] showed that HIV could spread very fast among injecting drug users. The cohort study 
among drug users is an open study in which new participants have been enrolled continuously. 
Participants were recruited at methadone outposts and at sexually transmitted disease clinics 
for drug-using prostitutes. Some epidemiological results of the cohort study among drug users 
can be found in [9]. Figure 1.4 shows the seroconversion intervals of 99 participants of the 
IDU-study ordered by the left endpoint of the intervals. 
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Figure 1.4: Seroconversion intervals for the IDU-study 
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Chapter 2 

Already used Methods in the 
Amsterdam Cohort Studies 

In this chapter we describe two methods that have already been used to estimate the AIDS 
incubation time of the Amsterdam cohorts, the Kaplan-Meier method and the interval trans
formation method. These methods are univariate methods, i.e. the doubly censored nature 
of the data is not taken fully account of. 

2.1 The Kaplan-Meier Estimator 

2.1.1 The Likelihood 

The Kaplan-Meier estimator (KME) is the most widely used estimator in the analysis of the 
HIV incubation time. Just take a random volume of the American Journalof Epidemiology 
and the Kaplan-Meier plots will emerge. The KME is suitable for estimating the distribution 
function F of a random variabie T if one has a sample that consists of directly observable 
realizations and right-censored observations of T . If we assume th at the censoring mechanism 
is independent of T, one can write down the log-likelihood as follows: 

n 

10gL = L bi log(J(ti ))+(l-bi)log(l-F(tfc)) (2.1) 

where bi = 1 if observation i is observed directly and bi = 0 if observation i is right censored. 

Maximizing (2.1) with respect to F under the restriction that F(t2) ~ F(t l ) ift2 ~ tI , results 
in the maximum likelihood estimator Fn. One can show (see [12]) that Fn satisfies 

1 - Fn (t) = TI ni - di 
i: ti <t ni 

(2.2) 

where ni is the number of individuals at risk just prior to ti and di is the number of uncensored 
individuals who have an AIDS diagnosis at ti. So from (2.2) we see that the survival curve 

7 
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S(t) = 1 - F(t) is a step function and has steps at the directly observable realizations ti . 
Confidence intervals for the survivor function can be obtained by Greenwood's formula (see 
[12]) for the asymptotic variance of 1 - F(t): 

Var [1 - F(t)] = (1 - F(t))2 L di . 
ti<t ni(ni - di) 

2.1.2 Midpoint Imputation 

In the cohort studies we have no directly observable realizations of the incubation time, 
sin ce we only know that the moment of seroconversion of individual i lies in the interval 
(Ui, Vi)' An ad hoc approach is to impute the moment of seroconversion as the midpoint 
of the interval mi = (Ui + vi)/2. For individu als who have an AIDS diagnosis at time Zi, 
the incubation time ti = Zi - mi is observed and for individuals who did not have AIDS at 
time Zi the incubation time is right censored with value tfC = Zi - mi . With these imputed 
incubation times we can use the Kaplan-Meier estimator. Figure 2.1 shows an example of 
a Kaplan-Meier estimator together with the 95% confidence intervals for the data of the 
seroconverter group of the HOM-study. The strategy of imputing midpoints will not induce 
large biases in the estimator of the incubation time distribution as long as the majority of 
the seroconversion intervals is small. As a rule of thumb, if the width of the seroconversion 
intervals is smaller than 2 years, the bias in the estimator of the incubation time is small, see 
[2]. For the HOM-study this means that we have to leave out a lot of seroprevalent cases, 
since these cases have (very) wide seroconversion intervals , see figure 1.3. 
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Figure 2.1: Kaplan-Meier estimate of the incubation time of the seroconverters, based on 
midpoint imputation. 
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2.1.3 Expected Seroconversion Dates 

A bet ter approach, certainly for wider seroconversion intervals, is to estimate the date of 
seroconversion by the expected date of seroconversion, given that seroconversion occurred 
between Ui and Vi. To do this we need an estimate ê of the seroconversion distribution, this 
estimate is based on the observed seroconversion intervals. An nonparametric estimator for 
Gis the nonparametric maximum likelihood estimator, described in the next section. Given 
this seroconversion distribution ê and the seroconversion interval (Ui, Vi) for person i we can 
calculate the corresponding expected date of seroconversion Si, 

_ J:; sdê(s) 
Si - A A 

G(Vi) - G(Ui) 
(2.3) 

The Kaplan-Meier is then used on the estimated incubation times ti = Zi - Si to estimate the 
incubation time distribution. For the HBvac-study this strategy is applied since this cohort 
contains some very long seroconversion intervals. First an estimation of the seroconversion 
distribution G is calculated based on the seroconversion intervals shown in figure 1.3; then 
instead of using midpoints the expected seroconversion dates are calculated based on G. 
Figure 2.2 shows the expected seroconversion dates. For the longer intervals these dates are 
shifted one or two years to the left compared with the midpoints. Because of these earlier 
seroconversion the survival of the total group is slightly better, compared with the survival 
based on midpoints as illustrated in figure 2.3. 
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Figure 2.2: Seroconversion intervals of the HBvac-study, together with the expected serocon
version dates (0). 
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Figure 2.3: dark curve: estimation based on midpoints, light curve: estimation based on 
expected seroconversion dates 

2.2 Interval Transformation 

If seroconversion intervals are wide then choosing a seroconversion date in that interval by the 
midpoint method can lead to biases in the estimate of the incubation time. Instead of using 
partially right censored data as in the Kaplan-Meier case, we can take account of the interval 
censored nature of the data. For a person with an observed AIDS diagnosis we can transform 
the seroconversion interval into an interval in the incubation time scale (figure 2.4 illustrates 
this). For a person with a right censored AIDS diagnosis the transformation results in a 
minimal incubation time. The incubation interval is unbounded as illustrated in figure 2.5. 
Af ter this transformation of the data we can apply a nonparametrie maximum likelihood 
method for interval censored data, which is described extensively in [8] . The estimator for 
the incubation time distribution F is obtained by maximizing the following log-likelihood: 

n 

logL = L 8;log(F(r;)-F(l;)) + (1-8;)log(1-F(l;)) (2.4) 
;=1 

under order restrietions for F , i. e. F must satisfy the conditions of a distribution function. 
Here 8i = 1 if individual i has an AIDS diagnosis, and (li , ril is the incubation interval ob
tained af ter transformation and contains the unobserved incubation time. If 8; = 0 th en 
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Figure 2.4: Transformation from seroconversion time scale to incubation time scale 
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individual i has a right censored AIDS diagnosis and we only know that the incubation time 
is longer than ti. Optimization of (2.4) is not as straightforward as in the Kaplan-Meier case, 
an iterative search algorithm is needed to find the solution. The iterative convex min orant 
(lCM) algorithm is a simple and fast algorithm to find the solution in case of interval censo
red data. 

We note that likelihood approach (2.4) is only an approximation of the reallikelihood, since 
the method described in [8] assumes that the observation times are independent of the incu
bation time. However, for interval transformation this is not the case. For example, take an 
individual i with an observed AIDS diagnosis. His observed data is (Ui, Vi, Zi , 8i = 1). If we 
transform this to interval censored data for the incubation time we get: ( ti = Zi - Vi, Ti = 
Zi - Ui, 8i = 1) , the probability of this event is given by lP(L = ti , R = Ti , ti ::; T ::; Ti) ' 

So if F is the distribution function of the incubation time Tand F is independent of the 
observation time distribution (L, R) then we would get the term corresponding with 8 = 1 
in formula (2.4). However this not the case since ti and Ti contain Zi, which is the sum of 
seroconversion period and the incubation time period. 

2.2.1 The lCM Algorithm 

Maximization of (2.4) boils down to minimization of a convex function </> over the cone 
C = {,B E lRn 

: 0 ::; ,B1 ::; ... ::; ,Bn ::; I}. In case of interval transformation </> has the form 

N 

</>(,B) = - L 8i 10g(,Bj; - ,BkJ + (1 - 8i ) 10g(1 - ,BjJ , 
i=l 

where ji and ki are indices indicating which ,B's correspond with F(Ti) and F(ti ) respectively. 
The lCM algorithm is especially designed for such problems, see [11]. In the k-th iteration 
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Figure 2.5: Transformation from seroconversion time scale to incubation time scale 

of the algorithm, 4> is locally approximated at (J(k) with a special Taylor expansion, 

where the Hessian matrix W((J(k)) evaluated at (3(k) only contains the diagonal elements, 

The quadratic programming problem 

S = argmin q({3) 
{JEe 

can th en be solved directly, Si is the left derivative of the convex minorant of the cumulative 
sum diagram consisting of the points Po = (0,0) and 

Pj = (t WI , t WIYI) j = 1, ... , n 
1=1 1=1 

evaluated at p;. This result is given in [11] and illustrated in figure 2.6. 

We get the following algorithm: 

• step 1. k = O. Choose a starting value (3(k); one can take (3y) = i/n, i = 1, ... , n. 



2.2. INTERVAL TRANSFORMATION 

• step 2. Calculate (J(k+1) via the cumulative sum diagram: 

• step 3. If convergence is reached: stop, else: proceed with step 4. 

• step 4. If (J(k+l) leads to a direction of sufficient descent: 

then k = k + 1; proceed with step 2. 
Else perform a line search to create a direction of descent (J(k+ 1) , i. e. 

(J( k+1) = argmin iP((J(k) + À((J(k+1) - (J(k))). 
09:;;1 

Let k = k + 1; proceed with step 2. 

Figure 2.6: solid line: convex minorant, dashed line: cumulative sum diagram 

13 

In step 3 we have to check for convergence of the algorithm, one general way to test conver
gence is to check whether or not the decrease in function value is fractionally smaller than 
some tolerance. For minimizing convex functions on cones there is an alternative approach, 
convergence of the algorithm can be checked by the so-called Fenchel conditions (see [10, 11]) . 
Without loss of generality we assume that the optimal solution IJ is blockwise constant and 
define k = (kl> ... ,kJ) by 
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A convex function rjJ has its minimum ~ on the cone C if and only if: 

wh ere the indices j also contains j = J if 13KJ+l' . . . ,13n < l. 
It is proven in [11] that the line search in the algorithm will lead to a converging algorithm. 
We use Armijo's rule to perform aso called inexact line search, i.e. we do not search for the 
exact location of the minimum of rjJ along the line segment 

it suffices to find an approximate line optimization. See [1] for a complete description. 

In fact there is an even faster algorithm that works well for interval censoring. It is the 
so-called hybrid algorithm which is a combination of the lCM and the EM algorithm (see 
section 3.3.1). Af ter each calculation of /3(k+ 1) we add an extra EM step to refine /3(k+l) 

before calculating a new iterate with the quadratic approximation. For likelihood (2.4) it 
is an empirical finding that this hybrid algorithm converges faster than the lCM algorithm 
alone. 

