
Teaching Assistant
Management Platform
Final Report
M. van Deursen
G.J. Habben Jansen
R. Keulemans
M. Pigmans

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy

Teaching Assistant
Management Platform

Final Report

by

M. van Deursen
G.J. Habben Jansen

R. Keulemans
M. Pigmans

in partial fulfillment of the requirements for the degree of

Bachelor of Science
in Computer Science

at the Delft University of Technology,

Project duration: April 23, 2018 – July 2, 2018
Client: MSc. Stefan Hugtenburg Education Innovation Projects
Coach: Dr. Xavier Devroey Software Engineering Research Group
Bachelor Project Coordinators: Ir. Otto Visser Distributed Systems Group

Dr. Huijuan Wang Multimedia Computing Group

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

For our Bachelor End Project, we chose to create the Teaching Assistant Management (TAM) platform
with a clear reason: we wanted to build a platform that is put into production and actually going to be
used. Instead of ’hobbying’ on a project for 10 weeks after which it is probably forgotten, we wanted
to build a maintainable and extendable product that would stay useful for years. Considering what
has happened over the past 10 weeks, we can say that we achieved our desire of putting our code
into production. The first version of our platform was already deployed at the end of week 4. We are
happy to see that TAM has already been used by over a hundred students to indicate the courses they
want to assist as well as their availability for first two quarters of the coming year. We think that our
platform is going to streamline the process of appointing TAs and improve quality of life for students
and staff alike.

We found a great deal of joy in the process of developing TAM. Special thanks go to Stefan Hugten-
burg, our client. His positive attitude helped to make the project enjoyable.

Special thanks also goes to Xavier Devroey, our coach. By providing useful feedback on both the
project and our interaction with the client, he helped us to deliver a great product.

While there are still a lot of extensions possible, we are satisfied with the result we achieved and
delivered.

During the project, multiple people supported our development process, and we would like to thank
them. We are grateful to Dr. M.M. de Weerdt of the Algorithmics Group for his input on the design of
the scheduling algorithm. Gratitude also goes to Dr. A. Katsifodimos of the Web Information Systems
group for evaluating our initial database schema. With a special mention to BSc. Gijs Weterings and
BSc. Tim Speelman, two students who provided us with useful insights for the development of our
system.

M. van Deursen
G.J. Habben Jansen

R. Keulemans
M. Pigmans

Delft, June 2018

i

Summary

The majority of the courses in the Computer Science Bachelor at the Delft University of Technology use
so called lab sessions to provide an opportunity for students to ask questions about course material
and get feedback on their assignment. In order to optimally support the students, teaching assistants,
or TAs, are appointed to assist the lecturer during the lab sessions. With the number of students in the
Bachelor quickly growing, the process of manually recruiting students to become a TA and assigning
the TAs to lab sessions is becoming infeasible.

This project aims to ease the process of gathering and scheduling TAs. In order to achieve this
goal, the Teaching Assistant Management platform, or TAM, has been developed. All parties involved in
the process of appointing TAs can use TAM to provide their input. Lecturers can register their courses
on TAM, students are able to indicate their interest to help with different courses and representatives
from Education and Student Affairs can validate the application of the interested students. Using this
input, TAM is able to automatically create a schedule by assigning TAs to lab sessions.

To provide an algorithm for the automatic generation of schedules, a model based on the minimum-
cost max flow problem is created. Due to complications with the implementation of the minimum-cost
max flow model, the schedule generation is handled by a linear solver: Gurobi. By modeling the con-
strains for a schedule to be considered valid, Gurobi is used to process the input of the users into an
optimized schedule.

TAM consists of three components: a MySQL database, a backend written using Spring, contain-
ing the business logic and the implementation of the scheduler, and a frontend website created with
Vue to provide an interface to the users. The frontend and the backend are connected using a REST API.

A unique aspect of the project is the live deployment of TAM. At the end of the fourth week, the first
version was deployed, allowing interested students to submit their course preferences. Subsequent
features have been deployed iteratively.

During the development, muliple problems have been encountered. The team underestimated
the time required to learn the new technologies, as well as the time needed to maintain a system in
production. Furthermore, configuring Single Sign-On required more time than expected.

ii

Contents

List of Figures vi

1 Introduction 1

2 Research 2
2.1 Problem Definition . 2
2.2 Problem Analysis . 2
2.3 Solution . 3
2.4 Requirements . 4

2.4.1 Functional Requirements . 4
2.4.2 Schedule Generation. 5
2.4.3 Non-Functional Requirements . 5

2.5 Scheduling Algorithm . 6
2.5.1 Matching. 6
2.5.2 Max Flow. 7
2.5.3 Minimum-cost Max Flow . 7
2.5.4 Implementation . 9
2.5.5 Linear Solver . 9

3 Design 10
3.1 Database. 10

3.1.1 Database System . 10
3.1.2 Database Design . 11

3.2 Backend . 13
3.2.1 Language . 13
3.2.2 Framework . 13
3.2.3 Conclusion . 13

3.3 Frontend . 14
3.3.1 Language . 14
3.3.2 Framework . 14
3.3.3 API Specification . 14

3.4 Stack Overview . 15
3.5 Development Tooling. 15

4 Process 17
4.1 Internal Organization . 17

4.1.1 Scrum Framework . 17
4.1.2 Issue Tracking . 17
4.1.3 Team Member Roles . 18

4.2 Communication. 18
4.2.1 Team . 18
4.2.2 Client . 20
4.2.3 Coach. 20

4.3 Set up . 20
4.4 Feature Development . 21
4.5 Deployment . 23

iii

Contents iv

5 Final Product 24
5.1 Functionality Overview . 24
5.2 Backend . 24

5.2.1 Structure . 26
5.2.2 API Specification . 27
5.2.3 Testing . 28
5.2.4 Documentation . 29

5.3 Frontend . 29
5.3.1 Structure . 29
5.3.2 Testing . 30
5.3.3 Documentation . 31

5.4 Database. 31
5.4.1 Additions. 31
5.4.2 Structural Changes . 33

5.5 Scheduler . 33
5.5.1 Modelling . 33
5.5.2 Translation to Gurobi . 34
5.5.3 Integration in System . 34

5.6 SIG Feedback . 35
5.6.1 Initial Feedback. 35
5.6.2 Final Feedback . 35

6 Ethical Implications 36
6.1 Storing Personal Information . 36
6.2 Access to Personal Information . 36
6.3 Scheduling. 37

7 Discussion 38
7.1 Future Work. 38

7.1.1 Roles . 38
7.1.2 Continuous Deployment . 40
7.1.3 Integrations . 40
7.1.4 End-to-end Testing. 40

7.2 General Reflection . 41
7.2.1 Backend . 41
7.2.2 Frontend . 41
7.2.3 Deployment . 41
7.2.4 Scheduler . 41

7.3 Single Sign-On . 42
7.4 Development Process . 42
7.5 Weekly Meetings . 43
7.6 Object-Relational Mapping . 43

8 Conclusion 45

A Functional Requirements 46
A.1 Must Have . 46
A.2 Should Have. 47
A.3 Could Have . 48
A.4 Would Have . 48

B Model 49
B.1 Definitions . 49
B.2 Input Data . 49
B.3 Decision Variables . 49
B.4 Hard Constraints . 49
B.5 Soft Constraints . 50

Contents v

C API Specification 51

D SIG Code Quality Evaluation 55
D.1 Initial Feedback. 55
D.2 Final Feedback . 56

E Table of Technologies 57

F Screenshot of TAM 59

G Original Project Description 60

H Infosheet 61

Bibliography 63

List of Figures

2.1 Current recruitment and scheduling procedure . 3
2.2 Recruitment and scheduling procedure with TAM . 4
2.3 Max-flow modelling example . 8
2.4 Max-flow modelling example with shared labs . 8

3.1 Initial design of the database schema . 12
3.2 Summarized stack overview. 15
3.3a Intended tooling . 15
3.3b Actual tooling . 16

4.1 The issue tracking board . 19
4.2 Agenda template for meetings with the client . 20
4.3 Overview of feature development process. 22

5.1 Detailed structure of the front- and backend . 25
5.2 The complete /me endpoint in the API specification . 28
5.3 The test coverage created by Jacoco . 29
5.4 The test coverage created by Jest . 30
5.5 The final database model. 32

F.1 Screenshot of TAM platform . 59

vi

1
Introduction

The Teaching Assistant Management platform (TAM) is a platform designed to improve quality of life
for students and staff of the Delft University of Technology by streamlining and automating the existing
workflow of recruiting, appointing and informing Teaching Assistants.

Quality of education at the Technical University of Delft relies upon so called lab sessions. In the
Computer Science Bachelors program, almost 90% of the courses make use of these lab sessions.
During the lab sessions, students have the opportunity to ask questions about course material and get
feedback on their assignments from experienced students, called teaching assistants or TAs. For each
course, TAs need to be informed, recruited and assigned to the lab sessions. The current process of
hiring and appointing TAs is opaque to students and requires a significant amount of work from staff
for each step, with an estimated 200 hours spent on checking if students are fit to become a TA and
over 80 hours being spent on assigning TAs to lab sessions.

TAM aims to encapsulate this entire process by creating a structured and largely automated replace-
ment for the current system. This not only involves the process of gathering interest from potential
TAs, lecturers responsible for the lab sessions, and study advisors responsible for validating if each TA
has sufficient skills to become a TA, but also making a schedule, ensuring that each lab has enough
TAs, and informing users of the created schedule.

The first version of TAM, which was capable of gathering interest in courses from TAs, was deployed
in the fourth week of the project. Successive weeks have added additional functionality to the deployed
system, including authentication with Single Sign-On, the ability for lecturers to input their courses and
lab sessions, pages for the study advisor to give their input on TAs, and the availability to automatically
assign TAs to lab sessions.

This report gives a complete overview of the TAM platform created during our Bachelor End Project.
Chapter 2 begins by expanding upon the problem TAM solves, gives a requirement overview and details
the research done to ensure the created product solves the requirements. Chapter 3 explains the design
decisions that were made during the process of creating TAM, ranging from programming languages
and frameworks used, to database design, to overall design goals. The workflow and the process of the
project are explained in Chapter 4. An overview of the entire product is given in Chapter 5, including
a detailed overview of the frontend, backend, scheduler and database. This chapter also covers code
quality, test coverage and the feedback received from the Software Improvement Group (SIG). The
ethical implication of TAM are discussed in Chapter 6. In Chapter 7, a reflection on the project as well
as a suggested list of future improvements to the TAM platform is given, inspired partly by the initial
requirements and partly by our findings during development. Finally, in Chapter 8, a conclusion is given
on the intended goal of the project.

We strongly recommend anyone interested in understanding the initial goals and research that
shaped TAM to read Chapters 2, 3, and 6. Anyone interested in continuing development should also
read Chapters 5.2 through 5.5, in combination with Chapters 7.1, 7.4 and 7.6. Appendix E contains a
list of all technologies and frameworks mentioned in this report.

1

2
Research

To solve the problem presented by the client, research into the problem and solution has to be done.
The research has been performed during the first and second week of the project. This chapter gives
an overview of the findings made during the research phase. First, a definition and an analysis of the
problem is given. Then, our solution for the problem is presented together with a set of requirements.
Finally, our solution for the scheduling problem is explained.

2.1. Problem Definition
Almost 90% of all Bachelor courses in the Computer Science program given at the Delft University of
Technology make use of so-called lab sessions. These sessions provide an opportunity for students to
work on assignments and receive support when necessary. To support the lecturer(s) in facilitating
these lab sessions, other students are employed as Teaching Assistants (TAs). These TAs have com-
pleted a previous iteration of the course and have shown interest in assisting the lecturer. Selection
of TAs is done based on multiple criteria, such as their proficiency in the course, measured by their
grade, and past experience as a TA. Once assigned to a course, the TAs can help the students by
answering questions during lab sessions or other tasks like grading assignments, answering student
mail or proofreading and grading exams.

The number of students for Computer Science is quickly growing. Where around 280 students
started the study in 2015, an estimated 800 new students will start in 2018. Because of the grow-
ing student population, the demand for TAs is growing and the process of manually gathering and
scheduling TAs has become unsustainable. The current process takes over 80 hours each year to
create a schedule for each quarter and an additional estimated 200 hours for representatives from
Education and Student Affairs (ESA) to verify if each student is fit to become a TA. This process will
take even longer if the number of TAs increases with the increasing number of students attending lab
sessions. Besides, certain tools currently used to perform these tasks are not compliant with the recent
changes in legislation concerning the protection of personal data, the GDPR [1].

2.2. Problem Analysis
The goal of this project is to simplify and automate the process and reduce the amount of time needed
to gather, assign and schedule TAs. To understand how this can be achieved, this section provides an
insight into the process as it currently stands.

Since the platform will be used by different types of users, five roles are identified to provide a
clearer overview. These roles are:

1. Teaching Assistant: a student who wants to assist during lab sessions.

2. Course Manager: a person responsible for a course. This role could be fulfilled by a lecturer or
an assistant of the lecturer.

3. Verifier: a representative of ESA responsible for checking if a student may become a TA.

2

2.3. Solution 3

4. Scheduler: a person responsible for gathering, appointing and scheduling TAs.

5. Admin: a person responsible for the maintenance of the platform.

The process starts with the central scheduler listing courses requiring TAs and distributing a form
among students to ask for which courses they would want to become a TA. The form is filled out by
students and the information is processed, duplicate entries and invalid entries are removed. An initial
shortlist with accepted students is created and an availability form is sent to them. The shortlist is also
sent to the verifier to check if each student has passed the required TA Training and English Test. After
the availability form is filled out by students and is processed, a list of labs per course is created with
the required amount of TAs per lab. The students are then manually scheduled. Once the schedule is
finished, it it sent to students and course managers. Scheduled students are registered to FlexDelft1,
the organization managing their payment. Finally the course manager contacts the TAs of the course
with specific instructions. This process is visualized in Figure 2.1.

The preference gathering process covered two quarters per iteration. Using the information gath-
ered during this process, the schedule for the two quarters can be created.

Figure 2.1: Current recruitment and scheduling procedure

2.3. Solution
In order to reduce the amount of time and work needed by staff to gather and schedule TAs, TAM
is developed during this project. TAM aims to encapsulate the entire process for all parties involved.
The process begins by course managers (CM) registering courses in the system. Students can then
indicate their interests for working as a TA on the registered courses. Once the students have indicated
their preferences, a representative from ESA is able to verify if each student has passed his or her TA
training and English test and if each student is capable enough to become a TA based on his or her
personal progress of their study. Finally, the scheduler can use TAM to recruit students as TAs and
automatically generate a schedule by assigning the newly recruited TAs to lab sessions.
1https://flexdelft.nl/

2.4. Requirements 4

Figure 2.2: Recruitment and scheduling procedure with TAM

Generating this schedule by assigning students to labs is an important feature of TAM. These stu-
dents first have to be selected for TA roles and then assigned to courses, such that there are enough
TAs present for each lab session of each course. Besides indicating their preferences, students are also
able to register their availability during each quarter. The course managers are also able to indicate
their preferences for students interested in their course. They can veto students they do not want
as a TA, they can ’manually’ accept TAs without involvement of the scheduler and they can indicate
preference for other interested TAs (scale from 0 to 4), all based on previous experiences with the TA.
TAs who are preferred by the course manager should be prioritized over TAs that are not preferred.
Another goal for the automated scheduler is to manage the assignment such that both the number of
TAs per course and the number of courses per TA are minimized. This is to minimize the overhead
involved for each TA, including factors such as hiring and training.

An overview of the proposed process flow TAM aims to achieve can be found in Figure 2.2. The
proposed process flow contains less overhead than the original process, mainly for the scheduler. The
automated scheduling process also replaces a part of the work done by the scheduler.

2.4. Requirements
In order to design TAM, a series of requirements is created. These requirements are split into three
categories: functional requirements for the platform itself, requirements for automatic schedule gen-
eration and non-functional requirements for the codebase.

