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I. Introduction

A EROSERVOELASTICITY, an interdisciplinary field, delves

into the interactions among aerodynamic forces, elastic struc-

tural deformations, and the control systems of aircraft and other

air-operating structures [1,2]. This field has attracted increasing

interest, as it is one of the key pieces of the puzzle of maximizing

structural air-operating efficiency without compromising safety.

Overlooking aeroservoelasticity can lead to designs that have effi-

cient appearance (high aspect-ratio) but are actually sensitive to

atmospheric disturbances, such as gusts and turbulence. Such over-

sights may also trigger destructive structural vibrations, culminating

in catastrophic instabilities and failures [3–5].

Aeroservoelastic systems are inherently nonlinear, time varying,

and underactuated. The nonlinearities arise from factors such as

structural geometry, aerodynamics, and mechanical imperfections

[2,6,7]. Accurately modeling these dynamics often requires the use

of costly computational fluid dynamics coupled with computational

structural dynamics. In the literature, it is common to simplify the

dynamics into a lower-order linear time-invariant (LTI) or linear

parameter-varying system [8–10]. However, even after being aug-

mented with linear robustification techniques (such as H∞), the

resulting performance and stability robustness can become either

overly or marginally conservative [11]. A recent study also reveals

that the classical linear quadratic Gaussian approach, which is

designed using a lower-order LTI model, is unable to stabilize the

original nonlinear aeroservoelastic dynamics [12]. Although non-

linear control methods do exist, most of them rely on the inversion

of the control effectiveness matrix as a critical step [13,14]. When

applied to underactuated aeroservoelastic systems, this inversion

step makes the closed-loop stability heavily dependent on the

inherent stability of the internal dynamics [15]. This reliance renders

them less suitable for addressing instability issues of aeroservoelas-

tic systems such as flutter.

Nonlinear optimal control is a promising approach for address-
ing the challenges in aeroservoelastic system control design. An
essential component of nonlinear optimal control involves solving
the Hamilton–Jacobi–Bellman (HJB) equation. Nonetheless, deriv-
ing an analytical solution becomes particularly challenging in the
context of nonlinear, time-varying systems. In contrast, adaptive
dynamic programming (ADP), which hybridizes principles from
control theory with reinforcement learning (RL), can generate
numerical solutions for the HJB equation [16]. Moreover, ADP
addresses the “curse of dimensionality” in conventional RL, ena-
bling it to guide an agent toward optimal and adaptive behavior,
even in the absence of precise models for the agent’s dynamics or its
environment [17,18]. Furthermore, for real-world continuous time
systems, ADP with a single critic network (SCN) architecture can
avoid the actor network-induced approximation error in conven-
tional RL and reduce computational loads [19–21].
Although ADP is inherently a continuous-time control method-

ology well suited for the continuous-time nature of aeroservoelastic
systems, in practice, the control law still needs to be processed by
a digital computer. Furthermore, the digital computer normally
communicates with servos in predetermined and fixed time steps.
This is referred to as the time-triggered approach. However, it is less
efficient for the disturbance rejection challenge of aeroservoelastic
systems for the following reasons:
1) The high-dimensional (theoretically infinite-dimensional)

nature of the system imposes prohibitive computational demands
if updating at every time step.
2) A fixed time-triggered approach struggles to provide timely

and adequate responses to sudden disturbances such as gusts,
impairing system performance and stability.
3) After a sudden gust has passed the system, the persistence in

fixed time-triggered control results in unnecessary data transmis-
sions (from the controller to actuators) and control actions, thereby
wasting computational, network, and servo resources.
In recognition of these challenges, our previous research in [22]

pioneered the concept of event-triggered ADP for addressing non-
linear, uncertain, and underactuated aeroservoelastic control prob-
lems. Event-triggered ADP is a control framework that integrates
adaptive dynamic programming with event-triggered mechanisms to
reduce computational and communication load by updating control
policies only when necessary, while maintaining stability and per-
formance [23,24]. The aforementioned challenges associated with
time-triggered ADP are fundamentally addressed by optimizing
control signal updates based on specific events defined through
triggering conditions. Moreover, the Zeno phenomenon, a scenario
in which an infinite number of events or actions occur within a finite
time interval [25–27], is theoretically avoided in our algorithm
design. Furthermore, the input constraints are theoretically handled
by employing a nonquadratic cost function with the corresponding
triggering condition derived without relying on the Lipschitz
assumption for the inverse hyperbolic tangent function, thereby
addressing the limitations present in [25,28]. Last but not least,
many existing event-triggered ADP algorithms in the literature rely
on an initially admissible control policy, meaning that at the onset
of the control horizon, a control law must be available that satisfies
all predefined state and control constraints while ensuring that the
system’s state trajectories remain within the allowable bounds
throughout the control process. This dependency is also theoreti-
cally relaxed in our previous work based on the Lyapunov theory.
Despite the theoretical contributions of [22], many real-world

