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Executive Summary

As the demand for renewable energy rises, the impact of wake effects on wind farm performance and
efficiency has become a primary focus for both industry professionals and academic researchers. However,
to effectively mitigate these wake effects and improve wind farm efficiency, there is a critical need for
an accurate wake representation. This requires well-established medium-fidelity wake models, which are
currently lacking. To achieve this goal, it is essential to develop a wake model capable of accurately
generating the axial wind profile within the wake. This model is crucial for precisely assessing the loads on
downstream wind turbines and evaluating their energy production potential. Moreover, it provides valuable
insights into optimising methods to mitigate wake effects and improve overall wind farm efficiency. For
the model to be truly beneficial to the research effort and industry applications, it must demonstrate an
increased accuracy with a limited increase in computational cost.

This thesis delves into medium-fidelity wake models to enhance the precision of calculations and pre-
dictions concerning wind turbine fatigue and aeroelastic loading. It specifically examines the use of a
finite element method with Hermite interpolation basis functions as a numerical approach to solve the
Ainslie wake model and achieve these objectives. Additionally, the study employs a downstream marching
scheme to solve the partial differential equations and introduces the Newton-Raphson method to address
non-linearities within the model. The potential benefit of using a finite element method lies in its potential
for improved stability compared to the finite volume method, which shows satisfactory performance but
limited stability, and superior performance compared to the spectral method, which has shown to exhibit
poor conservative properties and instabilities for higher mode numbers. Furthermore, this thesis aims to
bridge the gap between modelling and reality by implementing a pressure Poisson equation. Specifically,
the focus has been on implementing the pressure component resulting from the forcing in the pressure
Poisson equation.

Implementing Hermite interpolation basis functions posed several challenges. Increasing their order
caused significant ill-conditioning and greater sensitivity to mesh quality, reducing their effectiveness for
this application. Additionally, higher-order Hermite functions proved ineffective for solving the continuity
equation due to the presence of odd basis functions. In contrast, piecewise linear basis functions have
shown to be compatible with the continuity equation and were effective in solving the diffusion term.
Despite this, stability issues emerged, likely due to the Ladyzhenskaya-Babuka-Brezzi condition not being
met.

The implementation of forcing in the finite volume Ainslie wake model demonstrated mass and momen-
tum conservation, and the axial velocity has been shown to align with literature. However, the dependency
of the vortex strength on the domain size complicates the determination of a correct converged value for
Γ. Furthermore, comparisons of the velocity field with the IEC 61400 standard implementation without
the inclusion of a forcing term revealed that the forcing term implementation more accurately reflects the
real flow dynamics, capturing both the blockage effect and the edge force effect.

Overall, this thesis demonstrates that the investigated method does not provide a stable solver for the
Ainslie wake model. However, this does not rule out the potential of the finite element method for solving
the Ainslie wake model. With adjustments to the basis functions and the application of Taylor-Hood
elements, this method is still anticipated to deliver satisfactory results compared to existing methods.
Furthermore, this thesis has laid the foundation for the inclusion of a Poisson solver. Specifically, it
outlines the integration of pressure gradient resulting from actuator disk forcing and presents various
formulations for the wind turbine forcing. However, further research is needed to address the calculation
of the pressure induced by the velocity field.
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1
Introduction

A surge in global electricity demand is expected in the next decades, driven by economic growth, structural
changes, and electrification [1]. However, if this increase in demand is met with reliance on traditional
fossil fuel-based energy sources, it could aggravate climate change due to increased greenhouse gas (GHG)
emissions. This emphasises the immediate necessity for the widespread adoption of renewable energy
sources on a large scale. Europe has acknowledged this problem and has set a target to reach a renewable
energy contribution of 27% by 2030 [2, 3]. Wind turbines seem to be an attractive solution to reach the set
targets by Europe, as wind power is deemed to be one of the most cost-effective ways to produce renewable
energy [4]. This is further confirmed by the initiatives taken by Europe to install 116 GW of new wind
farms over the period from 2022-2026 [5].

Wind turbines have been used to harvest power from the wind for decades. However, they cause a
reduction in flow velocity and an increase in turbulence intensity in their wakes, known as wake effects [6].
When wind turbines are subjected to these wake effects, they may lose up to 20% or 30% [7] of their power,
resulting in a reduction in the efficiency of wind farms. Moreover, wake effects also increase fatigue loads,
negatively affecting the lifetime of the wind turbine subjected to these effects [8]. As an increasing number
of wind farms are being established, to maximise the exploitation of wind energy potential within a specific
area, supporting the energy transition, the emphasis on cost-efficiency serves as a strong motivator for
research in wake aerodynamics. This research is geared toward mitigating the current impediments that
restrict the clustering of wind farms [9].

For a considerable period, particularly before 2010, wind turbines in wind farms operated indepen-
dently. The primary focus was on optimising individual power output, without considering the influence
of aerodynamic interactions on nearby turbines. However, by properly coordinating wind turbines, it is
possible to achieve enhanced power output and reduced overall structural loads [10, 11]. Several wake
mitigation methods are currently being developed. To evaluate these methods effectively, a wake model
with low computational cost is essential, especially in industry. However, a reduction in computational
cost comes at the expense of diminished model fidelity. While low-fidelity models may suffice for less
intricate aspects of wind farm design, such as annual energy production, higher-fidelity models become
indispensable for accurately assessing fatigue and aeroelastic loading in downstream wind turbines [10, 9].

Driven by the necessity for more sophisticated models to assess fatigue and aeroelastic loading, the
primary aim of this project is to devise a medium-fidelity model distinguished by its optimal computa-
tional efficiency. This pursuit emphasises cost-effectiveness while guaranteeing that the model facilitates
precise and efficient load calculations. Accordingly, this thesis explores the application of the Finite El-
ement Method (FEM) as the numerical method for simulating wind turbine wakes, as stabilised finite
element methods have demonstrated their capability to generate robust and precise numerical solutions
for both compressible and incompressible Navier-Stokes equations, covering a broad spectrum of laminar
and turbulent flow scenarios [12].

The refinement of load calculations not only contributes to advancing research efforts but also conserves
valuable engineering hours during development. A key focus in these calculations is the acquisition of
the axial velocity profile of the wake, establishing the foundational requirement for load calculations.
Additionally, in pursuit of practical and realistic wind farm-level load calculations, the implementation
focus is set on maintaining low computational costs [9]. Moreover, even though the model is to be used
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for load calculations at the wind farm level, the emphasis in this thesis is placed on modelling the wake of
an individual turbine.

1.1. Research Questions
The goal of this thesis is to develop a medium-fidelity wake model designed for performing wind turbine
load calculations, that achieves a balance between computational efficiency and accuracy. Furthermore, the
research objective must align with the requirements derived from the needs outlined in the introduction. In
particular, the wake model’s output should include the essential inputs for conducting load calculations on
wind turbines. Additionally, there is an expectation that the FEM demonstrates improved computational
efficiency and stability compared to alternative numerical methods, such as spectral methods previously
studied. Therefore, the principal research objective can be formulated as:

This thesis aims to establish the groundwork for a computationally efficient wake model by solving the
axisymmetric and stationary Navier-Stokes equations through the implementation of a finite element
method providing the necessary inflow profile to perform wind turbine load calculations.

Derived from this research objective, the main focus of the research is centered on evaluating the suit-
ability and effectiveness of the finite element method for axisymmetric wind turbine wake modelling. Con-
sequently, two principal research questions can be articulated, each further segmented into sub-questions
for comprehensive exploration.

1. Can the FEM be considered a suitable numerical approach for axisymmetric wind turbine wake
modelling?

1.1. How does the accuracy of the FEM compare to alternative numerical approaches for axisym-
metric wind turbine wake simulation, in particular, compared to spectral methods?

1.2. What are the specific challenges or limitations associated with implementing the FEM in the
axisymmetric wake modelling process, and how can they be addressed?

2. What is the level of effectiveness exhibited by the FEM in meeting the demands of industrial
applications?

2.1. Does the computational cost of the wake model using the FEM conform to the established
norms within the wind industry?

2.2. To what extent does the wake model, utilising the FEM, enhance the accuracy in comparison
to well-established engineering models currently in use?

2.3. Is the FEM wake model sufficiently robust and stable to address the specific demands of the
wind industry?

1.2. Thesis Outline
The structure of this report is outlined as follows. Chapter 2 provides an extensive review of state-
of-the-art models for wind turbine wake modelling. Additionally, it discusses the different numerical
methods appropriate for solving the governing equations of the described wake models. Subsequently,
Chapter 3 focuses on deriving the two-dimensional Ainslie wake model using the finite element method,
while Chapter 4, concerns itself with verifying the method. This is followed by Chapter 5 which discusses
the extension of the Ainslie wake model with a forcing term. Lastly, Chapter 6 concludes the study and
provides recommendations for future work.



2
State-of-the-art

2.1. Wind Turbine Models
To properly capture the dynamics described by the Reynolds Averaged Navier-Stokes (RANS) equation
or Large Eddy Simulation (LES), it becomes imperative to incorporate an accurate representation of wind
turbine blades. This is particularly essential as the behaviour of the wake is intricately linked to the forces
exerted by these blades. Therefore, a comprehensive understanding of wake characteristics hinges on an
effective representation of the wind turbine blades in the simulation. This is crucial for comprehending
their influence on the wake. Therefore, this section explores two main approaches for modelling wind
turbine blades. The initial approach, discussed in Section 2.1.1, portrays the wind turbine blades through
the utilisation of body forces. In contrast, the second approach, discussed in Section 2.1.2, is a direct
method that incorporates the blades by discretising the actual blade geometry on a computational mesh
[13].

2.1.1. Body Force Representation
To circumvent the direct computation of blade boundary layers, thereby reducing computational costs
and simplifying the mesh generation, the rotor can be represented and modelled by applying force to the
flow. This force can be explicitly incorporated into the weak form momentum equation, as presented in
Eq. (2.1). It is essential to note that the weak form is employed due to the force inducing a discontinuity
in the pressure [13].

ˆ
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∂t
dΩ +

ˆ
∂Ω
~u ~u · ~n dS = −

ˆ
∂Ω

1
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p ~n dS +

ˆ
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ˆ
A∩Ω

~f dA (2.1)

2.1.1.1. Actuator Disk Model
The actuator disk model (ADM), as depicted in Fig. 2.1, offers the most simplified representation of a
wind turbine, eliminating the requirement to resolve the intricate geometry of turbine blades. Instead,
it models the rotor as a permeable surface normal to the free-stream velocity, which is subjected to
the influence of surface forces [14, 15, 16]. To replicate the force distribution over an actual blade, these
forces are distributed across annular rings, commonly subdivided into azimuthal segments to accommodate
variations in azimuth. The mathematical intricacies of this method will not be delved into here, as they
are deemed beyond the scope of this work.

It has been demonstrated that ADM can effectively predict the development of the far wake and power
production [17]. However, it appears to overlook the vortical structures near the rotor, as it cannot account
for the root and tip vortices generated by individual blades. Consequently, the ADM may not accurately
represent these vortical structures near the rotor, underlining the importance of exploring alternative rotor
representations for investigating this flow region [18]. Furthermore, limitations related to loading are also
apparent. In scenarios characterised by high turbulence levels or partial wake operation, resolving all
dynamic effects may pose challenges, making actuator line methods more appropriate.

2.1.1.2. Actuator Line
The actuator line model (ALM), as depicted in Fig. 2.1, has become a prominent tool to represent lifting
surfaces, such as wind turbine blades, without having to resolve the entire flow field near the blades [19].

3
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In the ALM, the rotating blades are represented by discrete actuator points, as presented in Fig. 2.1, each
with lift and drag forces determined from local flow conditions and airfoil data, resulting in an aerodynamic
force vector for each actuator point. The calculated forces are then projected onto the Cartesian grid as
body forces in the Navier-Stokes equations [20].

However, directly applying this force as a body force to the Navier-Stokes equations of the underlying
flow solver could result in nonphysical numerical oscillations. To prevent numerical issues, the point force
vectors can be transformed into grid force vectors using a smearing kernel, such as a Gaussian kernel. This
method ensures a more realistic representation of aerodynamic effects, preventing unwanted oscillations in
the simulation [20].

In comparison to computational approaches, the ALM distinguishes itself through its simpler mesh
requirements, which are notably less complex than those needed for blade-resolved simulations. Addition-
ally, the ALM is characterised by a reduced computational cost [21]. Moreover, when compared to the
ADM, the ALM offers a more accurate representation of physics in the near wake, as it can capture root
and tip vortices, which the ADM cannot. The ALM is also capable of depicting helical and asymmetric
structures across the wake, leading to an asymmetric roll-up of Kelvin-Helmholtz-like instabilities in the
wake’s outer shear layer. Hence, when focusing on the near wake, the preference leans toward the ALM
over the ADM. However, when examining the far wake, the ADM yields satisfactory results while offering
computational cost savings [18]. Furthermore, the ALM holds the advantage that, with the application
of a correction for force smearing, a tip correction is no longer necessary. In contrast, the ADM still
necessitates a tip correction, posing challenges in its implementation within a CFD setting.

2.1.1.3. Actuator Surface
Shen et al. [22] extended the actuator line method to an actuator surface (AS) method, as illustrated in
Fig. 2.1. In this modified approach, the wind turbine blade is portrayed as a planar surface defined by both
the blade length and chord [13]. This planar surface is then superimposed onto the mesh, encompassing
an area equivalent to the blade element over a single time step. As a result, the force distribution closely
resembles that achieved in a simulation with fully resolved blades, enhancing the management of near-wake
vortices [23]. While this method has been demonstrated to represent the flow field more realistically than
the ALM approach, it currently lacks the capability to model the wake of an airfoil due to the absence
of accounting for shear forces on the blade. Additionally, this method demands more precise airfoil data;
instead of requiring information solely about the lift and drag coefficients, it necessitates knowledge of the
pressure and skin-friction distribution on the airfoil surface [13].

Figure 2.1: Illustration of actuator disk (AD), actuator line (AL), and actuator surface (AS) rotor
representations [13].

2.1.1.4. Conclusion
A hierarchy of actuator models has emerged, spanning from actuator disks to more refined actuator line
and surface models. Striving for greater accuracy entails higher computational costs and the need for more
detailed airfoil data. It would appear that the unsteady nature of actuator line and surface methods makes
them more suitable for LES simulations, while the steady characteristics of actuator disk methods tend to
confine their application to RANS simulations. However, computational limitations primarily confine the
application of actuator line methods in LES simulations to studies focused on single wakes. Consequently,
in wind farm simulations, actuator disks are predominantly chosen for LES, indicating that they can also
handle unsteady conditions [13]. Therefore, the choice of rotor representation is determined not by the
steady or unsteady nature of the simulation, but rather by computational costs and the specific aspect of
the wake being studied.
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2.1.2. Direct Modelling
Wind turbine blades can be resolved using direct modelling based on Computational Fluid Dynamics
(CFD) simulations. While this approach provides the most precise depiction of the blades and the boundary
layer, it is also associated with significant computational expenses and challenges in creating a high-quality
mesh.

2.2. Wake Models
Wind turbine wakes play a crucial role when it comes to maximising the power output of wind farms,
as they reduce the power production and increase the loading experienced by downstream wind turbines.
Therefore, to predict wind farm performance, understand the loads wind turbines are subjected to and
evaluate several wake mitigation methods, there is a continuous need for wake models [24]. Three main
wake analysis methods can be distinguished.

First, wake effects can be analysed using analytical wake models. The main advantage of analytical
models is that the obtained solutions are exact and provide fundamental insight into the available re-
sources. This, however, comes with the drawback that these analytical models are obtained under strong
assumptions and are therefore only applicable to specific problems [25, 26]. Nevertheless, the simplic-
ity and low computational cost of these models make them attractive for wind farm layout optimisation
and wind farm control, especially in the context of very large problems, such as wind farm clusters with
several hundred turbines. Nowadays, there is also a growing interest in running time series simulations,
further emphasising the practical appeal of these models for optimisation techniques that necessitate the
simulation of thousands of cases [26].

Secondly, wake effects can also be analysed using computational fluid dynamics (CFD), which is di-
rectly based on the Navier-Stokes equations. Various numerical models exist, which, in terms of their
(dis)advantages, are complementary. More specifically, increasing the fidelity of the numerical analysis
resolves smaller turbulent scales, but comes with the drawback of significantly higher computational costs.
Advantages of CFD methods include easy simulation of specific physical conditions, extraction of phys-
ical information in the whole flow field, and simulation of problems with complex geometries [25, 26].
However, these advantages come with the drawbacks of numerical errors, discretisation errors, and con-
vergence problems. Another drawback of CFD models emerges due to the multitude of unknown inflow
parameters, necessitating tuning. These parameters significantly impact the solution outcome, leading to
a notable level of uncertainty. In contrast, analytical models only have a few tuning parameters, making
these models less sensitive to the input.

Lastly, wake effects can be researched through field or wind tunnel experiments. Field tests offer a
more comprehensive understanding of wake effects in real-world conditions, but they also come with their
share of challenges, including potential measurement errors, uncontrollable external influences, and the
need for substantial investments in terms of time and resources. Wind tunnel experiments on the other
hand might result in a relative reduction of time and resource investment, and make it easier to control
external parameters. However, wind tunnel experiments come with the extra challenge of scaling the wind
turbine or wind farm. Additionally, both field and wind tunnel experiments are necessary to provide useful
data for the validation of numerical models [25, 26].

Before introducing various wake models, it should be noted that within wake modelling, it is common
to divide the wake development into two distinct regions: the near-wake and the far-wake. Generally, the
near-wake allows for the differentiation of properties from the upstream rotor. In contrast, the far wake is
predominantly influenced by the power properties of the upstream wind turbine [27, 9].

2.2.1. Momentum Method
Axial momentum theory, in which the rotor is modelled as an actuator disk, offers a simple method to
evaluate the velocity and pressure in the wake. It assumes inviscid, incompressible, axisymmetric, and
stationary flow, and neglects the effects of external forces. Moreover, an ideal disk is assumed, meaning
there are no friction forces, and there is no rotational velocity component in the wake [16, 14, 28].

With the applied assumptions, the momentum equation and Bernoulli’s principle can be applied to
the actuator disk, resulting in the streamlines, axial velocity, and pressure distributions presented in
Fig. 2.2. This representation shows that when the flow is approaching the rotor, the axial velocity decreases



2.2. Wake Models 6

gradually from the free-stream velocity U∞ to an average axial velocity of u0 at the rotor plane and further
to an average axial velocity of u1 far downstream in the wake, which is depicted by the axial induction
factor a, as shown in Eq. (2.2). Consequently, the pressure increases following Bernoulli, except at the
rotor plane where there is a pressure loss. This is due to energy being extracted from the flow by the
applied force field at the rotor plane. Furthermore, the streamlines show an expansion moving downstream,
resulting from the conservation of continuity [16].

u0 = (1 − a)U∞ and u1 = (1 − 2a)U∞ (2.2)

Figure 2.2: Representation of streamlines past the rotor disk and axial velocity and pressure up and
downstream of the rotor [16].

Expanding the axial momentum theory to account for wake rotation entails introducing an expression
for angular momentum balance. This involves equating changes in angular momentum to the torque
exerted by the rotor on the air, introducing an azimuthal induction factor a′. The rotational velocity at
the rotor plane and in the far wake are defined in Eq. (2.3) [29, 28, 16].

u0,θ = (1 − a′)ωr and u1,θ = (1 − 2a′)ωr (2.3)

In case of a non-uniform inflow, the momentum and energy relation can be applied on an annular
level. This facilitates the alignment of momentum analysis results with the blade element properties and
geometry specific to the annulus [28]. However, this approach assumes no radial dependency, indicating no
interaction between the annuli. Additionally, the force exerted by the blades on the flow remains constant
within each annular element, resembling a rotor with an infinite number of blades. These assumptions
however introduce errors [16]. To rectify errors resulting from these assumptions, the momentum method
requires some corrections to be applied.

The first correction is called Prandtl’s tip loss factor. This correction is essential to account for the
assumption of an infinite number of blades, as the wake vortex system for a turbine with an infinite number
of blades deviates from that of a turbine with a limited number of blades [16]. However, this tip loss model
assumes that the tip loss only affects the induction factor, not the mass flux [30, 9]. Wilson and Lissaman
[31] introduced a refined tip loss model, suggesting that the mass flow through the rotor disc could be
corrected similarly to the induced velocity in the wake. However, this tip loss model did not satisfy the
orthogonality of the induced velocity to the relative velocity at the blade element [30]. Shen et al. [30]
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later proposed an improved tip loss model, including a correction for the mass flux. Comparisons between
experimental data and various correction models have shown that the proposed tip loss model by Shen et
al. [30] better predicts the aerodynamic force distribution in the vicinity of the tip.

Secondly, the momentum method breaks down for high rotor loading. Glauert [29] proposed a correction
to the thrust coefficient to account for the fact that when the axial induction factor becomes larger than
about 0.4, the basic momentum theory is no longer valid [29, 16, 32, 28].

Lastly, the momentum method assumes that the radial flow component is negligibly small compared
to the axial and azimuthal flow components. However, since the wake expansion is dependent on the
radial velocity component, this introduces another source of error [33]. Micallef et al. [33] proposed a
three-dimensional potential flow model to account for these effects.

2.2.2. Engineering Wake Models
Numerous engineering wake models have been developed over time, as indicated in studies such as [34, 26,
27]. These models are frequently fine-tuned based on both experimental data and numerical simulations,
playing a crucial role in efficiently calculating wake deficit for wind farm optimisations. Unlike the intricate
and time-consuming computations associated with vortex-based and numerical wake models, engineering
wake models offer a more favourable alternative. Researchers have actively worked on advancing these
analytical wake models, aiming to deliver swift and accurate assessments of wake deficit, thereby enhancing
their practicality in studies related to wind farm optimisation [35]. Before delving into the review of some
prominent engineering wake models, it is crucial to recognise that, at a fundamental level, all these models
share a common structure. They typically exhibit radial and streamwise dependencies, relying on an
expansion factor and the shape of the radial profile.

The Jensen wake model, based on studies by Jensen et al. [36] and Katic et al. [37] offers one of the
simplest representations of the wake based on global conservation of momentum and is widely adopted in
commercial applications for wind farm optimisation. However, this wake model assumes a top-hat wake
velocity profile, which is simply related to the downstream distance, such that the wake velocity distribution
in the wake influence plane is constant at a certain distance. Due to this assumption, the model is limited
to making predictions solely about the far wake velocity deficit. Nevertheless, the primary objective of this
model is not to achieve an accurate velocity profile but rather to estimate the energy content perceived by
downstream wind turbines, as highlighted in [34, 24]. It was demonstrated that the Jensen wake model can
reasonably predict the maximum velocity deficit in certain regions further downstream. Still, it tends to
underestimate the maximum velocity deficit in other regions when compared to LES and experimental data
[38]. The Frandsen model, additionally to the Jensen model applied balance of momentum, as presented
in [39], shares a similar assumption regarding the wake velocity profile, leading to comparable issues [35].
Top-hat wake models, such as the Jensen and Frandsen wake models, as expected, generally underestimate
the velocity deficit at the centre of the wake and overestimate it near the edge of the wake [38].

Subsequent wind tunnel tests unveiled a self-similar Gaussian wake loss distribution, inspiring the de-
velopment of an enhanced wake model. Bastankhah and Porté-Agel introduced a novel wake deficit model
in their work [38], employing a Gaussian velocity profile within the wake and applying mass and momen-
tum conservation. This proposed wake model has demonstrated consistency and acceptable accuracy in
power estimation. In contrast, top-hat models like the Jensen and Fransen wake models exhibit lower
accuracy and heightened sensitivity to the relative position of turbines concerning the wind direction [38].
Nevertheless, this model still exhibits concerns regarding its robustness and universality [40].

An improvement to the Bastankhah and Porté-Agel [38] Gaussian wake model was proposed by Ishihara
and Qian [40] by taking into account the inflow turbulence intensity and thrust coefficient. Utilising
a substantial quantity of large-eddy (LES) simulations and incorporating data from prior simulations,
they calibrated the parameters in the existing Gaussian model and rectified the maximum wake velocity
deficit. Consequently, they proposed a Gaussian model for both the near- and far-wake regions. Numerical
simulations closely align with wind tunnel tests, revealing similar profiles for mean velocity and turbulence
intensity behind both the model and utility-scale wind turbines. This suggests that the thrust coefficient
and ambient turbulence intensity are key parameters influencing wake flow, regardless of the specific wind
turbine type [40]. However, the Ishihara and Qian wake model results are still not ideal, which can result
in inaccurate results in wind farm design [35].
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Each engineering model outlined here provides insights into the wake deficit of an individual wind
turbine. Through the superposition of these individual turbine wake deficits, the cumulative impact of
multiple wakes can be examined. Widely adopted in the wind energy community for predicting power
production in wind farms, this approach allows for a comprehensive analysis of the collective influence
on entire wind farms. Such a thorough assessment is crucial for optimising wind farm layouts, mitigating
interference effects, and enhancing overall energy extraction efficiency.

However, a significant challenge with the majority of existing wake superposition methods is their failure
to conserve streamwise momentum [41]. Hence, Zong et al. introduced an innovative wake superposition
method, as detailed in [41], capable of conserving the total momentum deficit in the streamwise direction.
Thorough comparisons with existing methods demonstrate that this novel approach outperforms others,
providing accurate predictions of power production and centerline wake velocity deficit, with a typical
error of less than 5% (excluding the near-wake region). Furthermore, the momentum-conserving wake
superposition method is expanded to incorporate transverse velocities induced by yawed wind turbines,
effectively reproducing the secondary wake steering effect crucial for power optimisation in active wake
control.

Furthermore, the general approach adopted by the IEC 61400-1 standard [42] will be explored, which
relies on the inflow wind speed. In instances where the inflow wind speed falls below the rated wind
speed, the resulting wake contribution is determined by selecting the minimum from individual wake
contributions, as outlined in Eq. (2.4). On the contrary, when the inflow wind speed surpasses the rated
wind speed, the wake is regarded as the sum of all local wake contributions, as defined in Eq. (2.5).
This nuanced approach mirrors the standard’s strategy in effectively managing wind turbine wakes across
diverse wind speed conditions.

~u(~x, t) = min
i

(~ui(~x, t)) (2.4)

~u(~x, t) =
∑
i

~ui(~x, t) (2.5)

2.2.3. Vortex Wake Models
Vortex wake models belong to a category of method where the rotor blades, along with the trailing and shed
vortices in the wake, are represented using lifting lines or surfaces. Compared to engineering wake models
or the momentum method, vortex wake models have the advantage that they are able to describe multiple
aerodynamic phenomena as they include some physical aerodynamic elements, which are discarded in
momentum-based methods. This however comes at the expense of a higher computational cost.

Various vorticity elements around the rotor can be distinguished. The vorticity trailing the turbine
is referred to as wake vorticity, interacting with turbulence and shear vorticity in the atmosphere. Close
to the turbine, iso-vorticity contours encircle each blade, indicating bound vorticity. At the blade tip,
vorticity follows a helical path in the wake, known as tip vorticity (or tip-vortex), and similar helical
patterns are observed at the root, termed root vorticity (or root-vortex). Both tip and root vorticity
contribute to the overall wake vorticity. Vorticity is typically concentrated and more pronounced at these
locations. The remaining wake vorticity is emitted along the blades, also tracing a helical pattern behind
the rotor [43].