2.4.1. Functional Requirements
The functional requirements of the platform describe the features to be implemented in the platform.
A list of these requirements has been compiled together with the client. The full list of features can be
found in Appendix A.

Since TAM will be used by users in different roles, the requirements are split by role using the roles
described in Section 2.2.

The features are also grouped using the MoSCoW method to determine the importance of each
feature for the working of the platform. The MoSCoW method groups features into four categories:
Must have, Should have, Could have andWould have. These four categories indicate a decreasing level
of importance to the functioning of the platform. Features in the Must have category describe the core
functionality of the platform and the most desired features once the core features are implemented.
Implementation of these features has the highest priority. Features in the Would have category are
the least essential features and should not get priority during development. The Should have and
Could have categories are used to prioritize the features whose priority falls between the two other
categories.

2.4. Requirements 5

2.4.2. Schedule Generation
The generated schedule must also follow a set of requirements. These requirements, expressed as
constraints, are split into hard constraints and soft constraints. Hard constrains must hold for a schedule
to be considered valid, while soft constraints describe optimization criteria.
The following hard constraints have been identified:

1. A student cannot be scheduled for multiple labs during the same timeslot.

2. A student can only be assigned as a TA to a course if they want to TA for that course.

3. A student can only be assigned as a TA to a course if the CM allows the student to be a TA.

4. A student must be assigned as a TA to a course if the CM has indicated so.

5. A student can only be assigned as a TA at a timeslot if they are available during that timeslot.

6. A student can only be assigned as a TA to a lab if they are assigned to a course of that lab.

The following soft constraints have been identified:

1. It is better for a course to have fewer TAs.

2. It is better for a student to be assigned to fewer courses.

3. It is better for a course to have TAs which the CM prefers having.

4. It is better to have the same amount of TAs assigned to a lab to be the same as the amount of
TAs required for the lab.

Most of these constraints are straight forward, but two require additional clarification.

The last hard constraint, A student can only be assigned as a TA to a lab if they are assigned to
a course of that lab, means that a student cannot be assigned to a lab session for a course where
he or she is not assigned to. This is because the model has two separate decision variables, one for
assigning students to courses and one for assigning students to labs. This constraint ensures that these
two decision variables are linked, and also supports shared labs.

The last soft constraint can be formulated as a hard constraint in the following way: A lab must have
the same amount of TAs assigned as are required for the lab. The reason this constraint is modeled
as a soft constraint is that it allows for an incomplete schedule to be computed if no full assignment
is possible (due to a lack of TAs in order to meet the requirements of each lab session). By providing
an incomplete schedule, the scheduler can identify the gaps and find extra TAs to fill the gaps in the
schedule. When modeling this constraint as a hard constraint, no schedule will be generated since no
schedule could fulfill all hard constraints and no explanation on the courses or lab sessions that could
not be filled is given.

2.4.3. Non-Functional Requirements
Besides the requirements in the functioning of TAM, non-functional requirements are also determined.
These requirements are split into three categories: privacy, security and maintainability.

Privacy includes the protection of the personal data of the users of TAM. The platform must follow
the requirements stated in the new GDPR. This means that a user must be able to receive an overview
of all of the data stored which they are subject to. Also, a user must be able to opt-out of the system
and have all his or her personal data removed.

Security means that TAM should be protected against common and known attacks. With TAM run-
ning on the university’s own servers, protection against attacks aimed directly at the server is not an
issue. Protection against attacks through TAM, like cross-site scripting, cross-site request forgery or
unauthorized-access attacks should however be provided by TAM itself.

2.5. Scheduling Algorithm 6

Maintainability includes the possibility to update and extend the codebase. After the project is
finished, development of TAM will likely be continued by a new developer. To minimize the amount
of time this developer will need to start working on TAM, the structure of the code should be clear
and the code itself should be well documented. This documentation should contain explanation on the
working of each component as well as a detailed description on how the different components interact
with each other. This way, development should be easy to pick up without requiring the help of the
original development team.

2.5. Scheduling Algorithm
The requirements for generating a schedule have been expressed in Section 2.4.2, but to actually cre-
ate a schedule, an algorithm has to be created. The following section describes the process of going
from the identified requirements to a design for a suitable algorithm.

Initial research indicates that this problem is a variant of the Teacher Assignment problem [2].
The teacher assignment is an instance of a scheduling problem, which is NP-complete[3]. Although
scheduling problems are an ongoing area of research, there has not been much research on the Teacher
Assignment problem specifically [4]. The teacher assignment problem that TAM tries to solve has
several key differences with the various teacher assignment problems studied in literature. First, in
our instance, each TA has their individual availability which must be respected whereas most literature
assumes that teachers will fit their schedules to the courses they are assigned to. Second, in our case,
multiple TAs are required for each lab session rather than one teacher per course, as assumed by most
literature. Finally, our problem size of 200 students, 20 courses and 200 labs is substantially larger
than the examples studied in literature as well.

A common method of solving Teacher Assignment problems is by using linear programming. Linear
programming involves minimizing an objective function, while keeping the variables bound to certain
constraints. An important consideration of linear programming are the runtimes. Domenech and
Lusa[4] considered instances with 20 teachers and 80 courses and concluded computation times for
optimal solutions of nearly one hour, with runtime quickly growing along with the input size. Because
our instances have a different form, having more TAs (teachers) than courses rather than vice versa,
it is difficult to extrapolate from this what we our runtime would be when using such a solution. This
was discussed with the client and it was concluded that long runtimes are acceptable, if it could not be
avoided.

Another approach taken for a similar problem, which combines Teacher Assignment with Course
Scheduling, is proposed by Gunawan et al. [5]. They use a hybrid approach, first calculating an
approximate solution, and then using greedy heuristics and simulated annealing to quickly find near
optimal solutions. They report runtimes of 2 minutes with instance sizes of 30 teachers and 60 courses,
with results of about 85% of the known optimal value. This is substantially faster than the results
in other papers. Since their problem also considers Course Scheduling, they do consider it to be
more complex than just teacher assignment. It is therefore likely that applying a similar method to
our problem would not result in significantly worse results, making it a possible solution. However,
this approach is markedly more complex and produces worse results, albeit faster. These downsides
outweigh the advantages for TAM, so at least for the initial version this is not considered to be a better
fitting solution than just a linear solver.

While the initial research resulted in several possible solutions, more research was needed before
committing to one of these options. As part of our further research we contacted Dr. Mathijs de
Weerdt (Algorithmics Group, Delft University of Technology) and discussed possible other solutions.
This discussion resulted in several other potentially fitting mappings to well known problems. In the
following sections, each of these mappings is discussed and finally our decision is explained.

2.5.1. Matching
Matching appeared to be a good problem to map to. Matching problems refer to where a subset of
edges have to be selected, matching certain criteria. Matching with preferences[6] seemed to be able
to optimize for all our soft constraints; Course Manager preferences can be accounted for easily and
the other minimization constraints could be solved via smart ordering of matching. However, there was
no suitable way of expressing the hard constraint of only schedule a TA for one lab during a certain

2.5. Scheduling Algorithm 7

timeslot. This is a constraint that could not be neglected, making matching an unsuitable mapping.

2.5.2. Max Flow
Max flow[7] problems involve finding the highest amount of flow that can be sent through a graph,
where each edge has a capacity on how much flow can be sent. Max flow easily models the hard
constraints; capacities on edges between TAs and timeslots force TAs to only assist one lab at a time,
while the other constraints can be expressed through the construction of the graph. Similarly, the
required number of TAs in a lab session can be modelled via edge capacities. Initially, there appeared
to be no good way to model the various soft constraints. It seemed possible to modify the order
in which paths are considered, based on the soft constraints. This solution might work but it would
be difficult to guarantee that the solution obtained is of high quality. In order to solve this problem
minimum-cost max flow[7] seemed more suitable.

2.5.3. Minimum-cost Max Flow
Minimum-cost max flow is a variation of max flow that adds costs to edges, and aims to both maximize
flow and minimize cost. It appeared to be able to solve all the constraints. However, we realized
that shared labs were not considered during the listing of our constraints. Shared labs are labs where
students can ask questions about multiple courses at the same time, meaning that the solution needs
TAs for multiple courses to be present. In fact, the goal for shared labs is to have as many TAs as
possible for each of the courses - making TAs that can assist with multiple courses better than TAs that
are only available for one of the courses.

Ideally the scheduler should support the ability to specify how many TAs are needed in total for a
shared lab, and specify for each of the courses how many TAs should be present as well. Unfortunately,
minimal-cost max flow is not capable of completely expressing this. It is possible to guarantee (a limit)
of the total amount of TAs in the shared lab. However, for the amount of TAs per course in the shared
lab, the best possible guarantee is a total number (between all courses) equal to the total number of
TAs of that shared lab. To give an example, for a shared lab with 30 total TAs and 3 courses, it is
possible to promise that at least 10 TAs are present for each of the courses, but not promise that 11
TAs are present for each of the courses. However, it is possible to adjust the order in which TAs are
selected in order to first select TAs that are available for multiple courses - giving us a result that is
likely near optimal for the total amount of TAs that can do each course. We discussed this solution
with the client and they agreed that this would be good enough to solve the problem of shared labs,
making minimal-cost max flow a suitable mapping.

Minimum-cost Max Flow mapping
To solve our problem through the min-cost max-flow algorithm, a suitable modelling has to be made.
We create construct the model as follows:

1. Create a source and sink node.

2. For each student, a node is created.

3. Each student-node is connected to the source node, with capacity of the edge equal to the amount
of hours the student wants to work.

4. Per student, a node is created for each timeslot he is available in.

5. Each timeslot-node is connected to the student with a capacity of 1 and no cost.

6. For each lab, a node is created.

7. A lab-node has an incoming edge from each of the timeslot-nodes that represent the timeslot of
the lab, but only if the student is allowed and willing to TA for the course that the lab is from.
The capacity of this node is 1 and the cost depends on multiple criteria, such as the preference
of the Course Manager for the student.

8. Each lab-node is connected to the sink, with a capacity corresponding to the amount of required
TAs and without cost.

2.5. Scheduling Algorithm 8

An example of this model is shown in Figure 2.3.

𝑠 𝑆 𝑇 𝐿 𝑡
𝑚 1 1 15

Figure 2.3: An example of a lab session . In this case, student is available during timeslot and is interested and allowed
to TA for course corresponding to .

Shared lab sessions
When a lab is a shared lab, however, the creation of nodes and edges for that lab is different. Lets
take an example with a shared lab of two courses: 𝐴, and 𝐵. The first five steps are the same as the
process for modeling a regular, non-shared lab. After step 5, the procedure is changed as follows:

6. For each subset of the courses of the shared lab, omitting the empty set, a node is created (i.e.
the nodes {𝐴}, {𝐵} and {𝐴, 𝐵}).

7. A subset-node has an incoming edge from each of the timeslot-nodes that represent the timeslot
of the lab. This edge is only added for the subset-node which best fits the student (e.g. if student
𝑆 is interested in becoming a TA for both 𝐴 and 𝐵 and is allowed to do so, the outgoing edge from
the timeslot goes to the node {𝐴, 𝐵}). The cost is again determined by preference and reflects
the preference for TAs who prefer more courses as well.

8. For each course of the shared lab session, a node is created and connected to all subset-nodes
containing the course. These edges have an infinite capacity and zero cost.

9. Each course-node is linked to the sink node with a capacity equal to the number of TAs needed
for that course during the lab.

An example of shared labs is visualized in Figure 2.4. It involves a lab for courses 𝐴 and 𝐵, where 15
students are requested for course 𝐴 and 5 for course 𝐵.

𝑠 𝑆 𝑇

{𝐴}

{𝐵}

{𝐴, 𝐵}

𝐴

𝐵

𝑡
𝑚 1

1

∞

∞
∞

∞

15

5

Figure 2.4: An example of a shared lab with courses and . In this case, student is available during timeslot and is
interested and allowed to TA for both course and course .

In Section 2.4.2, several hard and soft constraints are described. In order for our model to work,
each of the hard constraints have to be enforced. The constraints for adding edges to the model cause
the second, third and fifth constraint to be enforced. The capacity of the edges from a student to a
timeslot make it so that a student cannot be assigned to multiple labs in the same timeslot. Moreover,
the fourth constraint, which requires that a student must TA for a certain course, can be enforced
by pre-processing the input of the model by removing the hours used by this assignment from the
students’ maximum hours and removing all edges dealing with this course. Lastly, the sixth constraint
follows immediately from the assignment, because a student is assigned to a course if he is assigned
to a lab from that course. Because of this, all hard constraints in the model are satisfied.

To optimize on the soft constraints, the costs of certain edges will be adjusted throughout the
solution computation to incorporate the constraints into the algorithm. Moreover, the picking order will
be adjusted to also serve the optimization of the soft constraints.

2.5. Scheduling Algorithm 9

2.5.4. Implementation
The Minimal-cost max flow solution, using the model described above, was to be implemented at
the start of the project. Even after extended research we could not find any research on such an
algorithm that supported changing the costs of edges edge during execution. After creating a basic
implementation of the algorithm, we came to the conclusion that too many requirements were being
integrated into the changing-edge-costs. We were unsure that our solution was going to scale to fulfill
all requirements, and if it did, whether it would be easily understandable and extendable. Because of
these reasons, we chose to go back to using a linear solver. We felt that this choice makes it clearer how
the various requirements interact, makes it easier to judge the correctness of the modeling, and makes
it easier to modify or extend without unexpected changes in results. In addition, using an existing
linear solver rather than our own minimal-cost max flow implementation means that the scheduler will
benefit from any advancements made in linear solver technology, without requiring work from TAM.
The team does not have any experience with linear models or using linear solvers, since this is not
covered by the Computer Science Bachelor. However, we felt that the advantages over a Minimal-cost
max flow are substantial enough to warrant this learning process.

2.5.5. Linear Solver
The first step was to ensure that a linear solver could model all constraints, by creating a suitable
modelling of our problem. Such a modelling was made in the style of Gunawan et al.[5] and can
be found in Appendix B. In this model all requirements from Section 2.4.2 are listed and for each
requirement a formulation of how we could model it as a linear constraint or objective is given. Based
on this initial modelling an implementation could be made, but there was one more decision to be
made. A linear solver implementation had to be selected, that TAM would make use of. Initially, the
primary options considered were open-source solvers such as LP solve and Coin-Or’s Clp. However, we
found that these did not have documentation that was easy to use with our limited experience. It was
not clear how to begin implementing the modelling using these tools. We decided to check the options
available with commercial solvers and found Gurobi to relatively clear documentation, especially useful
was the large set of example programs available. On top of this, we found that Gurobi does very well in
benchmarks [8]. Since Gurobi is not free to use, we asked our client whether we could use Gurobi. He
informed us that the free academic licence was suitable for our system, making Gurobi an applicable
tool.

3
Design

The set of functional and non-functional requirements as discussed in Chapter 2 have to be considered
during the creation of TAM. TAM consists of three major components: a database to store the data,
a backend application containing business logic and the automated scheduler, and a frontend website
the user can interact with. These three components together form the stack. The technologies used
in the various components of the stack need to synergize.

The design decisions behind the stack are discussed in this chapter. First, the design of the database,
backend and frontend is explained. This is done by listing the important requirements, identifying the
different languages, frameworks and technologies to be considered and finally picking the best fit for
the project. A complete list of technologies and tools, including links to their webpages, can be found
in Appendix E. Then, an overview of the complete stack is given. The chapter is concluded with a
description of the additional tooling used to support the development process.

3.1. Database
Since TAM is mainly based around gathering, aggregating and updating data, the database is an im-
portant part which has to be chosen carefully. There are two phases that the research process for
the database has to go through. Firstly, the database software has to be chosen. Moreover, once a
database is chosen, the schema has to be designed carefully to cater to the envisioned features of
TAM.

