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Abstract
Areas of railways with considerable variation of track properties encountered near structures such as
bridges and tunnels are referred to as transition zones. Degradation rates at these transition zones are
higher compared to the remaining railways. These high degradation rates result in high maintenance
expenses. In order to come up with solutions that reduce this degradation and thus also the expenses
it is needed to have an understanding of the underlying mechanisms in the railway tracks. This is done
by formulating a mathematical model of the railway track which can then be analyzed. Researchers
have been using different models for this purpose.

The choice is often made to model the railway track an elastically supported beam. This elastic
foundation represents the supporting structure of the railway tracks and its stiffness is based on static
load cases. This 1D model is often used due to its relative simplicity compared to other more compli-
cated multidimensional models. This model has been thoroughly analyzed and it has turned out to have
an important constraint which is its inability to result in a critical velocity that makes sense for railway
tracks. The critical velocity of a railway track is that velocity at which waves travel near the surface of
the subsoil of the supporting structure. A vehicle that moves with a velocity close to the critical velocity
of the railway track causes a strong amplification of the response. Another important constraint of this
model is the fact that there is no possibility to directly adjust the stiffness properties of the different
components of which the railway track exists individually.

It is opted in this thesis to adjust the previously mentioned 1D model by the addition of a distributed
mass and an extra elastic layer. The upper elastic layer represents the pads and the lower elastic layer
represents the remaining of the supporting structure. The idea behind the addition of the distributed
mass is to include the activated mass of the supporting structure by the moving load. This is done in
order to take the dynamical behavior of the supporting structure into account and thus obtain realistic
critical velocities. The idea behind the addition of an elastic layer is that it enables to adjust the stiffness
of the pads individually. By using this model one can thus modify the stiffness of the pads at transition
zones and study whether it is possible to decrease the degradation which is the initial goal of all studies
on transition zones.

In this thesis the adjusted model is analyzed thoroughly for different physical phenomena. Such
analyses cannot be found in the literature, to the best of the authors knowledge. The system response
has been investigated for a uniformly moving load of a constant magnitude. This has been done for
homogeneous properties of the elastic layers and for an abrupt jump in the stiffness of the lower layer.
Attention has been given to both the displacement fields of the rails and energy propagation in the
system. Also a numerical model has been formulated for other load cases and stiffness properties. In
order to simulate infinite system behavior non-reflective boundary conditions have been derived and
applied to the numerical model. It has been found that indeed a far more realistic critical velocity can be
obtained by making use of the adjusted model. It has furthermore turned out that the system response
at a transition zone are very similar for both models for the same ratio of load velocity to the critical
velocity. The adjusted model has been investigated extensively in this thesis and it can thus be used
as a reference work for future researchers that wish to apply the model. The research that should
be performed next in the authors view is to investigate the possibility of reducing the degradation at
transition zones by adjusting the stiffness of the pads.

vii





1
Introduction

1.1. Background
The world has been getting smaller at a rapid pace over the last decades due to the development of
digital transport structures. Inhabitants of different parts of the world are nowadays in direct connec-
tion which each other through these structures. This connection enables new types of relationships
between the inhabitants of these different parts such as friendships, business relationships and other
types. These relationships however demand physical transport structures in which fast and efficient
transport of people and objects is possible. Railroads play an integral role in fulfilling this task. Because
of their importance it is thus needed to maintain the railroads such that efficiency is secured. This main-
tenance comes with expenses which need to be kept as low as possible. It has been shown that the
degradation rates at areas of railways with considerable variation of track properties encountered near
structures such as bridges and tunnels are higher compared to the remaining railway [26]. These ar-
eas are referred to as transition zones. It may be possible to come up with solutions that reduce these
degradation rates when the underlying degradation mechanisms at transition zones are understood.

The vehicles moving on the rails exert forces on the rails which causes the rails and the supporting
structure to exert dynamic behaviour. The forces exerted by a moving vehicle insert energy in the rail-
way track which is radiated away from the vehicle through waves propagating in the track. The railway
track is therefore interpreted as a field in which waves travel. The physical world shows that waves
occur in all kinds of different fields. Examples of such fields are stress fields, strain fields, electrical
fields, magnetic fields andmany others. Due to the large frequency of occurrence in physical processes
waves have been investigated by renowned scientists of the past and present. Two types of waves
that have been investigated extensively and have shown to exhibit great similarities are mechanical
and electromagnetic waves.

Waves of the electromagnetic field, carrying electromagnetic radiant energy, are referred to as elec-
tromagnetic radiation. Two types of important electromagnetic radiation are transition radiation which
has been demonstrated theoretically by Vitaly Ginzburg and Ilya Frank [10] and Vavilov-Cherenkov
radiation which has been detected by Pavel Cherenkov under the supervision of Sergey Vavilov [5].
Transition radiation is emitted when a source moves uniformly through inhomogeneous media, such as
a boundary between two different media. Vavilov-Cherenkov radiation is emitted when a source moves
uniformly through a dielectric medium with a velocity greater than the velocity of propagation of light
in that medium. The principle of Vavilov-Cherenkov and transition radiation can also be observed in
mechanical systems. An example of Vavilov-Cherenkov radiation in mechanics is a supersonic aircraft
which travels faster than the speed of sound causing the formation of a shock front. An example of
transition radiation in mechanics is a train which passes a bridge.

An analogy can be made between a source moving in a dielectric medium and a vehicle moving on
a rail. The force exerted by the vehicle is therefore seen as the source and the rail with the supporting
structure as the medium. This analogy begs the question whether the two previously mentioned types
of radiation occurring in dielectric media also occur in railway systems. This occurrence of Vavilov-
Cherenkov and transition radiation has indeed been confirmed to occur in rail systems. The wave
mechanics research group of the university of technology Delft has had its fair share in the research of
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2 1. Introduction

these phenomena in rails and other mechanical systems. Transition radiation has been discussed in
detail for a number of mechanical systems in 1995 by Metrikine [27], Wolfert [30] completed his doctoral
work with a report in which he discussed both transition and Vavilov-Cherenkov radiation in railways
and other members of the group have also contributed to the study of mechanical waves in railways.
Transition radiation has also been studied extensively by other researchers. Examples of such studies
are that of Castro Jorge [13], Dimitrovova [8], Germonpre [9], Lei [17], Paixao [20], Varandas [25] and
that of Sadri [22]. There is however enough room for research left due to physical properties of the
subsoil which in general shows a strong inhomogeneous behaviour.

1.2. Problem statement
As mentioned previously maintenance is required more frequently at transition zones due to the high
degradation rates. This may occur due to several reasons of which one is the occurrence of transition
radiation. It is thus required to obtain a good insight in the way transition radiation occurs in such a
system in order to work towards a solution for this problem on the long run.

A multitude of models of the vehicle interacting with the railway and supporting structure have been
developed over the years. Early on researchers have been using 1D models because of their apparent
simplicity. The supporting structure is often represented by a Winkler1 foundation in these 1D models.
Examples of studies in which such 1D models are used are a study of Vesnitiskii and Metrikine [27]
which gives an in-depth overview of transition radiation in mechanics , a study of Dipanjan Basu [3] in
which a load moves on a Winkler foundation that accounts for resistance due to both the compressive
and shear strains in the soil and a study of Faragau [1] in which a load moves on an Euler-Bernoulli
beam supported by a non-linear Kelvin foundation. Later on people have studied models in which the
subsoil is represented as a half-space or as a continuum of finite-depth. Examples of such studies
are a study of Kaynia[15] in which he investigated defects and inhomogeneities in railway tracks by
modeling the subsoil as a multidimensional continuum , a study of van Dalen [16] in which transition
radiation is studied of a system in which a load moves over the interference of two elastic layers and
a study of Dieterman and Metrikine [7] in which a load moves over an Euler-Bernoulli beam which is
supported by a linear elastic medium. The latter study had the interesting result that the elastic half
space can be replaced by equivalent frequency dependent springs. These types of modeling in which
the subsoil is interpreted as a continuum has the possibility to take more properties of the soil into
account but they result into complex calculations. The Winkler foundation is therefore a more attractive
alternative from an engineering point of view due to its relative simplicity. Over the years it has been
shown that application of the Winkler foundation is justifiable and does not necessary lead to large
errors in comparison to the methods in which the subsoil is interpreted as a continuum for static load
cases [2]. For moving loads, which is obviously a dynamic load, this is not the case. One of the main
problems is that the obtained minimum velocity of wave propagation based on a Winkler foundation is
way higher than the measured velocity at which surface waves travel.

1.3. Novelties
The problem statement raises the question whether it is possible to make adjustments to the Winkler
foundation in order to lower the obtained minimum velocity of wave propagation. The stiffness in a
default Winkler foundation is based on purely static behaviour, neglecting the inertia of the support-
ing structure. It is therefore opted in this thesis to add a secondary beam without bending stiffness to
the Winkler foundation in order to take the inertia into account. This secondary beam is an additional
distributed mass which represents the activated mass of the supporting structure by the moving load
and is from now on referred to as the inertia beam. The activated mass could also be represented by
increasing the mass density of the Euler-Bernoulli beam. This has already been done in the literature
and will also lead to a reduction of the minimum velocity of wave propagation. However, our choice has
the added benefit that one can, for example, tune the springs between the two beams to represent the
rail pads. This provides more versatility to the model by which one can investigate different configura-
tions in order to reduce transition radiation. Thorough analyses on the steady state behaviour, critical
velocities and transition radiation have been performed in this thesis for the adjusted model. According
to the authors knowledge these analyses can not be found in the literature on such a profound level.

1In the case that viscous damping is included the foundation is called a Kelvin foundation



1.4. Research questions 3

1.4. Research questions
Next to changing the minimum velocity of wave propagation, also referred to as the critical velocity,
the modification to the default Winkler supported Euler-Bernoulli model will most probably also lead to
other changes in the results. It is thus expected that the adjustments will also lead to differences in the
transition radiation behaviour and the vehicle-structure interaction. In line with the above the following
research questions are posed:

• Does the incorporation of the inertia of the supported structure in the form of an additional inertia
beam lead to a more realistic value of the critical velocity?

• How do the steady state displacement fields of the system with and without additional inertia
beam compare to each other?

• How does the transition radiation energy predicted by the model with and without additional inertia
beam compare to each other?

• How do the transient displacement fields of a vehicle passing by a transition zone based on the
model with and without additional inertia beam compare to each other?

1.5. Objectives
In order to answer the research questions the following objectives have been set:

• Investigate the influence of the addition of the inertia beam on the the critical velocity.

• Investigate the influence of the addition of the inertia beamon the transition radiation phenomenon.

• Formulate an efficient model of a transition zone that interacts with a vehicle.

• Compare the results of the transient displacement field for a uniformly moving load of constant
magnitude for the inertia included and excluded model.

1.6. Outline
In this chapter an introduction to this thesis was provided. In Chapter 2 the inertia-excluded and included
models are formulated. The system parameters are set and the equations of motions are derived. The
way mechanical energy propagates and is distributed over the different components in the models is
also considered. Moreover, uniqueness proofs for both models are presented.

In Chapter 3 the steady state displacement fields due to a uniformly moving load of constant mag-
nitude for both models are determined. These displacement fields are determined by making use of
both a geometrical method and Fourier transformations. These methods lead to equivalent solutions
which is in line with the uniqueness proofs of Chapter 2. The geometrical method is used to provide
the reader with the physical meaning behind the different steps in obtaining the steady state solutions.
Special attention is paid to the dispersion curves, the kinematic invariant, group velocity, phase velocity
and the critical velocity. The differences between the eigenfield and Vavilov-Cherenkov displacement
field are pointed out for the inertia-excluded system. It is also investigated whether these displacement
fields can be distinguished for the inertia-included model. The transform method is presented as a
more direct mathematical approach to obtain the steady state displacement fields.

In chapter 4 the transition radiation due to an abrupt jump in the stiffness properties for both models
are studied. The term free field is introduced to the reader as a homogeneous solution that is added to
the eigenfield in order to satisfy the interface conditions at the transition. Afterward, the spectral density
functions are determined based on the free field for both models.

In chapter 5 a numerical model for a transition zone is formulated. The finite element method is
applied for the spatial discretization and the Newmark-beta method for the time discretization. The
possibility for non constant system paramters is also included. This chapter finishes with the derivation
of non-reflective boundary conditions. These are used to simulate infinite system behaviour by a finite
model.

In Chapter 6 different results are shown and discussed from which the research questions can be
answered. This leads to the conclusion provided in Chapter 7.





2
Model properties

2.1. Model definition
A railway track consists of rails, fasteners, pads, sleepers, ballast and the underlying subgrade. Each
of the components rests on the following component according to the order mentioned in the previous
sentence, except for the fasteners obviously. These fasteners are used to fix the rails to the sleepers.

Figure 2.1: A three dimensional view of a railway track.

In this thesis the railway track is subdivided into two categories which are the rails and the supporting
structure, consisting of the remaining components of the railway tack. The supporting structure will
be described by two models. Before defining these two models a good physical interpretation of the
railway track is needed. A schematic view of a cross-section of the railway track is therefore shown.

Figure 2.2: A cross-section of a railway track.

From Figure 2.2 it can be observed that the response of the supporting structure due to deflection of
the rail is exerted through the pads. This response exists of reaction stresses at the interfaces between
the pads and the rails. The pads are located at a distance 𝑑 from each other. This implies that the rail is
periodically supported with period 𝑑. This idea has been elaborated in a study done by Metrikine [28].
In that study the rail was modeled by an infinitely long Euler-Bernoulli beam, the pads were modeled
as spring-dashpot elements, the sleepers were assumed to behave rigidly and the ballast together with
the underlying subgrade were modeled by a visco-elastic continuum. Other important studies on the
behaviour of the periodic structure are that of Mead [19], Hoang [11], Jezequel [12] and that of Barbosa
[6].

5



6 2. Model properties

This thesis aims, as elaborated in the Introduction section, to investigate the possibility of obtaining
a more realistic critical velocity by making use of a modified version of the classical Winkler foundation.
The first of the two models is therefore a default system, consisting of a beam resting on a Winkler
foundation, and serves as a means of comparison with the other model. This model is from now on
referred to as the inertia-excluded model due to the fact that the inertia of the supporting structure is
neglected.

Figure 2.3: The inertia-excluded system (left) and the inertia-included system (right)

In the second model the inertia of the supporting structure is taken into account by adding an in-
ertia beam without bending stiffness to the system. At the end of the previous page a study [28] was
mentioned in which the pads were modeled as spring-dashpot elements which were located at discrete
distance 𝑑 from each other. Assuming the supporting structure as a system of such discrete springs
is widely used. In the thesis of Rodrigues [21] one can find a summary of this method and general
parametric values of these elements for multiple cases. In this thesis the effect of the pads is taken into
account by an elastic layer between the Euler-Bernoulli beam and the inertia beam. This upper elastic
layer has a distributed stiffness 𝑘፩ which is obtained by dividing the stiffness of the discrete spring 𝐾፩
obtained from the mentioned study by 𝑑. The sleepers are assumed to be rigid and their only contribu-
tion to the system is their mass. This mass is also distributed by division over 𝑑 and forms only a part
of the density 𝜌፬ of the inertia beam. This is because the part of activated inertia by the moving load of
the ballast and subgrade also need to be taken into account by the inertia beam. At first sight it is not
clear how to integrate these effects and determine 𝜌፬ but at least for now there is a lower bound due to
the mass of the sleepers. Remaining for the parameters of the supporting structure is the distributed
stiffness 𝑘፬ of the lower elastic layer. This stiffness is also obtained by division of the discrete spring
stiffness 𝐾፬ by 𝑑. The spring 𝐾፝ is the serial equivalent spring of 𝐾፛ፚ, representing the ballast, and 𝐾፬፮,
representing the subgrade.

It is demanded that both the inertia-excluded and included system at least show the same behaviour
for static problems, in which the inertia beam can be neglected. The elastic layers in the second model
then form a serial system and the equation

1
𝑘፰

= 1
𝑘፩
+ 1
𝑘፬

(2.1)

should hold. Equation (2.1) can be solved for 𝑘፰. All parameters of the supporting structure for both
models have been discussed. The rail itself is modeled by an infinite Euler-Bernoulli beam in both
models. The mass density 𝜌፛ and bending stiffness 𝐸𝐼 correspond to that of the UIC60 rail and are
obtained from the reader of the course CT3041 [4], given at the University of Technology Delft.

Parameter Symbol Value Unit
Bending stiffness 𝐸𝐼 6.42⋅10ዀ Nmኼ

Mass density rail 𝜌፛ 60.34 kg/m
Mass density inertia beam 𝜌፬ > 245 kg/m
Winkler stiffness 𝑘፰ 7 .65⋅10ዀ N/mኼ

Upper layer stiffness 𝑘፩ 208.33⋅10ዀ N/mኼ

Lower layer stiffness 𝑘፬ 7.94⋅10ዀ N/mኼ

Pad-to-pad distance 𝑑 0.60 m

Table 2.1: Numerical values of the parameters of the the supporting structure and rail.
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2.2. Equations of motion
2.2.1. Equation of motion for the inertia-excluded model
The Euler-Bernoulli beam theory is one of the cornerstones of structural engineering. The kinematic
and constitutive equations of this theory are mentioned in the following:

• The plane rotation to the neutral axis is defined by 𝜙(𝑥, 𝑡) = −Ꭷ፰(፱,፭)Ꭷ፱

• The curvature of the beam is defined by 𝜅(𝑥, 𝑡) = ᎧᎫ(፱,፭)
Ꭷ፱

• The moment and the curvature are related through the relation 𝑀(𝑥, 𝑡) = 𝐸𝐼𝜅(𝑥, 𝑡)
The equation of motion for the Euler-Bernoulli beam resting on a Kelvin foundation will be derived by
making use of the displacement method. To do this a small beam piece of length Δ𝑥 is obvserved.

Figure 2.4: A piece of railway track for the inertia-excluded system (left) and the inertia-included system (right).

Applying Newton’s second law for the transverse displacement on this piece of the beam leads to

𝜌፛Δ𝑥
𝜕ኼ𝑤(𝜁, 𝑡)
𝜕𝑡ኼ = 𝑉(𝑥+Δ𝑥, 𝑡)−𝑉(𝑥, 𝑡)+

፱ዄጂ፱

∫
፱

(−𝑘፰𝑤(�̃�, 𝑡) − 𝑐፰
𝜕𝑤(�̃�, 𝑡)
𝜕𝑡 + 𝑞(�̃�, 𝑡)) 𝑑�̃� with 𝜁 ∈ (𝑥, 𝑥+Δ𝑥),

(2.2)
in which 𝑉 denotes the shear force in the beam and 𝑞 the distributed load on the beam. Dividing this
expression by Δ𝑥 and taking the limit Δ𝑥 → 0 yields the following expression for the time derivative of
momentum per unite length

𝜌፛
𝜕ኼ𝑤(𝑥, 𝑡)
𝜕𝑡ኼ = 𝜕𝑉(𝑥, 𝑡)

𝜕𝑥 − 𝑘፰𝑤(𝑥, 𝑡) − 𝑐፰
𝜕𝑤(𝑥, 𝑡)
𝜕𝑡 + 𝑞(𝑥, 𝑡). (2.3)

Applying the second law of Newton to the rotational degree of freedom1 and using the kinematic and
constitutive equation results in the final expression which is also the equation of motion for an Euler-
Bernoulli beam resting on a Kelvin foundation

𝜌፛
𝜕ኼ𝑤(𝑥, 𝑡)
𝜕𝑡ኼ + 𝐸𝐼𝜕

ኾ𝑤(𝑥, 𝑡)
𝜕𝑥ኾ + 𝑐፰

𝜕𝑤(𝑥, 𝑡)
𝜕𝑡 + 𝑘፰𝑤(𝑥, 𝑡) = 𝑞(𝑥, 𝑡). (2.4)

2.2.2. Equations of motion for the inertia-included model
The equation of motion for the inertia-included model are also derived by making use of the displace-
ment method. The equation of motion now exists of a set of two equations, one for the Euler-Bernoulli
beam and the other for the inertia-beam. The first equation is almost identical to that of equation (2.4)
except for the fact that the deformation of the upper visco-elastic layer is now also dependent on the
deflection 𝑤፬ of the inertia beam. The derivation of the second equation is similar to the first one. How-
ever no internal forces are present in the inertia beam due to the absence of any bending stiffness. The
equations of motion for the inertia-included model thus read

𝜌፛
𝜕ኼ𝑤
𝜕𝑡ኼ + 𝐸𝐼

𝜕ኾ𝑤
𝜕𝑥ኾ + 𝑐፩

𝜕𝑤(𝑥, 𝑡)
𝜕𝑡 + 𝑘፩𝑤 − 𝑐፩

𝜕𝑤፬(𝑥, 𝑡)
𝜕𝑡 − 𝑘፩𝑤፬ = 𝑞(𝑥, 𝑡)

𝜌፬
𝜕ኼ𝑤፬
𝜕𝑡ኼ + (𝑐፩ + 𝑐፬)

𝜕𝑤፬(𝑥, 𝑡)
𝜕𝑡 + (𝑘፩ + 𝑘፬)𝑤፬ − 𝑐፩

𝜕𝑤(𝑥, 𝑡)
𝜕𝑡 − 𝑘፩𝑤 = 0.

(2.5)

1The rotational moment of inertia is neglected in the Euler-Bernoulli beam theory.
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2.3. Energy considerations
2.3.1. Inertia-excluded model
In order to determine the way energy is transmitted in the railway track it is needed to obtain a math-
ematical expression that describes the way mechanical energy is distributed along the beam as a
function of time. The kinetic energy of a particle is obtained by multiplying the time derivative of its
momentum with its velocity and integrating over time. This principle will now be applied to the beam.
Note that in the case of the beam an integration over the beam length is also needed because the the
equation of motion exists of the time derivative of the momentum per unit length. Multiplying equation
(2.2) by the beam velocity, integrating over time and space and rearranging terms leads to

[
፱ᑓ

∫
፱ᑒ

{12𝜌፛ (
𝜕𝑤
𝜕𝑡 )

ኼ
+ 12𝑘፰𝑤

ኼ + 12𝑀𝜅} 𝑑𝑥]

፭዆፭

፭዆፭ᑚ

=
፭

∫
፭ᑚ

{[𝑀𝜕𝜙𝜕𝑡 + 𝑉
𝜕𝑤
𝜕𝑡 ]

፱዆፱ᑓ

፱዆፱ᑒ
} 𝑑𝑡+

፭

∫
፭ᑚ

፱ᑓ

∫
፱ᑒ

{𝑞𝜕𝑤𝜕𝑡 − 𝑐፰ (
𝜕𝑤
𝜕𝑡 )

ኼ
} 𝑑𝑥𝑑𝑡.

(2.6)
This expression shows the relation between the different energy components in the system. It shows
that the increase of total mechanical energy in the system between two time instance equals the work
done by the distributed load and the forces at the beam boundaries minus the dissipated energy.
Mechanical energy is the summation of the kinetic and potential energy. These energy components are
respectively denoted by 𝐸(𝑡), 𝐾(𝑡) and 𝑃(𝑡). From equation (2.6) it can be concluded that the potential
energy exists of the potential energy due to deformation of the Winkler foundation and potential energy
due to bending strains in the beam. Because the total mechanical energy in the system is an integral
over the length of the beam it can be concluded that the integrand shows the way the mechanical
energy is distributed over the beam. These energy distributions are called energy density functions in
the rest of this thesis and have the following definitions:

• The kinetic energy density: 𝜂ፊ(𝑥, 𝑡) =
ኻ
ኼ𝜌፛ (

Ꭷ፰
Ꭷ፭ )

ኼ

• The potential energy density: 𝜂ፏ(𝑥, 𝑡) =
ኻ
ኼ𝑘፰𝑤

ኼ + ኻ
ኼ𝑀𝜅

• The mechanical energy density: 𝜂(𝑥, 𝑡) = 𝜂ፊ(𝑥, 𝑡) + 𝜂ፏ(𝑥, 𝑡)

In the above different energy components in the railway track have been elaborated. A specific interest
of the thesis lays in the way energy ’flows’ in the system. This flow can be obtained by studying the
time derivative of equation (2.6) which reads

𝑑𝐸(𝑡)
𝑑𝑡 = [𝑀𝜕𝜙𝜕𝑡 + 𝑉

𝜕𝑤
𝜕𝑡 ]

፱዆፱ᑓ

፱዆፱ᑒ
+

፱ᑓ

∫
፱ᑒ

{𝑞𝜕𝑤𝜕𝑡 − 𝑐፰ (
𝜕𝑤
𝜕𝑡 )

ኼ
} 𝑑𝑥. (2.7)

The first term of the right hand side of equation (2.7) is the inflow of energy per unit time at the bound-
aries of the system. It can thus be concluded that the outflow of the energy at a certain cross section
is defined by

𝑆(፧)(𝑥, 𝑡) = (−1)፧ዅኻ (𝑀𝜕𝜙𝜕𝑡 + 𝑉
𝜕𝑤
𝜕𝑡 ) , (2.8)

in which 𝑛 = 2 for a cross-section of which the outward normal vector is in the direction of the positive
𝑥-direction and 𝑛 = 1 for a cross-section of which the outward normal vector is in the direction of
the negative 𝑥-direction. When the displacement field is known the energy flow in the system can be
determined which will be especially useful when investigating transition radiation.