challenges are overlooked, including but not limited to, delay,
measurement noise, external disturbances, and various hardware
constraints. In particular, whether the algorithm can still avoid the
Zeno phenomenon in the presence of real-world disturbances and
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noise remains an open question in the field. Furthermore, only a
single stabilization cycle is evaluated through numerical simulations
in [22], whereas the robustness of the algorithm to consecutive
excitations caused by unanticipated, real-world external disturb-
ances remains unknown. This is a critical aspect for demonstrating
the algorithm’s ability to adapt and learn effectively from past
experiences online. Last but not least, the tradeoff between rapid
response to sudden gusts and improving resource efficiency when
gusts gradually dissipate has not been addressed in [22] or else-
where in the literature.
This Technical Note presents real-world wind-tunnel experimen-

tal investigation of an event-triggered ADP algorithm tailored to
addressing the challenges of stabilization and consecutive external
disturbance rejection in nonlinear, uncertain, and underactuated
aeroservoelastic systems.
As a preliminary attempt, the algorithm presented in [22] was

directly applied to a real-world aeroservoelastic system. However, it
was observed that although the nonlinear hyperbolic tangent func-
tion (also adopted in [25,28]) can theoretically guarantee input
constraints, it also increases the algorithm’s sensitivity to parameter
tuning and reduces robustness to input delays. This is a phenomenon
that has not been exposed previously. Therefore, in this Note, the
algorithm is adapted by removing the nonlinear hyperbolic tangent
function and instead incorporating a hard input constraint using a
nonlinear saturation function that is decoupled from the online
adaptation loop. This modification was found to effectively enhance
the practicality of the event-triggered ADP algorithm. The theoreti-
cal proof and analysis of the algorithm are adapted accordingly in
this Note.
Subsequently, the practical capabilities of the adapted algorithm

in terms of online adaptation, rejection of consecutive disturbances,
and avoidance of the Zeno phenomenon are thoroughly evaluated
under real-world experiments in the presence of mechanical and
measurement imperfections. Moreover, the effectiveness of the
event-triggering mechanism is quantitatively assessed through ex-
perimental comparisons between the proposed algorithm and its
conventional time-triggered counterpart. Finally, the Note discusses
the tradeoff between rapid responsiveness to sudden gusts and
improved resource efficiency as gusts gradually dissipate.
In the remainder of this Note, the control challenge is formulated

in Sec. II. The algorithm is developed in Sec. III. Section IV presents
the real-world experiment setup, followed by the experiment results
and discussions in Sec. V. Section VI concludes this Note.

II. Problem Description

During the aircraft conceptual design phase, to facilitate efficient
analysis and iterations on structural integrity, aerodynamic perfor-
mance, and control effectiveness, the three-dimensional wing is
normally abstracted to an aeroservoelastic typical wing section, as
illustrated in Fig. 1. Structural, inertia, and aerodynamic properties
are defined for a cross-sectional airfoil with heave and pitch degrees
of freedom. It is also equipped with trailing-edge active control
devices, such as an aileron and/or a spoiler. Considering unsteady
aerodynamics and nonlinearities, an aeroservoelastic typical wing
section is modeled as follows:

_x�t� � f�x�t�� � g�x�t��u�t� � d�t� (1)

where x � � _h; h; _θ; θ; _β; β; z1; : : : ; zk�⊤ ∈ Ω ⊂ Rn is the state vector
containing the structural degrees of freedom and k unsteady aero-
dynamic lag states. u�t� � βcmd ∈ Ωu ⊂ Rm is the trailing-edge
control surface command. Regarding an aeroservoelastic system,
f�⋅� is generally Lipschitz continuous in Ω with an equilibrium
point x�t� � 0. d�t� ∈ Rn is the unknown external disturbance
perturbation.
The main control objective is gust disturbance rejection, in other

words, using the control input βcmd to alleviate the system oscil-
lations in the presence of unknown gusts without knowing an
accurate system dynamic model, while reducing the computational
and communication burden.
Because the number of inputs is less than the number of degrees

of freedom to be controlled, the considered problem is underactu-
ated. System nonlinearities can originate from both aerodynamic
and structural effects. Strong gust disturbances can induce aerody-
namic flow separation and vortex shedding, leading to nonlinear
aerodynamic forces. The structural dynamics, modeled using
spring-based suspension elements for plunge and pitch motions,
can exhibit nonlinear stiffness under large motions. In addition,
common mechanical imperfections such as actuator dead zones,
backlash, and friction further introduce nonlinearity.
Uncertainty arises from discrepancies between the control-

oriented model and the physical system. Although key parameters
such as mass, stiffness, and geometry can be estimated, they are
often subject to modeling errors. Unmodeled dynamics, such as
flow separation, actuator nonlinearities, and aerodynamic inter-
actions between control surfaces, also contribute to the overall
uncertainty of the system.