3.1.1. Database System
The main criteria which influence the decision of the database system are the scale of the information
which has to be saved, as well as the relation between saved information.

When looking at the Bachelor courses, a round of interest gathering covering two quarters re-
sults in under 200 interested students. Also taking into account that student who have indicated their
preferences during one round of interest gathering are also likely to indicate their preferences during
subsequent rounds, the number of registered users will be limited. This small user base means that
the impact of the expected size of the database on the decision for the database system is negligible.
However, the data which is stored in the database is closely related and coupled. For example, the
relation between the courses and students assigned to them is a relation that needs to be mapped
well in the database. Therefore, the database has to be able to map these relations well and this is a
requirement which has to be taken into consideration.

There are two categories in which databases are divided: relational and non-relational databases.
A relational database stores the data and the relations between this data in a clear way. A non-
relational database instead focuses on support for large-scale (distributed) deployment and sacrifices
the functionality to efficiently save relations between data.

As mentioned before, the primary requirement for selecting a database is that relations between
data in TAM can be mapped correctly and easily. The main advantages that non-relational database

10

3.1. Database 11

provide are speed and scalability. Based on these factors, a relational database is the best fit for TAM.

There are multiple different prevalent databases of the relational database category. The three
different databases that are considered are: PostgreSQL, MySQL and SQLite. These three databases
are the most used relational databases according to the StackOverflow survey of 2018 [9]. They are
similar in functionality and have extensive documentation and references. MySQL is already used by
the client for an existing in-house application, Queue. This means that it already is installed on the
server, making the initial deployment of TAM more straightforward and no extra maintenance will be
added to the server. Since there is no functionality missing from MySQL which is available in one of
the alternatives, MySQL is the most suitable database system for TAM.

3.1.2. Database Design
To determine the structure of the database, a conceptual model is created based on the requirements.
An appointment with Dr. Asterios Katsifodimos (Web Information Systems Group, Delft University of
Technology) was made to receive feedback on the initial model. Dr. Katsifodimos said that there were
no structural problems with the conceptual model and he provided a lot of useful insight and advice for
the database component. He emphasized that the created model is inevitably going to change during
the project. Using this conceptual model, a logical schema for MySQL is created in Vertabelo. This
logical schema can be seen in Figure 3.1.

Core Data
What becomes immediately apparent from the database schema is the central role of both the User
and CourseEdition tables. The former embodies a User in the database and the latter embodies a
course in a given year and quarter. These two entity types form the basis around which TAM revolves,
namely assigning students to course editions. There are multiple design decisions made during the
creation of the database schema.

To begin, a user has both a gender and t-shirt size field. These fields are used to hand out
the correct TA t-shirt of the specified gender to the student.

Another notable aspect is that a user can have multiple roles, described in the User_Role table.
These roles are the same as the roles described in Section 2.4.1. This design decision is made because a
person can attain multiple roles in the current process as well and it was decided to keep this possibility
intact.

Preference Tables
The user gets connected through numerous linking tables, although two of these tables contain fields
that require some more explanation, namely the v_rank field for the PersonalPreference table
and the p_rank field for the CoursePreference table.

The v_rank field stands for verifier rank and is the rank that is assigned to a student for a certain
course by the verifier. This rank is either 0, 1 or 2 and embodies the judgment of the verifier on whether
the student is suited to TA for the specific course.

The p_rank field on the other hand is preference rank of the course managers. This rank ranges
from 0 to 4 and specifies the preference of the course manager to have the specific student as a TA,
with 0 meaning the student is not wanted and 4 meaning the student is really preferred.

Scheduling
Both the assignments of students to courses and students to labs are linked to a schedule_id from
the Schedule table. The primary key of the entity is an id and not a combination of year and quarter.
This is done to allow the creation of multiple schedules for one quarter. In turn, the final boolean
in the same table marks whether the created schedule should be seen as final, meaning that it is the
schedule that will be used for that quarter and could be shown to other (non-scheduler) users.

Another notable field from the Schedule table is the interest field. This field specifies whether
the students are able to submit preferences for the courses in the same quarter and year as the sched-
ule.

3.1. Database 12

Fi
gu

re
3.
1:

In
iti
al

de
si
gn

of
th
e
da

ta
ba

se
sc
he

m
a

3.2. Backend 13

Slot ID Starting time Ending time
1 8:45 10:30
2 10:45 12:30
3 13:45 15:30
4 15:45 17:30

Table 3.1: The slots used in the Timeslot table.

Additional Fields
Almost all tables have both the last modified and the created timestamp. These two fields can
be used to track and solve possible errors in TAM which cause the database to come in an unwanted
state, usually by user input. Through these two fields, the changed time can be extracted and through
these timestamps, the changes could be more easily restored via partial recovery from backups. Notice
that the Timeslot, Slot and Role do not have these two fields. This is because these two tables
are not to be changed by user input and therefore do not require this extensive tracking.

The Availability table also misses the last modified and the created timestamps. Be-
cause the entries in the table are binary, a record is created or removed if a user changes their avail-
ability, a last modified timestamp would not add any information. A created timestamp should
be present in the availability table. This issue has only been noticed while writing this report and
will be resolved as soon as possible.

Another important decision was made for the Timeslot table, by adding the slot field. This field
resembles the four timeslots during which lab sessions can take place. These timeslots can be seen in
Table 3.1. An entity of the Timeslot table therefore represents a two hour slot at a certain date, in
a certain quarter and year.

3.2. Backend
In order to connect the user interface to the database, a backend is needed. This backend should both
include a connection to the database as well as proving a web server to host the frontend of TAM.

3.2.1. Language
Since the duration of the project is only ten weeks, the primary factor for deciding on a backend web
framework is the experience of the developers. However, it has to be noted that there is already a
working prototype of TAM, written in Python using Django, which could be extended during the project.

The team is well familiar with Java and somewhat familiar with Python, the former being used
throughout the Computer Science bachelor. Since in the future this project is most likely to be main-
tained and extended by students, choosing a familiar language is preferred. Moreover, the development
team prefers a statically typed over a dynamically typed language for the backend. Using the above
preferences and requirements, only Java and Python are considered for backend languages.

3.2.2. Framework
When using Python, the most used option is the Django web framework. Django uses the Model
View Controller (MVC) pattern, separating views from logic. Furthermore, Django allows easy SQL
data manipulation using Django Object Relational Mappers (ORM), instead of writing complex SQL
queries. Another advantage of Django is that there is already a working prototype written in Django
as mentioned before.

The most popular choice when using Java is the Spring framework. Within the framework, two
alternatives exist: Spring WebFlux and Spring MVC. Spring WebFlux is reactive, non-blocking and
supports huge amounts of concurrent connections. Spring MVC uses a synchronous blocking I/O model
supporting one request per thread. Spring also features ORM capabilities. Although the prototype of
TAM is in Python, another in-house project, the aforementioned Queue, uses Spring MVC as well.

3.2.3. Conclusion
Because a working prototype is already provided using Django, a decision could be to expand upon
this prototype. However, one of the design goals of the team is to have a maintainable codebase.
Upon reviewing of the existing codebase of the prototype, the team decided that the refactoring of the

3.3. Frontend 14

prototype would take too much time and a complete rewrite would therefore be necessary. With the
option to extend the prototype discarded, the decision is whether to write a new application in either
Python or Java.

Because of the familiarity of new Computer Science students with Java and the preferences for Java
in the development team, Java is chosen as a backend language. Spring MVC will be used as backend
framework. The MVC version is preferred over the WebFlux version since the development team is
more familiar with the conventional MVC model than the reactive model and support for large amounts
of concurrent connections is not needed due to the small expected user base.

3.3. Frontend
The frontend serves as an interaction layer between the user and the backend. To ease multi-platform
support as well as maintainability, the frontend of the platform consists of a mobile-friendly interface.
Development of this interface requires both a programming language for the frontend to be written in
and a system for the frontend to communicate with the backend.

3.3.1. Language
Just like the development of the backend, the limiting factor for the decision on a frontend language is
the lack of time to learn new languages within the project. The team is solely familiar with JavaScript.

However, there are multiple options for the frontend language. First, other languages such as
TypeScript or Elm can be used. These language provide type description or inference, but would take
more time getting familiar with.

Second, the frontend can be integrated with the backend using Thymeleaf, a server-side Java
template engine which has modules for Spring MVC. Using this method, the functionality of the frontend
is implemented on the backend and a compiled webpage is sent to the user. Given the lack of experience
with this option of creating webpages using this method, it is not desired to use for development.

Due to the lack of experience with other languages, JavaScript is to be used for the frontend.

3.3.2. Framework
To improve both the speed of development and reduce the boilerplate code for the frontend, a library or
a framework is desired. The most common JavaScript libraries and frameworks for creating interactive
web pages are Angular, React and Vue.

The most important factor to be taken into account in the selection of a framework or library is
the lack of experience in frontend development within the team and the limited time available to learn
new technologies. For this reason, Angular will not be used as multiple sources indicate that it has the
steepest learning curve from the three [10, 11].

After reviewing both React and Vue, it was clear that one of the two has to be used. However,
the development team could not come to a unanimous opinion on which of the two to use. After
reaching consensus by majority voting, Vue was chosen as the framework for the frontend. The main
deciding factor was the clear documentation of Vue, which could be beneficial in supporting the frontend
development.

To speed up the process of styling the web page, Bootstrap will be used, since it is the most
prevalent styling framework [12, 13]. Moreover, Bootstrap provides great support when it comes to
different screen sizes. This means that it is relatively simple to create a frontend application which
can be used on both desktops and mobile devices. Lastly, by using a package developed by the Vue
community, Bootstrap-Vue, the integration between Vue and Bootstrap is simplified, easing the process
of developing and styling the web pages even more.

3.3.3. API Specification
Because the frontend uses JavaScript with Vue and Bootstrap, there is no way to integrate the frontend
directly into the backend. This means that there has to be some kind of communication between these
two components, through which data is shared. There are two major web service communication
protocols, namely the SOAP (Single Object Access Protocol) and REST (Representational State Transfer)
protocol. REST allows a great number of different data formats, such as JSON, whereas SOAP only
allows XML. Since JavaScript is used for the frontend, the choice for sending JSON object is a natural
fit, which is why the REST protocol is chosen.

3.4. Stack Overview 15

In order to keep a contract between the backend and the frontend in the terms of what data is sent
to and from which endpoint of the backend, an API specification will be written. In this specification, all
available endpoints and their path are documented. For each endpoint, documentation should explain
what type of requests are permitted, which query parameters can be used on the endpoint and what
is returned by the endpoint. Moreover, if a JSON payload is required or returned, the format of the
JSON is documented as well. This API specification will be written using Swagger IO, since the team
has experience with this tool.

3.4. Stack Overview
Using the languages, frameworks and technologies chosen in the previous sections, the full stack is
visualized in Figure 3.2.

Figure 3.2: Summarized stack overview.

The user interacts with a website created using Vue. This website is styled using Bootstrap-Vue. This
frontend interacts with the backend, which created in Spring, using a REST API. All communication is
to be specified in an API specification, to be written using Swagger IO. The Spring MVC-based backend
serves as an interface between the API and the MySQL database. The backend also holds the business
logic of the system, including the automated scheduler.

3.5. Development Tooling
In order to ease the development process, whilst complying to code standards set by the team, the
team uses a range of tools. The planned tooling is shown in Figure 3.3a. However, some of the
tooling has changed throughout the project. The final tooling is therefore displayed in Figure 3.3b.
The bold tools indicate tools that have changed during the project. These changes are discussed in
this paragraph.

Function Backend Frontend
Editor IntelliJ IDEA IntelliJ IDEA
Testing JUnit Jest
Code Coverage Cobertura Jest
Code Quality Checkstyle, PMD, FindBugs, SonarQube Flow, SonarJS, SonarQube
Version Control Git (GitLab) Git (GitLab)
Dependency Manager Gradle NPM
Build Tool Gradle Webpack
Continuous Integration TravisCI TravisCI

Figure 3.3a: Intended tooling

3.5. Development Tooling 16

Function Backend Frontend
Editor IntelliJ IDEA VSCode
Testing JUnit, Mockito Jest
Code Coverage Jacoco Jest
Code Quality Checkstyle, PMD, SpotBugs ESLint
Version Control Git (GitLab) Git (GitLab)
Dependency Manager Gradle NPM
Build Tool Gradle Webpack
Continuous Integration GitLab CI GitLab CI

Figure 3.3b: Actual tooling. Tools that differ between planned and actual are bold.

The team had past experience with VSCode for frontend code. VSCode provides multiple plugins to
ease the development in JavaScript and Vue. Because of this, VSCode is used instead of IntelliJ IDEA
for frontend development.

For backend testing, Mockito is used to mock objects fields and methods during tests. This is
handy because behavior of external components can be controlled using Mockito. Moreover, the code
coverage tool was changed from Cobertura to Jacoco because Jacoco works better with the other
tooling used.

Both the backend and frontend had changes for their code quality assurance. The idea was to use a
SonarQube server to keep track of our code quality over the course of the project. However, the team
deemed it too time consuming to set up this server, especially since other tools already provide the
same analysis on the current code version. After informing with fellow developers of other in-house
products, the team came to a conclusion not to use SonarQube. The other change for the backend
is the use of SpotBugs instead of FindBugs. This is simply the result of the deprecation of FindBugs,
which is succeeded by SpotBugs.

The frontend was supposed to use SonarQube combined with the SonarJS plugin for static code
analysis, but after the decision was made to not use SonarQube, integration with SonarJS was not
viable anymore. As a replacement for static code analysis, ESLint is used.

The frontend was also supposed to use the static typing system Flow. However, because of the
amount problems encountered during setup with getting Flow and Vue to work together, and the
deadline early in the project (see Section 4.5), the decision was made to drop integration with the tool.

Lastly, the idea was to use TravisCI for the continuous integration during the project. However,
GitLab provided the project with a built in continuous integration tool as well: GitLab CI. Because of
this, the decision was made to abandon TravisCI and use GitLab CI instead.

4
Process

In this chapter, the process of development during the project of the team is highlighted. This chapter
includes the internal structure and overall organization of the team, including communication with the
client and coach. After this, the set up procedure, feature development and deployment procedures
are more closely examined, as these three processes played a major role in the development of the
final product.

4.1. Internal Organization
The time span of this project is relatively short. One of the challenges that comes with this short time
span is to reduce unnecessary overhead. This can be achieved through having an organized work flow.
In this section, three different factors which helped creating this work flow are described. These factors
made sure that the work flow is organized whilst keeping an overview of the progress of the project.

4.1.1. Scrum Framework
The first factor that has greatly improved the organization of the team was the use of the Scrum
framework. Scrum is a framework that is focused around the incremental and adaptive design of a
product, in this case a software product. It uses sprints, a period of time in which a working product
with new functionality is created. This was adopted in weekly sprints during this project. At the end
of the week, the Sprint Retrospective is used to reflect on the past sprint and to word improvements
for the upcoming sprint. Moreover, the plan for the product is revised each week as well, in the Sprint
Review, together with the client. These two events were done by the team together with the client to
revise the goals whenever necessary and to improve the work flow of the team each week. Moreover,
the team has Daily Standups in which they reflect on what has been done the day before and what will
be done during the day.

Although some time is spent each day to revise and discuss the planning of the upcoming day or
sprints, this helps the team keep focused. Moreover, the daily standups work as a great tool for the
team to stay updated on the work of the other team members, as well as on the overall progress
throughout the week.

4.1.2. Issue Tracking
Another factor which came into play was that of the user stories. A user story is a simple description
from the perspective of a user who desires new functionality. These user stories are then used to
determine how much time is required to implement such a feature.

The team adapted this idea of user stories, but altered it to their own needs. The flaw that became
apparent was that not all code enhancements could be translated into user stories Instead of rewording
these enhancements into a user story format, possibly creating a ’developer’ user, the team chose to
instead describe the required enhancements and use that as their user stories.