To simplify matters, the assumption is made that the emitted vorticity is confined to a narrow layer
originating from the body’s trailing edge, simplified as a vorticity sheet. This simplification is considered
appropriate for high-Reynolds attached flows, and thus applicable for wind turbines in general, and there-
fore applicable for wind turbine wakes in general. The vorticity generated in the wake due to temporal
changes in the bound circulation is known as shed vorticity, Γs. The conservation of circulation dictates
that the circulation Γs around this shed vorticity satisfies [43, 44, 16, 6]:

Γs(r) = ∂Γb(r)
∂t

dt (2.6)

The spanwise variation in bound vorticity generates vorticity that is released into the wake, known
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as trailed vorticity. This is by Helmholtz’s theorem. The circulation encircling the trailed vorticity,
represented as Γt, equals the gradient of the bound circulation [43, 44, 16, 6]:

Γt(r) = −∂Γb(r)
∂r

dr (2.7)

Knowing the circulation, the global flow field is determined from the Biot-Savart law, where the vortex
filaments in the wake are convected by the superposition of the undisturbed flow and the induced velocity
field. Assuming that the flow in the region outside the trailing and shed vortices is curl-free, the overall
flow field can be described by evaluating the Biot-Savart law [44, 16, 6].

In vortex models, the structure of the wake can be predetermined or computed as part of the overall
solution procedure. In a prescribed vortex technique, vortical element positions are determined based on
measurements or semi-empirical rules, enabling fast computation but limiting its applicability to well-
understood steady flow situations. For unsteady flow and intricate wake structures, a free wake analysis is
necessary. The free wake method allows vortex elements to freely convect and deform under the influence of
the velocity field, offering the advantage of handling diverse flow scenarios, including yawed wake structures
and dynamic inflow. However, this method is computationally more demanding than the prescribed wake
method, since the Biot-Savart law needs evaluation at each time step. Additionally, free-wake vortex
methods may face stability challenges due to the inherent singularity in induced velocities as vortex
elements approach each other. This can be partially mitigated by introducing a vortex core model with a
cut-off parameter representing the inner viscous part of the vortex filament. A variant of free vortex wake
methods is Voutsinas’ method [45], where wake modelling is managed through the use of vortex particles
[6].

2.2.4. Numerical Wake Models
Numerical wake models can be classified based on their level of fidelity. As fidelity increases, more physical
details are captured, but this comes at the expense of higher computational costs.

2.2.4.1. Governing Equations
Numerical wake models utilise the incompressible Navier-Stokes equations, as detailed in Equation 2.8.
The assumption of incompressibility is applicable when the local Mach number is below 0.3, corresponding
to a flow velocity of around 100 m/s [46]. According to Snel [47], this assumption is thoroughly justified.
However, Pijl [48] points out the possibility of compressibility effects at the blade tips. This is because,
at a tip speed of 75 m/s, the maximum speed on the suction side could exceed 100 m/s. Despite this
concern, the incompressibility assumption remains valid due to significantly lower velocities in the wake,
as emphasised by Sanderse [46].

∂ui
∂xi

= 0

∂ui
∂t

+ ∂uiuj
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(2.8)

Through spatial and temporal discretisation, the numerical implementation of the Navier-Stokes equa-
tions becomes possible. However, the vast range of spatial and temporal scales influencing the wake of
a wind turbine makes a direct numerical analysis impractical due to the associated computational costs.
Therefore, assumptions and/or turbulence models need to be implemented to address and overcome this
challenge [25].

2.2.4.2. Large Eddy Simulation
Considering computational costs, Large Eddy Simulation (LES) stands out as the model with the highest
fidelity that remains practical in terms of computational time for a substantial number of flow cases. De-
spite the potential for Direct Numerical Simulations (DNS) to provide more precise results, the associated
computational expenses make it impractical for many scenarios. Consequently, DNS will not be discussed
as it does not align with the requirement for low computational costs.
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In LES, the computation focuses on directly calculating the large-scale motions (large eddies), while
only modelling the small-scale motions (sub-grid scale (SGS)). This leads to a substantial reduction in
computational costs compared to DNS. Furthermore, LES surpasses the accuracy of the RANS approach
because it directly captures the large eddies, which contain the majority of turbulent energy and contribute
significantly to momentum transfer and turbulent mixing. In contrast, the RANS approach relies on
modelling these eddies and can therefore only capture a single, pre-determined scale. Additionally, the
smaller scales in LES tend to exhibit more isotropic and homogeneous characteristics, making the modelling
of SGS motions more manageable than attempting to model all scales within a single framework, as done
in the RANS approach [49].

In LES, spatial filtering is used to decompose the velocity field into large-scale motions and small-scale
motions. Applying a spatial low-pass filter to the Navier-Stokes equations results in Eq. (2.9). The SGS
stress tensor, which appears from applying the spatial filter, represents the effect of the small (unresolved)
scales on the large scales and requires a separate SGS model. Various SGS models exist, which are
discussed by Meneveau and Katz [50].

∂ũi
∂t︸︷︷︸

Acceleration term

+ ∂ũiũj
∂xj︸ ︷︷ ︸

Advection term

= − 1
ρ

∂p̃

∂xi︸ ︷︷ ︸
Pressure term

+ 2ν ∂S̃ij
∂xj︸ ︷︷ ︸

Viscous term

− 1
ρ

∂τij
∂xj︸ ︷︷ ︸

Sub-filter scale stress tensor

(2.9)

2.2.4.3. Dynamic Wake Meandering Model
The dynamic wake meandering (DWM) model developed by Larsen et al. [51] at the Technical University
of Denmark (DTU) is based on the fundamental concept that the wake behind a wind turbine in the
atmospheric boundary layer behaves similarly to a passive tracer, influenced by the large-scale turbu-
lence structures in the atmospheric boundary layer. This concept underlying the DWM model has been
demonstrated to closely align with full-scale experimental observations [51].

The DWM model’s structure can be broken down into three essential cornerstones, as depicted in
Fig. 2.3 [52]. This involves modelling the quasi-steady wake deficit and its development downstream, the
downstream wake-meandering processes, and the turbulence effects induced by the turbine rotor. The
quasi-steady wake deficit accounts for the wake deficit formulated in the moving (meandering) frame of
reference and considers the wake expansion in response to downstream transportation time, influenced
by turbulence diffusion and the rotor pressure field. The wake meandering model outlines the stochastic
downstream displacement of wakes emitted from upstream, guided by large-scale turbulence structures.
It is assumed that the presence of a wind turbine has minimal impact on these structures. Lastly, the
turbulence effects initiated by the upstream turbine rotor involve small-scale turbulence with eddy sizes up
to about one rotor diameter. These effects include contributions from conventionally generated turbulence
due to wake shear, as well as from the vorticity bound to the blades, primarily composed of tip and root
vortices [51].

Figure 2.3: Overview of the key components constituting the DWM model [53].

Modelling Wake Deficit
In the initial stages of implementing the DWM model, deficits were calculated using a CFD-based actuator
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disc model coupled with an aeroelastic rotor model [51]. Yet, for the complete integration of deficit
prediction within an aeroelastic code framework, a redefined approach has been undertaken for quasi-
steady wake deficit prediction. This revised formulation operates under the assumption that the velocity
deficit can be determined by considering inductions in both the rotor plane and the far wake. It employs
Blade Element Momentum (BEM) theory in conjunction with the boundary layer approximation of the
Navier-Stokes equations to model the downstream progression of the deficit [52]. This model is strongly
inspired by the work of J. F. Ainslie [54], who has previously formulated a comparable wake model.

The wake model comprises three fundamental steps. Firstly, the initial wake deficit is established by
computing induced velocities in the rotor plane. Subsequently, the expansion of this initial wake deficit
in the nearby wake region is determined, which is predominantly influenced by pressure recovery in that
particular area. Lastly, the evolution, including expansion and attenuation, of the velocity deficit as a
function of the downstream distance from the turbine generating the wake is measured. This analysis
considers turbulent mixing influenced by both ambient turbulence and the turbulence generated by the
wake shear field. The model relies on a thin shear layer (TSL) approximation of the Navier-Stokes equations
in their rotationally symmetric form [52].

Wake Meandering
The foundation of the wake meandering model rests on the core assumption that the transportation of
the wake within the atmospheric boundary layer can be effectively represented by treating the wakes as
passive tracers, influenced by the large-scale turbulence structures in both lateral and vertical directions.
The process of modelling the meandering process requires accurately characterising the stochastic transport
medium and defining a suitable cut-off frequency to identify large-scale turbulence structures. Typically,
meandering is determined using the Mann synthetic turbulence model to generate a low-pass filtered
ambient wind field. This approach aligns with conventional practices for quantifying turbulence loads.
The filter cut-off frequency, denoted as fc, is defined by mean free wind speed, U∞, and the rotor diameter,
D, as outlined in Eq. (2.10) [51, 55].

fc = U∞

2D (2.10)

The DWM model represents the wake as a sequence of deficits emitted at consecutive time instants,
following a passive tracer analogy. By incorporating Taylor’s hypothesis, the downstream advection of this
sequence of wake deficits is presumed to be governed by the mean wind speed of the ambient wind field.
This assumption enables the straightforward separation of the wake along the wind deficit profile and its
expansion from the transportation process [51, 55].

In the lateral and vertical directions, each wake cascade element is displaced based on large-scale
turbulence velocities at its specific position and time. This implicitly neglects any potential mutual
interaction between wake momentum and displacement in these directions, justified by the minimal impact
of lateral and vertical wake momentum compared to along-wind momentum. Mathematically, the wake
deficit dynamics in the lateral (y) and vertical (z) directions are described by a system of differential
equations [51]. Mathematically, the wake deficit dynamics in the lateral direction (y) and the vertical
direction (z) are assumed to be governed by the system of differential equations presented in Eq. (2.11)
[51]. Here, vc and wc represent the spatially dependent large-scale turbulent velocities, and t0 denotes the
time instant at which the particular cascade element is emitted [51].

dy(t, t0)
dt = vc(y, w, t, t0) dz(t)

dt, t0
= wc(y, z, t, t0) (2.11)

Given the predominant influence of large-scale turbulence structures on the meandering process, it
is reasonable to approximate lateral and vertical turbulence as spatially homogeneous for each cascade
element, especially for small to moderate downstream distances. This implies that the displacement of
the wake centre is primarily influenced by the large-scale lateral and vertical velocities over the rotor disc
at the release time. In this scenario, the defined system of differential in Eq. (2.11) can be simplified as
presented in Eq. (2.12). Here, vr and wr represent the large-scale turbulent velocities at the rotor plane
[51].
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dy(t, t0)
dt = vr(t0) dz(t)

dt = wr(t0) (2.12)

Added Wake Turbulence
The turbulence arising from wind turbines in their wake is a complex phenomenon, resulting from a
combination of contributions. These include conventional mechanically generated turbulence caused by
wake shear and blade-bound vorticity, primarily originating from tip and root vortices [51, 52, 55]. In
the beginning, these vortices showcase organised and coherent flow structures. Nevertheless, as time
progresses, they experience a gradual breakdown and start to manifest characteristics akin to conventional
turbulence. However, these attributes are modified compared to atmospheric turbulence [52].

At a designated downstream position, the modelling of wake turbulence is conducted by employing a
homogeneous Mann turbulence field with cross-sectional coverage extending over one rotor diameter. The
turbulence box exhibits a fine resolution, consisting of 128x128 points in planes perpendicular to the mean
flow direction, enabling the effective resolution of small turbulence eddies. Its extension along the mean
flow direction spans 4800 m with a resolution of 1024 points. The added turbulence is anchored in the
meandering frame, synchronising the centre position of the turbulence box with that of the corresponding
wake deficits. Despite deviating from the second-order statistics of the turbulence field, the inhomogeneity
of the added turbulence is estimated through scaling of the created homogeneous Mann field. Assuming
rotational symmetry of the added wake turbulence intensity, the scaling coefficient is solely dependent on
the radial rotor coordinate, the wake deficit depth and the wake deficit radial gradient [52, 55].

2.2.4.4. Reynolds Averaged Navier-Stokes Equation
The Navier-Stokes equation is commonly assessed in a time-averaged manner, leading to the formulation
of the Reynolds-Averaged Navier-Stokes (RANS) equation. The derivation of the RANS equation involves
applying the Reynolds decomposition concept, which involves separating the velocity into its time-averaged
and fluctuating components, as presented in Eq. (2.13). Incorporating the Reynolds decomposition into
the incompressible Navier-Stokes equation and taking the time-average results in Eq. (2.14).

u(~x, t) = u(~x) + u′(~x, t) (2.13)

uj
∂ui
∂xj︸ ︷︷ ︸

Advection term

= − 1
ρ

∂p

∂xi︸ ︷︷ ︸
Pressure term

+ 2ν ∂Sij
∂xj︸ ︷︷ ︸

Viscous term

−
∂u′

iu
′
j

∂xi︸ ︷︷ ︸
Reynolds stress

(2.14)

The Reynolds stress tensor u′
iu

′
j , which represents the momentum transfer caused by turbulent fluc-

tuations, leads to an indeterminate system by introducing additional unknown variables. This problem,
commonly known as the closure problem, requires additional modelling to close the RANS equation, and
has resulted in the creation of various turbulence models.

Linear eddy viscosity models belong to the category of turbulence models, representing the Reynolds
stress as the product of eddy viscosity and mean strain rate (expressed in Equation Eq. (2.15)), known as
the Boussinesq hypothesis. However, the eddy viscosity also requires to be modelled. This can be done
using algebraic models, or turbulence-energy-equation models. The latter are commonly classified by the
number of equations employed to close the set of equations.

−u′
iu

′
j = νt

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3kδij (2.15)

RANS has proven to offer a more precise portrayal of the time-averaged velocity field in the wake than
lower fidelity models, balancing this accuracy with a reduction in computational costs compared to higher
fidelity models. However, its drawback lies in the incapacity to capture dynamic phenomena due to time-
averaging. More specifically, with RANS only isotropic turbulence can be captured, however, atmospheric
turbulence is anisotropic. Furthermore, turbulence models often rely on parameters that necessitate tuning
based on higher fidelity simulations or experiments. Consequently, there is an opportunity to enhance
efficiency by further simplifying the RANS equations, thereby minimising the required level of modelling.
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2.2.4.5. Ainslie Eddy Viscosity Wake Model
The Ainslie wake model, representing a field model, will be explored. Other notable field models have been
developed by Taylor [56], Liu [57], Crespo [58], and Magnusson [59]. All these models address a simplified
version of the Reynolds-averaged Navier-Stokes flow equations to incorporate the conservation of mass,
momentum, and energy within the flow. Additionally, they employ an eddy viscosity turbulence model to
account for the turbulent mixing contributions from both the shear layer and ambient turbulence [60].

More specifically, the Ainslie wake model originates from simplifying the incompressible RANS equation
in cylindrical coordinates (see Eqs. (2.16) to (2.18)), employing the thin shear layer approximation and
incorporating the eddy-viscosity closure term for Reynolds stress [54, 61, 9, 60].

The starting point for deriving the Ainslie wake model are the steady incompressible RANS equations in
cylindrical coordinates, which are expressed in Eqs. (2.16) to (2.18). This formulation omits the influence of
gravity and external forces. In this context, ūx, ūθ, and ūr denote the time-averaged velocity components
in the streamwise (x), azimuthal (θ), and radial (r) directions, respectively. The variable p̄ represents the
time-averaged pressure. Additionally, turbulent fluctuations with a zero mean for the velocity components
are represented by u′

x, u′
θ, and u′

r [62].

Axial momentum equation

ūx
∂ūx
∂x

+ ūr
∂ūx
∂r

+ ūθ
r

∂ūx
∂θ

= −1
ρ

∂p̄

∂x

+ ν

[
∂2ūx
∂x2 + 1

r

∂

∂r

(
r
∂ūx
∂r

)
+ 1
r2
∂2ūx
∂θ2

]
− ∂u′

xu
′
x

∂x
− 1
r

∂(ru′
xu

′
r)

∂r
− 1
r

∂u′
xu

′
θ

∂θ

(2.16)

Azimuthal momentum equation

ūx
∂ūθ
∂x

+ ūr
∂ūθ
∂r

+ ūθ
r

∂ūθ
∂θ

+ ūθūr
r

= −1
r

∂p̄

∂θ

+ ν

[
∂2ūθ
∂x2 + 1

r

∂

∂r

(
r
∂ūθ
∂r

)
+ 1
r2
∂2ūθ
∂θ2 + 2

r2
∂ūr
∂θ

− ūθ
r2

]
−
∂u′

θu
′
x

∂x
− 1
r

∂(ru′
θu

′
r)

∂r
− 1
r

∂u′
θu

′
θ

∂θ
−
u′
θu

′
r

r
(2.17)

Radial momentum equation

ūx
∂ūr
∂x

+ ūr
∂ūr
∂r

+ ūθ
r

∂ūr
∂θ

− ū2
θ

r
= −1

ρ

∂p̄

∂r

+ ν

[
∂2ūr
∂x2 + 1

r

∂

∂r

(
r
∂ūr
∂r

)
+ 1
r2
∂2ūr
∂θ2 − 2

r2
∂ūθ
∂θ

− ūr
r2

]
− ∂u′

ru
′
x

∂x
− 1
r

∂(ru′
ru

′
r)

∂r
− 1
r

∂u′
ru

′
θ

∂θ
+
u′
θu

′
θ

r
(2.18)

Assuming an axisymmetric flow, the azimuthal velocities components and the azimuthal dependencies
can be neglected. Consequently, the azimuthal momentum equation, along with all terms depending on θ,
can be excluded. This leads to the simplified expressions given in Eqs. (2.19) and (2.20) [54]. Furthermore,
this assumption implies that the momentum equation’s streamwise and radial velocity components are
coupled through the Stokes stream function. Consequently, only a single equation is required to describe
this coupling. As a result, further steps will involve exclusively Eq. (2.19).

Axial momentum equation

ūx
∂ūx
∂x

+ ūr
∂ūx
∂r

= −1
ρ

∂p̄

∂x
+ ν

[
∂2ūx
∂x2 + 1

r

∂

∂r

(
r
∂ūx
∂r

)]
− ∂u′

xu
′
x

∂x
− 1
r

∂(ru′
xu

′
r)

∂r
(2.19)

Radial momentum equation

ūx
∂ūr
∂x

+ ūr
∂ūr
∂r

= −1
ρ

∂p̄

∂r
+ ν

[
∂2ūr
∂x2 + 1

r

∂

∂r

(
r
∂ūr
∂r

)
− ūr
r2

]
− ∂u′

ru
′
x

∂x
− 1
r

∂(ru′
ru

′
r)

∂r
(2.20)
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By neglecting pressure gradients, assuming that outside the near wake the pressure can be disregarded,
the axial momentum equation can be further simplified to Eq. (2.21). This is a significant simplification,
rendering the momentum equation invalid in the near wake close to the rotor, as this simplification elimi-
nates the wake expansion. However, Ainslie [54] argues that this assumption can be justified, as the effect
of pressure gradients can be accounted for in the eddy viscosity model [54].

ūx
∂ūx
∂x

+ ūr
∂ūx
∂r

= ν

[
∂2ūx
∂x2 + 1

r

∂

∂r

(
r
∂ūx
∂r

)]
− ∂u′

xu
′
x

∂x
− 1
r

∂(ru′
xu

′
r)

∂r
(2.21)

Moreover, beyond the initial few diameters downstream, the gradients of mean quantities in the radial
direction will be notably greater than those in the axial direction. Furthermore, by excluding diffusion in
the axial direction, the problem remains parabolic. Otherwise, it would transition to an elliptic problem,
necessitating definition across the entire boundary, which is not feasible. This results in the thin shear
layer approximation. Lastly, dropping the viscous terms, the general equation for the Ainslie wake model
is given in Eq. (2.22) [54].

ūx
∂ūx
∂x

+ ūr
∂ūx
∂r

= −1
r
∂
ru′
xu

′
r

∂r
(2.22)

To describe the Reynolds stress term in Eq. (2.22), the turbulent viscosity concept is used, such that the
Reynolds stress and the eddy viscosity can be defined as presented in Eq. (2.23) respectively, with lw(x)
and uw(x) the suitable length and velocity scales to describe the wake shear layer and εa the ambient
turbulence contribution. As evident from Eq. (2.23), two components characterise the eddy viscosity.
The first component delineates turbulent mixing arising from turbulence within the wake’s shear layer,
contingent on the length and velocity scales defining the shear layer. The second component explicates the
influence of ambient atmospheric turbulence on wake mixing [54, 61, 9, 60]. Implementing this formulation
for the Reynolds stress term in Eq. (2.22) results in Eq. (2.24).

−u′
xu

′
r = νt

∂ūx
∂r

with νt = lw(x)uw(x) + εa (2.23)

ūx
∂ūx
∂x

+ ūr
∂ūx
∂r

= νt
1
r

∂

∂r

(
r
∂ūx
∂r

)
(2.24)

In practical terms, a modification is needed for the eddy viscosity equation in the near wake, specifically
within about five diameters downstream of the rotor. This modification is essential due to the absence of
equilibrium between the mean velocity field and the turbulence field in the near wake region, rendering
the relationship in Eq. (2.23) inapplicable [54].

There exists a second equation to model the eddy viscosity, presented by Eq. (2.25), which is adopted
in the IEC 61400-1 standard [42] edition 4. Here x̃ = x

D is a non-dimensional coordinate, RW is the wake
radius defined as the radius where the wake is at 95% of the incoming velocity, and F1 and F2 are filter
functions. Considering the industrial application of the wake model, the preference is for this specific
formulation of the eddy viscosity model [9].

2νt
Durhub

= 0.023F1(x̃)
(
uxrms

urhub

)3
+ 0.016F2(x̃)RW (x̃)

D

(
1 − uxmin

(x̃)
urhub

)
(2.25)

The definition of the filter functions can be established by fitting Eq. (2.25) to wind farm measurement
data. Larsen et al. [63] conducted this fitting process for the Egmond aan Zee wind farm, yielding the
subsequent filter definitions presented in Eqs. (2.26) and (2.27) [9].

F1 =
{ (

x̃
8
) 3

2 − sin 2πx̃
3
2

2π if 0 ≤ x̃ < 8
1 if 8 ≤ x̃

(2.26)
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F2 =


0.0625 if 0 ≤ x̃ < 4
0.025x̃− 0.0375 if 4 ≤ x̃ < 12
0.00105(x̃− 12)3 + 0.025x̃− 0.0375 if 12 ≤ x̃ < 20
1 if 20 ≤ x̃

(2.27)

The consequences of the assumptions made by the Ainslie wake model remain uncertain. Notably,
the assumption of an axisymmetric flow profile poses challenges, as certain flow characteristics introduce
errors for this assumption. Firstly, wind turbine wakes inherently display asymmetry due to the presence
of atmospheric shear layers. Specifically, the existence of a shear layer causes the incoming wind velocity
to consistently feature a non-uniform wind profile, leading to lower wind speeds at the bottom of the
rotor compared to the top. Consequently, the shape of the wake in the near-wake region is influenced.
However, in the far wake, the wake structure is approximately axisymmetric, self-similar and Gaussian,
making the axisymmetric assumption acceptable. However, to consider the asymmetry of the wake profile
in the near-wake, an extension of the Ainslie wake model could involve incorporating the azimuthal flow
component. Moreover, when attempting to comprehensively represent turbulent structures such as tip
vortices, it is generally not recommended to depend on time-averaged flow models, as the average of the
fluctuations may amount to zero [9].

2.2.4.6. Linearised Fuga Model
The Fuga model is initially designed as a wake model, serving to evaluate the impact of wake effects
on power generation within a cluster of wind turbines. Its application extends to offshore sites and more
broadly to homogeneous terrain [64]. Renowned for its robustness, simplicity, and computational efficiency,
the FUGA wake model is based on the linearisation of the steady-state RANS equations, incorporating
an actuator disk approach [65, 64].

The linearisation of the simplified RANS equations is achieved through Taylor expansion, focusing
exclusively on terms of zero and first order. The zeroth-order equations pertain to the scenario where no
perturbations are introduced to the flow, signifying the absence of turbines [24]. The linear equations are
further simplified through a mixed-spectral formulation, which divides the problem into sets of coupled
ordinary differential equations that are independent of each other [64]. Additionally, the model utilises
look-up tables to characterise the velocity field behind the wind turbine and linear summation is employed
to accommodate multiple wake scenarios. Moreover, to address the challenges that arise when solving a
linearised model for flows over small values of roughness length, z0, particularly relevant for offshore sites
with low roughness lengths and more pronounced wakes, a new numerical scheme is implemented which
is discussed in detail by Ott et al. [64, 24].

This straightforward wake modelling approach establishes Fuga as one of the most resilient CFD-based
models for calculating wake effects [24]. Notably, its results, particularly regarding wind-speed deficits,
closely align with those obtained from a nonlinear solution of the RANS equations [65, 64].

As a cost-effective linearised CFD alternative, the Fuga model accurately replicates the behaviour of
the full CFD model in regions with minimal disturbances, such as in the far wake region. However, in
the vicinity of the rotor, the process of linearisation might compromise the accuracy of the momentum
budget. Nevertheless, empirical evidence indicates that the linearised wake tends to restore the disturbed
momentum balance in the near field, achieving reasonable deficits in the far field. This inherent capability
enhances the overall accuracy of linearised models [64].

Linearised models offer the advantage of being solvable without the need for a computational grid.
This eliminates concerns related to numerical diffusion, which can be problematic in large computational
domains. Additionally, issues associated with the generation of spurious mean pressure gradients, arising
from systematic errors in the momentum balance, are entirely eliminated in linearised models [64].

2.3. Numerical Methods
Numerical wake models require numerical methods in order to discretise the partial differential equations
(PDEs) inherent to numerical models. Two types of numerical methods can be distinguished, numerical
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methods based on local arguments and numerical methods based on global arguments. Finite element and
finite difference methods are examples of numerical methods that have a local character, as the test and
trial functions used for these methods have a local character with finite regularities. The spectral method
on the other hand employs globally smooth test and trial functions [66].

In this subsection, different numerical methods will be discussed and their respective (dis)advantages
will be presented.

2.3.1. Finite Difference Method
The finite difference method (FDM) is based on the application of a local Taylor expansion to approximate
partial differential equations (PDEs), resulting in a linear algebraic equation, the finite-difference equation.
Despite being the oldest numerical technique, the FDM approach is still the least advantageous when
dealing with intricate geometries due to its reliance on structured meshes. This limitation arises from its
use of a topologically square grid to discretise the partial differential equations (PDEs) [67, 68]. Another
limitation of finite difference methods is that the physical principle of conservation is not automatically
enforced. On the other hand, the FDM allows for higher-order approximations, resulting in high-order
accuracy of the spatial discretisation [69].

