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Abstract

Aircraft maintenance technicians sometimes avoid the use of maintenance manuals, especially in cases when
they experience to many pressure to perform task-specific maintenance. Literature shows the available main-
tenance documentation system are either slow, or it is difficult to search for task-specific information. On
the other hand, literature in the information retrieval domain shows many algorithms are able to retrieve
information from documents effectively and efficiently. These algorithms are often compared to the ”best
matching 25” algorithm. This algorithm often serves as a baseline in the information retrieval domain be-
cause it delivers equally good retrieval results as new algorithms. The algorithm is renowned because of its
robustness and has provided excellent results in many fields. Literature also shows the addition of pseudo-
relevance feedback to the best matching 25 algorithm might result in better retrieval performance up to 25%.
This thesis fills the need of an easy to search through information system with the proven algorithm and sets
a baseline in the aircraft maintenance industry for the use of ranking algorithms. To the best of the author’s
knowledge, it is the first time a ranking algorithm in combination with pseudo-relevance feedback is applied
to aircraft maintenance documentation. Next to this domain novelty the work is also applied to the actual
field making use of aircraft maintenance technicians, and the results are verified using statistical tests.

The aircraft industry is currently in the transition phase from using paper-based documentation towards
digital documentation. The first steps in this transition are made, but the resulting systems are either slow,
lack the ability of easily finding task-specific documentation, and are often vendor specific. To make it easier
for aircraft maintenance technicians to find relevant information to perform a maintenance task, a web-
based model is developed. Incorporated in this model is the best matching 25 algorithm and the option to
use pseudo-relevance feedback. Due to a practical experiment, the effectiveness of the algorithm with and
without pseudo-relevance feedback is investigated. Seventeen aircraft maintenance technician students are
given six problem cases, from which they have to find the six corresponding aircraft maintenance manuals
which describe the to be performed maintenance task. The search is done by employing a query search in
the model. Next to this, the aircraft maintenance technicians also have to find the same documentation using
their everyday method of finding information.

The problem cases divided into three categories, where each category consists of two problems. These
categories range from frequently occurring too rarely occurring maintenance tasks. This division is made to
test the hypothesis if more experience leads to the faster retrieving of relevant documentation. This hypoth-
esis is chosen because it is expected more experience leads to the use of more specific queries, making the
model able to retrieve more relevant documents, and therefore finding the correct maintenance document
in a shorter time span. The first research question is: does the implementation of the best matching 25 algo-
rithm lead to more relevant search results for aircraft maintenance technicians searching for documentation,
and what is the time efficiency impact due to this algorithm, compared to the current way of working? Lit-
erature showed the addition of pseudo-relevance feedback results in better retrieval performance in other
domains, therefore the second research question is: does the addition of pseudo-relevance feedback to the
BM25 algorithm lead to more relevant search results compared to the BM25 alone, and what is the time effi-
ciency impact due to feedback? The time necessary for an aircraft maintenance technician to find the correct
documentation and its rank are taken as parameters to evaluate the efficiency and accuracy of the model. The
test group is free to search the maintenance documents for their current way of working, but when the web-
based model is used they are limited to three search attempts. The queries are written down before starting
the search to make a fair comparison between the algorithm and the addition of pseudo-relevance feedback.
After the search all aircraft maintenance technicians have to write down the document name, the place where
they found the document, and the time it took to find it. To evaluate if the addition of pseudo-relevance feed-
back does lead to more accurate retrieval, the place (rank) in the top 10 results will be compared. To compare
the efficiency of the current way of working against the other two, the average search time is compared.

The model is described in detail using Python code, figures, examples, and continued by a step-wise ver-
ification. A sensitivity analysis shows the time to display the results from local testing is stable, while the
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vi 0. Abstract

results from using the model online show significant fluctuations. The use of the private server, which is
limited in 1 GB of RAM memory, is mainly responsible for these fluctuations in response time. Further, the
sensitivity analysis showed that, the addition of pseudo-relevance feedback does not result in better retrieval
performance for all queries. In fact, for only one of the four queries, the correct document is shown higher
in the list of results. It is also shown that the parameters of the algorithm and the pseudo-relevance feedback
have a significant impact on the search results. The sensitivity analysis was too short to conclude which pa-
rameters were the best to choose for the given aircraft maintenance manuals. The values of both methods
are chosen to be close to the once suggested in literature and fixed during the tests. The results from the
practical test show 87.3% of the aircraft maintenance technicians is able to retrieve the correct document by
the current way of working. On average it took the aircraft maintenance technicians 203 seconds to find this
document. By using the best matching 25 algorithm the search time is lowered by 72.9% to an average of 55
seconds making 89.2% of the aircraft maintenance technicians able to find the correct maintenance manual.
The addition of pseudo-relevance feedback to this algorithm did not lead to an improvement of the number
of retrieved documents, and was found to be equal for each individual problem compared to the best match-
ing 25 algorithm solely. However, the average search time is decreased further to an average of 32 seconds,
corresponding to an retrieval time improvement of 84.2% compared to the current way of working. Due to
the small number of participants in the experiments and the occurrences of non-normally distributed data it
is chosen to perform non-parametric tests to validate the results. The Wilcoxon Signed-Rank test was found
to be the best option because it fulfills all requirements. The test results show for three of the four applied
tests it could be concluded with a significance level of 5% the faster retrieval results are due to the addition of
pseudo-relevance feedback with a medium effect size.

This research showed for the first time in the aircraft maintenance domain the use of ranking algorithms,
and the addition of relevance feedback, has a significant effect on the time to find task-specific information,
while maintaining the same document retrieval accuracy. For the six cases, a decrease in average search time
from 203 seconds to 32 seconds was possible. It was found the hypothesis, that more knowledge leads to
faster retrieval of relevant documentation, was not correct for all cases. It is expected this is due to the fact
the same terms were used in the problem description as the name of the maintenance manual that was to be
found. This made the algorithm able to identify this manual as highly relevant. It is recommended to test the
model on the tarmac where the aircraft maintenance technicians can solve the same problem cases, without
seeing the questions on paper. Future research is necessary to investigate whether other ranking algorithms
or additions to the current algorithms provide better results in this domain. Also, it is required to perform
additional research by evaluating the individual parameters of both the best matching 25 algorithm as the
pseudo-relevance feedback code. The aforementioned methods can be combined into a research where the
algorithm parameters are automatically improved each iteration by using implicit feedback in combination
with machine learning techniques. As a final recommendation, more resources should be made available
on efficient search methods by academia and the industry to make information better available and more
accessible. The operational impact on the aircraft maintenance domain is expected to be high when the
same results can be achieved by the model, in case the number of maintenance manuals is extended, and
made available to the industry.
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1
Introduction

For years, air transport is well-known as one of the safest forms of transportation. The aviation consultancy
firm To70[29] concludes in their safety review ”in 2017 the fatal accident rate per flight is as low as 0.08 per
million flights for large aeroplane in commercial air transport. That is a rate of one fatal accident for every
12 million flights”. To be a form of transport this safe is only possible by coordinating all activities across the
entire industry strictly. These activities range from complex policy changes (e.g., lower the number of landing
rights of an airport) to better training facilities for personnel. Maintenance howsoever plays a crucial role, to
maintain this high standard, in aircraft safety for decades. To keep an aircraft airworthy many maintenance
tasks need to be performed to comply with all regulations, i.e., many aircraft parts need to be inspected or
replaced when the limit is near. These tasks are known in advance because one knows upfront maintenance
(or at least inspection) is necessary and therefore named ”scheduled maintenance”. During maintenance
execution, an aircraft is not earning money for an airliner and expected from the aircraft maintenance tech-
nicians (AMTs) to perform maintenance in the shortest time possible. Unfortunately, it is not possible to
plan all maintenance tasks upfront, e.g., during an inspection round a mechanic sees some engine blades
are deprecated. This type of maintenance, not known in advance, is called ”unscheduled maintenance”. Ac-
cording to Suwondo [28], the ratio of unscheduled/scheduled maintenance costs for a 20-year-old aircraft
grows to a factor 2 and increases with aircraft age. One reason for the increase of the expenses is unscheduled
maintenance, which is often found during inspection when the aircraft is still in operation. Mechanics must
perform their tasks during the available turnaround time. Turnaround time is the time an aircraft is at the
gate and leaves the gate again for a new flight. The time available to perform this maintenance is limited fur-
ther because it is prohibited to perform maintenance when passengers are near the aircraft. This small time
frame, in which support is possible, puts enormous pressure on aircraft maintenance mechanics. According
to Lampe [19], 15-30% of the total maintenance time is lost in finding relevant documentation to perform the
repair safely 1. For unscheduled maintenance the expectation is this requires even more time.