These adapted user stories can be used to track the enhancements or issues that each developer
is working on. There are multiple different platforms on which issues can be tracked. The intended
platform to be used was the GitLab issue tracker. Since the team already decided to use GitLab as a

17

4.2. Communication 18

remote server to handle their version control on, the choice to use GitLab as well to track their issues
was obvious. However, at the start of the development of TAM, a workspace was provided by the
client. The team had then decided to use one of the walls as an issue tracking board instead of GitLab,
because the physical issue board gave the team a better overview of the project. An example of the
issue board can be seen in Figure 4.1.

The issue board had an organization of post-it notes. The top left is the legend and indicates that
each color of the post-it note indicates a particular type of issue. Moreover, each small colored stripe
of paper indicates who is working on an issue. Below the legend, the board is separated into three
different sections. The top section indicates that an issue is still to be done. The middle section contains
the issues that are currently being worked on. The bottom section holds the issues that are finished
and have been added to the system.

4.1.3. Team Member Roles
The intended division of roles within the team was to have all team members contribute to all compo-
nents of the end product. Although a developer would always have a specialization of some kind, the
intention was to have each team member at least develop one feature for both the front- and backend.
In this way, each team member ideally has a sufficient level of knowledge of each component of the
end product. However, it quickly became apparent that the time to learn the used frameworks and
technologies, especially on the frontend, was significant for each team member. Because the process
of becoming proficient in the frameworks used across the whole application would be too time consum-
ing for a project of this duration, the decision was made to instead split the team into two pairs. One
pair puts the focus on the frontend, and the other pair focuses on the backend. Because of this split,
the team required less time to become proficient in the used frameworks, which in turn meant that the
team has more time to develop features. Moreover, there are still two people to discuss on matters for
each component, which means that an issue does not have to be tackled by solely one person, but can
instead be solved by a pair. However, each team member still has some cursory knowledge of both
sides.

4.2. Communication
Communication makes or breaks group projects. Both communication within the team as communi-
cation with other involved parties plays a vital role in the outcome of the project. This section briefly
discusses internal communication, and how communication with the client and coach was managed.

4.2.1. Team
The communication within the team plays a great role in a successful project. Different members of
the team can exchange ideas for new features. Moreover, if a team member struggles with a particular
problem, albeit with a conceptual or with a coding problem, another team member can help in solving a
problem. Above all, communication within the team improves the cohesion and team effort throughout
the project.

During the project, the aforementioned work space is available to the team. Because all team
members are present throughout the day at almost all working days, communication can be done
instantly and no overhead is introduced by using for example instant messaging. Moreover, the work
space includes whiteboards, which are used by team members to illustrate their ideas in a more visual
manner. Therefore, the team can easily brainstorm about complicated topics at any time when working
on the project. For example, the whiteboard was used to draw wireframes, the initial design of a new
webpage; discuss API specification or plan out documents. This leads to quality communication in the
team throughout the course of the project.

4.2. Communication 19

Figure 4.1: The issue tracking board. On the top left, the legend of the colors can be viewed

4.3. Set up 20

4.2.2. Client
To make sure that the requirements and the vision of the client for TAM are not lost in translation during
the creation of TAM, the client is able to give feedback throughout the project. To accommodate this,
the team plans a meeting each week.

This meeting is held on Friday by default and is based on an agenda made by the team. An example
of the template used for the agenda can be seen in Figure 4.2. One of the recurring topics is a live
demonstration of the new features which are developed during the week. During these demonstrations,
the client is able to use and give feedback on the newly created features. The given feedback is then
discussed within the meeting and is taken into consideration for the next week of development, where
the features are adjusted when necessary. The team also uses these meetings to discuss possible
issues encountered during the week and discusses with the client on how to handle these issues. The
meetings are concluded with the client and the team discussing the new planned features for the next
development week. Moreover, a consensus is reached on the prioritization of these planned features.

Hi Stefan,
We want to discuss the following points during our next meeting.

1. Demos of new features

2. Subjects to discuss

3. Direct questions

4. Planning for next week

Figure 4.2: Agenda template for meetings with the client

However, at times the team requires intermediate feedback between meetings during the week. In
this case, the team communicates to the client through an instant messaging platform called Matter-
most, which is hosted by the university. Through Mattermost, the client could provide feedback on the
developed features when requested, even during the week.

Using both these measures, the client is closely intertwined in the development process.

4.2.3. Coach
To make sure the team is functioning correctly, the coach evaluates the team on their performance. As
with the client, the team plans a meeting each week with the coach.

This meeting is held on Monday by default, where the meeting was planned and directed by the
team. During these meetings, any issues encountered during the previous week are discussed with
the coach. Moreover, the team asks the coach for advice on encountered issues, to receive another
perspective on the solution. For example, the coach advised the team to use a more visual approach to
show the newly developed features to the client. That way, the client can get a better idea of the work
done during a week of development After using this new strategy for the client meetings, the team
noticed that the overall structure of the meetings improved. The meeting with the client is discussed
as well and the prioritization of the upcoming week is discussed.

4.3. Set up
Before work could start, a project setup had to be made such that the entire team could work with the
same setup. This section briefly documents the set up process that occurred for the TAM platform.

In order to build the codebase, various technologies are used. Gradle is the main build tool used
to build the complete project. Because the frontend is served by the backend, the frontend has to be
built first. This is done by Gradle invoking Webpack, which builds and bundles the frontend into vanilla
html and js files, which are ready to be served by the backend. Once this is complete, Gradle bundles
the complete project into an executable jar.

Both frontend and backend rely on external libraries and packages for functionality. Gradle man-
ages the dependencies for the backend. The frontend uses NPM as the package manager. On the
frontend, NPM is used as package manager. It manages both development tools, such as ESlint, and

4.4. Feature Development 21

production dependencies, such as Vue, and ensures the entire team is using the same versions of these
dependencies.

In order to ensure code quality, continuous integration is needed. For this purpose Gitlab CI is used.
It is configured with tasks for both the front- and backend, and runs all available test suites and code
analysis tools for both.

When using the scheduler, a license file is needed for Gurobi. This licence file is device-specific and
can be obtained by requesting an academic licence on the Gurobi website.

The backend relies on a MySQL database, for which the database schema and a user account must
be configured before starting the system. For this purpose, a table creation script is provided with the
system and user details can be configured in the application.properties file.

Configurations that must be done by new developers or for deployment are also detailed in a
readme.md file, that describes the development setup and the deployment procedure. Besides the
readme, a development.md is also present, which contains information regarding topics that could
form obstructions for new developers.

4.4. Feature Development
The project was a constant process of creating new features for TAM, in order to enhance its function-
ality. These features required changes on both the front- and backend and therefore communication
within the team was needed. Moreover, the client played an important role in the creation of the
features as well. The client extensively communicated with the team through weekly meetings, as
well as instant messaging on Mattermost. Using this procedure, the team could quickly communicate
envisioned changes and ensure that consensus with the client was reached on new features.

A graphical overview of the feature development process can be seen in Figure 4.3. When a new
feature is first identified, relevant user stories are created in the form of post-its for both the front- and
the backend.

The initial step of creating a new feature is to reach consensus on the data required and sent by
the frontend for the new feature, and the specific format to be accepted by the backend.

The backend then starts it full development cycle to create the endpoints to handle the requests of
the frontend. This development cycle consists of writing, testing and documenting the code additions.
Moreover, if the requested endpoints required modifications in the database schema, these were put
in place as well. Documenting the code additions included creating the API specifications of the newly
added endpoints, in which the consensus between the data format was documented. After the new
feature is implemented it is evaluated through a peer review by another team member. This team
member can request changes on the current implementation, which are then fixed by the developing
team member. This feedback cycle continues until none of the team members have anything to request
to be changed, after which the feature is added to the codebase.

The frontend on the other hand, starts with a more analog approach. Firstly, a wireframe is created
that displays the new functionality. This wireframe is a raw sketch of the webpage, providing a concept
of the layout to base the actual webpage on. After consensus on the layout is reached within the team, a
basic implementation of the wireframe is created. This initial version does not include any interactivity.
Once this initial version is approved, the interactivity is incrementally added to the webpage. This
comes together with hooking up the agreed data format to the in- and output of the webpage, to add
loading in and outputting the data from the backend. After the new functionality is developed, the code
is tested to ensure that the functionality stays the same after adding new code in the future. Similarly
to the backend, the new feature is evaluated through a peer review by another team member after the
feature has been fully developed and tested. Just as in the backend, the cycle of requesting changes
and implementing these changes continues until no further changes are requested, after which the
feature is added to the codebase.

Finally, the two components are checked together to ensure they work and then the new feature
can be deployed.

4.4. Feature Development 22

Figure 4.3: Overview of feature development process.

4.5. Deployment 23

4.5. Deployment
The initial idea of the team was to have Single Sign-On, the SAML1 protocol used by the university for
authentication, working before deploying TAM. However, the information on configuring the protocol
for TAM proved to be more difficult than foreseen. After the team had invested a lot of time into the
process of configuring Single Sign-On, the client requested that a primitive version of TAM, without
authentication, was to be deployed.

This was needed because of deadlines faced by the client; the information gathering process had
to begin. This meant that the team had to create a placeholder with partial functionality of TAM until
Single Sign-On was configured correctly. The team successfully deployed the placeholder version as
soon as the fourth week of the project, at the end of the second sprint.

There were several downsides to such an early deployment. The deployment of newer versions of
TAM had to be done with extreme care, as they were deployed to a live environment with real users.
For example, when the database schema was modified, the team had to make sure that the existing
data was not altered or lost. If the system did not need to be available live to users, the team would
not have had to focus on these aspects.

A downside of the early live deployment without Single Sign-On is that newly created features could
not be always deployed to the live environment, since user authentication was not possible. This meant
that non-student functionality could not yet be deployed, and students could not see their personal
information in the system. Care had to be taken to ensure that no functionality that could reveal sen-
sitive data or damage the integrity of the system was available to any user.

After Single Sign-On was configured, the team could work on easing the deployment of TAM. This
is because all new features could now rely on authentication of the user, allowing for the deployment
of new features with appropriate set of access rights. After this, deployments became easier; while
care still has to be taken to preserve and protect user data, all functionality could be deployed by
protecting endpoints with authentication. Before, care had to be taken to not deploy endpoints that
revealed sensitive data. Switching from development and production configuration now involves only
setting TAM to production mode by adding one argument, with no other changes needed.

1https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language

https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language

5
Final Product

This chapter gives an overview of the final product that is delivered. First, an overview of the func-
tionality in the final product is given. Next, the codebase for both the backend and the frontend is
evaluated. This evaluation covers the structure, testing and documentation of both the frontend and
the backend, together with the API specification. These sections center around Figure 5.1, which is an
in-depth version of the original stack design originally described in Figure 3.2.

After the sections on the front- and backend, the final model of the database is explained and
compared to the initial design. Fourth, the initial modelling of the scheduler, its conversion to code
and integration into the backend are explained. Finally, the feedback from the Software Improvement
Group (SIG) is discussed and reflected upon.

5.1. Functionality Overview
The final product supports the core functionality required to encapsulate the process of gathering and
scheduling TAs. The supported process begins with a course manager creating a new course. This
course contains basic information, like the name and the course code, the year and quarter the course
is given in and the lab sessions associated to the course. Once the course is created, it is added to the
overview of the course manager, showing all course editions he or she is managing.

After the courses are created, the scheduler can indicate that TA interest can be gathered for given
quarters. With interest gathering enabled, students can use the platform to see all courses looking for
TAs and indicate their preferences for courses to help with. The students are also able to indicate their
desired size for a TA polo to wear during lab sessions.

Once students have indicated their preferences, the verifier gets an overview of all students who
wish to become a TA. Using this overview, the verifier is able to register if a student is fit to become a
TA and rate the students on their proficiency during previous editions of the course.

When the scheduler enables availability gathering for a quarter, the students are also able to fill in
their availability on the website. Using the gathered interest and availability of TAs and the confirmation
of the verifier, the scheduler is finally able to start generating a schedule for the selected quarters. Once
the linear solver is finished, an optimized schedule is stored on the server.

A screenshot of the page where a TA can fill in their preferences in included in Appendix F.

5.2. Backend
The backend of the platform consists of a set of API endpoints, from which data can be requested and
updated. The purpose of the backend is to supply the frontend with a way to retrieve and update data
in the database, in a standardized way. Moreover, it handles the authentication of the user through
SAML, the protocol used for the user authentication of the university. It is written in Java, using the
Spring MVC framework, as explained in Section 3.2. This section first gives an overview of the structure
of the backend. Next, the created API specification is discussed. Finally, there is a brief discussion on
the test coverage and documentation of the backend.

24

5.2. Backend 25

Figure 5.1: Detailed structure of the front- and backend

5.2. Backend 26

5.2.1. Structure
The overall structure of the backend can be seen at the bottom of Figure 5.1. In the backend, some
components are prefixed with <T>. This indicates that there are multiple components which share
the same organizational structure, but which handle different types of request. For example, there is
a LabController which manages all requests which request, create or alter lab information. The
prefix Lab is shared across all prefixed components, i.e., there is a LabValidator, a LabService
and a LabRepository as well. In the description of the structure below, the example of creating a
new course will be used. This example is used because it covers all relevant aspects of the structure of
the backend. The HTTP request that is done for the creation of a course is the POST request. Because
it is a POST request, a JSON object is provided in the body of the request, describing the course to be
created. Although this subsection focuses solely on a concrete example, this is merely to clarify the
process of processing a request. The other components and endpoints function in a similar way as
described below.

Controller
The Controller processes the requests of the user and delegates to other components of the backend to
send an appropriate response. It consists of multiple methods, with each method linked to a particular
HTTP request. The Spring framework handles these HTTP requests and calls the correct method of the
controller, together with the JSON data and the given query parameters if these are available.

For the example request the JSON, describing the course to be created, is sent to the
CourseEditionController. This Controller handles every request for retrieving, creating and
altering course information. The CourseEditionController first checks using the
AuthorizationService to verify that the user making the request is properly authorized to do so.
This depends on whether the user is logged in and whether the user is either a staff member or an
admin.

When the user has either of these roles, the CourseEditionController continues to validate
the sent JSON. This is done by handing the JSON data to the CourseEditionValidator. If the
JSON data is formatted correctly, the Controller creates a CourseEdition instance from the given
JSON.

Once the request has been completely validated the CourseEditionController passes the
request to the CourseEditionService, which returns the requested or updated information after
its computations and calls are finished. This returned information is then used to create a correct
response according to the API description and this response is returned to Spring.

Validator
The Validator receives the JSON sent to the HTTP endpoint and validates this against the set format.
This format is set in in the JSON Schema1 format. JSON Schema is a standardized way to specify the
format that JSON must adhere to. This technique is used to strictly set the format that was agreed
on by the frontend and backend. If the received JSON does not adhere to these specifications for the
HTTP endpoint, the Validator throws an error.

For the example request, the CourseEditionValidator validates the sent JSON. The particular
JSON schema used checks whether the sent JSON specifies an owner, course code, name, teacher,
study year, year and quarter. Moreover, it only allows for a description to be specified, but this is
optional. If either of these fields are not specified, or other fields are specified within the JSON, the
JSON is marked invalid and an error is thrown by the CourseEditionValidator.

Service
The Service receives the parsed information by the Controller and makes sure the request is possible.
After this check, the Service can perform other business logic before sending the information to the
Repository.

In the example, the parsed CourseEdition instance is sent to the CourseEditionService.
Before this CourseEdition is added to the database and the application, a range of conditions have to
be checked. The first condition which is checked is whether the owner variable of the CourseEdition
exists as an user. This is because the owner variable describes a netid of an user, which has to be regis-
tered in the system to not create erroneous behaviour in the database. The CourseEditionService
1http://json-schema.org/

http://json-schema.org/

5.2. Backend 27

uses the UserService to check this condition, because the UserService controls the user informa-
tion in TAM. Secondly, it is known that the combination of course code, year and quarter is unique for
each course. Therefore, the CourseEditionService checks whether this combination of parame-
ters is unique as well. This check is done through calling a method in the CourseEditionRepository,
which returns whether a CourseEdition with such combination exists.