2.3.2. Finite Volume Method
The Finite Volume Method (FVM) emerged as an extension of the finite difference method, originating from
the integral formulation of conservation equations [70]. In contrast to the Finite Difference Method (FDM),
which relies on nodal relations for differential equations, the FVM discretises the governing equations in
integral form [71]. Moreover, most commercial CFD codes use FVM formulations.

From a physical perspective, the FVM describes the continuous equations in terms of local balances
over each cell or finite volume. This involves formulating the inflow and outflow from a volume in terms of
fluxes at the cell boundaries or facets [72]. The direct balancing of fluxes across adjacent control volumes
gives FVM an advantage over the FDM by ensuring the conservation of quantities at the discretised level,
such that mass, momentum, and energy remain conserved at a local scale. Additionally, the FVM allows
for the utilisation of unstructured meshes [71].

Then, when it comes to enhancing the accuracy of the FVM, mesh refinement can be used similar to
the Finite Element Method (FEM). However, unlike the FEM, constructing functions to estimate solutions
at higher orders is not as straightforward for the FVM. This discrepancy represents a drawback of the
FVM when compared to the FEM. However, the importance of higher order is mostly relevant for LES
and DNS.

2.3.3. Finite Element Method
The content of this subsection is largely informed by the doctoral thesis authored by J. Maljaars [72]. The
finite element method discretises the weak formulation of the governing conservation laws using a set of
basis functions. Numerous finite element approaches are available, however, this section will focus on the
Galerkin FEM method. This method is emphasised due to its widespread adoption and, to some extent,
has become a synonym for the finite element method [72].

As an introduction to the Galerkin FEM method, an elliptic boundary value problem with non-
homogeneous Dirichlet boundary conditions is considered. The elliptic operator in this problem serves
as a foundational model for later applications in the advection-diffusion equation and the incompressible
Navier-Stokes equations. The problem can be formulated as a system of first-order equations, as expressed
in Eq. (2.28). This system seeks to determine σ ∈ W and u ∈ Q within the domain Ω, given a source term
f and a Dirichlet condition g on the boundary ∂Ω. Notably, when the source term is zero, Eq. (2.28b)
shares mathematical resemblance with the incompressibility constraint [72, 73, 74].

σ = ∇u in Ω, (2.28a)
−∇σ = f in Ω, (2.28b)

u = g on ∂Ω. (2.28c)
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The weak formulation of the problem, as outlined in Eq. (2.29), is derived by multiplying Eqs. (2.28a)
and (2.28b) by the respective test functions w and q and integrating over the domain Ω. Here, σ and
u act as trial functions, while w and q are test functions belonging to the function spaces W and Q,
respectively. Furthermore, it is assumed that u satisfies the Dirichlet boundary conditions on ∂Ω, and
the test functions q vanish on this boundary. The strength of the weak formulation lies in its ability to
ease strict continuity demands on the solution space, allowing for the exploration of approximate solutions
within finite-dimensional function spaces [72, 74].

ˆ
Ω

(σ − ∇u) · w dΩ +
ˆ

Ω
(∇ · σ + f)q dΩ = 0 ∀ (w, q) ∈ (W, Q) (2.29)

Transitioning from the weak formulation to a set of algebraic equations necessitates the selection of a
finite-dimensional basis. To accomplish this, it is assumed that the variable of interest can be represented
using a set of basis functions with known shapes [72].

2.3.3.1. Function Spaces and Mesh Partitioning
Before introducing the continuous and discrete Galerkin methods, functions spaces are introduced. The
weak formulation specified in Eq. (2.29) remains valid provided that the gradients ∇u and ∇·σ are square
integrable over the domain Ω. For a function φ to be considered square integrable, it must satisfy the
condition stated in Eq. (2.30) [72].

ˆ
Ω
φ2 dΩ < ∞ (2.30)

Functions exhibiting this characteristic are classified as members of the Sobolev space of degree zero,
represented by L2(Ω) for scalar-valued functions (i.e., φ ∈ L2(Ω)) and L2(Ω) for vector-valued functions.
Additionally, for a positive integer k, functions that are square integrable and whose weak derivatives up
to order k are square integrable belong to the Sobolev space of degree k, denoted as Hk(Ω). Members
of the Sobolev space of degree one are frequently used. If the function φ belongs to the Hilbert space
H1(Ω) or H1(Ω) for vector-valued functions, it implies that Eq. (2.31) is satisfied. Moreover, it holds that
H1(Ω) ⊂ L2(Ω), and that functions φ ∈ H1(Ω) are at least C0 continuous [72, 73].

ˆ
Ω

(φ2 + ∇φ · ∇φ) dΩ < ∞ (2.31)

Discrete function spaces are constructed based on dividing the domain of interest Ω into a set of
separate simplicial elements K, each with its boundary ∂K, as illustrated in Fig. 2.4. The set of cells can
be represented as T := {K}, and the closure of a cell, encompassing both the cell and its boundaries,
is denoted by K̄ := K ∪ ∂K. Moreover, for neighbouring cells Ki and Kj (where i 6= j) there exists a
common facet F = ∂Ki ∪ ∂Kj , and the set F encompasses all facets, including exterior boundary facets
F = ∂K ∪ ∂Ω [72].

Having partitioned the domain, discrete function spaces can be defined. Basis functions for these finite
dimensional function spaces often rely on piecewise continuous polynomials denoted as Pk, where k > 1
represents the degree of the polynomial. Given this, the function space can be defined as presented in
Eq. (2.32) [72].

Wh := {wh ∈ H1(T ) : wh|K̄ ∈ Pk(K̄) ∀ K ∈ T }. (2.32)

In the context of T , numerous possibilities exist for Eq. (2.32). However, to narrow down the focus, a
decision is made to employ the Bubnov-Galerkin approach. This approach dictates that both trial and test
functions originate from the same discrete function space. Consequently, in the presented weak formulation
in Eq. (2.29), it follows that σ and w are derived from identical function spaces, as are u and q [72].
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Figure 2.4: Domain partitioning into simplices [72].

2.3.3.2. Continuous Galerkin Method
In the continuous Galerkin (CG) method, the function spaces are structured to ensure that the basis
functions maintain continuity across elements. In Eqs. (2.33) and (2.34), the piecewise continuous function
spaces are introduced, where, Qh,g is distinguished from Qh by the fulfilment of the Dirichlet boundary
condition at the domain boundary ∂Q [72, 74].

Qh :={qh ∈ H1(T ) : qh|K̄ ∈ Pk(K̄ ∀ K ∈ T } (2.33)

Qh,g :={qh ∈ H1(T ) : qh|K̄ ∈ Pk(K̄ ∀ K ∈ T , qh = g on ∂Ω} (2.34)

Given the definitions of these function spaces, an irreducible continuous Galerkin method of the mixed
form Eq. (2.29) is realised through the substitution of σ with ∇uh and w with ∇qh. Through the
application of integration by parts to ease the continuity constraint on the discrete function space, the
variational problem expressed in Eq. (2.29) can be restated as follows: find uh ∈ Qh,g such that Eq. (2.35)
holds, where

∑
K represents the summation over all cells, and ~n the outward pointing unit normal on the

cell boundaries [72, 74].

ˆ
Ω

∇uh · ∇qh dΩ −
∑
K

˛
∂K

∇uh · ~n qh dΓ −
ˆ

Ω
fqh dΩ = 0 ∀ qh ∈ Qh (2.35)

Given the continuity of the function space Qh across facets, the flux terms over the facets cancel, such
that the problem stated in Eq. (2.35) becomes Eq. (2.36) [72].

ˆ
Ω

∇uh · ∇qh dΩ −
ˆ

Ω
fqh dΩ = 0 ∀ qh ∈ Qh (2.36)

Additionally, when it comes to basis functions, polynomial basis functions of the Hermite interpolation
schemes serve as a beneficial option for the CG method as highlighted by Kumari et al. [75]. This is
due to their ability to ensure the desired continuity of derivatives across cell boundaries. Notably, the
odd Hermite basis functions contribute to modelling radial velocity by exhibiting a zero value at r = 0,
aligning with the foundational requirements for this specific directional aspect. Conversely, the symmetric
nature of even Hermite functions complements the axisymmetric assumption [9]. The drawback of these
basis functions, however, is that they lack orthogonality.

Moreover, Fig. 2.5 presents the basis functions for the linear, cubic, and quintic Hermite basis respec-
tively. The first index in the legend specifies whether the basis function defines the value on the left or
right side of the interval, while the second index indicates whether it defines the value, the first derivative,
or the second derivative.
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(a) Linear Hermite basis.
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(b) Cubic Hermite basis.
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(c) Quintic Hermite basis.

Figure 2.5: Representation of the Hermite basis functions.

2.3.3.3. Discontinuous Galerkin Method
The discontinuous Galerkin (DG) method employs broken function spaces. In other words, functions
within these function spaces are considered to be piecewise continuous within the interior of a cell K, but
they may exhibit discontinuities, resulting in being double-valued at the facets ∂K, resulting in a weaker
continuity requirement. The DG formulation of the weak form, as outlined in Eq. (2.29), can be derived
by utilising the broken function space introduced in Eq. (2.37) [72, 74].

Qh := {qh ∈ L2(T ) : qh|K̄ ∈ Pk(K) ∀ K ∈ T } (2.37)

A crucial distinction from the CG function spaces is that functions qh ∈ Qh are only square-integrable
on the set of cells T . Within the interior of cells, these functions qh are assumed to have square-integrable
derivatives. Given these definitions and assuming wh = ∇qh for all qh ∈ Qh, the weak form in Eq. (2.29)
is reformulated as a DG formulation in Eq. (2.38), where σ̂h and ûh are numerical fluxes on the facets ∂K
[72, 74]. A detailed derivation can be found in [74].

ˆ
Ω

∇uh ·∇qh dΩ+
∑
K

˛
∂K

(ûh−uh)~n ·∇qh dΓ−
∑
K

˛
∂K

σ̂h ·~n qh dΓ−
ˆ

Ω
fgh dΩ = 0 ∀ qh ∈ Qh (2.38)

With trial and test functions (uh, qh) belonging to Qh and exhibiting discontinuity between elements,
the discontinuous Galerkin (DG) formulation essentially frames the problem as a local balance for each
cell. The imposition of continuity between elements involves the careful selection of numerical fluxes, with
various formulations proposed in the literature (see [76]). Crucially, these numerical fluxes are expressed
in terms of the traces of the primal variable uh, which possesses a double-valued nature at facets, namely
σ̂h(uh) and ûh(uh) [72].

Additionally, with regard to basis functions, Legendre polynomials are regarded as a suitable choice for
the DG method. This is attributed to their definition within the interval from -1 to 1, as depicted in Fig. 2.6,
and their lack of dependency on neighbouring cells. Additionally, the orthogonal property of Legendre
polynomials enables the efficient approximation of projection integrals using Gaussian quadrature.
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Figure 2.6: Legendre polynomials Pn of degree n.

DG methods are becoming increasingly popular for solving partial differential equations. In contrast
to the classical CG method, DG methods offer advantages in accommodating non-conforming meshes
and functional adaptivity, while retaining local conservativity and yielding more robust discretisation,
particularly in simulations involving high Reynolds numbers [77, 78]. Furthermore, the DG method offers
the benefit of weak boundary conditions that do not compromise the accuracy of both the continuity and
momentum equations [79].

The flexibility of DG methods is evident from its ease of implementation for refinement and derefine-
ment, allowing for different polynomial orders on various elements. The absence of continuity restraints
facilitates the introduction of as many new nodes as needed [80]. Furthermore, the DG method allows for
the implementation of different orders of polynomials on distinct elements, contributing to its versatility.
A notable feature is the capability of DG methods to be reduced to a balance equation on each element,
ensuring local mass conservation. This enables tracking the amount of mass passing through the boundary
to other elements, in contrast to other finite element methods that provide only a global mass balance
[80].

Despite their versatility, DG methods introduce complexity compared to CG methods, involving in-
tricacies in algorithm formulation, meshing, and data transfer across element boundaries. Moreover, the
principal drawback of the DG method lies in its computational efficiency, as DG methods can significantly
surpass CG methods in terms of computational expense, especially when dealing with an unstructured
mesh. This increased computational demand stems from the fact that DG methods utilise element-wise
degrees of freedom rather than nodal ones [79].

2.3.4. Spectral Methods
Spectral methods utilise a set of analytical global basis functions that cover the entire domain for rep-
resenting flow variables. Typically, trigonometric or polynomial functions are employed for this purpose.
Substituting these basis functions into the differential equations yields analytical expressions directly, al-
lowing for the evaluation of the evolution of the flow field. In nonlinear problem scenarios, this approach
requires an orthogonal projection of the analytical solution onto the basis functions [74].

Although the spectral method has proven effective in the linearised Fuga model, where a mixed-spectral
formulation was implemented [64], it has also been observed to face mathematical challenges, especially in
the computation of the triple product integral when applied to solve the Ainslie wake model, and challenges
when it comes to the mass and momentum conservation as emphasised in the study by Lokken et al. [9].

2.4. Synthesis
Considering the goal of obtaining a wake model with low computational cost as highlighted in the in-
troduction, the Ainslie wake model emerges as the optimal choice. However, to enhance fidelity, certain
assumptions made during the derivation of the Ainslie wake model will be relaxed. More specifically, a
pressure term will be implemented by making a solver for the pressure Poisson equation.
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Furthermore, for simulating the wind turbine, an actuator disk forcing model will be incorporated. This
choice is motivated by its simplicity, ensuring the lowest computational cost. This strategic combination
aims to balance computational efficiency with enhanced fidelity, making it a well-suited approach for the
intended modelling objectives.



3
Two-Dimensional Ainslie Wake Model

In this chapter, the focus is on the implementation of the continuous FEM for the Ainslie wake model.
This method involves utilising Hermite interpolation functions as basis functions in both the radial and
axial directions, alongside employing a marching scheme in the axial direction. First in Section 3.1, various
approaches for solving the Ainslie wake model with a FEM will be outlined. Subsequently, in Section 3.2
of this chapter, the mathematical implementation of the continuity equation and the momentum equation
for the Stokes stream function approach will be derived. While, in Section 3.3 the same is done but for
the velocity component approach. Through this discussion, the aim is to provide a comprehensive under-
standing of the mathematical framework employed in simulating the Ainslie wake model. Furthermore,
Section 3.4 provides insight into how the tensor multiplications and matrix multiplications are carried out,
while Section 3.5 discusses the non-linear solver used to solve the non-linear governing equations. Finally,
Section 3.6 discusses the implementation of the boundary conditions.

3.1. Approach and Boundary Conditions
The implementation strategy for solving the Ainlsie wake model, presented in Subsection 2.2.4.5, revolves
around three key aspects: selecting the implementation approach, addressing the implementation of bound-
ary conditions, and determining the necessary order of the basis functions. Each of the three aspects will
be elaborated upon in Subsections 3.1.1 to 3.1.3, respectively. Subsequently, a conclusion will be provided
in Subsection 3.1.4.

3.1.1. Different Implementation Approaches
There are two primary approaches to solving the Ainslie wake model. The first approach involves treating
the radial and axial velocity components as distinct quantities, while the second approach incorporates
the Stokes stream function, defined in Eq. (3.1). Opting for the latter method allows for a reduction in
the number of equations associated with the Ainslie wake model, leading to a reduction in the number of
degrees-of-freedom. Additionally, this approach ensures local conservation of mass, satisfying the strong
form of the continuity equation, while the former method only ensures global mass conservation. However,
the main disadvantage of this approach is the requirement for higher-order basis functions to ensure fully
defined boundary conditions and a fully defined system of equations as the implementation of the Stokes
stream function results in higher-order derivatives, reducing the order in both the axial and radial direction.

V = −1
r

∂ψ

∂x
U = 1

r

∂ψ

∂r
(3.1)

3.1.2. Considerations regarding the Boundary Conditions
For each of the two implementation strategies presented in Subsection 3.1.1, the boundary conditions are
presented in Table 3.1, where the boundary conditions for the Stokes stream function approach are derived
from those defined for the velocity component approach, utilising the expressions for the radial and axial
velocity components in terms of the stream function, as presented in Eq. (3.1).

Upon closer inspection of the boundary conditions at r = Rmax, for the stream function approach,
it becomes apparent that particularly the Neumann boundary condition is not well-defined, potentially

22
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resulting in undesirably high derivatives of the Stokes stream function at the boundary. To ensure well-
defined boundary conditions, a modified version of the stream function, more specifically, the deficit stream
function (Eq. (3.2)), could be employed instead of the general Stokes stream function. This modification
would enforce ∂ψ(Rmax,x)

∂r = 0 and ∂2ψ(Rmax,x)
∂r2 = 0.

ψD = ψ − U∞
r2

2 (3.2)

Furthermore, regarding the boundary conditions at r = Rmax in the velocity component approach, par-
ticularly for the axial velocity component, it remains undecided whether a linear combination of boundary
conditions, Robin boundary conditions, or the separate implementation of the Neumann or Dirichlet
boundary conditions would prove to be more effective.

Boundary conditions Velocity Component Approach Stokes Stream Function Approach
at r = Rmax V (Rmax, x) = 0 Dirichlet ψ(Rmax, x) = constant Dirichlet

U(Rmax, x) = U∞ Dirichlet ∂ψ(Rmax,x)
∂r = U∞Rmax Neumann

∂U(Rmax,x)
∂−→n = ∂U(Rmax,x)

∂r = 0 Neumann ∂2ψ(Rmax,x)
∂r2 = U∞

at r = 0 m V (0, x) = 0 Dirichlet ψ(0, x) = constant Dirichlet
∂U(0,x)
∂r = 0 Neumann ∂ψ(0,x)

∂r = rU(0, x) = 0 Neumann
∂2n+1U(0,x)
∂r2n+1 = 0 ∂2ψ(0,x)

∂r2 = 0
∂2nV (0,x)
∂r2n = 0

Table 3.1: Boundary conditions for the different implementation approaches.

3.1.3. Required Order of the Basis Functions
The minimum degree of the basis functions to ensure continuity across the entire domain (i.e. within the
cells and across the cell boundaries) of the differential operator after having applied integration by parts
relies on the highest order derivative present in both the boundary conditions and the equations governing
the wake model.

Starting with the basis functions used in the velocity components approach. The highest order deriva-
tive in the radial direction when considering both the boundary conditions specified in Table 3.1 and the
governing equations, is the second order derivative originating from the diffusion term in the momen-
tum equation. Applying integration by parts to the diffusion term requires the first-order derivative to
be continuous over the boundaries, similar to the requirements stemming from the boundary conditions.
Consequently, at least cubic Hermite interpolation for the basis functions in the radial direction is required
to ensure the continuity of the differential operator. Higher-order Hermite interpolation basis functions
are also a possibility but not necessary and therefore not considered for this approach. Furthermore, for
the basis functions in the axial direction, the lowest order of basis functions applicable are piecewise linear
basis functions, as there are no first-order derivatives present that need to be evaluated at the boundaries.

Then, considering the boundary conditions and governing equations for the Stokes stream function
approach, the highest-order derivatives in radial direction evaluated at the boundaries are second-order
derivatives, originating from both the boundary evaluation term of the diffusion term after applying
integration by parts, and from the boundary conditions, as observed from Table 3.1. Therefore, compared
to the velocity component approach, it can be inferred that the cubic Hermite interpolation basis functions
in the radial direction become less viable due to the discontinuities observed in their second derivatives at
the cell boundaries. Consequently, upgrading the basis functions to quintic order in the radial direction
becomes necessary for the stream function approach. However, for the axial direction, piecewise linear
basis functions are still sufficient.

3.1.4. Conclusion
Following the discussion in this section, two primary options are proposed for solving the Ainslie wake
model using the FEM. The first option involves implementing the velocity component approach, employing
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cubic Hermite interpolation basis functions in the radial direction and piecewise linear basis functions in
the axial direction. Conversely, the second approach employs the Stokes stream function with quintic
Hermite interpolation basis functions in the radial direction and piecewise linear basis functions in the
axial direction. Furthermore, for this latter approach, it is preferable to utilise the deficit stream function
to ensure well-defined boundary conditions.

Both approaches resulting from the discussion have their respective advantages and disadvantages.
In theory, when prioritising computational efficiency and emphasising the fulfillment of the continuity
equation in a strong sense, the stream function approach is favoured over the velocity component approach.
However, during the implementation phase, new advantages and disadvantages of both approaches may
emerge, potentially leading to a slightly altered approach. As such, both implementation methods will be
elaborated upon in the subsequent sections.

3.2. Implementation Stokes Stream Function Approach
In this section, first, the continuity equation for the Stokes stream function approach will be discussed
in Subsection 3.2.1. Subsequently, a comprehensive discussion on the discretisation of the momentum
equation for the Stokes stream function approach using the FEM will be presented in Subsection 3.2.2.

3.2.1. Implementation Continuity Equation
The starting point in this section is the axisymmetric, time-averaged, incompressible continuity equation,
as outlined in Eq. (3.3), where U is the time-averaged axial velocity and V the time-averaged radial
velocity.

∂U(r, x)
∂x

+ 1
r

∂

∂r
(rV (x, r)) = 0 (3.3)

The stream function approach achieves a pointwise satisfaction of the continuity equation as discussed
in Section 3.1. This can be shown by applying the definition of the stream function outlined in Eq. (3.1)
in Eq. (3.3), as presented in Eq. (3.4).

∂

∂x

(
1
r

∂ψ(x, r)
∂r

)
+ 1
r

∂

∂r

(
r

(
−1
r

∂ψ(x, r)
∂x

))
= 1
r

∂ψ(x, r)
∂x∂r

− 1
r

∂ψ(x, r)
∂x∂r

= 0 (3.4)

3.2.2. Implementation Momentum Equation
The momentum equation considered for this analysis follows the form outlined in Eq. (3.5), which is
derived in Subsection 2.2.4.5.

U
∂U

∂x
+ V

∂U

∂r
= 1
r

∂

∂r

(
r

(
νt
∂U

∂r

))
(3.5)

Furthermore, when considering the stream function approach for the transport equation, as outlined
in Eq. (3.5), one may choose to initiate the analysis from either the convective form of the momentum
equation, outlined in Eq. (3.6), or from the Cauchy momentum equation, as depicted in Eq. (3.7). For
this thesis, the decision has been made to employ the convective form of the momentum equation for the
analysis.

(
1
r

∂ψ

∂r

)(
1
r

∂2ψ

∂x∂r

)
+
(

−1
r

∂ψ

∂x

)(
∂

∂r

[
1
r

∂ψ

∂r

])
= 1
r

∂

∂r

(
r

(
νt
∂

∂r

(
1
r

∂ψ

∂r

)))
(3.6)

∇ ·

((
− 1
r
∂ψ
∂x

1
r
∂ψ
∂r

)
1
r

∂ψ

∂r

)
= ∇ ·

(
νt

(
∂
∂r

(
1
r
∂ψ
∂r

)
0

))
(3.7)

Prior to discretising the terms, it is crucial to explore and determine an appropriate discretisation
approach. One possibility is the utilisation of a marching scheme in the axial direction. This approach
involves systematically progressing through a computational domain, advancing step by step from one
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boundary to another. The procedure starts with established values at the left boundary, and the algorithm
takes consecutive steps in the axial direction, calculating values at each successive right cell boundary until
it reaches the right boundary at the end of the domain. This means that instead of solving a global M×N
system an order M system is solved N times. It should be noted that the use of the marching scheme is
justified by the fact that the parabolised form of the Navier-Stokes equations is being solved.

The marching scheme’s advantage lies in its effectiveness for problems that require a systematic, in-
cremental strategy, offering a clear and organised approach to propagating information throughout the
computational domain. However, in case of backflow of information, indicating a negative velocity, the
marching scheme becomes unsuitable for CFD simulations, necessitating a direct solution. To overcome
this challenge, one needs to ensure the absence of adverse pressure gradients. This effectively prevents
the downstream flow of information, ensuring the axial velocity stays non-negative. However, this modi-
fication restricts the approach to situations dominated by advection, potentially presenting a challenge in
maintaining satisfactory continuity and information flow in fluid simulations [9]. In this thesis, a marching
scheme approach has been selected for implementation.

3.2.2.1. Diffusion Term
In this section, the diffusion term described in Eq. (3.8) will be discretised. For this purpose, the stream
function will be expressed as a linear combination of basis functions in both the axial and radial directions,
as presented in Eq. (3.9). It should be noted that to mitigate issues arising from terms like 1

r when r
approaches zero, the basis function in the radial direction is modified to be a function of r2 rather than r.

RHS = 1
r

∂

∂r

(
r

(
νt
∂

∂r

(
1
r

∂ψ

∂r

)))
(3.8)

ψ(r2, x) =
Nr∑
n=0

Nx∑
k=0

ψ(n,k)bn(r2)ak(x) (3.9)

Furthermore, when employing the marching scheme, the axial component of the stream function can
be divided into two parts: known components derived from either initial conditions or the preceding step,
and unknown components. The known coefficients of the stream function are linked to its values on the
left side of the elements, denoted by the subscript l, whereas the coefficients associated with unknown
values are attributed to the right side of the elements, indicated by the subscript r. The same notation is
applied to the basis functions forming the velocity values on both the left and right sides of the elements,
resulting in Eq. (3.10).

ψ(r, x) =
Nr∑
n=0

Nx/2∑
k=0

ψ(n,kl)bn(r2)akl
(x) + ψ(n,kr)bn(r2)akr (x) (3.10)

The first step in the discretisation process involves implementing the linear combination for the stream
function in Eq. (3.8). However, before incorporating the linear combination for the stream function, the
expression for the diffusion term is slightly modified to simplify the subsequent steps, as presented in
Eq. (3.11). The resulting expression is outlined in Eq. (3.12), which incorporates the characteristics of
ak(x) and bn(r2) being dependent solely on the axial and radial directions, respectively, and νt being
dependent exclusively on the axial direction.