Industry, in general, is always in search of new technologies to decrease people’s workload and reduce the
number of errors. Especially the aerospace industry is famed for its use of high-level technology and has a
long history of being an early adopter, innovator, and investigator of new technologies. With the aerospace
industry on top of the number of initiatives, the term ”Industry 4.0” (mentioned also as the fourth indus-
trial revolution) is finding its way to many industries to digitalize the world, resulting in decreasing costs and
increasing information accessibility [4]. With a significant percentage of revenue spent on maintenance, re-
pair and overhaul (MRO)activities, research is still growing each year [10]. In 2014, ”Globally, airlines spent
$62.1 billion on MRO, representing around 9% of total operational costs [12].” Although being on top of the
many Industry 4.0 initiatives, daily practice shows the use of paperless documentation for task support in
line-maintenance operations is limited [31]. According to the International Civil Aviation Organization: ”the
implementation of the electronic aircraft maintenance records poses challenges such as electronic signature,
security and integrity of records, and transferability from one record system to another” [14]. Industry of-
fers some solutions to make use of digital maintenance documentation but users mention these applications
come with several significant downsides; they are vendor specific, not designed for mobile use, slow in perfor-
mance and their search functionality is insufficient [17]. These applications often consist of a central digital

1This statement results from research using paper-based maintenance documentation.
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library, in which users can search on keywords. The system shows the results which are exact case-sensitive
keyword matches. Due to the massive amount of documents, the AMT is left over with an unreasonable
amount of results. Sometimes the applications offer another way of finding documents, e.g., a click-through
menu which in most cases is ordered by the Air Transport Association ATA chapter. Mechanics need to know
exactly where to find specific documents or they end up in an endless search. It is required to increase the ef-
ficiency of digital aircraft maintenance documentation systems. Efficiency means the AMT retrieves the most
relevant document in the shortest time possible. It is worth mentioning the companies Google and Yahoo are
trying to accomplish this task already for years. Both spend time and money on ranking algorithms and user-
feedback to retrieve web pages from user queries. Ranking algorithms are mathematical approaches where
documents or information are listed in some order depending on the algorithm variables. Their task is to or-
der these documents so the user can find information in the shortest time possible. It is therefore remarkable
these approaches are absent in the aerospace maintenance domain.

The combination of time pressure and a lack of a dedicated systems puts enormous pressure on AMTs,
especially in the case of unscheduled maintenance, where he is confronted with a choice. Save some time
by avoiding the use of documentation, thereby ignoring regulations and increase the (unnecessary) risk or
accept the risk of flight delays by searching for task-specific documentation. Due to this impossible choice,
the following defines the problem statement of this thesis:

”Aircraft maintenance technicians are not always able to find the correct maintenance documentation
and perform their task during turnaround time.”

This thesis attempts to investigate and set a baseline for improving access to digital aircraft maintenance
documentation with a focus on simplifying the retrieval of relevant information for (unscheduled line) main-
tenance tasks. Data for this study is collected by several practical experiments, and the results provide new
insights into the effect of using the Best Matching 25 (BM25) algorithm on technical content. Additionally,
a test is performed to understand if the addition of pseudo-relevance feedback improves the results any fur-
ther and can decrease the mechanics’ search time. Pseudo-relevance feedback is used to improve the retrieval
performance of a search without an extra interaction from the user. This study is unable to encompass the
entire collection of maintenance documents and focusses on the use of the aircraft maintenance manuals
(AMMs)and trouble shooting manuals (TSMs). Although the limited amount of documentation, this thesis
will contribute to the domain novelty because to the best of the author’s knowledge the use the well known
BM25 algorithm (plus the addition of pseudo-relevance feedback) has never been applied to aircraft mainte-
nance documentation before. Secondly, it provides a baseline for academia and industry for the possibilities
to search through digital aircraft maintenance documents.

First, a brief overview of the theoretical knowledge required to understand the content is given, and sup-
plemented with a short literature study. Chapter 3 describes the methodology of the study including its ratio-
nale, research design, and limitations. In Chapter 4 the experimental setup is explained. The problem cases
of the experiment, the sampling plan and details about how information is analyzed. Next, Chapter 5 goes
step by step into detail about the primary building blocks of the model, including some pseudo-code and a
verification section. The chapter ends with a sensitivity analysis to investigate for the effect of changing sepa-
rate parameters of the model. Next, Chapter 6 states the results of the performed test discussing the findings.
The thesis ends with Chapter 7 with some concluding remarks about its contribution to the state-of-the-art
and recommendations for research.



2
Literature Review

The aircraft maintenance industry is at the beginning of the transition from paper-based documentation to-
wards the use of digital documentation. Unfortunately, the available literature is limited towards the use of
maintenance information systems ([31], [20]). On the other hand, many literature is available in the informa-
tion retrieval domain about the use of algorithms and models to make information better and more efficiently
accessible. This chapter is therefore split into two blocks; aircraft maintenance and information retrieval. The
first two sections describe aircraft maintenance in general and give state of the art in the domain. In the sub-
sequent sections, the focus lays on the information retrieval (IR) domain with a focus on the classical models
and relevance feedback. The final section combines information from the two fields, thereby showing the
possibility of filling the gap in aircraft maintenance documentation retrieval by using algorithms from IR.

2.1. Aircraft Line Maintenance Operations
Unlike most base maintenance tasks, which is maintenance performed in the hangar, line maintenance is not
always scheduled. During a flight, unforeseen problems can arise which requires new maintenance. Before
the actual execution, it is essential mechanics are well prepared to avoid delays[16]. In Figure 2.1 a schematic
overview is shown of a case of line maintenance where all tasks are known before the mechanic arrives at the
aircraft. First, the maintenance information system, also known as computerized maintenance management
system, is providing all tasks to perform. These tasks are taken out of the system by the lead engineer and
bundled into workable packages. When done, he distributes the work packages to the AMTs. The work pack-
ages show the necessary maintenance on specific aircraft, but also include corresponding documentation
and the equipment list required to perform the maintenance.

Figure 2.1: Schematic overview of work distribution from maintenance information system to mechanic.

The next step for the AMT is to prepare the maintenance by searching for the correct documentation and
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equipment to perform the task. Most airliners work with a central library where mechanics can search for
information. Once found, the mechanic prints the proper documentation. Before the AMT can go to the gate
or stand, he has to make sure to take all equipment and parts (in case of replacements). Finally, he can take
all the equipment, parts, and documentation to the gate. Once all passengers have left the plane, the AMT
can start the repair.

Besides repairs, an AMT has to do an inspection round to check if any defects are present. In case defects
are present, the mechanic has to decide if it is possible to defer the defect. Deferring means to delay the repair
until a later moment when the aircraft is (in most cases) out of service. A mechanic always first tries to defer
the defect, because of delay costs. However, in some cases, it is not possible to postpone the delay (especially
when safety is affected), and the mechanic has to perform the repair. When this is the case, the AMT is faced
with a difficult choice because there is a need for information at the gate, but the information can be found
in the central library, which is often in the hangar. As a first option, one can call the lead engineer or another
colleague to bring the required documentation to the gate but someone has to be available. A second option
is to drive back to the hanger which requires time. This time, also called non-value-added time is identified
by the International Air Transport Association (IATA) [13] as a potential productivity metric to be improved
by the use of digital information. Both options are not ideal because it requires extra man hours or interrup-
tions of work. Sobbe [26] et al. show interruptions have a negative effect on work flow and represent high
potential for frustration. They further mention AMTs develop their own strategies for efficient information
acquisition, introducing safety risk. By developing personal strategies to acquire information, the next step is
to take some procedural shortcuts to perform the maintenance without consulting documentation[33].