2.2.2 Results from the Cohort Studies 

Figure 2.7 shows an estimate (dark line) of the incubation time based on interval transfor
mation. The data are from the seroconverter group of the HOM-study. For small seroconver
sion intervals th ere is not much difference in the location of the survival curves between the 
Kaplan-Meier method and the interval transformation method. However, the smaller num
ber of jumps in the survival curve with the interval transformation method better reflects 
the uncertainty in the seroconversion dates. This is more c1early illustrated if we use the 
data from the HBvac-study, where the uncertainty in the seroconversion dates is larger. The 
difference between interval transformation and Kaplan-Meier is illustrated in figure 2.8. 
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Figure 2.7: Estimates of the incubation time distribution of the seroconverters: interval 
transformation (dark curve) and Kaplan-Meier (light curve). 
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Chapter 3 

Double Censoring 

The methods of the following chapters differ from the on es of the preceding chapter. We now 
take account of the interval censored nature of the seroconversion dates and right censored 
moment of AIDS diagnosis simultaneously, a so-called bivariate approach. 

3.1 The Nonparametric Model 

The available data are {Ui,Vi,Zi,Ói} for i = 1, ... ,N, where (ui,vil is the seroconversion 
interval, Zi, the time of right censoring or diagnosis and Ói an indicator indicating whether 
the time of diagnosis is right-censored (Ói = 0) or observed directly (bi = 1). The incubation 
interval is defined as (Zi - Vi, Zi - Ui) ' Let Y be the date of seroconversion with distribution 
function G and density 9, Z date of AIDS diagnosis and T = Z - Y the incubation time with 
distribution function F. We must make three assumptions that simplify the construction of 
the likelihood (see [2]) . 

1. A cohort of uninfected individuals is assembled at a fixed calendar time, say s = O. 

2. The date of seroconversion is independent of the incubation time. 

3. The censoring times Ui, Vi and possibly Zi are generated by a point process that is inde
pendent of both seroconversion time and incubation time, i. e. if we are only interested 
in the estimation of the seroconversion and incubation time distribution we can leave 
out the terms in the likelihood which contain the probability of the observation times. 

The three assumptions do not always hold in practice. For example assumption one is violated 
if a cohort contains seroprevalent cases. These seroprevalent cases will induce a truncation 
effect and the likelihood must be corrected for this effect. However, if these seroprevalent 
cases enter in the beginning of the AIDS epidemic, the truncation effect can be ignored wit
hout inducing a large bias. 

17 
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We can express the log-likelihood for the data as follows: 

10gL = ~ Óilog [[~~~i g( Zi - s)dF(s)] + (1- ói)log [[~~~i g(Zi - s)[I- F(s)]ds] (3.1) 

The terms in the likelihood corresponding to 6i = 1 arise as follows. Of all the incubation 
times s, only those who occurred between Zi - Vi and Zi - Ui are admissible for individual i. 
Once we have assumed that the incubation time for individual i is a certain s we know that 
the seroconversion time is Zi - s . Integrating over all possible s we get the term corresponding 
with Ói = 1 in the likelihood. For an individual i with a right-censored AIDS diagnosis, we 
know that every seroconversion time between Ui and Vi is possible for th is person. If we 
assume that the seroconversion time is a certain s , then the incubation time is at least Zi - s 
Integrating over all possible seroconversion times s we get the term corresponding with bi = 0 
in the likelihood. 

Log-Likelihood (3.1) can be seen as a generalization of the log-likelihood corresponding to 
the Kaplan-Meier and interval transformation. If we take for 9 in each likelihood term an 
indicator function which equals 1 at the midpoint of the seroconversion intervals and zero 
elsewhere, th en the integrals in the likelihood function reduce to probabilities of a single 
incubation time if bi = 1 or a single censoring time (bi = 0). This is equivalent to the 
Kaplan-Meier log-likelihood. The interval transformation log-likelihood can be obtained by 
taking 9 constant for the terms where 6i = 1, the seroconversion density 9 then disappears 
from the integral and the term reduces to a term which is equivalent to interval transforma
tion. For terms where Ói = 0, we take for the seroconversion density 9 an indicator function, 
reducing the integral to a term which is the survival of a single incubation time. 

With a completely parametric analysis one assumes that the seroconversion time distribution 
belongs to a certain class of distributions, {Gel : BI E 8 1 C IRdl}, and the incubation time 

distribution belongs to a certain class of distributions {Fe2 : B2 E 8 2 C IRd2}. Then maximi
zation of (3 .1) with respect to BI and B2 results in the estimates of BI and B2 , see chapter 5. 
With a nonparametric analysis no assumptions for F and G are made, we try to estimate 
the 'complete' distributions F and G by maximization of (3.1) with respect to F and G. 
However, we can not allow just 'everything' for G and F. The following example shows that 
in that case the log-likelihood can be made infinite. 

If we take for the seroconversion time density g(x) = cl V -x + Vi, and for the incubation time 
density f(x) = cl I VX - Zi + Vi, then (3.1) becomes infinite, so to make th is maximization 
sensible we must restrict G and F to a certain class of functions. For example, the class of 
functions with bounded derivative would exclude the previous example. However, the usual 
approach is to take the distributions F and G discrete and let them live on a finite grid. If 
we let F live on the grid 0 < tI < .. . < t., then G lives on the grid 0 < Yl < .. . < y" which 
will be induced by the grid of F in such a way that Yj is one of the points of Zi - tk as long 
as Zi - tk is in the seroconversion interval (Ui, Vi]' 
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3.1.1 The Grid 

The number of gridpoints (tk) in the incubation time scale determines the 'difficulty' of the 
estimation problem. If this number is large then this wil! induce an even larger nu mb er of 
grid points (Zi - tk) in the seroconversion time. So a fine grid can lead to time consuming 
calculations. However, one should not take a too coarse grid to save time. A too coarse grid 
may not reveal the subtie patterns in the shapes of the distributions. There are several ways 
to define a grid: 

• An evenly spaced grid. Divide the time scale in periods of the same length, three 
months, say, and let the incubation time distribution live on that grid and the sero
conversion time distribution on the grid induced by the incubation time grid. Or let 
the seroconversion time distribution also live on a evenly spaced grid , this is wh at De 
Gruttola and Lagakos [5] used in their illustration. In fact they need a grouping in 
both time scales of the data to avoid the problem of inducing a new gridpoint . 

• A more data-adaptive method is to use a right-endpoint grid or left-endpoint grid. 
For each person, one determines the right end point or left endpoint of his incubation 
interval as a gridpoint. This means that in periods where there are many incubation 
intervals, there are more gridpoints. The number of gridpoints in the incubation time 
scale equals the number of individuals. For the seroconversion time scale the number 
of gridpoints is much larger, seven times the number of data, say. 

Example of induced seroconversion grid 

Ifwe have the fol!owing data, notated as (Ui; Vi; Zi) : (0.5; 4; 8) , (2; 5; 10.5) and (1.5; 3; 10) then 
the left endpoints of the incubation intervals form the grid ti = 8 - 4 = 4, t2 = 10.5 - 5 = 5.5 
and t3 = 10 - 3 = 7. Each grid point in the incubation time scale induces one or more 
points in the seroconversion scale. Incubation time ti = 4 willlead to a seroconversion time 
of ZI - ti = 8 - 4 = 4, incubation time 5.5 will lead to 8-5.5=2.5 and 10.5-5.5=5, and 
incubation time 7 willlead to 8-7=1, 10.5-7=3.5 and 10-7=3. So the seroconversion grid is 
YI = 1, Y2 = 2.5,Y3 = 3, Y4 = 3.5,Y5 = 4 and Y6 = 5. 

3.1.2 The Likelihood 

The likelihood is a discrete version of (3.1). If we assume that the seroconversion intervals 
are open to the left and closed to the right we get the fol!owing formula: 

N 

L Óilog 

+ (1 - Ói) log (3.2) 

wh ere G(Zi - tk)- means the value of G at the largest gridpoint smaller than Zi - tk and 
to = O. If we take the seroconversion intervals open to right and closed to the left we get a 
somewhat different formula. 
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Define the following variables: 

(Jk F(tk) 

aik G(Zi - tk) 
Ki {k I Zi - Vi :S tk < Zi - u;} , i = 1, ... , N 

Maximization of (3.2) with respect to the distributions F and G is equivalent to the following 
constrained optimization problem: 

N 

min -logL 
o. ,{3 

- L Ói log L ({Jk - (Jk-1)(aik - aik) + 
i = l kEK, 

+ (1 - Ói) log L (1 - f3k-1)(ai,k - ai,k+1) (3 .3) 
kEK, 

under the restrictions 

(aik) a distribution function 

o :S {J1 :S . .. :S (Js :S 1. 

The log-likelihood (3.2) has already been discussed by De Gruttola and ALagakos [51. They use 
the observed Fisher information matrix to estimate the variances of F(tk) and G(Yj) . This 
only makes sense if the grid (number of parameters) is fixed as the nu mb er of observations 
tends to infinity, since then one can expect that the usual maximum likelihood theory holds. 
Groeneboom and Wellner [8J showed th at in interval censoring the NPMLE of F(t) for fixed 
t converges to a distribution which is not normal and that the rate of convergence differs 
from the usual Vn. Sin ce we can consider double censoring as a generalization of interval 
censoring, we can also expect non normallimiting distributions for F(t) and G(t) . Precise 
asymptotic properties have not been derived yet. 

Example 

We have observed two individuals, one with seroconversion interval [1, 3J and AIDS diagnosis 
at 7, the other with seroconversion interval [3,4J and AIDS diagnosis 9. We take as grid for 
the incubation time scale 0, 4,5 and for the seroconversion time scale 0, 2, 3, 4, the 2 is taken 
in the seroconversion grid since 7-5=2 lies in the seroconversion interval of person 1. Then 
the corresponding constrained maximization with respect to F and G is given by: 

max log[ (F(4) - F(0))(G(3) - G(2)) + (F(5) - F(4))(G(2) - G(O)) J 

+ log[(F(5) - F(4))(G(4) - G(3))J 

restricted to 

o :S G(O) :S G(2) :S G(3) :S G( 4) :S 1 

o :S F(O) :S F( 4) :S F(5) :S 1 
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3.2 Piecewise uniform Distributions 

The nonparametric approach described in this chapter is closely related to a weakly structured 
parametric model (see [5]) for the incubation and seroconversion time distribution. Until now 
we assumed a discrete time scale, wh ere the probability masses were placed on the gridpoints. 
It is also possible to have a slightly different view on this; choose a grid ta < ti < . .. < t s 

for the incubation time scale and a grid Ya < YI < .. . < Yr for the seroconversion time scale, 
and then assume that the incubation time and seroconversion time are piecewise uniformly 
distributed, i.e. the heights of the distribution functions F(t) and G(t) in a gridpoint are 
given by: 

F(tk) = 13k k = 1, ... , S 

G(tk) = aj j = 1, ... , r 

and between two gridpoint the distribution function is linearly interpolated. The a/s and 
13k's must satisfy the order restrietions 0 :::; al :::; . . . :::; ar :::; 1 and 0 :::; 131 :::; . .. :::; 13s :::; 1, 
making G and F (defective) distribution functions. 

Define Ki as the set of indices which indicates which tk 's are admissible for the i-th incubation 
interval, 

K · = {klz · - v < tk < Z· - u·} . '& '& t __ t 1 

Define lik as the set of indices which indicates which y/s correspond with tk for individual i . 

Then the (pseudo) log-likelihood is given by: 

t Ói log [L (or~)(13k - 13k-I) L Og)(aj - aj-d)] + 
i=1 kEK, JEJ,. 