RHS = 1
r

∂

∂r

(
νt

[
−1
r

∂ψ

∂r
+ ∂2ψ

∂r2

])
(3.11)
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(3.12)

Applying the Galerkin projection in the axial and radial directions onto the basis functions ai(x) and
bm(r2), respectively, using a marching scheme approach, yields Eq. (3.13). During the implementation of
the marching scheme, it is essential to emphasise that in order to have a square matrix, which is necessary
for taking the inverse operation required to solve the equations, it is sufficient to project either onto the
left or the right basis functions, or another set of linearly independent basis functions which satisfy this.
In this case a projection onto the right axial basis functions, denoted by air (x), has been opted for.
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(3.13)

Subsequently, integration by parts is utilised on the second-order derivative term in the axial direction,
as well as on the second- and third-order derivatives in the radial direction. This approach serves to relax
the constraint on the specific order of the radial basis functions and to prevent encountering derivatives
of a product of dependent terms, to ease the coding implementation. Implementing this yields Eq. (3.14).
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(3.14)

However, Eq. (3.14) is not completely refined yet, since the radial basis functions are operated upon
by r2 instead of r. For this purpose, r2 is referred to by the variable s. Before rewriting the radially
dependent terms in Eq. (3.14) first some relations between r and s that are necessary for the derivation
are presented. More specifically, the general relation between r and s as well as the relation between dr
and ds is provided in Eq. (3.15). Furthermore, also the term ∂b(r2)

∂r is worked out before starting the
derivation as outlined in Eq. (3.16), where b(r2) is a general basis function dependent on r2.
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√
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2
√
s

ds (3.15)

∂b(r2)
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= ∂b(s)
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∂s

∂r
= ∂b(s)

∂s
2
√
s (3.16)

The first term that will be worked out is Matrix A1 in Eq. (3.14). For this, it is important to note that
changing the integration variable necessitates corresponding adjustments to the integration limits. The
result is given by Eq. (3.17).
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Proceeding with Matrix A2, the worked-out derivation is provided in Eq. (3.18).
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(3.18)

This leads to the final expression for the diffusion term in terms of s (or r2), as depicted in Eq. (3.19).
Notably, Matrix A1 and Matrix A2,1, can be combined into one term resulting in the final expression for
the diffusion term presented in Eq. (3.20).
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(3.19)
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(3.20)

Lastly, implementing the deficit stream function into Eq. (3.11) yields a diffusion term formulation that
remains consistent, though necessitating adaptation of the coefficients to suit the deficit stream function,
as derived in Eq. (3.21).
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3.2.2.2. Non-Linear Advection Term
In this section, the non-linear advection term described in Eq. (3.22) will be discretised. The first step in
this discretisation process is the implementation of the deficit stream function, yielding Eq. (3.23).
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After having implemented the deficit stream function, the subsequent step involves implementing the
linear combination representation of the stream function. For this objective, the stream function will
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be formulated using the same linear combination as for the diffusion term, as presented in Eq. (3.10).
Employing a marching scheme approach yields the result shown in Eq. (3.24), which can be rewritten to
obtain the expression outlined in Eq. (3.25).

LHS =
Nr∑

n,p=0

Nx/2∑
j,k=0

(
1
r

∂

∂r

(
ψD,(n,jl)bn(r2)ajl

(x) + ψD,(n,jr)bn(r2)ajr
(x)
)

+ U∞

)(
1
r

∂2

∂x∂r

(
ψD,(p,kl)bp(r2)akl

(x) + ψD,(p,kr)bp(r2)akr
(x)
))

+
Nr∑

n,p=0

Nx/2∑
j,k=0

(
−1
r

∂

∂x

(
ψD,(n,jl)bn(r2)ajl

(x) + ψD,(n,jr)bn(r2)ajr
(x)
))( ∂

∂r

[
1
r

∂

∂r

(
ψD,(p,kl)bp(r2)akl

(x) + ψD,(p,kr)bp(r2)akr
(x)
)])

(3.24)

LHS =
Nr∑

n,p=0

Nx/2∑
j,k=0

ψD,(n,jl)ψD,(p,kl)

(
1
r

∂bn(r2)
∂r

1
r

∂bp(r2)
∂r

)(
ajl

(x)∂akl
(x)

∂x

)

+
Nr∑

n,p=0

Nx/2∑
j,k=0

ψD,(n,jl)ψD,(p,kr)

(
1
r

∂bn(r2)
∂r

1
r

∂bp(r2)
∂r

)(
ajl

(x)∂akr (x)
∂x

)

+
Nr∑

n,p=0

Nx/2∑
j,k=0

ψD,(n,jr)ψD,(p,kl)

(
1
r

∂bn(r2)
∂r

1
r

∂bp(r2)
∂r

)(
ajr (x)∂akl

(x)
∂x

)

+
Nr∑

n,p=0

Nx/2∑
j,k=0

ψD,(n,jr)ψD,(p,kr)

(
1
r

∂bn(r2)
∂r

1
r

∂bp(r2)
∂r

)(
ajr (x)∂akr

(x)
∂x

)

+
Nr∑
p=0

Nx/2∑
k=0

ψD,(p,kl)U∞

(
1
r

∂bp(r2)
∂r

)(
∂akl

(x)
∂x

)
+

Nr∑
p=0

Nx/2∑
k=0

ψD,(p,kr)U∞

(
1
r

∂bp(r2)
∂r

)(
∂akr

(x)
∂x

)

−
Nr∑

n,p=0

Nx/2∑
j,k=0

ψD,(n,jl)ψD,(p,kl)

(
1
r
bn(r2) ∂

∂r

[
1
r

∂bp(r2)
∂r

])(
∂ajl

(x)
∂x

akl
(x)
)

−
Nr∑

n,p=0

Nx/2∑
j,k=0

ψD,(n,jl)ψD,(p,kr)

(
1
r
bn(r2) ∂

∂r

[
1
r

∂bp(r2)
∂r

])(
∂ajl

(x)
∂x

akr
(x)
)

−
Nr∑

n,p=0

Nx/2∑
j,k=0

ψD,(n,jr)ψD,(p,kl)

(
1
r
bn(r2) ∂

∂r

[
1
r

∂bp(r2)
∂r

])(
∂ajr (x)
∂x

akl
(x)
)

−
Nr∑

n,p=0

Nx/2∑
j,k=0

ψD,(n,jr)ψD,(p,kr)

(
1
r
bn(r2) ∂

∂r

[
1
r

∂bp(r2)
∂r

])(
∂ajr (x)
∂x

akr (x)
)

(3.25)

This is followed by applying the Galerkin projection onto basis functions air (x) and bm(r2), which
results in Eq. (3.26). Furthermore, no integration by parts is required for the non-linear advection term
as only first-order derivatives are involved.
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The non-linear advection term expressed in Eq. (3.26) requires further adjustments due to a discrepancy
between the radial basis functions, which are formulated in terms of r2, while the derivatives and integrals
with respect to the radial direction are a function of r. Hence, a similar process to that employed for the
diffusion term will be undertaken to ensure consistency.
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The first terms that will be worked out are Tensor A and Tensor B, using the relations presented in
Eqs. (3.15) and (3.16). The resulting tensor expressions are presented in Eqs. (3.27) and (3.28) respectively.
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Lastly, Matrix C will be worked out, resulting in the expression provided by Eq. (3.29).
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Implementing the new expressions for Tensor A, Tensor B and Matrix C in Eq. (3.30) results in
Eq. (3.30). The final expression of the non-linear advection term reveals two distinct components: a linear
term dependent on the incoming flow velocity, U∞, and non-linear terms characterised by triple product
integrals.
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3.3. Implementation Velocity Component Approach
In this section, first, the continuity equation for the velocity component approach will be discretised
in Subsection 3.3.1. Subsequently, a comprehensive discussion on the discretisation of the momentum
equation for the velocity component approach using the FEM will be presented in Subsection 3.3.2.

3.3.1. Implementation Continuity Equation
The starting point for this section is again the two-dimensional, time-averaged, incompressible continuity
equation, as outlined in Eq. (3.3). Before performing the discretisation of the continuity equation, a
decision needs to be made regarding how to define the radial velocity components. Two possible options
exist for this purpose. One option involves separately defining the axial and radial velocity components,
while the other option is to define the radial velocity in terms of the axial velocity as derived from
the continuity equation. The latter approach offers the benefit of reducing the number of equations,
resulting in lower computational costs. Additionally, this method also ensures local mass conservation,
satisfying the continuity equation in a strong sense, similar to the stream function approach. However,
the aforementioned benefit is offset by the drawback of the resulting dense matrices. In contrast, the
stream function approach and the former method retain sparsity. Moreover, another drawback is the
necessity for higher-order basis functions, due to a reduction in the order of the radial velocity in the axial
direction. Considering that the stream function approach shares similar advantages and disadvantages
with the method where the radial velocity component is defined in terms of the axial velocity component,
except for the significant advantage of sparsity, the latter approach will therefore not be considered here.
Instead, only the approach involving separate velocity components will be discussed in detail.

For the discretisation of Eq. (3.3) the axial and radial velocity components are expressed as a linear
combination of axial and radial basis functions, as presented in Eq. (3.31) and Eq. (3.32) respectively.
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V(n,k)bn(r)ak(x) (3.32)

Furthermore, similar to the stream function approach, when implementing a marching scheme in the
axial direction, the dependency of velocity components along the axial direction can be partitioned into
two components: a known component and an unknown component. Coefficients corresponding to known
velocity values are associated with the left side of the elements (indicated by the subscript l), while
coefficients associated with unknown values are assigned to the right side of the elements (indicated by
the subscript r). This notation remains consistent for the basis functions forming velocity values on both
the left and right sides. Taking this into account, the axial and radial velocity components in Eq. (3.31)
and Eq. (3.32) can be rewritten as given in Eq. (3.33), and Eq. (3.34) respectively.
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Implementing these expressions for the velocity components into the continuity equation results in
Eq. (3.35).
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Subsequently, the Galerkin projection onto the axial and radial basis functions ai(x) and bm(r), re-
spectively, is implemented, using a marching scheme approach, resulting in Eq. (3.36). In the context of
using a marching scheme approach, projection onto the right axial basis functions, denoted by air (x), is
employed to ensure the formation of square matrices.
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The last step involves a slight adjustment to the term ∂
∂r (rbn(r)) to avoid differentiating a product of

terms, which results in expression Eq. (3.37).
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3.3.2. Implementation Momentum Equation
In this section, the advection and diffusion terms of the momentum equation presented in Eq. (3.5) will
be discretised, using a marching scheme in the axial direction.

3.3.2.1. Diffusion Term
In this section, the diffusion term presented in Eq. (3.38) will be discretised based on a marching scheme
approach. For this purpose, the axial velocity component is expressed as a linear combination of axial and
radial basis functions, as previously outlined in Eq. (3.33).
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Having established the linear combination for the axial velocity component in the framework of using
a marching scheme, the subsequent step entails integrating it into Eq. (3.38), which results in the equation
outlined in Eq. (3.39).
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Applying the Galerkin projection onto the axial and radial basis functions air (x) and bm(r), respec-
tively, using a marching scheme approach, results in Eq. (3.40).
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Subsequently, integration by parts is utilised on the second-order derivative terms, which lowers the
order of the radial derivatives and also prevents encountering a derivative of a multiplication of dependent
terms. Implementing this yields Eq. (3.41).
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3.3.2.2. Non-Linear Advection Term
In this section, the non-linear advection term for the velocity component approach as presented in
Eq. (3.42) will be discretised. The first step in this process involves implementing the linear combina-
tions for the axial and radial velocity components, as expressed in Eq. (3.33) and Eq. (3.34) respectively,
resulting in Eq. (3.43).
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The next step in the finite element procedure is applying the Galerkin projection onto the axial and
radial basis functions ai(x) and bm(r) respectively. In the context of the marching scheme approach, it is
decided to only project onto the right axial basis functions denoted by air (x) to maintain square matrices,
leading to the final expression for the non-linear advection term in Eq. (3.44).
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Tensor B

Xrˆ

Xl

air (x)ajl
(x)akl

(x)dx

︸ ︷︷ ︸
Tensor Bl,l

+
Nr∑

n,p=0

Nx/2∑
j,k=0

V(n,jl)U(p,kr)

Rmaxˆ

0

bm(r)bn(r)∂bp(r)
∂r

rdr

︸ ︷︷ ︸
Tensor B

Xrˆ

Xl

air (x)ajl
(x)akr

(x)dx

︸ ︷︷ ︸
Tensor Bl,r

+
Nr∑

n,p=0

Nx/2∑
j,k=0

V(n,jr)U(p,kl)

Rmaxˆ

0

bm(r)bn(r)∂bp(r)
∂r

rdr

︸ ︷︷ ︸
Tensor B

Xrˆ

Xl

air (x)ajr
(x)akl

(x)dx

︸ ︷︷ ︸
Tensor Br,l

+
Nr∑

n,p=0

Nx/2∑
j,k=0

V(n,jr)U(p,kr)

Rmaxˆ

0

bm(r)bn(r)∂bp(r)
∂r

rdr

︸ ︷︷ ︸
Tensor B

Xrˆ

Xl

air (x)ajr
(x)akr

(x)dx

︸ ︷︷ ︸
Tensor Br,r

(3.44)

3.4. Solving Matrix and Tensor Multiplications
The diffusion and advection terms in both the stream function approach and the velocity component
approach maintain distinct Galerkin projection matrices and tensors for the axial and radial dependent
components. This section discusses the procedure of merging these matrices and tensors to form unified
representations. However, it is important to mention that when employing piecewise linear basis functions
in the axial direction with a marching scheme, the axial matrices and tensors are reduced to only one
value, rendering the subsequent discussion unnecessary. However, the following discussion is provided in
case higher-order axial basis functions are desired or a global system solution is sought.

For merging the matrices associated with the radial and axial Galerking projections a Kronecker tensor
product is employed. This prioritises the axial indices first, ensuring that only non-zero elements are present
along lines adjacent to the matrix diagonal.

Then, to merge the tensors associated with the radial and axial triple Galerkin projections, first, a
projection index is selected for both the axial and radial tensors, yielding matrices. Following this, a
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Kronecker tensor product is calculated between the matrices for each combination of projections. This
process concludes with the generation of a Kronecker tensor product between the tensors.

3.5. Non-Linear Solver
Due to the system’s nonlinear characteristics, employing a nonlinear solver is essential. Therefore, the
Newton-Raphson method has been selected, which originates from the first-order Taylor series expansion
of the governing equation formulated in its fixed-point form. The equation that governs this method, as
detailed in Eq. (3.45), depends on the Jacobian matrix, J , to advance to the subsequent iteration step.
Moreover, in this context, the index i represents the combined index of the axial and radial basis functions
onto which the fixed-point form is projected, beginning from the axial index. The index n, on the other
hand, denotes the current iteration step in the iterative process.

xn+1
i = xni − J(xni )−1f(xni ) with J(xni ) = ∂fi(xni )

∂xni
(3.45)

When the stream function approach is implemented, the Newton-Raphson method is governed by
Eq. (3.46), and the Jacobian will resemble the matrix presented in Eq. (3.47). It solely contains the
momentum equation. Moreover, N represents the combined number of unknowns, contingent on the order
of the axial and radial basis functions.

ψn+1
i = ψni − J(ψni )−1f(ψni ) with J(ψni ) = ∂fi(ψni )

∂ψni
(3.46)

J(ψni ) =



∂f1
∂ψ1

∂f1
∂ψ2

· · · ∂f1
∂ψN−1

∂f1
∂ψN

∂f2
∂ψ1

∂f2
∂ψ2

· · · ∂f2
∂ψN−1

∂f2
∂ψN

...
. . .

...
∂fN−1
∂ψ1

∂fN−1
∂ψ2

· · · ∂fN−1
∂ψN−1

∂fN−1
∂ψN

∂fN

∂ψ1

∂fN

∂ψ2
· · · ∂fN

∂ψN−1

∂fN

∂ψN


[N×N ]

(3.47)

In the velocity component approach, there are twice as many unknowns compared to the stream
function approach. Hence, both the continuity and momentum equations are incorporated to solve for
2N unknowns. In this scenario, the governing equation for the Newton-Raphson method is provided by
Eq. (3.48), and the Jacobian matrix will resemble the one presented in Eq. (3.49). Here, f is characterised
by two indices, where the first index, either 1 or 2, signifies whether the function corresponds to the
continuity equation or the momentum equation, respectively.

ψn+1
i = ψni − J(ψni )−1f(ψni ) with J(ψni ) = ∂fi(ψni )

∂ψni
(3.48)

J(ψni ) =



∂f1,1
∂U1

∂f1,1
∂U2

· · · ∂f1,1
∂UN−1

∂f1,1
∂UN

∂f1,1
∂V1

∂f1,1
∂V2

· · · ∂f1,1
∂VN−1

∂f1,1
∂VN

∂f1,2
∂U1

∂f1,2
∂U2

· · · ∂f1,2
∂UN−1

∂f1,2
∂UN

∂f1,2
∂V1

∂f1,2
∂V2

· · · ∂f1,2
∂VN−1

∂f1,2
∂VN

...
. . .

...
...

. . .
...

∂f1,N−1
∂U1

∂f1,N−1
∂U2

· · · ∂f1,N−1
∂UN−1

∂f1,N−1
∂UN

∂f1,N−1
∂V1

∂f1,N−1
∂V2

· · · ∂f1,N−1
∂VN−1

∂f1,N−1
∂VN

∂f1,N

∂U1

∂f1,N

∂U2
· · · ∂f1,N

∂UN−1

∂f1,N

∂UN

∂f1,N

∂V1

∂f1,N

∂V2
· · · ∂f1,N

∂VN−1

∂f1,N

∂VN
∂f0,1
∂U1

∂f0,1
∂U2

· · · ∂f0,1
∂UN−1

∂f0,1
∂UN

∂f0,1
∂V1

∂f0,1
∂V2

· · · ∂f0,1
∂VN−1

∂f0,1
∂VN

∂f0,2
∂U1

∂f0,2
∂U2

· · · ∂f0,2
∂UN−1

∂f0,2
∂UN

∂f0,2
∂V1

∂f0,2
∂V2

· · · ∂f0,2
∂VN−1

∂f0,2
∂VN

...
. . .

...
...

. . .
...

∂f0,N−1
∂U1

∂f0,N−1
∂U2

· · · ∂f0,N−1
∂UN−1

∂f0,N−1
∂UN

∂f0,N−1
∂V1

∂f0,N−1
∂V2

· · · ∂f0,N−1
∂VN−1

∂f0,N−1
∂VN

∂f0,N

∂U1

∂f0,N

∂U2
· · · ∂f0,N

∂UN−1

∂f0,N

∂UN

∂f0,N

∂V1

∂f0,N

∂V2
· · · ∂f0,N

∂VN−1

∂f0,N

∂VN


[2N×2N ]

(3.49)
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The ease of dealing with linear terms stems from their constant derivatives, whereas the derivatives of
the non-linear terms remain dependent on the stream function coefficients or the coefficients of the velocity
components. Finally, the iteration concludes once the norm of J(ψni )−1f(ψni ) falls below 1e−6.

3.6. Implementation Boundary Conditions
There are two types of boundary conditions to be implemented Dirichlet boundary conditions and Neu-
mann boundary conditions.

Incorporating Dirichlet boundary conditions entails specifying the solution values at particular points
or along specific boundaries within the computational domain. One method involves solving solely for the
unknown coefficients in the solution vector, followed by the addition of Dirichlet boundary conditions at
the appropriate positions in the solution vector. Alternatively, the system of equations can be adjusted
to incorporate the Dirichlet boundary conditions without the need to remove equations. This is achieved
by modifying the solution vector to include the Dirichlet boundary conditions. Furthermore, to maintain
the Dirichlet boundary condition rows at their prescribed values, the corresponding rows in the Newton
update vector are enforced to be exactly zero. This is accomplished by setting non-diagonal entries of the
relevant row in the Jacobian matrix to zero. Additionally, since the increment for the row corresponding
to the Dirichlet boundary condition is zero, it becomes completely independent from all other rows and
columns, allowing the corresponding column to be zeroed as well [81].

Then, incorporating Neumann boundary conditions is less straightforward. Depending on the order of
the employed basis functions, two distinct approaches are employed. Firstly, when higher-order Hermite
interpolation basis functions are utilised, Neumann boundary conditions can be directly applied. This is
achieved by setting the coefficient multiplied by the basis function associated with the first derivative at
the boundary equal to the required value of the derivative. Then, in the case of piecewise linear basis
functions, the Neumann boundary condition, which essentially states that Ui,1 = Ui,0, can be employed
by enforcing this statement directly in the matrix and tensor formulations.



4
Verification

In this chapter, the implementation strategy is verified. This is a crucial step in the model development
process, considering the likelihood of errors slipping into the implementation phase. The verification
process consists of several parts. First, each element of the wake model is individually verified, which is
followed by an overall verification of the entire model. However, before verifying the different aspects of the
wake model, first, the accuracy of the radial discretisation will be discussed in Section 4.1. Additionally, it
is worth noting that the verification process is exclusively conducted for the velocity component approach.
This choice stems from the similarity between the velocity component approach and the stream function
approach, with the velocity component approach requiring the implementation of one additional equation.

The first test involves confirming the accurate implementation of the diffusion term, as described
in Section 4.2. This is followed by verifying the correct implementation of the continuity equation in
Section 4.3. Next, the implementation of the Newton-Raphson non-linear solver is validated as detailed
in Section 4.4. Finally, Section 4.5 discusses the observed issues encountered when implementing the full
Ainslie wake model.

4.1. Accuracy Radial Discretisation
This section provides a brief discussion on the accuracy of radial discretization. Before delving into how
the order of the Hermite interpolation polynomial basis functions and the number of degrees of freedom
affect accuracy in Subsection 4.1.3, the method used to approximate a given function and the error measure
used are discussed in Subsection 4.1.1 and Subsection 4.1.2 respectively. A representation of the Hermite
basis functions for various orders is shown in Fig. 2.5.

4.1.1. Function Approximation with Basis Functions
The function to be approximated, denoted by f(x), is assumed to be able to be expressed as a summation
over the basis functions, bn(x), multiplied by unknown coefficients, αn, as illustrated in Eq. (4.1).

f(r) ≈
N∑
n=1

αnbn(r) (4.1)

To address the non-orthogonality of the Hermite interpolation polynomials and solve for the unknown
coefficients, αn, the subsequent step involves applying the Ritz-Galerkin projection to Eq. (4.1), as shown
in Eq. (4.2), with bm(r) acting as the test function.

ˆ
Ω
f(r)bm(r)rdr︸ ︷︷ ︸

fm

=
N∑
n=1

αn

ˆ
Ω
bn(r)bm(r)rdr︸ ︷︷ ︸

Global Mass Matrix A

(4.2)

The unknown coefficients are then calculated using Eq. (4.3), such that the function can be approxi-
mated using Eq. (4.1).

αn = A\fm (4.3)

42
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4.1.2. Error Metric for Radial Discretisation
The approximation error is evaluated by integrating the squared difference between the approximation and
the Gaussian function across the entire domain, as described in Eq. (4.4). This integration is performed
using symbolic methods in MATLAB.

ˆ
Ω

(f(r) − fref (r))2rdr (4.4)

4.1.3. Results Radial Discretisation Error
The graph shown in Figure 4.1 showcases the dependence of the absolute approximation error on the
number of degrees-of-freedom, and the order of basis functions when approximating a Gaussian profile.
Significantly, the graph reveals a pattern where the reduction in approximation error becomes more signifi-
cant with higher orders of basis functions. Specifically, the slopes indicating the decrease in approximation
error increase with the order of basis functions, aligning with the anticipated decrease, indicated by the
dotted black lines. This finding suggests that when employing higher-order basis functions, achieving
the same level of approximation error requires fewer degrees of freedom. In other words, the increased
complexity introduced by higher-order basis functions enhances the efficiency of the system in achieving
the desired approximation with a reduced number of degrees of freedom. Despite the rapid increase in
computational time associated with higher-order basis functions, the reduced need for elements or degrees
of freedom counterbalances this effect and can even result in lower computational time.
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Figure 4.1: Absolute approximation errors for the Gaussian based on the number of degrees of freedom
and the choice of basis functions.

4.2. Verification of Diffusion Term
The first term to be verified is the diffusion term within the momentum equation. The main objective of
this test is to confirm the mass conservation characteristic of the diffusion equation.

The equation that will be used for this test case is provided in Eq. (4.5), and is closely related to the
heat transfer equation. However, since the axial velocity is assumed to be independent of time, the left-
hand side of Eq. (4.5) needs to be rewritten. For this purpose, one can either use a finite difference method
or one can rewrite the equation in terms of the change in axial velocity in the downstream direction, as
derived in Eq. (4.6). Additionally, Eq. (4.6) can also be obtained from linearising the advection terms in
the Ainslie wake model, as outlined in Eq. (4.7).
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∂U

∂t
= νt

1
r

∂

∂r

(
r
∂U

∂r

)
(4.5)

∂U

∂t
= ∂U

∂t

∂x

∂x
= ∂U

∂x
U∞ = νt

1
r

∂

∂r

(
r
∂U

∂r

)
(4.6)

U
∂U

∂x
+ V

∂U

∂r
≈ U∞

∂U

∂x
(4.7)

Considering the fact that the Ainslie wake model equation is dependent on both the axial and radial
direction two distinct cases will be examined. In the first case, which is described and discussed in Subsec-
tion 4.2.1, the axial dependency is neglected and Eq. (4.5) is employed using the Crank-Nicolson method.
This ensures that the verification of the radial basis functions and the integral-preserving characteristic
occurs independently, without being influenced by the axial basis functions. In contrast, in the second case,
outlined in Subsection 4.2.2, the axial velocity is composed of contributions from both axial and radial
basis functions and Eq. (4.6) is employed to study the integral-preserving characteristic of the equation
when having both radial and axial dependencies included.

4.2.1. One-Dimensional Case
For the one-dimensional case, the velocity is assumed to be solely a function of the radial dimension.
Based on this assumption the velocity can be expressed as a linear combination of radial basis function,
as presented in Eq. (4.8), which allows for the verification of the radial basis function implementation.

U =
Nr∑
n=0

Unbn(r) (4.8)

Applying the Crank-Nicolson method to Eq. (4.5) and implementing Eq. (4.8), results in Eq. (4.9),
where the superscripts i and i+ 1 refer to the known and unknown velocity coefficients respectively. The
Crank-Nicolson finite difference scheme is chosen for time discretisation due to its simplicity and stability.
Additionally, this allows the equation to be handled as a one-dimensional problem with discrete time steps,
rather than in continuous time.

U i+1
n bn(r) − U inbn(r)

∆t = νt
1
2

(
1
r

∂

∂r

(
r
∂bn(r)
∂r

)
U i+1
n + 1

r

∂

∂r

(
r
∂bn(r)
∂r

)
U in

)
U i+1
n

[
bn(r) − 1

2νt∆t
1
r

∂

∂r

(
r
∂bn(r)
∂r

)]
= U in

[
bn(r) + 1

2νt∆t
1
r

∂

∂r

(
r
∂bn(r)
∂r

)] (4.9)

The next step involves applying the Galerkin projection on the radial projection functions, denoted by
bm(r), which results in Eq. (4.10).

U i+1
n

 Rmaxˆ

0

bm(r)bn(r)rdr − 1
2νt∆t

Rmaxˆ

0

bm(r)1
r

∂

∂r

(
r
∂bn(r)
∂r

)
rdr


= U in

 Rmaxˆ

0

bm(r)bn(r)rdr + 1
2νt∆t

Rmaxˆ

0

bm(r)1
r

∂

∂r

(
r
∂bn(r)
∂r

)
rdr


(4.10)

Lastly, integration by parts is applied to the second order derivative in the diffusion term in Eq. (4.10),
resulting in Eq. (4.11).
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U i+1
n

 Rmaxˆ

0

bm(r)bn(r)rdr − 1
2νt∆t

bm(r)r ∂bn(r)
∂r

∣∣∣∣∣
Rmax

0

−
Rmaxˆ

0

∂bm(r)
∂r

∂bn(r)
∂r

rdr


= U in

 Rmaxˆ

0

bm(r)bn(r)rdr + 1
2νt∆t

bm(r)r ∂bn(r)
∂r

∣∣∣∣∣
Rmax

0

−
Rmaxˆ

0

∂bm(r)
∂r

∂bn(r)
∂r

rdr


(4.11)

Before delving into the discussion of the results of this test case, it important to acknowledge that the
time discretisation also has its implications. However, as the focus is on the spatial discretisation, the
exact implications of the time discretisation will not be explored here as these fall outside the scope and
focus of this section.