III. Control Algorithm Development

A. Optimal Control Design

For system (1), an infinite-horizon cost function is defined as

J�x� �
∞

t
�x�τ�⊤Qx�τ� � u�x�τ��⊤Ru�x�τ��� dτ (2)

where Q ∈ Rn×n and R ∈ Rm×m are positive semidefinite matrices.

Denote U�x; u�x�� � x⊤Qx� u⊤Ru as the utility function.
Select an admissible law u�x� ∈ A�Ω�. Consequently, the Ham-

iltonian is expressed as

H�x; u�x�;∇J�x�� � ∇J⊤�x��g�x�u�x� � f�x�� �U�x; u�x�� (3)

When satisfying minu�x�∈A�Ω�H�x; u�x�, ∇J��x�� � 0, the cost in

Eq. (2) reaches its optimal value as

J��x� � min
u�x�∈A�Ω�

∞

t
U�x�τ�; u�x�τ��� dτ (4)

By satisfying ∂H�x; u�x�;∇J�x��∕∂u�x� � 0, the corresponding
optimal solution is

u��x� � arg min
u�x�∈A�Ω�

H�x; u�x�;∇J��x�� � −
1

2
R−1g⊤�x�∇J��x�

(5)

Fig. 1 A typical aeroservoelastic wing section.
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Substituting Eq. (5) into the HJB equation produces

H�x; u��x�;∇J��x�� � −
1

4
∇J�⊤�x�g�x�R−1g⊤�x�∇J��x�

� x⊤Qx� ∇J�⊤�x�f�x� � 0 (6)

When J��0� � 0, this results in H�x; u��x�;∇J��x�� � 0.

B. Event Triggering

To design the event-triggered mechanism, a sequence of trigger-

ing instants fskg∞k�0 is defined, where sk < sk�1 for k ∈ N. For all
t ∈ �sk; sk�1�, the sampled-data output is x�sk� ≜ xk, leading to the

following gap function:

ek�t� � xk − x; ∀ t ∈ �sk; sk�1� (7)

Let ek�t� be denoted simply as ek from now on. When a specific

triggering condition is met, then the algorithm updates the event-

triggered state vector while resetting ek to zero. At each triggering

moment (rather than at every time sample), the algorithm updates

the state-feedback law u�x�sk�� � u�xk� accordingly. By imple-

menting a zero-order hold, the control sequence fu�xk�g∞k�0 effec-

tively becomes a piecewise constant signal that remains unchanged

over the interval �sk; sk�1� for all k ∈ N. Given the control signal

u�xk�, the system in Eq. (1) can then be represented as

_x � g�x�u�x� ek� � f�x�; ∀ t ∈ �sk; sk�1� (8)

In the event-triggered scheme, the law in Eq. (5) becomes

u��xk� � −
1

2
R−1g⊤�xk�∇J��xk� (9)

Regarding system (1), with the infinite-horizon cost function (2),

the triggering condition is defined as kekk2 > keTk2. The threshold
keTk2 will be determined later.

C. Adaptive Critic Learning

Because the HJB equation is nonlinear (6), finding an analytical

solution is challenging. Instead, this Note designs an ADP algorithm

with an SCN architecture. Reconstruct the optimal cost function as

J��x� � w⊤
c σc�x� � εc�x�, approximated with lc neurons. wc ∈ Rlc

is the optimal weight vector in the ideal case. The activation

function is σ�x�c ∈ Rlc with the approximation error εc�x� ∈ R.
As a result, the optimal cost gradient is

∇J��x� � ∇εc�x� � ∇σ⊤c �x�wc (10)

In reality, the ideal value of wc is unknown, thus it is replaced by

its estimated value ŵc ∈ Rlc as

Ĵ��x� � ŵ⊤
c σc�x�; ∇Ĵ��x� � ∇σ⊤c �x�ŵc (11)