Figure 2.2 shows a schematic overview of the previous text. In case of scheduled maintenance and only
planned repairs, the process starts at the left and continues to the right. For unplanned maintenance, it is
also possible to move to the left (search for tools, parts, and documentation).

Figure 2.2: Schematic overview of line maintenance including routine and non-routine tasks.

2.2. State of the Art
Aircraft can fly for over thirty years and with some modifications it is possible to extend their lifespan even
further. One should expect this long lifespan is only possible when dedicated maintenance systems are in
place. Already in 2009, Candell et al. [3] pointed out document-oriented, paper-based approaches are in-
creasingly expensive to produce and offer poor usability in MRO. However, there is a relatively small body
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of literature concerned with paper-less aircraft maintenance [31], [20]. Most available literature is related to
the optimization of aircraft maintenance, discussing new techniques such as augmented reality or improved
maintenance planning. It is therefore IATA started the initiative and assists in the development of paper-less
aircraft operations in 2017. Paper-less aircraft operations are much more than solely paper-less maintenance
and Figure 2.3 provides the focus areas of paper-less operations in a roadmap.

Figure 2.3: IATA roadmap towards paper-less aircraft operations, adopted from [13].

Available literature describes an approach for the use of paper-less documentation in the maintenance
industry best is found by the concept of eMaintenance. eMaintenance is a broad concept including systems,
techniques, methods and described by Baldwin [1] as: ”E-maintenance = Excellent maintenance = Efficient
maintenance (do more with fewer people and less money) + Effective maintenance (improve RAMS metrics)
+ Enterprise maintenance (contribute directly to enterprise performance)”. Another description that fits well
into the context is of Levrat et al. [21]: eMaintenance is concerned with the use and integration of IT solutions
in the maintenance domain. Literature about eMaintenance starts in 1997 with the Integrated Diagnostic Sys-
tem [32]. This project aimed at simplifying the approach to identify and extract specific information using a
rule-based approach. It turned out it was time-consuming, especially when the amount of information in-
creased. The work of L. Scherp [25] provides a good summary of the most relevant eMaintenance projects
of the last years. Starting from 2007, ontology-based approaches become popular. Verhagen and Curran [31]
demonstrated the use of an ontology in aircraft maintenance as a proof of concept. In the subsequent work,
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Koornneef [17] in 2015 developed a functional framework as a proof of concept for automated provisioning
of contextualized maintenance documentation.

Not only does literature provides little information about digital aircraft maintenance, but also practice
shows the use of aircraft maintenance documentation is still paper-based ([19], [31]). John Maggiore, director
of maintenance and leasing solutions for Boeing Digital Aviation, mentioned in 2016: ”There are literally mil-
lions of boxes of paper-based documents, which would circle the Earth 25 times if laid end to end. For now,
the MRO industry is just in the early stages of transitioning toward electronic formats” [23].

Little academic literature regarding maintenance information systems is found, but practice shows dig-
ital solutions developed by aircraft manufacturers, airliners, and MRO companies or independent software
vendors are available. Airbus is working on a tool AirN@v, Swiss has developed AMOS, and also independent
software provider Ultramain Systems has an in-house developed tool. All of them provide functionalities to
perform (line) maintenance but focus on scheduled maintenance where the tasks are known upfront. The
problem of finding task-specific maintenance information remains for these solutions.

2.3. Information Retrieval
Many definitions regarding IR can be found but in this thesis the definition from Manning et al. [22] is ap-
plied: ”Information retrieval is finding material (usually documents) of an unstructured nature (usually text)
that satisfies an information need from within large collections (usually stored on computers)”. IR is com-
monly used to retrieve unstructured data from an electronic text but also applies to movies, photos and other
types of files. This unstructured data refers to data with a structure not easy to convert for a computer. Al-
though IR is not the most popular research theme in the aircraft domain, in daily life one cannot be without
it anymore. The most popular search engine used today as an IR service is Google, providing the user with an
easy way to access unstructured data. Web search is the most popular method of IR, but also personal search
options on desktops (e.g., ”spotlight” on MacOS or ”Windows Search” on Windows) are easily accessible. The
visual layout may differ, but the working of IR models is the same; the user enters a query in the system, the
system ranks the documents according to a scoring algorithm, and the top results shown to the user.

In aircraft maintenance, tasks need to be performed using maintenance manuals which are in most cases
text documents, sometimes supplemented with technical drawings. The use of models to find text docu-
ments in the IR domain is called document retrieval. Figure 2.4 shows the necessary elements to perform
document retrieval. First, one needs an indexer to convert a text collection into a set of indexed documents.
On the other hand, the user has a particular need for information and describes this need to the system by
a (search) query. The difficulty of document retrieval lies in the comparison between the queries and the
indexed documents (the same argument holds true for IR). The indexer does not know the interpretation of
the query while the user does not precisely know the content of the collection. The mismatch between the
information need from the user and the query expression is where IR models come in place. The book ”Intro-
duction to Information Retrieval” by Manning et al. [22] provides an extensive explanation of the principles
of IR, including models and algorithms developed over the years.

In the IR domain, the three most widely known classes of text retrieval models are the exact match mod-
els, vector space models and probabilistic models [30]. The boolean models are the most often used model in
the first category, in which a document either matches or not. Therefore the boolean models are suitable for
expert use when one has a precise understanding of the needs and the collection, but bad for most users. Due
to the lack of ranking functionalities, the result from a standard boolean search is often either too few results
or too many results. It requires a lot of skills to produce a manageable amount of documents to a query [22].
The second category is the vector space models, and without providing too much general information, the
main disadvantage is it does not define what the values of the vector components should be. The problem of
assigning appropriate values to the vector components is known as term weighting. This problem has led to
the development of the probabilistic models and a central function in these probabilistic models is the alloca-
tion of terms weights, where each search term is given a weight to make it less or more important. In the past
recent years, many research has been conducted to improve the term weight allocation. The BM25 retrieval
function incorporates the Inverse Document Frequency (IDF) method [24] is considered the state-of-the-art
of term weighting schemes during the last decades [2][7]. It is the 25th iteration of the Okapi information
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Figure 2.4: Visual summary of document retrieval, adopted from [22].

retrieval system, with the first one implemented at London’s City University in the 1980s and 1990s. Not only
many literature is found about the use of the BM25 algorithm, but also widely used search engine frameworks
as Apache Lucene [9], and Elastissearch [5] make use of the algorithm.

No papers of applications of the BM25 algorithm in the aircraft maintenance domain were retrieved.
However, outside this domain, more articles can be found to perform specific tasks. Hu et al. [11] demon-
strate their Valence-Arousal-based retrieval model outperformance the BM25 algorithm to help individual
efficiently locate documents and resources for their depression problems. The results show a maximum im-
provement of 10% in relevant documents.

An IR systems assist the user in finding information he or she needs. Typical systems do not provide an
explicit answer to the user, but provides him with the existence or location of the document that might con-
tain the needed information.The documents satisfying this information need are called relevant documents.
The perfect system would retrieve only relevant documents, which in case of aircraft maintenance is only one
document (although this document often refers to other documents for extra information). Unfortunately,
”perfect retrieval systems do not exist and will not exist, because search statements are necessarily incom-
plete and relevance depends on the subjective opinion of the user”[7].