2.3.2. Inertia-included model
It is once again needed to find mathematical expressions that describe the way mechanical energy is
distributed but now for the inertia-included system. This is done in a similar way as in the previous
subsection. The system is now coupled as can be seen from (2.5) and two different types of mass
particles can be distinguished, that of the Euler-Bernoulli beam and that of the mass beam which
represents the inertia of the soil. Each equation is multiplied by the velocity of its respective mass
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particle, integrated over time and space after which the two resulting expressions are added to each
other, leading to

[
፱ᑓ

∫
፱ᑒ

{12𝜌፛ (
𝜕𝑤
𝜕𝑡 )

ኼ
+ 12𝐸𝐼𝜅

ኼ + 12𝑘፩(𝑤፬ −𝑤)
ኼ + 12𝜌፬ (

𝜕𝑤፬
𝜕𝑡 )

ኼ
+ 12𝑘፬𝑤

ኼ
፬ } 𝑑𝑥]

፭዆፭

፭዆፭ᑚ

=

፭

∫
፭ᑚ

{[𝑀𝜕𝜙𝜕𝑡 + 𝑉
𝜕𝑤
𝜕𝑡 ]

፱ᑓ

፱ᑒ
} 𝑑𝑡 +

፭

∫
፭ᑚ

፱ᑓ

∫
፱ᑒ

{𝑞𝜕𝑤𝜕𝑡 − 𝑐፩ (
𝜕𝑤፬
𝜕𝑡 −

𝜕𝑤
𝜕𝑡 )

ኼ
− 𝑐፬ (

𝜕𝑤፬
𝜕𝑡 )

ኼ
} 𝑑𝑥𝑑𝑡.

(2.9)

It is once again observed that the total mechanical energy in the system between two time instances
equals the work done by the distributed load and the forces at the beamboundariesminus the dissipated
energy. This is in line with the physical expectation. The expressions for the energy components are
however slightly different due to the addition of the inertia beam and the visco-elastic layer. Note that the
displacement field of the inertia beam has no contribution to the boundary term which can be explained
by the absence of internal forces in the inertia beam. For the energy distributions functions the following
definitions hold:

• The kinetic energy density: 𝜂ፊ(𝑥, 𝑡) =
ኻ
ኼ𝜌፛ (

Ꭷ፰
Ꭷ፭ )

ኼ
+ ኻ
ኼ𝜌፬ (

Ꭷ፰ᑤ
Ꭷ፭ )

ኼ

• The potential energy density: 𝜂ፏ(𝑥, 𝑡) =
ኻ
ኼ𝑘፰𝑤

ኼ + ኻ
ኼ𝑀𝜅 +

ኻ
ኼ𝑘፩(𝑤፬ −𝑤)

ኼ + ኻ
ኼ𝑘፬𝑤

ኼ
፬

• The mechanical energy density: 𝜂(𝑥, 𝑡) = 𝜂ፊ(𝑥, 𝑡) + 𝜂ፏ(𝑥, 𝑡)

Differentiation of equation (2.9) to time leads to the time derivative of the mechanical energy in the
system

𝑑𝐸(𝑡)
𝑑𝑡 = [𝑀𝜕𝜙𝜕𝑡 + 𝑉

𝜕𝑤
𝜕𝑡 ]

፱዆፱ᑓ

፱዆፱ᑒ
+

፱ᑓ

∫
፱ᑒ

{𝑞𝜕𝑤𝜕𝑡 − 𝑐፩ (
𝜕𝑤፬
𝜕𝑡 −

𝜕𝑤
𝜕𝑡 )

ኼ
− 𝑐፬ (

𝜕𝑤፬
𝜕𝑡 )

ኼ
} 𝑑𝑥, (2.10)

from which the flux of the energy at a certain cross section can be determined, yielding

𝑆(፧)(𝑥, 𝑡) = (−1)፧ዅኻ (𝑀𝜕𝜙𝜕𝑡 + 𝑉
𝜕𝑤
𝜕𝑡 ) . (2.11)

Note that this expression is equivalent to that of inertia-excluded system and has already been ex-
plained by the absence of of internal forces in the inertia beam.

2.4. Uniqueness
From a physical point of view it is expected that one specific mechanical system that has one specific set
of system properties and one specific set of initial condition and is submitted to one specific load should
behave in one specific way. The physical problems are however modelled under certain assumptions
and then transferred into mathematical problems. Attempts can then be made to find the solutions for
these mathematical problems with different methods. There arises a problem when there are solutions
found through different methods because then the choice needs to be made what solution is the one
specific solution to the physical problem. This problem does however not arise when it can be proven
that a mathematical problem has at most one solution. If this is the case it can be concluded that all
the different methods for solving the problem result in the one and only solution.

2.4.1. Uniqueness for the inertia-excluded model
For the inertia-excluded model the partial differential equation that needs to be solved can be seen
in equation (2.4). This partial differential equation does however not form a complete mathematical
without initial and boundary conditions. The rails are assumed to be infinite such that boundaries of the
system are located at |𝑥| → ∞. The boundary conditions are such that the displacement field and all its
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spatial derivatives should ten to zero for |𝑥| → ∞. The initial conditions are arbitrary 2 and denoted by

𝑤(𝑥, 0) = 𝑓(𝑥)
𝜕𝑤
𝜕𝑡 |፭዆ኺ

= 𝑔(𝑥). (2.12)

This mathematical formulation of the problem is now complete. An attempt to solve the problem can
be made by making use of different methods such as making use of the Green’s function, Fourier
transforming, etc. Now assume that there are two different solutions 𝑤ኻ(𝑥, 𝑡) and 𝑤ኼ(𝑥, 𝑡) and define
the difference function 𝑣(𝑥, 𝑡) as

𝑣(𝑥, 𝑡) = 𝑤ኻ(𝑥, 𝑡) − 𝑤ኼ(𝑥, 𝑡). (2.13)
Because the components of 𝑣(𝑥, 𝑡) solve the problem of equation (2.3) with the mentioned boundary
conditions initial conditions (2.12) it becomes clear that 𝑣(𝑥, 𝑡) itself satisfies the same but homoge-
neous partial differential equation and homogeneous boundary- and initial conditions. The energy
balance of equation (2.6) can thus also be used for the difference function resulting in

፱ᑓ

∫
፱ᑒ

{12𝜌፛ (
𝜕𝑣
𝜕𝑡 )

ኼ
+ 12𝑘፰𝑣

ኼ + 12𝑀𝜅} 𝑑𝑥 = −
፱ᑓ

∫
፱ᑒ

፭

∫
፭ᑚ

𝑐 (𝜕𝑣𝜕𝑡 )
ኼ
𝑑𝑥𝑑𝑡. (2.14)

The right hand side of the equation is equal or less than zero and the left hand side off this equation
is equal or greater than zero. The only way both inequalities can hold is when they are both equal to
zero. Because the integrand in the left hand side exists of only quadratic terms it must hold that all
these terms equal zero. From this it can be concluded that

𝑣(𝑥, 𝑡) = 0 ↔ 𝑤ኻ(𝑥, 𝑡) = 𝑤ኼ(𝑥, 𝑡) (2.15)

This proves that the assumption that was made is incorrect. There do not exist two different solutions
for (2.3) in combination with its boundary and initial conditions, which means that there is at most one
solution for this problem. So an arbitrary method can be chosen to solve this problem and if a solution is
found there is certainty that this is the only solution possible. If one finds another solution in a different
form using another method it must be the same solution.

2.4.2. Uniqueness for the inertia-included model
In order to prove uniqueness of the solution for the inertia-included model the steps as in the previous
subsection are applied. Both the displacement field of the Euler-Bernoulli and the inertia beam tend to
zero for |𝑥| → ∞ and arbitrary initial conditions for both beams are chosen. It is assumed that there
are two different solution vectors wኻ = [𝑤ኻ, 𝑤፬ኻ]ፓ and wኼ = [𝑤ኼ, 𝑤፬ኼ]ፓ to the problem of equation (2.5).
The difference vector is now introduced as v = [𝑣, 𝑣፬] = wኻ −wኼ. The difference vector thus satisfies
the same but homogeneous set of partial differential equations and homogeneous boundary- and initial
conditions. The energy balance of equation (2.9) can be applied for the difference vector resulting in

፱ᑓ

∫
፱ᑒ

{12𝜌፛ (
𝜕𝑤
𝜕𝑡 )

ኼ
+ 12𝐸𝐼𝜅

ኼ + 12𝑘፩(𝑤፬ −𝑤)
ኼ + 12𝜌፬ (

𝜕𝑤፬
𝜕𝑡 )

ኼ
+ 12𝑘፬𝑤

ኼ
፬ } 𝑑𝑥 =

−
፱ᑓ

∫
፱ᑒ

{𝑐፩ (
𝜕𝑤፬
𝜕𝑡 +

𝜕𝑤
𝜕𝑡 )

ኼ
− 𝑐፬ (

𝜕𝑤፬
𝜕𝑡 )

ኼ
} 𝑑𝑥.

(2.16)

The right hand side of the equation is equal or less than zero and the left hand side off this equation
is equal or greater than zero. The only way both inequalities can hold is when they are both equal to
zero. Because the integrand in the left hand side exists of only quadratic terms it must hold that all
these terms equal zero. From this the following can be concluded:

v = [0, 0]ፓ ↔ wኻ = wኼ. (2.17)

This proves the uniqueness of the solution for the inertia-included model.
2Note that the initial conditions are not completely arbitrary in the sense that they need to match the boundary conditions.



3
Vavilov-Cherenkov radiation

When a force is applied to a medium it will cause a displacement field that is in line with the laws of
physics. In the case of a uniformly moving load with constant magnitude in a homogeneous elastic
medium general shapes of the steady state can be distinguished based on the velocity. Two types of
such displacement fields that in general occur in one dimensional mechanical systems are the eigenfield
and the Vavilov-Cherenkov field. In this chapter it will be shown whether these two displacement fields
also occur in the inertia included model and how these fields are related to the load velocity. The steady
state of both models will be investigated in this chapter. The steady state displacement fields will be
determined according to a geometrical method and a transform method. The steady state behaviour of
the inertia-excluded model is extensively investigated in the literature (for example, Wolfert [30] gives
a clear investigation into this matter). This will however be repeated in an extensive way to provide the
reader with a complete overview and to form a stepping stone towards the inertia-included system.

3.1. Steady state of the inertia-excluded system
3.1.1. Geometrical method
For a uniformly moving constant load in the inertia excluded model the equation of motion is

𝜕ኾ𝑤
𝜕𝑥ኾ + 4𝛾

ኼ
፛
𝜕ኼ𝑤
𝜕𝑡ኼ + 4𝛼፰

𝜕𝑤
𝜕𝑡 + 4𝛽

ኾ
፰𝑤 = �̂�𝛿(𝑥 − 𝑣𝑡), (3.1)

in which the parameters are defined by

4𝛾ኼ፛ =
𝜌፛
𝐸𝐼 , 4𝛼፰ =

𝑐፰
𝐸𝐼 , 4𝛽ኾ፰ =

𝑘፰
𝐸𝐼 , and �̂� = 𝐹

𝐸𝐼 . (3.2)

The load velocity is denoted bt 𝑣 and 𝛿 is the Dirac delta function. As a trial solution a summation of
harmonic waves is suggested, which is denoted by

𝑤 =∑
፣
𝑐፣𝑒(፤ᑛ፱ዅᎦᑛ፭)። . (3.3)

Note that the suggested solution in equation (3.3) can not satisfy the equation of motion in (3.1) due to
the Dirac delta function. It is therefore needed to split the spatial domain into two semi-infinite domains,
a left domain with respect to the moving load Ω(ኻ) = (−∞, 𝑣𝑡ዅ) and a right domain Ω(ኻ) = (𝑣𝑡ዄ, ∞). The
solutions of these domains are respectively 𝑤(ኻ) and 𝑤(ኼ) and satisfy

𝜕ኾ𝑤(፧)
𝜕𝑥ኾ + 4𝛾ኼ፛

𝜕ኼ𝑤(፧)
𝜕𝑡ኼ + 4𝛼፰

𝜕𝑤(፧)
𝜕𝑡 + 4𝛽ኾ፰𝑤(፧) = 0. (3.4)

These solutions are related to each other through interface conditions. The interface conditions are a
continuity at the forcing point in displacement, slope and bending moment and a discontinuity in shear
force. A derivation of the latter interface condition can be found in the work of Faragau [1] and it reads

𝜕ኽ𝑤
𝜕𝑥ኽ |

፱዆፯፭Ꮌ

፱዆፯፭Ꮍ
= �̂�. (3.5)

11
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The new formulation of the problem makes it possible to obtain the solution of both domains in the form
suggested in equation (3.3). Substitution of this trial solution in one of the two equations of (3.4) yields
set of equations

𝑘ኾ − 4𝛾ኼ፛𝜔ኼ − 4𝛼፰𝑖𝜔 + 4𝛽ኾ፰ = 0 ∧ 𝜔 = 𝑘𝑣. (3.6)
The first equation in (3.6) relates the wave number 𝑘 to the frequency 𝜔 for a general wave moving
in the system. Note that the damping term causes the equation to have complex valued coefficients.
This demands additional carefulness of the reader and can lead to a significant increase in difficulty in
understanding the subject. The damping is therefore neglected from now on, which results in

𝑘ኾ − 4𝛾ኼ፛𝜔ኼ + 4𝛽ኾ፰ = 0. (3.7)

In the case that a frequency is given, the corresponding wave-number can be determined. In order to
do so the dispersion equation can be rewritten to

𝑘ኾ = 4𝛾ኼ፛𝜔ኼ − 4𝛽ኾ፰ = 𝑧(𝜔). (3.8)

Figure 3.1: The function ፳(Ꭶ) (left) and its fourth order roots ፤ for |Ꭶ| ጻ Ꭶᐼᑏ (middle) and |Ꭶ| ጺ Ꭶᐼᑏ (right)

According to equation (3.7) the fourth order roots of the function 𝑧(𝜔) are the wave-numbers 𝑘 that
correspond to a specific frequency. The properties of these wave-numbers are thus investigated by
studying the function 𝑧(𝜔). Note that the subscript of 𝜔ፄፗ denotes that the this is the cut off frequency
of the inertia excluded system. It can be seen from Figure 3.1 that the function 𝑧(𝜔) is negative for
|𝜔| < 𝜔ፄፗ and positive for |𝜔| > 𝜔ፄፗ. This frequency 𝜔ፄፗ can be obtained by equating 𝑧(𝜔) to zero
and solving the equation which results in

𝜔ኼፄፗ =
4𝛽ኾ፰
4𝛾ኼ፛

. (3.9)

This frequency is called the cut off frequency and has a physical interpretation which will become clear.
In order to obtain a visual interpretation of the fourth order roots the variable 𝑧(𝜔) together with its
roots have been plotted in the complex plane in Figure 3.1 for the two cases of the argument of 𝑧(𝜔),
either 0 for |𝜔| > 𝜔ኺ and 𝜋 for |𝜔| < 𝜔ኺ. It is observed that all four wave-numbers are complex
for |𝜔| < 𝜔ኺ, and two are complex and two are real for |𝜔| > 𝜔ኺ. The real wave-numbers have been
plotted as a function of the frequency𝜔, see the left graph in Figure 3.2. These curves are known as the
dispersion curves of the system and in general the axes are interchanged such that the vertical axis
corresponds with the frequency and the horizontal axis with the wave-numbers, see the right graph
in Figure 3.2. One can analyse the behaviour of the system systematically by making use of these
dispersion curves. One can conclude from Figure 3.2 that there are no real-valued wave numbers for
a frequency of which its absolute value is below the cut off frequency 𝜔ፄፗ. This means that all its four
wave-numbers are complex as has been shown. Furthermore, it can be concluded that for a frequency
of which its absolute value is larger than the cut off frequency 𝜔ፄፗ two wave-numbers are complex and
two are real valued. This means that in this domain of frequency there are two waves which are purely
harmonic and propagate. The cut off frequency 𝜔ፄፗ is thus the boundary of frequency at which pure
wave propagation is possible in the system.
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Figure 3.2: Dispersion curves for the inertia-excluded system.

An important property of a wave in mechanical systems is the velocity at which it propagates energy.
Rayleigh discussed the velocity of energy propagation 𝑣፠፫(𝑘) in one dimensional systems in ’The theory
of sound’ [14]. It was found that this velocity of energy propagation equals the group velocity of a wave
which is mathematically defined as

𝑣፠፫(𝑘) =
𝑑𝜔(𝑘)
𝑑𝑘 . (3.10)

Another important property of a wave is its phase velocity 𝑣፩፡(𝑘) which is defined as the velocity at
which the phase of the wave travels and is mathematically defined by

𝑣፩፡(𝑘) =
𝜔(𝑘)
𝑘 . (3.11)

In the case that a wave-number 𝑘 is given, the corresponding frequency 𝜔(𝑘) can be determined from
equation (3.7) after which the phase velocity can be obtained. An arbitrary displacement field at a
certain point in time 𝑡ፚ can be described as a summation of harmonic functions with each its own
wave-numbers, and thus each its own frequency and finally each its own phase velocity. When time
proceeds each of this wave components will travel with its own phase velocity leading to a distortion of
the displacement field of time 𝑡ፚ. The reason of this distortion is the fact that the phase velocity is not
constant due to the fact that the frequency 𝜔 and wave number 𝑘 are not linearly proportional to each
other. Such systems are called dispersive systems and the relation that relates the wave number to
the frequency is therefore called the dispersion equation. The first equation in (3.6) is thus called the
dispersion equation and its left hand side is from now denoted by Δፄፗ(𝜔, 𝑘), such that

Δፄፗ(𝜔, 𝑘) = 𝑘ኾ − 4𝛾ኼ፛𝜔ኼ − 4𝛼፰𝑖𝜔 + 4𝛽ኾ፰ . (3.12)

The second equation in (3.6) is called the kinematic invariant and it is an additional relationship
between the wave numbers and frequencies but this relationship specifically includes the kinematic
characteristics of the moving load, in contrary to the dispersion equation which in general holds for a
homogeneous system.

The dispersion and kinematic equation together form a set from which all (𝑘, 𝜔)-pairs of the waves
that are present in the steady state can be determined. Solving this set of equations in equivalent to
solving

Δፄፗ(𝑣𝑘, 𝑘) = 0, (3.13)

which is a quartic equation in 𝑘 with four solutions. These four wave-numbers 𝑘፣ are then multiplied by
the load velocity to obtain the related frequencies 𝜔፣. The general solution of the semi-infinite domains
are then found to be

𝑤(፧) =
ኾ

∑
፣዆ኻ
𝑐(፧)፣ 𝑒፤ᑛ(፱ዅ፯፭)። . (3.14)
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What remains in order to complete the solutions are the unknown constants. Before the interface
conditions are used it is needed to cancel a number of waves based on the physical behaviour of the
system. First of all the displacement field must be bounded for |𝑥| → ∞. This means that constants
which relate to waves that have a complex-valued wave number of which its imaginary part is positive
should be set to zero in the left semi-infinite domain and those that are negative in the right-semi infinite
domain. Second the radiation conditionsmust hold, which states that energymust propagate away from
a source (the load). This means that 𝑣፠፫(𝑘) > 𝑣 for all waves that propagate (have a real wave-number)
in front of the load and 𝑣፠፫(𝑘) < 𝑣 for waves propagating behind the load, constants corresponding to
waves that do not satisfy this condition are set to zero. The remaining unknown constants can then be
solved by use of the interface conditions, completing the solution.

Figure 3.3: Dispersion curves and kinematic invariant for ፯ ጺ ፯ᑔᑣ (left) and for ፯ ጻ ፯ᑔᑣ (right).

When solving this problem for different velocities it can be noticed that the different displacement fields
do not only show different behaviour quantitatively but also qualitatively. This can be explained by
investigation of the dispersion curves and the kinematic invariant. As stated before the wave-numbers
present in the steady state are basically the solution to equation (3.13) which is a quartic equation in
𝑘. The roots of this expression are basically the intersection points of the dispersion curves and the
kinematic invariant. From Figure 3.3 it is observed that for load velocities lower than a certain velocity,
which is from now denoted by 𝑣፜፫, no intersection points are present. Equation (3.13) however always
has four roots. The explanation for the fact that the roots are not visible as intersection points is because
their (𝑘, 𝜔)-pairs are complex valued. The result of this is that the displacement field exists of waves that
are not purely harmonic but all decay towards zero for |𝑥| → ∞. In this case, 𝑣 < 𝑣፜፫, the displacement
field moves stationary with the load and is known as the eigenfield. For load velocities higher than
𝑣፜፫ four intersection points, corresponding to four real valued (𝑘, 𝜔)-pairs, are observed. In this case,
𝑣 > 𝑣፜፫, the displacement fields exist of only harmonic propagating waves and is called the Vavilov-
Cherenkov field.

Figure 3.4: Visualization of the eigenfield (left) and the Vavilov-Cherenkov field (right).
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The certain velocity 𝑣፜፫ is called the critical velocity and it is the minimum velocity of wave propaga-
tion from the load. On the previous page it is discussed what happens when the load velocity is lower
or greater than this critical velocity. Special attention needs to be given to the case in which the load
velocity equals the critical velocity. In that case the kinematic invariant is tangential to the dispersion
curve, see the dashed line in Figure 3.3. This means that the load velocity and group velocity are equal.
The energy that is inserted in the system by the load can not travel away from the load because the
velocity of energy propagation, the group velocity, equals the load velocity. The energy is thus accu-
mulated in the vicinity of the load, causing an infinite displacement to occur1. In line with this way of
thinking, Metrikine [27] stated in a study: ’It is known that the power of radiation generated by a moving
source is higher the closer the source speed to the velocity of wave propagation in the medium’ . The
importance of determining the critical velocity has been made clear above. Determining the critical
velocity for the inertia-excluded system is relatively easy due to the fact that the wave-numbers are
solved from a quartic equation (3.13) with even powers. The discriminant of this equation can be set
to zero, from which the critical velocity can be determined. The idea behind this is that the solution
set of wave-numbers turn from real to complex at the critical velocity, implying a sign change of the
discriminant. The expression for the critical velocity for the inertia excluded system is well known and
denoted by

𝑣፜፫ =
𝛽፰
𝛾፛
. (3.15)

Figure 3.5: Visual representation of the phase ve-
locity ፯ᑡᑙ(፤) and the group ፯ᑘᑣ(፤).

Obtaining the critical velocity for the inertia-included sys-
tem will not be as easy and there will be made use of
the relationship that for the steady state the load veloc-
ity, which is equivalent to the phase-velocity, should equal
the group velocity at the point where the kinematic in-
variant touches the dispersion curve. From this it can
be concluded that the graph for the phase and group
velocity should at least touch or intersect for the pres-
ence of a critical velocity in the system, which is ob-
viously true for the inertia-excluded system as can be
seen from Figure 3.5. This subsection was very elab-
orated but this choice has been made in order to pro-
vide an understanding of the physical processes behind
obtaining the mathematical solution and it will be very
helpful for the reader in understanding the determina-
tion of the steady solution for the inertia-included sys-
tem.