Considering Eq. (10), the event-triggered optimal policy (9)

becomes

u��xk� � −
1

2
R−1g⊤�xk��∇σ⊤c �x�wc � ∇εc�x�� (12)

Accordingly, its approximation becomes

û�xk� � −
1

2
R−1g⊤�xk�∇σ⊤c �x�ŵc (13)

Substituting Eq. (12) into the Hamiltonian (3) leads to

H�x; u��xk�; wc� � w⊤
c∇σc�x��g�x�u��xk� � f�x��

� x⊤Qx� u�⊤�xk�Ru��xk� ≜ ecH (14)

where ecH � −∇ε⊤c �x��g�x�u��xk� � f�x�� is the corresponding
artificial neural network (ANN) approximation residual. As its
counterpart, using Eq. (13), the Hamiltonian approximate is

Ĥ�x; u��xk�; ŵc� � ŵ⊤
c∇σc�x��g�x�u��xk� � f�x��

� x⊤Qx� u�⊤�xk�Ru��xk� ≜ ec (15)

Define the critic error as ~wc � wc − ŵc and combining Eq. (14)
with Eq. (15), we obtain

ec � ecH − ~w⊤
c∇σc�x��g�x�u��xk� � f�x�� (16)

To train the critic network, the objective is to minimize

Ec � �1∕2�e⊤c ec. In [28], this minimization is achieved by gradient
descent:

_̂wc;1 � −ηc
∂ec
∂ŵc

ec � −ηcϕec (17)

where ϕ � ∇σc�x��g�x�û�xk� � f�x�� and with ηc > 0 represent-
ing the learning rate.
To relax the requirement on initial admissible control, inspired

by [25], a stabilization term is added to enhance the updating of
ANN weights.
Assumption 1 [29]: Consider system (1) using the event-triggered

optimal algorithm in Eq. (9) with the cost function (2) and a
continuously differentiable Js�x� satisfying

_J�s �x� � ∇J⊤s �x��g�x�u��xk� � f�x�� < 0 (18)

Then, the following inequality holds with a positive definite matrix
M ∈ Rn×n:

_J�s �x� � −∇J⊤s �x�M∇Js�x� ≤ −λ�M�k∇Js�x�k2 (19)

Enforcing the time derivative of the cost to be negative, the updated
law is designed as

_̂wc;2 � −ηs
∂∇J⊤s �x��g�x�û�xk� � f�x��

∂ŵc

� 1

2
ηs∇σ�xk�g�xk�R−1g⊤�x�∇Js�x� (20)

where ηs > 0 is the designed learning rate.
Furthermore, to relax the dependency on the initial admissible

control, an extra stabilizing term is added as

_̂wc � _̂wc;1 � Ξ�x; û�xk�� _̂wc;2 (21)

where Ξ�x; û�xk�� is a sign function defined as

Ξ�x; û�xk�� �
0; when _Js�x� < 0;

1; elsewhere
(22)

This term switches off the reinforcement term _̂wc;2 when the

system is already stable. It can be observed from the derivation that
input constraints are not explicitly incorporated into the develop-
ment of the control law and triggering conditions. This is because,
although input constraints can theoretically be handled using a
nonquadratic cost function and a hyperbolic barrier function
[22,25,28], our experiments revealed that this approach reduces
the robustness margin and increases sensitivity to parameter tuning.
Therefore, in this work, input constraints are enforced separately
from the online adaptation loop. This decoupled enforcement was
found to enhance the practical applicability of event-triggered ADP.
Furthermore, with appropriate parameter tuning of the algorithm,
hard input saturation can be bypassed in practice.
The proposed algorithm is summarized in Fig. 2.
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D. Closed-Loop Stability Analysis

Assumption 2: The closed-loop system is under persistent exci-

tation (PE).
The persistent excitation (PE) condition is essential in adaptive

control and reinforcement learning to guarantee the identifiability of

system dynamics and the convergence of learning algorithms. It

requires that the control input sufficiently excites all relevant modes

of the system so that the collected data is informative for parameter

estimation or value function approximation.
To satisfy the PE condition, a zero-mean Gaussian noise signal is

added to the control input during the learning phase. This probing

signal is energy bounded and spectrally rich, ensuring that the

system is excited across a broad frequency range. Consequently,

the regressor matrix remains full rank over time, enabling stable and

convergent learning.
In addition to the designed probing noise, external disturbances

and sensor noise present in the experimental environment provide

further excitation. These naturally occurring variations enhance the

richness of the input–output data and contribute to satisfying the PE

condition in practice.
Assumption 3: The function g�x� in Eq. (1) is Lipschitz con-

tinuous (kg�x� − g�xk�k ≤ Lgkekk). It also has an upper bound

(kg�x�k ≤ bg).
Assumption 4: ∇σc�x� is Lipschitz continuous (k∇σc�x�−

∇σc�xk�k ≤ L∇σckekk). Upper bounds exist such that k∇σc�x�k ≤
b∇σc , k∇ε�x�k ≤ b∇εc , kεu�k k ≤ bεu� , and jecHj ≤ becH .