After these two conditions have been checked, the CourseEditionService sends the
CourseEdition instance to the CourseRepository, which then returns the unique identifier of
the newly created CourseEdition. The CourseEditionService then adds this identifier to the
CourseEdition instance and returns this instance.

It has to be noted, however that one Service does not comply with the above functionality: the
AuthorizationService. As mentioned before, the AuthorizationService verifies whether the
user is correctly authorized for a particular request. This is done through checking whether specific
properties, such as certain roles, are in the user object associated with the user making the request.
In the example, this means that the AuthorizationService checks whether the user is either an
admin or a staff member. The AuthorizatonService then returns whether this is the case.

Repository
The Repository receives validated data and stores this data inside the database. This is done through
communicating with the database through the JdbcDaoImpl class, which acts as a wrapper for the
JdbcTemplate2 class supplied by the Spring framework. This class connects to the MySQL database
through the Java Database Connectivity (JDBC) API.

In the example, the CourseEditionRepository receives the CourseEdition instance which
is to be added to the database. In the CourseEditionRepository a SQL query is formulated
with which the CourseEdition can be added to the database. The CourseEditionRepository
specifies the types of the fields of the CourseEdition and sends this, together with the fields of
the CourseEdition and the SQL query, to the JdbcDaoImpl. After the new CourseEdition is
added to the database, the CourseEditionRepository returns the identifier of the newly created
course.

5.2.2. API Specification
In order to document the consensus on the data transfer between the backend and the frontend, an
API specification is created, as described in Section 3.3. This specification is conform the intended
described functionality, as it does describe each endpoint in the backend.

The full list of API endpoints is included in Appendix C. As can be seen in the expanded GET:/me
request in Figure 5.2, is that each endpoint comes with a description and summary of the functionality.
Moreover, all parameters which are used by the endpoint are described. Lastly, a detailed overview of
all the possible responses the endpoint can return is given. When JSON is returned, in the code 200
response of the request, an example structure is given. Instead of this example structure, the model
can be displayed as well, which describes the data types and additional properties per set property.

Overall, the provided API has helped with providing an overview of the available functionality of TAM.
Moreover, using the API, the frontend and the backend had common ground to discuss the way data
was transferred between the two components. For each endpoint described in the API specification, the
possible status codes which are thrown can be used by the frontend to display detailed error messages
to the user.

However, in some cases, the created endpoints are too specific for the frontend. For example, the
GET:/students request tailors to only one use case; that of the verifier. This can be generalized
by creating more general endpoints on which filters can be applied to obtain the specific needed
functionality.

Moreover, there are some minor inconsistencies in the use of the API. For example, the unique
identifier property of a course has the id property at times, but sometimes ce_id is used instead.
Although this is the case, these inconsistencies are always documented well and when the user follows
the documentation, they will not encounter unexpected behavior.

Besides these minor extensibility and consistency improvements, the API specification is robust and
extensively detailed, which serves as a core pillar of the future of the project.
2https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jdbc/
core/JdbcTemplate.html

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html

5.2. Backend 28

Figure 5.2: The complete /me endpoint in the API specification

5.2.3. Testing
One of the design goals set in Section 2.4.3 was to have a maintainable codebase. This in turn means
that the code is both testable and tested. In the backend, the goal was to test as much as was possible
using the prescribed tools in Section 3.3b. A focus was placed on branch coverage, as the team feels
that this is the most accurate indicator of which code is worth testing.

The testing in the backend was done using the JUnit testing framework together with the Mockito
framework. These tools were powerful enough to test the majority of the code, which can be seen in
Figure 5.3.

Most of the backend has been tested. There are two reasons code is still untested. Part of the
codebase interfaces with Spring and is very difficult to test, while simultaneously not being very inter-
esting to test due to the lack of complex logic. This includes parts of the AuthorizationService
and the SAML configuration.

Part of the scheduler-related code is also untested because it is in need of refactoring. For exam-
ple, the endpoint to create a new schedule should create a new thread that will perform the actual
scheduling, such that the endpoint can reliable return a response to the user instead of a timeout. The
team agreed that testing this code is not worthwhile, when this structural change would break these
tests immediately.

5.3. Frontend 29

Figure 5.3: The test coverage created by Jacoco

5.2.4. Documentation
In the process of making the codebase simple for extensibility for new developers in the future, it is key
to document the codebase. In the backend, this was primarly done through JavaDoc documentation,
together with some explanatory in-line comments. During the project, the tools Checkstyle and PMD,
as mentioned in Section 3.5, together enforced a strict policy on the documentation amongst other
code styling. This strict policy involved having JavaDoc documentation above each class, method and
variable. Moreover, the method documentation includes description for all parameters, the return value
and the thrown exceptions, if any.

Apart from the enforced policies by the static analysis tools, an effort is made to have a consistent
way of writing documentation. This consistency is kept during the peer reviews before new functionality
is merged into the system.

As mentioned before, the code is commented with in-line comments as well to clarify any parts of
code that might be confusing. This makes it so that new developers do not get confused when reading
the existing implementation for existing methods.

To ease the process of getting into the codebase, the backend features additional documentation, in
the form of a ’developers.md’, as well. This document describes the quirks of the platform which might
seem counter-intuitive. Moreover, it documents workings of the product that might be overlooked by
new developers and could lead to frustrations and debugging.

5.3. Frontend
The frontend of TAM consists of a website. This website is written in JavaScript using the Vue framework
and styled using Bootstrap, as explained in Section 3.3. This section first gives an overview of the
structure of the frontend. After, there is a brief discussion on the test coverage and documentation of
the frontend.

5.3.1. Structure
The frontend of TAM consists of three pages. First there is the index page, which is served when a
user visits the website. This page is a static page which explains the goal of the platform and links to
the Single Sign-on service. If the user is already signed in using SSO, which is the case if he or she
visited another website using SSO during the same browser session, the index page is not shown and
the user is sent directly to the next page.

When a user visits TAM for the first time, the credentials page is served after logging in. On this
page, the user can check if their credentials are correct and have to accept the GDPR. After the user
has confirmed their credentials and has accepted the GDPR, the full frontend application is served.

This is a single-page application (SPA) as the Vue framework focussed on the development of single-
page applications. With an SPA, the entire webpage is sent to the user only at the start of the session.
Any requests to the server change the data that is displayed, but these requests do not result in a new
webpage being sent. This means that the amount of data being sent from the server is minimized.

Components
The application is structured using components using the Vue framework. By using these components,
the logic and design of different pages or items on a page can be split and reused. This results in the
code in a components only being responsible for one subject and thus helps the understandability of
the codebase. If the amount of logic included in one component becomes too large, a part of the logic
is moved to a child component. An example of this is the editor for the lab sessions on the overview

5.3. Frontend 30

page of a course. By moving the logic for this editor to a child component, the logic involved in the
overview page stays understandable and keeps its focus on only one subject.

Routing
Because the developed web page is an SPA, changing perspectives has to be handled within the
application. To provide the logic of replacing the component shown to the user, also referred to as
the active component, the Vue router is used. This router is responsible for swapping out the active
component. The router is also responsible for preventing the user from visiting a component he or she
is not allowed to visit, like a student accessing the component used by the verifier. Before the router
links to a component reserved for a specific role, it queries the store to check if the current user has
the role required. If this is the case, the component is shown to the user. Else, the request to show the
component is rejected and the current component is shown. Components not reserved for a specific
role are always directly shown to the user.

Store
Shared data, like the information about the current user, is saved in a central store. This store is
provided by Vuex, an extension of the Vue framework. Besides saving the data used by the components,
the store is also responsible for retrieving data from the server and storing the data retrieved from the
server. Once the data is retrieved from the server, the store saves it and provides access to it to all
components. When sending new data to the server, the store also updates the local copy to provide
the components with the updated data.

HTTP Requests
The application communicates with the server through a HTTP adapter, Axios. Axios provides a stan-
dalone HTTP adapter which can easily be configured to our needs. This instance has to be decoupled
from the Vue components because it also has to be accessible form other parts of the frontend, like
the store. Upon recieving a response from the server, Axios automatically converts the response body,
which is in the JSON format, to a JavaScript object. This way, the responses can easily be used by the
application.

Styling
To provide styling for the application, Bootstrap is used. Using the Bootstrap-Vue package, complicated
objects, like interactive tables, can easily be controlled from the component while also being styled by
Bootstrap. The themes can also easily be modified by changing the default settings from Bootstrap.

5.3.2. Testing
For testing the frontend, the Jest framework is used, as described in Section 3.5. This framework
supports all required aspects of testing: asserting conditions, mocking components and collecting
coverage of all executed tests.

The test suite for the frontend consists mostly of unit tests for the frontend. The reason for this
is that most of the components are designed to work independent of each other. Testing of the
components focuses mainly on the logic inside the component. This logic is responsible for linking the
data from the server to the DOM with which the user interacts. By mocking external dependencies, the
tests can focus completely on the logic inside the component being tested. Since the Vue framework
handles the interaction between the logic in the component and the DOM, only a limited amount of
time is spent testing this interaction. The coverage report generated by Jest is shown in Figure 5.4.

Figure 5.4: The test coverage created by Jest

5.4. Database 31

5.3.3. Documentation
The frontend is documented using JSDoc, a documentation standard similar to JavaDoc. Documen-
tation is added to each function in the codebase and includes a description of the behavior of the
function, the input arguments and the returned value. For methods linked to DOM elements via Vue,
the element linked to the method is also stated. Comments on inline functions, like functions passed
when sorting, are only provided when the behaviour of the function cannot easily be derived from the
context.

By configuring ESLint (see Section 3.5), both the presence of documentation and the style of docu-
mentation is enforced. The configuration of ESLint is not able to enforce the presence documentation
for functions inside the modules of the store. Documentation in these parts has to be enforced via
peer review.

Additional comments are provided on select parts in the codebase, explaining the handling of corner
cases or clarifying complex parts of code. This eases the process of understanding the full behaviour
of all functions.

5.4. Database
The initial database schema, found in Figure 3.1, was designed before any features were implemented.
This design was used at the start of the project, but was altered during the project because additional
functionality was required. The final database schema can be viewed in Figure 5.5. In this section,
the initial design the database schema is contrasted with the final version. The areas of change are
identified and the reasoning behind these changes are explained. These changes are split in two
categories: additions and structural changes.

5.4.1. Additions
The changes in this subsection are changes to the database schema that are simple additions to the
initial database schema. These changes catered to functionality which was introduced during the prod-
uct and which was unforeseen when designing the initial database schema.

The majority of the changes have to do with submitting preferences by the students. For this part
of the process, the client requested two additions to the original functionality. The students have to
be able to submit notes for each quarter, which can be used for additional information or questions.
Moreover, the students have to be able to submit whether they have been a TA for the course they
prefer to become a TA for, because no information of previous years is known.

To accommodate these two additions, two additions to the database were made. The Note table is
added to the database, as can be seen in the top right of Figure 5.5. In this table, the notes of a user can
be saved for each quarter. In addition, the last_year column is added to the PersonalPreference
table. This column contains a boolean value and resembles whether the TA was a TA for the course in
a previous year.

Another change was made after the SSO worked in TAM. At this time, TAM could receive user in-
formation from the university. This information did not only include netid, first name, last name and
email, but a display name and possibly a student number as well, if the user was a student. The latter
two were not present in the User table of the initial database schema. However, the student number
is commonly used by the Verifier in the process of looking up students. Apart from this, the display
name might be different of the combination of first and last name and as the name suggests, this field
is to be used as a display name in applications. To account for these two previously unsaved fields,
they are added to User table.

Lastly, the Timeslot table used integers for slots, which were then defined by the team as in fig-
ure 3.1. However, the team thought it was better to make these slots explicit in the database. There-
fore, the Slot table is added, which includes the start and ending time of each slot. The Timeslot
table now uses the identifier of the Slot table as a foreign key and is therefore forced to only use the
defined slots.

5.4. Database 32

Fi
gu

re
5.
5:

Th
e
fin

al
da

ta
ba

se
m
od

el
.

5.5. Scheduler 33

5.4.2. Structural Changes
Apart from the additions to the database schema, some structural changes were made during the
course of the project. These changes were made when the initial schema required redesigning before
the envisioned functionality could be implemented.

The first improvement which was made is the introduction of the Quarter table. In the initial schema,
the Schedule table contained instances of schedules, which in turn described the state of the quarter.
For example, the Schedule table stated whether the quarter allowed students to submit preferences
for courses in the given courses. This database schema did not take the existence of multiple schedules
for one quarter into account, which would lead to unexpected behavior. Moreover, multiple tables con-
tained a year and quarter column, but these tables were not linked to the Schedule table explicitly
in the initial database schema.

To make the link explicit between year and quarter, as well as a unique state per quarter, the
Quarter table is introduced. This table had the year and quarter columns as primary key. This
composite primary key is used in each table which contains a year and quarter in the form of a foreign
key. The tables which include these two columns are: Limits, Note, CourseEdition, Timeslot
and Schedule. Moreover, the state of the quarter is moved from the Schedule table to the Quarter
table as well. This state is included in the interest, as well as the newly introduced availability
and verifiable boolean columns. The interest column indicates whether students are allowed to
submit preferences to courses in the quarter. The availability column indicates whether students
are allowed to submit availability for the quarter. Lastly, the verifiable column indicates whether
the Verifier is allowed to rank students for courses in the quarter.

Another small improvement with respect to quarters was made within the Limits table. The team
added the year and quarter column to the composite primary key to make it possible for a student
to submit different limits per quarter.

A redesign for the sake of clarity was made to the Timeslot table. In the initial schema, the Timeslot
table had a id column as its primary key. However, this column had no relation to the contained infor-
mation that it referenced and the Timeslot table had another unique key, namely the combination of
date and slot. The primary key is therefore changed to be the combination of the date and slot
column.

Another improvement made in the database was the representation of labs. In the initial schema,
there was only the option to specify the amount of TAs a lab wanted per timeslot. However, the team
wanted to provide the functionality to specify the amount TAs per course per timeslot. This became
impossible if the lab consisted of multiple courses, since only one number of TAs could be specified
per timeslot. Because of this, a LabSession table is created which resembles a timeslot per course
per lab. Using this table, the number of TAs per timeslot per course for each lab can be specified. The
primary key of this table, which is a combination of the primary keys of both the CourseEdition
and Timeslot primary keys, is used in the LabAssignment table. In this way, it is known to what
course and timeslot in the lab the student is assigned.

5.5. Scheduler
This section discusses the scheduler. First a reflection on the initial modelling is given. Next, the
translation to Gurobi is discussed. Finally, the integration of the scheduler into the backend is discussed.

5.5.1. Modelling
Creating an implementation using Gurobi was done based on the modelling described in Appendix B.
Over the course of implementing the model, we realized that the initial model was incomplete. In the
following sections, the changes made to the model as well as possible future improvements are listed
and discussed.

Two extra constraints were added to the model in order to make it more complete. These constraints
deal with giving students the ability to impose limits on the amount of hours and/or courses they want
to TA. The two constraints are very similar in structure; A student cannot be scheduled to more courses
than he wants to TA for and A student cannot work more lab sessions per week than he wants to. For

5.5. Scheduler 34

these constraints, a matching table is needed that holds, for each student, their limits. Below is the
constraint along with the needed data for the course limits; the hour limits are similar.

• 𝑆𝐿𝐶 : Integer 𝑆 × 1 matrix that indicates the amount of courses a TA wants to assist at once.