3.1.2. Transform method
This method is more direct than the previous one in the sense that no physical knowledge behind the
different steps is needed in order to obtain the steady state solution. Special attention could be given
to the physical interpretation behind the steps and one would then see the equivalence between this
method and the geometrical method, however in the authors view the previous subsection suffices for
this objective. This method serves as relative quick way to obtain the steady state.

The Fourier transforms2 for the entire thesis are defined as

̂𝑓(𝑘, 𝜔) =
ጼ

∫
ዅጼ

ጼ

∫
ዅጼ

𝑓(𝑥, 𝑡)𝑒ዅ(፤፱ዅᎦ፭)።𝑑𝑥𝑑𝑡 (3.16)

and their inversions as

𝑓(𝑥, 𝑡) = 1
(2𝜋)ኼ

ጼ

∫
ዅጼ

ጼ

∫
ዅጼ

̂𝑓(𝑘, 𝜔)𝑒(፤፱ዅᎦ፭)።𝑑𝜔𝑑𝑘. (3.17)

1Note that the displacement is bounded for damped cases.
2The plural form is used to indicate a Fourier transform for each variable ፱ and ፭.
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Fourier transforming equation (3.1) for both variables and solving for the transformed steady state
solution leads to

�̂� = 𝛿(𝜔 − 𝑘𝑣)
Δፄፗ(𝜔, 𝑘)

2𝜋�̂�. (3.18)

Inverse transforming consists of integrating twice of which the first integration is trivial because of the
properties of the Dirac delta function, the second integration is more cumbersome and is therefore
taken care of in a more elaborated way. After the first integration the expression for the steady state
solution is

𝑤 = �̂�
2𝜋

ጼ

∫
ዅጼ

1
Δፄፗ(𝑣𝑘, 𝑘)

𝑒፤(፱ዅ፯፭)።𝑑𝑘. (3.19)

This integral can be solved by application of Cauchy’s residue Theorem in combination with Jordan’s
lemma. Two contours are therefore defined. The first contour is denoted by Γዄ consisting of the seg-
ment [−𝑅, 𝑅] of the real axis together with the semi-circle 𝐶ዄ ∶ 𝑘 = 𝑅𝑒።᎕, 0 ≤ 𝜃 ≤ 𝜋. Transforming the
integral in equation (3.19) to a contour integral over Γዄ yields

�̂�
2𝜋 ∫

ጁᎼ

1
Δፄፗ(𝑣𝑘, 𝑘)

𝑒፤(፱ዅ፯፭)።𝑑𝑘 = �̂�
2𝜋 ∫

ፂᎼ

1
Δፄፗ(𝑣𝑘, 𝑘)

𝑒፤(፱ዅ፯፭)።𝑑𝑘 + �̂�
2𝜋

ጼ

∫
ዅጼ

1
Δፄፗ(𝑣𝑘, 𝑘)

𝑒፤(፱ዅ፯፭)።𝑑𝑘. (3.20)

The second contour is denoted by Γዅ consisting of the segment [−𝑅, 𝑅] of the real axis together with
the semi-circle 𝐶ዅ ∶ 𝑘 = 𝑅𝑒።᎕, −𝜋 ≤ 𝜃 ≤ 𝜋. Transforming the integral in equation (3.19) to a contour
integral over Γዅ yields

�̂�
2𝜋 ∫

ጁᎽ

1
Δፄፗ(𝑣𝑘, 𝑘)

𝑒፤(፱ዅ፯፭)።𝑑𝑘 = �̂�
2𝜋 ∫

ፂᎽ

1
Δፄፗ(𝑣𝑘, 𝑘)

𝑒፤(፱ዅ፯፭)።𝑑𝑘 + �̂�
2𝜋

ዅጼ

∫
ጼ

1
Δፄፗ(𝑣𝑘, 𝑘)

𝑒፤(፱ዅ፯፭)።𝑑𝑘. (3.21)

Figure 3.6: Visualization of the contours, ጁᎼ(left) and ጁᎽ(right), used for integration.

The next step is to take the limit 𝑅 → ∞ and applying Jordan’s lemma from which it follows that the
first term of the right hand side of equation (3.20) vanishes for 𝑥 > 𝑣𝑡 and the first term of the right hand
side of equation (3.21) vanishes for 𝑥 < 𝑣𝑡. Applying Cauchy’s residue theorem for the left hand sides
of these equations and rearranging terms now yields the steady state solution

𝑤 =
⎧⎪
⎨⎪
⎩

∑
፦∈ፊᎼ

ኻ
Ꮆ
∏

ᑛᎾᎳ,ᑛᐵᑞ
(፤ᑞዅ፤ᑛ)

�̂�𝑖𝑒፤ᑞ(፱ዅ፯፭)። 𝑥 > 𝑣𝑡

∑
፦∈ፊᎽ

ዅኻ
Ꮆ
∏

ᑛᎾᎳ,ᑛᐵᑞ
(፤ᑞዅ፤ᑛ)

�̂�𝑖𝑒፤ᑞ(፱ዅ፯፭)። 𝑥 < 𝑣𝑡 , (3.22)

with 𝑘። being the poles obtained by solving the roots of equation (3.13). Note that two sets are defined,
namely 𝐾ዄ being the set of poles that are located in Γዄ and 𝐾ዅ being the set of poles that are located in
Γዅ. In non-damped cases a problem arises in cases in when poles are located on the segment [−𝑅, 𝑅].
In those case one should introduce a limit case of damping 𝛼፰ → 0. The poles will move from the
segment and it can be concluded to which subset each individual pole belongs.
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3.2. Steady state of the inertia-included system
3.2.1. Geometrical method
For a uniformly moving constant load in the inertia-included system the equation of motion in operator
notation is

[
( Ꭷ

Ꮆ

Ꭷ፱Ꮆ + 4𝛾
ኼ
፛
ᎧᎴ
Ꭷ፭Ꮄ + 4𝛼፩

Ꭷ
Ꭷ፭ + 4𝛽

ኾ
፩) (−4𝛼፩

Ꭷ
Ꭷ፭ − 4𝛽

ኾ
፩)

(−4𝛼፩
Ꭷ
Ꭷ፭ − 4𝛽

ኾ
፩) (4𝛾ኼ፬

ᎧᎴ
Ꭷ፭Ꮄ + (4𝛼፩ + 4𝛼፬)

Ꭷ
Ꭷ፭ + (4𝛽

ኾ
፩ + 4𝛽ኾ፬ ))

] [𝑤𝑤፬] = [
�̂�
0] 𝛿(𝑥 − 𝑣𝑡),

(3.23)
in which the constants are defined by

4𝛾ኼ። =
𝜌።
𝐸𝐼 , 4𝛼። =

𝑐።
𝐸𝐼 , 4𝛽ኾ። =

𝑘።
𝐸𝐼 , and �̂� = 𝐹

𝐸𝐼 . (3.24)

The spatial domain is once again split into the two semi-infinite domains Ω(ኻ) and Ω(ኼ) with respective

solution vector w(ኻ) = [𝑤(ኻ) 𝑤(ኻ)፬ ]
ፓ
and w(ኼ) = [𝑤(ኼ) 𝑤(ኼ)፬ ]

ፓ
, such that

[
( Ꭷ

Ꮆ

Ꭷ፱Ꮆ + 4𝛾
ኼ
፛
ᎧᎴ
Ꭷ፭Ꮄ + 4𝛼፩

Ꭷ
Ꭷ፭ + 4𝛽

ኾ
፩) (−4𝛼፩

Ꭷ
Ꭷ፭ − 4𝛽

ኾ
፩)

(−4𝛼፩
Ꭷ
Ꭷ፭ − 4𝛽

ኾ
፩) (4𝛾ኼ፬

ᎧᎴ
Ꭷ፭Ꮄ + (4𝛼፩ + 4𝛼፬)

Ꭷ
Ꭷ፭ + (4𝛽

ኾ
፩ + 4𝛽ኾ፬ ))

] [𝑤
(፧)

𝑤(፧)፬
] = [00] . (3.25)

As a trial solution a summation of harmonic waves is suggested, which is denoted by

w(፧) =∑
፣
W(፧)
፣ 𝑒(፤ᑛ፱ዅᎦᑛ፭)። . (3.26)

The vectors W(፧)
፣ are the unknown amplitude vectors. Substitution of an arbitrary term of this trial

solution in equation (3.25) yields a homogeneous system of linear equations

A(𝜔, 𝑘)W = 0. (3.27)

The matrix A(𝜔, 𝑘) in this system should be singular in order to have non-trivial solution vectors which
means that the determinant of this system of equations should be zero. The determinant is denoted by

Δፈፍ(𝜔, 𝑘) = (𝑘ኾ − 4𝛾ኼ፛𝜔ኼ − 4𝛼፩𝜔𝑖 + 4𝛽ኾ፩ ) (−4𝛾ኼ፬ 𝜔ኼ − (4𝛼፩ + 4𝛼፬) 𝑖𝜔 + (4𝛽ኾ፩ + 4𝛽ኾ፬ ))−(4𝛼፩𝑖𝜔 − 4𝛽ኾ፩ )
ኼ

(3.28)
and equating this determinant to zero results in the dispersion equation. This equation is dependent
on two variables, namely the frequency 𝜔 and the wave-number 𝑘. An additional equation is thus
demanded, the kinematic invariant see also equation (3.6). The system for obtaining the (𝜔, 𝑘)-pairs
is thus denoted by

Δፈፍ(𝜔, 𝑘) = 0 ∧ 𝜔 = 𝑘𝑣. (3.29)
Solving this system is equivalent to solving

Δፈፍ(𝑣𝑘, 𝑘) = 0, (3.30)

which is an equation for the roots of a sixth order polynomial in 𝑘 in which terms of all order between zero
and six occur. Solving such an equation analytically for general parameters is difficult if not impossible.
One can however solve this equation numerically by make use of a program such as Maple to obtain
the roots. The result of such calculations will be six wave-numbers 𝑘፣ of which each can be related
to their corresponding frequency 𝜔፣ through the kinematic invariant. Each of the six (𝜔፣ , 𝑘፣)-pairs can
be substituted in equation (3.27) to obtain a system from which a relationship between the entries of a
solution vector can be obtained, leading to an eigenvector Ŵ፣ of the system. This is done in successive
order for all (𝜔፣ , 𝑘፣)-pairs to obtain all eigenvectors of the system. The solution in equation (3.26) can
be rewritten as

w(፧) =
ዀ

∑
፣዆ኻ
𝑐(፧)፣ Ŵ(፧)

፣ 𝑒(፤ᑛ፱ዅᎦᑛ፭)። . (3.31)

The constants 𝑐፧፣ are fully determined from the boundary and interface conditions. A number of con-
stants are canceled based on the radiation condition and on the fact that the solution should be bounded
for |𝑥| → ∞. The remaining unknown constants are then solved by making use of interface conditions.
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On the previous page the method for obtaining the solution for a uniformly moving constant load in
the inertia-included is described. Like with the inertia-excluded system different types of displacement
fields for different velocities can be observed when solving the problem. The differences in behaviour
for the inertia-excluded system have been explained by investigation of the dispersion curves and the
kinematic invariant. A similar investigation is also done in the following for the inertia-included system.

In the case that a frequency 𝜔 is given, the corresponding wave-number 𝑘 can be determined. In
order to do so the dispersion equation3 is first rewritten to

𝑘ኾ = 𝑧(𝜔) = 𝑧ኻ(𝜔)
𝑧ኼ𝜔

, (3.32)

with
𝑧ኻ(𝜔) = (4𝛾ኼ፛𝜔ኼ − 4𝛽ኾ፩ ) (−4𝛾ኼ፬ 𝜔ኼ + (4𝛽ኾ፩ + 4𝛽ኾ፬ )) + (4𝛽ኾ፩ )

ኼ
(3.33)

and
𝑧ኼ(𝜔) = −4𝛾ኼ፬ 𝜔ኼ + (4𝛽ኾ፩ + 4𝛽ኾ፬ ) . (3.34)

Figure 3.7: Visual representations of the functions ፳Ꮃ(Ꭶ) (left), ፳Ꮄ(Ꭶ) (left) and ፳(Ꭶ) (right)

The wave numbers 𝑘 are obtained by taking the fourth order roots of 𝑧(𝜔). It is thus of importance to
know on which intervals of 𝜔 the function 𝑧(𝜔) is positive and on which it is negative. On intervals of
𝜔 over which 𝑧(𝜔) < 0 all four wave-numbers are complex-valued and on intervals of 𝜔 over which
𝑧(𝜔) > 0 two wave-numbers are real and two wave-numbers are imaginary, see Figure 3.1. The
function 𝑧(𝜔) is a fraction of which its numerator is the fourth order polynomial 𝑧ኻ(𝜔) and its denominator
the second order polynomial 𝑧ኼ(𝜔). The graph of 𝑧ኻ(𝜔) is depicted in Figure 3.7 and its positive roots
in increasing magnitude are denoted by 𝜔ፈፍኻ are 𝜔ፈፍኼ. The graph of 𝑧ኼ(𝜔) is depicted in Figure 3.7
and its positive root is denoted by 𝜔ፒፈ. Both 𝑧ኻ(𝜔) and 𝑧ኼ(𝜔) are symmetric polynomials around 𝜔 = 0,
such that the non-mentioned roots of both polynomials are basically the same as the positive roots with
a minus sign. The roots of 𝑧(𝜔) coincide with the roots of 𝑧ኻ(𝜔). The function 𝑧(𝜔) has singularities at
the roots of 𝑧ኼ(𝜔) due to the division by zero. At this singularity the sign of 𝑧(𝜔) changes. The intervals
on which 𝑧(𝜔) is positive is thus dependent on the value of 𝜔ፒፈ in comparison with the values of 𝜔ፈፍኻ
and 𝜔ፈፍኼ. It turns out that the value of 𝜔ፒፈ is in between 𝜔ፈፍኻ and 𝜔ፈፍኼ for all numerical values of the
system parameters that are physically possible, the proof can be found in Appendix A. From this it can
be concluded over which intervals 𝑧(𝜔) is positive and over which it is negative. A proper mathematical
expression can be obtained by viewing 𝑧(𝜔) as a complex number of which its argument is denoted by
𝜃፳(𝜔). It follows that

𝜃፳(𝜔) =
⎧⎪
⎨⎪⎩

𝜋 |𝜔| < 𝜔ፈፍኻ
0 𝜔ፈፍኻ < |𝜔| < 𝜔ፒፈ
𝜋 𝜔ፒፈ < |𝜔| < 𝜔ፈፍኼ
0 𝜔ፈፍኼ < |𝜔|

, (3.35)

which is also observed in the graph of 𝑧(𝜔) shown in Figure 3.7.
3Note that the damping is neglected, in line with the reasoning on page 12
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The dispersion curves for the inertia-excluded system were obtained by taking the fourth order roots
of 𝑧(𝜔), corresponding to that problem, and plotting the real valued wave-numbers as a function of the
frequency 𝜔. This is repeated for the inertia-included system yielding two pairs of dispersion curves
which can be explained from the fact that there are four intervals over which 𝑧(𝜔) is positive, see
equation (3.35). The physical explanation for this phenomenon is of course the fact that an additional
inertia beam is added to the initial problem. The two pairs of dispersion curves are shown in Figure 3.8
in both a (𝜔, 𝑘)− and a (𝑘, 𝜔)−coordinate system.

Figure 3.8: Dispersion curves for the inertia-included system.

The dispersion curve corresponding to only positive frequencies of the inner pair of dispersion curves is
from now on referenced to as the lower dispersion curve and the dispersion curve corresponding with
only positive frequencies of the outer pair of dispersion curves is from now on referenced to as the upper
dispersion curve. The lower dispersion curve has a frequency band (𝜔ፈፍኻ, 𝜔ፒፈ) and the upper curve has
cut-off frequency 𝜔ፈፍኼ. From this it can be concluded that harmonic propagating waves in the system
either have a frequency that is in the frequency band of the lower curve or above the cut-off frequency
of the upper curve. The upper dispersion curve shows a strong resemblance with the dispersion curve
of the inertia-excluded system and is the curve corresponding to the first equation of (3.25). The lower
dispersion curve corresponds to the second equation of (3.25) and tends to the horizontal asymptote
𝜔ፒፈ for large value of 𝑘. This frequency corresponds to the natural frequency of the inertia beam when
the displacement of the Euler-Bernoulli beam is restrained. In that case the equation for the inertia
beam reduces to that of a single degree of freedom system with natural frequency 𝜔ፒፈ. The natural
frequency of a single degree of freedom system is obviously independent of a wave-number, explaining
the behaviour of the lower dispersion curve, namely that it tends to a constant value for large values of
𝑘. This behaviour is due to the fact that the inertia beam does not have bending stiffness. In the case
that it has bending stiffness this is not the case as has been shown in the study of Shamalta [18]. For
relatively small values of 𝑘 however, non-constant behaviour is observed. This can be explained by
the coupling between the inertia beam and the Euler-Bernoulli beam.

Figure 3.9: Dispersion curves and kinematic invariants corresponding to the tangential velocities ፯ᑚ for small values of ᎐ᑤ (left)
and large values of ᎐ᑤ (right).
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The dispersion curves for general wave propagation have been studied. The next step is to study the
combination of the dispersion curves and the kinematic invariant. The specific interest lays in the critical
velocity of the system. For the inertia-excluded system a simple expression could be obtained for the
critical velocity, see equation (3.15). It has also been explained that the critical velocity is the minimum
velocity of wave propagation from the load and that it is the load velocity for which the kinematic invariant
is tangential to the dispersion curve.

When one attempts to draw tangential lines to the dispersion curves that start at the origin, he will
find that there are in general two cases that can be distinguished dependent on the value of 𝛾፬, see
Figure 3.9. For small values of 𝛾፬ three tangential lines can be drawn, corresponding with velocities 𝑣ኻ,
𝑣ኼ and 𝑣ኽ in increasing order. For large values of 𝛾፬ only one tangential line can be drawn, corresponding
with velocity 𝑣ኽ. The choice has been made to denote 𝑣ኽ by 𝑣ኽ in both cases because it is the line that
is tangential to the upper dispersion curve in both cases. The velocities 𝑣ኻ and 𝑣ኼ correspond to the
two lines that are tangential to the lower dispersion curve and are only present in the first case.

Obtaining the intersection points between the kinematic invariant and the dispersion curves is equiv-
alent to solving equation (3.29) which has six roots describing the wave-numbers 𝑘፣ that are present in
the steady state. If the number of intersection points is below six, the other wave-numbers are complex.
From this conclusions can be made for the steady state behaviour. In the first case, small values of 𝛾፬,
it can be observed that there are two propagating waves from the load and thus four non-propagating
waves in the system for 𝑣 < 𝑣ኻ or 𝑣ኼ < 𝑣 < 𝑣ኽ and six propagating waves for 𝑣ኻ < 𝑣 < 𝑣ኼ or 𝑣 > 𝑣ኽ. In
the second case, large values of 𝛾፬, there are two propagating and four non-propagating waves in the
system for 𝑣 < 𝑣ኽ and six propagating waves for 𝑣 > 𝑣ኽ.

Notice that there are always at least two propagating waves in the system. There is now a problem
with defining the critical velocities. For all 𝑣። the load velocity equals the group velocity, resulting in an
infinite displacement. This is in line with the critical velocity definition for the inertia-excluded system.
However, the velocities 𝑣። do not describe minimum velocities of wave propagation because there
are already at least two waves propagating in the system for all possible velocities. The velocities 𝑣።
do however form boundaries of velocity intervals in which there are either two propagating and four
evanescent waves or six propagating waves. The intervals of velocities for which only propagating
waves occur are from now on referred to as super-critical velocity intervals and the intervals of velocities
for which two propagating and four evanescent waves occur are from now on referred to as sub-critical
velocity intervals. It can be summarized that for small values of 𝛾፬ the sub-critical velocity intervals
are (0, 𝑣ኻ) and (𝑣ኼ, 𝑣ኽ) and the super-critical velocity intervals are (𝑣ኻ, 𝑣ኼ) and (𝑣ኽ, ∞) and that for large
values of 𝛾፬ the sub-critical velocity interval is (0, 𝑣ኽ) and the super-critical velocity interval is (𝑣ኽ, ∞).

In order to complete a sound analysis an unambiguous boundary value of 𝛾፬ for the two cases
needs to be obtained. To obtain this the value the fact that the roots of equation (3.29) correspond
to the wave-numbers 𝑘፣ of the intersection points between the dispersion curves and the kinematic
invariant is used. Equation (3.29) is a sixth order polynomial in 𝑘 in which terms of only even powers4
are present. This sixth order equation can be simplified to a cubic equation by making the substitution
𝑥 = 𝑘ኼ. This cubic equation is denoted by

𝑎(𝛾፬ , 𝑣)𝑥ኽ + 𝑏(𝛾፬ , 𝑣)𝑥ኼ + 𝑐(𝛾፬ , 𝑣)𝑥 + 𝑑 = 0, (3.36)

with
𝑎(𝛾፬ , 𝑣) = −4𝛾ኼ፬ 𝑣ኼ
𝑏(𝛾፬ , 𝑣) = 16𝛾ኼ፛ 𝛾ኼ፬ 𝑣ኾ + 4𝛽ኾ፩ + 4𝛽ኾ፬
𝑐(𝛾፬ , 𝑣) = (−16𝛾ኼ፛𝛽ኾ፩ − 16𝛾ኼ፬ 𝛽ኾ፩ − 16𝛾ኼ፛𝛽ኾ፬ ) 𝑣ኼ

𝑑 = 16𝛽ኾ፩𝛽ኾ፬

. (3.37)

The nature of the roots of such a cubic equation can be determined by its discriminant 𝐷 which is
defined by

𝐷(𝛾፬ , 𝑣) = 18𝑎𝑏𝑐𝑑 − 4𝑏ኽ𝑑 + 𝑏ኼ𝑐ኼ − 4𝑎𝑐ኽ − 27𝑎ኼ𝑑ኼ. (3.38)
Two cases can be distinguished:

• If 𝐷(𝛾፬ , 𝑣) > 0, all three roots 𝑥፣ are distinct and real.

• If 𝐷(𝛾፬ , 𝑣) < 0, one root is real valued and the other two are complex conjugates.

4Recall that the damping has been set to zero.
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The first possibility for the set of roots coincides with the wave numbers that are obtained from the
intersection points between the dispersion curves and a kinematic invariant with a velocity that is in
one of the super-critical velocity intervals. The second possibility for the set of roots coincides with the
wave numbers that are obtained for a velocity in of the sub-critical velocity intervals. These sub- and
super-critical velocity intervals for a set 𝛾፬ are thus equivalent with the segments between the roots of
the graph for the discriminant 𝐷(𝛾𝑠, 𝑣). A more convenient map with sub- and super-critical velocity
zones can however be obtained by keeping both the velocity 𝑣 and 𝛾፬ variable, setting equation (3.38)
to zero and implicit plotting the expression, see Figure 3.10. The obtained curves are the curves on
which the discriminant is zero and are thus corresponding to the tangential velocities. The value of
𝐷(𝛾፬ , 𝑣) is either negative or positive in the zones enclosed by these curves and can thus be referred
to as sub- or super-critical velocity zones.

Figure 3.10: A map depicting the critical zones for the inertia-included system.

From Figure 3.10 one can quickly confirm whether a system behaves according to the still not defined
small valued 𝛾፬ behaviour or large valued 𝛾፬ behaviour. In order to well define the difference two values
𝛾፬፬ and 𝛾፬፥ are analysed. These values are therefore plotted in the critical-zone map, see Figure 3.11.
Notice that only the first quadrant is depicted due to the fact that the velocity is positive and because
negative values of 𝛾፬ do not have physical meaning.

Figure 3.11: Graphical evaluation of the boundary value ᎐ᑤᑞᑚᑟ.