To measure the performance of an IR system literature provides two main features: efficiency measures
and effectiveness measures. The first is important in terms of response time, the time between the user
sending a query and receiving results back. In between this, the systems needs to: go through the index, (or
sometimes build the index first) compares it with the query, ranks the documents and sends back the ordered
relevant documents. As it is not the objective to improve current systems, algorithms, programming code,
etc., in terms of speed no focus is given to this domain. On the other hand, effectiveness measures the rele-
vancy of the documentation against the user query. Many general known methods are found in the literature
i.e., recall, precision (at K), F-score, mean average precision but also more advanced graphical methods. All
methods have a thing in common: more than one retrieved document can be relevant to a search query.
Relevance can be different per user even when the same query is used. This is also the case in aircraft mainte-
nance, but in the end, to perform a specific maintenance task it is required to have one maintenance manual
describing the tasks to be performed. To evaluate a system used for finding relevant information to perform
a specific task, it is preferred only this document is retrieved. As mentioned by Hiemstra [7] this is impossible
and therefore the best option is to evaluate the rank of the correct document. As in reality AMTs will have
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many thousands of maintenance documents available and certainly not go through all of them before start-
ing a new search, it is wise to evaluate only a certain top n of results.

2.4. Feedback
The classical models in IR have proven to be successful but also have their limits. This section discusses a
technique frequently applied as an addition to the classical models in the IR domain to improve the retrieval
performance, named relevance feedback. Relevance feedback is a technique to enhance a query on the basis
of relevance information. As it is unknown if any previously discussed model will retrieve relevant results,
due to its specificity, it might be possible relevance feedback can offer better results.

Relevance feedback consists of three different categories, where the first is explicit supervised feedback
by the user, a technique proposed already in the 1960’s [6]. After a search, users can indicate the relevant
documents or documents that are off-topic. The system will use this information to reformulate new queries
by adding new terms, calculate a new score and rank the documents again to the modified query. The use of
relevance feedback becomes unpractical for large systems and is difficult to study because the manual feed-
back provides an extra variable.

Many user actions can be seen as a form of implicit relevance judgements. The user can for example move
documents to a folder, print documents or click on it. This information might be useful for a new search and
can be stored in a log file. Implicit feedback can be a valuable source to provide the user with better informa-
tion compared to the query alone. One of the difficulties is it requires time, storage space and good algorithms
to make use of all information. Although users can click on specific documents, this not always implies the
document is relevant. Joachims et al. [15] compared implicit feedback, due to clicks, against manual rele-
vance judgements. They found the click-through data is informative but biased.

Both previously mentioned options of relevance feedback have shown to be useful but are impractical
for larger collections of documents. Adapting the parameters in the retrieval model is time-consuming and
therefore research using machine learning techniques for automatic adaption of these parameters becomes
popular. However, to apply these machine learning techniques, it is required to have a large amount of train-
ing data. The aircraft maintenance domain does not have the problem of the availability of data, but the
expert judgement on whether a document is relevant to a specific query or not. To avoid this problem, one
can make use of the third category of relevance feedback also called: pseudo-relevance feedback. Pseudo-
relevance feedback is a method for automatic local analysis to retrieve more accurate results from a search.
An advantage of this technique is the independence of the user, storage space and is less time-consuming,
compared to other relevance feedback methods, before results become relevant in large collection of docu-
ments. The quality of the results is strongly dependent on the top-ranked documents, because it assumes all
of the top-ranked documents are relevant. The original IR system returns a list of documents where the top
n documents are assumed to be relevant. From these n documents, the most relevant words are retrieved
by calculating the term frequency - inverse document frequency which defines how important each word is
compared to all words in the collection of documents. When the top m words are retrieved, they are added to
the used query and the original retrieval method starts again.

Kraaij [18] mentions that on average, pseudo-relevance feedback improves the retrieval effectiveness by
10 to 25%, depending on the test collection, the quality of the baseline and the quality of the feedback al-
gorithm. To prove this, he investigated the influence of pseudo-relevance feedback and its effects. He also
analysed the addition of pseudo-relevance feedback to the BM25 algorithm and found the addition improved
the retrieval effectiveness by 20% compared to his solution using the BM25 algorithm solely. Not only Kraaij
but also Speriosu and Tashiro [27] show in their paper the addition of pseudo-relevance feedback to both a
language model as the BM25 algorithm improves the retrieval effectiveness for the vast majority of queries.
Important to mention is their work is performed on newspaper corpora from multiple conferences and there-
fore is not domain specific.



3
Methodology

The methodology of the thesis is explained in here starting with the rationale building upon the literature re-
view, including the need for the study, the information it adds and potential utility. This section highlights the
problem statement, project objective, research questions, and hypothesis. Secondly, discussed in Section 3.2
with a focus on the research design, is the scope of the project. Finally, chapter 3.3 addresses the limitations
of this research and their impact.

3.1. Rationale Behind Research
Finding the correct information to perform a repair was always a time-consuming task for AMTs in no small
amount of aircraft maintenance documentation. During the past years, airliners decreased the turnaround
times and aircraft AMTs are often confronted with an undesirable trade-off. Either consult the documenta-
tion and thereby increase the risk of delaying a flight or do not consult it, and threatening safety. An impossi-
ble trade-off, but a result of the underlying problem, also defined as the problem statement:

”Aircraft maintenance technicians are not always able to find the correct maintenance documentation
and perform their corresponding tasks during aircraft turnaround time.”

As stated in the introduction, the transition from paper-based documentation towards paperless/digi-
tal documentation is still in the early stages. Digital documentation seems a promising solution to decrease
search times for AMTs, but more research is necessary to know its influence in the complex aviation industry.
Many players in the market, ranging from large aircraft manufactures to software vendors, search for com-
plete digital solutions since the benefits are clear. Aircraft manufacturers can update their documentation by
a simple mouse click, and thereby make the latest revisions of documents globally available within seconds.
From an economic point of view, a small increase in efficiency due to software may result in substantial profit
savings. However, more benefits of digital documentation will emerge when maintenance documents are
easy to search through. AMTs, for example, will be able to reduce the time to look for documentation even
without decreasing the actual repair time. By actually using documentation the repair becomes safer and
possibly faster, resulting in a decrease of flight schedule disruptions.

Counted as the first step to make documentation digitally available, the ’paper on-screen’ solution. Best-
known documents in this category are the ”Portable Document Format” (PDF), stored on a central server.
Documentation is accessible via a computer, often placed in or near the hanger. Before AMTs go to the air-
craft, they have to find and print all the necessary documents. As a result, they need to carry a lot of paper
which in case of a break, or change of shift has to be thrown away and printed again1. In case of unscheduled
maintenance, the situation becomes worse. To find the necessary documentation, AMTs first have to drive
back to the hangar, find and print the documents and drive back again to the aircraft. Losing much time by
driving is sometimes avoided by asking a colleague to help. This colleague needs to find the documentation,
the necessary tools, and parts before bringing them to the aircraft. One can imagine this process is far from

1This is due to regulations as mentioned by an experienced AMT during an interview.
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optimal and time is lost in many ways. Some airliners already give AMTs the possibility to access PDF doc-
uments with a smartphone or tablet. Unfortunately, these ’paper on-screen’ documents are hard to search
through and finding (task-) specific information is still time-consuming. A search on particular keywords
may results in many hundreds, sometimes thousands, of hits. On the other hand, there is no guarantee the
correct document is part of these hits because many solutions only consist of exact case-sensitive keyword
matches. Literature already developed multiple ranking algorithms to deal with exact-case matches. Chapter
2 discusses these ranking algorithms, with a focus on the BM25 algorithm in particularly. The algorithm is
used very frequently by researchers who develop a new algorithm, as the algorithm to defeat. However, for
unclear reasons, nothing is found about the use of the BM25 algorithm in the aerospace domain. There are
cases the ranking algorithm is supplemented with an additional method named pseudo-relevance feedback
2. Since it is unknown if the BM25 algorithm and the addition of pseudo-relevance feedback have a positive
effect on finding aircraft maintenance documentation, the objective of this thesis is:

”Measure the influence of both ranking and feedback, on finding relevant aircraft maintenance docu-
mentation.”