After having established the equation for solving the linear diffusion equation, the subsequent step
entails defining the error metric. For this purpose the integral-preserving property of the diffusion equation
is utilised, relying on the conservation of mass flux. More specifically, the integral under the diffusing
curve should remain constant regardless of the number of time steps applied. Based on this property, the
definition for the error at time step t, denoted by εt, is provided in Eq. (4.12), where I, represents the
initial preserved integral quantity. Solving the integrals is done using symbolic calculations in Matlab, as
the basis functions are also symbolically defined as a function of r.

Nr∑
n=0

U t=0
n

Rmaxˆ

0

bn(r)rdr = I =
Nr∑
n=0

U tn

Rmaxˆ

0

bn(r)rdr

εt =

∣∣∣∣∣
Nr∑
n=0

U tn

Rmaxˆ

0

bn(r)rdr − I

∣∣∣∣∣
(4.12)

Before assessing the results, the input parameters will be presented. Starting with the initial inflow
conditions, only the axial inflow velocity is required for the diffusion equation. For the test, a Gaussian
profile is used as inflow profile, as specified in Eq. (4.13), with σ set to a value of 2. Furthermore the
constant viscosity, νt, and the time step, ∆t, are take to be equal to 0.05 m2/s and 1.0 s respectively.
The value for the constant viscosity is determined based on what was deemed as a reasonable value from
solving the Ainslie wake model using and already existing finite volume solver, while the value of the time
step was determined based on the value used for a similar verification test presented in [9]. Moreover, the
outer domain boundary is determined by the standard deviation of the Gaussian inflow profile. To prevent
any mass leakage over the outer domain boundary at r = Rmax, the domain must be adequately large.
Hence, the domain boundary extends to Rmax = 100σ for this purpose.

Uin = 1
σ

√
2π
e

− 1
2

(
r
σ

)2

(4.13)

4.2.2. Two-Dimensional Case
The primary distinction from the one-dimensional case is that the velocity is no longer solely a function of
the radial dimension; it now also becomes dependent on the axial dimension. Based on this the velocity
is expressed as a linear combination of radial and axial basis function, as shown in Eq. (4.14), which
allows the verification of the two-dimensional diffusion term implementation. Furthermore, a marching
scheme is utilised for the test case, following the implementation of the wake model. This allows for the
velocity components to be divided into known velocity components, associated with the left axial basis
functions, and unknown velocity components, associated with the right axial basis functions. Rewritting
Eq. (4.14) to fit the marching scheme approach results in Eq. (4.15), where subscripts l, and r indicate that
the associated velocity components and basis functions are related to the known and unknown velocity
components respectively.
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U =
Nr∑
n=0

Nx∑
k=0

U(n,k)bn(r)ak(x) (4.14)

U =
Nr∑
n=0

Nx/2∑
k=0

U(n,kl)bn(r)akl
(x) + U(n,kr)bn(r)akr

(x) (4.15)

For this test case Eq. (4.6) serves as the foundation for conducting the error analysis. The first step in
deriving the linear diffusion equation that is used for the error analysis involves incorporating Eq. (4.15)
into Eq. (4.6), yielding Eq. (4.16).

U∞

Nr∑
n=0

Nx/2∑
k=0

U(n,kl)bn(r)∂akl
(x)

∂x
+ U∞

Nr∑
n=0

Nx/2∑
k=0

U(n,kr)bn(r)∂akr (x)
∂x

= νt

Nr∑
n=0

Nx/2∑
k=0

U(n,kl)
1
r

∂

∂r

(
r
∂bn(r)
∂r

)
akl

(x) + νt

Nr∑
n=0

Nx/2∑
k=0

U(n,kr)
1
r

∂

∂r

(
r
∂bn(r)
∂r

)
akr (x)

(4.16)

Implementing the Ritz-Galerkin method where bm(r) and air (x) are the radial and axial test functions
to project on respectively, results in Eq. (4.17).

U∞

Nr∑
n=0

Nx/2∑
k=0

U(n,kl)

Rmaxˆ

0

bm(r)bn(r)rdr
Xrˆ

Xl

air (x)∂akl
(x)

∂x
dx

+ U∞

Nr∑
n=0

Nx/2∑
k=0

U(n,kr)

Rmaxˆ

0

bm(r)bn(r)rdr
Xrˆ

Xl

air (x)∂akr
(x)

∂x

= νt

Nr∑
n=0

Nx/2∑
k=0

U(n,kl)

Rmaxˆ

0

bm(r)1
r

∂

∂r

(
r
∂bn(r)
∂r

)
rdr

Xrˆ

Xl

air (x)akl
(x)dx

+ νt

Nr∑
n=0

Nx/2∑
k=0

U(n,kr)

Rmaxˆ

0

bm(r)1
r

∂

∂r

(
r
∂bn(r)
∂r

)
rdr

Xrˆ

Xl

air (x)akr
(x)dx

(4.17)

Lastly, the second-order derivatives in the diffusion terms, in Eq. (4.17), are reduced to first-order
derivatives by applying integration by parts. Furthermore, the components associated with the unknown
velocities are positioned on the right-hand side of the equation, whereas those linked with the known
components are situated on the left-hand side. This results in Eq. (4.18).

Nr∑
n=0

Nx/2∑
k=0

U(n,kr)

U∞

Rmaxˆ

0

bm(r)bn(r)rdr
Xrˆ

Xl

air (x)∂akr (x)
∂x

dx


−

Nr∑
n=0

Nx/2∑
k=0

U(n,kr)

νt
bm(r)r ∂bn(r)

∂r

∣∣∣∣∣
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0
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

(4.18)
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For the discussion of the results, the same error metric as in the one-dimensional case, as detailed in
Eq. (4.12), along with the same parameter values, as detailed in Subsection 4.2.1, are utilised. The only
exception is the value of the eddy viscosity, which has been changed to 0.5 m2/s. The reason for this is to
keep the constant, νt

U∞
, in front of the diffusion term unchanged.

Furthermore, the only variables that remain undefined are the step size of the marching step, ∆x, which
determines the integration bounds over the axial direction, and the free-stream inflow velocity, U∞. The
marching step size is set at 1.0 m, while the free-stream inflow velocity is fixed at 10 m/s. The value for
U∞ was chosen to keep the constant in front of the diffusion term unchanged. Additionally, a wind speed
of 10 m/s corresponds to the annual average wind speed for Wind Class I, as defined in the IEC 61400-1
standard [42], which corresponds to the design specifications of the DTU 10 MW wind turbine used as
the reference for the full simulations [82]. Then, the marching step size was determined through a visual
inspection of the diffusion process. The primary goals were to maintain stability and ensure appropriate
levels of diffusion. This involved balancing the step size. Specifically, it needed to be large enough to avoid
having almost no diffusion and small enough to prevent numerical instability.

4.2.3. Results and Discussion on Verification Diffusion Term
This section will discuss and compare the results obtained for the one-dimensional and two-dimensional
examination cases as outlined in Subsections 4.2.1 and 4.2.2 respectively. It is important to highlight that
while the velocity component approach is utilised as the implementation method for verification of the
diffusion term, the presentation of results will encompass not only those obtained using cubic Hermite
splines but also those utilising quintic Hermite interpolation basis functions, which are of importance for
the stream function approach. Additionally, this will offer insights into how the order of the basis functions
impacts the results.

In presenting the results, a distinction is made between two different cases based on the radial mesh
employed. Both cases use a radial mesh divided into two parts. More specifically the inner part of the
mesh, corresponding to the inner part of the domain, is defined by the gradient of the Gaussian inflow
profile, while the outer part employs an exponentially increasing mesh, as illustrated in Fig. 4.2, where the
inner part extends up to the point where the Gaussian inflow profile falls below the threshold of 10−10 m/s.
However, in the first case, the inner part comprises 20 radial nodes, while the outer part consists of 10
radial nodes. In contrast, in the second case, the inner part employs 30 nodes, and the outer part utilises
15 nodes. The results for the one-dimensional case when employing a mesh with 30 radial nodes and 45
radial nodes are presented in Fig. 4.3a, while the results from the two-dimensional case employing a mesh
with radially 30 and 45 nodes are shown in Fig. 4.3b respectively.

Figure 4.2: Mesh schematic of the initially used mesh.
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(a) One-dimensional case.
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(b) Two-dimensional case.

Figure 4.3: Relative error in mass conservation for different orders of Hermite interpolation basis
functions and different number of radial nodes. The solid line represents results obtained using a mesh

with 30 nodes, while the dashed line represents results obtained using a mesh with 45 nodes.

From a visual comparison between the one-dimensional and two-dimensional cases, similar trends can
be observed when employing the same number of radial nodes and the same order of basis functions. Based
on this observation it can be deduced that the implementation of the axial dimension has minimal influence
on mass conservation, suggesting a correct implementation of the second dimension. Furthermore, it should
be noted that the downward peaks in error, observed in each of the cases are zero crossings and can be
ignored.

Then, comparing the results for the same order of basis functions but for different radial meshes, it can
be observed that when employing 30 radial nodes, higher mass conservation errors are evident after 1000
diffusion steps. However, at the initial stages with a low number of diffusion steps, the errors are either
lower or similar. From these observations, it can be concluded that a lower number of nodes results in a
faster increase in mass conservation error. Moreover, this is closely related to the fact that, in general,
the higher-order basis functions demonstrate a quicker divergence from the original slight increase in error
compared to the case where a mesh of 45 nodes is utilised.

To determine the root cause of the rapid increase in relative mass conservation error, a more thorough
investigation is conducted. This detailed investigation is essential, as such a rapid increase in error is
highly undesirable, leading to error propagation when marching downstream and resulting in unreliable
outcomes.

However, before delving into the discussion, it is important to address the undesirable observations by
taking a step back. In response, piecewise linear basis functions are implemented in the radial direction to
solve both the one-dimensional and two-dimensional diffusion equations. It is essential to acknowledge that
linear basis functions are restricted to the velocity component approach since the highest-order derivative
involved in the stream function approach is not compatible with piecewise linear basis functions. However,
even within the framework velocity component approach the use of piecewise linear basis functions poses
a challenge due to the discontinuity in the first derivative. This necessitates an approximation for the
diffusion term, since after applying integration by parts to solve for the second derivative, the boundary
evaluation term involves a first derivative, making it undefined. Hence, the boundary evaluation component
of the diffusion term was disregarded.

The results for the one-dimensional and two-dimensional scenarios employing piecewise linear basis
functions radially are also illustrated in Figs. 4.3a and 4.3b respectively. From visual inspection, it is
evident that in the one-dimensional case, utilising 30 radial nodes leads to a more steep rise in mass
conservation error compared to using 45 radial nodes, while for the two-dimensional case, the number of
radial nodes employed has no significant consequences. Moreover, a notable contrast with the higher-order
basis functions is that when employing piecewise linear basis functions, there is no significant increase in
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integral error after a certain number of diffusion steps. This indicates that the higher-order basis functions
are subjected to certain limitations when it comes to accurately preserving the mass conservation error.
Lastly, based on this comparison discarding the boundary evaluation term when employing piecewise
linear basis functions, does not seem to affect the mass conservation compared to the cases implementing
higher-order basis functions.

The first thing that has been considered to explain the discrepancy when implementing higher-order
basis functions is the condition number of the inverted matrix, as high condition numbers might result in
high numerical errors. The results presented in Table 4.1 for the one-dimensional case and in Table 4.2
for the two-dimensional case indicate that higher-order basis functions tend to exhibit considerably higher
condition numbers, potentially inducing unwanted numerical errors. This could explain why higher-order
basis functions display a sudden divergence from their initial slope after a certain number of diffusion steps,
leading to elevated errors in mass conservation. Therefore, one might expect that the case employing quin-
tic Hermite interpolation basis functions, which yields the highest condition number, would demonstrate
the highest error and the most rapid increase when deviating from the initial slope. However, contrary to
this expectation, it is observed that the case employing cubic Hermite interpolation basis functions yields
the highest error and that the behaviour when using higher-order basis functions is quite similar. Based
on this analysis it can not be concluded that the high condition numbers are the reason for the steep
increase in mass conservation error when higher-order basis functions are employed.

Piecewise linear basis Cubic Hermite basis Quintic Hermite basis
Condition number for 30 nodes 1.84e+5 8.84e+9 8.32e+14
Condition number for 45 nodes 2.47e+5 9.47e+9 9.24e+14

Table 4.1: Condition numbers for the one-dimensional case for the various orders of basis functions and
meshes with different numbers of nodes.

Piecewise linear basis Cubic Hermite basis Quintic Hermite basis
Condition number for 30 nodes 1.64e+5 6.97e+9 6.37e+14
Condition number for 45 nodes 2.12e+5 7.29e+9 7.00e+14

Table 4.2: Condition numbers for the two-dimensional case for the various orders of basis functions and
meshes with different numbers of nodes.

Before proceeding with the discussion and analysis of the observed behavior, the reason behind the
high condition numbers observed for high-order basis functions will be elaborated upon.

When expressing the velocity components or the stream function as a linear combination of basis
functions and coefficients, the basis functions (represented by ξ) associated with the first- and second-
order derivatives in the cubic and quintic cases incorporate scaling factors dependent on the cell size,
as illustrated in a general context by Eq. (4.19) and Eq. (4.20), respectively. These scaling factors are
incorporated to ensure the continuity across the cell boundaries of the first-order derivative when utilising
cubic Hermite basis functions and the continuity over the cell boundaries of the second-order derivative
when using quintic Hermite basis functions. Ensuring this continuity across the cell boundaries is essential
when employing integration by parts, as without it, the boundary evaluation term becomes undefined.
Nevertheless, because these scaling factors are dependent on the mesh and an exponentially increasing
mesh is utilised outside the wake region for computational efficiency, a significant gap exists between the
lowest and highest values within the matrix, leading to ill-conditioned matrices.

f(x) = f(xl)ξ0(x) + df
dx

∣∣∣∣∣
x=xl

(xr − xl)ξ1(x) + f(xr)ξ2(x) + df
dx

∣∣∣∣∣
x=xr

(xr − xl)ξ3(x) (4.19)



4.2. Verification of Diffusion Term 50

f(x) = f(xl)ξ0(x) + df
dx

∣∣∣∣∣
x=xl

(xr − xl)ξ1(x) + d2f

dx2

∣∣∣∣∣
x=xl

(xr − xl)2

2 ξ2(x)

+ f(xr)ξ3(x) + df
dx

∣∣∣∣∣
x=xr

(xr − xl)ξ4(x) + d2f

dx2

∣∣∣∣∣
x=xr

(xr − xl)2

2 ξ5(x)
(4.20)

Subsequently, a detailed examination was conducted on the values at the boundary r = Rmax to
ensure that there is no significant numerical error accumulation at the outer boundary when employing
higher-order basis functions due to the high condition numbers observed. It is important to emphasise that
this is purely to check for numerical error accumulation, as mass leakage over the boundary is unlikely.
This is due to the domain being taken sufficiently large to prevent such occurrences. Additionally, the
observed increase occurs only for the higher-order basis functions, while all simulation cases share the
same parameters. Therefore, if mass leakage were present, each of the simulations would show a sudden
increase in mass-preserving error.

Upon observing the final Gaussian profile after 1000 diffusion steps, it becomes evident that when
higher-order basis functions are employed, minor oscillations arise due to the mesh not being tailored
to the diffused Gaussian profiles, as illustrated in Fig. 4.4. These oscillations result in both positive
and negative values in the tail of the Gaussian profile, leading to a loss of integral preservation and the
emergence of significant errors. This phenomenon also clarifies why using a mesh of 30 nodes leads to an
earlier departure from the expected shallow slope, as the lower number of nodes results in the earlier onset
of these oscillations. However, it is crucial to acknowledge that even in the case where piecewise linear
basis functions are employed and no oscillations are observed, there is an undershoot evident where the
Gaussian profile becomes flat. Nevertheless, it appears that this undershoot has a less significant impact
on the integral preserving characteristic of the diffusion equation.
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Figure 4.4: Zoomed-in final Gaussian profile
illustrating the present oscillations.
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Figure 4.5: Illustration of the Gaussian transition
point and mesh transition point.

Based on this analysis, a new radial mesh was developed to accommodate the diffusive nature of the
profile. The creation of the mesh involved closely examining the final diffusion profile. It was determined
that the mesh needed to be sufficiently fine, extending up to a point slightly beyond the transition point
of the final Gaussian profile, where the profile becomes flat, as indicated in Fig. 4.5. Beyond this point,
specifically at the radial position where the value of the final Gaussian outflow profile, ffinal(r), falls below
10−10 m/s, an exponentially increasing mesh was reintroduced for computational efficiency. Moreover, for
the inner part of the mesh, which extends from r = 0 m to r = 70 m, a uniform mesh with 100 nodes was
used, while the outer part exponentially increased with 5 nodes, as illustrated in Fig. 4.6.
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Figure 4.6: Mesh schematic of the adapted mesh.
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(a) One-Dimensional case.
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(b) Two-dimensional case.

Figure 4.7: Relative error in mass conservation for different orders of Hermite interpolation basis
functions utilising a mesh with 105 nodes.

The results obtained from this mesh implementation are presented in Figs. 4.7a and 4.7b for the
one-dimensional and two-dimensional cases respectively. Upon visual inspection, it is immediately evident
that the cases implementing higher-order basis functions in the radial direction no longer exhibit a sudden,
significant increase in mass conservation error. This validates the hypothesis that the mesh was accountable
for this behaviour and verifies the correct implementation of the diffusion equation using a higher-order
basis function. Additionally, it indicates that a greater number of radial nodes are required to accurately
model the diffusion for a higher number of diffusion steps when employing higher-order basis functions.
Moreover, piecewise linear basis functions have proven to be more resilient against ill-defined meshes.

The higher mesh sensitivity observed when employing higher-order basis functions has also been dis-
cussed in literature [83, 84, 85]. Higher-order basis functions, such as Hermite splines, exhibit greater
sensitivity to mesh distortion and poor quality compared to lower-order elements like piecewise linear
functions. This increased sensitivity arises because the mapping between physical and computational
spaces becomes more complex with higher-order elements. Consequently, poorly shaped or distorted el-
ements can significantly reduce accuracy and cause ill-conditioning of the system matrices. In contrast,
piecewise linear basis functions, with their simpler mapping and fewer interpolation requirements, are less
affected by coarse or distorted meshes, resulting in greater stability and less accuracy loss on such meshes
[83, 84, 85].

Additionally, the condition numbers for each of the six simulations are presented to investigate if the
higher-resolution mesh has a significant impact on their order. From comparing Table 4.3 with Tables 4.1
and 4.2, it can be noted that the condition numbers using piecewise linear basis functions are of the
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same order and even slightly decreased, while for the higher-order basis functions, an increase is observed.
However, this increase remains within one order of magnitude, indicating that the condition number is
relatively insensitive to the employed mesh.

Piecewise linear basis Cubic Hermite basis Quintic Hermite basis
One-dimensional case 1.76e+5 1.38e+10 1.84e+15
Two-dimensional case 1.58e+5 1.09e+10 1.41e+15

Table 4.3: Condition numbers for different orders of basis functions using a higher resolution mesh.

4.2.4. Limitations Imposed by the Higher-Order Finite Element Method
Based on the verification of the diffusion term and the assessment of the integral-preserving characteristic
of a Gaussian function during pure diffusion, several conclusions can be drawn regarding the limitations
introduced when employing higher-order basis functions in the radial direction compared to using piecewise
linear basis functions. The first limitation relates to the observed condition numbers, while the second
limitation involves the sensitivity of the mesh.

In terms of the condition number, it has been illustrated in Subsection 4.2.3, that as the order of the
basis functions increases, so does the condition number. While no immediate conclusion about the impli-
cation of this observation has been drawn, it remains pertinent. High condition numbers are undesirable
and should be mitigated, as they may introduce unforeseen numerical errors, that persist and accumulate
as the simulation progresses, when marching further downstream, leading to unacceptable levels of un-
certainty in the results. Moreover, extremely high condition numbers can result in instability problems.
Furthermore, it has been observed that although the condition number changes with the mesh, it remains
within reasonable bounds, keeping the order roughly the same. The latter observation shows that the
condition number is relatively insensitive to the employed mesh. It should be noted, however, that in this
case, the condition number did not pose any problems since the initial condition is extremely smooth and
does not contain higher eigenfunctions of the operator. In the case of a general diffusion problem starting
from an arbitrary initial condition, instability would likely occur as the condition numbers are expected
become excessively high.

The main limitation that is introduced by employing radially higher-order basis functions concerns
the mesh sensitivity. Even though less degrees of freedom are required to accurately represent a function
using higher-order basis functions, as shown in Subsection 4.1.1, it has been observed that when dealing
with a mesh that is excessively coarse, oscillations may arise, highly impacting the integral-preserving
property. In comparison, when using piecewise linear basis functions with an equivalent number of nodes,
the undershoots observed in this case have demonstrated greater robustness in terms of mass conservation.
In order to determine the exact impact of the mesh onto the mass conservation a detailed mesh sensitivity
study should be performed.

Lastly, simulation times are crucial, especially for commercial codes that require a constant balance
between computational time and accuracy. Therefore, the simulation times are compared for the different
cases. The simulation time is divided into two parts: the time required to project the basis functions onto
the inflow profile to obtain the coefficients for the initial condition, and the actual simulation time, which
involves generating the matrices and computing the coefficients for each of the 1000 downstream diffusion
steps.

Piecewise linear basis Cubic Hermite basis Quintic Hermite basis
Inflow generation time - 30 nodes 12 seconds 46 seconds 1 minute 36 seconds
Inflow generation time - 45 nodes 20 seconds 1 minute 8 seconds 2 minutes 36 seconds
Inflow generation time - 105 nodes 44 seconds 5 minutes 6 seconds 9 minutes 45 seconds
Simulation time - 30 nodes 3 minutes 37 seconds 7 minutes 15 seconds 12 minutes 13 seconds
Simulation time - 45 nodes 5 minutes 6 seconds 9 minutes 12 seconds 18 minutes 49 seconds
Simulation time - 105 nodes 9 minutes 12 seconds 23 minutes 23 seconds 47 minutes 39 seconds

Table 4.4: Computational times for one-dimensional cases.
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Piecewise linear basis Cubic Hermite basis Quintic Hermite basis
Inflow generation time - 30 nodes 15 seconds 46 seconds 1 minute 43 seconds
Inflow generation time - 45 nodes 20 seconds 1 minute 10 seconds 2 minutes 33 seconds
Inflow generation time - 105 nodes 46 seconds 5 minutes 4 seconds 9 minutes 45 seconds
Simulation time - 30 nodes 5 minutes 20 seconds 12 minutes 51 seconds 19 minutes 29 seconds
Simulation time - 45 nodes 10 minutes 28 seconds 17 minutes 42 seconds 31 minutes 13 seconds
Simulation time - 105 nodes 19 minutes 35 seconds 51 minutes 47 seconds 1 hour 39 minutes 8 seconds

Table 4.5: Computational times for two-dimensional cases.

The computational times for the one-dimensional and two-dimensional cases are provided in Tables 4.4
and 4.5 respectively. Notably, the computational times for generating inflow coefficients are very similar
for both cases, as these coefficients are independent of the axial dimension. However, there is a significant
increase in simulation times when implementing the second dimension.

Additionally, the computational times for different orders of basis functions can be compared. This
comparison reveals a significant increase in computational time when higher-order basis functions are
employed. Combining this increase in computational time with the necessity for a higher resolution mesh
for the higher-order basis functions due to mesh sensitivity to achieve desired accuracy makes the higher-
order basis functions less suitable for commercial codes.

It should be noted, however, that the model used for running these simulations has not yet been
optimised for computational efficiency. Therefore, these computational times can likely be significantly
reduced, making higher-order basis functions a feasible option once again, in terms of computational time.
Consequently, at this stage, these computational times should also not be used for comparison with other
commercial codes.

4.3. Verification Continuity Equation
To verify the accurate implementation of the continuity equation, its mass-conserving property was utilised.
Specifically, different inflow and outflow profiles with equivalent integrals were generated. Subsequently,
these inflow and outflow velocity profiles were incorporated into the continuity equation, and the results
were examined. First, in Subsection 4.3.1, a comprehensive overview will be provided on how the con-
tinuity equation is implemented and verified. This is followed by a short discussion on the results in
Subsection 4.3.2.

4.3.1. Verification Strategy Continuity Equation
To verify the accurate implementation of the continuity equation, the discretised formulation of the con-
tinuity equation provided in Eq. (3.37) is implemented using different inflow and outflow profiles with
equivalent integrals. However, the generation of several inflow and outflow profiles for axial and radial
velocities can be quite challenging when using cylindrical coordinates, as the radial position influences the
values of the integrals. Therefore, the verification strategy is slightly simplified by employing Cartesian
coordinates, where x still refers to the streamwise direction, while y refers to the direction along one of
the wind turbine blades. This only slightly alters Eq. (3.37), resulting in Eq. (4.21).
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(4.21)

The mesh employed for this verification test consists of one cell with a width of 1 m in the axial direction,
and a uniform mesh with 10 cells also each with a width of 1 m in the radial direction, as presented in
Fig. 4.8. It should be noted, however, that this verification test has also been performed using different
non-uniform meshes, making sure that the test is mesh-independent. Furthermore, the inflow and outflow
conditions for the axial and transverse velocities are determined by defining the values of inflow and outflow
velocity coefficients such that the integrals under the curves are preserved. This guarantees an accurate
representation of the velocity profiles by the basis functions. For the axial velocity, different inflow and
outflow velocity profile pairs were generated for each order of the basis functions. Figs. 4.9 to 4.11 provides
three different inflow and outflow pairs defined for each order of the basis functions. Furthermore, since a
marching scheme is used to solve for the continuity equation, the transverse velocity profile is only defined
within one cell. Therefore, the options for different transverse velocity profiles are more restricted, with
the simplest choice being a constant velocity profile along the entire transverse direction.

Figure 4.8: Illustration mesh used for verifying the continuity equation implementation
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Figure 4.9: Various axial integral preserving inflow and outflow velocity pair using piecewise linear basis
functions.



4.3. Verification Continuity Equation 55

0 5 10

y-direction [m]

0

0.5

1

A
x
ia

l 
V

e
lo

c
it
ie

s
 [
m

/s
]

Inflow Velocity Outflow Velocity

(a) First axial inflow and outflow
velocity pair.

0 5 10

y-direction [m]

0

1

2

A
x
ia

l 
V

e
lo

c
it
ie

s
 [
m

/s
]

Inflow Velocity Outflow Velocity

(b) Second axial inflow and outflow
velocity pair.

0 5 10

y-direction [m]

0

1

2

A
x
ia

l 
V

e
lo

c
it
ie

s
 [
m

/s
]

Inflow Velocity Outflow Velocity

(c) Third axial inflow and outflow
velocity pair.

Figure 4.10: Various axial integral preserving inflow and outflow velocity pair using cubic Hermite basis
functions.
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Figure 4.11: Various axial integral preserving inflow and outflow velocity pair using quintic Hermite basis
functions.