The horizontal line corresponding to 𝛾፬፥ has three intersection points with the zero curves of the dis-
criminant. The horizontal coordinates of these points correspond to the three tangential velocities that
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are present in the first type of system behaviour. The horizontal line corresponding to 𝛾፬፬ has only one
intersection point with the third zero curve of the discriminant. The horizontal coordinate of this point
corresponds to the single tangential velocity that is present in the second type of system behaviour. It
can be observed that the difference in system behaviour occurs when 𝛾፬ is above a certain minimum
value 𝛾፬፦።፧. This value of 𝛾፬፦።፧ can be obtained numerically by which the task of finding the boundary
value between the two cases of system behaviour has been fulfilled. Limit case behaviour can also be
analysed from Figure 3.11. For 𝛾፬ → 0 it is observed that 𝑣ኻ tends to ᎏᑤᑖᑣ

᎐ᑓ
and that both 𝑣ኼ and 𝑣ኽ tend

to zero. Note that 𝛽፬፞፫ is defined as

𝛽፬፞፫ =
1
𝐸𝐼 (

1
ኻ
፤ᑡ
+ ኻ
፤ᑤ

) . (3.39)

The system thus behaves as if the elastic-layers are in serial connection. This is correct from a physical
point of view because the inertial effects of the inertia beam can be neglected when 𝛾፬ → 0. Notice that
this is the same system as the inertia-excluded system, meaning that this limit value of 𝑣ኻ is basically
equal to the critical velocity of the inertia-excluded system. For 𝛾፬ → ∞ it is observed that 𝑣ኽ tends to

ᎏᑡ
᎐ᑓ

which means that the system acts as if it only exists of the upper elastic layer and the Euler-Bernoulli
beam. This can also be explained physically because the velocity of the inertia beam is resisted by the
large inertia causing it to have a set displacement in the steady state. In that case the Euler-Bernoulli
beam can thus show a behaviour which is independent of the inertia beam and the lower elastic layer.
It is furthermore important to notice that ᎏᑡ᎐ᑓ is a lower bound value for 𝑣ኽ and that 𝑣፦።፧ is a lower bound
value for both 𝑣ኻ and 𝑣ኽ. The velocity 𝑣፦።፧ is the velocity that corresponds with the first intersection
point of 𝛾፬ and the zero-curves. Its value can be computed numerically.

Figure 3.12: The graphs for ፯ᑡᑙ and ፯ᑘᑣ for ᎐ᑤ ጺ ᎐ᑤᑞᑚᑟ (left-column), ᎐ᑤ ዆ ᎐ᑤᑞᑚᑟ (middle column) and ᎐ᑤ ጻ ᎐ᑤᑞᑚᑟ (right column).
The upper row represents the velocities for the upper dispersion curve and the lower row represents the lower dispersion curve.

Subsection 3.1.1 ended by stating that the graphs of the phase and group velocity should at least touch
or intersect for the presence of a critical velocity in the system or, as may be stated now, a tangential
velocity. It is thus expected that the total number of intersection points between graphs of the phase and
group velocity for the lower and upper curve should equal three for 𝛾፬ < 𝛾፬፦።፧ and two for 𝛾፬ > 𝛾፬፦።፧.
This is indeed true as can be seen in Figure 3.12 by which it is once again confirmed that 𝛾፬፦።፧ behaves
as a transition point for the two cases of system behaviour.
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The situations in which sub- or super-critical behaviour occurs in the system has been elaborated
extensively. Usually the term sub-critical is only used for the situation in which only non-propagating
waves are present. This is not the case for the inertia-included system because in this system there
are always at least two propagating waves as has been discussed. This means that application of this
term sub-critical is not completely correct, so the reader should keep in mind that the prefixes sub-
and super- are used to indicate the difference between two and six propagating waves. By checking
all possibilities of the kinematic invariant for both 𝛾፬ < 𝛾፬፦።፧ and 𝛾፬ < 𝛾፬፦።፧ one can conclude that
the two propagating waves that are always present only occur in the left semi-infinite Ω(ኻ) due to the
fact that the group velocity of these two waves is always smaller than the load velocity. This explains
the asymmetrical behaviour with respect to the loading point in the eigenfield5 (sub-critical) and it also
explains the occurrence of two distinct wave-numbers to the left of the loading point in the Vavilov-
Cherenkov displacement field (super-critical) in Figure 3.13.

Figure 3.13: Visualization of the eigenfield (left) and the Vavilov-Cherenkov field (right).

One should note that the ripples in Figure 3.13 describing the propagating waves in the eigenfield
are relative small compared to the deflection due to the non-propagating waves. This ratio may differ
however for different load velocities. It should also be mentioned that the waves propagating in front
of the load for the super-critical case are due to the other intersection points between the dispersion
curves and kinematic invariant.

3.2.2. Transform method
The steady state for the inertia-included system will also be obtained by making use of the transform
method. This is done to have a quick way to determine the steady state solution without paying much
attention to the interpretations behind each step. Fourier transforming equation (3.23) leads to

[(𝑘
ኾ − 4𝛾ኼ፛𝜔ኼ − 4𝛼፩𝑖𝜔 + 4𝛽ኾ፩ ) (4𝛼፩𝑖𝜔 − 4𝛽ኾ፩ )

(4𝛼፩𝑖𝜔 − 4𝛽ኾ፩ ) (−4𝛾ኼ፬ 𝜔ኼ − (4𝛼፩ + 4𝛼፬)𝑖𝜔 + (4𝛽ኾ፩ + 4𝛽ኾ፬ ))
] [ �̂��̂�፬] = 2𝜋 [

�̂�
0] 𝛿(𝜔 − 𝑘𝑣).

(3.40)
This linear set of equations can easily be solved multiplying both sides by the inverse of the matrix on
the left hand side of the equation. This leads to the transformed steady state solution vector

[ �̂��̂�፬] = [
(−4𝛾ኼ፬ 𝜔ኼ − (4𝛼፩ + 4𝛼፬)𝑖𝜔 + (4𝛽ኾ፩ + 4𝛽ኾ፬ ))

− (4𝛼፩𝑖𝜔 − 4𝛽ኾ፩ )
] 𝛿(𝜔 − 𝑘𝑣)Δፈፍ(𝜔, 𝑘)

2𝜋�̂�. (3.41)

Inverse transforming the expression and computing the integration over the frequency variable results
in

[𝑤𝑤፬] =
�̂�
2𝜋

ጼ

∫
ዅጼ

[(−4𝛾
ኼ
፬ 𝑣ኼ𝑘ኼ − (4𝛼፩ + 4𝛼፬)𝑖𝑣𝑘 + (4𝛽ኾ፩ + 4𝛽ኾ፬ ))

− (4𝛼፩𝑖𝑣𝑘 − 4𝛽ኾ፩ )
] 𝑒

፤(፱ዅ፯፭)።

Δፈፍ(𝑣𝑘, 𝑘)
𝑑𝑘. (3.42)

5The same argumentation for the definition that holds for sub-critical behaviour also holds for the eigenfield.
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This final integral can then be computed by by application of Cauchy’s residue Theorem in combination
with Jordan’s lemma. There has been made use of the same contours as in the previous section and
the final expression of the steady state solution vector is denoted by

[𝑤𝑤፬] =

⎧
⎪

⎨
⎪
⎩

∑
፦∈ፊᎼ

[(−4𝛾
ኼ
፬ 𝑣ኼ𝑘ኼ፦ − (4𝛼፩ + 4𝛼፬)𝑖𝑣𝑘፦ + (4𝛽ኾ፩ + 4𝛽ኾ፬ ))

− (4𝛼፩𝑖𝑣𝑘፦ − 4𝛽ኾ፩ )
] ፅ̂።፞ᑜᑞ(ᑩᎽᑧᑥ)ᑚ

Ꮈ
∏

ᑛᎾᎳ,ᑛᐵᑞ
(፤ᑞዅ፤ᑛ)

𝑥 > 𝑣𝑡

∑
፦∈ፊᎽ

[(−4𝛾
ኼ
፬ 𝑣ኼ𝑘ኼ፦ − (4𝛼፩ + 4𝛼፬)𝑖𝑣𝑘፦ + (4𝛽ኾ፩ + 4𝛽ኾ፬ ))

− (4𝛼፩𝑖𝑣𝑘፦ − 4𝛽ኾ፩ )
] ዅፅ̂።፞ᑜᑞ(ᑩᎽᑧᑥ)ᑚ

Ꮈ
∏

ᑛᎾᎳ,ᑛᐵᑞ
(፤ᑞዅ፤ᑛ)

𝑥 < 𝑣𝑡
. (3.43)



4
Transition radiation

In the introduction of this thesis it was stated that transition radiation is emitted when a source moves
through an inhomogeneous medium, such as a boundary between two different media. This phe-
nomenon will be studied in this report for both mechanical models. In both models the constant load is
moving uniformly along the infinite beam and the foundation is inhomogeneous in the sense that there
is an abrupt jump in the stiffness properties. In his report Wolfert [30] analysed the spectral density of
the radiation energy in the direction of the load motion and backward for an elastically supported string.
The analyses that are done in this chapter for both models are based on that report.

4.1. Transition radiation in the inertia excluded model
In order to study transition radiation the same model as in equation (3.1) is tackled, once again neglect-
ing the damping. However there has been made a modification to the elastic foundation, in the sense
that there is an abrupt jump in the stiffness of the elastic foundation located at 𝑥 = 0, such that

𝑘፰(𝑥) = 𝑘(ኻ)፰ + (𝑘(ኼ)፰ − 𝑘(ኻ)፰ )𝐻(𝑥). (4.1)

Figure 4.1: Mechanical scheme of a moving load in the inertia-excluded system with an abrupt jump in the foundation stiffness.

Note that 𝐻(𝑥) denotes the Heaviside function. The load velocity is furthermore sub-critical in order
to prevent Vavilov-Cherenkov radiation because the aim of this chapter is to study transition radiation
individually. The governing equation of motion reads

𝜕ኾ𝑤
𝜕𝑥ኾ + 4𝛾

ኼ
፛
𝜕ኼ𝑤
𝜕𝑡ኼ + 4𝛽

ኾ
፰(𝑥)𝑤 = �̂�𝛿(𝑥 − 𝑣𝑡). (4.2)

Before analysing this problem in the frequency domain, a thought experiment is performed to anticipate
the solution. Two situations are discussed first, the situations at 𝑡 → −∞ and 𝑡 → ∞. At both time
instances the load is far away from the stiffness transition. From a physical point of view it is expected

25



26 4. Transition radiation

that the displacement fields at these time instances behave as if the stiffness jump is not there. This
implies that the displacement fields at these time instances are the eigenfields 𝑤(፧)፞ corresponding to
their respective supporting stiffness 𝑘(፧)፰ , see Figure 4.2.

Figure 4.2: The thought experiment for the phenomenon of transition radiation.

Figure 4.2 gives the impression that the solution for 𝑡 < 0, or equivalently 𝑥 < 0, exists of 𝑤(ኻ)ፄ and
that the solution for 𝑥 > 0 exists of 𝑤(ኼ)ፄ . These solutions do also satisfy equation (4.2) and they also
seem to hold for intuitively large |𝑡|. However as |𝑡| gets smaller it is noted that the eigenfields on
their own would result in a discontinuity in the displacement field at the location of the stiffness jump.
This is physically impossible and in order to solve this problem homogeneous solutions can be added
in both domains to guaranty the continuity of the solution at 𝑥 = 0. These homogeneous solutions
are additional to the eigenfields that occur normally in the case of a homogeneous foundation and are
called free fields. Mathematically the eigenfields are thus the particular solutions of both domains and
the free fields are the homogeneous solutions that are added to satisfy the interface conditions at the
abrupt stiffness jump.

The governing equation of motion will now be analysed in the frequency domain. The forward
Fourier transform is applied over time to equation (4.2). This results in

𝜕ኾ�̂�
𝜕𝑥ኾ + (4𝛽

ኾ
፰(𝑥) − 4𝛾ኼ፛𝜔ኼ) �̂� =

�̂�
𝑣 𝑒

ᒞ
ᑧ ፱። . (4.3)

The remaining ordinary differential equation is now split into two semi-infinite domains, a left domain
Ω(ኻ) = (−∞, 0) and a right domain Ω(ኼ) = (0,∞). The solutions of these domains are respectively 𝑤(ኻ)
and 𝑤(ኼ). The Fourier transforms with respect to the time variable 𝑡 of these solutions satisfy

𝜕ኾ�̂�(፧)
𝜕𝑥ኾ + (4𝛽(፧)ኾ፰ − 4𝛾ኼ፛𝜔ኼ) �̂�(፧) =

�̂�
𝑣 𝑒

ᒞ
ᑧ ፱። . (4.4)

The particular solution can be obtained easily and reads

�̂�(፧)ፄ = 1
Δ(፧)ፄፗ(

Ꭶ
፯ , 𝜔)

�̂�
𝑣 𝑒

ᒞ
ᑧ ፱። . (4.5)
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This is indeed the Fourier transform with respect to time of the eigenfields. For the homogeneous
solution the suggested trial solution is denoted by

�̂�ፅ = 𝑎(𝜔)𝑒፤(Ꭶ)፱። . (4.6)

Substitution of this trial solution in the homogeneous version of equation (4.4) will lead to the fact that
the dispersion equation of equation (3.7) needs to be satisfied in order to obtain non-trivial solutions.
The four wave-numbers 𝑘፣(𝜔) corresponding to the different possibilities of 𝜔 are visualized in the
complex plane in Figure 3.1. The solution for the free fields can thus be denoted as

�̂�(፧)ፅ = 𝑎ኻ(𝜔)𝑒፤
(ᑟ)
Ꮃ (Ꭶ)፱። + 𝑎ኼ(𝜔)𝑒፤

(ᑟ)
Ꮄ (Ꭶ)፱። + 𝑎ኽ(𝜔)𝑒፤

(ᑟ)
Ꮅ (Ꭶ)፱። + 𝑎ኾ(𝜔)𝑒፤

(ᑟ)
Ꮆ (Ꭶ)፱። . (4.7)

Figure 4.3: Rotation of ፳(Ꭶ) and its corresponding roots ፤ᑚ(Ꭶ) due to limit case damping ፜ᑨ → ኺ for Ꭶ ጺ Ꭶᑟᐼᑏ (left) and
Ꭶ ጻ Ꭶᑟᐼᑏ (right).

The solution should be bounded for |𝑥| → ∞ which means that for each sub-domain waves with wave
numbers 𝑘 that do not meet this condition should be canceled. For semi-infinite domain Ω(ኼ) it is
required that the Im(𝑘) ≥ 0. From Figure 3.1 it is seen that for |𝜔| < 𝜔(ኼ)ፄፗ two waves can be canceled
immediately because their wave-numbers do not satisfy this condition. For |𝜔| > 𝜔(ኼ)ፄፗ only one wave
can be canceled immediately. It is however needed to cancel two waves to obtain a system that is
solvable with the interface conditions. Two methods can be applied to determine which additional wave
should be canceled. The first method is based on the fact that the radiation condition must hold which
means that no energy may propagate from 𝑥 = ∞ to the stiffness transition. The group velocity of each
wave should thus be larger than zero. The dispersion curve in Figure 3.2 may now be used to determine
that for 𝜔 > 𝜔(፧)ፄፗ the wave number should be positive and negative for 𝜔 < 𝜔(፧)ፄፗ . In the second method
a limit case of damping 𝑐፰ → 0 is added to the foundation which causes 𝑧(𝜔) to make a small rotation
in the complex plane, and so do all its roots 𝑘፣. From Figure 4.3 it is observed that for 𝜔 < −𝜔(ኼ)ፄፗ the
wave with the wave-number that was positive in Figure 3.1 should be canceled and the wave with the
negative wave-number for 𝜔 > 𝜔(ኼ)ፄፗ . This result is equivalent with the first method. A similar approach
is applied for the left domain. To obtain simple and single valued expressions definitions for two wave
numbers are chosen. The first definition is

𝑘(፧)ኻ (𝜔) = |4𝛾ኼ፛𝜔ኼ − 4𝛽
(፧)ኾ
፛ |ኻ/ኾ {

−1 𝜔 < −𝜔(፧)ፄፗ
𝑒
Ꮅ
Ꮆ᎝። |𝜔| < 𝜔(፧)ፄፗ
1 𝜔 > 𝜔(፧)ፄፗ

, (4.8)

and the second definition is

𝑘(፧)ኼ (𝜔) = |4𝛾ኼ፛𝜔ኼ − 4𝛽
(፧)ኾ
፛ |ኻ/ኾ {

𝑖 𝜔 < −𝜔(፧)ፄፗ
𝑒
Ꮃ
Ꮆ᎝። |𝜔| < 𝜔(፧)ፄፗ
𝑖 𝜔 > 𝜔(፧)ፄፗ

. (4.9)
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By making use of this expression the homogeneous solution can be denoted as

�̂�(፧)ፅ = 𝑎(፧)ኻ (𝜔)𝑒(ዅኻ)ᑟ፤(ᑟ)Ꮃ ፱። + 𝑎(፧)ኼ (𝜔)𝑒(ዅኻ)ᑟ፤(ᑟ)Ꮄ ፱። . (4.10)

Addition of the homogeneous and particular solution results in

�̂�፧ = 𝑎(፧)ኻ (𝜔)𝑒(ዅኻ)ᑟ፤(ᑟ)Ꮃ ፱። + 𝑎(፧)ኼ (𝜔)𝑒(ዅኻ)ᑟ፤(ᑟ)Ꮄ ፱። + 1
Δ(፧)ፄፗ(

Ꭶ
፯ , 𝜔)

�̂�
𝑣 𝑒

ᒞ
ᑧ ፱። . (4.11)

The constants 𝑎(፧)ኻ and 𝑎(፧)ኼ are obtained by application of the interface conditions at the stiffness
jump. The expression in equation (4.10) confirms the expectation based on the thought experiment;
The solution in both domains is indeed a summation of its eigenfield and a free field to guarantee the
continuity at the stiffness transition.

In order to study radiation energy, the energy flux will be investigated. The expression for the energy
flux 𝑆(፧)(𝑥, 𝑡) is denoted in equation (2.8). From this expression the outflow of energy from the system
at the boundaries of Ω(ኻ) and Ω(ኼ) can be computed. For the left domain the interest lays in the energy
propagation moving in negative 𝑥-direction and for the right domain the interest lays in the energy
propagation moving in positive 𝑥-direction. The total energy that passes a cross section at |𝑥| → ∞
from 𝑡 → −∞ to 𝑡 → ∞ is denoted by

𝐸(፧) = (−1)፧𝐸𝐼 ∫
ጼ

ዅጼ
lim

፱→(ዅኻ)ᑟጼ
(𝜕

ኽ𝑤(፧)
𝜕𝑥ኽ

𝜕𝑤(፧)
𝜕𝑡 − 𝜕

ኼ𝑤(፧)
𝜕𝑥ኼ

𝜕ኼ𝑤(፧)
𝜕𝑡𝜕𝑥 )𝑑𝑡. (4.12)

The transition radiation energy 𝐸(፧)፫ is denoted by that part of the total energy caused by the passing
of the free field which means that

𝐸(፧)፫ = (−1)፧𝐸𝐼 ∫
ጼ

ዅጼ
lim

፱→(ዅኻ)ᑟጼ
(𝜕

ኽ𝑤(፧)ፅ
𝜕𝑥ኽ

𝜕𝑤(፧)ፅ
𝜕𝑡 − 𝜕

ኼ𝑤(፧)ፅ
𝜕𝑥ኼ

𝜕ኼ𝑤(፧)ፅ
𝜕𝑡𝜕𝑥 )𝑑𝑡. (4.13)

The first step in computing this expression is to evaluate the inverse transform of to Fourier-domain
transformed solution of the free field such that

𝑤(፧)፟ = 1
2𝜋 ∫

ጼ

ዅጼ
�̂�(፧)፟ 𝑒ዅ።Ꭶ፭𝑑𝜔 (4.14)

Before substituting equation (4.14) into equation (4.13) it is important to note what happens with the
solution when |𝑥| → ∞. Taking the limit of expression (4.10) yields

lim
፱→(ዅኻ)ᑟጼ

(�̂�(፧)) = lim
፱→(ዅኻ)ᑟጼ

( 12𝜋 ∫
ጼ

ዅጼ
𝑎(፧)ኻ (𝜔)𝑒((ዅኻ)ᑟ፤(ᑟ)Ꮃ ፱ዅᎦ፭)።𝑑𝜔) . (4.15)

Note that the second term vanishes due to the definition in equation (4.9). The expression for the
transition radiation can now be elaborated. This expression will consist of three integrals of which two
can be computed relative easily due to the occurrence of the Fourier transform of a Dirac function. The
result after some simplification steps is

𝐸(፧)፫ = 𝐸𝐼
2𝜋

ጼ

∫
ዅጼ

𝜔𝑎(፧)ኻ (𝜔)𝑎(፧)ኻ (−𝜔) (𝑘(፧)ኻ (𝜔))
ኼ
(𝑘(፧)ኻ (𝜔) − 𝑘(፧)ኻ (−𝜔)) 𝑒(ዅኻ)

ᑟ(፤(ᑟ)Ꮃ (Ꭶ)ዅ፤(ᑟ)Ꮃ (ዅᎦ))፱።𝑑𝜔. (4.16)

The final step is to make use of expression (4.9). This results in the final expression for the radiation
energy

𝐸(ኼ)፫ = (2𝐸𝐼𝜋 )∫
ጼ

Ꭶ(ᑟ)ᐼᑏ
𝜔𝑎(፧)ኻ (𝜔)𝑎(፧)ኻ (−𝜔) (𝑘(፧)ኻ (𝜔))

ኽ
𝑑𝜔 = ∫

ጼ

ኺ
𝑄(፧)(𝜔)𝑑𝜔, (4.17)

with 𝑄(፧) being the spectral density of the transition radiation energy in the direction corresponding to
𝑛. The expression for this spectral density for the inertia-excluded system reads

𝑄(፧) = [(2𝐸𝐼𝜋 )𝜔𝑎(፧)ኻ (𝜔)𝑎(፧)ኻ (−𝜔) (𝑘(፧)ኻ (𝜔))
ኽ
][𝐻(𝜔 − 𝜔(፧)ፄፗ )]. (4.18)
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Figure 4.4: Spectra of radiation energy for the inertia-excluded model.

4.2. Transition radiation in the inertia included model
The same model as in equation (3.1) is studied, once again neglecting the damping. The stiffness
parameter 𝑘፬(𝑥) of the lower elastic layer is however assumed to have a jump discontinuity in analogy
with the previous subsection. The expressions for this stiffness parameter is

𝑘፬(𝑥) = 𝑘(ኻ)፬ + (𝑘(ኼ)፬ − 𝑘(ኻ)፬ )𝐻(𝑥). (4.19)

The upper layer represent the pads which are fabricated and are therefore assumed to have constant
stiffness properties. Like in the previous subsection the load velocity is assumed to be sub-critical. The
governing equation of motion reads

[
(4𝛾ኼ፛

ᎧᎴ
Ꭷ፭Ꮄ + 4𝛽

ኾ
፩ (𝑥) +

ᎧᎶ
Ꭷ፱Ꮆ ) − (4𝛽ኾ፩ ) (𝑥)

− (4𝛽ኾ፩ ) (𝑥) (4𝛾ኼ፬
ᎧᎴ
Ꭷ፭Ꮄ + (4𝛽

ኾ
፩ (𝑥) + 4𝛽ኾ፬ (𝑥)))

] [𝑤𝑤፬] = [
�̂�
0] 𝛿(𝑥 − 𝑣𝑡). (4.20)

Figure 4.5: Mechanical scheme of a moving load in the inertia-included system with an abrupt jump in the foundation stiffness.

