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Deter mination of the extreme value in the response of wind
turbines by means of constrained stochastic smulation

Wim Bierbooms

Delft University of Technology, 2629 HS Delft, The Netherlands

Via so-called constrained stochastic ssimulation gusts can be generated
which satisfy some specified constraint. In this paper it is used in order to
gener ate specific wind gusts which will lead to local maxima in the response
of wind turbines. By performing many simulations (for given gust amplitude)
the conditional distribution of the response is obtained. By a weighted
aver age of these conditional distributions over the probability of the guststhe
overall distribution (for given mean wind speed) of the response is
determined. The probabilistic method is demonstrated on basis of a
linearized moddl of a stall regulated wind turbine. By considering a linear
model the proposed probabilistic method could be validated: the deter mined
50 year response value corresponds with the theoretical value (based on
Rice).

1. Introduction

The objective of this paper is to find the extrerasponse of wind turbines under stochastic
wind loading. The (aero)dynamics of a wind turbisen general far from linear and for the
determination of the loading a wind field over #natire rotor disc has to be considered. As a
result the 50 years response can not be assunimeghp@n during the 50 year wind.

In order to arrive at the 50-years extreme respohsénd turbines it would be ideal to have
available the wind data, at the specific locatibrthe wind farm, over a period of say 500 year
and unlimited computational power. The 50-yearpaase could than be determined on basis of
simple statistical analysis of the simulated resgorBoth conditions do of course not apply in
practice. Instead in standards some determinisist ghape is provided which should represent
the 50 years extreme situation. However both thet ghape as well as amplitude is rather
arbitrary. Furthermore the deterministic wind daes reflect the stochastic nature of turbulence.
An alternative is to do simulations, as long ax<fpcal feasible, and extrapolate the results to the
desired return period of 50 years applying extrealae theory.

Here we will present another alternative. In Re$olcalled constrained stochastic simulation
is treated which allow to generate wind gusts wtsahsfy some specified constraint. E.g. one
may generate time series around a local maximuim spiecified amplitude, or wind gusts which
contain a prescribed velocity jump in a specifiesgé time. These wind gusts are embedded in a
stochastic background in such a way that theyiarstatistical sense, not distinguishable from
real wind gust (with the same characteristics efdbnstraint).
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Constrained stochastic simulation enables us tat lihee simulation to situations which
contributes to the extreme response and skip la#rst This saves a lot of computational time
and limit the required extrapolation (and accomjpagmyuncertainty) to the required return
period.

In this paper we focus on the overall probabilistiethod to come to the extreme response;
constrained stochastic simulation is treated iaidet Ref. 1 and 6.

In order to present the probabilistic method tavarat the 50 years response we will use a
linearized dynamic model of a wind turbine whicheiscited by turbulence. The advantage of
considering a linear system is that a theoreticalyasis of the extreme loading is available (valid
for normal random variables) which makes a val@atof the probabilistic method possible
(since the response of a linear system to a Gausyat will also be Gaussian).

2. Reference system and theor etical 50 year s response value

As reference system a generic fixed speed stalllaggd wind turbine is taken. It is a 3-
bladed 1 MW turbine with a rotor diameter of 51 mdaa hub height of 55 m. For the
determination of the extreme loads all mean wineesgls should be considered. Since we want to
demonstrate the probabilistic method the calcuhatiare performed for just one mean wind
speed, 15 m/s. As example for the loading the bltadeflapping moment is considered, but any
other load signal could have been taken as wethuitions with a random wind speed are
performed with the Bladed software package. Justcfmvenience a uniform wind field
(constant over the rotor disc) is taken. A linegstem of the stall turbine (i.e. the transfer
function between the wind input and the blade fagping moment) is obtained by application
of a system identification toolbox, Ref. 7. Forsthpurpose the periodic excitations (rotor
imbalance, gravity, tower shadow, wind shear) atdczero.

Concerning the extreme loading of wind turbinesase primarily interested in the level of
the response with a certain return period, sintedbtermines together with the statistics of the
structure strength the failure rate. For wind toesi it is common to consider a 50 year return
period, so we are looking for the response leveatkvis on average exceeded once in 50 year.
For a normal random variable the mean level (ugging frequency of leve}, is given by Ref.