4.3.2. Results and Discussion on Verification of the Continuity Equation
Solving Eq. (4.21) under the prescribed inflow and outflow conditions detailed in Subsection 4.3.1, and
incorporating Dirichlet boundary conditions for the transverse velocity, as well as Neumann and Dirichlet
boundary conditions for the axial velocity at the inner and outer boundaries, in line with the boundary
conditions specified in Table 3.1, consistently yielded zero for nearly all combinations of inflow and outflow
velocities, as outlined in Table 4.6.

Result Implementation Continuity Equation
Case 1 Case 2 Case 3

Piecewise linear basis 0.0 0.0 0.0
Cubic Hermite interpolation -0.00268 −3.0444e−16 −3.0444e−16
Quintic Hermite interpolation -0.00896 −3.7470e−16 −3.7470e−16

Table 4.6: Resulting values from the implementation of the continuity equation with known mass
conserving inflow and outflow velocities.

However, exceptions were observed for the cases employing higher-order basis functions. Particularly,
these exceptions occurred in situations where there were changes in velocity coefficients at the boundary,
not governed by the boundary conditions. Specifically, these exceptions occurred in the scenarios depicted
in Figs. 4.10a and 4.11a, where changes were applied to the boundary value of the axial velocity at y = 0
and to the second-order derivatives of the axial velocity at y = 0 and y = Y , in case quintic Hermite
interpolation basis functions were employed, between consecutive steps. This observation affirms that
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the continuity equation is accurately discretised for the purpose of the Ainslie wake model when utilising
piecewise linear basis functions. However, there seems to be a discrepancy in the implementation when
higher-order basis functions are employed, particularly concerning the boundary conditions, since only the
cases with completely fixed boundary values do yield zero.

To explain the reason behind this discrepancy a detailed examination was undertaken of the matrices
constituting Eq. (4.21), as outlined in Appendix A. Starting with the matrices associated with the term
∂U
∂x , it becomes apparent that when employing piecewise linear basis functions, the vectors resulting from
the summation of these matrices along the projection dimension, associated with the known inflow profile
and the unknown outflow profile as presented in Eqs. (A.2) and (A.3) respectively, exhibit opposite signs.
This is desirable, as it indicates that equal inflow and outflow axial velocity profiles result in ∂U(x,y)

∂x
being equal to zero. Moreover, these vectors demonstrate symmetry, and their values align with the area
defined under the projection functions. Specifically, the projection functions in the middle of the domain
encompass twice the area compared to those at the boundaries, and correspondingly, the coefficients in the
middle are also twice as large as those at the boundaries in the vector. Consequently, as long as the area
beneath the inflow and outflow velocity profiles remains consistent, the addition of these vectors yields the
expected outcome of zero, ensuring mass conservation.

Subsequently, analysing the matrices associated with the term ∂U(x,y)
∂x for cases where higher-order basis

functions are employed, a significant observation emerges. The vectors resulting from the summation
along the projection index, which contain the coefficients corresponding to the values, the first-order
derivatives, and the second-order derivatives (in the case of quintic Hermite interpolation basis functions)
in an alternating manner, exhibit non-symmetrical patterns at the boundaries. This asymmetry arises
from the odd nature of the basis functions defining the value of the first-order derivatives. While this
characteristic does not impact the middle of the domain, it affects the boundaries where only the positive
or negative counterpart of the odd function is present. More precisely, the multiplication between even
and odd functions at these boundaries leads to sign changes in the boundary columns on the rows where
even functions are multiplied by the odd function, resulting in slightly different values in the resulting
vector. For example, in Eq. (A.10), the first value in the vector is 0.2607 instead of 0.25, and the previous
to last value in the vector is 0.2393 instead of 0.25. While the overall sum remains 0.5, this asymmetry
causes coefficients in the matrix to no longer align with the areas they represent, resulting in non-zero
outcomes for the continuity equation in certain scenarios. However, the opposing signs between the vectors
related to the inflow and outflow conditions ensure that when all boundary values are fixed, the continuity
equation is satisfied. Nevertheless, fixing each of the boundary conditions is not in line with the Ainslie
wake model as there is diffusion present resulting in a change of the boundary value at r = 0.

An initially considered solution to satisfy the continuity equation in cases where not all boundary
conditions are fixed was to eliminate the basis functions at the boundaries that are not fixed or are fixed
to zero if they have an opposite even or odd property to the fixed boundary conditions. This approach
was intended to result in symmetric vectors or vectors that add up to zero due to the fixed coefficients at
the boundaries, thereby resolving the issue. However, upon further examination, it was found that this
method alters the matrices in such a way that it does not effectively work. Consequently, this solution
is not viable, indicating that higher-order basis functions do not satisfy the continuity equation for the
purpose of the Ainslie wake model. From this, it can be concluded that the highest-order basis functions
that remain viable for solving the Ainslie wake model are quadratic basis functions or higher-order basis
functions that exhibit symmetry. Higher-order Hermite basis functions that do not maintain symmetry
introduce complexities that render them unsuitable for this model.

Lastly, upon closer examination of the matrices associated with the term ∂V (x,y)
∂y , it is observed that

the values in the vectors resulting from the summation of these matrices along the projection dimension,
associated with the known inflow profile at y = 0 and the unknown outflow profile at y = Y respectively,
exhibit opposite signs. This is again desirable, as it indicates that equal inflow and outflow transverse
velocity profiles result in ∂U

∂x being equal to zero, ensuring mass conservation. However, symmetry is not
present at the boundaries along the axial direction, as the vector values on the right side of the cell are
twice those on the left side. This occurs because both basis functions in the axial direction are projected
onto the right axial basis function, resulting in twice the integral value when the same basis functions are
projected onto each other compared to when opposite basis functions are projected onto each other. The
drawback from this observation is that not every transverse inflow and outflow profile with a preserved



4.4. Verification Non-Linear Solver Implementation 57

integral yields a zero solution. Nonetheless, this does not pose any problems for the Ainslie wake model
due to the imposed Dirichlet boundary condition, which fixes the values of V (x, y) at the radial boundaries.
However, if this were not the case, projecting onto piecewise constant basis functions in the axial direction
could be an option to avoid mass conservation issues arising from the observed asymmetry.

Even though Cartesian coordinates were used for simplicity in verifying the continuity equation, it is
important to consider the changes that occur when employing cylindrical coordinates. Starting with the
term ∂U(x,y)

x , the transition to cylindrical coordinates, resulting in ∂U(x,r)
∂x , does not significantly affect

this term. The primary change occurs when applying the Galerkin projection. More precisely, the integral
in the radial direction includes an additional factor of r in the integrand. Consequently, applying the
same coefficients to the basis functions with initially equal areas does not yield conserved areas due to
this multiplication by r. Therefore, it is necessary to account for factors that adjust the area under the
curve to ensure that the defined inflow and outflow axial velocity profiles have the same area. However,
making sure the areas under the inflow and outflow axial velocity profiles are perserved yields the same
satisfactory results as for the case using Cartesian coordinates.

However, rewriting the term ∂V (x,y)
∂y in cylindrical coordinates yields ∂V (x,r)

∂r + 1
rV (x, r), which has quite

different characteristics. Specifically, when applying the Galerkin projection, the first term will include
an extra factor r in the integrand, while the second term results in the extra term r being canceled out
due to the factor 1

r in the original term, as detailed in Eq. (4.22). This leads to the observation that
the values in the vectors resulting from the summation of the divergence matrices along the projection
dimension, associated with the known inflow profile at r = 0 and the unknown outflow profile at r = Rmax
respectively, no longer align with the area under the inflow and outflow profiles and therefore no longer
cancel each other out, compromising mass conservation in most cases. However, due to the Dirichlet
boundary condition V (x, r) = 0 applied at the boundaries r = 0 and r = Rmax for the Ainslie wake model,
the non-zero values at the boundaries cancel out, mitigating the observed issues.

Xrˆ

Xl

Rmaxˆ

0

(
∂V (x, r)
∂r

+ 1
r
V (x, r)

)
rdrdx =

Xrˆ

Xl

Rmaxˆ

0

∂V (x, r)
∂r

rdrdx+
Xrˆ

Xl

Rmaxˆ

0

V (x, r)drdx (4.22)

The main conclusion drawn from the discussion is that for the velocity component approach, the
implementation of higher-order basis functions becomes unfeasible due to the odd basis functions defin-
ing the values of the first-order derivatives. However, the use of piecewise linear basis functions in the
radial direction has shown to yield satisfactory results, particularly in its effective handling of two mass-
conserving velocity profiles. It should be noted, however, that for scenarios applying different boundary
conditions to the radial velocity mass conservation might be compromised when employing cylindrical
coordinates, meaning that the outer radial bound of the domain should be far enough from the disk such
that V (x,Rmax) = 0 can be imposed.

Moreover, it should be noted that since the implementation of the stream function ensures global mass
conservation, the higher-order basis functions necessary due to the order reduction inherent in the stream
function formulation might still be viable for this approach. Thus, while higher-order basis functions are
not applicable in the velocity component approach, they might still be suitable for the stream function
approach. Therefore, this method should not be completely discarded.

4.4. Verification Non-Linear Solver Implementation
To verify the correct implementation of the Newton-Raphson method for solving the non-linear Ainslie
wake model, the non-linear solver was applied to the linear diffusion equation solved in Section 4.2. The
outcome of applying the non-linear solver, which converges in one step, and solving the equation without
the non-linear solver yielded the same results, confirming the correct functioning of the non-linear solver.

4.5. Verification Ainslie Wake Model
In light of the limitations posed by the higher-order FEM implementation, as identified in Subsection 4.2.4
and based on their unsuitability to the application of the continuity equation when using a velocity
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component approach as discussed in Subsection 4.3.2, the next course of action involved taking a step
back and implementing the velocity component approach utilising piecewise linear basis functions in the
radial direction to solve the transport equation. However, despite the anticipation that this approach
would yield satisfactory results, as the individual transport equation components for the implementation
of the velocity component approach with piecewise linear basis functions have been verified, stability
issues have been observed. Therefore, an additional verification step entailed analytically computing each
matrix entry and visually confirming that they corresponded with the matrices calculated in the Ainslie
wake model. Following this examination, it was concluded that no apparent errors were observed in the
matrix entries.

The fact that each component performs adequately on its own, yet instability arises when combined,
suggests that the chosen implementation strategy may overlook crucial considerations for stability. How-
ever, there is limited knowledge available about applying the finite element method to the Ainslie wake
model. Therefore, examining the stability issues encountered when solving the steady incompressible
Navier-Stokes equations and the Stokes equations with finite element methods can provide valuable in-
sights into identifying the sources of instability and potential solutions, as these equations are the closest
related to the Ainslie wake model equation with available stability information. However, before discussing
stability considerations for the incompressible Navier-Stokes equations and the Stokes equations, it is im-
portant to first highlight the differences with the Ainslie wake model. The main difference lies in the fact
that the Ainslie wake model neglects pressure gradients. Even though this is a valid assumption when
applied to the far wake, this simplification can lead to stability issues not present in the Navier-Stokes or
Stokes equations, where pressure plays a crucial role in maintaining stability and ensuring accurate flow
representation.

To ensure stability when solving the steady incompressible Navier-Stokes equations or the Stokes
equations, it is essential to satisfy the Ladyzhenskaya-Babuka-Brezzi (LBB) condition. However, assessing
compliance with this condition can be challenging due to its abstract nature. The essence of the LBB
condition lies in recognising that the continuity equation in the incompressible Navier-Stokes equations is
fully determined by the pressure [86]. Therefore, since the Ainslie wake model explicitly neglects pressure,
enforcing only global mass conservation may be insufficient, leading to stability issues. Consequently, local
mass conservation might become necessary to stabilise the model. Moreover, with the ultimate goal of
extending the Ainslie wake model to include a forcing term and a pressure Poisson solver, adhering to
the LBB condition becomes crucial. Failing to meet this condition can lead to an inconsistent system
of equations, causing the matrices to become singular or highly ill-conditioned [86]. This adherence is
vital to ensure the stability and accuracy of the extended model. While ensuring local mass conservation
might yield a stable Ainslie wake model, the extended model might still face stability issues. Therefore,
to prevent this preliminary measures should be taken to avoid limitations in future model developments.

To guarantee conformity with the LBB condition, limitations are imposed on the number of applicable
elements used. Typically, a widely accepted guideline is that the order of pressure approximation should
be one level lower than that of velocity. For instance, if velocity is approximated using a linear polynomial,
pressure is approximated by a constant per element [87, 86]. However, relying solely on this guideline may
not suffice. Another critical criterion involves ensuring element admissibility, where the number of veloc-
ity unknowns exceeds the number of pressure unknowns. Achieving admissibility often involves placing
velocity unknowns at midside points rather than vertices. While this maintains conformity with the in-
compressible continuity equation, it introduces challenges by disrupting velocity continuity across element
boundaries and yielding non-conforming elements. Nevertheless, these elements still fulfill the require-
ments of the continuity equation. Although this approach aids in identifying non-admissible elements,
it does not directly explain why certain elements meet admissibility criteria. The exact conditions for
admissibility are disclosed under the LBB condition [86].

Based on this, it can be concluded that the current implementation of the finite element method is not
suitable for solving the extended Ainslie wake model, and special attention is needed to satisfy the LBB
condition. One potential approach to address these challenges is to utilise mixed finite elements, such
as Taylor-Hood elements, which contribute to enforcing the divergence-free constraint and maintaining
stability.

A mixed finite element approach is a numerical technique used in finite element analysis that involves
solving a problem by simultaneously approximating multiple field variables, typically using different types
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of finite elements for each variable. This method is often employed to overcome stability issues, such as
those arising from the violation of the LBB condition, which can occur in standard finite element methods
when approximating solutions to certain partial differential equations [88, 89].

The Taylor-Hood element is a popular choice in mixed finite element methods. In a typical Taylor-Hood
scheme, the polynomial degree of the pressure basis functions is one lower than that used for the velocities.
Specifically, it uses quadratic basis functions for the velocity and linear basis functions for the pressure.
This can be implemented by creating two grids one related to the pressure and one to the velocities. The
velocity grid contains all pressure nodes but also involves points at the midpoint of each element edge [90,
88, 89].

Another approach to circumvent the complications arising from the absence of pressure in the incom-
pressibility constraint is to implement a penalty function method. This method involves perturbing the
continuity equation with a small term containing the pressure [86]. However, since the current stage of
model development does not include pressure in the transport equation, this approach is not deemed
applicable [86, 89].



5
Extending Ainslie Wake Model with Forcing

The Ainslie wake model, which neglects pressure gradients by assuming their insignificance outside the
near wake region, can be enhanced to yield more accurate outcomes within this region by incorporating
the pressure gradient. This enhancement involves employing a Poisson solver to solve the pressure Poisson
equation provided in Eq. (5.2). The pressure Poisson equation is derived by taking the divergence of the
momentum equation, outlined in Eq. (5.1), and enforcing the incompressible continuity equation. The
divergence of the pressure gradient can be separated into two contributions one from the flow field (∇pu)
and one from the applied forcing (∇pf ), as indicated in Eq. (5.2). Since the contribution from the forcing
can be precomputed, this chapter will focus on the implementation of the forcing term as an initial step in
developing the full pressure Poisson solver, thereby simplifying the pressure Poisson equation to Eq. (5.3),
ignoring the contribution from the velocity field.

(~u · ∇)~u = −1
ρ

∇p+ ν∆~u+ 1
ρ
~f (5.1)

1
ρ

∆p = − ∇ · ((~u · ∇)~u)︸ ︷︷ ︸
∆pu

+1
ρ

(∇ · ~f)︸ ︷︷ ︸
∆pf

(5.2)

∆pf = ∇ · ~f (5.3)

Before delving into the discussion on adding the forcing term to the right-hand side of the momentum
equation as a first step in adding a full pressure Poisson solver, it is crucial to acknowledge that due to the
challenges encountered with the FEM-based solver for the Ainslie wake model, as outlined in Chapter 4,
the decision has been made to apply the extension to an existing solver that employs the FVM as a
numerical method for solving the Ainslie wake model.

Section 5.1 begins by examining various representations of the forcing term. Next, Section 5.2 will verify
the chosen forcing formulation. Following this, Section 5.3 discusses different strategies for implementing
the selected forcing. Finally, Section 5.4 presents the results and limitations of the chosen implementation
strategy.

5.1. Actuator Disk Forcing
In the simplified scenario of assuming a constant thrust coefficient, the wind turbine is modelled as an
actuator disc. This representation visualises the wind turbine as an infinitely thin disk that exerts a
uniform axial force density, denoted as fx, onto the flow. Additionally, the axial force density fx mimics
the behaviour of a Dirac delta function positioned at the disc, as described in Eq. (5.4) [91].

fx = F (r)δ(x) (5.4)

For ease of implementation, and given that the pressure Poisson equation is elliptic, it is essential to
establish a continuous representation of the initially discontinuous actuator disk forcing. This continuous

60
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representation of the actuator disk force distribution can be achieved through several approaches, two of
which will be presented in this section.

The first approach is based on the idea that the forcing can be defined either as the curl of a vector
potential or equivalently as the gradient of a scalar potential due to their equivalence to a constant-strength
double element. Here, the forcing is chosen to be represented by the curl of a vector potential, as detailed
in Subsection 5.1.1.

Subsequently, the second approach, presented in Subsection 5.1.2, involves implementing the forcing
by numerically solving the pressure Poisson equation outlined in Eq. (5.3), where the force density is
represented as a Dirac delta function.

5.1.1. Forcing as the Curl of a Vector Potential
In the initial approach, the divergence of the force density is assumed to be zero within the domain, Ω,
and singular on the boundary, ∂Ω, as outlined in Eq. (5.5). In this context, it is important to clarify that
the term boundary encompasses both the outer boundary of the domain and the inner boundary located
at the actuator disk, where the singularities occur. Thus, the actuator disk is considered part of the
boundary rather than the domain itself, and it introduces singularities along it. Based on this, the force
can be represented as the curl of a vector potential, φ, such that Eq. (5.6) holds. Consequently, with these
assumptions established, the Biot-Savart law can be applied to construct a continuous representation of
the force density, given it is modelled as a constant-strength dipole/doublet element or, equivalently, as a
vortex ring.

∇ · ~f = 0, in Ω, and singular on ∂Ω (5.5)

~f = ∇ × φ (5.6)

The force experienced at a specific point, denoted as ~P , due to a vortex ring with a radius, R, is
determined by integrating the Biot-Savart law, which describes the induced force by a vortex filament of
strength, Γ, across a single rotation along the azimuth angle, θ [92, 93, 94]. The resulting expression for ~f
is given in Eq. (5.7), where ~r is the distance between the vortex ring and the point at which ~f is calculated,
which is defined as outlined in Eq. (5.8). Furthermore, the vortex filament can be expressed as provided
in Eq. (5.9).

~f = Γ
4π

˛

C

~r× d~l
4π|~r|3

(5.7)

~r = ~V − ~P = [R cos θ − r,R sin θ,−x] (5.8)

d~l = [−R sin θ,R cos θ, 0]dθ (5.9)

However, when the evaluation point coincides with the ring itself, the solution becomes singular,
particularly when z = z0 and r = R. To address this singularity, a regularisation parameter δ can be
introduced to represent a vortex with a finite core thickness. This leads to a modified version of Eq. (5.7),
described in Eq. (5.10) [93, 94].

~f = Γ
4π

˛
~r× d~l

(|~r|2 + δ2)3/2 (5.10)

In conclusion, following certain manipulations, the equation referenced as Eq. (5.10) can be transformed
to yield de-singularised expressions for the radial and axial induced forces, as outlined in Eq. (5.11) [93,
94]. These expressions are given in terms of the complete elliptic integrals of the first (K(m)) and second
(E(m)) kind, which are detailed in Eq. (5.13) [95].
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fδr (r, x) = Γ
2πa

x

r

[
(r2 +R2 + x2 + δ2)

A
E(m) −K(m)

]
fδx(r, x) = −Γ

2πa

[
(r2 −R2 + x2 + δ2)

A
E(m) +K(m)

] (5.11)

with
A = (r −R)2 + x2 + δ2, a =

√
(r +R)2 + x2 + δ2, and m = 4rR

a2 (5.12)

K(m) =
1ˆ

0

[(1 − t2)(1 −mt2)]− 1
2 dt

E(m) =
1ˆ

0

(1 − t2)− 1
2 (1 −mt2) 1

2 dt

(5.13)

With the mathematical representations for the forcing terms established, their connection to the pres-
sure can be inferred from Eq. (5.3), as demonstrated in Eq. (5.14), where pf indicates the pressure in the
domain resulting from the applied force.

∂pf
∂x

= fδx(r, x)

∂pf
∂r

= fδr (r, x)
(5.14)

Considering that the axial momentum equation solely concerns the pressure gradient in the axial
direction and referring to the relationship presented in Eq. (5.14), only the axial component of the forcing
is needed and it can be directly integrated into the momentum equation.

Furthermore, the vector potential corresponding to the induced forces is provided in Eq. (5.15). More-
over, the vector potential is closely related to the Stokes stream function as shown in Eq. (5.16), and can
also be used as a means to implement the forcing [96].

φ = Γ
√
rR

2πr

[(
2
k

− k

)
K(k2) − 2

k
E(k2)

]
with k2 = m (5.15)

ψ = rφ = Γ
√
rR

2π

[(
2
k

− k

)
K(k2) − 2

k
E(k2)

]
(5.16)

5.1.2. Forcing as Dirac Delta Function
The forcing can be incorporated either directly into the momentum equation or through the pressure
Poisson equation. The previous method, outlined in Subsection 5.1.1, directly implements the forcing
in the momentum equation. In contrast, this approach uses the latter implementation strategy. More
specifically, the expression for the pressure due to the applied force by the actuator disk can be derived
by solving the Poisson equation, provided in Eq. (5.3). This is achieved by utilising the fact that the
solution to the Poisson equation can be obtained through convolution of its right-hand side with the
Green’s function intrinsic to the pressure Poisson equation.

It should be noted that this approach was briefly investigated in the beginning but discarded due to
the complexity of the derivation. However, due to the limitations encountered with the first approach, this
approach was revisited and a forcing term was eventually derived based on insights from the derivation
of the first approach, presented in Subsection 5.1.1. Unfortunately, due to time constraints, there was
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no opportunity to implement the second approach, and only the derivation of the forcing formulation is
presented.

Starting from the Poisson equation, outlined in Eq. (5.3) and applying convolution with the Green’s
function intrinsic to the Poisson equation, presented in Eq. (5.17), yields Eq. (5.18).

G(r, x, θ; r′, x′, θ′) = 1
4π

1√
(x− x′)2 + r2 + r′2 − 2rr′ cos(θ − θ′)

(5.17)

p(r, x) =
2πˆ

0

∞̂

−∞

∞̂

0

(∇ · ~f(r′, x′))G(r, x, θ; r′, x′, θ′)r′dr′dx′dθ′ (5.18)

Then, the forcing is modelled as a Dirac delta function in the axial direction and a Heaviside function
in the radial direction, as presented in Eq. (5.19), to ensure the total force is contained within the bounds
of a truncated domain. To check this the axial forcing, outlined in Eq. (5.19) is integrated over a domain
with finite bounds, as presented in Eq. (5.20). This derivation indicates two key points. Firstly, it shows
that the total force is confined within the domain provided the outer radial boundary is larger than the
radius of the actuator disk. Secondly, it reveals that the value of f0 corresponds to the total thrust force.

fx(r, x) = f0

πR2 (1 −H(r −R)) δ(x); fr(r, x) = 0; fθ(r, x) = 0 (5.19)
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(5.20)

Filling in the expression for the axial forcing into Eq. (5.18) and employing the definition of the
Heaviside function results in Eq. (5.21).

p(r, x) = f0

πR2

2πˆ
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∞̂

−∞

∞̂

0

(1 −H(r′ −R)) ∂δ(x
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4π
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∂x′
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4π

1√
(x− x′)2 + r2 + r′2 − 2rr′ cos(θ − θ′)
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(5.21)

The subsequent step involves taking the integral over θ′. However, before proceeding (θ − θ′) is
redefined. Specifically, (θ′ − θ) = θ̃ such that cos (θ − θ′) = cos (θ′ − θ) = cos (θ̃), indicating that dθ′ = dθ̃.
Additionally, exploiting the symmetry of the cosine function allows for converting the integration bounds
from 0 to 2π, to 0 to π by multiplying the integral by 2. This adjustment is crucial when integrating over θ̃
for substitution with elliptic integrals. The adjusted expression for the pressure before taking the integral
over θ̃ is outlined in Eq. (5.22).

Then, the derivation of the integral over θ̃, is presented in Eq. (5.23), where the resulting integral
involves a complete elliptical integral of the first kind K, as defined in [95].
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The next step involves applying integration by parts to shift the gradient of the Dirac delta function
onto the rest of the integrand, in order to solve for the integral over x′. This process utilises the definition
of the derivative of the complete elliptic integral of the first kind, K, as given in Eq. (5.24), where E
represents the complete elliptic integral of the second kind. Additionally, the definition of the integral of
a function multiplied by a Dirac delta function is also employed. The resulting expression for the pressure
is given in Eq. (5.25).

∂K(m)
∂m

= (m− 1)K(m) + E(m)
2m− 2m2 (5.24)
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To simplify the expression in Eq. (5.25), the variable m is introduced, which is defined in Eq. (5.26).
Additionally, also the desingularised formulation is presented in Eq. (5.27).

m = −4rr′

x2 + (r − r′)2 (5.26)

mδ = −4rr′

x2 + (r − r′)2 + δ2 (5.27)

Applying the definition for m to Eq. (5.25) yields Eq. (5.28).

p(r, x) = − f0

π2R2

R̂

0

r′√
x2 + (r − r′)23

(
xK(m) + (m− 1)K(m) + E(m)

2m− 2m2

)
dr′ (5.28)

The expression in Eq. (5.28) still contains an integral over r′. However, no analytical solution exists
for this integral, as confirmed using both Wolfram Alpha and Mathematica. Consequently, this integral
must be solved using numerical integration techniques.

Lastly, to obtain the total forcing over the entire domain due to the pressure, the gradient of the
pressure in the axial direction must be integrated over the full domain, as shown in Eq. (5.29).
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The expression derived in Eq. (5.29) introduces an additional integral over r that cannot be solved
analytically, necessitating numerical integration. Consequently, to determine the total force within the
domain, numerical integration over both r, and r′ is required.

To ensure accurate results, it is essential to employ a suitable numerical integration method for these
integrals. Analysing these numerical results will provide valuable insights into the behavior of the total
axial force, allowing for a comparison with the previous forcing formulation to assess its effectiveness.
However, due to current time constraints, further investigation of this aspect will be postponed to future
studies.