Fourier transforming this equation for the time variable results in

[(
ᎧᎶ
Ꭷ፱Ꮆ − 4𝛾

ኼ
፛𝜔ኼ + 4𝛽ኾ፩ (𝑥)) − (4𝛽ኾ፩ (𝑥))

− (4𝛽ኾ፩ (𝑥)) (−4𝛾ኼ፬ 𝜔ኼ + (4𝛽ኾ፩ (𝑥) + 4𝛽ኾ፬ (𝑥)))
] [ �̂��̂�፬] =

1
𝑣 [
�̂�
0] 𝑒

ᒞ
ᑧ ፱። . (4.21)
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The spatial domain is once again split into the two semi-infinite domains Ω(ኻ) = (−∞, 0) and Ω(ኼ) =
(0,∞) with respective solution vectors w(ኻ) = [𝑤(ኻ) 𝑤(ኻ)፬ ]

ፓ
and w(ኼ) = [𝑤(ኼ) 𝑤(ኼ)፬ ]

ፓ
. The governing

system of differential equations of the Fourier transforms of these solution vectors with respect to the
time variable 𝑡 is

[
( Ꭷ

Ꮆ

Ꭷ፱Ꮆ − 4𝛾
ኼ
፛𝜔ኼ + 4𝛽

(፧)ኾ
፩ ) − (4𝛽(፧)ኾ፩ )

− (4𝛽(፧)ኾ፩ ) (−4𝛾ኼ፬ 𝜔ኼ + (4𝛽(፧)ኾ፩ + 4𝛽(፧)ኾ፬ ))
] [�̂�

(፧)

�̂�(፧)፬
] = 1

𝑣 [
�̂�
0] 𝑒

ᒞ
ᑧ ፱። . (4.22)

The goal of this section is to obtain the expression for the spectral density of the transition radiation for
the inertia-included system. In the previous section it can be seen that these expressions are obtained
by making use of the expression for the energy flux. It has been discussed in Chapter 2 that the
expression for the energy flux of both the inertia-included and excluded system are only dependent on
the displacement of the Euler-Bernoulli beam. Therefore only the displacement of the upper beam is
of interest. The particular solution for this beam can be obtained easily and reads

�̂�(፧)ፄ =
(−4𝛾ኼ፬ 𝜔ኼ + 4𝛽(፧)ኾ፩ + 4𝛽(፧)ኾ፬ )

Δ(፧)ፈፍ (
Ꭶ
፯ , 𝜔)

�̂�
𝑣 𝑒

ᒞ
ᑧ ፱። . (4.23)

For the free field the suggested trial solution is

[�̂�
(፧)
ፅ
�̂�(፧)፬ ፅ

] = [𝑎
(፧)(𝜔)
𝑏(፧)(𝜔)] 𝑒

፤(Ꭶ)፱። . (4.24)

Substitution of this trial solution vector in the homogeneous version of equation (4.22) will lead to the
fact that the dispersion equation of equation (3.29) needs to be satisfied in order to obtain non-trivial
solutions. Like in the case with the inertia-excluded system four distinct wave-numbers 𝑘፣(𝜔) can be
obtained for each frequency 𝜔. The solution for the free field of the Euler-Bernoulli beam is thus of the
form

�̂�(፧)ፅ = 𝑎(፧)ኻ (𝜔)𝑒፤(ᑟ)Ꮃ (Ꭶ)፱። + 𝑎ኼ(𝜔)𝑒፤
(ᑟ)
Ꮄ (Ꭶ)፱። + 𝑎ኽ(𝜔)𝑒፤

(ᑟ)
Ꮅ (Ꭶ)፱። + 𝑎ኾ(𝜔)𝑒፤

(ᑟ)
Ꮆ (Ꭶ)፱። . (4.25)

In order to cancel two waves for each sub-domain the same method as in the previous section is
applied. One should however pay special attention to the application because there are now two pairs
of dispersion curves, see Figure 3.8. By accounting for the different frequency bands of equation (3.35)
correctly it is justified to conclude that

�̂�(፧)ፅ = 𝑎(፧)ኻ (𝜔)𝑒(ዅኻ)ᑟ፤(ᑟ)Ꮃ ፱። + 𝑎(፧)ኼ (𝜔)𝑒(ዅኻ)ᑟ፤(ᑟ)Ꮄ ፱። . (4.26)

This expression looks similar to that of equation (4.10) but the definitions for the two present wave-
numbers have changed because of the frequency bands. The first definition is

𝑘(፧)ኻ (𝜔) = |𝑧(፧)(𝜔)|ኻ/ኾ

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

−1 𝜔 < −𝜔(፧)ፈፍኼ
𝑒
Ꮅ
Ꮆ᎝። 𝜔(፧)ፈፍኼ < 𝜔 < −𝜔(፧)ፒፈ
−1 −𝜔(፧)ፒፈ < 𝜔 < −𝜔(፧)ፈፍኻ
𝑒
Ꮅ
Ꮆ᎝። |𝜔| < 𝜔(፧)ፈፍኻ
1 𝜔(፧)ፈፍኻ < 𝜔 < 𝜔(፧)ፒፈ
𝑒
Ꮅ
Ꮆ᎝። 𝜔(፧)ፒፈ < 𝜔 < 𝜔(፧)ፈፍኼ
1 𝜔 > 𝜔(፧)ፈፍኼ

, (4.27)

and the second definition is

𝑘(፧)ኼ (𝜔) = |𝑧(፧)(𝜔)|ኻ/ኾ

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑖 𝜔 < −𝜔(፧)ፈፍኼ
𝑒
Ꮃ
Ꮆ᎝። 𝜔(፧)ፈፍኼ < 𝜔 < −𝜔(፧)ፒፈ
𝑖 −𝜔(፧)ፒፈ < 𝜔 < −𝜔(፧)ፈፍኻ
𝑒
Ꮃ
Ꮆ᎝። |𝜔| < 𝜔(፧)ፈፍኻ
𝑖 𝜔(፧)ፈፍኻ < 𝜔 < 𝜔(፧)ፒፈ
𝑒
Ꮃ
Ꮆ᎝። 𝜔(፧)ፒፈ < 𝜔 < 𝜔(፧)ፈፍኼ
𝑖 𝜔 > 𝜔(፧)ፈፍኼ

. (4.28)
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Addition of the homogeneous and particular solutions results in

�̂�፧ = 𝑎(፧)ኻ (𝜔)𝑒(ዅኻ)ᑟ፤(ᑟ)Ꮃ ፱። + 𝑎(፧)ኼ (𝜔)𝑒(ዅኻ)ᑟ፤(ᑟ)Ꮄ ፱። +
(−4𝛾ኼ፬ 𝜔ኼ + 4𝛽(፧)ኾ፩ + 4𝛽(፧)ኾ፬ )

Δ(፧)ፈፍ (
Ꭶ
፯ , 𝜔)

�̂�
𝑣 𝑒

ᒞ
ᑧ ፱። . (4.29)

The unknown constants can be obtained from the continuity of the beam in displacement, slope, bend-
ing moment and shear force at the point of the stiffness transition. In order to obtain the expressions
for the spectral density of transition radiation energy the same steps as those on page 28 have been
followed, resulting in the same expressions. A difference in the derivation is however due to the defi-
nitions of the two wave-numbers. The final expression for the spectral density for the inertia-included
system reads

𝑄(፧)(𝜔) = [ (2𝐸𝐼𝜋 )𝜔𝑎(፧)ኻ (𝜔)𝑎(፧)ኻ (−𝜔) (𝑘(፧)ኻ (𝜔))
ኽ
][𝐻(𝜔−𝜔(፧)ፈፍኻ)−𝐻(𝜔−𝜔(፧)ፒፈ )+𝐻(𝜔−𝜔(፧)ፈፍኼ)]. (4.30)

Figure 4.6: Spectra of radiation energy for the inertia-included model.

An important difference between the spectra for the inertia-excluded and included model is the occur-
rence of infinite peaks. These peaks are located at those frequencies corresponding to the intersection
points between the kinematic invariant and dispersion curves. Recall that the kinematic invariant has
no intersection points with the dispersion curves of the inertia-excluded system for sub-critical veloci-
ties. For the inertia-included model however there are always at least two intersection points between
the kinematic invariant and the dispersion curves. The two frequencies have the same value except for
their signs, one is negative and one is positive. As mentioned previously, the two waves corresponding
to these two frequencies propagate in the eigenfield on the left side of the load. In this case of a tran-
sition zone a left and a right eigenfield are present. These eigenfields are not the same which means
that there would be a discontinuity at the transition point when the total solution would only exist of the
eigenfields. Free fields are therefore added to ensure continuity at the transition point. The expres-
sions for the free fields are substituted into the interface conditions together with the already determined
eigenfields. The two propagating waves present in an eigenfield behave as a simple harmonic time
function at the transition point. There is thus a left and a right harmonic time function with each its re-
spective frequency, one for each eigenfield. The free fields need to be such that addition of them leads
to a total solution which is continuous for all time. This explains the presence of peaks in the spectra of
radiation energy for the inertia-included model and the absence of them in the inertia-excluded model.
From Fig 4.6 it can be observed that only one peak is present in the spectrum for the left domain. This
is because the other frequency happens to be outside the band of wave propagation.





5
Numerical model

A numerical model is formulated to solve the transient solutions of the problems in this thesis. In this
model any type of local inhomogeneity can be applied. In the applied technique the spatial dimension
is discretized by application of the finite element method This results in a system of ordinary differential
equations which can be solved by the Newmark-beta method.

5.1. Finite element method
5.1.1. Spatial discretization for the inertia-excluded model
The general equation of motion for a Winkler supported Euler-Bernoulli beam on a domain Ω = (𝑥ፚ , 𝑥፛)
without damping is denoted by

𝜌𝐴𝜕
ኼ𝑤
𝜕𝑡ኼ + 𝐸𝐼

𝜕ኾ𝑤
𝜕𝑥ኾ + 𝑘𝑤 = 𝑞, 𝑥 ∈ Ω. (5.1)

The first step in the finite element method is the derivation of the weak formulation. To do this, multiply
equation (5.1) by an arbitrary test function 𝜂 ∈ Σ and integrate over the domain Ω, such that

፱ᑓ

∫
፱ᑒ

𝜌𝐴𝜂𝜕
ኼ𝑤
𝜕𝑡ኼ + 𝐸𝐼𝜂

𝜕ኾ𝑤
𝜕𝑥ኾ + 𝑘𝜂𝑤𝑑𝑥 =

፱ᑓ

∫
፱ᑒ

𝜂𝑞𝑑𝑥, ∀𝜂 ∈ Σ. (5.2)

Note that Σ is the space of functions that satisfies certain requirements. An important requirement
on the space Σ is that if essential boundary conditions are present, functions 𝜂 satisfy the same but
homogeneous essential boundary conditions as 𝑤. In that case the function space is denoted by
Σኺ. If no essential boundary conditions are present, the function space is just denoted by Σ and the
functions 𝜂 do not need to satisfy any specified boundary conditions. Another important requirement
on the functions 𝜂 ∈ Σ is that they should be sufficiently smooth which will be explained further on. The
difference between essential and natural boundary conditions of the Euler-Bernoulli equation shall also
be explained further on. The second term in the right hand side of equation (5.2) is integrated by parts
twice to lower the order of the derivatives that occur in the weak form. This is done so that smoothness
requirement for the function space Σ becomes less strict, the result is

፱ᑓ

∫
፱ᑒ

𝜌𝐴𝜂𝜕
ኼ𝑤
𝜕𝑡ኼ 𝑑𝑥 +

፱ᑓ

∫
፱ᑒ

(𝐸𝐼 𝑑
ኼ𝜂
𝑑𝑥ኼ

𝑑ኼ𝑤
𝑑𝑥ኼ + 𝜂𝑘𝑤)𝑑𝑥 =

፱ᑓ

∫
፱ᑒ

𝜂𝑞𝑑𝑥 + [𝜂𝑉 − 𝑑𝜂𝑑𝑥𝑀]
፱ᑓ

፱ᑒ
, ∀𝜂 ∈ Σ. (5.3)

From equation (5.3) it becomes clear that the boundary conditions for the moments and shear forces
occur naturally in the weak form and are thus automatically taken care of. These boundary conditions
are therefore called natural or Neumann boundary conditions. The strong form of the problem in (5.1)
however contained a spatial derivative of the fourth order which means that there is a possibility of four
different types of boundary conditions. Two of the four types boundary conditions are satisfied naturally
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in the weak formulation. The other two types of boundary conditions, which are the displacement and
slope, need to be demanded and are therefore called essential or Dirichlet boundary conditions.

The solution is now approximated by a linear combination of finite fixed set of basis functions Φ።(𝑥).
In the Galerkin method the same linear combination is chosen for 𝜂, such that

𝑤(𝑥, 𝑡) ≈ 𝑤፡(𝑥, 𝑡) =
፦

∑
፣዆ኺ
𝑢፣(𝑡)Φ፣(𝑥), Φ፣ ∈ Σ

𝜂(𝑥) =
፦

∑
።዆ኺ
𝑐።Φ።(𝑥), Φ። ∈ Σ(ኺ)

. (5.4)

Substitution of equation (5.4) in equation (5.3) leads to

፦

∑
።዆ኺ
[
፦

∑
፣዆ኺ
{(

፱ᑓ

∫
፱ᑒ

𝜌𝐴Φ።Φ፣𝑑𝑥)
𝑑ኼ𝑢፣
𝑑𝑡ኼ + (

፱ᑓ

∫
፱ᑒ

𝐸𝐼𝑑
ኼΦ።
𝑑𝑥ኼ

𝑑ኼΦ፣
𝑑𝑥ኼ + 𝑘Φ።Φ፣𝑑𝑥)𝑢፣}] 𝑐። =

፦

∑
።዆ኺ
[(

፱ᑓ

∫
፱ᑒ

Φ።𝑞𝑑𝑥) + [Φ።𝑉 −
𝑑Φ።
𝑑𝑥 𝑀]

፱ᑓ

፱ᑒ
] 𝑐። .

(5.5)
Because the number of elements 𝑛 is arbitrary it can be concluded that

፦

∑
፣዆ኺ
{(

፱ᑓ

∫
፱ᑒ

𝜌𝐴Φ።Φ፣𝑑𝑥)
𝑑ኼ𝑢፣
𝑑𝑡ኼ + (

፱ᑓ

∫
፱ᑒ

𝐸𝐼𝑑
ኼΦ።
𝑑𝑥ኼ

𝑑ኼΦ፣
𝑑𝑥ኼ + 𝑘Φ።Φ፣𝑑𝑥)𝑢፣} =

፱ᑓ

∫
፱ᑒ

Φ።𝑞𝑑𝑥+[Φ።𝑉−
𝑑Φ።
𝑑𝑥 𝑀]

፱ᑓ

፱ᑒ
, 𝑖 = {0, .., 𝑚}.

(5.6)
This results in a system of ordinary differential equations which can be solved by a numerical time
integration. Before that can be done one first needs to chose the basis functions Φ።.

5.1.2. Hermite basis functions
In order for the integrals of equation (5.6) to make sense Σ needs to be a subspace of the Sobolev
space 𝐻ኼ(Ω) [29], which contains functions satisfying

፱ᑓ

∫
፱ᑒ

Φኼ + 𝑑Φ𝑑𝑥

ኼ
+ 𝑑

ኼΦ
𝑑𝑥ኼ

ኼ

𝑑𝑥 < ∞. (5.7)

This is equivalent to be at least 𝐶ኻ continuous in one dimensional systems. This is the requirement that
𝜂 ∈ Σ should satisfy to be sufficiently smooth. It is thus needed to chose basis functions that ensure
this continuity. The first thing to do is subdividing the domain Ω into 𝑛 elements 𝑒፤ = [𝑥፤ዅኻ, 𝑥፤]. At each
node 𝑥። two degrees of freedom are introduced 𝑤። and 𝜙። which are basically the displacement and
cross-sectional rotation at the nodes. Hermitian interpolation is applied over the element boundaries
to ensure the 𝐶ኻ continuity. The interpolation per element can be written as

𝑤፡(𝑥) =
፤

∑
፣዆፤ዅኻ

𝑤፣𝜓፣ኺ(𝑥) + 𝜙፣𝜓፣ኻ(𝑥), 𝑥 ∈ 𝑒፤ . (5.8)

with 𝜓።ኺ(𝑥) and 𝜓።ኻ(𝑥) third degree polynomials, satisfying

𝜓።ኺ(𝑥፣) = 𝛿።፣ ,
𝑑𝜓።ኺ
𝑑𝑥 (𝑥፣) = 0, 𝜓።ኻ(𝑥፣) = 0

𝑑𝜓።ኻ
𝑑𝑥 (𝑥፣) = −𝛿።፣ . (5.9)

These basis functions 𝜓።ኺ(𝑥) and 𝜓።ኻ(𝑥) can be expressed in terms of linear basis functions 𝜆።(𝑥)

𝜓።ኺ = 𝜆ኼ። (3 − 2𝜆።) and 𝜓።ኻ = 𝜆ኼ። (1 − 𝜆።)
1
፝᎘ᑚ
፝፱

. (5.10)

The linear basis functions 𝜆።(𝑥) satisfy
𝜆።(𝑥፣) = 𝛿።፣ . (5.11)
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Figure 5.1: Field discretization and the definition of the basis functions.

Note that the parameters 𝑢፣ in equation (5.4) are either 𝑤፣ or 𝜙፣ and the functions Φ፣ are either 𝜓፣ኺ(𝑥)
and 𝜓፣ኻ(𝑥). Because of this the system of equations in equation (5.6) can be written as

፧

∑
፣዆ኺ
{(

፱ᑓ

∫
፱ᑒ

𝜌𝐴𝜓።ኺ𝜓፣ኺ𝑑𝑥)
𝑑ኼ𝑤፣
𝑑𝑡ኼ + (

፱ᑓ

∫
፱ᑒ

𝐸𝐼𝑑
ኼ𝜓።ኺ
𝑑𝑥ኼ

𝑑ኼ𝜓፣ኺ
𝑑𝑥ኼ + 𝑘𝜓።ኺ𝜓፣ኺ𝑑𝑥)𝑤፣}+

፧

∑
፣዆ኺ
{(

፱ᑓ

∫
፱ᑒ

𝜌𝐴𝜓።ኺ𝜓፣ኻ𝑑𝑥)
𝑑ኼ𝜙፣
𝑑𝑡ኼ + (

፱ᑓ

∫
፱ᑒ

𝐸𝐼𝑑
ኼ𝜓።ኺ
𝑑𝑥ኼ

𝑑ኼ𝜓፣ኻ
𝑑𝑥ኼ + 𝑘𝜓።ኺ𝜓፣ኻ𝑑𝑥)𝜙፣} =

፱ᑓ

∫
፱ᑒ

𝜓።ኺ𝑞𝑑𝑥 + [𝜓።ኺ𝑉]
፱ᑓ

፱ᑒ
, 𝑖 = {0, .., 𝑛}

፧

∑
፣዆ኺ
{(

፱ᑓ

∫
፱ᑒ

𝜌𝐴𝜓።ኻ𝜓፣ኺ𝑑𝑥)
𝑑ኼ𝑤፣
𝑑𝑡ኼ + (

፱ᑓ

∫
፱ᑒ

𝐸𝐼𝑑
ኼ𝜓።ኻ
𝑑𝑥ኼ

𝑑ኼ𝜓፣ኺ
𝑑𝑥ኼ + 𝑘𝜓።ኻ𝜓፣ኺ𝑑𝑥)𝑤፣}+

፧

∑
፣዆ኺ
{(

፱ᑓ

∫
፱ᑒ

𝜌𝐴𝜓።ኻ𝜓፣ኻ𝑑𝑥)
𝑑ኼ𝜙፣
𝑑𝑡ኼ + (

፱ᑓ

∫
፱ᑒ

𝐸𝐼𝑑
ኼ𝜓።ኻ
𝑑𝑥ኼ

𝑑ኼ𝜓፣ኻ
𝑑𝑥ኼ + 𝑘𝜓።ኻ𝜓፣ኻ𝑑𝑥)𝜙፣} =

፱ᑓ

∫
፱ᑒ

𝜓።ኻ𝑞𝑑𝑥 − [
𝑑𝜓።ኻ
𝑑𝑥 𝑀]

፱ᑓ

፱ᑒ
, 𝑖 = {0, .., 𝑛}.

(5.12)

This system of ordinary differential equations can be written as

Mẅ+Kw = f. (5.13)

The matrix M is called the global mass matrix and it is the discrete representation of the inertia of
the beam. The matrix K is called the global stiffness matrix and it is the discrete representation of
the stiffness of the system and it is composed of the bending stiffness and the stiffness of the Winkler
foundation. The vector f is the discrete representation of the load on the beam.
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5.1.3. Assembly and definition of element matrices and vectors for the inertia-
excluded system

The final system of equations denoted in equation (5.13) that needs to be solved has been determined
by making use of the weak form in which a discretized displacement field over all elements has been
substituted. The procedure after that existed of straightforward mathematical steps. This procedure
included lots of cumbersome summations. The power of the finite element method however lies in the
fact that there can be made use of just one element to obtain a system that holds for that element.
After this is done an assembly follows which assembles all the element systems to one large system
which is the same as that of equation (5.13). This procedure exist of matrices and vectors instead if
summations. The displacement field for one element 𝑒ኻ is denoted by

𝑤(𝑥, 𝑡) ≈ 𝑤፦(𝑥, 𝑡) = 𝑤ኺ𝜓ኺኺ + 𝜙ኺ𝜓ኺኻ +𝑤ኻ𝜓ኻኺ + 𝜙ኻ𝜓ኻኻ. (5.14)

This can be put in a matrix vector notation by introducing the N matrix and the element degree of
freedom vector a፞, resulting in

𝑤(𝑥, 𝑡) ≈ 𝑤፦(𝑥, 𝑡) = [𝜓ኺኺ 𝜓ኺኻ 𝜓ኻኺ 𝜓ኻኻ]
⎡
⎢
⎢
⎣

𝑤ኺ
𝜙ኺ
𝑤ኻ
𝜙ኻ

⎤
⎥
⎥
⎦
= Na፞ . (5.15)

This is also done for the test function, yielding

𝜂(𝑥) = Nb፞ . (5.16)

Note that the test function is a scalar field such that its inverse is the same as the weight function itself,
such that

𝜂(𝑥) = (𝜂(𝑥))ፓ = (Nb፞)ፓ = (b፞)ፓNፓ . (5.17)
Substitution of these expressions in the weak form results in

(b፞)ፓ ((∫
፞
Nፓ𝜌𝐴N𝑑𝑥) ä፞ + (∫

፞

𝑑ኼNፓ
𝑑𝑥ኼ 𝐸𝐼

𝑑ኼN
𝑑𝑥ኼ + N

ፓ𝑘N𝑑𝑥)a፞) = (b፞)ፓ (∫
፞
Nፓ𝑞𝑑𝑥 + [Nፓ − 𝑑N𝑑𝑥 𝑀]

፱ᑓ

፱ᑒ
) ,

(5.18)
from which it can be concluded that

(∫
፞
Nፓ𝜌𝐴N𝑑𝑥) ä፞ + (∫

፞

𝑑ኼNፓ
𝑑𝑥ኼ 𝐸𝐼

𝑑ኼN
𝑑𝑥ኼ + N

ፓ𝑘N𝑑𝑥)a፞ = ∫
፞
Nፓ𝑞𝑑𝑥 + [Nፓ − 𝑑N𝑑𝑥 𝑀]

፱ᑓ

፱ᑒ
. (5.19)

This system can be written at element level, such that

M፞ä፞ +K፞a፞ = f፞ . (5.20)

The matrices and vectors in this expression are called element matrices and vectors. The element
matrices and vectors for all elements in the system are assembled afterwards in order to obtain the
global matrices and vectors. The first step is to design the degree of freedom vector w which is simply
a vector filled with all nodal degree of freedom. In the case of a system that exists of two element this
is simply

w = [𝑤ኺ 𝜙ኺ 𝑤ኻ 𝜙ኻ 𝑤ኼ 𝜙ኼ]
ፓ . (5.21)

The second step is to obtain the force vector which contains the total nodal forces due to the external
load along the beam and due to the boundary conditions. The two element force vectors which contain
the nodal forces due to the contributions of the concerned elements only are then defined as

f Ꮃ፞ = [𝐹ኺኻ 𝑇ኺኻ 𝐹ኻኻ 𝑇ኻኻ]
ፓ

f፞Ꮄ = [𝐹ኻኼ 𝑇ኻኼ 𝐹ኼኼ 𝑇ኼኼ]
ፓ .