+ (1 - Ói) log [L ((1 - 13k-I)L Og)(aj - aj_I))] (3.4) 
kEK, JEJ,. 

where Or~) E (0,1) is a fraction which indicates how much of the interval (tk-I , tk] is co~red 
by the incubation time interval ( Zi - Vi, Zi - Ui], and oiJl E (0, 1) is a fraction which indicates 
how much of a part the interval (Yj-l, Yj] is covered by (Zi - tk, Zi - tk-I] . An advantage of 
this approach is that we don't have to use an induced seroconversion grid. In the previous 
section, if tk was a gridpoint in the incubation time scale then Zi - tk was a gridpoint in 
the seroconversion time scale, since it could be a moment of seroconversion for individual i . 
With the piecewise uniform approach we only indicate between which two gridpoints sero
conversion could take place. 
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Formula (3.4) needs some words of explanation. First , it is not the log-likelihood itself, 
the expression (Ok - Ok- r) in the terms corresponding with bi = 1 should contain an extra 
constant indicating the distance between two successive gridpoints. However this constant 
has no infiuence on the maximization of the likelihood. Second, the terms corresponding with 
bi = 0 are only approximations of the real likelihood term corresponding with the piecewise 
uniform approach. Another approach is to let F be piecewise constant (a step function), 
which williead to a likelihood as in 3.4. 

Example 

incubation 
time scale 

t11 

Zi - U i = 11 

t9 

ts 

Zi - Vi = 7 

- - - - - - - -1- - - + - - - - -

______ __ 1 ___ .l _____ ...J _____ _ 

I I I I 
I I 

I I I I 
______ __ 1 ___ + _____ -I ______ L - -

I I I I 
I 

Ys Y6 
Vi = 8 

Y7 
seroconversion 
time scale 

Figure 3.1: Incubation interval and seroconversion interval 

Figure 3.1 shows an individual with seroconversion interval (4,8) and an incubation interval 
(7,11). The numbers along the axis are the indices of the corresponding gridpoints, we can 
see that only a part of /311 - /310 is admissible, the corresponding part in the seroconversion 
time scale is only a part of as - 04. The log-likelihood term for this individual is given by: 

log [ 0.6(/311 - /3lO)O.4(OS - (4) 

+ (/310 - /39)(0.3(os - (4) + 0.5(06 - as)) 

+ (/39 - /3s)(0.6(06 - as) + 0.15(07 - (6)) 
+ 0.7(/3s - /37)(0.35(07 - (6)) 1 
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3.3 Optimization of the Likelihood 

We first note that the optimization problems arising from double eensoring are weIl defined, 
i.e. there is an optimum for (3.4) sinee the likelihood funetion is continuous on a bounded 
parameter space. The optimization of the likelihood ean be done in several ways. One 
simple algorithm is the Expeetation Maximization (EM) algorithm; another more advaneed 
algorithm is the Sequential Quadratic Programming (SQP) algorithm. Both are described in 
the following seetions. 

3.3.1 The EM Algorithm 

To solve the maximization problems (3.3) and (3.4) we ean use the EM algorithm. The 
EM algorithm is widely used for missing data problems. For doubly-eensored data we use 
a generalization of the self-eonsisteney algorithm proposed by Turnbull [22], described by 
De Gruttola and Lagakos [5]. To use the EM algorithm it is neeessary to reparameterize 
problems (3.3) and (3.4). Rearrange (Xik into a vector (Xj so that (Xj ~ (Xj+l, and define the 
following variables 

ik (3k - (3k-1 

Wj (Xj - (Xj_1 

{ 0

11 if Ói = 1 and Ui ~ Yj ~ Vi and Zi - Vi ~ tk ~ Zi - Ui 

(X~k if Ói = 0 and Ui ~ Yj ~ Vi and Zi - Vi ~ tk ~ Zi - Ui 

else 

the (X;k'S indieate whether or not a speeific combination of Wj and ik are admissible for 
observation i. So instead of using (Xj and (3k, which represents the height of the distributions 
we use the probabilities Wj and ik. For example, problem (3.3) ean now be reformulated as 
follows, 

max 10gL 
w,J 

under the restrietions 

N 

L log L L (Xjkikwj 
i=1 j k 

j 

The density i always sums up to one, if we take a point larger than the largest observed 
ineubation time and plaee the remaining probability mass on that point. The same ean be 
done for the seroeonversion time distribution. 

To remove the equality restrietions we ean use the Lagrange multiplier method, to form the 
Lagrange funetion <1>: 

N 

<I> = L log L L (X~dkWj + À1(L Wj - 1) + À 2(L ik - 1) 
i=1 j k j k 



24 CHAPTER 3. DOUBLE CENSORING 

We now have an unconstrained maximization problem which we can solve by setting the 
partial derivatives to zero: 

a~ N i 

aWj 
L L:k ajik h + ).1 0 
i=l L:j L:k ajkwjlk 

a~ N i 

= L L:j aj~Wj + ).2 0 
ah i=l L:j L:k ajkwjlk 
a~ 

LWj -1 0 = a).l j 

a~ 
LIk -1 0 

a).2 k 

If we multiply the equations :: = 0 by Wj and sum them up 
1 

we get the optimal value for ).1, which equals -N. The same trick is used to get the optimal 
value for ).2, which also equals -N. Using these values for ).1 and ).2 we get the following 
equations for Wj and Ik : 

Wj, j = I , ... ,r 

h , k=I, ... ,s 

These equations are called the self-consistency equations (see [8]). 

From these equations we can derive the following algorithm to find the unknown Wj and Ik : 

1.[=0 

2. choose starting values for wy> , I~I> , one can take w;/) = I/r and lP> = 1/ s, where r is 
the number of gridpoints in the seroconversion timescale and s the number of gridpoints 
in the incubation time scale. 

3. compute 

i 
/.Ljk 
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4. refine the values for wJI) and f~l) by 

(1+1) _ Li,k /.Ljk 
Wj - n 

5. l = l + 1. Go to step 3 until convergence 

The EM algorithm is a relatively simple algorithm, it only uses the structure of the derivative 
equations ofthe Lagrange function (self-consistency equations). It is c1ear from the algorithm, 
that on ce a value of Wj or fk is put to zero it remains zero, until convergence. If the starting 
distributions put zero masses at some points tk or Yj , the EM algorithm would converge to a 
solution of the self-consistency equations, but this solution would not necessarily maximize 
the likelihood. Furthermore, it is the general empirical finding that the number of iteration 
steps will increase with the sample size. In [5] it is shown that the solution found by the EM 
algorithm is either a saddle point or a local optimum of the likelihood. 

3.3.2 Sequential Quadratic Programming 

Optimization problems of the form (3.3) and (3.4) are just special cases of a general nonlinear 
programming problem (P), where (P) is defined as 

(P) min J(x) 
xERn 

subject to 

9j(X) :::; 0, j = 1, ... ,mI 

hj(x) =0, j=1, .. . ,m2 

In our case, the likelihood function plays the role of J, a and (3 together compose x, and 
we have no equality constraints, so m2 = 0, and only linear inequality constraints of the 
form aj - aj+! :::; 0 and (3j - (3j+l :::; O. For problems like (P) several algorithms have been 
developed over the past decades. One of those is the Sequential Quadratic Programming 
(SQP) algorithm, which we describe briefly (see [16] for a detailed description). 

The necessary conditions for optimality in (P) without equality constraints are given by the 
so-called Kuhn-Tucker (KT) relations. Define the Lagrange function L as 

mI 

L(x, u) = J(x) + L Uj9j(X) 

then the (KT) relations are given by: 

(KT) 'V xL(x, u) 

j=l 

mI 

'Vf(x) + LUj 'V9j(X) = 0 
j=1 

Uj9j(X) =0, j=l, . .. ,ml 

Uj ~ 0 
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The computations start at an arbitrary point (x{Ol, u{Ol), u{Ol ~ O. In the k-th iteration we 
solve (X{k+l l , u{k+ll) from the first order approximations with respect to x and u of (KT): 

mi 

V'f(x{k l ) + V';xL(X{kl, U{kl)(X - X{k l ) + L UjV'gj(X{k l ) = 0 
j=1 

Ujgj(x{k l ) + U;klV'gj(X{k l )(X - X{k l ) 0, j = 1, ... , mI 

Uj ~ 0, j = I, ... , ml 

(3.5) 

(3 .6) 

(3.7) 

This linear system in (x, u) almost coincides with the Kuhn-Tucker relations of the following 
quadratic programming problem: 

(QP) min 
x 

subject to 

Instead of (3 .6) we find 

Uj[gi (Xk) + V'gi (Xk)'(x - xk)] = 0, j = 1, .. . , mI 

It can be proven, however, that any limit point (x', u') of the sequence { (x{k l , u{kl) }, whether 
it is generated by (3.5) - (3.7) or (QP), satisfies the Kuhn-Tucker relations (KT). 

Two refinements can be made to improve the method. First, a line search can be included, 
instead of solving (QP) directly we generate a search direct ion s{kl from the problem 

min V' f(X{k l )' s + I/2s'V';xL(x{kl, u{kl)S 
s 

subject to 

af ter which we explore f(X{k l + ÀS{kl ), subject to the additional requirement that we have 
to satisfy the inequality restrictions on x, to find a new iterate x{k+ll. Second, we do not 
need the exact Hessian matrix V';'xL(X{kl, u{kl) of the Lagrange function at (X{k l , u{kl) . The 
idea is to replace it with variable-metr.i.c approximations (see [18]). Under mild conditions 
the sequence {(X{k l , U{k l )} converges to a Kuhn-Tucker point (x', u') . 

The SQP algorithm can be seen as a general case of the lCM algorithm, as described in 
section 2.2.1. First, instead of only approximating the objective function with aquadratic 
form with diagonal elements, the SQP algorithm also uses off-diagonal elements in the ap
proximation. Second, the SQP algorithm can take account of more general restrictions than 
the lCM algorithm. For example, with double censoring we have two sets of order restric
tions, which lCM can't handle. However, these two generalizations make the SQP algorithm 
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too slow for interval tranformation. The lCM algorithm is tailor-made for situations with 
interval censored data, since the diagonal approximation and the simple order restrictions 
allow for a very fast cumulative sum diagram solution, whereas the SQP algorithm solves in 
each step a complete quadratic programming problem. 

3.3.3 Multiple optimal Solutions 

It is possible to create doubly censored data problems with multiple (locally) optimal soluti
ons, in principle any algorithm that is used in multiple optimal problems can converge to a 
local optimum only. Take the following trivial example. Suppose there is just one observation 
(5, 9, 15,1) , so the seroconversion interval is (5,9] and the incubation time interval is (6, la]. 
If the grids in both time sc ales are 1,2,3, . . . , then the likelihood is simply 

log( w6flO + W7 fg + wsfs + wgh) · 

Maximizing this likelihood under the restrictions that the w's and f's must sum up to one 
we get several optimal solutions: W6 = 110 = 1 , W7 = Ig = 1 , Ws = Is = 1 and Wg = h = 1 
are all optimal solutions. It is clear that this problem of multiple solutions is merely the 
result of a too fine grid or too few observations. For example if we add an extra observation 
(7,11,17,1) to our example then we only have two optimal solutions: Ws = 110 = 1 and 
Wg = fg = 1. So to avoid non-unique maximum likelihood estimates the grids should not 
be chosen too fine . From the example above it is clear that a seroconversion or incubation 
interval should not contain too many gridpoints, unless there are ot her intervals who have a 
part of the gridpoints in common. 