Define the critic training error as ~wc � wc − ŵc.
Theorem 1: Under Assumptions 1–4, using Eq. (13) and the critic

networking updating law (21), the closed-loop system is asymptoti-

cally stable with ultimately uniformly bounded weight error dynam-

ics if

kekk2 ≤
�1 − η�λ�Q�kxk2 � λ�R�ku��xk�k2

C1kŵck2
≜ kêTk2 (23)

and k ~wck2 ≥ W. C1 and W are positive definite constants;

η ∈ �0;1�.
Proof: Using Eqs. (14), (17), and (21), the critic network error

dynamics is

_~wc � −
1

2
ηsΞ�x; û�xk��∇σ�xk�g�xk�R−1g⊤�x�∇Js�x�

− ηcϕ�ϕ⊤ ~wc − ecH� (24)

Under Assumption 2, it can be proved that λ�ϕϕ⊤� > 0 [30].

The Lyapunov function candidate is constructed asL � Lx � Lxk�
L ~wc

� LJs , where Lx � J��x�, Lxk � J��xk�, L ~wc
� �1∕2� ~w⊤

c ~wc,

and LJs � ηsJs�x�.
Situation 1: ∀t ∈ �sk; sk�1�. Analogous to the derivations in our

previous research in [22], it can be obtained that
If Ξ�x; û�xk�� � 0, then _L < 0, ∀x ≠ 0 when kekk2 < kêTk2 and

k ~wck2 ≥ W1, where W1 is a positive constant.
Otherwise, if Ξ�x; û�xk�� � 1, then _L < 0, ∀x ≠ 0 when kekk2 <

kêTk2 and k ~wck2 ≥ W2, where W2 is another positive constant.

Denote W ≜ maxfW1;W2g.
Situation 2: ∀t � sk�1. The candidate Lyapunov function is

differed by ΔL � ΔLx � ΔLxk � ΔL ~wc
� ΔLJs. Because of the

property of the limits, ΔLx � ΔL ~wc
� ΔLJs < 0 [22]. Conse-

quently, ΔL < ΔLxk ≤ −κ�kek�1 − ekk� with a class-κ function

κ�⋅�. Therefore, the time derivative of L is still negative

∀t � sk�1. This completes the proof. □

It can be seen from Eq. (23) that the event-triggered threshold

keTk2 is adaptive and updated online, rather than being predefined.

The only tunable parameter in Eq. (23) is η, which lies in the range

0–1. This parameter introduces a tradeoff between performance and

computational efficiency. When η is set to 1, the first term in the

numerator becomes zero, resulting in a lower threshold. Conse-

quently, triggering occurs more frequently, and the system’s perfor-

mance approaches that of the continuous counterpart of the

proposed event-triggered algorithm.

E. Zeno Phenomenon Analysis

Zeno behavior refers to the occurrence of infinitely many trigger-

ing events within a finite time interval, leading to ill-posed system

trajectories and rendering practical implementation infeasible. In

practice, factors such as sensor and actuator delays, limited sam-

pling resolution, and hardware constraints can alleviate the accu-

mulation of infinite events, effectively mitigating the risk of Zeno

behavior [31].
To ensure theoretical soundness and practical implementability, a

positive minimum interevent time will be enforced in the triggering

condition. This dwell-time constraint guarantees that successive

events are separated by at least a fixed duration, thereby eliminating

the possibility of Zeno behavior and ensuring the robustness of the

event-triggered mechanism.
Denote the interexecution time as Δs � sk�1 − sk, then Δsmin �

mink∈Nfsk�1 − skg must be guaranteed to be larger than zero to

avoid the Zeno phenomenon.
Theorem 2: Using control law in Eq. (13), the k-th interexecution

time Δs of the closed-loop form of Eq. (1) determined by Eq. (23) is

lower bounded as

Approximate Hamiltonian

Eq.(16)

Stabilizing Term

Eq.(21)

Improved Updating Rule

Eq.(22)

Critic Network

Eq.(12)

Event-Triggered Control

Law Eq.(14)

Aeroservoelastic SystemAeroservoelastic System

State Observer

Zero-Order

Hold

Trigger an

Event

YesNo

Fig. 2 Block diagram of the proposed event-triggered adaptive dynamic programming (ET-ADP) algorithm.
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Δs ≥
1

κ1
ln �1� Γk;min� > 0 (25)

where Γk;min � mink∈N�kek�1
T k∕�kx̂kk � κ2�� > 0, kek�1

T k �
ek�s−k�1�, ek�s−k�1� � limϑ→0ek�sk�1 − ϑ�, and κ1 and κ2 are pos-

itive constants.
Proof: Using Theorem 1, ~ωc is upper bounded by a constant b ~ωc

.
Using the fact that the optimal weight is bounded as kωck ≤ bωc

,

then the weight estimate is bounded as kω̂ck � kωc − ~ωck �
bωc

� b ~ωc
.