(5.22)

The force vector can then be assembled by adding the nodal forces of the element force vectors at
those location where there is overlap such that

f = [𝐹ኺ 𝑇ኺ 𝐹ኻ 𝑇ኻ 𝐹ኼ 𝑇ኼ]
ፓ = [𝐹ኺኻ 𝑇ኺኻ (𝐹ኻኻ + 𝐹ኻኼ) (𝑇ኻኻ + 𝑇ኻኼ) 𝐹ኼኼ 𝑇ኼኼ]

ፓ . (5.23)
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The final system has the form
Mä+Kw = f. (5.24)

In order for this system to make sense the dimensions of both the mass and stiffness matrices need to
be six by six in the case of two elements. Because the nodal forces of the zeroth node are independent
of the degrees of freedom of the second node one easily sees that the first two rows of the mass matrix
exist of the first two of the first mass element matrix, the remaining terms are zero. A similar reasoning
can be applied to the last two rows and the second element matrix. For the middle two rows it holds
that both element matrices have a contribution and that overlapping terms are used twice. This results
in the global mass matrix

M =

𝑀 Ꮃ፞
ኻኻ 𝑀 Ꮃ፞

ኻኼ 𝑀 Ꮃ፞
ኻኽ 𝑀 Ꮃ፞

ኻኾ 0 0
𝑀 Ꮃ፞
ኼኻ 𝑀 Ꮃ፞

ኼኼ 𝑀 Ꮃ፞
ኼኽ 𝑀 Ꮃ፞

ኼኾ 0 0
𝑀 Ꮃ፞
ኽኻ 𝑀 Ꮃ፞

ኽኼ (𝑀 Ꮃ፞
ኽኽ +𝑀፞Ꮄኻኻ) (𝑀 Ꮃ፞

ኽኾ +𝑀፞Ꮄኻኼ) 𝑀፞Ꮄኻኽ 𝑀፞Ꮄኻኾ
𝑀 Ꮃ፞
ኾኻ 𝑀 Ꮃ፞

ኾኼ (𝑀 Ꮃ፞
ኾኽ +𝑀፞Ꮄኼኻ) (𝑀 Ꮃ፞

ኾኾ +𝑀፞Ꮄኼኼ) 𝑀፞Ꮄኼኽ 𝑀፞Ꮄኼኾ
0 0 𝑀፞Ꮄኽኻ 𝑀፞Ꮄኽኼ 𝑀፞Ꮄኽኽ 𝑀፞Ꮄኽኾ
0 0 𝑀፞Ꮄኾኻ 𝑀፞Ꮄኾኼ 𝑀፞Ꮄኾኽ 𝑀፞Ꮄኾኾ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.25)

The same rules can be applied to the stiffness matrix. This process of combining element matrices
and vector into the global system is called assembly and can be extended to an arbitrary number of
elements.

5.1.4. Application to the inertia-included model
The finite element method or more specifically the Galerkin method [24] will now be applied for the
inertia-included model. This involves: find 𝑤፡ ∈ Σ፡፰ and 𝑢፡ ∈ Σ፡፮ such that

∫
፞
𝑤፡𝜌፛

𝜕ኼ𝑤፡
𝜕𝑡ኼ 𝑑𝑥 + ∫፞

𝜕ኼ𝑤፡

𝜕𝑥ኼ 𝐸𝐼
𝜕ኼ𝑤፡
𝜕𝑥ኼ +𝑤፡𝑘፩𝑤፡𝑑𝑥 − ∫

፞
𝑤፡𝑘፩𝑤፡፬ 𝑑𝑥 = ∫

፞
𝑤፡𝑞𝑑𝑥 + [𝑤፡𝑉 − 𝜕𝑤

፡

𝜕𝑥 𝑀]
፱ᑓ

፱ᑒ

∫
፞
𝑤፡፬𝜌፬

𝜕ኼ𝑤፡፬
𝜕𝑡ኼ 𝑑𝑥 − ∫፞

𝑤፡፬ 𝑘፩𝑤፡፬ 𝑑𝑥 + ∫
፞
𝑤፡፬ (𝑘፩ + 𝑘፬)𝑤፡፬ 𝑑𝑥 = 0

(5.26)

The discretized fields read

𝑤፡ = N፰a፞፰ , 𝑤፡ = N፰b፞፰ , 𝑤፡፬ = N፰ᑤa፞፰ᑤ and 𝑤፡፬ = N፰ᑤb፞፰ᑤ . (5.27)

Substitution of these expressions in equation (5.26) results in the set of equations

(∫
፞
Nፓ፰𝜌፛N፰𝑑𝑥) ä፞፰ + (∫

፞

𝜕ኼNፓ፰
𝜕𝑥ኼ 𝐸𝐼

𝜕ኼN፰
𝜕𝑥ኼ + Nፓ፰𝑘፩N፰𝑑𝑥)a፞፰ − (∫

፞
Nፓ፰𝑘፩N፰ᑤ𝑑𝑥)a፞፰ᑤ = (∫፞

Nፓ፰𝑞𝑑𝑥) + [Nፓ፰𝑉 −
𝜕N፰
𝜕𝑥 𝑀]

፱ᑓ

፱ᑒ

(∫
፞
Nፓ፰ᑤ𝜌፬N፰ᑤ𝑑𝑥) ä፞፰ᑤ − (∫፞

Nፓ፰ᑤ𝑘፩N፰𝑑𝑥)a፞፰ + (∫፞
Nፓ፰ᑤ(𝑘፩ + 𝑘፬)N፰ᑤ𝑑𝑥)a፞፰ᑤ = 0,

(5.28)

which can be written as

[M፰፰ ∅
∅ M፰ᑤ፰ᑤ

] [ ä
፞
፰

ä፞፰ᑤ
] + [K፰፰ K፰፰ᑤ

K፰ᑤ፰ K፰ᑤ፰ᑤ
] [a

፞
፰

a፞፰ᑤ
] = [f

፞
፪
∅] + [

f፞፧፜
∅ ] . (5.29)

This expression denotes a system of linear differential equations for one element. In order to obtain
a system for the entire beam there needs to be assembly of all element matrices and vectors. The
current order of the element matrices and vectors is not optimal for this assembly.
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To obtain an optimal orientation a re-ordering needs to take place. This re-ordering is shown for the
stiffness matrix, the degree of freedom vector and the force vector. The element stiffness matrix multi-
plication with the degree of freedom vector initially has the form

[K፰፰ K፰፰ᑤ
K፰ᑤ፰ K፰ᑤ፰ᑤ

] [a
፞
፰

a፞፰ᑤ
] =

(𝐾፰፰)ኻኻ (𝐾፰፰)ኻኼ (𝐾፰፰)ኻኽ (𝐾፰፰)ኻኾ (𝐾፰፰ᑤ)ኻኻ (𝐾፰፰ᑤ)ኻኼ
(𝐾፰፰)ኼኻ (𝐾፰፰)ኼኼ (𝐾፰፰)ኼኽ (𝐾፰፰)ኼኾ (𝐾፰፰ᑤ)ኼኻ (𝐾፰፰ᑤ)ኼኼ
(𝐾፰፰)ኽኻ (𝐾፰፰)ኽኼ (𝐾፰፰)ኽኽ (𝐾፰፰)ኽኾ (𝐾፰፰ᑤ)ኽኻ (𝐾፰፰ᑤ)ኽኼ
(𝐾፰፰)ኾኻ (𝐾፰፰)ኾኼ (𝐾፰፰)ኾኽ (𝐾፰፰)ኾኾ (𝐾፰፰ᑤ)ኾኻ (𝐾፰፰ᑤ)ኾኼ
(𝐾፰ᑤ፰)ኻኻ (𝐾፰ᑤ፰)ኻኼ (𝐾፰ᑤ፰)ኻኽ (𝐾፰ᑤ፰)ኻኾ (𝐾፰ᑤ፰ᑤ)ኻኻ (𝐾፰ᑤ፰ᑤ)ኻኼ
(𝐾፰ᑤ፰)ኼኻ (𝐾፰ᑤ፰)ኼኼ (𝐾፰ᑤ፰)ኼኽ (𝐾፰ᑤ፰)ኼኾ (𝐾፰ᑤ፰ᑤ)ኼኻ (𝐾፰ᑤ፰ᑤ)ኼኼ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑤፤ዅኻ
𝜙፤ዅኻ
𝑤፤
𝜙፤

(𝑤፬)፤ዅኻ
(𝑤፬)፤

⎤
⎥
⎥
⎥
⎥
⎦

.

(5.30)
The degree of freedom vector is re-ordered such that

a፞ = [𝑤፤ዅኻ 𝜙፤ዅኻ (𝑤፬)፤ዅኻ 𝑤፤ 𝜙፤ (𝑤፬)፤]
ፓ . (5.31)

The order of the elements in the degree of freedom vector has changed but the multiplication of the
element stiffness matrix and the degree of freedom vector needs to be unchanged. In order to do that
the element stiffness matrix also needs to be re-ordered, such that

[K፰፰ K፰፰ᑤ
K፰ᑤ፰ K፰ᑤ፰ᑤ

] [a
፞
፰

a፞፰ᑤ
] =

(𝐾፰፰)ኻኻ (𝐾፰፰)ኻኼ (𝐾፰፰ᑤ)ኻኻ (𝐾፰፰)ኻኽ (𝐾፰፰)ኻኾ (𝐾፰፰ᑤ)ኻኼ
(𝐾፰፰)ኼኻ (𝐾፰፰)ኼኼ (𝐾፰፰ᑤ)ኼኻ (𝐾፰፰)ኼኽ (𝐾፰፰)ኼኾ (𝐾፰፰ᑤ)ኼኼ
(𝐾፰፰)ኽኻ (𝐾፰፰)ኽኼ (𝐾፰፰ᑤ)ኽኻ (𝐾፰፰)ኽኽ (𝐾፰፰)ኽኾ (𝐾፰፰ᑤ)ኽኼ
(𝐾፰፰)ኾኻ (𝐾፰፰)ኾኼ (𝐾፰፰ᑤ)ኾኻ (𝐾፰፰)ኾኽ (𝐾፰፰)ኾኾ (𝐾፰፰ᑤ)ኾኼ
(𝐾፰ᑤ፰)ኻኻ (𝐾፰ᑤ፰)ኻኼ (𝐾፰ᑤ፰ᑤ)ኻኻ (𝐾፰ᑤ፰)ኻኽ (𝐾፰ᑤ፰)ኻኾ (𝐾፰ᑤ፰ᑤ)ኻኼ
(𝐾፰ᑤ፰)ኼኻ (𝐾፰ᑤ፰)ኼኼ (𝐾፰ᑤ፰ᑤ)ኼኻ (𝐾፰ᑤ፰)ኼኽ (𝐾፰ᑤ፰)ኼኾ (𝐾፰ᑤ፰ᑤ)ኼኼ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑤፤ዅኻ
𝜙፤ዅኻ
(𝑤፬)፤ዅኻ
𝑤፤
𝜙፤
(𝑤፬)፤

⎤
⎥
⎥
⎥
⎥
⎦

.

(5.32)
The matrix and vector in the left hand side of the equation are not the same as that of the right hand
side. The vector that follows from the multiplication of the two objects are however the same in both
sides of the equation which justifies the equal sign. The main goal of this re-ordering is to simplify the
assembly of the element vectors and matrices. The degree of freedom vector is already re-ordered but
the force vector not yet. The re-ordering of the force-vector is denoted as

[ f∅] =

⎡
⎢
⎢
⎢
⎢
⎣

𝑓ኻ
𝑓ኼ
𝑓ኽ
𝑓ኾ
0
0

⎤
⎥
⎥
⎥
⎥
⎦

→ f፞ =

⎡
⎢
⎢
⎢
⎢
⎣

𝑓ኻ
𝑓ኼ
0
𝑓ኽ
𝑓ኾ
0

⎤
⎥
⎥
⎥
⎥
⎦

. (5.33)

This re-ordering imposes an additional change to the element stiffness matrix which results in

[K፰፰ K፰፰ᑤ
K፰ᑤ፰ K፰ᑤ፰ᑤ

] → K፞ =

(𝐾፰፰)ኻኻ (𝐾፰፰)ኻኼ (𝐾፰፰ᑤ)ኻኻ (𝐾፰፰)ኻኽ (𝐾፰፰)ኻኾ (𝐾፰፰ᑤ)ኻኼ
(𝐾፰፰)ኼኻ (𝐾፰፰)ኼኼ (𝐾፰፰ᑤ)ኼኻ (𝐾፰፰)ኼኽ (𝐾፰፰)ኼኾ (𝐾፰፰ᑤ)ኼኼ
(𝐾፰ᑤ፰)ኻኻ (𝐾፰ᑤ፰)ኻኼ (𝐾፰ᑤ፰ᑤ)ኻኻ (𝐾፰ᑤ፰)ኻኽ (𝐾፰ᑤ፰)ኻኾ (𝐾፰ᑤ፰ᑤ)ኻኼ
(𝐾፰፰)ኽኻ (𝐾፰፰)ኽኼ (𝐾፰፰ᑤ)ኽኻ (𝐾፰፰)ኽኽ (𝐾፰፰)ኽኾ (𝐾፰፰ᑤ)ኽኼ
(𝐾፰፰)ኾኻ (𝐾፰፰)ኾኼ (𝐾፰፰ᑤ)ኾኻ (𝐾፰፰)ኾኽ (𝐾፰፰)ኾኾ (𝐾፰፰ᑤ)ኾኼ
(𝐾፰ᑤ፰)ኼኻ (𝐾፰ᑤ፰)ኼኼ (𝐾፰ᑤ፰ᑤ)ኼኻ (𝐾፰ᑤ፰)ኼኽ (𝐾፰ᑤ፰)ኼኾ (𝐾፰ᑤ፰ᑤ)ኼኼ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.34)

The transformation of the element stiffness matrix is completed and that of the element mass matrix is
similar. The element matrices and vectors can now be assembled according to the same systematic
approach that has been used for the inertia-excluded model.
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5.1.5. Gauss integration
In the cases that the physical quantities are not constant over the length of the beam it is needed to
approximate the integrals in the element matrices and vector. One could argue that these could also
be computed analytically which is true in some cases but in order to make the process as efficient as
possible it is favourable to have a type of quadrature that computes these integrals for each element
according to a set rule. This especially holds for a system that exist of a large number of elements. The
quadrature that will be used is the Gauss integration technique. The integrals that occur in the finite
element method are integrals over an arbitrary element 𝑒፤ = [𝑥፤ዅኻ, 𝑥፤] and thus have the following
form

𝐼 =
፱ᑜ

∫
፱ᑜᎽᎳ

𝑓(𝑥)𝑑𝑥 (5.35)

In models that deal with multi-dimensional elements it is cumbersome to compute the integrals over
each element individually. Isoparametric mapping is a method in which a base element is introduced
with useful properties. This base element is then used to compute the integrals over an arbitrary ele-
ment by making use of the Jacobian of the transformation that maps the base element into an arbitrary
element. Applying this method to a one dimensional problem is the same as applying a substituion.
The base element is a one-dimensional element in the 𝜉-space that spans from −1 to 1 such that
𝑒፛ = [−1, 1]. The transformation that maps this base element 𝑒፛ from the 𝜉-space into an arbitrary
element 𝑒፤ in the 𝑥-space is

𝑥 = 1
2(1 − 𝜉)𝑥፤ዅኻ +

1
2(1 + 𝜉)𝑥፤ (5.36)

The Jacobian of this transformation is given by

𝐽 = 1
2(𝑥፤ − 𝑥፤ዅኻ) =

1
2ℎ፤ (5.37)

The integral over an arbitrary element can thus be computed by an integral over the base element by
making use of the introduced transformation such that

𝐼 = 1
2ℎ፤

ኻ

∫
ዅኻ
𝑓(𝜉)𝑑𝜉 (5.38)

The remaining integral is now approximated by making use of integration points 𝜉።. The function value
𝑓። at the these integration points are determined, then multiplied by their weights𝑊። after which all these
products are summed for the total number of integration points 𝑛 such that

𝐼 ≈ 1
2ℎ፤ (

፧

∑
።዆ኻ
𝑓።𝑊።) (5.39)

In the Gauss quadrature the integration points and the weights are chosen such that a scheme with 𝑛
integration points integrates a polynomial of degree 2𝑛 − 1 exactly.



40 5. Numerical model

5.2. Non reflective boundary conditions
In this subsection non-reflective boundary conditions will be derived in order to model the infinite system
behaviour by a finite model. The first step is to divide the infinite system into a left semi-infinite system
for 𝑥 < 𝑥ፚ, a computational zone for 𝑥 ∈ (𝑥ፚ , 𝑥፛) and a right semi-infinite system for 𝑥 > 𝑥፛.

Figure 5.2: Subdivision of the infinite system in the formulation of the numerical model.

The numerical model consists out of the computational zone. The boundary conditions of this model
must be such that they match the continuity in interface conditions of the actual infinite system. In order
to define these non-reflective boundary conditions the general solutions for the semi-infinite systems are
derived. These general solutions can be used to find a relationship between the cross-sectional forces
and degree of freedoms at the interfaces. These relationships are then forced on the finite element
model as Robin boundary conditions, completing the derivation and application of the non-reflective
boundary conditions. This derivation will be shown for the right non-reflective boundary condition of
the inertia-excluded model. The derivation of the left condition for the inertia-excluded model and both
conditions for the inertia-included model are left out of the thesis. This is because the steps followed
are very similar and the single derivation should be enough to make the concept clear for the reader.

Figure 5.3: The right semi-infinite sub-system.

The equation of motion for this sub-system reads

𝜌፛
𝜕ኼ𝑤
𝜕𝑡ኼ + 𝑐፰

𝜕𝑤
𝜕𝑡 + 𝑘፰𝑤 + 𝐸𝐼

𝜕ኾ𝑤
𝜕𝑥ኾ = 0. (5.40)

The Laplace transform method will be used in order to solve this problem. The Laplace transform of a
function 𝑓(𝑡) is

̂𝑓(𝑠) =
ጼ

∫
ኺ
𝑓(𝑡)𝑒ዅ፬፭𝑑𝑡 (5.41)

and the complex inversion formula is

𝑓(𝑡) = lim
፲→ጼ

( 1
2𝜋𝑖

᎟ዄ፲።

∫
᎟ዅ፲።

̂𝑓(𝑠)𝑒፭፬𝑑𝑠) . (5.42)

Laplace transforming the equation of motion, substituting the initial conditions𝑤|፭዆ኺ = 𝑓(𝑥) and𝑤፭|፭዆ኺ =
𝑔(𝑥) and rearranging terms leads to

𝜕ኾ�̂�
𝜕𝑥ኾ + (4𝛾

ኼ
፛ 𝑠ኼ + 4𝛼፰𝑠 + 4𝛽ኾ፰) �̂� = (4𝛾ኼ፛ 𝑠 + 4𝛼፰) 𝑓(𝑥) + (4𝛾ኼ፛ ) 𝑔(𝑥) (5.43)
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The particular solution of equation (5.43) is dependent on the initial conditions which are general. The
particular solution is therefore just denoted by �̂�።፜. For the homogeneous solution the trial solution is

�̂�፡፨፦ = 𝑎(𝑠)𝑒᎘(፬)፱ . (5.44)

Substitution of the trial solution into equation (5.43) leads to the characteristic equation

𝜆(𝑠)ኾ = −(4𝛾ኼ፛ 𝑠ኼ + 4𝛼፰𝑠 + 4𝛽ኾ፰) = −𝑧(𝑠). (5.45)

The eigenvalues 𝜆(𝑠) can now be obtained from taking a fourth order root of a complex variable. In the
previous chapters it has been shown that this causes reduction and rotation of the polar representation
in the complex plane. In order to have a systematic procedure it is of importance to think a few steps
ahead. Notice that for all values of 𝑠 that are of interest it holds that arg(𝑠) ∈ (−ኻኼ𝜋,

ኻ
ኼ𝜋). This can

be concluded from the fact that there will be integrated over the Bromwich line which is a vertical
line located at a positive real value 𝜎, see equation (5.43). This can in turn be used to deduce that
arg(𝑧(𝑠)) ∈ (−𝜋, 𝜋). Now that this is clear the derivation will continue. Taking the fourth order roots of
equation (5.45) results in

𝜆፧(𝑠) = 𝑒(
Ꮃ
Ꮄ፧ዅ

Ꮃ
Ꮆ )᎝።𝑧

Ꮃ
Ꮆ (𝑠). (5.46)

From the previous argumentation it follows that arg(𝑧
Ꮃ
Ꮆ (𝑠)) ∈ (−ኻኾ𝜋,

ኻ
ኾ𝜋). This can be used in combina-

tion with equation (5.46) to conclude that arg(𝜆፧(𝑠)) ∈ (
ኻ
ኼ(𝑛 − 1)𝜋,

ኻ
ኼ𝑛𝜋). These conclusions can also

be observed from the plots in Figure 5.4.

Figure 5.4: Plots of ፳
Ꮃ
Ꮆ (፬) (left) and ᎘ᑟ(፬) (right) for varying values of ፲ along the Bromwich line.

The homogeneous solution can thus denoted as

�̂�፡፨፦ = 𝑎ኻ(𝑠)𝑒᎘Ꮃ(፬)፱ + 𝑎ኼ(𝑠)𝑒᎘Ꮄ(፬)፱ + 𝑎ኽ(𝑠)𝑒᎘Ꮅ(፬)፱ + 𝑎ኾ(𝑠)𝑒᎘Ꮆ(፬)፱ . (5.47)

The solution should be bounded for 𝑥 → ∞ meaning that solution terms corresponding to eigenvalues
with real part larger than zero should be canceled. From Figure 5.4 it can be concluded that eigenvalues
corresponding to 𝑛 equals 1 and 2 should be canceled. The homogeneous solution then becomes

�̂�፡፨፦ = 𝑎ኽ(𝑠)𝑒᎘(፬) (፱) + 𝑎ኾ(𝑠)𝑒᎘(፬)። ፱ , (5.48)

in which 𝜆(𝑠) = 𝜆ኽ(𝑠). The total solution can then be obtained by addition of the homogeneous and
particular solution. This solution can be used to obtain the expressions for the cross-sectional rotation
and the cross-section forces. These can then be related to each other which leads to the flexibility
relationship in the Laplace domain. This flexibility relationship reads

[�̂� − �̂�።፜�̂� − �̂�።፜
] = 1

𝐸𝐼 [
− (።ዄኻ)᎘Ꮅ

።
᎘Ꮄ።

᎘Ꮄ
(ኻዅ።)
᎘
] [ �̂� − �̂�።፜�̂� − �̂�።፜

] . (5.49)
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The flexibility relationship needs to be inverse transformed to obtain the relationship in the time domain.
It is now mentioned that in this thesis the model will only be used for sub-critical load cases as also
specified in Section 4.1. The length of the computational zone is then chosen such that the initial
conditions in the semi-infinite system are approximately zero, meaning that �̂�።፜ and all its derivatives
are also zero. The inverse transform of equation (5.49) is then denoted by

[𝑤𝜙] =
፭

∫
ኺ
[𝑐ኻኻ(𝑡 − 𝜏) 𝑐ኻኼ(𝑡 − 𝜏)
𝑐ኼኻ(𝑡 − 𝜏) 𝑐ኼኼ(𝑡 − 𝜏)] [

𝑉(𝜏)
𝑀(𝜏)] 𝑑𝜏. (5.50)

The terms 𝑐ኻኻ are the inverse transforms of the indices �̂�ኻኻ of the flexibility matrix in the Laplace domain.
The integrals in equation (5.50) will be approximated numerically1 at a time 𝑡፧ዄኻ which leads to

[𝑤(𝑡፧ዄኻ)𝜙(𝑡፧ዄኻ)] = [GK] [
𝑉(𝑡፧ዄኻ)
𝑀(𝑡፧ዄኻ)] + [

𝑤፡።፬(𝑡፧ዄኻ)
𝜙፡።፬(𝑡፧ዄኻ)] . (5.51)

The last vector in equation (5.51) is called the history displacement vector and at a time 𝑡፧ዄኻ it is
dependent on the cross-sectional forces at time 𝑡፧ and smaller. The matrix GK is the time-domain
dynamic flexibility matrix. Equation (5.51) is inverted to a stiffness relationship in order to implement it
in the finite element model. This relationship reads

[𝑉(𝑡፧ዄኻ)𝑀(𝑡፧ዄኻ)] = [KG] [
𝑤(𝑡፧ዄኻ)
𝜙(𝑡፧ዄኻ)] + [

𝑉፡።፬(𝑡፧ዄኻ)
𝑀፡።፬(𝑡፧ዄኻ)] , (5.52)

with

[ 𝑉፡።፬(𝑡፧ዄኻ)𝑀፡።፬(𝑡፧ዄኻ)] = −[KG] [
𝑤፡።፬(𝑡፧ዄኻ)
𝜙፡።፬(𝑡፧ዄኻ)] . (5.53)

It should be mentioned thatKG is the inverse matrix ofGK. The obtained expression in equation (5.52)
can be now be implemented in the finite element model. The system of𝑁 ordinary differential equations
obtained by the finite element model has the following form

⎡
⎢
⎢
⎣

𝑚ኻ,ኻ … … 𝑚ኻ,ፍ
⋮ ⋱ … ⋮
⋮ … 𝑚ፍዅኻ,ፍዅኻ 𝑚ፍ,ፍዅኻ

𝑚ፍ,ኻ … 𝑚ፍዅኻ,ፍ 𝑚ፍ,ፍ

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⋮
⋮

�̈�(𝑡፧ዄኻ)
�̈�(𝑡፧ዄኻ)

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

𝑘ኻ,ኻ … … 𝑘ኻ,ፍ
⋮ ⋱ … ⋮
⋮ … 𝑘ፍዅኻ,ፍዅኻ 𝑘ፍ,ፍዅኻ
𝑘ፍ,ኻ … 𝑘ፍዅኻ,ፍ 𝑘ፍ,ፍ

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⋮
⋮

𝑤(𝑡፧ዄኻ)
𝜙(𝑡፧ዄኻ)

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

⋮
⋮

𝑉(𝑡፧ዄኻ)
𝑀(𝑡፧ዄኻ)

⎤
⎥
⎥
⎦
.