3.3.4 The Grid 

A too fine grid will not lead to a sen si bie maximum likelihood estimator. To see this we 
take as grid for the incu bation time scale ~ I , 2~ I, . .. and for the seroconversion time scale 
~2, 2~2, . . . . The incubation density is defined as f(s) = Ik if s E (k~l , (k + 1)~d and the 
seroconversion density is defined as g(s) = gj if s E (j~2 , (j + 1)~2], where L Ik~1 = 1 and 
L gj~2 = 1. Likelihood 3.1 can then be rewritten as follows. For terms with 8i = 1 we get: 

r~~~' g( Zi - s)f(s)ds = 
r(HI)<! L Jk g(Zi - s)I(s)ds 

kEK. k<! 

r(HI)<! L Ik Jk g(Zi - s)ds 
kEK. k<! 

r(j+1J<, L Ik L J; g(Zi - s)ds 
kEK. JEJ.. J<2 

= ~2 L L Ikgj . 

Where Ki and Jik are defined on page 21. 
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For terms with bi = 0 we get: 

[~~~' g(Zi - 8)[1 - F(8)]d8 ~ L L fkgj f lf2 . 
kEK, j EJ,k 

The log-likelihood is then given by: 

10gL = ~ [bi k~;j~k fkgj
f
2 + (1- bi) k~;j~k fk9jf l

f
2] ' 

By taking ik = cl fl and gj = cl f2 the likelihood will tend to infinity as fl 1 0 and f2 1 O. 

3.4 Extensions of double Censoring 

3.4.1 Truncation Effects 

The effect of truncation occurs wh en sample data are drawn from a non representative subset 
of a larger population of interest . In the previous sections we assumed that a cohort of 
uninfected persons was assembIed at calendar time 8 = O. However this is not always the 
case; for example the HOM-study contains seroprevalent cases. If we include these cases 
into the study then we may introduce a bias, since these cases could enter the study because 
they were free from AIDS defining illnesses at studyentry. So the effect of this sampling 
scheme is to selectively exclude cases with very short incubation periods, since those who 
developed AIDS before 1984 were not included into the cohort study. We can correct for 
th is bias by using a truncated density in the analysis. For example, suppose we have an 
uncensored sample XI , .. . , X n from a ditribution with dustribution function F and we know 
that truncation occurs at ai, for i = 1, . . . , n. Then we must use the truncated densities 

j(Xi ) 
j(XilXi > ai) = F() 1- ai 

in the likelihood. 

For a censored sample, the estimation of distribution functions via Kaplan-Meier, interval 
censoring or double censoring can also be adapted to account for truncation effects (see 
[19, 21 , 22, 25]) . For example, suppose a prevalent case i enters the study at Vi . Then we use 
the truncated density 

gi(8) g(8) 
(3.8) J;' g(Vi - 8)[1 - F(8)]d8 + (1 - G(Vi)) 

instead of 9 in likelihood (3.1) . The denominator of (3.8) is the probability of being free of 
AIDS diagnosis, this probability is the sum of the probability of being infected and AIDS 
free and the probability of not being seroconverted before studyentry Vi . 
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3.4.2 Interval censored AIDS Diagnoses 

In the Amsterdam cohort studies the moments of AIDS diagnosis are either known or right 
censored. However, in other studies it may occur that (some) moments of AIDS diagnosis 
are interval censored, this occurs when an individualleaves the study at a moment Z1 before 
he has an AIDS diagnosis and dies of AIDS at moment Z2 and no further information is 
available. The AIDS diagnosis is then interval censored by the interval (Z1' Z2), see figure 3.2. 
The moment Z2 can be obtained via the death registries, where moment and cause of death 
are stored for the entire population of a certain area. 

last first 
negative test positive test 

leaving the study 
AIDS free 

death by 
AIDS 

! !! 
~--------------~I --------------------+1 --------------. 

Ui Vi 

Figure 3.2: Double censoring with interval censored AIDS diagnosis 

Individuals with an interval censored AIDS diagnosis contribute the following term to the 
likelihood 

log 1:; g(S)[F(Z2,i - s) - F(Z1,i - s)] ds . 

So the likelihood can consist of three different kinds of terms, terms for known AIDS diagnosis, 
right censored AIDS diagnosis and interval censored AIDS diagnosis. 

3.4.3 The Distinction of Subgroups 

In some cohort studies subgroups can be identified. For example, there may be an indication 
th at men follow a different seroconversion pattern than women. However, it is possible that 
there is no reason to assume a different incubation time distribution. In the modelling of 
double censoring we can stratify into these two groups. The likelihood then contains an extra 
seroconversion distribution which has to be estimated and is given by: 

~ 8i ,m log [f~~~; gm(Zi - S)dF(S)r + 8i ,m log [f~~~; gm(Zi - s)[l- F(S)] dSr-6
; + 

(1 - 8i ,m) log [[~~~; gv(Zi - S)dF(S)r + (1 - 8i ,m) log [[~~~; gv(Zi - s)[l- F(S)]dS] 1-6; 

where 8i ,m = 1 if case i is an man and 8i ,m = 0 if case i is a woman. The densities gm and gv 
are the corresponding seroconversion densities. 
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It can also occur that the group containing information on the seroconversion pattern is larger 
than the group containing information on both seroconversion pattern and incubation time. 
For example, in the IDU-study described in section 1.2 th ere are 113 cases which have been 
selected for the analysis of the incubation time. However, there are more cases but these cases 
only give us only some information on the seroconversion pattern. The likelihood can then be 
extended with terms which only contains information on the seroconversion pattern. These 
terms indirectly contribute to the estimation of the incubation time. We get the following 
log-likelihood function : 

~ ói,Glog [f~~~i g(Zi - S)dF(S)r + (5;,Glog [f~~~i g(Zi - s)[1 - F(S)]dSr-6i + 

(1 - Ói,G) log [{i g(S)dsr + (1 - Ói,G) 10g(1 - G(Vi))1-6i (3.9) 

where Ói,G = 1 if a case contains information on both seroconversion and incubation. The 
last two terms in (3.9) correspond to cases which only contain interval censored information 
and right censored information on the seroconversion time, respectively. 

3.5 Results 

Simulations 

To check the correctness of the implementation of the algorithm we first simulate a data set 
and then try to estimate the seroconversion distribution and the incubation time distribution. 
The seroconversion times Xi are drawn from a Weibull(1.75, 5) and the incubation times 
ti are drawn from a Weibull(2,6) . We can now form the times of aids Zi = Xi + ti. To 
construct the seroconversion interval for case i we form a random grid UI , U2 , U3, . . . , where 
Ui = UI + U2 + ... + U i -l + Band B is a realization of a uniform random variabie U(O, 2) . The 
interval (Uj-l> Uj] is taken as seroconversion interval if Xi E (Uj-l' Uj]. Finally we randomly 
right-censor the time Zi, by taking Zi = min( Ci , Zi) where Ci is a realization of a uniform 
random variabie U(Zi - 3, Zi + 3) . So Zi is right censored (Ói = 0) if Ci < Zi and Zi is observed 
directly (Ói = 1) if Zi > Ci . The SQP algorithm results in the estimates of the seroconversion 
distribution and the incubation time distribution which are depicted in figure 3.3 and 3.4. 
With the simulated data it is also possible to look at the infiuences of different number of 
parameters (grid sizes) on the estimate of the incubation time. It appears that the infiuences 
are smal!. Figure 3.5 shows the plot of the estimates of the incubation time distribution of 
the simulated data. The number of gridpoints varies from 15 to 70 in the incubation time 
scale. 
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Figure 3.3: Step function is the estimated seroconversion distribution of the simulated data
set, smooth function is the 'real ' distribution function 
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Figure 3.4: Step function is the estimated seroconversion distribution of the simulated data
set, smooth function is the 'real' distribution function 
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Figure 3.5: Estimates of the incubation time distribution of the simulated data set with 
different grid sizes. 

The HBvac study 

Figure 3.6 shows the survival curve based on double censoring for the incubation time of the 
HBvac-study, together with a Kaplan-Meier estimate of the incubation time based on the ex
pected seroconversion dates. We see that the double censoring estimate has less larger pieces 
where the survival is constant than the Kaplan-Meier. This reflects the uncertainty of the 
seroconversion period, whereas the Kaplan-Meier method assumes a known seroconversion 
time. 

The HOM-study 

The HOM-study among homosexual men is a much larger cohort than the HBvac and contains 
seroprevalent cases. Two groups of prevalent cases can be distinguished, the first group is 
the group entering at the beginning of the cohort study (1985) and the second group consists 
of persons entering af ter 1988. We leave out the second prevalent group, since truncation 
effects are too severe to be modelled by likelihood (3.1) and these cases may lead to a bias 
in the estimate of the incubation time. The estimated seroconversion distribution is plotted 
in figure 3.7 and the estimated incubation time survival curve is plotted in figure 3.8. The 
huge jump in figure 3.7 around 1983 reflects the large amount of uncertainty with respect to 
the date of seroconversion for the seroprevalent cases. The Kaplan-Meier based on midpoints 
is also plotted in figure 3.8, we see that the survival estimate based on the Kaplan-Meier 
is better. This is caused by the fact that the midpoints of the seroprevalent cases (ca. 
June 1982) is earlier compared to the estimated seroconversion pattern of the HOM-study. 
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Figure 3.6: Survival curves of the HBvac-study. dark: double censoring light: Kaplan-Meier 
based on expected date of seroconversion 

Table 3.1 numerically summarizes the results of the several analyses of the incubation time 
of the HBvac-study and the HOM-study. 

Percentiles in years for the incubation time 
HOM-study 25% 50% 75% 

KM-mid 5.92 9.49 14.30 
double 5.53 9.14 13.60 

HBvac-study 25% 50% 75% 
KM-expd 5.47 9.01 11.90 

double 5.51 9.00 11.76 

Table 3.1: Numerical summary of the incubation time of the HOM-study and the HBvac
study. 
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Figure 3.7: Estimated seroconversion distribution of the HOM-study calculated via the dou
ble censoring method 

The IDU-study 

As mentioned in section 3.4.3 the IDU-study contains more cases with information on the 
seroconversion pattern than cases with information on both seroconversion and incubation 
pattern. First, we analysed 113 cases with information on both seroconversion and incubation 
pattern. Figure 3.9 shows two approaches, curve 1 is based on Kaplan-Meier using midpoints 
and curve 2 is based on double censoring (likelihood (3.4)) . Second, we added 899 cases to 
our first analysis, these cases only contain information on the seroconversion pattern, so we 
have to use likelihood (3.9). Curve 3 is the resulting survival curve of this approach. It turns 
out that for the first 10 years the th ree approaches don 't differ too much. 
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Figure 3.8: Estimated survival curves from the HOM-study: dark = double censoring, light 
= Kaplan-Meier based on midpoints 



36 

~ 
.~ 

'" Cl) 

eX) 

ó 

CD 
ó 

~ 
0 

N 
Ó 

0 
Ó 

CHAPTER 3. DOUBLE CENSORING 

\' 
\ I .... _~ 

\ .. 
~ 
I 
I 
\- ---, 

\ \ 
r-------------------------, i \ 

0 

Kaplan-Meier 
Double Censoring 
Extended Double Censoring 

5 10 

L. ..... __ ._ .. :::.=.:.~ 

Incubation Time 

L _____ _ 

15 

Figure 3.9: Estimated survival curves of the IDU-study 



Chapter 4 

The seroprevalent Cases 

Until now we analysed the seroconversion distribution and the incubation time distribution 
nonparametrically, as described in the previous chapter. However this approach may lead to 
some problems due to the seroprevalent cases. To deal with these cases we slightly adapt 
our approach in the previous chapter. We look at semiparametric models and individual 
seroconversion distributions based on marker values. 