Based on Eq. (13) and Assumptions 3 and 4, it can be derived

k _xk � kg�x�û�xk� � f�x�k ≤ κ1kxk � κ2 (26)

where κ1 is a positive constant resulting from the Lipschitz con-

tinuity while κ2 � �1∕2�λ�R�b2gb∇εc�bωc
� b ~ωc

�∕κ1. Therefore

k _ekk ≤ κ1kek�t�k � κ1�kx̂kk � κ2�; ∀ t ∈ �sk; sk�1� (27)

Because x̂k remains unchanged during t ∈ �sk; sk�1�, according to
[15], the following equation holds:

kekk ≤
t

sk

exp�κ1�t− s��κ1�kx̂kk� κ2�ds

� �kx̂kk� κ2��exp�κ1�t− sk��− 1�; ∀ t ∈ �sk; sk�1� (28)

Define keT�s−k�1�k � ek�1
T , then from here, analogous to the

proof in [32], it takes a minimal intersample of Δs ≥ �1∕κ1� ln �1�
Γk;min� > 0 for the term fkeTk∕�kx̂kk � κ2�g to grow from 0 to the

minimum positive Γk;min � mink∈N�kek�1
T k∕�kx̂kk � κ2��. This

holds for all t ∈ �λk; λk�1�; k ∈ N. The proof is then completed
because Γk;min > 0, then Δsmin > 0 for any x�t� ≠ 0. □

IV. Experiment Setup

A. The Aeroservoelastic Apparatus in a Wind Tunnel

Figure 3 shows an overview of the experimental setup. The
aeroservoelastic apparatus is mounted in an open-circuit wind tun-
nel of Delft University of Technology [33]. A gust generator with
two vanes is used to generate 1-cos gusts upstream, in the range of
0.5–12 Hz. The aeroservoelastic wing is designed with both pitch
and heave degrees of freedom and incorporates a trailing-edge
aileron and spoiler as active control devices. The actuator servos
are identical for aileron and spoiler. The actuator dynamics are
identified as a second-order low-pass filter with ξ � 0.91 and
ωn � 18.93. Additionally, the position and rate are constrained
within 	20 deg and 	750 deg∕s, respectively. An MPU-9250
inertial measurement unit is embedded within the structure of the

aeroservoelastic wing. Moreover, the linear and rotational motions

of the aeroservoelastic system are captured by noninvasive linear
and rotary variable differential transformers. These devices are read

by a 12-bit analog-to-digital converter, sampling at 200 Hz. Overall,

the measurement signals used for control are h, �h, θ, _θ, and β. The
remaining states are observed from a Kalman filter. More details on

the aeroservoelastic apparatus can be found in [34].
To design a critic network for estimating the cost function, the

approximating accuracy improves as the activation function’s non-

linearity and the number of neurons increase. However, using more

highly nonlinear neurons can also raise computational demands and
risk overfitting, which undermines control robustness. In this setup,

the neural network employs basis functions composed primarily of
low-order polynomial terms (up to second order), optionally com-

bined with tanh activations. This structure balances nonlinearity and
computational efficiency, especially for systems with moderate state

dimensions (12 in this case), where a second-order polynomial

expansion leads to one single hidden layer with in total 132 neurons.
The number of neurons in the hidden layer is selected based on

empirical performance and model complexity tradeoffs. Starting
from a minimal configuration, the architecture is incrementally

expanded until no significant gain is observed on a validation set.
To enhance generalization and avoid overfitting, regularization

techniques including L2 weight penalties, dropout, and early stop-

ping are applied during training. The network is trained using

standard backpropagation and stochastic gradient descent. During
online learning, robustness and generalization are enhanced by

constraining value function updates within predefined bounds and
enforcing input constraints to prevent drift into poorly trained

regions of the state space. In the cost function, Q is chosen as an
identity matrix and R is tuned to be 0.1 as a tradeoff between

performance and control efforts.