(5.54)
Substitution of the non-reflective boundary conditions of equation (5.52) into equation (5.54) and rear-
ranging terms yields

Mä+
⎡
⎢
⎢
⎣

𝑘ኻ,ኻ … … 𝑘ኻ,ፍ
⋮ ⋱ … ⋮
⋮ … (𝑘ፍዅኻ,ፍዅኻ − 𝐾𝐺ኻኻ) (𝑘ፍ,ፍዅኻ − 𝐾𝐺ኻኼ)
𝑘ፍ,ኻ … (𝑘ፍዅኻ,ፍ − 𝐾𝐺ኼኻ) (𝑘ፍ,ፍ − 𝐾𝐺ኼኼ)

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⋮
⋮

𝑤(𝑡፧ዄኻ)
𝜙(𝑡፧ዄኻ)

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

⋮
⋮

𝑉፡።፬(𝑡፧ዄኻ)
𝑀፡።፬(𝑡፧ዄኻ)

⎤
⎥
⎥
⎦
. (5.55)

This system can then be solved by making use of a quadrature by choice. At each time step the
nodal degrees of freedom can be determined. One then has to substitute the obtained values of the
degrees of freedom for the node at the non-reflective boundary into equation (5.52) which results in the
cross-sectional forces at the boundary. These cross-sectional forces are then used to determine the
history force vector for the next time step. The nodal degrees of freedom can then be determined for
the following step and the algorithm is repeated. This completes the derivation and application of the
non-reflective boundary conditions.

1See Appendix B for a full derivation.
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5.3. Time integration
After application of the finite element method and inclusion of the non-reflective boundary conditions
the system of ordinary differential equations that is left solve is

Mẅ+Kw = f. (5.56)

This system of ordinary differential equations will be solved by making use of a generalised Newmark-
beta scheme. In order to do so, one first increments the time in discrete time steps 𝑡፧ = 𝑛Δ𝑡. A discrete
system at 𝑡፧ዄኻ is then denoted by

Mẅ፧ዄኻ +Kw፧ዄኻ = f፧ዄኻ. (5.57)

The Newmark-beta algorithm defines w፧ዄኻ and ẇ፧ዄኻ as

w፧ዄኻ = w፧ + Δ𝑡ẇ፧ +
Δ𝑡ኼ
2 ((1 − 2𝛽)ẅ፧ + 2𝛽ẅ፧ዄኻ)

ẇ፧ዄኻ = ẇ፧ + Δ𝑡((1 − 𝛾)ẅ፧ + 𝛾ẅ፧ዄኻ)
. (5.58)

The Newmark-beta method is unconditionally stable for

1
2 ≤ 𝛾 ≤ 2𝛽. (5.59)

The initial conditions of the problem are given and are known as 𝑤(𝑥, 0) and Ꭷ፰
Ꭷ፭ |፭዆ኺ. These fields are

also discretized in order to obtain the vectors that represent these initial conditions wኺ and ẇኺ. The
initial acceleration vector is then determined from equation (5.56) and reads

ẅኺ =Mዅኻ (fኺ −Kwኺ) . (5.60)

All quantities at the initial time are now known. The algorithm can now be started in order to obtain
the quantities at future time steps. The Newmark expressions are therefore substituted in (5.57) which
results in

(M+ 𝛽Δ𝑡ኼK) ẅ፧ዄኻ = f፧ዄኻ −Kw̃፧ዄኻ. (5.61)

Note that the w̃፧ዄኻ is called a predictor. The two predictors in the Newmark-beta scheme have the
expressions

w̃፧ዄኻ = w፧ + Δ𝑡ẇ፧ +
Δ𝑡ኼ
2 (1 − 2𝛽)ẅ፧

̇w̃፧ዄኻ = ẇ፧ + Δ𝑡(1 − 𝛾)ẅ፧
. (5.62)

Equation (5.61) forms a system from which ẅ፧ዄኻ can be solved at any time step. This term can then
be used to correct the predictor in order to obtain the displacement and velocity vector at each time
step. The correctors are defined by the expressions

w፧ዄኻ = w̃፧ዄኻ + 𝛽Δ𝑡ኼ�w፧ዄኻ
ẇ፧ዄኻ = ̇w̃፧ዄኻ + 𝛾Δ𝑡ẅ፧ዄኻ

. (5.63)

The degree of freedom vector can be obtained at each time step by making use of this method. The
coefficients in the degree of freedom vector are each multiplied with their corresponding shape function
and summed to obtained the solution of the problem.





6
Results and discussion

6.1. Steady state behaviour
The steady state displacement field of both systems are presented for different load velocities. The first
step in order to do so is setting the value of 𝛾፬. This value is set to have a corresponding velocity 𝑣ኻ of
120 m/s which is a common value for the critical velocity in railway tracks. This velocity is the lowest
critical velocity of the inertia-included system. The critical velocity for the inertia-excluded system is
approximately 480 m/s. Note that this value and all other calculations in the chapter are based on the
parameters in Table 2.1. The velocities that are studied for both systems are chosen such that

Δ𝑣 = 𝑣።፧
𝑣፜፫

= 𝑣፞፱
𝑣ኻ
. (6.1)

The reader should notice that the load velocity for the inertia-included system 𝑣።፧ and the load velocity
for the inertia-excluded system 𝑣፞፱ are not equal. The ratios between these velocities and the critical
velocity of their respective system are however the same. This choice has been made to obtain just
means of comparison for the dynamical effects of the moving load. The results for different values of
Δ𝑣 are shown in Figure 6.1. The results show that the steady state displacement fields coincide very
much for different values of Δ𝑣. It can be noticed that the difference between the displacement fields
increases with increasing values of Δ𝑣. This difference however remains very small as can be observed
for the results.

45



46 6. Results and discussion

Figure 6.1: Steady state displacement fields at ፭ ዆ ኺ corresponding to increasing values of ጂ፯.

6.2. Transition radiation
The interest of this thesis lies in the effect of the addition of the inertia-beam on the transition radiation.
The spectral density of transition radiation energy 𝑄(፧) is therefore presented and integrated resulting
in the radiation energy 𝐸(፧)፫ . The properties of the rails, pads, sleepers and ballast can be tested ex-
tensively in fabrication before construction of the railway track. Their properties are therefore assumed
to be constant. The transition of properties in the model are thus only caused by an inhomogeneity in
the subgrade. A transition zone in the inertia-included model is therefore modeled by an abrupt jump
in the lower elastic layer, such that

𝑘(ኼ)፬ = 𝑛𝑘(ኻ)፬ . (6.2)
For the inertia-excludedmodel one should make sure that theWinkler foundation has the same stiffness
as the serial combination of the inertia-included system, such that

1
𝑘(ኼ)፰

= 1
𝑛𝑘(ኻ)፬

+ 1
𝑘፩
. (6.3)

All parameters in the system are set except for the load velocity and the ratio 𝑛 between the stiffness
of the lower elastic layer before and after the transition. Two different cases will therefore be studied:

• The first case with varying values of Δ𝑣 and a set 𝑛 = 2. The spectral densities of transition
radiation energy are shown in Figure 6.2 and the numerical values of the integrated radiation
energy in Table 6.1.

• The second case with a set value of Δ𝑣 = 0.5 and a varying 𝑛. The spectral densities of transition
radiation energy are shown in Figure 6.4 and the numerical values of the integrated radiation
energy in Table 6.2.
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Figure 6.2: Spectral densities of transition radiation energy for the first case.

Figure 6.3: Dispersion curves for both models.

It can be observed from Figure 6.3 that the spec-
tral densities of radiation energy obtain greater
values for increasing values of Δ𝑣. This means
that the transition radiation energy becomes
larger as the load velocity approaches the criti-
cal velocity of the respective model. It is further-
more noticed that the the frequencies at which the
spectral densities of transition radiation energy
becomes non zero are different for both models.
This can be explained from the fact that the fre-
quency intervals of wave propagation differ for
both models as has been explained in Chapter 3
and it can also be observed from the dispersion
curves shown in Figure 6.3. For increasing val-
ues of 𝑛 the spectral densities for the transition ra-
diation in the positive 𝑥-direction shift to the right
as can be observed from Figure 6.4. This can be
explained by the fact that the values of the cut off
frequency 𝜔(ኼ)ፄፗ and the lower bound of the first
frequency band 𝜔(ኻ)ፈፍኻ increase for an increasing
value of 𝑘፬.



48 6. Results and discussion

Figure 6.4: Spectral densities of transition radiation energy for the second case.

Δ𝑣 𝐸(ኻ)ፑ,፞፱ 𝐸(ኻ)ፑ,።፧ Δ𝐸(ኻ)ፑ 𝐸(ኼ)ፑ,፞፱ 𝐸(ኼ)ፑ,።፧ Δ𝐸(ኼ)ፑ 𝐸ፑ,፞፱ 𝐸ፑ,።፧ Δ𝐸ፑ
0.00 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −−
0.10 3.11 10ዅዀ 3.05 10ዅዀ 0.98 5.46 10ዅዂ 2.86 10ዅ዁ 5.24 3.17 10ዅዀ 3.34 10ዅዀ 1.06
0.20 8.11 10ዅኾ 7.96 10ዅኾ 0.98 1.74 10ዅ኿ 7.38 10ዅ኿ 4.25 8.29 10ዅኾ 8.70 10ዅኾ 1.05
0.30 2.14 10ዅኼ 2.11 10ዅኼ 0.98 5.68 10ዅኾ 2.06 10ዅኽ 3.62 2.20 10ዅኼ 2.31 10ዅኼ 1.05
0.40 2.22 10ዅኻ 2.30 10ዅኻ 1.03 7.51 10ዅኽ 1.63 10ዅኻ 21.7 2.30 10ዅኻ 3.93 10ዅኻ 1.71
0.50 1.39 10ኺ 1.38 10ኺ 0.99 6.28 10ዅኼ 7.55 10ኻ 12.0 1.45 10ኺ 2.13 10ኺ 1.47
0.60 6.40 10ኺ 6.32 10ኺ 0.99 4.16 10ዅኻ 3.67 10ኺ 8.83 6.82 10ኺ 9.99 10ኺ 1.46
0.70 2.51 10ኻ 2.46 10ኻ 0.98 2.54 10ኺ 1.47 10ኻ 5.78 2.76 10ኻ 3.93 10ኻ 1.42
0.80 9.68 10ኻ 9.54 10ኻ 0.99 1.71 10ኻ 1.55 10ኼ 9.06 1.14 10ኼ 2.50 10ኼ 2.20
0.90 4.99 10ኼ 4.96 10ኼ 0.99 1.82 10ኼ 2.53 10ኽ 13.9 6.81 10ኼ 3.02 10ኽ 4.44
1.00 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −−

Table 6.1: Numerical values of transition radiation energy ፄ(ᑟ)ᑉ for the first case. The superscript (፧) denotes which field is
observed, (ኻ) for the left field and (ኼ) for the right field. The superscript is emitted when the total transition radiation energy is

denoted. A subscript ፞፱ or ።፧ is used when referred to either the inertia-excluded or included system. Lastly, The ratio
between the transition radiation energy for the inertia-included and excluded model is denoted by ጂፄ(ᑟ)ᑉ .

𝑛 𝐸(ኻ)ፑ,፞፱ 𝐸(ኻ)ፑ,።፧ Δ𝐸(ኻ)ፑ 𝐸(ኼ)ፑ,፞፱ 𝐸(ኼ)ፑ,።፧ Δ𝐸(ኼ)ፑ 𝐸ፑ,፞፱ 𝐸ፑ,።፧ Δ𝐸ፑ
1.00 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −−
1.50 5.82 10ዅኻ 5.78 10ዅኻ 0.99 7.18 10ዅኼ 4.38 10ዅኻ 6.09 6.54 10ዅኻ 1.02 10ኺ 1.55
2.00 1.39 10ኺ 1.37 10ኺ 0.99 6.29 10ዅኼ 8.14 10ዅኻ 12.9 1.45 10ኺ 2.18 10ኺ 1.51
2.50 2.09 10ኺ 2.05 10ኺ 0.98 4.52 10ዅኼ 5.13 10ዅኻ 11.3 2.13 10ኺ 2.56 10ኺ 1.20
3.00 2.68 10ኺ 2.62 10ኺ 0.98 3.23 10ዅኼ 4.82 10ዅኻ 14.9 2.71 10ኺ 3.10 10ኺ 1.14

Table 6.2: Numerical values of transition radiation energy for the second case.
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It is observed from both Table 6.1 and Table 6.2 that the difference between the radiation energy for the
inertia-included and excludedmodel in the negative 𝑥-direction is very small. This results in a ratio Δ𝐸(ኻ)ፑ
that is very close to 1.0 for all cases. This is however not the case for the transition radiation energy in
the positive 𝑥-direction. As mentioned in the end of Chapter 5 there is an important difference between
the spectral densities for the inertia-excluded and included system which was the occurrence of the
peaks. These peaks occur due to the fact that there are always two intersection points between the
kinematic invariant and dispersion curves for the inertia-included system. This is because the lower
dispersion curve tends to a horizontal asymptote 𝜔 = 𝜔ፒፈ which in turn is a result of the absence of
any internal stiffness in the inertia beam. This means that wave propagation from the load occurs as
soon as the load velocity is non-zero which is an artifact of the model. These peaks are now removed
because they are physically irrelevant and the amount of transition energy without their contributions
is quantified. Figure 6.5 shows the way a peak is removed and Table 6.3 and 6.4 show the numerical
values of the transition radiation energy for the two cases based on the spectral densities with removed
peaks.

Figure 6.5: Removal of a peak in a spectral energy density function.

Δ𝑣 𝐸(ኻ)ፑ,፞፱ 𝐸(ኻ)ፑ,።፧ Δ𝐸(ኻ)ፑ 𝐸(ኼ)ፑ,፞፱ 𝐸(ኼ)ፑ,።፧ Δ𝐸(ኼ)ፑ 𝐸ፑ,፞፱ 𝐸ፑ,።፧ Δ𝐸ፑ
0.00 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −−
0.10 3.11 10ዅዀ 3.00 10ዅዀ 0.98 5.46 10ዅዂ 5.33 10ዅዂ 0.98 3.17 10ዅዀ 3.00 10ዅዀ 0.98
0.20 8.11 10ዅኾ 7.93 10ዅኾ 0.98 1.74 10ዅ኿ 1.69 10ዅ኿ 0.97 8.29 10ዅኾ 8.10 10ዅኾ 0.98
0.30 2.14 10ዅኼ 2.09 10ዅኼ 0.98 5.68 10ዅኾ 5.52 10ዅኾ 0.97 2.20 10ዅኼ 2.15 10ዅኼ 0.98
0.40 2.22 10ዅኻ 2.17 10ዅኻ 0.98 7.51 10ዅኽ 7.28 10ዅኽ 0.97 2.30 10ዅኻ 2.24 10ዅኻ 0.98
0.50 1.39 10ኺ 1.36 10ኺ 0.98 6.28 10ዅኼ 6.09 10ዅኼ 0.97 1.45 10ኺ 1.42 10ኺ 0.98
0.60 6.40 10ኺ 6.26 10ኺ 0.98 4.16 10ዅኻ 4.02 10ዅኻ 0.97 6.82 10ኺ 6.66 10ኺ 0.98
0.70 2.51 10ኻ 2.45 10ኻ 0.98 2.54 10ኺ 2.45 10ኺ 0.97 2.76 10ኻ 2.70 10ኻ 0.98
0.80 9.68 10ኻ 9.47 10ኻ 0.98 1.71 10ኻ 1.65 10ኻ 0.96 1.14 10ኼ 1.11 10ኼ 0.98
0.90 4.99 10ኼ 4.89 10ኼ 0.98 1.82 10ኼ 1.76 10ኼ 0.96 6.81 10ኼ 6.66 10ኼ 0.98
1.00 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −−

Table 6.3: Numerical values of transition radiation energy for the first case. The peaks have been removed from the spectral
energy density functions corresponding to the inertia-included system.

𝑛 𝐸(ኻ)ፑ,፞፱ 𝐸(ኻ)ፑ,።፧ Δ𝐸(ኻ)ፑ 𝐸(ኼ)ፑ,፞፱ 𝐸(ኼ)ፑ,።፧ Δ𝐸(ኼ)ፑ 𝐸ፑ,፞፱ 𝐸ፑ,።፧ Δ𝐸ፑ
1.00 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −− 0.00 10ኺ 0.00 10ኺ −−
1.50 5.82 10ዅኻ 5.71 10ዅኻ 0.98 7.18 10ዅኼ 6.96 10ዅኼ 0.97 6.54 10ዅኻ 6.41 10ዅኻ 0.98
2.00 1.39 10ኺ 1.36 10ኺ 0.98 6.29 10ዅኼ 6.08 10ዅኼ 0.97 1.45 10ኺ 1.42 10ኺ 0.98
2.50 2.09 10ኺ 2.03 10ኺ 0.97 4.52 10ዅኼ 4.39 10ዅኼ 0.97 2.13 10ኺ 2.07 10ኺ 0.97
3.00 2.68 10ኺ 2.58 10ኺ 0.96 3.23 10ዅኼ 3.26 10ዅኼ 1.01 2.71 10ኺ 2.62 10ኺ 0.96

Table 6.4: Numerical values of transition radiation energy for the second case. The peaks have been removed from the
spectral energy density functions corresponding to the inertia-included system.
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It is observed from Table 6.3 and Table 6.4 that removal of the peaks leads to the situation in which
the ratios Δ𝐸(ኻ)ፑ , Δ𝐸(ኼ)ፑ and Δ𝐸ፑ are approximately 0.98. This means that both models lead to similar
amounts of total transition radiation energy after removal of the peaks. This result is very interesting
when one keeps in mind that the spectral density functions are not similar as can be seen from the
previous figures. It can furthermore be observed from Table 6.3 that the transition radiation energy
increases for increasing values of Δ𝑣 as has been mentioned before. Moreover, it can be observed
that the transition radiation energy in negative 𝑥-direction keeps increasing for increasing values of 𝑛.
This follows physical expectations because when the elastic layer in right field would be rigid there
would be no possibility for displacements in the right field and thus also no energy propagation. All
transition radiation energy is then transmitted in the left field. In line with this it would thus be expected
that the transition radiation in the negative 𝑥-direction increases with increasing value of 𝑛 which is
confirmed. Lastly, it can be observed from Table 6.4 that the transition radiation energy in the positive
𝑥−direction starts of from zero for 𝑛 = 1, increases and keeps decreasing afterwards. This means
that there is a certain value of 𝑛 for which the transition radiation energy in the positive 𝑥-direction is
maximum. This can also be explained physically because there is no transition radiation energy when
there is no transition in the stiffness parameters and the transition radiation energy tends to zero when
the right elastic foundation becomes rigid as has also been sated above. Furthermore the amount of
energy is always positive which means that there should be a maximum value of transition radiation
energy in the positive 𝑥-direction for increasing values of 𝑛.

6.3. Transient behaviour
The transient behaviour will be visualized to analyse the differences in transition radiation processes
between the two models in the time domain. One should recall that the load velocities in the two models
are different. It is therefore chosen to plot the displacement fields for different values of the location of
the load 𝑥ፅ. The numerical models defined in Chapter 6 are therefore used. The value of 𝑛 equals 2
and the value of Δ𝑣 = 0.5. The results are shown in Figure 6.6.
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Figure 6.6: The transient behaviour of a transition zone for both models.

The total solution for both models consists of a set of an eigenfield and a free field for the semi-infinite
system to the left of the transition point and a set of an eigenfield and a free field for the semi-infinite
system to the right of the transition point. The eigenfield for the inertia-excluded model consist of only
evanescent waves. The eigenfield for the the inertia-included model consists of four evanescent waves
and two propagating waves which occur as ripples to the left of the moving loads as has been stated
in Subsection 3.2.1. These ripples however happen to be relatively so small in the studied case that
one can hardly make a distinction between the eigenfield of the inertia-excluded and included system.
This has been observed in the first section of this chapter. This means that for both the eigenfields
one can observe a significant displacement at the vicinity of the load which rapidly tends to zero as
the spatial distance from the load increases. The waves that are observed when the load passes
the transition point in Figure 6.6 are thus caused by the free field. The transient behaviour of both
models coincide very well which means that the free fields of both models are also very similar. This
is an interesting result because the Fourier transformed free fields are different as has been show in
Chapter 4. This means that despite the Fourier transformed free fields are different they are still such
that their representations in the time domain are very similar, which is worth noting.





7
Conclusion

This thesis has focused on the influence of including the inertia of the supporting structure that is acti-
vated by the moving load. This has been included by adding a secondary beam with no bending stiff-
ness, the inertia beam. This inertia-included model has in turn been compared to the inertia-excluded
model throughout the chapters of this thesis. The inertia-excluded model represented the well known
system which exists of an infinitely long Winkler supported Euler-Bernoulli beam. This model is known
to have an important constraint which is its inability to result in a critical velocity that makes sense for
railway-tracks. The obtained critical velocity by such a model is in general far larger than the measured
velocity of Rayleigh waves.

This problem raised the question whether it was possible to lower the critical velocity by the addi-
tion of the inertia beam. The influence of the addition of the inertia beam on the critical velocity has
been studied extensively in Chapter 3. It has been shown that two types of system behaviour can be
observed. The first type in which three critical velocities can be distinguished and the second type in
which there is only one critical velocity. It has been shown that it can be determined which one of the
two types of system behaviour occur by checking whether the density of the inertia beam is smaller or
larger then 𝛾፬፦።፧. It turned out that the first of the three critical velocities in the first type of system be-
haviour is always smaller than the default critical velocity obtained by calculation based on the Winkler
supported Euler-Bernoulli beam. Application of this insight obtained by this study led to the reduction
of a critical velocity from 480 to 120 m/s, answering the first research question.

The problem of the critical velocity has been tackled but as stated in the introduction this leads to
new questions. This is because it was expected that modification of the system would not only lead to
a difference in the obtained critical velocity but also to changes in other output such as the steady state
behaviour, emitted transition radiation energy and the transient behaviour at a transition zone.