4.1 Semiparametric Models 

4.1.1 The Likelihood 

As mentioned in chapter 1, the HOM-study contains seroprevalent cases. These cases hardly 
contain any information on the seroconversion time distribution before 1984. A nonparame
tric approach in this situation willlead to large jumps in the estimate of the distribution in 
the time period 1980-1985 (see figure 3.7). 

One method to deal with this problem is to assume a parametric form Ge for the seroconver
sion distribution and leave the incubation time distribution piecewise uniform as described 
in chapter 3. In fact, by choosing a parametric form we force a seroconversion structure in 
the period 1980-1985. We get the following log-likelihood, 

N 

L 6;log 

+ (1-6;)log ( 4.1) 

Where the second term is comparable with the second term in formula (3.4) and is also an 
approximation of the reallog-likelihood term. 

To estimate Band F we maximize (4.1) . The corresponding optimization problem is given 
by 

37 
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N 

- L 6i log L ({Jk - {Jk-l) [Ge( Zi - tk-d - Ge(Zi - tk)] + 
i=1 kEK, 

+ (1 - 6i) log L (1 - {Jk-l)[Ge(Zi - tk-l) - Ge( Zi - tk)] (4.2) 
kEK, 

BE IRk 

o :5 {Jl :5 . .. :5 {Ja :5 1. 

which is almost identical to (3.3) , but differs in the kind of parameters we are dealing with. 
Here we have a parametrie part for the seroconversion time distribution and a nonparametrie 
part for the incubation time distribution, a so-called semi par am etric form. This results in a 
different approach to solve (4.2). 

4.1.2 Optimization of the Likelihood 

To maximize the log-likelihood (4.1) we could use an EM algorithm for both Band (3. Howe
ver, there are no order restrietions for B, so given {J we can use 'conventional' optimization 
algorithms, such as the Newton method or the conjugate gradient method (see [18]) , to find 
an optimal value for 8. For a given 8 the likelihood is concave in {J, so we can use the lCM 
algorithm, which we described in chapter 2. So we can optimize likelihood (4.1) byalterna
ting between the Newton method and the lCM method. 

An alternative approach is to use the SQP algorithm, as described in chapter 3. With this 
approach we don't have to switch between the two parameters Band {J. lnstead, we solve 
the problem in the total parameter space (B, {J), with the order restrietions on {J. 

4.1.3 Results from the HOM-study 

We now apply the semi par ametrie method to the HOM-study. This cohort contains a lot of 
seroprevalent cases. We look at two approaches. First , we assume th at the seroconversion 
distribution Ge is Weibull, and estimate the incubation time distribution F nonparametri
cally. Second, we assume that the seroconversion distribution Ge resembles epidemie curve, 
and estimate the incubation time distribution nonparametrieally. An epidemie curve arises 
from the fact that the number of new infections exponentially increases in the first period of 
an epidemie and then slowly decreases in the last period. In the HIV epidemie, there was an 
exponential increase in the first four or five years, followed by a slow decrease. 

For the seroconversion time scale we get the results as plotted in figure 4.1. It shows the sero
conversion intervals, the fitted Wei bull distribution and a sort of epidemie curve. We see the 
drawback of the Wei bull approach, the seroconversion distribution behaves almost uniform 
in the first five years, indicating that seroconversions in the period 1980-1985 are equally 
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likely to occur, which is not probable according to previous epidemiologie data [7] . With 
the epidemie curve approach we force a higher probability of seroconversion in the period 
1983-1985 than in 1980-1983. This is more probable, but it can never be checked without 
the help of additional data. For the epidemie curve we have looked at two possibilities. First 
the distribution curve follows an exponential form for the first four years and then a Wei bull 
piece is used for the remaining part. So the seroconversion distribution G(s) is modeled as 
follows: 

{ 

pecs 
G(s) = (1- p)(l - exp[-(.~s)O]) + péc 

were p is the proportion of seroprevalent cases. 

for s :::; 4 
for s > 4 

Second, logistie growth curves are used to simulate the effect of an exponential growth in 
the first part of the seroconversion time scale and then a slow decrease. We choose for a 
mixture of logistie curves, since a one parameter logistic curve was unable to describe the 
data properly. We choose the following expression for G(s) : 

G( ) 0.01 (1) 0.01 
s = P 0.01 + 0.9ge-K)S + - P 0.01 + 0.9ge-K2S 

Figure 4.1 shows the results obtained by using the several choices for the seroconversion 
distri bution. 

For the incubation time scale we get the results plotted in figure 4.2. It shows the nonparame
trie estimates of the incubation time distributions corresponding to a Weibull seroconversion 
distribution, and the two epidemie curve approaches for the seroconversion distribution. The 
better survival for the Weibull approach arises from the fact that the Weibull seroconversion 
distribution gives a higher probability for early seroconversions than the epidemie curve ap
proaches, resulting in longer incubation times. However the differences are small as illustrated 
in table 4.1 and figure 4.2. It has to be noted that the two choiees for the epidemie curves are 
merely choiees to illustrate how much influence a non-uniform seroconversion pattern in the 
first four or five years of the HIV epidemie has on the incubation time. The problem is that 
we don't now with certainty whether or not the parametrie form holds for the seroprevalent 
group. For the seroprevalent cases it may be better to use marker values to reveal some 
information on their seroconversion pattern as described in the next section. 

Percentiles in years of the incubation time 
seroconversion pattern 25% 50% 75% 
Weibull 5.70 9.12 11.96 
Exp + Weibull 5.42 8.22 12.33 
Mixed logistic 5.53 9.10 14.1 

Table 4.1: Numerical summary of the incubation time distribution estimates for the HOM
study including prevalent cases. 
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Figure 4.1: Estimated distribution functions of the seroconversion time : (1) = Weibull, (2) 
= exp + Weibull, (3) = logistic 
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Figure 4.2: Survival functions of the incubation time based on: (1) = Weibull, (2) = Exp + 
Weibull (3) = logistic 
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4.2 The Use of Marker Values 

Markers are variables that track the progression of HIV infection. The course of the marker 
values are consequences of disease progression. Three classes of markers have emerged (see 
[2]) . Immunological markers, for example numbers of CD4+ T cells, measure of T cell func
tion and levels of serum neopterin. Virological markers, for example the number of HIV RNA 
copies in serum or plasma (the viralload), presence or absence of detectable p24 antigen, and 
the presence or absence of syncytium inducing variants of HIV (SIjNSI). Clinical markers, 
are for example weight loss, candidiasis, and persistent fever. 

One way to reveal information on the seroconversion times of a seroprevalent group is to build 
a model for marker values over time for a seroconverter group. This model is then used for 
the seroprevalent group. The marker values at studyentry of each person in the seroprevalent 
group are used to calculate a time of seroconversion. However, due to the large intra- and 
outerindividual variance it is not possible to calculate one moment of seroconversion and treat 
that moment as the seroconversion moment of a seroprevalent person. We have to settle for 
a distribution which indicates how likely it is a person converted t years before studyentry. 

4.2.1 A Parametric Approach 

The relation between time af ter seroconversion Tand a marker value X is modeled by a 
regression model of the following form: 

( 4.3) 

where g and f are known transformations and €k 's are error terms. For example, Munoz et 
al (see [20]) applied this model to the CD4+ T cells marker. He specified: 

(4.4) 

where the €k'S are LLd. extreme value distributed (see [12]) . So T has a Weibull distribution 
with alocation that depends on the CD4 count. Standard regression analysis can be used to 
check the validity of the model, for example scatterplots to check the linearity, residual plots 
to check the error distribution assumptions etc. The model can also be extended to allow 
heteroscedasticity and truncation efIects. 

From the seroconverter group of the HOM-study, we have measurements of CD4 numbers. 
The vast majority of the seroconverters visited the Municipal Health Service at intervals of 
3 months. At these visits the CD4 number was measured. These data do not really suggest 
that the model (4.4) as used by Munoz is applicable, see figure 4.3. Instead, af ter some 
transforming on the time variable Tand the CD4 variable we find th at the following linear 
model looks bet ter for our cohort data 

(4.5) 
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Figure 4.3: Scatterplots and predieted values based on formula (4.4) (solid line) and (4.5) 
(dashed line) 

where Ek are i.i.d. norm al distributed with mean zero and varianee 0"2, see figure 4.3. 
This means that T has a somewhat strange distribution, a norm al distribution to the power 
four sealed by CD4, 

T ,..., CD4 N(a + j3 log CD4 ,0"2)4 (4.6) 

With this model we ean ealculate the seroeonversion distribution of a prevalent person, by 
inserting his CD4 eount at studyentry into equation (4.6) . 

Example 
Suppose we have a seroprevalent person entering the study at the beginning of 1985. At that 
moment his CD4 eount is 70 107/l. From the seroeonverter group we estimated a = 1.38, 
j3 = -0.23 and 0"2 = 0.011 in (4.6) . Thus, the distribution ofT, the time af ter seroeonversion 
with a particular CD4 eount, ean be ealculated. This distribution must be truneated on the 
interval (0,5) beeause seroeonversions before 1980 are very unlikely. Figure 4.4 shows the 
seroeonversion distribution over ealendar time. This figure shows that it is more likely that 
this person eonverted af ter 1983 than before. 
So for all the seroprevalent cases who have a CD4 measurement at studyentry we ean 
ealculate his seroeonversion distribution Gi given his CD4 number. Consequently we ean 
substitute this distribution in the semiparametric likelihood (4.1) in order to get an estimate 
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Figure 4.4: Distribution function of the seroconversion time for CD4 number 70 107 fl 

of the incubation time distribution. 

It is possible that every data set has its own transformation and error distribution assump
tions. Moreover, of ten it is not really clear wh ether or not a certain model fits the data 
weIl. For example, if we look at the plot of model (4.5) in figure 4.5 then we see astrange 
behaviour at the lower CD4 numbers of the time af ter seroconversion distribution. Therefore 
we look at a nonparametric approach in the next section. 
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Figure 4.5: Plot of predicted time af ter seroconversion against CD4, according to model (4.5) 
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4.2.2 A Nonparametric Approach 

A nonparametric approach will let the data speak more for themselves, instead of forcing 
them into a model. We take the raw data of marker values of the seroconverter group and 
estimate, for a given marker value, the time af ter seroconversion distribution. Let the data 
consist of points (Ti , Xi) , i = 1, ... , N , where 1'; is the time af ter seroconversion and Xi the 
corresponding marker value. For a give marker value m define di = lXi - mi ,i = 1, . . . , N, 
and let dil) :::; d(2) :::; . . . :::; diN). Define for some k < N 

Lm = {Ti: lXi - mi:::; dik)} 

For a given marker value m we use the times 1'; E Lm to estimate the time af ter seroconversion 
distribution Cm, given the marker value m. So Lm is the set of k T;'s corresponding to 
the k nearest-neighbour marker values of m, for some k :S N . The set Lm consists of 
non-censored observations, hence it is possible to use the empirical cumulative distribution 
function (ECDF) as an estimate of Cm . The ECDF puts a probability mass 11k on every 
Ti E Lm' where k is the number of Ti E Lm. However, the set Lm can contain several times 
belonging to the same person, which may lead to a bias in the estimation of Cm . For example, 
the data set may contain a person who has a stabIe CD4 number over time, say 70 10711. If 
we look in the neighbourhood of 70 we take all his observations. It is then better to use a 
weighted empirical cumulative distribution function (WCDF). 