2:

2
rl'l

v, =ve 2 (1)
with vo=V(A/0) the mean zero crossing frequency artthe second order spectral moment

From Eg. (1) the 50 years respongean easily be determined:

lso = 02100V T5,) (2)

with Tso the number of seconds in 50 year,vs=1/ Tso

The parametergpando can be determined from the spectral propertiesidiulence
(more specific: the auto correlation function) atite transfer function of the wind
turbine. For the reference system the 50 yearsonsgpof the blade root flapping moment
turns out to be equal to 0.268 MNm (@)
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3. A probabilistic method to find the extremeresponse

The proposed probabilistic method is based on ¢iomdil distributions. The gust amplitudes
of the stochastic wind input of the wind turbindlvmie denoted as random variableand the

local maxima of the response as random varigblhe marginal densities arg(x) andf (y);

the joint density id (x, y)andf_(y) = f(y|x)is the conditional density gfupon observing=x.
The following well-known relations exist:

L00= [ F(xy)dy 3)
f,(0) = [ f(xy)dx (4)
)= f(a)da (5)
Fy)=[_f,(8dB (6)
Fxy)=[ [ f(a.pdadp )
fL(y) = ff(xx(’x 1 ©

F) =] f.(8)dB (9)

Combination leads to:

Ry =] [ f@pdadg=["["1.(8) 1 (@)dadB

o (10)
= [ EWf(@da=Y F.(y)n,
with ny the probability (‘fraction of time’) that a locahaximum is within the discretized
amplitude intervals of random inpxit

So the distribution of responsecan be obtained through a weighted summation ef th
conditional distributions. The conditional distrttans can be determined by simulations of wind
gusts which are obtained by constrained stochastialation, say 100-1000 simulations for each
amplitude. The amplitude of the wind gusts may aeed from say & to 50. In case the wind
input are maximum amplitude gusts the probabilitycan be derived from the density of local
maxima, Ref. 2. For extreme rise time gusts theired expression can be found in Ref. 1. In
this paper gusts are used which leads to a localmen in the response. For these gusts an
analytical expression for the gust probabilityiisegp in Ref. 6 (Eq. (D.11)).

The advantage of the here presented method ight@migh constrained random simulation
gusts with any required high amplitude can be gaedr So by just a limited number of
simulations extreme responses are obtained. Théwooehas already been used for the
determination of the extreme loading of offshoredures, e.g. Ref. 4, and wind turbines Ref. 5.
Eq. (10) is used in order to obtain the distribomitad the local maxima in the response. To this
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end the conditional distributions. Fare fitted to some theoretical distribution (EVD 8
parameter Weibull). The long term response, sayea, is obtained via:

Fo(Y) =F,(y)™ (11)

with Nso the number of local maxima in 50 years; it is assd that the local maxima are
independent.

The method has been validated by comparison wghltsefrom long simulations, up to 50
times 40 min. (Ref. 5) or 100 times 3 hour (Ref. Also some practical problems have been
attacked as e.g. the required number of simulaioneach amplitude and the amplitude range.
However up to now no verification have been dongeteon theoretical results; since we deal
with a linear system such a verification is nowgible.

A more fundamental problem inherent to constrastedhastic simulation is that there can be
no one-to-one relation between local maxima initipeit and the response, since the number of
local maxima in the input will generally differ fiothat of the response, Ref. 2. So it is unclear
which local maximum in the response should be astmtto a prescribed gust input. For large
amplitude gusts this will not be a problem; a lagyest will result into a large response so one
may just pick the maximum value in the responsg, Ei
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Figure 1. Example of constrained stochastic smulation; 50 gust at t=0s
Top: turbulence (input)
Bottom: bladeroot flapping moment (response).
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For gust amplitudes up to sag 3he situation is different, see Fig. 2. Since tbastrained
wind gusts are embedded in a stochastic backgronedmay expect variations of order af 3
due to the background alone. It is now not obviaéch response level should be associated
with the prescribed gust. This means that it is possible to determine the conditional
distributions for these gusts. In previous workisitnot clear how this problem is treated.
Fortunately the contribution of modest gusts to thé of the response distribution will be
limited. It is therefore more natural to rewrite. Efj0) in terms of the exceedance probability:

G,(y)=1-F,(y)=1- [ FWf @Ma=[" (-F ), @)Xa
[“ eyt (@da=Y G (yn,

(12)

In the next section it will be investigated if wancuse constrained stochastic simulations for
the prediction of the 10-min. maxima in the resgorather than for all local maxima. By doing
SO a one-to-one relation is established betweeut iapd response. Another advantage is that in
that case, as will be shown, the contribution oflest gusts on the final result is negligible.
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Figure 2. Example of constrained stochastic simulation; 20 gust at t=0s.
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4. Application of 10-min. maxima for the probabilistic method

In this Section it will be investigated if 10-mimaxima, rather than all maxima, can be used
in the probabilistic method outlined in the prewsoGection. This will solve the indicated
problems.