To expose the effect of ranking, but also the impact of feedback, it is chosen to perform several exper-
iments. These experiments consist of several (real-life) problem cases which describe aircraft defects and
given to a group of 17 student AMTs, almost in the final year of their studies 3. The AMTs have to find out
which document is necessary to perform the repair correctly. Section 3.2 provides a more detailed descrip-
tion of the used ranking algorithms and feedback in the aerospace domain. The goal is not to deliver the best
ranking algorithm, but to compare the often used BM25 algorithm (in combination with pseudo-relevance
feedback), often used as a baseline in the IR domain, against the current way of working. Before the influence
of ranking and feedback is investigated it is necessary to have a baseline of the current way of working (’paper
on-screen’ solution). This way of working is tested first, where the number of correct documents found by the
AMTs and the total search time is part of the analysis. After setting this baseline, there is a need to discover
the influence of the addition of the BM25 algorithm on the AMTs’ search time and accuracy. The final step in
the experiments is to solve the problems where the AMTs make use of the BM25 algorithm in combination
with pseudo-relevance feedback. This results in the following two main research questions:

Does the implementation of the BM25 algorithm lead to more relevant search results, compared to the
current way of working, for aircraft maintenance technicians searching for documentation, and what is
the time efficiency impact due to this algorithm?

Does the addition of pseudo-relevance feedback to the BM25 algorithm lead to more relevant search
results compared to the BM25 alone, and what is the time efficiency impact due to feedback?

This research implements the algorithms in an already existing web-based solution named Macster. Since
it is web-based, Macster is independent of an operating system, but more importantly, it is available to all
AMTs that have internet access. In the next chapter, one can find more information about Macster. For ad-
ditional information one is referred to the article of Koornneef et al. ”Contextualising aircraft maintenance
documentation” [17].

Before explaining the precise working of the model implementation, additional author’s hypotheses are
stated, serving as a mean to answer the research questions. These hypotheses are:

The use of the BM25 algorithm leads to a higher percentage of correct documents found by AMTs and
also significantly decreases the average search time compared to the current way of working.

The addition of pseudo-relevance feedback to the BM25 algorithm leads to a higher percentage of cor-
rect documents found by AMTs and also significantly lowers the average search time compared to the
BM25 algorithm solely.

2Feedback in the IR domain is not similar as feedback in the aerospace industry, more details about feedback can be found in Chapter
5.1.7.

3From now the students are called AMTs. The study to become an AMT takes four years, at the time of testing there were two months
left before the students went to their fourth year.



3.2. Research Design 11

3.2. Research Design
Very idealistic, but the ideal system for AMTs, is one showing the correct document after one search. At the
moment it is impossible to reach this goal, but the industry is asking for new systems that at least decrease the
search time compared to current systems. The first step in this development is to make use of search queries
and show the documents in decreasing order of importance. To know the importance of a document one can
use a ranking algorithm, explained in more detail in section 5.1.6. Ranking algorithms make use of search
queries that can be very specific for aircraft maintenance documents. There is no library from which one can
grab technical search queries for the aircraft maintenance domain, so the simulation of different randomly
selected queries is impossible. To do an experiment coming as close as possible to reality it is best to make use
of AMTs knowing the jargon. To perform tests with employed AMTs during working hours is almost impossi-
ble. Either the number of AMTs available for an experiment was too low to get representative results, or the
bureaucratic process took too long with respect to the research planning, or simply due to the fact the AMT’s
time was too valuable for conducting experiments. After some contact with ”Techniekcollege Zuid-Limburg”,
the possibility was given to do tests with a group of third-year aircraft AMT students. Although these students
do not have as much experience as AMTs, it is now possible to test with a larger target group and to have more
time available for execution of the test. This is considered the best option given the timeframe of the project.

Scope
As time and resources are limited, first the scope is defined. Every item is mentioned in bold together with a
short explanation why it was necessary.

• Maintenance documentation from Airbus for the Airbus A318, A319, A320 and A321 family:
During the development of Macster solely maintenance documentation of the Airbus A318 - A321 fam-
ily is used. More specifically, the AMMs are implemented which will be used during testing. Also the
option to make use of the TSMs is available. The TSMs will only be used in the sensitivity analysis and
not during the test because ”Techniek College Zuid-Limburg” is not in the possession of these manuals.
It is chosen to stick to these two types of documents, to avoid particular aircraft manufacturers imple-
mentation problems. The working of the algorithms is not affected. Also, one can see the addition of
extra maintenance manuals as a possible addition for future versions of Macster.

• English documentation:
Dutch AMTs will carry out the tests and it is expected all of them can read and write English. How-
ever, not expected is that all of them might be able to read and write other languages. As it is not the
objective to deliver the best working algorithm, the implementation is limited to English documents.
Implementing documentation from a different language does not have an added value to this research.
Also, the majority of the MRO and manufacturer market is English-based.

• Maintenance manuals:
To set a baseline for the current way of working, the documents available in Macster should also be
available at the test location in PDF format. Found during the development of the problem cases is
that at the test location the number of Airbus documents was limited. One of the few complete and
available chapter was number 30 of the AMM. After review of an experienced aircraft AMT, the decision
is made to use this specific chapter. The possibility to search through the TSMs is implemented but
not used during the experiment. The algorithms will not make use of the TSM documents during the
calculations. The reason to implement the TSM is to extend the number of documents during the
sensitivity analysis. Limiting the collection to solely AMMs, has its effect on the ranking calculations.
Chapter 5.2 discusses this impact during the sensitivity analysis.

• Model: In aircraft maintenance laptops and tablets are already used to a certain level. Therefore it must
work at least on these devices.

• Technical drawings: It is decided to exclude technical drawings. The functionality to show technical
drawings is not available in Macster and left as a recommendation for future versions. Also, different
ranking algorithms are required to perform ranking of (technical) drawings compared to the ones used
for document retrieval [22].
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3.3. Limitations
The research is bounded by its scope and assumptions due to a limited amount of time and resources. This
has its effect and an overview of the main limitations can be found below. Each limitation is stated in bold,
followed by an explanation of why it could not be avoided and the impact it has on time and accuracy.

• Number of ATA chapters used: Only ATA chapter 30 of the AMM is included in Macster. The reason
to choose for only one chapter is simple: limit the research. After an interview with two experienced
AMTs, it can be assumed AMTs have enough knowledge to at least know the ATA chapter number in
which the documents related to a problem can be found after a short period of time. The reason to
choose for chapter 30, in particular, is because during the tests it is necessary to have a specific chapter
available in Macster, but also as a PDF document.
Impact on search time: By limiting the number of ATA chapters, the number of documents is also
limited. At the moment it is expected this is positive for the calculation speed because the server is
capable of performing complex calculations.
Impact on accuracy: In case the knowledge of the AMTs is enough to immediately select the correct
chapter, there is no impact on the accuracy. However, if a general search is started, it depends on the
specificity of the queries if there is an impact on accuracy. When the queries are specific enough, the top
10 results will not be affected. However, when queries are used which can be found in every document
it is expected to have a large impact on accuracy.

• Type of aircraft: The used aircraft fleet is the Airbus A318-A321 family because the documents of this
family were already implemented in Macster.
Impact on search time: The impact on search time for this research can be neglected, but one must be
careful when a full implementation of Macster at a maintenance service provider would be planned.
The impact can range from very low when only Airbus aircraft are maintained to very high when air-
craft come from multiple manufacturers. In this case, an extra option to filter on aircraft type would be
a solution.
Impact on accuracy: The same explanation holds as for the impact on search time.

• Students: The group participating in the experiment consists of students. Therefore their knowledge is
lower compared to AMTs already working in the industry. Although their knowledge is less, it is consid-
ered the best option for the experiment because it is extremely difficult to get AMTs available for testing
purposes.
Impact on search time: The impact on search time is low because students using a laptop or tablet
might compensate for the possible extra time spent on searching due to inaccurate queries. Students
might use different queries but the use of different queries still needs to be investigated, so it is impos-
sible to draw any conclusions on this effect.
Impact on accuracy: The expectation is that more specific queries will lead to better results. As stu-
dents have less experience it can be expected the detail level of the queries is slightly lower which might
affect accuracy in a negative way.