The WCDF 

Let the times 1'; in Lm belong to i persons and n = nl + n2 + . .. + n/, where nj is the number 
of times of person j. Thus the times Ti can be regrouped by person: Tj,i j = 1, . .. , i, i = 
1, . . . nj. If i = n then we have the situation that every Ti in Li belongs to a different person. 
The WCDF puts mass l/njl on every Tj,i, thus the Tj,;'s that belong to persons with many 
observations receive less probability mass. 

Example of the WCDF 

The following somewhat extreme example shows the effect of the WCDF. Suppose we have a 
sample Xl, • . . , XlOO from a standard norm al distribution, the ECDF of this sample is plotted in 
figure 4.6. It looks norm al. However, suppose that for some reason the 30 largest observations 
are from one person, then these observations receive less probability mass than they normally 
would, since these observation are only from one person. The WCDF for this example is 
illustrated in figure 4.6. 

4.2.3 The nonparametric Approach for the HOM-study 

To illustrate the nonparametric approach we use the measured CD4 numbers of the serocon
verter group of the HOM-study for the analysis of the seroprevalent group. 
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Figure 4.6: solid: the ECDF, dashed: the WCDF, based on a normal sample. 

Estimation of individual seroconversion curves of prevalent cases 

45 

We estimate the distributions of the time af ter seroconversion of seroprevalent cases with 
their measured CD4 counts at studyentry in 1985. To deal with the random fluctuation of 
CD4 measurements we took the average of the first four CD4 measurements, if available, for 
each prevalent case. For each seroprevalent case with average CD4 nu mb er m at studyentry, 
we determine the set Lm by taking the 150 CD4 measurements of the seroconverters closest 
to m. Using the WCDF we estimate his distribution of the time af ter seroconversion. With 
this distribution at hand we can calculate the seroconversion distribution over calendar time. 
For most of the seroprevalent cases we know that seroconversion took place between 1980 
and studyentry which is between October 1984 and April 1985. Hence, we condition the 
seroconversion distribution on these intervals. Figure 4.7 shows the conditioned distribution 
functions of all the seroprevalent cases of the HOM-study entering around 1985, together with 
the average curve. We see that the majority has an exponentially looking curve, indicating 
that the probability of seroconversions increases over the period 1980-1985. 

The analysis of the incubation time of prevalent cases 

With all the calculated individual seroconversion curves we can use two methods to analyse 
the incubation time. First , the double censoring method which uses each individual's sero
conversion distribution. The term of a seroprevalent case i in likelihood (3.1) is replaced 
with a term that contains the individual seroconversion density of case i gi, instead of a 
general seroconversion density g. With this method we directly take account of the interval 
censored nature of the date of seroconversion. However, the computation of the incubation 
time distribution is time consuming. Figure 4.10 shows the estimate (dashed curve) of the 
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Figure 4.7: The estimated seroconversion distribution functions of the prevalent cases (light 
curves) and the average curve (black curve) 

incubation time. 

Second, imputation methods calculate one date of seroconversion for each prevalent case. 
Once a date of seroconversion has been imputed for each case we can use the Kaplan-Meier 
estimator for the estimation of the incubation time. One way to impute a date is to calculate 
the expected seroconversion date, in a similar way as in section 2.1.3. Instead of using (2.3) 
with one seroconversion curve for the total population we use the individual seroconversion 
curve based on CD4 numbers. Figure 4.8 shows the empirical distribution (dark line) of the 
expected dates of seroconversion for all the seroprevalent cases over the calendar time scale. 
The estimate of the incubation time distribution based on the expected dates of serocon
version is shown in figure 4.10 for the total population. Instead of imputing the expected 
date of seroconversion for a prevalent case, we can also impute a date of seroconversion by 
randomly drawing one date of seroconversion for each prevalent case based on his individu al 
seroconversion curve. Figure 4.8 shows the empirical distribution (light line) of one sample 
of randomly drawn dates. The difference in the incubation time estimates between expected 
seroconversion dates and randomly drawn is illustrated in figure 4.9. To take account of the 
fiuctuation of randomly drawn seroconversion dates we took the average of ten incubation 
time survival curves based on ten randomly drawn dates of seroconversion. In appendix B we 
performed a small simulation study to see the difference of randomly drawn and expected sero-
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conversion dates on the incubation time. It turns out that the expected seroconversion dates 
perform slightly better, i. e. the resulting estimated incubation time distribution resembles 
the 'true' incubation time distribution more than with randomly drawn seroconversion dates. 
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Figure 4.8: Emperical distribution of dates of seroconversion. dark: expected dates of sero
conversion, light: randomly drawn dates 

Estimating the incubation time via double censoring or via imputed expected dates of sera
conversion could lead to two resembling curves. This is caused by the uniform behaviour of 
the incubation time distribution. Let SCi be the seroconversion distribution of case i . If we 
look at a likelihood term of an observed AIDS diagnosis in the double censoring approach we 
get the following derivation: 

f~~~i gi(Zi - s)f(s)ds = lE(f(Zi - SCi)) 

~ f(lE(Zi - SCi)) if fis almost linear or constant. (4.7) 

For a right censored AIDS diagnosis we get: 

f~~~i gi(Zi - s)[l - F(s)]ds = lE(l - F(Zi - SCi)) 

~ 1 - F(lE(Zi - SCi)) if F is almost linear or constant. (4.8) 

The terms (4.7) and (4.8) are just the terms in the Kaplan-Meier likelihood. 

Truncation effe cts 

If we estimate the incubation time distribution with double censoring or imputation methods, 
we have to deal with truncation effects. It is possible that individuals with (very) short 
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Figure 4.9: Kaplan-Meier based on expected seroconversion dates (dark) and Kaplan-Meier 
based on randomly drawn seroconversion dates (light) . 

incubation times are selectively exc1uded from the study, since the HOM-study only followed 
individuals who were AIDS-free at studyentry. For example, a person who seroconverted in 
1982 and had AIDS in 1984 was not selected for the HOM-study. So we have to correct for 
this by using the method in section 3.4.1. For the imputation methods this is easy to perform 
but not completely correct , for the double censoring method this is more complicated. 

The start of the AIDS epidemie 

Until now we took 1980 as the beginning of the AIDS epidemie. This is plausible for the 
epidemic in Amsterdam. For the nonparametrie approach as described in chapter 3 it didn't 
matter what we took as the beginning of the AIDS epidemic. However, with the individu al 
seroconversion curves approach we assumed that seroconversions before 1980 were not pos
sible and conditioned the individu al curves on the interval 1980-1985. We can also look at 
the effect of taking 1978 as the beginning of the AIDS epidemic. Instead of conditioning 
the individual seroconversion curves of the seroprevalent cases on the interval 1980-1985 we 
have to condition them on the interval 1978-1985. Figure 4.10 shows the corresponding in
cubation time distribution (light curve). There is not much difference compared with taking 
1980 as the beginning of the AIDS epidemie. This is explained by the fact that in the period 
1978-1982 few infections took place, so the impact on the incubation time distribution is 
smalI. 
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Figure 4.10: Incubation time distributions based on CD4 number, solid = Kaplan-Meier 
dashed = double censoring, light = Kaplan-Meier based on 1978 as begin of AIDS epidemic. 

4.2.4 Comparison of prevalent Cases and Seroconverters 

Using the individual seroconversion patterns for the prevalent cases we can compare the in
cubation time of the prevalent cases (infected before April 1985) and seroconverters (infected 
af ter October 1984) . So we can get an indication whether or not the incubation time of 
people infected early in the epidemie is on ave rage longer than the incubation time of people 
infected later in the epidemic. For both 1978 and 1980 as starting date of the AIDS epidemic 
we looked at the differences in survival. The analysis is quite simple but has to be inter
preted carefully. We split the data into a prevalent group (n = 203) and a seroconverter group 
(n = 126). For a prevalent case we take as date of seroconversion the expected seroconversion 
date given his seroconversion pattern and for a seroconverter we take the midpoint of the 
seroconversion interval as seroconversion date . The three resulting Kaplan-Meier estimates 
are plotted in figure 4.11. We see that the prevalent group has a longer time to AIDS than 
the seroconverter group. The log-rank test statistic for testing the difference between two 
survival curves doesn't give a significant result. For the 1978 curve the test statist ie has a 
value of 3.01 with a corresponding p-value of 0.083 and for the 1980 curve the value is 1.91 
with a corresponding p-value of 0.16. 

The log-rank test statistic should be used with caution in this case. It doesn't take account of 
the uncertainty in the dates of seroconversion. So taking the expected dates of seroconversion 
and using them for further analysis williead to an underestimation of the true p-value of the 
log-rank test statistic. So in any analysis where expected dates of seroconversion are used we 
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Figure 4.11: Incubation time estimates of prevalent cases: 1978 as start (upper curve) , 1980 
as start (middle curve). Incubation time estimate of seroconverters (lower curve) 

Percentiles in years of the incubation time and 95% confidence intervals 
25% 50% 75% 

converters 4.73 (4.04, 5.76) 8.03 (7.15, 10.80) 11.59 (10.83, 00) 
prevalent cases 5.96 (5.48, 6.76) 9.36 (8.44, 10.30) 13.90 (13.00, 00) 

Table 4.2: Numerical summary of the prevalent group and converter group. 

should validate a borderline significant p-value. This can be done by a bootstrap procedure. 
A bootstrap procedure can be used to reveal information on the distribution of a test statistic 
by means of computer simulations. Under the assumption that the seroprevalent group and 
the seroconverters have the same incubation time distribution we re construct the data for 
the two groups by simulation and calculate the log-rank test statistic, in similar way as we 
did with the original data. By repeating this procedure a large number of times we can get 
an idea of the randomness of the test statistic. We used the following bootstrap procedure: 

• Step 1. Use the individual seroconversion curves of the seroprevalent cases to simulate 
an individual seroconversion date SCi for each prevalent case i . 

• Step 2. For case i let Zi = SCi + Ti, where Ti a randomly drawn (Ti , bi) incubation time 
or censoring time from the seroprevalent group based on the expected seroconversion 
dates IESCi. These times may be right censored or not. Let the simulated incubation 
time or censoring time be TI = Zi - IESCi. 
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• Step 3. Randomly sample from the incubation times Tl obtained from step 2 to simulate 
the variability in the Kaplan-Meier. So if nl is the number of prevalent cases we nl times 
draw with probability I/nI from our incubation/censoring times with replacement, 
obtaining a data set of nl cases. 