For the reference wind turbine 50 years of simafats performed, consisting out of 2628000
time series of 10-min. each. For each 10-min. valethe maximum input value as well as
maximum response is determined. In Figure 3 a clgsas shown for the largest maxima
together with the 1 hour and 1 day maxima. It tuwasthat almost all 10-min. maxima are also
the 1 hour and 1 day maximum, so the maxima of tigmd response seems to occur
simultaneous (are dependent).

The joint distribution F of all local maxima, Ed¢.)( and joint distribution §=for the maxima
Xp and y during period p is:

F,(xy)=F(x,y)" (13)
with N, the number of local maxima (of the input) in tiperiod p

We will now examine if we can expresg,y) in terms of conditional distributions like Eq.
(10). The joint densityyfis given by:

0°F_(X,Y)
f(xy)=—>F—— (14)
p
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Figure 3. The 10-min, 1-hour and 1 day maxima in response and input.
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From Eqg. (13) we obtain:

oF,(X,Y) N1 OF (X, Y)
P77 =N_F X, LR S K 24 15
W s F(Xy) ™ (15)
and
0°F, (X, _
IFxy) N, (N, ~DF (x,y)"™ :FO0Y) FY)
oxdy ox oy (16)
2 0°F(XY)
N, F(xy)" " ——
o F(XY) o0y
The (first order) partial derivatives have an upipeund given by:
oF (X, °°
XY = 7§ (x, B)dB<[ " f (x y)dy= ,(x) a7)
0x ® ®

and a similar expression for the partial derivativg. For large x and y the densitigéj and
fy(y) go to O while F(x,y) is approaching 1, thus figerm at the right hand side of Eq. (16) can
be neglected. So we have:

N,-1
foy)=N F(xy)" f(xy) (18)
Similar to Eq. (8) the conditional density for tiiaximum per period is given by:

fo(x.y)

fo(Y) = 00

(19)

Assuming that the maxima per period are indepentthenmarginal distribution,& equals:

_ N,
Fo(X) = F(X) (20)
so the densityyf is given by:
dF_ (X i _
f (X :ﬂ: N, F (%" 1R (%) _ N F (%)™ f () (21)
P dx P dx P

For large values of yf=(x, y) = F,(X), thus:
fo() =N, F(x )" f,(X) (22)
Finally, combination of Eq. (18), (19) and (22)dsdo:

_NGFOO™ T () _ f(xy) _
N, FO™ 70 109

fo (V) f.(y) (23)
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So, the conditional densities obtained via conséeistochastic simulation can also be used
for the determination of the distribution of thexima of the response over some time period, as
long as we are interested in the tail of the dstibn:

F,o(Y) = j F,,(y) f,(@)da = j F.(y) fo(@)da=> F.(y)n, forlargey (24)

with ny, the probability (‘fraction of time’) that a maximuover period p is within the
discretized amplitude intervals. This probabilgygiven by:

Ne = Fo(Xpp) = Fp (Xow) (25)

with Fy, the distribution of the maximum of period p, E2ZQ), and ¥%pp and X the upper and
lower bound resp. of the amplitude intervals.

In Section 5 this equation will be applied for treference case and compared with the
theoretical result.

In this Section it is assumed that the constrairstgconcerns maximum amplitude gusts. In
fact the method can be applied for any constrairst @s long as there is a clear correlation
between input and response (like Fig. 3). If tlesnot the case (e.g. by considering troughs
instead of crests) the here presented method nmakeense since the conditional distributiops F
for these kind of gusts will be more or less edoahe required distributionyfof the response
(so there is no advantage compared to normal, whi@ened, random simulations).

The method can be applied for any desired timeodepi For determination of the extreme
response of wind turbines different mean wind spe@hd possibly different turbulence
intensities) have to be considered. In this resppestmost convenient to consider 10-min. (or 1
hour) periods since that is the common intervahfean wind speeds.

5. Determination of the 50-year s response based on constrained smulations

As mentioned before, constrained stochastic sinauaallows generation of wind gusts
which satisfy some specified constraint. E.g. ongy ngenerate time series around a local
maximum with specified amplitude. Here a rathercgdekind of constrained simulation is
considered. Gusts are generated which will leaal kmcal extreme (of unspecified value) in the
response of the wind turbine. Details includinglgim@al expressions of this kind of gusts can be
found in Ref. 6. In order to generate such guststtinbulence spectrum as well as the transfer
function of the linearized wind turbine model shiblie known.