For completion, the desingularised expression for the total axial force is presented in Eq. (5.30)

Ftotal(r, x) = f0

2πR2
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0

R̂

0

[
1√

x2 + (r − r′)2 + δ2

((
mδx− 1

2

)
K(mδ) + E(mδ)

2(1 −mδ)

)] ∣∣∣∣∣
Xmax

Xmin

dr′dr

(5.30)

5.2. Verification Induced Forcing Formulation
To verify the correct implementation of the induced forcing, the induced forcing obtained using Eq. (5.11)
is compared with the induced forcing obtained from the equivalent quadrilateral doublet element, using the
functions from an existing three-dimensional boundary element solver. Specifically, a circle with the same
radius as the vortex ring was formed consisting of quadrilateral doublet elements, as illustrated in Fig. 5.1.
5,000 equidistant points were used along the circle’s circumference to achieve an approximation that closely
resembles a perfect circle. Then, applying the same dipole strength the induced axial and radial forcing
were compared at several points. It should be noted, however, that since the quadrilateral doublet element
induced forcing calculation does not implement a de-regularisation constant, the comparison is only valid
for very small δ. Therefore, δ is set equal to 1e−10, as further increasing δ has shown not to have any
more effect on the resulting calculated difference in induced forcing.
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Figure 5.1: Illustration of quadrilateral doublet element (left) and of the approximation of a circle with
constant doublet strength using constant-strength quadrilateral doublet elements (right).

For this verification case, the errors in the induced total force, axial force, and radial force, when
evaluated at points relatively close to the disk, are of the order of O(1e−8) and O(1e−9). This error
decreases further for points located farther away from the disk and also when increasing the number of
points on the circle’s circumference, thereby more accurately approximating a real circle with quadrilateral
doublet elements. Specifically, as the number of quadrilateral doublet elements in increased the spacing
between the circle circumference and the edges of the quadrilateral doublet elements as can be seen from
Fig. 5.1 decreases matching the circle more closely.

5.3. Forcing Term Implementation into the Momentum Equation
In this section, the implementation strategy to incorporate the forcing term into the momentum equation
will be laid out. For this purpose, two different approaches will be presented. The first approach directly
integrates the forcing term over the volume of each marching step, ensuring an accurate representation of
the forces within the computational domain, as discussed in Subsection 5.3.1. The second approach utilises
the vector potential, which offers an alternative way to introduce the forcing term into the momentum
equation. This approach is further elaborated in Subsection 5.3.2. By using the vector potential, the
computational complexity of the forcing term can be reduced, potentially reducing the computational
cost.

5.3.1. Implementation of Forcing Term using the Induced Forcing
To include the gradient of the pressure component due to the forcing, ∇pf , in the momentum equation
for the finite volume framework, the forcing needs to be integrated over each cell volume in the domain.
Specifically, for each marching step, which corresponds to one axial cell, the integral of the induced forcing
is calculated for each radial mesh cell. These integrals are then combined into a vector and added to the
right-hand side of the momentum equation. The vector added to the right-hand side of the momentum
equation is represented in Eq. (5.31), where Xl and Xr refer to the left and right bounds of the specific
marching step respectively, and the indices of the radial integration bounds indicate the radial mesh nodes.
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(5.31)
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Even though the forcing is symbolically represented in Matlab, the presence of complete elliptic integrals
within the integrand, makes symbolic evaluation of the integrals unfeasible. Hence, the integrals are
resolved using the Gauss-Legendre quadrature rule, as outlined in Appendix B.

To verify the correct implementation of the Gauss-Legendre quadrature rule, numerical integration is
applied to a function with known integrals. The result of the numerical integration is then compared with
the analytically calculated integral to ensure accuracy.

Applying the Gauss-Legendre quadrature rule to Eq. (5.31) results in Eq. (5.32). In this solution, the
Gauss-Legendre quadrature weights and nodes in the axial direction remain consistent across each vector
entry and only vary per marching step, while they differ in the radial direction, as evident from Eq. (5.32).
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Furthermore, the Gauss-Legendre theorem has relatively poor convergence when it comes to the approx-
imation of the integral of singular functions. In principle, a specific quadrature rule for the approximation
of the integral of singular functions should yield better results. However, since a higher regularisation
parameter smoothens out the singularity, one can play around with this parameter to improve the conver-
gence. Specifically, it has been observed that when the regularisation parameter is of the same order as
the largest cell boundary close to the actuator disk over which the integral is calculated, the error between
using 10 quadrature points and 20 quadrature points is of the order of O(1e−14). This indicates that the
accuracy of the numerical integration is relatively insensitive to the number of quadrature points within
this range, suggesting that 10 quadrature points may be sufficient for practical purposes in this context.
Therefore, δ is set equal to the larger of ∆x and ∆r near the actuator disk, as reducing the number
of quadrature points further reduces the computational cost. Furthermore, it should be noted that the
number of quadrature points can be adjusted based on cell size and distance from the disk. Smaller cells
require fewer quadrature points for accurate results, and cells located farther from the disk also need fewer
points. By employing an exponential mesh that increases with distance from the disk, using as few as
10 quadrature points for the large cells further away from the disk is sufficient. The optimisation of the
number of quadrature points to achieve a balance between accuracy and computational cost, along with
exploration of more suitable numerical integration methods, however, fall outside the scope of this thesis
and are left for future work.

5.3.2. Implementation of Forcing Term using the Vector Potential
Under the axisymmetric assumption of the Ainslie wake model, the flow can be considered two-dimensional
in the sense that the azimuthal velocity component around the axis is identically zero, and that the velocity
gradient in the azimuthal direction is also zero [97].

Assuming axisymmetric flow, the Stokes stream function, ψ, as outlined in Eq. (5.16) can be employed.
Furthermore, the Stokes stream function can be related to the induced forcing vector field as presented in
Eq. (5.33), where ~iθ is the unit vector in the azimuthal direction [97].

~f = −1
r

(~iθ × ∇ψ) with fx = 1
r

∂ψ

∂r
, and fr = −1

r

∂ψ

∂x
(5.33)

Then, the formulation for the induced force vector field can be integrated over the cell volume, which
provides the forcing term added to the right-hand side of the momentum equation when employing the
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finite volume method. The corresponding derivation is presented in Eq. (5.34), where the relation between
the Stokes stream function and the vector potential, presented in Eq. (5.16), is employed. Furthermore,
the first row of the vector contains the integrated induced forcing in the radial direction, while the last
row contains the integrated induced forcing in the axial direction. As discussed in Subsection 5.1.1 only
the axial component of the forcing is required, making the first element therefore redundant.
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(5.34)

Moreover, also in this approach the Gauss-Legendre quadrature rule is employed to determine the
integral, leading to the expression for the forcing term vector in Eq. (5.35).
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To verify the accurate implementation of this approach, a comparison was conducted between the
resulting integrated induced vector field using this method and the one obtained using the previously
verified approach outlined in Subsection 5.3.1, employing a fixed set of parameters. Upon comparison,
it was observed that the error between the two was of the order of O(1e−17). This indicates that the
approach discussed in this section has been accurately implemented.

5.3.3. Comparison Forcing Implementation Approaches
To identify the most advantageous implementation strategy, the computational time required to obtain
the integrated forcing is compared across the two different methods. Using a uniform radial mesh from
0 m to 5 m with 41 nodes and a uniform axial mesh running from -5 m to 5 m with 21 nodes, resulting in
800 mesh cells, the elapsed time using the implementation strategy presented in Subsection 5.3.1 is 389.8
seconds, whereas the elapsed time using the implementation strategy in Subsection 5.3.2 is 8.2 seconds.

This significant difference in computational time arises because the Gauss-Legendre quadrature rule is
evaluated only 20 times in the latter method, compared to 800 times in the former method. Essentially, this
comparison highlights the inefficiency of two-dimensional quadrature over one-dimensional quadrature, as
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the former requires significantly more points to achieve the same accuracy. Additionally, the ratio between
the number of evaluations and the computational time is of the same order, reinforcing this point.

Based on the observations it can be concluded that the approach employing the vector potential
performs significantly better in terms of computational cost, making it the preferred implementation
approach for calculating the forcing term. Moreover, to further reduce the computational cost of the
force term calculation, one can make use of the symmetry across the actuator disk observed in the axially
induced forcing, such that only half of the forcing field needs to be calculated.

5.3.4. Determination of Γ for a given Thrust Coefficient
The strength of the vortex ring, Γ, is a constant that linearly scales the axial force exerted by the vortex
ring at a specific location in the domain, as can be deducted from Eq. (5.11).

The total axial force exerted within the computational domain should equal the total thrust force
exerted by the actuator disk. To achieve this, one can first calculate the total axial force within the
domain for a vortex strength of one. Then, the actual value of Γ is determined by ensuring that the total
force in the domain exerted by the vortex ring matches the total thrust force, as outlined in Eqs. (5.36)
and (5.37). This shows that Γ is directly related to the thrust force and, consequently, the thrust coefficient
generated by the actuator disk. It should be noted that this calculation is feasible because the total axial
force exerted by the actuator disk is assumed to converge quickly as the domain size increases to infinity.

T = Γ
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An alternative method to relate the thrust force T to the vortex strength Γ utilises the Kutta-Joukowski
theorem, as defined in Eq. (5.38). Here ~U , represents a vector comprising the radial, azimuthal, and axial
velocity components at the actuator disk respectively, while ~Γ denotes a vector containing the vortex
strength. Furthermore, a denotes the axial induction factor, and Ω wind turbine’s rotational speed.

L = ρ(~U × ~Γ) with ~U =

 0
Ωr

U∞(1 − a)

 , and ~Γ =

Γ
0
0

 (5.38)

Applying this theorem, the force on an elemental length dr along the wind turbine blade can be
related to the bound circulation, as expressed in Eq. (5.39) [93]. From this derivation the thrust force on
an elemental length dr along the wind turbine blade is given by dT = −ρΓr.
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 (5.39)

Assuming Γ is constant along a blade, the expression for the local thrust force dT can be integrated
across the rotor radius, and summation over all B wind turbine blades provides the total thrust force as
depicted in Eq. (5.40) [93].
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2ρU

2
∞πR

2CT = 1
2ρΩR2ΓB (5.40)
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Subsequently, from Eq. (5.40) an expression for the vortex strength can be derived which is outlined
in Eq. (5.41), where λ denotes the tip speed ratio [93].

Γ = πU2
∞CT

ΩB = 2T
ρΓR2B

= 2T
ρλU∞RB

(5.41)

For this thesis, the former approach is preferred due to its requirement for less specific operational
wind turbine information. Additionally, it links Γ more closely to the exact forcing applied by the vortex
ring.

Furthermore, in reality, the actuator disk does not exert a constant thrust force on the flow, as the
thrust coefficient varies along the blade length. To achieve a more realistic forcing, blade element theory
can be employed. Specifically, the actuator disk is divided into several independent annuli, each with its
own thrust coefficient. Therefore, instead of having a single vortex ring, a superposition of vortex rings is
used to achieve a varying loading in the radial direction. More specifically, the outermost vortex ring will
have a strength corresponding to the thrust coefficient of the outermost radial annulus. Each subsequent
vortex ring will have a strength related to the change in the thrust coefficient, similar to the concept
behind lifting line theory [98].

5.4. Results Forcing Implementation
This section will present the results obtained from extending the Ainslie wake model with the inclusion of
the forcing term. The forcing term implementation must not compromise mass and momentum conserva-
tion. Therefore, Subsection 5.4.1 will present the observed errors in the mass and momentum conservation
when the forcing term is implemented. Furthermore, Subsection 5.4.2 will present the axial velocity profile
at the actuator disk and compare it against the profile obtained in [91] to verify the accuracy of the imple-
mentation. Lastly, Subsection 5.4.4 will discuss the observed limitations due to the employed formulation
of the forcing term itself.

5.4.1. Mass and Momentum Conservation
The incorporation of the forcing term into the Ainslie wake model should preserve mass and momentum
conservation. Therefore, the integral mass and momentum deficits will be outlined in this section. However,
before delving into the results, the simulation parameters are presented.

The inflow velocity for the simulation is set to a constant 10 m/s, while the turbine radius, taken from
the DTU 10MW wind turbine, measures 89.15 m. The computational domain extends from -5D to 5D in
the axial direction and from 0D to 2D in the radial direction, with D representing the turbine diameter.
The regularisation parameter, δ, is set to 1, based on the largest step size near the actuator disk, which is
0.7146 m in the radial direction. This slightly larger value for the regularisation constant ensures a more
smeared-out effect of the forcing near the actuator disk, contributing to the stability of the model. The
thrust coefficient for this scenario is set to 0.838, corresponding to the total thrust coefficient for the DTU
10MW turbine with a uniform inflow velocity of 10 m/s, as outlined in [82]. The strength of the vortex
ring, Γ, was then calculated using the procedure outlined in Subsection 5.3.4.
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(a) Integral mass deficit.
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(b) Integral momentum deficit.

Figure 5.2: Relative errors of integral mass and momentum deficits.

The relative errors of the integral mass and momentum deficits are provided Fig. 5.2. From these
results, it can be observed that the corresponding integral mass and momentum errors are of the order
of O(10−12) and O(10−11) respectively. These errors are considered acceptable and confirm that the
implementation of the forcing term does not compromise mass and momentum conservation.

5.4.2. Axial Velocity Profile at Actuator Disk
In this section, the normalised axial velocity profile at the actuator disk will be presented and compared
with the results from [91], using mostly the same simulation parameters as outlined in Subsection 5.4.1.
The primary difference is a slightly higher thrust coefficient, adjusted to match the parameters used in
[91]. Specifically, the thrust coefficient was set to 8/9. Additionally, since the paper generates the profile
for an inviscid flow, the constant viscosity was set to 0.0 m2/s. Lastly, the regularisation constant, δ,
was decreased to 0.1. This adjustment was made because, based on visual comparison, the profile in the
literature showed a sharper peak than what was initially observed with δ = 1. It should be noted that
since the paper does not specify the exact value of the regularisation constant used, there may still be
some discrepancy. Moreover, the computational domain was extended to achieve a more converged value
for Γ. Specifically, the domain extends from −40D to 40D in the axial direction and from 0D to 30D in
the radial direction.
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Figure 5.3: Comparison of normalised axial velocity profile at x = 0 m for a thrust coefficient CT equal
to 8/9 with literature [91]
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Comparing the normalised axial velocity profile at the actuator disk obtained from the Ainslie wake
model with the profile described in the literature, shown in Fig. 5.3, reveals a close agreement. Specifically,
from the axis of symmetry to the edge of the actuator disk, the normalised axial velocity values exhibit
only a minor offset upon visual inspection. However, Ainslie wake model simulation shows a lower peak
value at the edge of the actuator disk. Additionally, there is a notable difference in the rate of velocity
increase just beyond the actuator disk. In the Ainslie wake model, the velocity reaches the inflow velocity
by r/R = 1.5, whereas the literature profile shows a slower convergence towards the inflow velocity beyond
this point.

The offset from r/R = 0 to r/R = 1.0 might be due to a slightly higher vortex strength. Using a
slightly lower vortex strength would shift the curve upwards and reduce the peak value slightly, resulting
in a closer match. However, based on the discussion presented in Subsection 5.4.4, it was concluded
that the converged value of Γ varies depending on the ratio between Xmax and Rmax. Consequently, the
accuracy of the velocity profile simulated with the Ainslie wake model should not be taken as absolute.
Rather, the focus should be on analysing the velocity profile’s shape.

In general, it can be concluded that based on the comparison between the two normalised axial velocity
profiles the implementation of the forcing term gives satisfactory results for the axial velocity profile.

5.4.3. Comparison with Results without Forcing Term Implementation
This section will compare the velocity profile obtained using the Ainslie wake model with a forcing im-
plementation against the velocity profile obtained using the Ainslie wake model with the specified inflow
profile at the actuator disk following the recommendations of the IEC 61400 standard [42].

The IEC 61400 recommendation prescribes the initial wake radius as specified in Eq. (5.42). Further-
more, at the inlet, a uniform velocity profile is applied according to Eq. (5.43), where am denotes the
rotor-averaged induction. The relationship between the thrust coefficient and the induction is expressed
in Eq. (5.44).

It is important to note that, for the simulation, instead of using the eddy viscosity prescribed by the
IEC 61400 standard, a constant eddy viscosity of 1 m2/s is employed, which is applicable for the near
wake, based on the evolution νt(x) presented in [99].

RW (0) = 2R(1 − 0.45a2
m)
√

1 +m

8 with m = 1√
1 − CT

(5.42)

UW (0) =
{

U∞(1 − 2am), r < RW

U∞, r > RW
(5.43)

CT = 4am(1 − am) (5.44)

For the simulation, the turbine radius was set equal to the one of the DTU 10MW wind turbine [82].
Furthermore, an inflow wind speed of 10 m/s was used, and a thrust coefficient, CT , of 0.75 was chosen,
resulting in an average axial induction factor, am, of 0.25, using Eq. (5.44). Moreover, the computational
domain was identical to that used in the comparison presented in Subsection 5.4.2, specifically extending
from −40D to 40D in the axial direction and from 0D to 30D in the radial direction. However, the velocity
profile was only computed up to 4D behind the wind turbine, as the use of a constant eddy viscosity of
1 m2/s is not valid beyond this point, as derived from [99] following the IEC 64110 standard. Lastly, for
the regularisation parameter again δ = 1 was used, based on the largest step size near the actuator disk,
which is 0.7146 m in the radial direction.

It is important to note that while the domain results in a converged value of Γ, the precise value of
convergence is uncertain due to its dependency on the ratio between Rmax and Xmax, as discussed in
Subsection 5.4.4. Therefore, the comparison is based on qualitative rather than quantitative results.
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Figure 5.4: Comparison of the downstream axial velocity profiles from the forcing term implementation
with the velocity profiles from the IEC 61400 standard.

(a) Velocity field and profiles including forcing term. (b) Velocity field and profiles excluding forcing term.

Figure 5.5: Comparison of the downstream axial velocity field from the forcing term implementation
with the velocity field from the IEC 61400 standard, where the black lines indicate the velocity deficit

profiles at several downstream locations.
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(a) Velocity field with forcing. (b) Velocity field without forcing.

Figure 5.6: Comparison of the full axial velocity field from the forcing term implementation with the
velocity field from the IEC 61400 standard.

Based on the results presented in Figs. 5.4 to 5.6, several key observations can be made. Starting
with a comparison of the downstream velocity profiles, presented in Fig. 5.4, a significant difference can
be observed. First, the axial velocity at the rotor disk, at x/D = 0, is significantly higher for the case
including the forcing term. This is expected as in reality a velocity of U∞(1 − am) is expected at the
actuator disk rather than a velocity of U∞(1−2am) as prescribed by the IEC 61400 standard. In contrast,
the velocity in the near wake is significantly lower when the forcing term is implemented compared to
when no forcing term is used, despite the wake expansion being very similar. This discrepancy suggests a
notable difference in the momentum deficit, highlighting significant variations in the applied forcing, even
though the applied thrust coefficient, CT , is the same in both scenarios. However, the uncertainty in Γ
complicates the determination of whether the applied forcing is truly identical in both cases.

Then, immediately downstream of the actuator disk, near the edge, the axial velocity increases, when
the forcing term is included as observed from Figs. 5.4a and 5.6a. This phenomenon, known as the
edge force effect, is caused by the pressure difference between the upstream and downstream sides of the
actuator disk. This difference in pressure induces a radial flow toward the edge of the disk, leading to an
acceleration of the flow [100].

The wake radius at the actuator disk observed in Figs. 5.5a and 5.6a is slightly smaller and closer
to the actual wind turbine radius compared to the wake radius at the actuator observed in Figs. 5.5b
and 5.6b, which again results in a better representation of reality. This indicates that the wake radius can
be more accurately predicted at the actuator disk when a forcing term is implemented rather than using
a prescribed formulation of the wake radius.

Lastly, it can be observed from Fig. 5.6a that the flow already starts to slow down before reaching
the wind turbine. This indicates that the model also functions as a blockage model when the forcing is
included. Specifically, the potential formulation of the forcing term provides insights into the effects not
only at the rotor disk but also upstream and downstream of the rotor disk due to its widespread influence
in the domain. The current formulation of the model following the IEC 61400 standard in contrast does
not consider the effects upstream of the wind turbine as can be seen from Fig. 5.6b. This demonstrates
a significant advantage of including the forcing term, as this behaviour more accurately reflects the flow
dynamics observed in reality. Additionally, the extent of the blockage effect aligns with expectations based
on literature [101, 102].

5.4.4. Limitations Forcing Formulation
While generating the results, it was observed that altering the domain size significantly affected the total
force within the domain. This is undesirable, as the total force should remain constant, or converge when
domain dimensions are extended to infinity.
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Furthermore, based on this observation, it is evident that the chosen approach to determine the value of
Γ, as presented in Subsection 5.3.4, will result in variations of Γ depending on the specific domain employed,
introducing inaccuracies. This highlights a drawback of this method. In contrast, the alternative approach,
which is independent of the total force within the domain, is expected to exhibit greater robustness against
variations in the domain boundaries, ensuring more consistent calculations of the vortex strength. However,
due to time constraints, this is not explored further and is left for future work.

To address this issue, first, the convergence of the integrated axial forcing term will be examined
in Subsection 5.4.4.1. Furthermore, in order to understand and explain the observations, the asymptotic
behaviour of the integrated axial forcing term will be analysed, starting from the mathematical formulation.
Subsection 5.4.4.2 will focus on the asymptotic behaviour for changes in the domain size in the radial
direction. This is followed by a discussion on the asymptotic behaviour for a change in the axial dimension
of the domain, as presented in Subsection 5.4.4.3.

5.4.4.1. Convergence Forcing Term
To examine the convergence of the total axial force within the domain, the total axial force across the
domain was calculated for exponentially increasing radial and axial outer bounds. Specifically, the outer
bounds were doubled for each total force calculation, with Xmax = −Xmin = Rmax.

Furthermore, to reduce the computational cost, advantage can be taken of the symmetry of the axial
force across the actuator disk (fx(r, x) = fx(r,−x)). Specifically, for equal absolute values of Xmax and
Xmin, this symmetry means the integral only needs to be calculated for half the domain and then multiplied
by two, as illustrated in Fig. 5.7.

Figure 5.7: Representation of the domain, including definitions for the outer radial and axial bounds,
and the equations used to calculate the total axial force.

The results, presented in Fig. 5.8a, are obtained for a vortex ring with a radius R = 89.15 m, based
on the specifications for the DTU 10MW turbine. Additionally, the regularisation constant, δ, was fixed
to 1. These results demonstrate that convergence is achieved when the domain bounds are increased to
infinity, as required. Furthermore, the rate of convergence, shown in Fig. 5.8b, indicates that convergence
occurs with an order of O(h−2), meaning that as the domain bounds are expanded, the error in the forcing
decreases at a rate proportional to h−2.
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Figure 5.8: Change of the total axial force and the convergence rate for an increasing domain size.

Additionally, it has been observed that the convergence varies depending on the ratio between Rmax
and Xmax, even for significantly large domains. To gain deeper insights into this behavior, the force
convergence has been calculated for multiple ratios of the domain bounds.
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Figure 5.9: Variation of the total axial force with increasing domain size when Xmax is not equal to
Rmax.

The results presented in Fig. 5.9 demonstrate that altering the ratio between Xmax and Rmax affects
the value to which the total force converges. Specifically, a lower Rmax/Xmax ratio results in a higher
converged total force, and subsequently a lower value of Γ, as can be deducted from Eq. (5.37).

5.4.4.2. Asymptotic Behaviour of the Forcing for a Change in Radial Domain Dimension
To assess the asymptotic behaviour for an increase in the radial domain size, the value of the axial
coordinate x, in the axial forcing term, is fixed at a constant value C. Consequently, the contribution
of x can be neglected, allowing the analysis to focus solely on the effect of r. Furthermore, both the
regularisation constant, δ, and the turbine radius, R, are neglected. Applying these assumptions to the
axial force component outlined in Eq. (5.11) results in Eq. (5.45).
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fx(r, C) = Γ
2πr

[
−r2

r2 E

(
4r
r2

)
+K

(
4r
r2

)]
where Γ

2πr ∼
1
r
,

−r2

r2 ∼ 1, and m = 4r
r2 ∼

1
r

(5.45)

To further analyse the dependency of the axial force on r, the next step involves applying a Taylor
series expansion to −E(m) +K(m) to assess its dependency on r. The resulting expression is presented in
Eq. (5.46), where the higher order terms are neglected as these decay faster with increasing r. Based on
the resulting Taylor expansion expansion it is deduced that the axial force component changes with 1

r2 .

−E(m) +K(m) ≈ π

4m+ O(m2) ∼ π

4
1
r

+ O
(

1
r2

)
(5.46)

Then, the resulting integral over the radial dimension is examined to understand the asymptotic be-
haviour of the total axial force for r increasing to infinity for a fixed value of x. Based on the integral
presented in Eq. (5.47), it is concluded that the total axial force at a specific upstream or downstream
position never converges, as ln (R) diverges when the radial domain size increases to infinity.

Ftotal =
Rmaxˆ

0

fx(r, 0)rdr ∼
Rmaxˆ

0

1
r2 rdr ∼ ln (Rmax) (5.47)

To illustrate this asymptotic behaviour, the axial induced forcing was integrated over the radial direc-
tion for increasing values of the radial outer bound, Rmax, at various fixed values of the axial coordinate
x. This is indicated in Fig. 5.10 by the blue lines and the corresponding equations.

Figure 5.10: Representation of the domain with the outer radial and axial bounds, indicating the lines
over which the axial force is integrated, along with the corresponding equations for the total axial force

calculation to investigate the asymptotic behaviour in the radial direction.
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(a) Effect on absolute change in total axial force. (b) Effect on the total axial force.

Figure 5.11: Effect of a change in the domain size in the radial direction on the total axial force and the
absolute change in axial force. For effect on the absolute change in total axial force the dotted lines

represent the original negative values and solid lines represent the positive values.

The resulting absolute change in total axial force per unit increase in radial domain size, ∆Ftotal(r)/∆r,
and the total axial force for fixed values of x are presented in Fig. 5.11. Based on these results two types of
behaviour can be distinguished. First, from Fig. 5.11a an increase in the absolute change of the total axial
force near the disk is observed, meaning the total axial force will diverge for increasing radial outer bound.
This diverging behaviour is undesirable, and it can be observed that the range over which divergence
occurs increases for larger values of x. Then, beyond this initially divergent region the absolute change in
the total axial force decreases, meaning that the total axial force starts to converge, as desired. However,
the total axial force only converges with the order of O(r−1), which results in a relatively slow convergence
rate. From this, it can be concluded that even though the expected divergence is present, slow convergence
is obtained for larger radial outer bounds, and is obtained fastest for low values of x.

Furthermore, it should be noted that the total axial force and the absolute change in total axial force
presented here are not equal to the total axial force and the absolute change in total axial force within the
full domain and that these calculations are only valid to investigate the asymptotic behaviour.

5.4.4.3. Asymptotic Behaviour of the Forcing for a Change in Axial Domain Dimension
In addition to examining the absolute change in total axial force due to a variation in the radial domain
dimension, the effect of increasing the domain in the axial direction will also be studied. For this purpose,
both the absolute change in total axial force per unit increase in axial domain size, |∆Ftotal(x)/∆x|, and
the total axial force for varying axial domain sizes will be presented, for fixed values of r, as indicated by
the green lines in Fig. 5.12 and the corresponding equations for calculating the total axial force.
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Figure 5.12: Representation of the domain with the outer radial and axial bounds, indicating the lines
over which the axial force is integrated, along with the corresponding equations for the total axial force

calculation to investigate the asymptotic behaviour in the axial direction.