• Step 4. Calculate the Kaplan-Meier of the data set obtained in step 3, caU it KMprev. 

• Step 5. Randomly sample form the original incubation/censoring times of the serop
revalent group based on the expected seroconversion dates to form a simulated sero
converter group. So if n2 is the number of seroconverter cases, we n2 times draw with 
probability 1/n2 from the prevalent cases with replacement, obtaining a data set of n2 
cases. 

• Step 6. Calculate the Kaplan-Meier of the data set obtained in step 5, caU it KMconv. 

• Step 7. Use KMprev and KMconv to calculate the log-rank test statistic T* 

Repeat this procedure N times to get N log rank test statistics T{, Ti , . . . ,Tl.. Let T be the 
test statistic obtained by comparing the original seroconverter group and the seroprevalent 
group based on expected dates of seroconversion. The p-value of the test statistic can then 
be calculated as the proportion of T* values greater than T. Figure 4.12 shows the histogram 
of 300 simulated log-rank test statistics T* together with the xi density. We see that the 
simulated distribution has a sligthly heavier tail than the xi. So the p-values corresponding 
with the test statistics 3.01 and 1.91, found earlier are 0.11 and 0.22, instead of 0.083 and 
0.16 
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Figure 4.12: Histogram of 300 simulated log-rank test statistics together with the X~ density 



Chapter 5 

Parametrie Models and Covariates 

In this chapter we describe a completely parametric approach of double censoring and the 
inclusion of covariates. 

5.1 Parametric Models 

5.1.1 The Likelihood 

In a completely parametric model, we assume that the seroconversion time and the incubation 
time have parametric forms ge, and Je2 ' respectively. The log-likelihood log L( B) for the data 
set (Ui , Vi, Zi , 6i ) , i = 1, ... , Nis given by: 

wh ere B = (Bt, ( 2 ) E m.d , and dis the dimension of the joint parameter space of the serocon
version and incubation time. 

The maximum likelihood estimator 8ML is obtained by maximizing log L with respect to B. 
The advantage of using completely parametric models is that there is a 'standard' maximum 
likelihood theory, which holds under regularity conditions. This theory gives us the following 
(asymptotic) properties of 8ML 

• 8ML is consistent: 8ML converges in probability to the true value Bo of B wh en N tends 
to infini ty . 

• It is asymptotically normally distributed: 

when N tends to infinity. 

53 
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The variance of Bis, for large values of N, approximately equal to I(B)-I IN and will vanish 
for N ---+ 00. I(B) is known as the Fisher Information matrix. It is defined as the d x d 
matrix, with i,j-th element Iij(B) given by 

which can be evaluated at BML to estimate the covariance matrix for the MLE. However the 
exact expected value will rarely be available in practice, because of the complicated non-linear 
second derivatives. Instead we may estimate the (i,j)-th element of I(Bo) by 

This is computed simply by evaluating the second derivative matrix of the log-likelihood 
function at the maximum likelihood estimate. It is the so-called 'observed information ma
trix', not the expected. 

The estimation of B is of ten not of interest, one is more interested in the estimation of 
a function of B, h(B). The maximum likelihood estimate of h(B) is simply h(BMd if h is 
differentaible, and as a consequence of the Delta-method, the asymptotic variance can be 
obtained by: 

when N tends to infinity. For example, the mean of a log normal incubation time with para
meters À and a is given by h(À, a) = exp(À + ( 2/2) and is estimated by h(~ , ik). An estimate 
of the variance of the mean is given by \lh I-I \lht . 

For the optimization of (5.1) with respect to B we can use the conjugate gradient method 
(see [18]) with numerical derivatives, sin ce analytical derivatives are algebraically messy. To 
compute the integrals in each likelihood term of (5.1) we use Romberg integration (see [18]). 

5.1.2 Parametric Models for Distributions 

Although estimators in parametric models have nice asymptotic properties, and are in models 
with censored data easier to calculate than nonparametric estimates, they must be used with 
caution. A misspecified model of the incubation time or seroconversion time distribution can 
lead to parameter estimates which are useless and confidence interval estimations which are 
unrealistic small. So a validation of the specified parametric forms is absolutely necessary. 
This validation is usually based on nonparametric estimates. We give a brief description of 
some parametric models (see [12]) that can be used and we wil! show how to validate them. 
Although we did not check wheter or not the regularity conditions hold for the following 
modeis, we used the asymptotic properties of the maximum likelihood estimators. 
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The Weibull Model 

The density f of the Wei bull model with shape parameter et > 0 and seale parameter .À > 0 
is given by 

f(t) = et.À(.Àtt-1 exp[-(.Àt)"], t > O. 

The distribution funetion F is given by 

F(t) = 1 - exp[-(.Àt)"], t > O. 

For .À < 1 the hazard funetion of the Weibull distribution is strietly deereasing, and for .À > 1 
the hazard funetion is strietly inereasing. The Wei bull dis tri but ion ean be developed as the 
limiting dis tri but ion of the minimum of a sample from a eontinuous distribution with support 
on [0, u) for some 0 < u < 00 . 

The Log-normal Model 

If a random variabie T has a normal (Guassian) distribution with parameters f1 and (7 > 0 
then Y = exp(T) has a log-normal distribution. The density f of Y is given by 

1 
f(t) = t7C exp[-(1og(t) - f1)2/2(72], t > 0 , 

(7ty 211" 

and the distribution funetion is given by 

F(t) = <l> COg(t; - f1) , t > 0, (5.2) 

wh ere <l>(x) is the standard norm al distribution funetion . The hazard funetion of the log
norm al distribution is first inereasing and then deereases to zero as t -+ 00, and thus the 
hazard is only deereasing in the long-life range. 

The Log-Logistic Model 

The log-logistie model is only used oeeasionally in modeling life time distributions. It has 
the advantage of having a simple algebraic expression for the distribution funetion F . The 
log-logistie distribution with parameters .À and p is given by 

1 
F(t) = 1- 1 + (.Àt)p' t > O. 

The Generalized Gamma Model 

The generalized gamma model with parameters .À, pand k has a somewhat eomplieated 
density function f, given by 

.Àp(.Àt )pk-l exp [- (.Àt )P] 
f(t) = r(k) , t>O 
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where r is the gamma function r(k) = Jooo xk-le-xdx. The generalized gamma includes as 
special cases of the parameters the Wei bull (k = 1) and the log-norm al (k -t 00) distribution. 
So it permits their evaluation relative to each other and to a more general model. 

Validation 

One simple way to validate a parametric form is to estimate the parametric form and then 
plot its distribution function Fo(t) together with the nonparametric estimate F(t) of the 
distribution function . This approach has two minor drawbacks. First , the parametric form 
has to be estimated first and second the s-shaped curves of the distribution function may be 
misleading, it can 'hide' some subtle differences between the two curves. A better approach 
is to find a transformation 'Ij; such that 'Ij;(Fo(t)) is linear in logt or t . Applying this trans
formation to the nonparametric estimate F(t) and plotting it against logt or t should give a 
fairly straight line if the underlying distribution is indeed Fo. 

5.1.3 Results for the HOM-study 

We validate whether or not parametric models give a reasonabie fit for the HOM-study. 
For a log-normal model the distribution is given by (5.2) , so if we take 'Ij;(x) = <J>-I(X) then 
'Ij;(FI',,,(t)) = a-llog(t) - J.l/a. Applying'lj; to the nonparametric estimate F of the incubation 
time, for example based on double censoring from section 3.5, and plotted against log t 
results in the graph shown in figure 5.1. We see a reasonable straight line with three outliers, 
moreover the slope and intercept can serve as rough estimates of f..L and a. The Wei bull family 
can be validated by taking 'Ij; (x) = log( -log(l - x)), yielding 'Ij;(F).,o(t)) = a 10g(À) + log(t). 
Figure 5.1 shows the plot of 'Ij; (F) against logt for the seroconversion distribution. There is 
some deviation from the straight line, indicating the poor fit of a Wei bull model. 
If we exclude the prevalent cases and only look at the seroconverter group of the HOM
study we get a much better validation. There is an indication that both the seroconversion 
and incubation time distribution follow a Weibull distribution, see figure 5.3. We used the 
conjugate gradient method to estimate the parameters and the observed Fisher information 
matrix to derive the 95% confidence intervals. Table 5.1 shows the results. 

Weibull seroconversion time 81 = (Àl , al) 
Àl al 

estimate 0.281 1.105 
95 % conf. int. (0.234, 0.328) (0.951 , 1.259) 
Weibull incubation time 82 = (À2 , (2) 

À2 a2 
estimate 0.104 1.974 
95 % conf. int . (0.090, 0.119) (1.557, 2.391) 

Table 5.1: Parameter estimates for the Wei bull model for the seroconverter group 
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Figure 5.l: Validation of the log normal form of the incubation time distribution of the 
HOM-study. 
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Figure 5.2: Validation of the Weibull form of the seroconversion time distribution of the 
HOM-study. 

Figure 5.3 shows the estimated Wei bull seroconversion distribution together with the sero
conversion intervals of the seroconverter group, and figure 5.4 shows the estimated Wei bull 
survival function together with the Kaplan Meier estimate. The esitimated median incuba-
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tion time is 7.95 years with a 95% confidence interval of (6.87, 9.00) . The 25% and 75% 
percentiles are 5.09 and 11 .30 years with 95% confidence intervals of (4.27, 5.89) and (9.48, 
13.09) respectively. We also compared the parametric double censoring approach with the pa
rametric right censoring approach using midpoints of the seroconversion intervals as the date 
of seroconversion. The parameter estimates of the incubation time wh ere almost identical, 
which we would expect with smal! seroconversion intervals. 
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Figure 5.3: Seroconversion intervals of the seroconverter group of the HOM-study and fitted 
Wei bull distribution. 

5.2 Covariates and the Incubation Time 

This section describes the analysis of covariates x of the incubation time T . Covariates are 
variables that affect the duration of the incubation time. They explain why some individuals 
progress to AIDS faster than others. It therefore becomes of interest to collect information on 
covariates of the incubation time. In several studies different covariates have been identified 
as not significant and some as significant. For example, in [23] no relation of sexual behavior, 
history of sexual transmitted diseases or use of alcohol, tobacco and recreational drugs with 
rates of disease progression could be demonstrated. However, younger age at seroconversion 
and use of prophylaxis were significantly related to a slower progression from seroconversion 
to death [23]. Also it is demonstrated [14] that certain host genetics have influence on disease 
progression. 
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Figure 5.4: Survival functions of the incubation time: Wei bull and Kaplan Meier 

Two models that take account on information of covariates are widely used in survival analy
ses, the proportional hazard model (Cox regression) and the accelerated failure time model, 
see [12] . 