Gusts have been used with 5 amplitude levels (f8ornup to &; 1000 simulations for each
amplitude). The results of the constrained simarfegiare depicted in Fig. 4. Please note that
constrained simulation is still stochastic; i.e0QGimulations leads to 1000 different values of
the maximum response (from which a distribution barconstructed). The range of amplitudes
is chosen such that small gust amplitudes upot@i@ excluded (see discussion at the end of
Section 3) and that the maximum value which caexXpected in 50 years is included. The latter
can be estimated to bes6or 6.5 and follows from the inverse normal distribution*(-
1/ns50,0,0) with nsg the number time points in 50 yearggfil.6e9 or 3.2e10 for a sampling rate of
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1 Hz and 20 Hz resp.). The empirical distributiénasn the constrained stochastic simulations is

given by E=i/(N+1) with i=1 to N and N=1000.
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Figure 4. The distributions of the maxima in the response obtained via constrained
stochastic simulation for several gust amplitudes.

The overall distribution of the response can novedleulated via the weighted summation of
the 5 conditional distributions, Eq. (24). In orderdo this calculation it must be possible to
evaluate the conditional distributions over thegerf response level y of interest. Here we
apply a straightforward scheme:

yS y*min Fc(y) =O
Yomin <YSYmnt F(Y)=H,(Y)
Yoin <Y Yiaxt Fe(¥) = Fe(Y) (26)

Yiax <YS Y ma: F(Y) =H ()
Y>Y e F.(y)=1

With Yimin and ynax the 16" gnd of p*ercentile of the response from the constraineuliisition
(for a given amplitude) and y, and ymaxthe estimated endpoints (left and right resp.)hef t

distribution. As fit function the generalized Pareistribution (GP) is used:
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H,(y) =1- @+ yy)™” (27)
with y the extreme value index.

So in total five regions are distinguished. Forueal in the range of the constrained
simulations the value is determined from (lineatgipolation of the empirical distribution.F
For values larger than this range, extrapolationasessary. It is possible that he response is
bounded. This implies that the GP can have a negaxtreme value index and thus (right)
endpoint Ymax

Y e --2.p (28)
14

AboVe Y max Fcis set to 1. For the left tail the minima aresfittto a GP (for this purpose it is
common practice to do a multiplication by -1 so ma are obtained and the same methods /
routines can be used).

As example of the fit procedure (upper tail) we serg the results for the constrained
simulations with amplitudec&® The moment estimators for the GP parametersadentfrom
Ref. 3. In Fig. 5 the estimated parameters are shasvfunction of k (the number of order
statistics). The values for k=100 have been usedhas.
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Figure 5. Estimated GEV parameters (extreme value index y, scale parameter a and

location parameter b) for the constrained simulations for gust amplitude 50 and the
resulting tail estimate p=1-F.
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The resulting fit is shown in Fig. 6; in order teepent the tail behavior also —log(d-&s well
as log(R) is plotted. It turns out, for this particular eashat the estimate of the right endpoint is
just a little bit larger than the largest valueasbéd from the constrained simulations.
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Figure 6. The conditional distribution obtained via constrained stochastic simulation;
identical to Fig. 4 (amplitude 50) and the extrapolation of the tails (middle: right tail;
bottom: left tail).

Finally the distribution of the response can benestied by use of Eq. (24), see Fig. 7. The
estimated 50 years value equals 0.276 MNm (thisewalue for which the distribution equals 1-
1/Tso with T50=2628000 the number of 10-min. series in 50 yedisis is in agreement with the
theoretical value of;5=0.268 MNm.
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50 year of simulation; distribution of 10m maxima
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Figure 7. Comparison between the estimated and theoretical distribution of the 10-min.
maxima in the response. The horizontal green dashed line indicates the 50-years return
period.

The result can be improved by doing the constrastedhastic simulations for more gust
amplitudes. To this end the contribution of eackt@mplitude to the summation of Eq. (24) is
shown in Fig. 8, for y=0.268 MNm (50 years valué)turns out that the final result is in fact
dominated by the 6dgust. This also justifies our claim that guststo®@o (which can not be
generated via constrained simulation) are negkgibl
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Figure 8. Top: The value of the conditional distribution (exceedance probalitity) for
y=0.268 MNm for gust amplitudes 3.50-7.50 (with a step of 0.50).

Middle: the fraction of time ny, for each gust amplitude.