Before presenting the results for this case, the expected asymptotic behaviour is derived. The effect
of altering the axial domain size is assessed using a similar approach as for changing the radial direction,
but with the distinction that the value of the radial coordinate r is held constant, r = C m, and can
therefore be neglected for this analysis. This assumption, combined with the previously outlined ones in
Subsection 5.4.4.2, leads to the formulation of the axial force component described in Eq. (5.48).

fx(C, x) = Γ
2πx2

[
−x2

x2 E

(
4
x

)
+K

(
4
x2

)]
where Γ

2πx ∼
1
x
,

−x2

x2 ∼ 1, and m = 4
x2 ∼

1
x2

(5.48)

To further analyse the asymptotic behaviour of the axial force on x, the next step involves employing
the Taylor series expansion of −E(m)+K(m) to assess its dependency on x. Based on the Taylor expansion
outlined in Eq. (5.49), it is deduced that the axial force component changes with 1

x2 . Furthermore, the
higher order terms in the Taylor series expansion are neglected for this analysis as these decay faster with
increasing x.

−E(m) +K(m) ≈ π

4m+ O(m2) ∼ π

4
1
x2 + O

(
1
x4

)
(5.49)

Subsequently, the outcome of integrating the axial forcing term over the axial direction to compute the
total axial force is depicted in Eq. (5.50). This result indicates that the total axial force converges with
the order of O(x−2) as the axial domain size increases towards infinity. Furthermore, the change itself is
expected to converge with the order of O(x−3).

Ftotal =
Xmaxˆ

0

fx(C, x)dx ∼
Xmaxˆ

0

1
x3 dx ∼ − 1

2X2
max

(5.50)
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Figure 5.13: Effect of a change in the domain size in the axial direction on the total axial force and the
absolute change in axial force. The dotted lines represent the negative values and solid lines represent

the positive values.

The results shown in Fig. 5.13 illustrate the expected trends for both the absolute change in axial force
and the total axial force across various radial positions as the axial domain size increases. Furthermore,
the absence of any increase in the absolute change in axial force indicates that there is no divergence
present.

Then, depending on the radial position, notable differences are observed near the disk at x = 0.
These differences are due to the localised effect of the actuator disk, which varies with radial distance.
Specifically, the sign of the induced axial force changes at a certain position upstream of the wind turbine
(and downstream due to the symmetry of the axial induced force across the actuator disk). The distance
from the disk at which this change occurs varies with radial position, leading to discrepancies across
different radial directions.

Additionally, for larger values of x, discrepancies in the total axial force are observed between different
lines. This is because zero crossings, as indicated by the dotted lines, which can not be accurately
represented in a logarithmic plot, causing variations in the total axial force across different radial positions.

5.4.5. Conclusion Implementation Forcing Term
Based on the results obtained from implementing the forcing term, it can be concluded that using poten-
tial theory provides a strong initial framework for representing the actuator disk’s effect on the flow, as
discussed in Subsection 5.4.2. However, the current formulation for axially induced force converges rather
slowly because the potential formulation spreads the influence of the axial force across the entire domain.
Therefore, it is recommended to explore alternative formulations for the forcing that ensure faster con-
vergence of the forcing or provide a more localised effect, as these are expected to yield more satisfactory
results.

Given the limitations of the initial forcing term derived from the Biot-Savart law, as discussed in
Subsection 5.4.4, it is advised to implement the alternative forcing representation, presented in Subsec-
tion 5.1.2. This allows for a straightforward comparison of their performance. Such an evaluation will offer
insights into their respective strengths and weaknesses, informing potential refinements to the formulation
and implementation of the forcing term within the study’s framework.



6
Conclusions and Recommendations

The objective of this thesis was to establish the groundwork for a computationally efficient wake model by
solving the axisymmetric and stationary Navier-Stokes equations using a finite element method with the
ultimate goal to utilise the outputs from this model to conduct wind turbine load calculations.

This chapter addresses the research questions outlined in Section 1.1, provides general conclusions
drawn from the research, and offers recommendations based on these findings. It is structured into two
sections. Firstly, Section 6.1 delves into answering the research questions and presenting an overall con-
clusion. Subsequently, in Section 6.2, suggestions and considerations for future work are discussed.

6.1. Conclusions
The primary objective of this research was to develop a faster and more stable numerical method for
axisymmetric wake modelling. This aims to accelerate current wake profile calculations and enhance their
robustness across various parameter settings, with the future goal of using the obtained wake profiles as
input for wind turbine load calculations. For this purpose, the Ainslie wake model was chosen as the
foundation. To solve the governing nonlinear partial differential equations of the Ainslie wake model, the
finite element method was utilised with Hermite interpolation polynomials as basis functions in both the
radial and axial directions. Furthermore, a marching scheme was employed in the axial direction instead
of building a global solver.

The finite element implementation method explored in this thesis has been found to be unstable
for solving the Ainslie wake model. As a consequence of the instability observed in the finite element
implementation method for solving the Ainslie wake model, the research questions originally posed in this
thesis cannot be satisfactorily answered. The conclusion of the study will therefore focus on discussing
the underlying reasons for the issues encountered during the FEM implementation and on the conclusions
that can be drawn from the implementation of the forcing term in the finite volume method Ainlie wake
model.

Implementing Hermite interpolation basis functions has presented unique challenges. Increasing the
order of Hermite interpolation basis functions has revealed significant issues of ill-conditioning, dimin-
ishing their suitability for this specific application. Additionally, higher-order Hermite interpolation basis
functions have shown increased sensitivity to the employed mesh. This emphasises the importance of mesh
quality when increasing the order of the basis functions. Moreover, the presence of both even and odd
functions when using a higher-order basis has rendered them ineffective for solving the continuity equation,
as the coefficients in the matrices no longer align with the area under the functions after summation along
the projection index. In contrast, the piecewise linear basis functions have proven to be compatible with
the continuity equation and have shown more robustness when solving the diffusion term, particularly
with respect to the employed mesh and in terms of the condition number.

However, despite the expectation that the approach using piecewise linear basis functions would yield
satisfactory results, stability issues were encountered. The exact cause of these stability issues remains
unknown. It is anticipated, though, that they may be related to the LBB condition not being satisfied.
The LBB condition is crucial for ensuring stability when solving the steady incompressible Navier-Stokes
equations or Stokes equations, which are closely related to the governing equation of the Ainslie wake
model.

82
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While computational times for the Ainslie wake model using the finite element method remain uncertain
due to instability, insights can be drawn from computational times for the diffusion equation presented
in Subsection 4.2.4. These times indicate that higher-order basis functions require more computational
resources due to the increased matrix sizes involved in simulations. This suggests a trade-off between
the accuracy gained from higher-order basis functions, contingent on their suitability for the application
and mesh quality, and the corresponding increase in computational costs. Moreover, these times notably
exceed those required for running the Ainslie wake model with a finite volume method. It is important
to note, however, that the model used for simulating the diffusion equation has not yet been optimised
for computational efficiency, unlike the fully optimised finite volume Ainslie wake model. Therefore, these
computational times should not be used for direct comparisons with other commercial codes at this stage.

The implementation of the forcing in the finite volume Ainslie wake model has demonstrated con-
servation of mass and momentum. Additionally, the axial velocity profile aligns with those presented in
literature using similar force formulations, verifying the correctness of the implementation strategy. How-
ever, due to the limitations observed in the forcing formulations, no definitive conclusions can be drawn
about the quantitative quality of the implementation. Specifically, the value of the vortex strength was
shown to be highly dependent on the domain size and the ratio between the axial and radial outer bounds,
complicating the determination of the correct converged value for Γ.

Finally, based on comparisons of the velocity field and profiles with current IEC 61400 standard, the
implementation of the forcing term has been demonstrated to more accurately reflect the flow dynamics
observed in reality. Specifically, the forcing implementation has shown to represent the flow dynamics
upstream of the rotor by capturing the decrease in axial velocity known as the blockage effect and the
extent of this blockage effect is consistent with expectations based on the literature [101, 102]. Additionally,
it has demonstrated to capture the edge force effect caused by pressure differences before and after the
actuator disk.

6.2. Recommendations
Increasing the order of the Hermite interpolation basis functions has revealed significant ill-conditioning,
indicating that higher-order Hermite interpolation basis functions are not well-suited for this specific ap-
plication. However, this does not imply that these basis functions are unsuitable for all finite element
applications. In fact, these functions can be effective when the equations form the steady-state solution to
the problem, as demonstrated in [103]. However, it is recommended to explore alternative basis functions
that demonstrate improved performance for higher-order finite element methods for this particular appli-
cation. These new basis functions should be even in nature, as uneven basis functions have been shown
to introduce difficulties near boundaries when solving the incompressible continuity equation.

Furthermore, when employing higher-order basis functions, the quality of the mesh becomes increas-
ingly critical. The diffusive nature of the axial velocity profile means that the initially fitted mesh, which
is suitable for the inflow condition at the actuator disk, becomes inadequate as the velocity profile diffuses.
To address this, it is recommended to implement an adaptive mesh refinement strategy. This approach will
ensure that the mesh adapts dynamically to the evolving wake structure. Alternatively, one can ensure
that the mesh is sufficiently refined up to the expected wake radius.

The current implementation strategy, which uses piecewise linear basis functions, has exhibited insta-
bility issues, likely stemming from the violation of the LBB condition. To address this, adopting a mixed
finite element approach is recommended, which might offer a stable solver. Specifically, due to similarities
between the governing equations of the Ainslie wake model and incompressible Navier-Stokes equations,
implementing Taylor-Hood elements is suggested. In a typical Taylor-Hood scheme, quadratic basis func-
tions are used for velocity, while linear basis functions are used for pressure. While the original Ainslie
wake model does not initially account for pressure, incorporating this aspect represents a significant step
towards achieving the broader objective.

The current approach to define Γ has shown to be highly dependent on the chosen domain size due to the
extent of the vortex rings’s influence domain. Additionally, the ratio between the outer domain boundaries
has been shown to significantly affect the value to which Γ converges. Consequently, it is recommended
to explore the alternative approach outlined in Subsection 5.3.4 for defining Γ, as it is independent of
the domain size. Furthermore, it is advisable to investigate whether the alternative force approximation
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presented in Subsection 5.1.2 provides a more localised force field. If successful, this approach would
become the preferred choice.

In reality, the actuator disk does not have constant loading. Therefore, it is recommended to enhance
the force formulation to accommodate an actuator disk with multiple annuli, each characterised by its own
local thrust coefficient. If using the vortex ring force formulation, this can be achieved by placing a vortex
ring at each annulus, adjusting the value of Γ based on the change in CT . One should however not forget
the limitations in defining the value for Γ based on a given CT . Furthermore, implementing a non-uniform
actuator disk with the second force formulation presented in Subsection 5.1.2 is more complex.

Additionally, it is essential to implement a complete Poisson solver that incorporates the component
of the Laplacian of the pressure due to velocity to assess the influence of this term. Near the disk, it is
anticipated that this term will be overshadowed by the significantly larger forcing component. However,
at greater distances from the disk, this term may exert a more noticeable influence. This implementation
represents a step toward achieving greater realism in wake modelling, as the Ainslie model without the
addition of a forcing term or a full Poisson solver is essentially a non-linear diffusion equation, sacrificing
detailed dynamics for computational speed.

Finally, it is recommended to compare the velocity profiles obtained from current engineering models
with those obtained from the Ainslie wake model incorporating a forcing term, or ideally incorporating a
Poisson solver, at greater downstream distances. This comparison is crucial because current engineering
models are less accurate in the near wake due to their underlying assumptions. However, for an accurate
comparison, the non-constant eddy viscosity formulation as presented in the IEC 61400 standard should
be implemented. Following this comparison, a further step towards reality would involve a comparison
with a non-constant loaded actuator disk model.
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A
Matrices Continuity Equation

In this Appendix, the matrices that constitute the discretised divergence operator, as provided in Eq. (4.21),
are presented. First, Appendix A.1 presents the matrices obtained when employing piecewise linear basis
functions in the radial direction. Then, Appendix A.2 shows the matrices for the case when utilising cubic
Hermite interpolation basis functions in the radial direction. Lastly, Appendix A.3 provides an overview of
the matrices obtained when employing quintic Hermite interpolation basis functions in the radial direction.
Moreover, the mesh used to obtain these matrices has 3 radial nodes and 2 nodes in the axial direction,
with a spacing of 1 m between each node.

A.1. Matrices when Employing Piecewise Linear Basis Functions in the
Radial Direction

The continuity equation as presented in Eq. (4.21) consists of four distinct matrices. The first matrix that
is presented in Eq. (A.1) is associated with the term ∂U

∂x where U is known inflow velocity, as denoted
by U(n,kl) in Eq. (4.21), while the second matrix, provided in Eq. (A.3), is also related to the term ∂U

∂x ,
but now U represents the unknown velocity coefficients, as denoted by U(n,kr) in Eq. (4.21). Furthermore,
the vectors resulting from a summation along the projection index for these two matrices are given in
Eqs. (A.2) and (A.4), respectively.


−0.1667 −0.0833 0 0
−0.0833 −0.3333 −0.0833 0

0 −0.0833 −0.3333 −0.0833
0 0 −0.0833 −0.1667

 (A.1)

[
−0.2500 −0.5000 −0.5000 −0.2500

]
(A.2)


0.1667 0.0833 0 0
0.0833 0.3333 0.0833 0

0 0.0833 0.3333 0.0833
0 0 0.0833 0.1667

 (A.3)

[
0.2500 0.5000 0.5000 0.2500

]
(A.4)

Then, the two matrices related to the term ∂V
∂y in the continuity equation, associated with the known

and unknown transverse velocity coefficients are presented in Eqs. (A.5) and (A.7), respectively. Moreover,
the vectors resulting from the summation along the projection index are provided in Eqs. (A.6) and (A.8),
respectively.
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
−0.0833 0.0833 0 0
−0.0833 0 0.0833 0

0 −0.0833 0 0.0833
0 0 −0.0833 0.0833

 (A.5)

[
−0.1667 0 0 0.1667

]
(A.6)


−0.1667 0.1667 0 0
−0.1667 0 0.1667 0

0 −0.1667 0 0.1667
0 0 −0.1667 0.1667

 (A.7)

[
−0.3333 0 0 0.3333

]
(A.8)

A.2. Matrices when Employing Cubic Hermite Interpolation in the Radial
Direction

Similar as to the matrices presented in Appendix A.1, also here the four matrices constituting the continuity
equation will be presented, but know for the case when employing cubic Hermite interpolation functions
in the radial direction. The first matrix, shown in Eq. (A.9), is associated with the term ∂U

∂x where U is
known inflow velocity, as denoted by U(n,kl) in Eq. (4.21). The second matrix, provided in Eq. (A.11), is
also related to the term ∂U

∂x , but here U represents the unknown velocity coefficients, denoted as U(n,kr)
in Eq. (4.21). Additionally, the vectors resulting from a summation along the projection index for these
two matrices are given in Eqs. (A.10) and (A.12), respectively.



−0.1857 −0.0262 −0.0643 0.0155 0 0 0 0
−0.0262 −0.0048 −0.0155 0.0036 0 0 0 0
−0.0643 −0.0155 −0.3714 0 −0.0643 0.0155 0 0
0.0155 0.0036 0 −0.0095 −0.0155 0.0036 0 0

0 0 −0.0643 −0.0155 −0.3714 0 −0.0643 0.0155
0 0 0.0155 0.0036 0 −0.0095 −0.0155 0.0036
0 0 0 0 −0.0643 −0.0155 −0.1857 0.0262
0 0 0 0 0.0155 0.0036 0.0262 −0.0048


(A.9)

[
−0.2607 −0.0429 −0.5000 −0.0024 −0.5000 −0.0024 −0.2393 0.0405

]
(A.10)



0.1857 0.0262 0.0643 −0.0155 0 0 0 0
0.0262 0.0048 0.0155 −0.0036 0 0 0 0
0.0643 0.0155 0.3714 0 0.0643 −0.0155 0 0

−0.0155 −0.0036 0 0.0095 0.0155 −0.0036 0 0
0 0 0.0643 0.0155 0.3714 0 0.0643 −0.0155
0 0 −0.0155 −0.0036 0 0.0095 0.0155 −0.0036
0 0 0 0 0.0643 0.0155 0.1857 −0.0262
0 0 0 0 −0.0155 −0.0036 −0.0262 0.0048


(A.11)

[
0.2607 0.0429 0.5000 0.0024 0.5000 0.0024 0.2393 −0.0405

]
(A.12)
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Furthermore, the two matrices related to the term ∂V
∂y in the continuity equation, associated with

the known and unknown transverse velocity coefficients, denoted by V(n,kl) and V(n,kr) in Eq. (4.21)
respectively, are presented in Eqs. (A.13) and (A.15). Moreover, the vectors resulting from the summation
along the projection index are provided in Eqs. (A.14) and (A.16), respectively.



−0.0833 0.0167 0.0833 −0.0167 0 0 0 0
−0.0167 0 0.0167 −0.0028 0 0 0 0
−0.0833 −0.0167 0 0.0333 0.0833 −0.0167 0 0
0.0167 0.0028 −0.0333 0 0.0167 −0.0028 0 0

0 0 −0.0833 −0.0167 0 0.0333 0.0833 −0.0167
0 0 0.0167 0.0028 −0.0333 0 0.0167 −0.0028
0 0 0 0 −0.0833 −0.0167 0.0833 0.0167
0 0 0 0 0.0167 0.0028 −0.0167 0


(A.13)

[
−0.1667 0.0028 −1.0408e− 17 −8.6736e− 19 −1.0408e− 17 −8.6736e− 19 0.1667 −0.0028

]
(A.14)



−0.1667 0.0333 0.1667 −0.0333 0 0 0 0
−0.0333 0 0.0333 −0.0056 0 0 0 0
−0.1667 −0.0333 0 0.0667 0.1667 −0.0333 0 0
0.0333 0.0056 −0.0667 0 0.0333 −0.0056 0 0

0 0 −0.1667 −0.0333 0 0.0667 0.1667 −0.0333
0 0 0.0333 0.0056 −0.0667 0 0.0333 −0.0056
0 0 0 0 −0.1667 −0.0333 0.1667 0.0333
0 0 0 0 0.0333 0.0056 −0.0333 0


(A.15)

[
−0.3333 0.0056 −2.0817e− 18 −1.7347e− 18 −2.0817e− 18 −1.7347e− 18 0.3333 −0.0056

]
(A.16)

A.3. Matrices when Employing Cubic Hermite Interpolation in the Radial
Direction

This section will present the matrices constituting the continuity equation in Eq. (4.21) when employing
quintic Hermite interpolation basis functions. First, the matrices related to the term ∂U

∂x , specifically
associated with the known and unknown velocity coefficients, are provided in Eqs. (A.17) and (A.19),
respectively. Moreover, the corresponding vectors obtained from a summation along their projection index
are outlined in Eqs. (A.18) and (A.20), respectively. Lastly, the two matrices related to the term ∂V

∂y in
the continuity equation are presented. These matrices, provided in Eqs. (A.21) and (A.23), correspond to
the known and unknown transverse velocity coefficients, respectively. The corresponding vectors resulting
from a summation along the projection index are provided in Eqs. (A.22) and (A.24).
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

−0.1959 −0.0337 −0.0025 −0.0541 0.0163 −0.0016 0 0 0 0 0 0
−0.0337 −0.0075 −0.0006 −0.0163 0.0048 −0.0005 0 0 0 0 0 0
−0.0025 −0.0006 −5.4113e− 05 −0.0016 0.0005 −4.5094e− 05 0 0 0 0 0 0
−0.0541 −0.0163 −0.0016 −0.3918 0 −0.0051 −0.0541 0.0163 −0.0016 0 0 0
0.0163 0.0048 0.0005 0 −0.01501 0 −0.0163 0.0048 −0.0005 0 0 0

−0.0016 −0.0005 −4.5094e− 05 −0.0051 0 −0.0001 −0.0016 0.0005 −4.5094e− 05 0 0 0
0 0 0 −0.0541 −0.0163 −0.0016 −0.3918 0 −0.0051 −0.0541 0.01634 −0.0016
0 0 0 0.0163 0.0048 0.0005 0 −0.0150 0 −0.0163 0.0048 −0.0005
0 0 0 −0.0016 −0.0005 −4.5094e− 05 −0.0051 0 −0.0001 −0.0016 0.0005 −4.5094e− 05
0 0 0 0 0 0 −0.0541 −0.0163 −0.0016 −0.1959 0.0337 −0.0025
0 0 0 0 0 0 0.0163 0.0048 0.0005 0.0337 −0.0075 0.0006
0 0 0 0 0 0 −0.0016 −0.0005 −4.5094e− 05 −0.0025 0.0006 −5.4113e− 05


(A.17)

[
−0.2715 −0.0538 −0.0044 −0.5083 −0.0054 −0.0085 −0.5083 −0.0054 −0.0085 −0.2369 0.0484 −0.0041

]
(A.18)



0.1959 0.0337 0.0025 0.0541 −0.0163 0.0016 0 0 0 0 0 0
0.0337 0.0075 0.0006 0.0163 −0.0048 0.0005 0 0 0 0 0 0
0.0025 0.0006 5.4113e− 05 0.0016 −0.0005 4.5094e− 05 0 0 0 0 0 0
0.0541 0.0163 0.0016 0.3918 0 0.0051 0.0541 −0.0163 0.0016 0 0 0

−0.0163 −0.0048 −0.0005 0 0.0150 0 0.0163 −0.0048 0.0005 0 0 0
0.0016 0.0005 4.5094e− 05 0.0051 0 0.0001 0.0016 −0.0005 4.5094e− 05 0 0 0

0 0 0 0.0541 0.0163 0.0016 0.3918 0 0.0051 0.0541 −0.0163 0.0016
0 0 0 −0.0163 −0.0048 −0.0005 0 0.0150 0 0.0163 −0.0048 0.0005
0 0 0 0.0016 0.0005 4.5094e− 05 0.0051 0 0.0001 0.0016 −0.0005 4.5094e− 05
0 0 0 0 0 0 0.0541 0.0163 0.0016 0.1959 −0.0337 0.0025
0 0 0 0 0 0 −0.0163 −0.0048 −0.0005 −0.0337 0.0075 −0.0006
0 0 0 0 0 0 0.0016 0.0005 4.5094e− 05 0.0025 −0.0006 5.4113e− 05


(A.19)

[
0.2715 0.0538 0.0044 0.5083 0.0054 0.0085 0.5083 0.0054 0.0085 0.2369 −0.0484 0.0041

]
(A.20)



−0.0833 0.0218 0.0020 0.0833 −0.0218 0.0020 0 0 0 0 0 0
−0.0218 0 0.0002 0.0218 −0.0052 0.0004 0 0 0 0 0 0
−0.0020 −0.0002 0 0.0020 −0.0004 3.3069e− 05 0 0 0 0 0 0
−0.0833 −0.0218 −0.0020 0 0.0437 0 0.0833 −0.0218 0.0020 0 0 0
0.0218 0.0052 0.0004 −0.0437 0 0.0003 0.0218 −0.0052 0.0004 0 0 0

−0.0020 −0.0004 −3.3069e− 05 0 −0.0003 0 0.0020 −0.0004 3.3069e− 05 0 0 0
0 0 0 −0.0833 −0.0218 −0.0020 0 0.0437 0 0.0833 −0.0218 0.0020
0 0 0 0.0218 0.0052 0.0004 −0.0437 0 0.0003 0.0218 −0.0052 0.0004
0 0 0 −0.0020 −0.0004 −3.3069e− 05 0 −0.0003 0 0.0020 −0.0004 3.3069e− 05
0 0 0 0 0 0 −0.0833 −0.0218 −0.0020 0.0833 0.0218 −0.0020
0 0 0 0 0 0 0.0218 0.0052 0.0004 −0.0218 0 0.0002
0 0 0 0 0 0 −0.0020 −0.0004 −3.3069e− 05 0.0020 −0.0002 0


(A.21)

[
−0.1706 0.0046 0.0006 −1.3878e− 17 −0.0012 0.0012 −1.3878e− 17 −0.0012 0.0012 0.1706 −0.0058 0.0006

]
(A.22)
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

−0.1667 0.0437 0.0040 0.1667 −0.0437 0.0040 0 0 0 0 0 0
−0.0437 0 0.0003 0.0437 −0.0103 0.0009 0 0 0 0 0 0
−0.0040 −0.0003 0 0.0040 −0.0009 6.6138e− 05 0 0 0 0 0 0
−0.1667 −0.0437 −0.0040 0 0.0873 0 0.1667 −0.0437 0.0040 0 0 0
0.0437 0.0103 0.0009 −0.0873 0 0.0007 0.0437 −0.0103 0.0009 0 0 0

−0.0040 −0.0009 −6.6138e− 05 0 −0.0007 0 0.0040 −0.0009 6.6138e− 05 0 0 0
0 0 0 −0.1667 −0.0437 −0.0040 0 0.0873 0 0.1667 −0.0437 0.0040
0 0 0 0.0437 0.0103 0.0009 −0.0873 0 0.0007 0.0437 −0.0103 0.0009
0 0 0 −0.0040 −0.0009 −6.6138e− 05 0 −0.0007 0 0.0040 −0.0009 6.6138e− 05
0 0 0 0 0 0 −0.1667 −0.0437 −0.0040 0.1667 0.0437 −0.0040
0 0 0 0 0 0 0.0437 0.0103 0.0009 −0.0437 0 0.0003
0 0 0 0 0 0 −0.0040 −0.0009 −6.6138e− 05 0.0040 −0.0003 0


(A.23)

[
−0.3413 0.00913 0.0011 −2.7756e− 17 −0.0024 0.0024 −2.7756e− 17 −0.0024 0.0024 0.3413 −0.0115 0.0013

]
(A.24)



B
Gauss-Legendre Numerical Quadrature

Gauss-Legendre quadrature is a numerical integration technique used to approximate definite integrals. It
is a form of Gaussian quadrature that utilises the roots of Legendre polynomials as sampling points. The
equation governing Gauss-Legendre quadrature is provided in Eq. (B.1). Here Pn(x) represents the n-th
orthogonal Legendre polynomials, normalised such that Pn(1) = 1, and xi denotes the i-th root of Pn(x).

1ˆ

−1

f(x)dx ≈
n∑
i=1

wif(xi) with wi = 2
(1 − x2

i )[P ′
n(xi)]2

(B.1)

However, the integral bounds must align with the mesh utilised in the finite volume method. Therefore,
the Gauss-Legendre quadrature rule needs to be adapted to accommodate general integral bounds. This
adaptation requires adjusting the weights and roots, as detailed in Eq. (B.2).

xmaxˆ

xmin

f(x)dx ≈
n∑
i=1

w′
if(x′

i) with w′
i = xmax − xmin

2 wi; x′
i = xmax − xmin

2 xi + xmax + xmin
2 (B.2)
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