• Server with 1 core of 1GB: Macster was already installed on this server and by the start of the project a
much faster server was delayed. As an end solution, it is a must to have a better server because it is not
possible to make use of Macster with over ten people.
Impact on search time: The search time is certainly affected because a server with more memory is
able to perform the necessary calculation faster. For every iteration, this is estimated as a couple of
seconds. Although this seems to have a big influence, the expectation is that this time is negligible
compared to the time it takes AMTs to decide whether a document is correct or not. In the end, one
can do a sensitivity test with the new server and make a correction for the time it took to perform the
calculations. Further the impact is limited by splitting the group of AMTs during the experiments. The
server therefore does not have to perform all the calculations at the same time.
Impact on accuracy: Accuracy is not influenced, because the same calculations are performed.

• Number of participants: The test will be performed with 17 AMT students, a small number of test
persons for an experiment. Making conclusions about the separate systems, the power of these con-
clusions is low. It is, however, better to have 17 AMTs during a test, as to perform a test with less than
five experienced AMTs. The chosen group is almost in their final year and had multiple internships,



3.3. Limitations 13

therefore their experience is sufficient enough to be valuable for testing.
Impact on search time: The search time is not influenced.
Impact on accuracy: The accuracy is not influenced.

• Tracking of time: The time to find the correct documentation is manually tracked.
Impact on search time: As long as the AMT stops the stopwatch immediately after he finds the correct
document there is no impact. The impact can be significant in case the timer will be forgotten. Before
the experiment it will be told to the AMTs to not forget the timer. In case they do forget, it is asked to
mention this so the results can be removed.
Impact on accuracy: Accuracy is not influenced.





4
Experimental Setup

This chapter describes the details about the test setup. The first section discusses the problem cases, which
are developed in collaboration with an experienced AMT. Section 4.2 provides more insight in the workflow
the AMTs have to follow for each method. In here also the question- and answer sheet, which is provided to
the AMTs, is discussed. The results from the test will be evaluated by the method described in Section 4.3.

4.1. Problem cases

The idea behind performing experiments using AMTs is to come as close as possible to reality. Several meth-
ods exist to evaluate the performance of ranking and feedback algorithms. However, due to its specificity, it
is highly essential to use queries from the jargon. Something which is only possible by performing the ex-
periments with people who work in the field. In reality, AMTs face many thousands of problems and many
different repairs. Their knowledge is broad but sometimes also specific and therefore it is impossible to de-
velop problem cases as a layman. In Table 4.1 the problem cases developed in conjunction with an AMT with
over twenty years of experience are shown. The hypothesis is that the use of specific queries is dependent on
the knowledge of the AMT. Performing a task on almost a daily basis, AMTs gain more knowledge about the
content of the maintenance document. The AMT can search for specific and detailed queries because more
is known about the equipment, parts, error codes, etc. Expected is that using these more specific queries,
results in finding the correct document high at the top of results. The opposite holds, for tasks performed
very rarely because an AMT does not know much about the content or the equipment to use. It is expected
this results in the correct document not shown in the top of retrieved documents when general queries are
used.

Three different categories of problems are defined to test if the hypotheses are correct. For every category
two problems (A and B) are developed, this to lower the possibility of finding the right document by chance.
The first category defines two problems AMTs often come across. The second category is one with regularly
occurring problems. Rarely occurring problems can be found in the third and final category, meaning the
mechanic did not perform the task before. Table 4.1 provides a summary of the developed problems. The
problem number in the first column defines the category. The second column contains a description of the
actual problem given to the mechanic. The to be found document is shown in the third column.

15
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Problem number Description given to mechanic To be found document

1A

The Captain of flight TP436 mentions to you that
on his side the fluid that during heavy rain is
sprayed onto the windshield is empty. This fluid
normally prevents water droplets from adhering
to the windshield outer surface and thereby in-
creases visibility.

AMM-30-45-00-600-002-A:
Servicing of the rain repel-
lent system.

1B

The flight compartment windows are electrically
heated. The windshield panels are heated for ice
protection and defogging. The two side windows
(sliding and fixed) are heated only for defogging.
It is asked to you to perform an operational test
on this system.

AMM-30-42-00-710-001-A: Op-
erational test of the windshield
anti-icing and defogging.

2A

An aircraft is in operation, and you are given a
task card that describes you have to perform a
test on the system responsible for the protection
of the engine during icing condition on ground
or in flight.

AMM-30-21-00-710-002-A:
Perform a test of the opera-
tional engine air intake ice
protection.

2B
An operational test of the anti-ice valve revealed
intermitted operation. It is suspected this filter
needs to be removed.

AMM-30-11-51-000-002-A:
Removal of the anti-ice valve
filter.

3A

During functional testing, it was found the left-
hand windshield wiper is inoperative. You have
one hour left to perform a repair. You have to
make sure this system is deactivated to avoid
more defects.

AMM-30-45-00-040-003-A:
Deactivation of the wind-
shield wiper.

3B

A steward complains there is a problem with
the potable water. In the electronics compart-
ment, where the potable water supply pipelines
are shrouded to prevent water spillage, an in-
ner line heater is used to prevent the water from
freezing. You have to remove this system.

AMM-30-73-54-400-001-A:
Removal of the inner line
heater.

Table 4.1: Problem cases developed in collaboration with AMT expert and corresponding document to find.

Macster
Previous research on the transition from paper-based maintenance documents towards digital documenta-
tion resulted in the development of Macster. The system can transform the original maintenance data from
Airbus, written in the Standard Generalized Markup Language (SGML), into the common used Hypertext
Markup Language (HTML). The HTML structure is used for 25 years and is the building block for today’s web-
sites. Macster is a web-based system with the advantage of being independent of the type of operating system
and can be accessed by every device connected to the internet.

For this thesis, it is important to mention the use of Macster is only as a visual framework. Macster can
show the content of the maintenance documents but is not able to search through these documents. This
work adds the possibility, and functionality to Macster, to search for task-specific information using search
queries.

4.2. Sampling Plan
The tests are developed to clarify if the ranking algorithm and the addition of feedback lead to better search
results or if they can reduce the search time. As stated before, it is essential to have a baseline for the current
way of working, which is by using PDF documents. Before the test, all 17 AMTs will receive a question- and
answer sheet together with an overview of all problem cases. First, the AMT starts reading the problem and
the questions asked. The AMT is asked to find the task-specific document that provides a working method
corresponding to the indicated problem. When the problem is evident, and the AMT is ready to start his
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search, he can start the timer (stopwatch). The mechanics have full freedom to do their search, meaning no
method is instructed to them as long as they stay in the PDF document. In this document, they can search by
just scrolling through all pages or perform a keyword search. Immediately when the AMT finds the (according
to him) correct document, the timer must be stopped. As a next step, the AMT can answer the questions on
the answer sheet. Figure 4.1 shows an example of this question and answer sheet. As a final step for the search
using PDF documents, the following questions need to be answered: ”Name of document you think is correct
(full name) + page number” and ”Time it took to finish your search”. The reason to ask for the page number
explicitly is because every chapter of the AMM starts with a table of contents. In here the document name is
shown but lacks a task description. In principle, there is no limit on the time to find the document because
chapter 30 of the AMM contains all material necessary to perform the search. Figure 4.2a visually shows the
working procedure of finding PDF documents.

Figure 4.1: Question- and answer sheet for the PDF documents.