• A student cannot be scheduled to more courses than he wants to TA for:

𝑆𝐿𝐶 > 0 ⇒ (∑
∈
𝑇𝐶 ,) ≤ 𝑆𝐿𝐶

The second soft constraint, (It is better for a student to be assigned fewer courses), was incorrectly
modeled. In the original form, the constraint expressed the same as the first soft constraint. The
constraint should have been modeled quadratically:

∀𝑆 ∈ 𝑆 ∶ Minimise (
| |

∑𝑇𝐶 ,)

This expression means that assigning two students to one course each is better than one student to
two courses, which was the intended design of the objective. While it is possible to solve problems
with quadratic objectives, it is not possible to use a quadratic objective in a multi objective model using
Gurobi. We could not find any solvers that have this functionality. Therefore, the current scheduler
does not take this constraint into account.

5.5.2. Translation to Gurobi
It took some time to understand the code structure needed to translate these constraints into Gurobi,
but once this was found translating most of the constraints and objectives was straightforward.

Converting the written model to an implementation that fit Gurobi was straightforward. During the
process small changes were made to several constraints in order to improve accuracy or efficiency.
These changes are listed in this section.

Several constraints made more efficient by adding sanity checks to check whether it is even possible
to violate them. For example, look at the first hard constraint (1. A student cannot be scheduled for
multiple labs during one timeslot.). If there is only one lab during a certain timeslot, this constraint
can never be violated and does not need to be considered. Similar checks were added to the student
hour limit and student course limit constraints.

Hard constraint 4 (A student must be assigned as a TA to a course if the course has indicated
so) was changed to take into account the students preferences. It can only hold that a student must
be assigned to a course if that student also indicates that he would like to assist the course, and is
approved by the verifier.

5.5.3. Integration in System
The scheduler is integrated into the backend and works similarly to the other endpoints available. When
the endpoint for the scheduler is invoked, the backend reads the data of quarter to be scheduled from
the database. It converts this data into the matrix format that is expected by the scheduler to create the
linear model, as described in the previous section, and then invokes Gurobi to solve the model. Once
the model has been solved, i.e. a scheduling has been made, the scheduler converts the assignments
back into the database. Finally, the student assignments and statistics such as the number of TA’s per
lab session and hours worked per TA can be printed to a CSV-file for further parsing. Integration into
the frontend is not yet complete, as will be discussed in Section 7.1.

5.6. SIG Feedback 35

5.6. SIG Feedback
In this section the outcome of the code quality evaluation from the Software Improvement Group3

(SIG) is discussed. The code base is evaluated two times throughout the project. The feedback on the
initial version was received in week 8. The feedback on the improved version is still to be received and
will be included before the report is uploaded to the TU Delft Research Repository4.

5.6.1. Initial Feedback
The code base was uploaded to SIG on Friday June 1st for the first evaluation. On June 11th, the
feedback from SIG was received; the original Dutch email is included in Appendix D.1. This section
summarizes the feedback in English, and explains how the team handled the feedback.

The code base scored a 3.9 out of 5 on their maintainability model, indicating an average market
maintainability. Unit Interfacing was the only aspect indicated as a point of improvement. In order to
improve the code, the amount of parameters for certain constructors needed to change, because a lot
of parameters indicate the lack of abstraction. For example, the CourseEdition class was described
as a class to improve upon, since it has a lot of parameters, including strings which could be replaced
by objects. Apart from the Unit Interfacing improvement, no other improvements were suggested. A
remark was made that the test suite looked promising.

Based on this feedback, a reply was formulated regarding the Unit Interfacing issue. In this reply
it was indicated that the large constructor was inherent on the architecture TAM uses, a hand crafted
database schema and data classes (Beans) to map the data onto. It was not clear if this was taken into
account during the evaluation process. Furthermore, a more detailed explanation of the composition
of the grade was asked for. The advice to change the strings to objects was not followed up, since it
does not make sense in our object relational mapping to make objects for these parameters.

SIG replied quickly with additional explanation regarding Unit Interfacing, they recommended the
use of setters, whilst leaving the constructor empty. The team agreed that the proposed solution was
indeed an improvement and it would make the code more clear, therefore it was adopted. Regarding
the composition of the grade no explanation was given other than information on the general grading
model used.

Another reply was sent, asking again for the composition of the grade and more aspects to improve
upon, but a reaction on this email is not received.

5.6.2. Final Feedback
During the development of the rest of the project, further improvements on the codebase were made.
The feedback on the final codebase stated that the codebase improved further in every aspect. This
feedback is included in Appendix D.2.

3https://www.sig.eu/
4https://repository.tudelft.nl/

6
Ethical Implications

During the development of every software project, important ethical considerations are faced. This
especially holds for a project involving live deployment, where it is important to handle user data
responsibly. In this chapter, three topics with ethical implications are discussed. First is the topic of
storing personal information. Second comes the topic of access to personal information. Finally, the
potential bias in the scheduling process is discussed.

6.1. Storing Personal Information
TAM stores basic personal information such as name, student number and email as well as detailed
information like payscale and shirt sizes. It is therefore important to design the system with the
GDPR (General Data Protection Regulation) in mind. The GDPR is a regulation constructed by the
European Union and concerns personal information storage and handling on (online) platforms, and
was adopted on 28 May 2018. When a user signs up to use our platform, they have to actively agree
with their personal information being stored. Only the minimal amount of data that is needed for our
the functioning of our platform is stored, and this data is not shared with any third party. TAM complies
with the various individual rights, such as the ’Right to Access’ and the ’Right to Erasure’ by an admin
manually resolving such requests via direct database access. Due to the small amount of users, not
more than a few hundred, an automated and integrated system was deemed to be unnecessary.

One point of concern we discovered is that the backups of the system database are not GDPR
compliant. The client relies on database backups made by a central entity of the Delft University of
Technology, and there is no way for the client to access and modify these backups to comply with, for
example, the right to erasure. Restoring a backup could thus add data, that was deleted or modified
by user request, back into the database. This was brought to the attention of the client, but solving
this issue is outside of the scope of this project.

6.2. Access to Personal Information
As the project included a live deployment of the system managed by the team, the team had access
to the production database containing personal information of over a hundred students. The team
formally agreed with the client to handle this data confidentially and with care. Entries in the database,
other than test entries created using the netid ’test’ and our own personal entries, are not to be touched
and only checked to verify the correct workings of the system. Access to and information from the
database should not be shared with anyone outside of the client and the team. The team should also
no longer have access to the live system after completion of the project.

Access to personal information is also a key component of the functionality of TAM. All data in the
system is accessible by only the minimal set of people needed. For example, payscale information of
a student is highly confidential and may only be seen by the student themselves, the verifier who sets
the payscale into the system, and admins of TAM. Authentication requirements are checked for each
request made to the backend. It is important to maintain strict access rights in case of integrations of
TAM with other platforms, as will be discussed in Section 7.1.

36

6.3. Scheduling 37

6.3. Scheduling
The TA selection process includes factors such as course manager preferences and verifier rankings.
An important note here is that the client is both the scheduler and the course manager for all courses
in the Computer Science Bachelor. During the old scheduling process, the preferences of the course
manager were not explicitly stated. They only appeared implicitly while the scheduler was choosing
the students to assign to each course. When the personal opinion of the course manager or scheduler
was given, it could be unclear why certain choices were made.

In TAM, the course manager and scheduler roles are split. The preferences of the course managers
are submitted before the scheduling process begins, marking a clear distinction between the two roles
regardless of who performs them. The automated nature of the scheduling algorithm means that all
factors that influence the automated process need to be explicitly stored in the database, and the
model is explicitly created in the code.

There are two important advantages of the automated system over the manual system. Firstly,
it means that any generated schedule can be recreated to demonstrate that the schedule was fairly
formed from its inputs by applying the model, barring randomness inherent to a linear solver. Secondly,
it makes it possible to explain confidently to a student why they were (not) selected, if the need for
such an explanation arises. We should note that it is still possible for the scheduler to make manual
adjustments after the schedule has been generated. This does still leave the possibility of bias being
introduced by the scheduler, but this option is necessary to accommodate for any features that the
automated scheduler might be missing, or for small changes to input data which impact the schedule
but do not warrant a complete rescheduling.

7
Discussion

Although our BEP project is now finished, there are many new features that could still be added to
the TAM platform. This chapter begins with an overview of future work that could be done to improve
TAM. This overview is followed by a reflection on the different components of TAM. After this overview,
we discuss the problems we encountered and adjustments that we made during the project, involving
Single Sign-on, the development process, the weekly meetings and the object-relational mapping.

7.1. Future Work
In this section, the recommended future work is presented. It starts by describing the additional
functionality for each role described in Section 2.4.1. After this, the future work which has to be
put in for continuous deployment is discussed. This section is concluded by discussing the possible
integrations between TAM and numerous other applications.

7.1.1. Roles
In section 2.4.1, five roles are identified. For each of these roles, future work is addressed in this
section. Note that the future work described in this subsection is not thought of at the end of the
project, but was already considered at the start of it, as can be seen in Appendix A. Because of this,
the database has been designed with these features in mind. Creation this features would therefore
be considerably less work than when the database schema has to be modified as well.

Course Manager
Currently, the Course Manager has to manually add each lab to TAM, essentially copying the time and
date from the MyTimetable of the university to TAM. To automate this process, functionality could be
added that makes use of MyTimetable to load in the labs into TAM of the specified course.

In the current version of TAM, there is only one user which can manage a course. In the future,
this could be extended by allowing the creator of a course to assign manager roles to additional users
in the system, which can then add labs and manage the course as well.

The Course Manager could be able to specify preferences for students which are interested in TAing
for their course in the future as well. This can be done through requesting all students which submitted
preferences for the course and setting a preference rank for each student.

During the course, TAM could provide the Course Manager with a way to notify all TAs for his course,
either via email or via Mattermost. This could then be used to notify all students, for example about a
new assignment that is up for review. This functionality could then be extended even more to notify
all TAs in a specific map, which can then be used to message all students if for example the location
of a lab is changed.

After the course is done, other functionality that the Course Manager could use is to provide feedback
to students. An interface can be provided which allows the Course Manager to write an additional note
to a TA wherever the Course Manager deems useful. This feedback can then be displayed to the Course
Manager in the next edition of a course, which helps the Course Manager in selecting the correct TAs
for their course.

38

7.1. Future Work 39

Teaching Assistant
The main feature which the Teaching Assistant currently does not have is a complete overview on the
dashboard. Although the dashboard now features all functionality available to the Teaching Assistant,
there is no way of viewing the courses or labs they have been assigned to. The latter could be displayed
in a personal schedule, in the form of a calendar. This calendar functionality could be improved even
more by integrating this created calendar with assigned labs into other calendars such as Google
Calendar. This can be done through exporting the assigned labs to the ical format, which can be
used by all the major calendars.

If a Teaching Assistant is unable to attend a lab that they are assigned to, there is currently no
way to inform the Course Managers through TAM. This means that the Teaching Assistant still has to
manually contact the Course Manager at the moment. In the future, this could be improved upon by
creating a button to notify the Course Manager in this event.

Verifier
The Verifier already has interfaces to completely rank and verify the prerequisites of a student. However,
the Verifier can only verify that a student has done the English Test by receiving a certificate from the
student. In the current version of TAM, this certificate cannot be sent through TAM, but instead has to
be sent to the Verifier separately. This can be integrated into TAM in the future by allowing students
to upload their certificate into TAM. These uploaded files can then be served to the Verifier, who can
use them to approve or deny the English Test status of the student.

Scheduler
In the current TAM, the scheduler only has two endpoints in the backend, which can be used to
respectively create a schedule and export a finished schedule to a csv file. Ideally, the Scheduler
receives an interface in the frontend which can be used to create, alter and finalize a schedule. This
page would then have an option to load a created Schedule, with an overview for each lab, which
students are selected. If the Scheduler then wants to alter an assignment manually, he can get an
overview of alternative students which are most suited for the lab. The Scheduler can then finalize this
created schedule, which means the schedule is used in the other components of TAM.

Other than the interactive schedule creation, the Scheduler could get an overview before the sched-
ule is created as well. This overview can include a statistics page, which offers insight on the amount
of possible TAs per course. With this overview the Scheduler can estimate whether there are enough
TAs to create a usefull schedule.

Admin
In the current version of TAM, the Admin is allowed to manually do all API requests which are available
in TAM. Ideally, the Admin has a perspective in which he can get an overview of the whole system.
In this overview, the Admin can moderate all information put into the system. Moreover, through this
overview, the Admin is able to delete all user information from the system if this is requested by the
user.

Other than this, TAM could offer an impersonation functionality for the Admin. This can be used
to review optional problems that occur to a specific user. The Admin could then impersonate the user
through TAM to investigate what problem occurs. This can help to debug TAM in case something goes
wrong.

Scheduler
There are many improvements that could be made to the scheduler. As discussed in Section 5.5.1, the
objective to minimize the amount of courses per TA is not currently in the implementation. Finding
a way to either model this as a linear constraint or include a quadratic constraint in a multi-objective
Gurobi model would be a good improvement.

Student experience is currently stored in the database, but is not included in the model, because
the team, in conjunction with the client, came to the conclusion there is a simple universal metric is not
possible. A possible implementation would be to minimize: |#𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑𝑇𝐴𝑠−#𝑖𝑛𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑𝑇𝐴𝑠|
to aim for a fifty-fifty ratio. This formula could be adapted for different ratios by applying factors to the
two sides. It would most likely be desirable to supply the desired ratio on a course by course basis.

Another interesting addition would be the ability to load in an existing (partial) schedule, to use
as a fixed base for further scheduling. Examples where this would be useful could be adding more

7.1. Future Work 40

TAs to certain labs after a schedule was already made, or after manually removing some TAs who are
no longer available and finding replacements for them. This could be implemented by loading in the
assignment matrices of the existing schedule, and setting any made assigments to be forced to be
taken again in the new schedule.

7.1.2. Continuous Deployment
The current deployment process is described in section 4.5. Ideally, this process is done automatically.
This can be done by listening to the GitLab repository for changes. If the current version is changed,
the server could be updated automatically using a script. This script could then do the actions done in
the current deployment process, but without any human interaction.

Before this is done, the infrastructure to automatically update changes to the database schema to
the database on the server as well. The options to do this automatically have to be investigated further
before continuous deployment can be realized.

7.1.3. Integrations
At the moment, TAM is a standalone platform which improves the process of recruiting and scheduling
TAs. However, there are multiple in-house standalone applications with which TAM could integrate to
increase its functionality. Moreover, the data duplication across these applications can be reduced by
introducing integration between different applications.

The first in-house application that comes to mind is Queue. Queue manages a question queue for
each registered lab in its system. The TAs for the registered lab have to be assigned manually to the
lab in Queue, after which they can answer and close questions in Queue. This same lab is registered in
TAM and contains all assigned TAs. An obvious integration between TAM and Queue would therefore
be to automatically assign the assigned TAs for a lab in TAM to the lab in Queue.

A similar integration can be achieved between TAM and the Complete Project Monitoring (CPM)
application. CPM manages the signing off of assignments handed in by students for particular courses.
The integration with TAM could be to automatically add the TAs which are assigned to a course in TAM
to the TAs in CPM.

Another cumbersome process for courses is to pay the TAs. For each course, the student has to be
registered as a TA. This has to be done through FlexDelft1 and involves filling in a lot of information
about the student. This registration can be fully automatized using the information already available
in TAM. This automation can be done by registering a student for each course to which a student
is assigned in TAM into the FlexDelft application. After the TA is registered, the TA has to submit
their worked hours per week, which the course manager is then to confirm. This can once again be
automatized by using the information within TAM to automatically approve or deny the submitted hours
by each TA.

Lastly, all TAs currently employed use Mattermost as their instant messaging service to communicate
with one another. TAM could integrate with this application as well by sending push notification when
particular actions are required. For example, if a substitute TA is required for a particular lab, because
one assigned TA was unable to attend this lab, TAM could automatically send a push notification to
Mattermost. A more advanced integration could be to use emoticons or some other kind of response
to automatically replace the TA in the system when another student is able to substitute the TA.