5.2.1 The Proportional Hazards Model 

The proportional hazards model specifies a multiplicative effect of the covariates on the 
hazard. Let À(t; x) be the hazard at time t for an individual with covariates x, then the 
model specifies that 

À(t; x) = Ào(t)e x,l3 (5.3) 

where Ào(t) is an arbitrary base-line hazard function for T. To see the impact of the covariates 
on the distribution function F of Tin the proportional hazard model we rewrite (5.3) in terms 
of distribution functions. We get 

F(t; x) = 1 - [So(t)]exp(x,l3) , (5.4) 

wh ere So(t) is the base-line survivor function So(t) = exp(- J~ Ào(u) du) 

5.2.2 The Accelerated Failure Time Model 

The accelerated failure time model is a log-linear model for the incubation time T. If we 
define Y = log T then the model assumes a linear relationship between Y and the covariates 
x, 

Y = x/3 + W 
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where W is an error varia bIe. In terms of T we get 

T = exp(x,8)To , wh ere To = exp(W) 

To can be regarded as a base-line incubation time. So depending on ,8 the role of x is to 
accelerate or decelerate the incubation time. The distribution function of T with covariates 
x is given by 

F(t; x) = Fo(texp( -x,8)) (5.5) 

5.2.3 Plugging the Covariates into double Censoring 

Estimation of the Cox regression model and the accelerated failure time model has only been 
done in samples with right censored data, since most software packages are only equiped 
with such routines. For interval and double censoring no general software is available. Ho
wever, estimation can be done by plugging the distribution functions (5.4) or (5.5) into the 
log-likelihood (2.4) or (3.1) and then optimizing the log-likelihood with respect to the sero
conversion time distribution C, incubation time distribution F and the regression parameters 
,8. 

For example, if we take the Cox regression model and interval censoring we get the following 
log-likelihood 

n 

log L L 8i 10g([1 - Fo(li)]exP(x!3) - [1 - FO(ri)]exP(x!3)) 

i =1 

+ (1 - bi) 10g([1 - Fo(li)]exp(x!3)) (5.6) 

For double censoring and the accelerated failure time model we get the following log-likelihood 

10gL(Fo , ,B) = Ê log [l'~~~i g(Zi - S)dFo(sexP(-X,B))r 

+ log [[~~~i g(Zi - s)[I- Fo(sexP(-X,8))]dSr-6i (5.7) 

For log-likelihood (5.6) some results have been given in [10]. Under appropriate regularity 
conditions the maximum likelihood estimator for the regression parameter ,B is shown to be 
asymptotically norm al and efficient. To estimate Fo and ,8 a profile likelihood approach can 
be used. In this approach the log-likelihood is first maximized over Fo for fixed values of ,8 
to obtain Fo(,8), then the profile log likelihood function 10g(Fo(,8) , ,8) is maximized over ,8 to 
find ~. As mentioned in [10] this method is computationally feasible for low dimensional ,8. 
For higher dimensional ,8 such an exhaustive search is computationally infeasible, iterative 
search methods like the SQP algorithm are needed. However, thses search methods can not 
guarantee to find a global maximum. 
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For double censoring, no proof of asymptotic normality and efficiency is available yet. Ho
wever, for a fixed small grid compared to the sample size, one might consider the model as 
completely parametric and use asymptotic normality and Fisher Information matrix, see [15]. 
A profile likelihood approach in the double censoring case would probably be too slow, since 
the computation of the distributions Fo and Go takes a lot more time than the computation 
of Fo in the interval censoring case. 
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Appendix A 

Density Estimation 

With the estimate F of the distribution function at hand, we can derive an estimate of the 
density f corresponding to F. This density is assumed to be absolute continuous. However 
the NPMLE of F is usually a step function corresponding to a purely discrete probability 
distribution. Hence, some kind of smoothing is needed. 

A frequently used estimator is the so called kemel estimator (see [24]) . An estimate of the 
density fis given by: 

j(x) = h- 1 
/ Kx((a - t)jh) dÊ'(t) 

where Kx is a so-called boundary kemel and h the bandwidth. For the kemel Kx , there are 
several forms: normal, triangle, triweight, etc. The choice of the kemel is not really signifi
cant for the estimate j , the estimate is mainly determined by the ehoiee of the bandwidth 
h. Usually h is seleeted via a bootstrap or eross-validation method. 

Dnee we have an estimate j of the density we can use it for smoothing the NPLME of the 
distribution function and estimation of the hazard rate . A smoothed version Ê's of Ê' can be 
obtained by integrating the estimated density j: 

Ê's(t) = l j(t) dt 

and the hazard rate À(t) is estimated by 

~(t) 
j(t) 

1 - Ê's(t) 
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Example 
Figure A.I shows an example of an NPMLE and a smoothed version based on a bandwidth 
of one year, and figure A.2 shows the effect of three different bandwidths on the density 
estimation. A smaller bandwidth leads to a more peaked version of the estimate. 
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Figure A.I : NPMLE and smoothed version of an illustration data set 
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Figure A.2: Density estimation with three different bandwidths 
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Appendix B 

Expected versus randomly drawn 
seroconversion dates 

In section 4.2.2 we used two methods to impute a date of seroconversion. First, for case 
i we calculated the expected seroconversion date based on the individu al seroconversion 
distribution and the seroconversion interval of case i. Second, for case i we randomly drew 
a seroconversion date from his seroconversion distribution. To see the difference of the two 
methods on the estimate of the incubation time distribution we perform a simulation study 
with 1000 cases. 

• Simulate 1000 seroconversion dates Xl, ... , XlOOO according to the following distribution 
X = ,;w, where U is uniformly distributed on the interval (0,5]. The expected 
seroconversion date IE(X) = 10/3. The empirical distribution function of X is plotted 
in figure B.l. 

• Simulate 1000 incubation times VI, ... , VlOOO according to a Weibull(2 ,6) distribution. 
Let the unobserved moments of diagnoses be defined by Yi = Xi + Vi. 

• Construct the observed incubation times by t} = Yi - IE(X) (expected seroconversion 
dates) and t; = Yi - x:, where x: is a randomly drawn seroconversion date from the 
seroconversion distribution X. To deal with the fluctuation induced by randomly drawn 
seroconversion dates we constructed 5 sets of ti. 

• Figure B.2 shows the empirical distribution functions of VI, • . . , VlOOO the 'true' incu
bation times, ti , ... , tiooo the incubation times based on expected seroconversion dates 
and t?, ... , t?ooo (5 times) the incubation times based on randomly drawn seroconversion 
dates. 

We see that the two estimates based expected and randomly drawn seroconversion dates re
semble the estimate of the 'true' incubation times. However, the estimates based on randomly 
drawn seroconversion times systematically overestimate the incubation time distribution at 
the begin and systematically underestimate the incubation time distribution at the end. 
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Figure B.l: Empirical distribution function of the seroconversion dates Xl, .. . , XlOOO 
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Appendix C 

Software for Double Censoring 

Most standard software packages (SPSS, Splus, Stata, SAS) are well equipped with routines 
for ordinary survival analyses, i. e. Kaplan Meier and Cox proportional hazards model. Ho
wever, none of these packages have routines that can deal with nonparametric estimation in 
the case of interval or doubly censorerd survival data. The methods described in this report 
have been implemented in C and put together in one software package. This package is still 
under construction, but beta releases can be obtained by sending an e-mail to Ronald Geskus 
at the Municipal Health Service in Amsterdam (rgeskus@gggd.amsterdam.nl). Once a data 
file has been read the incubation time distribution can be estimated nonparametrically via 
interval transformation or double censoring. 

Parametric estimates of the incubation time distribution with double censoring could be ob
tained in a general way. Every software package equiped with a non-constrained optimization 
routine should be able to maximize the likelihood. However, the likelihood function in the 
double censoring case contains integrals, so the optimization routine must have a subroutine 
to deal with these integrals. Splus has such routines. However, evaluating many integrals 
in the optimization routine in Splus makes the estimation procedure very slow. The best 
thing to do is to program the estimation procedure in a language such as C, using integration 
and optimization procedures from Numerical Recipes [18] . This has also been done in the 
package. 
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Summary 

Doubly censored data arise when both the time origin and event time can be censored. Due to 
periodic screening and limited follow-up, double censoring is likely to occur in cohort studies 
on HIV infection. Several methods have been discussed to analyse doubly censored data. All 
of these methods have their own advantages and disadvantages, depending on the specific 
structure of a data set . 

The Kaplan Meier estimator described in chapter 2 is the simplest method. It just ignores 
the interval censored nature of the seroconversion dates by imputing a date of seroconversion. 
For data sets with small seroconversion intervals (seroconverter groups) this is probably the 
best nonparametric method, since it is easy to calculate, it has easy to calculate confidence 
intervals and the induced bias by imputing a date of seroconversion is small. For data sets 
with wider seroconversion intervals the interval censored nature of the data can be taken into 
account by using a nonparametric maximum likelihood estimator for interval censored data, 
as described in chapter 2. 

With the double censoring method information from both the seroconversion time scale and 
the incubation time scale are used in the analysis. We looked at the piecewise uniform ap
proach to analyse doubly censored data. Two fixed grids are chosen in both the seroconversion 
and the incubation time scale. On these grids we let the incubation time and seroconversion 
time distribution be piecewise uniform, i.e. the density between two gridpoints is constant. 
It turns out that the number of gridpoints has little effect on the estimate of the incubation 
time. However, one should not take the nu mb er of gridpoints too small to avoid trivialities 
and not too large to avoid non-uniqueness of the estimators and long calculation times. For 
cohorts with not too many wide intervals, there is not much difference in the location of 
the survival curves between the Kaplan Meier approach and double censoring approach (see 
table 3.1 and figures 3.6 and 3.8). However, the double censoring method reflects the uncer
tainty in the date of seroconversion better. This uncertainty is expressed by the fewer jumps 
in the survival curve. 

Altough the double censoring method uses information from both time sc ales and can 
handle wide intervals, the seroprevalent group of the HOM-study is still problematic for two 
reasons. First, all the wide intervals are located at one position (1980-1985) . Second, the 
structure of the incubation time distribution is very unfavourable, it is almost uniformly dis
tributed from 0 to 15 years. This means that the information we can get from the incubation 
time scale is too little to say anything about the seroconversion pattern of the seroprevalent 
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group. 

To include the seroprevalent cases we looked at two approaches in chapter 4. First we chose a 
seroconversion structure for the prevalent group. For the seroprevalent group an exponential 
form of the seroconversion distribution is assumed to model a lower probability of serocon
version in the early period of the epidemie. See figure 4.1 and table 4.1. Second, we used 
additional CD4 data to reveal the seroconversion structure of the seroprevalent group. In 
this approach every individu al seroprevalent case will receive its own seroconversion distri
bution based on its CD4 concentration at studyentry. Given these individual seroconversion 
patterns we can calculate the expected dates of seroconversion for the prevalent cases and 
use the Kaplan Meier estimator to estimate the incubation time. An alternative approach 
is to use double censoring based on the individual seroconversion curves. There is not much 
difference in the survival curves of the two approaches, see figure 4.10. If we looked at the 
survival curves of the prevalent cases and the seroconverters separately, we saw some diffe
rence between the two groups. The seroprevalent cases have a better survival, see figure 4.11. 
However, it turnrd out that this difference is not significant. 

Chapter 5 discusses the use of parametrie modeis. It appeared that in the HOM-study there 
was some evidence of a log normal parametrie form for the incubation time distribution, but 
no evidence of a Wei bull or lognormal form for the seroconversion time distribution. However 
if we only looked at the seroconverter group then a Wei bull model for the seroconversion time 
and incubation time distribution resulted in areasonabie good fit , see figures 5.3 and 5.4. 
It is not unusual that the choice of a parametrie form depends on the specific data set. So 
despite the easy to calculate estimators and confidence intervals one has to be careful in using 
parametric models for double censoring. 
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