The working procedure for Macster also starts with reading the problem case. After reading the problem,
the AMT first has to write down the queries he thinks will lead to the correct document. The mechanic has to
write down three different set of queries on a new question- and answer sheet, shown in Figure 4.3. The rea-
son for three different sets of queries is because it is possible that after the first search the correct document
is not found. Required is to use the same queries are the same for both methods (BM25 with and without
feedback) to make a fair comparison. Once all queries are filled in, one can copy them towards the question-
and answer sheet for problems solved with feedback enabled (the content of this sheet is the same as in Fig-
ure 4.3). The next step is to start the timer and perform the search, by typing in the first set of queries on a
laptop. In case the correct document is in the top 10 of results, the mechanic can stop his search and stop the
timer. If not, one must use the second set of queries and can start the search again. This process repeats one
more time when the AMT did not found the correct document. After three unsuccessful iterations, the AMT
can stop his search and must write down he was unable to find the right document. Finally, he can answer
the questions, which differ from the PDF questions. Figure 4.3 shows the questions related to the accuracy of
the algorithm and the time it took to finish.

Due to the limited server capacity, it is not possible to perform the test with all AMTs at the same time.
The server is not capable of performing all the ranking and feedback calculations for this amount of people.
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(a) Flowchart of the work pro-
cedure for problems solved
with the PDF documents.

(b) Flowchart of problem cases needed to be solved with a query search (with
and without feedback).

Figure 4.2: Flowcharts of how the problems cases need to be solved, separated by method.

A small stress-test showed a drop in server performance when over ten people are performing calculations.
The group is split to avoid the server performance influences the test results. During two rounds, the two
groups (consisting of eight and nine persons) will perform all tests. The reason to split the group of seventeen
AMTs is because one part can solve all problem cases using PDF documents, which are stored on the personal
laptops and therefore not influencing the server performance. During the first round, the group consisting of
eight AMTs starts by solving all six problems using the PDF document. The other nine AMTs, first solve the
six problems using the BM25 method. When resolved all, the process repeats but now by using the feedback
method. The second round is the same except the switching of the groups. After the second round, every
AMT has solved the six problems using the three different methods. As mentioned, the AMTs make use of
their laptop during the experiment 1. Although all laptops have different specifications, the server performs
all calculations. It is only the server that needs much computing power and therefore the effect on the total
search time due to different laptops can be neglected.

4.3. Data Analysis
As described in section 4.2 the results from the test are written down on the question- and answer sheets by
the mechanics. After the test, the data is put into Microsoft Excel 2016 in order to start the data analysis.

Evaluation of accuracy
The accuracy of the three methods is analysed by the number and percentage of correctly found documents.
To perform this calculation it is necessary to check first whether the AMT actually did find the correct docu-
ment. Next, for each separate question, the number of AMTs who were able to find the correct document is
calculated including the corresponding percentage. Indirectly, the number of AMTs who did not found the
correct document, or any document at all, is found. The second parameter to evaluate accuracy is the place
in the top 10 where the document was found. Only documents found in the top 10 of results (else a new iter-
ation should be started) are asked. Also, the number of iterations to find the correct document will be taken
into account, which is considered as the third method to evaluate accuracy. This is important because the
development of a system which requires three iterations to find the correct document is not preferred.

1The use of tablets was preferred, however, due to the limited amount of resources this was not possible.
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Figure 4.3: Question- and answer sheet for the problems solved with Macster.

Evaluation of efficiency
The first parameter to evaluate efficiency is the time it will take the participants to find the (correct) docu-
ment. As described in the sampling plan this will be tracked with a stopwatch. Efficiency is closely related to
accuracy because it is very likely when the correct document is found high in the top of results, the mechanic
spends less time on searching compared to the situation where he has to go through a lot of documents.

Special note of attention
Special attention must be given to the fact the test group consists of seventeen AMTs because it has an im-
pact on the allowed type of statistic test. Since the group is small, the choice is made to perform every test
on every single AMT without changing the paramaters of the model in between the tests. This type of test-
ing is named a repeated-measures design and becomes important for the type of test to select later. Benefits
of the repeated-measures design are the possibility to detect statistical differences with a smaller number of
subjects but it also reduces the effects of variability because the same subjects (in this case AMTs) are used
throughout the experiment [8]. Further, it is important all persons do the tests on the same day, to make sure
they will not look for additional information. Finally, no changes must be made to the model in between the
experiments.
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It is required to do some additional statistical tests before it is possible to draw general conclusions for
the results of the different methods [8]. Since use is made of only one group (no control group or extra group
of AMTs perform the test), the options are limited. To compare the different methods, a before and after
situation is measured (before applying BM25 and after for the comparison with PDF documents and before
and after applying feedback to compare with the BM25 algorithm). Depending on if the data is normally dis-
tributed there can be decided to use a paired t-test (parametric statistical test) or the non-parametric variant
the Wilcoxon signed-rank test. It is important to do this check because with a sample size of 17 (number of
AMTs per test), it is not allowed to simply assume normally distributed data (sample size < 30). There are
multiple options to check whether the data from the experiment is normally distributed or not. To do this,
it is chosen to first do a graphical normality check by means of plotting a histogram of the data. In case the
histogram is bell-shaped (peak in the middle) and is roughly symmetrical about the mean the next step is to
plot a normal probability plot of the data. In case this plot is linear, it can be assumed the normal distribution
is a good model for the data. In case of doubts, an extra check to look if the data follows a normally distributed
pattern will be performed, namely the Shapiro-Wilk normality test. When the normality check is completed
the decision is made to perform a paired t-test or the Wilcoxon signed-rank test.



5
Implementation and Verification

This chapter goes into detail about the implementation model. Individually discussed are the separate items
of the main building blocks of the model, assisted with the use of Python-code and several examples. The
subsequent section verifies the elements of the model. Continued by Section 5.3 is an extensive sensitivity
analysis to show the effect of changing (individual) parameters in the model.

5.1. System Development
As already mentioned; Macster is the visual framework of the model, but is not able to perform a query search.
Another script must be ran in the backend of the server to perform the ranking of documents. This Python
script must be able to go through the documents and delivers the most relevant to the user. Figure 5.1 shows
a general outline of the Python script and Appendix A includes the full Python code. Every section in this
chapter highlights an individual part of the model. Starting with more information about the documents and
continued by how Python can run through these documents using crawling. Users of the model can type
search queries, and the model retrieves the most relevant documents related to these search queries. An
inverted-index is made, such that the program only has to find the related queries in a list instead of running
through all documents for every single search, described in section 5.1.5. As a next step, it is necessary to
rank all documents compared to the search queries, described in section 5.1.6. In case feedback is required
the pseudo-relevance feedback algorithm will be enabled before the best-ranked documents return to the
user, explained in the last two sections.

Figure 5.1: Main building blocks of the Python script.
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5.1.1. Search query
One of the requirements is to make it easier to find task-specific documentation. Therefore, users must be
able to type in their search queries in Macster. They can do this in the so-called ”search box”, shown in Figure
5.2. Users must be able to specifically look for one type of document, e.g., only AMMs or TSMs, depending
on the task they have to perform. During the experiment the TSMs will not be available in Macster, but the
option is present to perform the sensitivity analysis. By introducing a filter button, the specific document
type selection is now available to the user. When a particular manual is enabled, this button is colored blue.
Already visually implemented, but not used in this thesis, is the option to filter on ATA chapter or ATA section.
The reason for this implementation is because AMTs with many years of experience often know the precise
section where to find a maintenance document. Also implemented is a slider to give the user the possibility
to turn the feedback algorithm on and off. In the background, an extra step must be performed in the Python
script to make sure a document receives a score with and without feedback. After this thesis, one can make
a final decision to make use of (pseudo-)relevance feedback or not. The on-off slider can be removed in a
final version of Macster depending on the results (which option is the best retrieval method). In Figure 5.3
the newly designed slider is shown.

Figure 5.2: Search box in Macster.

After the implementation of the new search box, users can start their search with queries. These queries
need to be copied from Macster towards the Python script because this one performs all calculations. It is
possible to search on multiple queries, by typing a space between all words. These separated words are then
stored into a list in Python, separated by commas and put between quotes. An example of how the query is
taken over in Python: [’This’, ’is’, ’an’, ’example’, ’of’, ’how’, ’queries’, ’are’, ’separated’, ’in’, ’Python’]. From here
the exact same queries are copied into Python, including capitals and punctuation.