For the inertia-excluded model a strict difference between sub- and super-critical steady state be-
haviour can bemade. For that model the sub-critical steady state behaviour consists of only evanescent
waves and the super-critical steady state behaviour of only propagating waves. Such a strict difference
in definition could not be made for the inertia-included model because there are always at least two
waves propagating for all possible velocities. This is due to the absence of any internal stiffness for the
inertia beam. It was thus chosen to define the sub-critical steady state behaviour as the situation for
which only two of the six waves propagate and the super-critical behaviour as the situation for which
all six waves propagate. This has as a result that additional ripples to the left of the load are present
for the eigenfield (sub-critical steady state displacement field). The eigenfields for both models have
been plotted for different velocities and compared with each other. In order to make a comparison the
velocities for both systems have been chosen such that ratios Δ𝑣 between their own respective critical
velocity were equal. From the results it could be observed that the steady state displacement fields
for both models were almost identical, answering the second research question. This suggests that
the relative velocity is of main importance when one aims to model a railway track by a Winkler sup-
ported Euler-Bernoulli beam and not the absolute value. This may render the investigations of those
researchers that overestimate the critical velocity of the track and then use a realistic absolute value of
the load velocity questionable.
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Spectral energy densities for the transition radiation energy have been determined. Integration of
these densities leads to the emitted transition radiation energy. The main differences between the
density functions for both models will be restated briefly. The spectral density for the inertia-excluded
model is non-zero for frequencies higher than the cut off frequency. The spectral density for the inertia-
includedmodel however is non-zero for two frequency intervals. The cut off frequency is also larger than
the lower bound of the first frequency interval of wave propagation for the inertia-included system. All
of this can be explained by comparison of the dispersion curves for both systems. Another important
difference is the occurrence of peaks in the density functions for the inertia-included model. These
peaks occur due to the fact that there are always two waves present in the inertia-included system.
This is mentioned before and can also be explained by the dispersion curves in combination with the
kinematic invariant. With regards to the emitted transition radiation, it has been shown that there are
quite remarkable differences between both models for the transition radiation energy in positive 𝑥-
direction. However, removal of the peaks leads to almost equivalent results for both directions for both
models, answering the third research question.

A numerical model has been formulated in which the finite element method has been applied for the
spatial discretization and the Newmark-beta method for the time discretization. This model can take
care of non-constant system properties and general loads. Non-reflecctive boundary conditions have
also been implemented in the model. This model has been used to obtain the transient behaviour of a
uniformly moving load of constant magnitude passing by an abrupt transition in the stiffness properties
for both models. The results have been shown and also this transient behaviour showed great similarity
for both systems, answering the last research question.

In this thesis much attention has been paid to the physical meaning and interpretation of the results
obtained from the introduced model. The differences between this model and the ordinary Winkler
supported Euler-Bernoulli beam have been addressed. Also a numerical model has been formulated
which can be used for those who wish to investigate other load cases or other non-constant system
properties. This model can be extended further by future researchers with extensions such as the
inclusion of non-linear behaviour, more complex vehicle models and many more. An interesting study
that could be done next is to modify the stiffness of the pads at the transition zone in order to decrease
the amount of transition radiation. This is the study that should performed next from the authors point
of view.



A
The dispersion equation for the inertia included system is denoted by

(𝑘ኾ − 4𝛾ኼ፛𝜔ኼ + 4𝛽ኾ፩ ) (−4𝛾ኼ፬ 𝜔ኼ + (4𝛽ኾ፩ + 4𝛽ኾ፬ )) − (4𝛽ኾ፩ )
ኼ = 0. (A.1)

The lower bound frequencies of the frequency bands of wave propagation are those frequencies of
which their corresponding wave-number equal zero. To find this frequencies one has to solve

(4𝛾ኼ፛𝜔ኼ − 4𝛽ኾ፩ ) (−4𝛾ኼ፬ 𝜔ኼ + (4𝛽ኾ፩ + 4𝛽ኾ፬ )) + (4𝛽ኾ፩ )
ኼ = 0. (A.2)

Rewriting this expression yields

− (4𝛾ኼ፛ )(4𝛾ኼ፬ )𝜔ኾ + ((4𝛽ኾ፩ )(4𝛾ኼ፛ + 4𝛾ኼ፬ ) + (4𝛽ኾ፬ )(4𝛾ኼ፛ ))𝜔ኼ − (4𝛽ኾ፩ )(4𝛽ኾ፬ ) = 0. (A.3)

Make the substitution 𝜔 = 𝑥ኼ in order to obtain the quadratic equation

− (4𝛾ኼ፛ )(4𝛾ኼ፬ )𝑥ኼ + ((4𝛽ኾ፩ )(4𝛾ኼ፛ + 4𝛾ኼ፬ ) + (4𝛽ኾ፬ )(4𝛾ኼ፛ )) 𝑥 − (4𝛽ኾ፩ )(4𝛽ኾ፬ ) = 0, (A.4)

in short notation
𝑎𝑥ኼ + 𝑏𝑥 + 𝑐 = 0, (A.5)

which in turn has the following solutions

𝑥ኻ,ኼ =
−𝑏 ± √𝐷
2𝑎 . (A.6)

The discriminant is now elaborated in order to study the roots:

𝐷 = ((4𝛽ኾ፛ )(4𝛾ኼ፛ + 4𝛾ኼ፬ ) + (4𝛽ኾ፬ )(4𝛾ኼ፛ ))
ኼ − 4(4𝛾ኼ፛ )(4𝛾ኼ፬ )(4𝛽ኾ፩ )(4𝛽ኾ፬ )

= (4𝛽ኾ፛ )ኼ(4𝛾ኼ፛ + 4𝛾ኼ፬ )ኼ + (4𝛽ኾ፬ )ኼ(4𝛾ኼ፛ )ኼ + 2(4𝛾ኼ፛ )(4𝛾ኼ፛ + 4𝛾ኼ፬ )(4𝛽ኾ፩ )(4𝛽ኾ፬ )
− 4(4𝛾ኼ፛ )(4𝛾ኼ፬ )(4𝛽ኾ፩ )(4𝛽ኾ፬ )
= (4𝛽ኾ፩ )ኼ(4𝛾ኼ፛ + 4𝛾ኼ፬ )ኼ + (4𝛽ኾ፬ )ኼ(4𝛾ኼ፛ )ኼ − 2(4𝛾ኼ፛ )(4𝛾ኼ፬ )(4𝛽ኾ፩ )(4𝛽ኾ፬ )
+ 2(4𝛾ኼ፛ )ኼ(4𝛽ኾ፩ )(4𝛽ኾ፬ )
= (4𝛽ኾ፩ )ኼ((4𝛾ኼ፛ )ኼ + 2(4𝛾ኼ፛ )(4𝛾ኼ፬ ) + (4𝛾ኼ፬ )ኼ) + (4𝛽ኾ፬ )ኼ(4𝛾ኼ፛ )ኼ
− 2(4𝛾ኼ፛ )(4𝛾ኼ፬ )(4𝛽ኾ፩ )(4𝛽ኾ፬ ) + 2(4𝛾ኼ፛ )ኼ(4𝛽ኾ፩ )(4𝛽ኾ፬ )
= (4𝛽ኾ፩ )ኼ(4𝛾ኼ፛ )ኼ − 2(4𝛾ኼ፛ )(4𝛾ኼ፬ )(4𝛽ኾ፩ )(4𝛽ኾ፬ ) + (4𝛽ኾ፬ )ኼ(4𝛾ኼ፛ )ኼ
(4𝛽ኾ፩ )ኼ(2(4𝛾ኼ፛ )(4𝛾ኼ፬ ) + (4𝛾ኼ፬ )ኼ) + 2(4𝛾ኼ፛ )ኼ(4𝛽ኾ፩ )(4𝛽ኾ፬ )
= ((4𝛽ኾ፛ )(4𝛾ኼ፛ ) − (4𝛽ኾ፬ )(4𝛾ኼ፛ ))ኼ + (4𝛽ኾ፩ )ኼ(2(4𝛾ኼ፛ )(4𝛾ኼ፬ ) + (4𝛾ኼ፬ )ኼ) + 2(4𝛾ኼ፛ )ኼ(4𝛽ኾ፩ )(4𝛽ኾ፬ ) > 0

(A.7)
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The previous result can be used to conclude properties of the roots 𝑥ኻ,ኼ. From the definition of the
discriminant it thus follows that

𝐷 = 𝑏ኼ − 4𝑎𝑐 > 0. (A.8)

And it is also known that 4𝑎𝑐 > 0. Using these two results it can be conclude that

0 < 𝐷 < 𝑏ኼ

0 < √𝐷 < 𝑏
(A.9)

At last one can use the fact that 𝑎 < 0 and equation (A.6) to make the conclusion that

𝑥ኻ,ኼ > 0 and 𝑥ኻ < 𝑥ኼ. (A.10)

Another interesting frequency is that frequency for which the dispersion equation does not hold such
that

𝜔ኼፈፍ =
4𝛽ኾ፩
4𝛾ኼ፬

+ 4𝛽
ኾ
፬

4𝛾ኼ፬
= 𝜔ኼፈፍኻ + 𝜔ኼፈፍኼ. (A.11)

Recall that the cut off frequency for the inertia-excluded system is denoted by

𝜔ኼፄፗ =
4𝛽ኾ፰
4𝛾ኼ፛

. (A.12)

We we are interested in whether𝜔ኼፈፍ is between 𝑥ኻ and 𝑥ኼ or not. In order to do that we start by rewriting
the expressions for 𝑥ኻ,ኼ, such that

𝑥ኻ,ኼ =
−𝑏 ± √𝑏ኼ − 4𝑎𝑐

2𝑎

= (−𝑏2𝑎 ) ±
√(−𝑏2𝑎 )

ኼ
− 𝑐
2𝑎 .

(A.13)

We now study this first term in the expression such that

(−𝑏2𝑎 ) =
(4𝛽ኾ፩ )(4𝛾ኼ፛ + 4𝛾ኼ፬ ) + (4𝛽ኾ፬ )(4𝛾ኼ፛ )

2(4𝛾ኼ፛ )(4𝛾ኼ፬ )

=
(4𝛾ኼ፛ )(4𝛽ኾ፩ + 4𝛽ኾ፬ ) + (4𝛾ኼ፬ )(4𝛽ኾ፩ )

2(4𝛾ኼ፛ )(4𝛾ኼ፬ )

= 1
2
4𝛽ኾ፩ + 4𝛽ኾ፬
4𝛾ኼ፬

+ 12
4𝛽ኾ፩
4𝛾ኼ፛

= 1
2𝜔

ኼ
ፈፍ +

1
2𝜔

ኼ
ፁፏ

. (A.14)

The other term beneath the squared root is defined as

𝑐
2𝑎 =

1
2
4𝛽ኾ፩
4𝛾ኼ፛

4𝛽ኾ፬
4𝛾ኼ፬

= 1
2𝜔

ኼ
ፄፏ (𝜔ኼፈፍ − 𝜔ኼፈፍኻ)

. (A.15)
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Using these expressions we can rewrite the expression for 𝑥ኻ,ኼ into

𝑥ኻ,ኼ =
1
2𝜔

ኼ
ፈፍ +

1
2𝜔

ኼ
ፄፏ ±√(

1
2𝜔

ኼ
ፈፍ +

1
2𝜔

ኼ
ፄፏ)

ኼ
− 12𝜔

ኼ
ፄፏ (𝜔ኼፈፍ − 𝜔ኼፈፍኻ). (A.16)

In order to find the location of 𝜔ኼፈፍ with respect to 𝑥ኻ and 𝑥ኼ we first assume that 𝜔ኼፈፍ ≥ 𝑥ኼ and see
whether this is correct:

1
2𝜔

ኼ
ፈፍ +

1
2𝜔

ኼ
ፄፏ+√(

1
2𝜔

ኼ
ፈፍ +

1
2𝜔

ኼ
ፄፏ)

ኼ
− 12𝜔

ኼ
ፄፏ (𝜔ኼፈፍ − 𝜔ኼፈፍኻ) ≤ 𝜔ኼፈፍ

√(12𝜔
ኼ
ፈፍ +

1
2𝜔

ኼ
ፄፏ)

ኼ
− 12𝜔

ኼ
ፄፏ (𝜔ኼፈፍ − 𝜔ኼፈፍኻ) ≤ (

1
2𝜔

ኼ
ፈፍ −

1
2𝜔

ኼ
ፄፏ)

. (A.17)

We have already proven that the left hand side is positive which means that the inequality can only
hold when the right hand side is at least positive (𝜔ፈፍ > 𝜔ፄፁ). Proceeding with this assumption one
can elaborate the inequality yielding

(12𝜔
ኼ
ፈፍ +

1
2𝜔

ኼ
ፄፏ)

ኼ
− (12𝜔

ኼ
ፈፍ −

1
2𝜔

ኼ
ፄፏ)

ኼ
≤ 1
2𝜔

ኼ
ፄፏ (𝜔ኼፈፍ − 𝜔ኼፈፍኻ)

𝜔ኼፈፍ𝜔ኼፄፏ <
1
2𝜔

ኼ
ፄፏ (𝜔ኼፈፍ − 𝜔ኼፈፍኻ)

𝜔ኼፈፍ ≤
1
2 (𝜔

ኼ
ፈፍ − 𝜔ኼፈፍኻ)

(A.18)

This inequality is obviously incorrect, which means that the assumption that 𝜔ኼፈፍ ≥ 𝑥ኼ was incorrect
and that 𝜔ኼፈፍ < 𝑥ኼ. We have thus now found an upper boundary for 𝜔ኼፈፍ. In order to obtain a lower
boundary we now assume that 𝜔ኼፈፍ ≤ 𝑥ኻ and see whether this assumption is correct:

1
2𝜔

ኼ
ፈፍ +

1
2𝜔

ኼ
ፄፏ−√(

1
2𝜔

ኼ
ፈፍ +

1
2𝜔

ኼ
ፄፏ)

ኼ
− 12𝜔

ኼ
ፄፏ (𝜔ኼፈፍ − 𝜔ኼፈፍኻ) ≥ 𝜔ኼፈፍ

−√(12𝜔
ኼ
ፈፍ +

1
2𝜔

ኼ
ፄፏ)

ኼ
− 12𝜔

ኼ
ፄፏ (𝜔ኼፈፍ − 𝜔ኼፈፍኻ) ≥ (

1
2𝜔

ኼ
ፈፍ −

1
2𝜔

ኼ
ፄፏ)

. (A.19)

We have already proven that the left hand side is negative which means that the inequality can only
hold when the right hand side is at least negative (𝜔ፈፍ < 𝜔ፄፁ). Proceeding with this assumption one
can elaborate the inequality yielding

(12𝜔
ኼ
ፈፍ +

1
2𝜔

ኼ
ፄፏ)

ኼ
− (12𝜔

ኼ
ፈፍ −

1
2𝜔

ኼ
ፄፏ)

ኼ
≤ 1
2𝜔

ኼ
ፄፏ (𝜔ኼፈፍ − 𝜔ኼፈፍኻ)

𝜔ኼፈፍ𝜔ኼፄፏ <
1
2𝜔

ኼ
ፄፏ (𝜔ኼፈፍ − 𝜔ኼፈፍኻ)

𝜔ኼፈፍ ≤
1
2 (𝜔

ኼ
ፈፍ − 𝜔ኼፈፍኻ)

(A.20)

This inequality is the same as previously found and thus incorrect, which means that the assumption
that 𝜔ኼፈፍ ≤ 𝑥ኻ was incorrect and that 𝜔ኼፈፍ > 𝑥ኻ. We have thus now found an lower boundary for 𝜔ኼፈፍ,
which results in the wanted boundaries for 𝜔ኼፈፍ, such that

𝑥ኻ < 𝜔ኼፈፍ < 𝑥ኼ. (A.21)





B
The choice has been made to approximate the integrals in equation (5.50) at a certain time step 𝑡፧ዄኻ
by

፭ᑟᎼᎳ

∫
ኺ
𝑐።፣(𝑡፧ዄኻ − 𝜏)𝑓(𝜏)𝑑𝜏 ≈

፧ዄኻ

∑
፦዆ኻ

[𝑓(𝑡፦) + 𝑓(𝑡፦ዅኻ)2 ]
፭ᑞ

∫
፭ᑞᎽᎳ

𝑐።፣(𝑡፧ዄኻ − 𝜏)𝑑𝜏. (B.1)

It can be shown that the following holds

፭ᑞ

∫
፭ᑞᎽᎳ

𝑐።፣(𝑡፧ዄኻ − 𝜏)𝑑𝜏 =
፭ᑟᎽ(ᑞᎽᎴ)

∫
ኺ

𝑐።፣(𝑡፧ዅ(፦ዅኼ) − 𝜏)𝑑𝜏 −
፭ᑟᎽ(ᑞᎽᎳ)

∫
ኺ

𝑐።፣(𝑡፧ዅ(፦ዅኻ) − 𝜏)𝑑𝜏. (B.2)

New functions 𝐺።፣(𝑡) are now defined as

𝐺።፣(𝑡) =
፭

∫
ኺ
𝑐።፣(𝑡 − 𝜏)𝑑𝜏 =

፭

∫
ኺ
𝑐።፣(𝑡 − 𝜏)𝐻(𝜏)𝑑𝜏 (B.3)

Note that 𝐺።፣(𝑡) is the response of the 𝑖፭፡ degree of freedom due to the 𝑗፭፡ cross-sectional force that
behaves as a unit time step function. The functions can thus be interpreted as some kind of Green’s
functions. In order to denote the coming results in compact forms a new notation is introduced, namely

𝐺።፣(𝑡ፚ; 𝑡፛) = 𝐺።፣(𝑡ፚ) − 𝐺።፣(𝑡፛). (B.4)

The previous steps make it possible to rewrite equation (B.1) into the form
፭ᑟᎼᎳ

∫
ኺ
𝑐።፣(𝑡፧ዄኻ − 𝜏)𝑓(𝜏)𝑑𝜏 ≈

1
2𝐺።፣(𝑡፧ዄኻ; 𝑡፧)𝑓(𝑡ኺ) +

፧

∑
፦዆ኻ

1
2𝐺።፣(𝑡፧ዅ(፦ዅኼ); 𝑡፧ዅ፦)𝑓(𝑡፦) +

1
2𝐺።፣(𝑡ኻ; 𝑡ኺ)𝑓(𝑡፧ዄኻ).

(B.5)
Application of this equation makes it possible to approximate equation (5.50) at a discrete time step
𝑡፧ዄኻ by

[𝑤(𝑡፧ዄኻ)𝜙(𝑡፧ዄኻ)] =
1
2 [
𝐺ኻኻ(𝑡፧ዄኻ; 𝑡፧) 𝐺ኻኼ(𝑡፧ዄኻ; 𝑡፧)
𝐺ኼኻ(𝑡፧ዄኻ; 𝑡፧) 𝐺ኼኼ(𝑡፧ዄኻ; 𝑡፧)] [

𝑉(𝑡ኺ)
𝑀(𝑡ኺ)] +

፧

∑
፦዆ኻ

1
2 [
𝐺ኻኻ(𝑡፧ዅ(፦ዅኼ); 𝑡፧ዅ፦) 𝐺ኻኼ(𝑡፧ዅ(፦ዅኼ); 𝑡፧ዅ፦)
𝐺ኼኻ(𝑡፧ዅ(፦ዅኼ); 𝑡፧ዅ፦) 𝐺ኼኼ(𝑡፧ዅ(፦ዅኼ); 𝑡፧ዅ፦)] [

𝑉(𝑡፦)
𝑀(𝑡፦)]

+12 [
𝐺ኻኻ(𝑡ኻ; 𝑡ኺ) 𝐺ኻኼ(𝑡ኻ; 𝑡ኺ)
𝐺ኼኻ(𝑡ኻ; 𝑡ኺ) 𝐺ኼኼ(𝑡ኻ; 𝑡ኺ)] [

𝑉(𝑡፧ዄኻ)
𝑀(𝑡፧ዄኻ)] ,

(B.6)

or in a more short form

[𝑤(𝑡፧ዄኻ)𝜙(𝑡፧ዄኻ)] = [
𝑤፡።፬(𝑡፧ዄኻ)
𝜙፡።፬(𝑡፧ዄኻ)] + [GK] [

𝑉(𝑡፧ዄኻ)
𝑀(𝑡፧ዄኻ)] . (B.7)
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The last step to fully define all terms is to determine the functions 𝐺።፣(𝑡). By application of the complex
inversion formula, a table of Laplace transformations of one choice like that in the book of Schiff [23]
and equation (B.3) one can obtain

𝐺።፣(𝑡) = lim፲→ጼ(
1
2𝜋𝑖

᎟ዄ፲።

∫
᎟ዅ፲።

�̂�።፣
𝑠 𝑒

፭፬𝑑𝑠) . (B.8)

This integral has is computed by a quadrature. In order to do so the integrand is first split into two
functions. One function of which the integrals can be computed analytically and the other function
vanishes for large value of 𝑦 such that it is justified to truncate the integral to finite boundaries 𝜎 ± �̄�.
The steps are

𝐺።፣(𝑡) = lim፲→ጼ(
1
2𝜋𝑖

᎟ዄ፲።

∫
᎟ዅ፲።

Δ�̂�።፣
𝑠 𝑒፭፬𝑑𝑠) + lim

፲→ጼ
( 1
2𝜋𝑖

᎟ዄ፲።

∫
᎟ዅ፲።

�̂�ፚ፩፩,።፣
𝑠 𝑒፭፬𝑑𝑠)

𝐺።፣(𝑡) ≈
1
2𝜋𝑖

᎟ዄ፲̄።

∫
᎟ዅ፲̄።

Δ�̂�።፣
𝑠 𝑒፭፬𝑑𝑠 + lim

፲→ጼ
( 1
2𝜋𝑖

᎟ዄ፲።

∫
᎟ዅ፲።

�̂�ፚ፩፩,።፣
𝑠 𝑒፭፬𝑑𝑠)

𝐺።፣(𝑡) ≈ Δ𝐺።፣(𝑡) + 𝐺ፚ፩፩,።፣(𝑡)

. (B.9)

For the terms �̂�ፚ፩፩,።፣ it is chosen to approximate 𝜆(𝑠) by

𝜆ፚ፩፩(𝑠) = 𝑒
Ꮅ
Ꮆ᎝።√2𝛾፛𝑠, (B.10)

which approximates the behaviour of the original 𝜆(𝑠) for large values of |𝑦| well. The accompanied
approximated flexibility matrix is

�̂�ፚ፩፩ = −
1
𝐸𝐼 [

ኻ
ኼ

ኻ
᎐ᑓ√᎐ᑓ

ኻ
፬√፬

ኻ
ኼ᎐ᑓ፬ኻ

ኼ᎐ᑓ፬
ኻ

√᎐ᑓ፬
] . (B.11)

The indices can be substituted in equation (B.9) and their corresponding integrals can be computed
analytically, resulting in

[𝐺ኻኻ(𝑡) 𝐺ኻኼ(𝑡)
𝐺ኼኻ(𝑡) 𝐺ኼኼ(𝑡)] = [

Δ𝐺ኻኻ(𝑡) Δ𝐺ኻኼ(𝑡)
Δ𝐺ኼኻ(𝑡) Δ𝐺ኼኼ(𝑡)] −

1
𝐸𝐼 [

ኼ
ኽ

ኻ
᎐ᑓ√᎐ᑓ

𝑡√ ፭
᎝

ኻ
ኼ
ኻ
᎐ᑓ
𝑡

ኻ
ኼ
ኻ
᎐ᑓ
𝑡 2 ኻ

√᎐ᑓ
√ ፭
᎝ .
] (B.12)

The functions Δ𝐺።፣(𝑡) are approximated by applying a quadrature of choice to their respective integrals
denoted in equation (B.9). At last the definition of the terms Δ�̂�።፣ are provided which are

Δ�̂�።፣ = �̂�።፣ − �̂�ፚ፩፩,።፣ . (B.13)
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