B. Offline Pretraining

Safety is of primary importance in aerospace. Directly applying a
learning algorithm online has a lower probability of being certified

by authorities such as the European Union Aviation Safety Agency.
Therefore, this experiment adopts a combined offline and online

learning approach. This approach aligns with the philosophy of
initially training a human pilot on ground flight simulators before

advancing to real flight training. For the offline training process, a

linear quadratic regulator controller is selected as a baseline. The
proposed ADP algorithm imitates the behavior of the linear quad-

ratic regulator controller in an offline simulation environment for
10,000 training steps.
The choice of 10,000 training steps was made based on the

observed convergence behavior, as illustrated in Fig. 4. A balance
was sought between achieving sufficient training for policy con-

vergence and preventing overfitting, which may result from

Fig. 3 An overview of the experiment setup.
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excessive training. Furthermore, this number was selected to pro-
vide a reasonable tradeoff between performance and computational
cost. To mitigate overfitting and improve generalization, probing
noise was introduced during the offline training process.
It is worth noting that the baseline controller is used solely to train

the initial weights of the ADP to achieve an admissible initial
design. The baseline controller becomes suboptimal in the presence
of real-world nonlinearities, time delays, and non-Gaussian external
disturbances (including the 1-cos gust required by certification
regulations). The gap between simulation and reality will be bridged
by the continuous online learning capability of the proposed ADP
algorithm. Additionally, the onboard computational load will be
reduced by the proposed event-triggering algorithm.
Figure 4 illustrates the evolution of norm value of the critic weights

and the training cost. As observed, both values exhibit convergence.
Moreover, the norm value of the critic weights experience a signifi-
cant drop during the initial 100 steps, followed by a more gradual
decline. In contrast, the cost demonstrates a much higher rate of
convergence. The weight values at the final offline training step are
used as the initial weights for the real-world experiment.

V. Results and Discussion

A. Real-World Performance of the Event-Triggered (ET)-ADP

The real-world effectiveness of the designed ET-ADP algorithm
under the excitation of a 7-Hz (close to its first resonance) gust when
the inflow velocity is 12.5 m∕s is presented in this subsection.
Robustness to a broader range of gust frequency and inflow velocity
will be presented in Sec. V.C. It is noteworthy that the external
atmospheric disturbances (including 1-cos gusts required by certif-
ication and continuous turbulence) are unforeseen by the controller
both during the offline training process and the real-world online
experiment.
Figure 5 illustrates that the aeroservoelastic modes have been

excited by the gust, leading to an oscillatory behavior that persists

even after the gust has passed the system. Without control, it takes

more than 0.8 s for the system to dampen out. On the contrary, the
ET-ADP controller increases the damping in the system and attenu-
ates the motion within 0.5 s. With the ET-ADP controller, the peak is

reduced by 35.41%, whereas the root mean square (rms) value of the
motion is reduced by 54.45%. Moreover, the shading in the figure

indicates that the results of 10 different tests are predominantly
consistent.
The critic cost function evolution is illustrated in Fig. 6. Four

1-cos wind gusts in the same pattern strike the system one after

another. It can be observed that when the system is hit by one single
gust, the critic cost first increases, then quickly descends and con-
verges. Furthermore, as the number of gusts experienced by the

system increases, the overall cost of the algorithm decreases, indi-
cating the online learning capability of the ET-ADP.

B. Effectiveness of Event Triggering

The trajectory of the triggering threshold keTk2 is displayed in

Fig. 7. When a single gust occurs, keTk2 experiences an initial
sudden increase and then shows a trend of converging to zero, along

with the event error kekk2. Overall, as the algorithm becomes

increasingly experienced, both keTk2 and kekk2 decline.
Figure 8 presents interexecution time evolution. It can be

observed that the ET-ADP algorithm can extend the interexecution
time from 0.002 s to up to 1.755 s (877.5 times). This enhancement

is also reflected in Fig. 9, which compares the control command of
ET-ADP with its time-based ADP counterpart. The latter communi-

cates with the actuator at a fixed time interval of 0.002 s. Figure 9
demonstrates that the time-based ADP not only responds to wind
gusts but also continues to react to measurement noise and low-

magnitude turbulence in the flow after the gust has passed and
the majority of energy in the system has been dissipated. This

continuous reaction after the main dissipation actually contributes
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marginally to gust load alleviation performance but increases com-

munication costs. In contrast, ET-ADP primarily issues control
commands during the transient phase and ceases updating when

not necessary. This significantly improves communication and

resource utilization efficiency.
As proved in Theorem 2, the Zeno phenomenon is avoided in the

proposed algorithm. This is further verified in Fig. 8, in which the

interexecution time not only encompasses values of 0.002, but it
also includes a broad spectrum of values greater than 0.002.
The number of control command updates is presented in Fig. 10.