7.1.4. End-to-end Testing
TAM currently has unit tests for both the frontend and backend in place, however no end-to-end tests
are included. End-to-end tests can help avoiding bugs during deployment, which cannot be solved
by unit tests. For example, when a mistake is made when documenting the API, this can lead to the
front- and backend being unable to communicate of that specific endpoint. With end-to-end testing,
this phenomenon can be avoided.
1https://flexdelft.nl

https://flexdelft.nl

7.2. General Reflection 41

7.2. General Reflection
During the development of TAM, several issues arose. This section describes both the problems en-
countered during the development live deployment of TAM and the points which were learned from.

7.2.1. Backend
The development process of the backend encountered a couple of issues, starting with the structure of
Spring. Due to the lack of experience with the framework, the way Spring handles Java Beans was not
understood. Besides, the default pattern used by Spring was not known, which resulted the controller,
service and repository to be merged into one component (see Section 5.2.1). Once it became clear
how the Java Beans and the structure in Spring should have been implemented, the codebase was
refactored to incorporate the desired structure. After these problems were solved, the development
process of the backend continued smoothly. Support for new components could quickly be added whilst
keeping the codebase tested and maintainable.

7.2.2. Frontend
The development of the frontend also encountered multiple problems. To begin, any experience with
frontend development was not present within the team, which proved to be a major issue. Combining
this lack of experience with learning the framework used, Vue, caused the development process of the
frontend to start of slowly. Once development got underway, multiple problems were encountered.

First, it was realized that some form of central storage was needed to share data, like information
on the current user, between components. This meant that the codebase had to be refactored to
incorporate the Vuex store. The initial implementation of the store turned out not to be completely
desirable since the store wasn’t connected to the server. This meant that any update of the data had
to be manually updated to both the server and the store. Solving this issue was done by moving the
connection to the server to the store itself. This way, updated data only has to be communicated to
the store, which beside updating its local copy also relays the data to the server.

Second, high workload during the start of the project (see Section 4.5) caused a lack of docu-
mentation in the frontend. Since the documentation was lacking in the first version of the codebase,
development of new components continued without documenting the new changes. Even though this
issue has finally been solved once the development of new features was stopped, it should never have
been an issue to begin with.

7.2.3. Deployment
Experience also lacked when it came to deploying software, which was a part of the project. This
caused mistakes, like forgetting to update the database schema, to be made. As the project progressed,
mistakes became less and less common. The deployment process also gave an insight in the processes
and technologies used, like connecting to a server using an SSH-session and running processes through
tee and screen to copy the output logs to an external file and keep the process running when the
SSH session is closed.

7.2.4. Scheduler
At the start of the project the team had no experience with using linear solvers. Because the scheduler
is only a component of the system, and time had also been spent on minimal-cost max flow, it was
difficult to justify spending large sums of time on researching linear solvers. Fortunately, through
studying example programs and some brief research it was possible to quickly create a working initial
version of the scheduler. This initial version was made using Python, as this seemed to be both the
easiest language to use for rapid development (that Gurobi was available for), and Python has the most
extensive documentation on the official Gurobi website and other discussion forums.

While Python does still seem like a better choice for getting familiarity with linear solvers, the effects
of this choice can be seen in how the final scheduler implementation is designed. For the Python
implementation it was easiest to structure the input to the model as matrices (2d-arrays), which is also
the way taken by most of the example programs. On top of being the easiest, it was also very similar
in structure to how the original modelling expressed the constraints, making them easy to convert.
However, after changing over to a Java based scheduler for easier integration with the rest of the
backend, we kept this matrix-based structure. This means that when scheduling, the following steps

7.3. Single Sign-On 42

happen:

1. Database entries get converted to Java objects

2. Java objects get converted to matrices

3. Matrices are parsed to create the constraints and objectives given to Gurobi

In this pipeline, the second stage does not serve much purpose and could probably be removed.
Rewriting the scheduler to instead parse the Java objects straight into constraints and objectives could
improve code readability and remove a needless abstraction layer.

We are happy with the choice of Gurobi. The documentation was useful, although the Java docu-
mentation seems to be less complete than for other languages and has less example programs available
than for example Python. One thing to note is that since this is our first experience with linear solvers,
we might have gotten used to certain functionality that other solvers might not have, that are default
in Gurobi. This will be something to find out in the future. Regardless, this experience will be useful
as a foundation for the future.

7.3. Single Sign-On
The biggest issue in the project was integrating SSO into TAM. It was expected that the configuration
used by the prototype version of TAM could easily be combined with the existing implementation in
Queue to create a working version. Due to a bad configuration in the metatdata needed, this didn’t
work as assumed. Attempts to solve the issue took over one week, but a solution was not found and
support for SSO was dropped for the first iterations.

Integration with SSO was picked up again when the final list of features to be implemented was
created. In the mean time, contact had been made with the external team responsible for SSO and
finding a solution for the problem was deemed possible. After contacting a developer responsible for
SSO, a new configuration was created. Using this new configuration, the login service finally worked
properly and could be integrated into TAM.

Because of the live deployment of TAM, the platform had to be designed to work without the
authentication offered by TAM. This meant that most requests on the server had to be disabled to
prevent users getting access to the data, limiting the capabilities of the frontend.

In the end, over 80 hours have been spent to get SSO working for TAM and even more time has been
lost due to the consequences of SSO not working. Most of this time was lost during the initial phase
of the project, causing other issues like a lack of documentation in the frontend. The problems could
have been prevented if a working version of SSO in Java for the website was provided when starting
the project. This should be a taken in consideration by the client if similar projects are organized in the
future.

7.4. Development Process
The codebase is dependent on external resources, such as the database and Single Sign-On, to function
properly. Usage of these resources is however limited to the production environment and can and
should not be used during development. In order to develop new features, several alterations have to
be made.

Backend
The first dependency of the backend is the database. In order to provide easy access to the database,
a local instance is used, allowing for easy access to records stored and created by the backend. Setup
of the database is described in a readme file and a script containing test data is provided.

After the issues with SSO were fixed, the backend also became dependent on SSO to provide
information about the user making the request. Because SSO cannot be used for a local instance
due to security reasons, the production configuration for the backend was not valid for development.
To solve this issue, a separate development security configuration was created and used instead of
the production configuration when the backend was started on a local machine. This development
configuration disabled most security checks, resulting in access to the API without any authentication.
Besides, a test user is loaded from the database to act as the current user, allowing the /me request
to be used during development.

7.5. Weekly Meetings 43

Frontend
The frontend depends on the API to function properly. During development, this API is provided by
the backend, running in development mode.

To enable live reloading of changes in the frontend during development, the application is served
through node instead of the backend. This causes warnings for cross-origin requests in the backend
because it does not accept requests through an external port by default. In order to enable cross-origin
requests, annotations have to be provided at each request controller in the backend. The process of
adding all the required annotations is acceptable, but far from ideal. A solution where cross-origin
requests can be enabled when running the backend in development mode would solve this issue, but
no solution has been found.

Besides having to enable corss-origin requests on the backend, the frontend has to change the
address to make requests to. This address has to be changed to localhost since the backend is active
locally. Changing the address based on whether the frontend is served in a production environment
should have been automated, but this has not been done yet.

Code Review
Before merging a new feature into the development branch on Gitlab, the code has to be reviewed by
at least one other member. Reviewing the code should be done both statically and actively.

Static code review consists of looking through the new or changed code, checking for styling prob-
lems and parts of code that should be implemented differently. Gitlab provides a useful view for this
type of code review.

Active code review consists of running the code and trying to find bugs or flaws in the design by
using the new feature.

Running the code locally can cause issues like test data missing from the database. Besides, setting
up the code locally could take a significant amount of time.

These issues caused active code review to be postponed to a moment the feature was deployed.
By testing the actual functionality of the code only on the live environment, broken features were
occasionally deployed. Preventing this unwanted deployment could be fixed by proving test data on
merge requests when desired, which has not been done during development.

7.5. Weekly Meetings
In order to keep the client and the coach involved in the project, a meeting with the client and a
meeting with the coach were planned on a weekly basis. During the initial weeks of the project, little
to none preparation for these meetings was done. A short discussion was held before the meeting, but
points to be discussed were not written down.

After a couple of weeks, the client suggested that topics to be discussed should be sent the evening
before so he could prepare for the meeting. This resulted in an agenda being created each week,
containing the new features to be shown, a list of topics to discuss, a set of questions for the client
and a planning for the next week. Creating this agenda resulted in the meetings with the client
being structured better and all points or questions to be covered during the meeting. Because of the
improvements for the meetings with the client, an agenda was also created for each meeting with the
coach.

Another improvement for the meeting with the client was suggested by the coach. By showing more
of the work being done than just the resulting webpage, the client could get a better overview of what
is being achieved during the project. This suggestion was quite useful as demos of the scheduler and
attributes like an updated database schema gave the client a better understanding in the development
process and helped planning new features to become more accurate.

7.6. Object-Relational Mapping
One recurring issue faced in the backend was the mapping between database and Java objects. This
was especially prevalent when retrieving information needed for scheduling from the database. At the
beginning of the project, the decision was made not to use a tool such as Hibernate, which is a tool
that manages the mapping from database to Java objects. Instead, we chose to perform this mapping
ourselves. We do this by performing SQL queries using JDBC, and having spring convert the result
value of these queries to objects. By using this manual mapping , we have more control over the

7.6. Object-Relational Mapping 44

database, especially given the live deployments we would face; we felt safer handling data migrations
without Hibernate. Over the course of the project we found that most of our queries only convert
tables to objects that represent most of the table, which suggests to us that Hibernate might have
been suitable. It would also simplify the codebase, especially for the scheduling process. It would be
worthwhile to research how Hibernate could fit into the system as it currently stands, and investigate
whether replacing the current mapping system with Hibernate could be an overall improvement to the
codebase.

8
Conclusion

TAM improves the teaching assistant recruitment and scheduling procedure, by improving the efficiency
of the workflow and automating the scheduling process. Creating and updating forms to gather student
interest is no longer needed, as these are now integrated in TAM. Once the courses are registered in
TAM, the preferences can be submitted by students. Course managers put new courses and labs into
TAM directly instead of informing the scheduler about their needs. This reduces the burden of work
on the scheduler. Future work could mostly automate the addition of courses and labs. The manual
processing of data is replaced by the TAM system. Users signing in via Single Sign-On ensures that
user details are correct and can be referenced back to an individual. Furthermore, creating a schedule
no longer requires manually assigning students to labs and checking constraints, as this is now done
by the automated scheduling system. In addition, the TAM system is completely in-house hosted and
GDPR compliant.

While TAM succeeded in solving the core problem, a lot of extensions are possible. The TAM
codebase serves as a solid foundation designed to be easy to work with and extend, with extensive
documentation and tests in place. We provide a list of future improvements, both to improve the
workflow further and add new functionality, which can be found in Section 7.1.

45

A
Functional Requirements

A.1. Must Have
• All roles

– Log in using Single Sign-On and determine access rights

• Course Manager

– Create a course by providing a name, course code, quarter, year, start date and end date

– For a created course, create a lab by providing timeslots and the desired number of TAs per
timeslot

– Show an overview of the course, including created labs and TAs assigned to the course

– Show an overview of an individual lab, including assigned TAs

– Show an overview of interested TAs, with information such as name, student number, other
courses the TA is interested in, and past experience as a TA

– In the overview of interested TAs, select preferences for TAs that the course manager would
prefer having in their course

• Teaching Assistant

– Select courses you want to assist.

– If it is needed to verify the English test, upload verification (e.g. pdf, png)

– Indicate that you have passed the TA training

– Provide preferences for courses, and information such as a maximum amount of lab hours
per week (optional), a maximum amount of courses to assist at once (optional), student
number, and past experience.

– For the entire quarter, availability in a week

• Verifier

– Show an overview of TAs

– For a TA, confirm they passed the English Test

– For a TA, confirm they passed the TA Training

– For a TA, indicate (based on grade) how suitable they are for each course they are interested
in

– For a TA, indicate their payscale

– For a TA, have the ability to contact them for further screening before accepting

• Scheduler

46

A.2. Should Have 47

– Show an overview of all courses in a specified quarter and year

– In a quarter, see an overview of courses and show statistics such as the number of TA’s
interested in courses, number of labs for each course

– Show a list of interested TAs

– For a quarter, generate a schedule using a provided algorithm

– View a generated schedule

⋄ See TAs per course
⋄ See TAs per lab in course
⋄ Show imperfections in a generated schedule (e.g. not enough TA’s for a certain lab)

– Manually edit a generated schedule.

⋄ Edit which TAs are assigned to which course
⋄ Edit which TAs are assigned to which lab in a course
⋄ Highlight conflicts (e.g. TA is not available during the manually selected timeslot)

– Reject a generated schedule

– Save the last schedule

– Accept a schedule

– Export a schedule to pdf or csv

• Admin

– View all users, assign/unassign roles

– Can access all perspectives

A.2. Should Have
• Course Manager

– Notification once the schedule has been accepted by the scheduler

– See an overview of a course

– In a course overview, see a list of TAs

– In a course overview, see a lab overview

– See information for a specific lab, such as assigned TAs, date and start and end time

– Add additional managers to a course

– For a lab, add/remove (adjust) scheduled TA (indicate TA availability)

– Get notified of TA absence

– Leave feedback on TAs

• Teaching Assistant

– Indicate availability for each individual week

– Notification when scheduled for a course

– See an overview of courses you are TA for

– For your course: see course page

– For your course: an overview of labs, showing me for which labs I am a TA

– For your lab: see information (which TAs, time etc.)

– For your lab: inform course manager that I can’t make it

• Verifier

– Notification settings

A.3. Could Have 48

• Scheduler

– When accepting a schedule, notify involved TAs and course managers

• Admin

– Export an individuals personal data to (to e.g. csv) to comply with the GDPR right to access

A.3. Could Have
• Course Manager

– Import labs from MyTimetable

– For a course, add or remove labs after the schedule has been made

– Export a schedule to pdf or csv

– Notify all TAs of a course

– Notify all TAs of a specific lab

– Export the schedule to the Queue system prior to a lab, by providing an endpoint that the
Queue system can use in order to obtain the lab data

– See an overview of total hours each TA is assigned to lab sessions

– Give certain TAs course manager functionality (e.g. editing/adding labs)

– Request extra TAs on Mattermost for a specific lab session (when other TAs can’t make it)

• Teaching Assistant

– Export schedule to a personal calendar stream (getting updates in case the schedule changes)

• Verifier

–

• Scheduler

– Customize the parameters of the used scheduling algorithm

• Admin

– Have the ability to impersonate a specified user and view their perspective(s)

A.4. Would Have
• Course Manager

– Register students automatically at FlexDelft after confirming a schedule

• Teaching Assistant

–

• Verifier

–

• Scheduler

– Select a scheduling algorithm out of available alternatives

• Admin

–

B
Model

B.1. Definitions
• Set of students 𝑆. An element of 𝑆 will be indexed using the character 𝑖 (e.g. 𝑆).

• Set of courses 𝐶. An element of 𝐶 will be indexed using the character 𝑗 (e.g. 𝐶).

• Set of timeslots 𝑇. An element of 𝑇 will be indexed using the character 𝑘 (e.g. 𝑇).

• Set of labs 𝐿. An element of 𝐿 will be indexed using the character 𝑚 (e.g. 𝐿).

B.2. Input Data
• 𝑆𝑃 , : Binary 𝑆 × 𝐶 matrix that indicates whether student 𝑆 wants to TA for course 𝐶 .

• 𝑇𝑃 , : Integer ({1, 2, 3}) 𝑆 × 𝐶 matrix that indicates course 𝐶 ’s preference for student 𝑆 .

• 𝐶𝐴𝑆 , : Binary 𝑆 × 𝐶 matrix that indicates whether student 𝑆 is allowed to TA for course 𝐶 .

• 𝐶𝑅𝑆 , : Binary 𝑆 × 𝐶 matrix that indicates whether student 𝑆 must TA for course 𝐶 .