Bottom: Contribution of each gust amplitude to the tail estimation of the response (i.e. the
nor malized product of the values of thetop and middle graph).

Based on Fig. 8 we redo the calculations for gogtlaudes in betweendtand © in steps of
0.250 (13 in total), see Fig. 9. This leads to an esknud the 50 years response value of 0.271
MNm which is only 1% larger than the theoreticaéon
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Figure 9. Top: The value of the conditional distribution (exceedance probalitity) for
y=0.268 MNm for gust amplitudes 40-70 (with a step of 0.250).

Middle: the fraction of time ny, for each gust amplitude.

Bottom: Contribution of each gust amplitude to the tail estimation of the response (i.e. the
nor malized product of the values of thetop and middle graph).

6. Concluding remarks

The shape of the histograms (bottom Fig. 8 ands9datermined by the product of the
conditional distribution (for given response leaald gust amplitude as parameter; top graphs of
Fig. 8 and 9) and the density of the gust amplgudessuming that the input and response are
correlated (see Fig. 3) it can be expected thatedtemedance probability increases with gust
amplitude, as can be seen in Fig. 8 and 9 (topg. dénsity of gust amplitudeg, fs determined
by the combination of the density of the gust atagks (Eq. (D.11) of Ref. 6) and Eq. (20) with
Np the number of local maxima in 10-min.,X032 for the reference case. The density, which
is slightly non-Gaussian, is plotted in Fig. 10e(itorresponding histogram for amplitude ranges
are depicted in the middle graphs of Fig. 8 andA8).a result a bell shape histogram can be
anticipated.

The contributions of each gust amplitude to theresion of the tail probability, as shown in
Fig. 8 and 9 bottom, provides a rational base fa tetermination of the range of gust
amplitudes as well as the required discretizatidns may be preferred to base the decision on
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e.g. the 99 percentile of the estimated responseliition (either by comparison with normal,
i.e. unconstrained, simulations or consideringc@vergence).
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0 1 2 3 4 5 6 7
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Figure 10. The density of the 10-min. maxima of the gusts amplitudes.

In order to demonstrate the validity of Eq. (24)iethis based on some assumptions we have
done the same analysis for the 10-min. gust ang@#&las above in case of 1 day maxima; the
result is shown in Fig. 11. As expected the esenmpoor for small values of the response value
but very good for the tail. In fact the 50 yearireate is 0.270 MNm, so even better than the
estimate based on 10-min. maxima.
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50 year of simulation; distribution of 1d maxima
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Figure 11. Comparison between the estimated and theoretical distribution of the 1-day
maximain the response.

Acknowledgements

The author wants to thank Ervin Bossanyi (from @arHassan & Partners, UK) for making
available a Bladed project file of a generic stalbine.

References

[1] Wim Bierbooms, Constrained Stochastic SimulatioGeneration of Time Series around some spdeifant in a Normal
Process, Extremes, Vol 8, p 207-224, 2006.

[2] Rice, S.O., Mathematical analysis of randomsepiBell Syst. Techn. J., 23, 282 (1944). [Repdrite Wax, N. (ed.),
Selected papers on noise and stochastic proc&mesy; Publ., 1958].

[3] Laurens de Haan and Ana Ferreira, Extreme Vaheory — An introduction, Springer, 2006.

[4] Léon A. Harland, Jan H. Vugts, Philip Jonatteard Paul H. Taylor, Extreme responses of non-litgaamic systems
using constrained simulations, OMAE, Vol 1, Pari¥fshore Technology, ASME (1996).

[5] Cheng, P.W., A reliability based design methlody for extreme responses of offshore wind turbjrghD thesis, Delft
University Wind Energy Research Institute, 2002.

[6] Wim Bierbooms, Specific gust shapes leadingextreme response of pitch-regulated wind turbifids Science of
making Torque from Wind, Lyngby, Denmark, 2007.

[7] Michel Verhaegen and Vincent Verdult, Filterimnd System Identification: A Least Squares Appnodambridge
University Press, 2007.

16

American Institute of Aeronautics and Astronautics
092407



	Current Disc (1)
	Welcome
	Conference Listing
	ASM TOC (by TITLE)
	ASM TOC (by NUMBER)
	All Meetings This Year TOC (by TITLE)
	All Meetings This Year TOC (by NUMBER)

	Disc First Loaded (Click to Display Number of Disc First Loaded)
	Welcome
	Conference Listing
	All Meetings This Year TOC (by TITLE)
	All Meetings This Year TOC (by NUMBER)

	Search