Over a duration of 25 s, the aeroservoelastic system experienced
nine consecutive gusts. The time-triggered ADP updates a total of

12,500 times, whereas the ET-ADP updates only 3462 times, result-

ing in a 72.30% improvement in efficiency. Furthermore, the
zoomed-in plot of Fig. 10 reveals that the number of control

command updates for ET-ADP displays a stair-step appearance.
This indicates that the number of control command updates rapidly
increases following the impact of a gust and then stabilizes after the
gust has passed. Figure 8 also corroborates this phenomenon,
showing that samples of shorter interexecution times cluster around
the periods shortly after a gust impact. Once the gust has passed, the
interexecution times generally lengthen.
In conventional time-triggered implementations, the neural network

is updated at every time step, requiring continuous backpropagation,
large-scale matrix computations, and frequent communication with
actuators. This results in high computational demand and increased
actuator activity, which can lead to excessive energy consumption and
accelerated hardware degradation. By contrast, the event-triggered
strategy reduces the frequency of neural network updates and actuator
communications by allowing updates only when certain conditions are
met. This approach lowers the computational load and decreases the
energy usage associated with actuator movement.
The additional implementation cost of even-triggering is small.

Compared to the standard approach, the only extra operations are
the computation of a time-varying threshold and the evaluation of a
triggering condition. These operations are relatively lightweight,
whereas the reduction in network updates and actuator usage leads
to more significant overall savings.

C. Robustness, Adaptation, and Efficiency

The robustness of the controller to external disturbances and the
adaptation of the controller to various gust frequencies (ranging
from 3 to 8 Hz) and inflow velocities (ranging from 11.5 to
12.5 m∕s) are presented in this subsection.
Figure 11 presents a comparison between the ET-ADP and its

time-based ADP counterpart across a total of 15 test conditions (as
illustrated on the horizontal axes). Under each test condition, the
algorithm repeatability encounters one specific type of external
perturbation (containing both in-flow and cross-flow components).
In the context of wind-tunnel experiments, in-flow disturbances
refer to perturbations that occur along the direction of the mean
flow (streamwise). In our case, such disturbances are naturally
present due to inherent fluctuations in the wind-tunnel speed. In
contrast, cross-flow disturbances refer to perturbations that occur
perpendicular to the main flow direction, such as vertical or lateral
gusts. In this experiment, a set of gust generators was installed
upstream of the aeroelastic apparatus to introduce prescribed
cross-flow vertical gusts.
During the intervals between gust encounters, two performance

metrics are utilized: 1) the reduction percentage in the rms of the
heave motion compared to the open-loop response, and 2) the
reduction percentage in the maximum amplitude of the heave
motion compared to the open-loop response.
It can be observed from Fig. 11 that both algorithms can effec-

tively attenuate the aeroservoelastic oscillations. On average, the
rms of the heave motion is reduced by 40.51%, whereas the peak
is reduced by 24.68%. The results of different tests are also
predominantly consistent. Holding the control commands after the
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majority of the gust effects have dissipated does not significantly
enhance the performance, as Fig. 11 demonstrates that the perfor-
mances of ET-ADP and time-triggered ADP are comparable. None-
theless, event-triggering significantly reduces control command
update numbers. This is further verified in Fig. 12, which shows
that the update times for ET-ADP are lower throughout the entire
time history and across all experimental conditions. On average,
ET-ADP reduces the number of updates by 62.98%, contributing
to improving both computational and communication resource
utilization.

VI. Conclusions

In this Technical Note, we focus on the real-world experimental
investigation of gust disturbance rejection in a nonlinear, underactu-
ated, and uncertain aeroservoelastic system using the event-triggered
adaptive dynamic programming (ET-ADP) approach. Real-world
experiments reveal that the nonlinear hyperbolic tangent function
used in existing ET-ADP algorithms can reduce robustness to input
delays and increase sensitivity to parameter tuning. To address these
issues, an alternative algorithm following the ET-ADP framework is
presented and theoretically proved in this Note. In real-world experi-
ments, this algorithm suppresses the oscillatory motion of the system
in the presence of unknown external gusts and turbulence, without
exhibiting the Zeno phenomenon. When a single gust repeatedly
impacts the system, the algorithm also demonstrates the ability of
learning from past experience online. Moreover, it automatically
adapts to various inflow and crossflow conditions, achieving an
average reduction of 40.51% in the root mean square of system
motion. Furthermore, the experimental results show that the algo-
rithm dynamically adjusts the control command update frequency: it
increases the update rate during sudden gusts for timely suppression,
and reduces it after the gusts subside, effectively balancing rapid
responsiveness and resource efficiency. As a result, compared to its
time-triggered counterpart, the ET-ADP algorithm reduces the num-
ber of control updates by 62.98% and extends the interexecution
interval by up to 877.5 times. These findings demonstrate the effec-
tiveness of the proposed method in reducing computational and
communication loads without compromising performance. Validation
of the effectiveness under irregular or multimodal gust conditions is
recommended as future work.
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