• 𝑆𝑇 , 𝑘: Binary 𝑆 × 𝑇 matrix that indicates whether student 𝑆 is available during timeslot 𝑇 .

• 𝐶𝐿 , : Integer 𝐶 ×𝐿 matrix that indicates how many TAs of course 𝐶 are needed during lab 𝐿 .

• 𝐿𝑇 , : Binary 𝑇 × 𝐿 matrix that indicates that lab 𝐿 takes place in timeslot 𝑇 .

B.3. Decision Variables
• 𝑇𝐶 , = 1 iff 𝑆 is selected to TA for 𝐶 .

• 𝑇𝐿 , = 1 iff 𝑆 is selected to TA during 𝐿 .

B.4. Hard Constraints
1. A student cannot be scheduled for multiple labs during one timeslot.

∀𝑆 ∈ 𝑆 ∶ ∀𝑇 ∈ 𝑇 ∶ 𝑠𝑢𝑚(𝐿𝑇 , ⇒ 𝑇𝐿 ,) ≤ 1

2. A student can only be assigned as a TA to a course if they want to TA for that course.

𝑇𝐶 , ⇒ 𝑆𝑃 ,

3. A student can only be assigned as a TA to a course if the course allows the student to be a TA.

𝑇𝐶 , ⇒ 𝐶𝐴𝑆 ,

49

B.5. Soft Constraints 50

4. A student must be assigned as a TA to a course if the course has indicated so.

𝑇𝐶 , ⇒ 𝐶𝑅𝑆 ,

5. A student can only be assigned as a TA at a timeslot if they are available during that timeslot.

𝑇𝐿 , ⇒ (𝐿𝑇 , ⇒ 𝑆𝑇 ,)

6. A student can only be assigned as a TA to a lab if they are assigned to the course that the lab
belongs to.

𝑇𝐿 , ⇒ ∃𝑇𝐶 , ∶ 𝐶𝐿 , > 0

B.5. Soft Constraints
1. It is better for a course to have fewer TAs.

∀𝐶 ∈ 𝐶 ∶ Minimise
| |

∑𝑇𝐶 ,

2. It is better for a student to be assigned fewer courses.

∀𝑆 ∈ 𝑆 ∶ Minimise
| |

∑𝑇𝐶 ,

3. It is better for a course to have TAs which it prefers to have.

∀𝐶 ∈ 𝐶 ∶ Maximize ∑
∈
𝑇𝑃 , where 𝐼 = {𝑖 ∣ 𝑇𝐶 , }

4. It is better to have the same amount of TAs assigned to a lab be the same as the amount required
for the lab.

∀𝐿 ∈ 𝐿 ∶ ∀𝐶 ∈ 𝐶 ∶ 𝐶𝐿 , > 0 ⇒
| |

∑𝑇𝐿 , = 𝐶𝐿 ,

C
API Specification

This appendix contains the full list of endpoints available in the TAM API. This is part of the full API
description included in the project.

51

D
SIG Code Quality Evaluation

D.1. Initial Feedback
Beste,
Hierbij ontvang je onze evaluatie van de door jou opgestuurde code. De evaluatie bevat een aantal
aanbevelingen die meegenomen kunnen worden in de laatste fase van het project.
Deze evaluatie heeft als doel om studenten bewuster te maken van de onderhoudbaarheid van hun
code en dient niet gebruikt te worden voor andere doeleinden.
Mochten er nog vragen of opmerkingen zijn dan hoor ik dat graag.
Met vriendelijke groet,
Dennis Bijlsma

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

De code van het systeem scoort 3.9 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de
code marktgemiddeld onderhoudbaar is. We zien Unit Interfacing vanwege de lagere deelscore als
mogelijk verbeterpunt.
Voor Unit Interfacing wordt er gekeken naar het percentage code in units met een bovengemiddeld
aantal parameters. Doorgaans duidt een bovengemiddeld aantal parameters op een gebrek aan ab-
stractie. Daarnaast leidt een groot aantal parameters nogal eens tot verwarring in het aanroepen van
de methode en in de meeste gevallen ook tot langere en complexere methoden.
In jullie project is de constructor van CourseEdition een voorbeeld van een behoorlijk aantal parame-
ters, waarbij het ook opvalt dat de meeste van die parameters strings zijn. Dat lijkt niet altijd logisch,
zo is teacher nu een string, terwijl je daar een object zou verwachten. Je vergroot zo de onderhoud-
baarheid, want je kunt later dan vrij makkelijk nieuwe velden aan het Teacher-object toevoegen.
De aanwezigheid van testcode is in ieder geval veelbelovend. De hoeveelheid testcode ziet er ook
goed uit, hopelijk lukt het om naast toevoegen van nieuwe productiecode ook nieuwe tests te blijven
schrijven.
Over het algemeen is er dus nog wat verbetering mogelijk, hopelijk lukt het om dit tijdens de rest van
de ontwikkelfase te realiseren.

55

D.2. Final Feedback 56

D.2. Final Feedback
Beste,
Hierbij ontvang je onze evaluatie van de door jou opgestuurde code. De evaluatie bevat een aantal
aanbevelingen die meegenomen kunnen worden in de laatste fase van het project.
Deze evaluatie heeft als doel om studenten bewuster te maken van de onderhoudbaarheid van hun
code en dient niet gebruikt te worden voor andere doeleinden.
Mochten er nog vragen of opmerkingen zijn dan hoor ik dat graag.
Met vriendelijke groet, Dennis Bijlsma

𝐻𝑒𝑟𝑚𝑒𝑡𝑖𝑛𝑔

In de tweede upload zien we dat het project een stuk groter is geworden. De score voor onderhoud-
baarheid is in vergelijking met de eerste upload gestegen.
Bij Unit Interfacing, dat in de feedback op de eerste upload nog als verbeterpunt werd genoemd, zien
we een duidelijke stijging. Het is goed om te zien dat jullie naast het refactoren van de genoemde
voorbeelden ook andere gevallen hebben verbeterd. Daarnaast zien we dat de nieuwe code op dit
punt een stuk beter scoort.
Naast de toename in de hoeveelheid productiecode is het goed om te zien dat jullie ook nieuwe test-
code hebben toegevoegd. De hoeveelheid tests ziet er dan ook nog steeds goed uit.
Uit deze observaties kunnen we concluderen dat de aanbevelingen uit de feedback op de eerste upload
zijn meegenomen tijdens het ontwikkeltraject.

E
Table of Technologies

57

Table of Technologies 58

Table E.1: Table of Technologies

Technology Used in the final version Link
Angular no https://angularjs.org/
Bootstrap yes https://getbootstrap.com/
Bootstrap-Vue yes https://bootstrap-vue.js.org/
Checkstyle yes http://checkstyle.sourceforge.net/
Cobertura no http://cobertura.github.io/cobertura/
Django no https://www.djangoproject.com/
Elm no http://elm-lang.org/
Eslint yes https://eslint.org/
Findbugs no http://findbugs.sourceforge.net/
Flow no https://flow.org/en/
GitLab yes https://about.gitlab.com/
GitLab CI yes https://about.gitlab.com/features/gitlab-ci-cd/
Gradle yes https://gradle.org/
IntelliJ IDEA yes https://www.jetbrains.com/idea/
Jacoco yes https://www.eclemma.org/jacoco/
JDBC yes http://www.oracle.com/technetwork/java/javase/jdbc/index.html
Jest yes https://facebook.github.io/jest/
JUnit yes https://junit.org/
Mockito yes http://site.mockito.org/
MySQL yes https://www.mysql.com/
NPM yes https://www.npmjs.com/
PMD yes https://pmd.github.io/
PostgreSQL no https://www.postgresql.org/
React no https://reactjs.org/
SonarJS no https://www.sonarsource.com/products/codeanalyzers/sonarjs.html
SonarQube no https://www.sonarqube.org/
Spotbugs yes https://spotbugs.github.io/
Spring yes https://spring.io/
SQLite no https://www.sqlite.org/
Swagger IO yes https://swagger.io/
Thymeleaf no https://www.thymeleaf.org/
Travis-CI no https://travis-ci.org/
Vertabelo yes https://www.vertabelo.com/
VSCode yes https://code.visualstudio.com/
Vue yes https://vuejs.org/
Webpack yes https://webpack.js.org/

F
Screenshot of TAM

This appendix contains a screenshot of the TAM platform

Figure F.1: A screenshot of the course preference page of the live application.

59

G
Original Project Description

This appendix contains the original project description

With the large influx of students, the number of teaching assistants required in the bachelor has risen
over the last few years. In Q1 of 2017-2018 alone over 75 teaching assistants have been employed
for the bachelor Computer Science & Engineering alone.

In an effort to automate the process that starts with gathering interest from potential TA’s to actually
hiring the TA’s we are looking for a TA database that will not only keep track of all relevant information
about TA’s, but also help us in automatically creating schedules, informing TA’s etc.

One of our developers has already created a prototype application for this is in Python, but we are
now hoping to bring this prototype to a production ready environment.

60

H
Infosheet

This appendix contains the A4 infosheet of the project.

61

Teaching Assistant Management Platform

Description
The majority of the courses in the Computer Science Bachelor use lab sessions to provide an
opportunity for students to ask questions. Teaching assistants are needed to assist during these labs.
With the number of students in the Bachelor quickly growing, the process of manually recruiting
students to become a TA and assigning the TAs to lab sessions is becoming infeasible.

The goal of this project is to ease the process of gathering and scheduling TAs by automating the
workflow and increasing efficiency. TAM envelops the entire process. Lecturers can register their
courses on TAM, students are able to indicate their interest and representatives from Education and
Student Affairs can validate the applications of the students. Using this input, TAM is able to
automatically create a schedule by assigning TAs to lab sessions.

TAM consists of three major components: a MySQL database, a backend written using Spring,
containing the business logic and the scheduler, and a frontend website created with Vue. The
frontend and the backend are connected using a well documented REST API. Both the frontend and
backend are unit tested and well documented.

The research focused on the scheduling algorithm. Initially a model based on the minimum-cost max
flow problem was created. Due to complications with the implementation, the team switched to a
linear solver (Gurobi). By modelling the constrains and objectives of the scheduling, Gurobi is used to
process the input into a schedule.

TAM was designed based on the existing workflow. It was first deployed in week 4, and subsequent
versions deployed iteratively. Both the project repository and this report contain future improvements,
such as integration with Mattermost for notifications and MyTimeTable for importing course data.
During the development, multiple problems have been encountered. The team underestimated the
time required to learn the new technologies, as well as the time needed to maintain a system in
production. Furthermore, configuring Single Sign-On required more time than expected.

Key Information
- Client organization: Education Innovation Projects, Delft University of Technology

- Presentation: Monday July 2nd, 10:00 AM - 11:00 AM, lecture room Boole

- Client: MSc. Stefan Hugtenburg, Education Innovation Projects, Delft University of Technology

- Coach: Dr. Xavier Devroey, Software Engineering Research Group, Delft University of Technology

- Contact Person: Team member Max Pigmans, max.pigmans@gmail.com

- The final report for this project can be found at http://repository.tudelft.nl

Members of the project team

Name Interests Contributions

Max van Deursen Algorithm Design, Reasoning
and Logic

Backend setup & development,
deployment, database maintenance

Geert Habben Jansen Algorithm Design, cybersecurity Frontend setup & development

Ruben Keulemans User Interface design,
application development

Frontend development, SSO, public
relations

Max Pigmans Algorithm Design, Robotics Backend setup, project structure
setup, scheduling, SSO,
deployment

All team members contributed to API and database design, all reports and the final
presentation, and meetings/communication with client and coach.

Bibliography

[1] C. European Parliament, Regulation (eu) 2016/679,(general data protection regulation), https:
//eur-lex.europa.eu/eli/reg/2016/679/oj (2016).

[2] M. W. Carter and G. Laporte, Recent developments in practical course timetabling, in PATAT,
Lecture Notes in Computer Science, Vol. 1408 (Springer, 1997) pp. 3–19.

[3] T. H. Hultberg and D. M. Cardoso, The teacher assignment problem: A special case of the fixed
charge transportation problem, European Journal of Operational Research 101, 463 (1997).

[4] B. Domenech and A. Lusa, A MILP model for the teacher assignment problem considering teachers’
preferences, European Journal of Operational Research 249, 1153 (2016).

[5] A. Gunawan, K. M. Ng, and K. Poh, A hybridized lagrangian relaxation and simulated annealing
method for the course timetabling problem, Computers & OR 39, 3074 (2012).

[6] D. Parkes and S. Seuken, Economics and Computation (unpublished, 2017).

[7] J. M. Kleinberg and É. Tardos, Algorithm design (Addison-Wesley, 2006).

[8] H. Mittelmann, Benchmark of simplex lp solvers, (2018).

[9] P. Chahal, Bootstrap 3: An Ever Lasting Legacy for Responsive Designs, http://
templatetoaster.com/tutorials/bootstrap-3/ (2018).

[10] M. Petrosyan, Angular 5 vs. React vs. Vue, https://itnext.io/
angular-5-vs-react-vs-vue-6b976a3f9172 (2018).

[11] J. Neuhaus, Angular vs. React vs. Vue: A 2017 comparison, https://medium.com/
unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
(2017).

[12] S. Burge, Bootstrap’s Popularity Grew 1000% in 3 ears, https://www.ostraining.com/
blog/coding/bootstrap-popularity/ (2016).

[13] P. Chahal, Developer Survey Results, https://insights.stackoverflow.com/survey/
2018/#technology-databases (2018).

63

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(96)00082-3
http://plato.asu.edu/ftp/lpsimp.html
http://templatetoaster.com/tutorials/bootstrap-3/
http://templatetoaster.com/tutorials/bootstrap-3/
https://itnext.io/angular-5-vs-react-vs-vue-6b976a3f9172
https://itnext.io/angular-5-vs-react-vs-vue-6b976a3f9172
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
https://www.ostraining.com/blog/coding/bootstrap-popularity/
https://www.ostraining.com/blog/coding/bootstrap-popularity/
https://insights.stackoverflow.com/survey/2018/#technology-databases
https://insights.stackoverflow.com/survey/2018/#technology-databases

	List of Figures
	Introduction
	Research
	Problem Definition
	Problem Analysis
	Solution
	Requirements
	Functional Requirements
	Schedule Generation
	Non-Functional Requirements

	Scheduling Algorithm
	Matching
	Max Flow
	Minimum-cost Max Flow
	Implementation
	Linear Solver

	Design
	Database
	Database System
	Database Design

	Backend
	Language
	Framework
	Conclusion

	Frontend
	Language
	Framework
	API Specification

	Stack Overview
	Development Tooling

	Process
	Internal Organization
	Scrum Framework
	Issue Tracking
	Team Member Roles

	Communication
	Team
	Client
	Coach

	Set up
	Feature Development
	Deployment

	Final Product
	Functionality Overview
	Backend
	Structure
	API Specification
	Testing
	Documentation

	Frontend
	Structure
	Testing
	Documentation

	Database
	Additions
	Structural Changes

	Scheduler
	Modelling
	Translation to Gurobi
	Integration in System

	SIG Feedback
	Initial Feedback
	Final Feedback

	Ethical Implications
	Storing Personal Information
	Access to Personal Information
	Scheduling

	Discussion
	Future Work
	Roles
	Continuous Deployment
	Integrations
	End-to-end Testing

	General Reflection
	Backend
	Frontend
	Deployment
	Scheduler

	Single Sign-On
	Development Process
	Weekly Meetings
	Object-Relational Mapping

	Conclusion
	Functional Requirements
	Must Have
	Should Have
	Could Have
	Would Have

	Model
	Definitions
	Input Data
	Decision Variables
	Hard Constraints
	Soft Constraints

	API Specification
	SIG Code Quality Evaluation
	Initial Feedback
	Final Feedback

	Table of Technologies
	Screenshot of TAM
	Original Project Description
	Infosheet
	Bibliography