5.1.2. Documents
Macster makes use of HTML maintenance documents originating from the SGML maintenance documents
of Airbus. The stored documentation on the web server is ATA Chapter 30 of the AMMs and TSMs (only for
the sensitivity analysis) of the Airbus A318, A319, A320 and A321 family in HTML format. Due to signing a
non-disclose agreement, it is not possible to show the actual AMM and TSM content.

5.1.3. Crawling
Crawling means systematically going through all documents to create an index of data. Use is made of the
BeautifulSoup library in Python, to crawl through all documents in Macster. This because all documents con-
tain many HTML tags and manually delete or replace them is impossible. Licensed by the Python Software
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Foundation, and the Massachusetts Institute of Technology License 4+, the BeautifulSoup library is used all
over the world. Programming time is saved, because the library is very efficient in pulling out data from HTML
(and eXtensibile Markup Language) files because it recognizes most tags. The BeautifulSoup library makes it
possible to separate most of the HTML tags from words. An extra implemented filter function separates the
remaining tags, with an explanation in the next section. Python is now able to go through all documents and
loop over the individual words. The Python code to perform this crawling is shown in listing 5.1 This listing
shows for each file (AMM), it is is added to the path and read by Python. The next step is to let all files go
through the filter and read them by the BeautifulSoup library. The library continues to split the words from
the tags, which are again stored in Python.

Listing 5.1: Python code to crawl through documents.

directory = ’ /path/where/ f i l e s /can/be/found/ ’
importFiles ( directory ) :

for f i l e in f i l e s :
path = os . path . join ( directory , f i l e )
document = open( path , " r " )
soup = BeautifulSoup ( f i l t e r (document . read ( ) ) , ’ lxml ’ )
words = soup . t e x t . s p l i t ( )

5.1.4. Filter
A filter module is implemented to make the queries and text both free from HTML tags, punctuation and
lowercases them. This filter function is both applied to the queries and the rest of the text of the manuals, to
make sure the same rules to change words are applied. HTML tags are necessary for web browsers to interpret
the content in the text, for example: <table> is an HTML opening tag for a table and </table> the closing tag.
The web browser interprets, all content between those tags, as part of a table. These tags are important for
web browsers but do not add value for the user (therefore they are not even shown to the user) neither to the
ranking algorithm.

Sometimes two words, or a word and punctuation, are bonded together. Python identifies these combi-
nations as unique, especially at the end of a sentence because it ends with a punctuation mark. In this case
problems can be exptected when the script wants to calculate a document score of a specific query. The ad-
dition of an extra line of code to the script prohibits the false classification of individual words. This code
states: re.sub(r’[-!;><?.,]$’, ”) and replaces special characters by a space when they are the last character of a
word.

As mentioned, the BeautifulSoup library recognizes most of the HTML tags but is not perfect. In some
cases, it does not acknowledge the existence of a tag bonded against a word. This was found during the
implementation of a function searching for words which is part of another word. The main idea behind this
module was to implement a query suggestion module in the future, i.e., a module able to suggest queries
the user possibly wants to use. After a couple of tests, it turned out this module was able to recognize words
part of other words, e.g., ”or” is part of ”before”. However, also found is the BeautifulSoup package did not
function perfectly because words with HTML tags before or after were left, e.g., wing</div>. Because of this, it
was necessary to start an extensive search for words with tags against them. The tags not filtered out correctly
were found, replaced by the same tag, including an extra space before and after the tag. Due to the necessity
of cutting tags apart from words, all words found in the documents go directly into this filter function.

Listing 5.2: Python code to filter queries.

def f i l t e r ( s t r i n g ) :
r e s u l t = s t r i n g \

. lower ( ) \

. replace ( " ( " , " ( " ) \

. replace ( " ) " , " ) " ) \

. replace ( " , " , " " ) \

. replace ( " . " , " " ) \
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. replace ( " : " , " " ) \

. replace ( " </div >" , " </div > " ) \

. replace ( " </span>" , " </span " ) \

. replace ( " </thead>" , " </thead> " ) \

. replace ( " </ table >" , " </ table > " ) \

. replace ( " table >" , " table " ) \

. replace ( " </td>" , " </td> " ) \

. replace ( " </th>" , " </th> " ) \

. replace ( " </ tr >" , " </ tr > " ) \

. replace ( " / c t l " , " / c t l " ) \

. replace ( "c/b−" , " c/b− " ) \

. replace ( "<a>" , " <a> " ) \

. replace ( "<b>" , " <b> " ) \

. replace ( "<i >" , " <i > " ) \

. replace ( "p/bsw−" , " p/bsw− " ) \

. replace ( "bsw−" , "bsw" ) \

. replace ( " oat=" , " oat " ) \

. replace ( ’ " ’ , ’ ’ ) \

. replace ( " ’\ u25b8 ’ " , " " ) \

. replace ( " fonctional " , " functional " ) \

. replace ( " / " , " / " )
r e s u l t = re . sub ( r ’ [ − ! ; > < ? . , ] $ ’ , ’ ’ , r e s u l t )
return r e s u l t

5.1.5. Indexing
Now the words are correctly separated, the second part of the crawling (create an index of data) can start. To
do this, three different empty lists are created. The script goes through all documents and for each manual
separately, run through all words. In case a word is identified as a new word, the script places it into the list
together with the value 1. If the word is found earlier (i.e. word is already in the list), its value is increased by
one. This process repeats for all files and another directory, named inverted index, is filled with unique words,
the name of the document (where the script found the word), and the number of times the word occurs in
this document. Finally, the total number of words specified per document is counted and stored into a list
with the file name.

Listing 5.3: Python code to index words from documents.

def importFiles ( directory ) :
invindex = [ ]
totalUniqueWords = d e f a u l t d i c t ( lambda : 0)
totalWordsPerFile = { }

f i l e s = os . l i s t d i r ( directory )
total_num_words_all_fi les = 0
for f i l e in f i l e s :

uniquewords = Counter ( words ) . keys ( )
values = Counter ( words ) . values ( )
for uniqueword in uniquewords :

i f uniqueword != totalUniqueWords :
totalUniqueWords [ uniqueword ] += 1

for i in xrange ( 0 , len ( uniquewords ) ) :
invindex . append ( [ uniquewords [ i ] , f i l e , values [ i ] ] )

totalWordsPerFile [ f i l e ] = len ( words )
total_num_words_all_fi les += len ( words )
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def numberOfDocumentsPerTotalUniqueWords ( f i l e s , numberOfDocuments ,
invindex , totaluniquewords ) :

allWords = [ ]
r e s u l t = { }
for inv in sorted ( invindex ) :

i f inv [ 1 ] in f i l e s :
allWords . append( inv [ 0 ] )

for word in Counter ( allWords ) . keys ( ) :
r e s u l t [ word ] = 0
for inv in invindex :

i f inv [ 0 ] == word :
r e s u l t [ word ] = r e s u l t [ word ] + 1

return r e s u l t

5.1.6. Ranking
The ranking algorithm to give every document a score related to one or more specific queries is the BM25
algorithm, with its mathematical formulation in Equation 5.1. A document D does not have a static score,
changes for every query Q from search to search as indicated by B M25Scor e (D,Q).

B M25Scor e (D,Q) =
n∑

i=1
I DF (qi ) · f (qi ,D) · (k1 +1)

f (qi ,D)+k1 · (1−b +b · |D|
av g dl )

(5.1)

with:

I DF (qi ) = log
N −n(qi )+0.5

n(qi )+0.5
(5.2)

With:
IDF: Inverse document frequency
N: Total number of documents in the collection
n (qi ): Number of documents containing query
qi : i th Query
Q: Query
D: Document
f (qi , D): Term frequency of query Q in document D
k1: free parameter
b: free parameter
|D|: Document length in words
avgdl: Average document length

An important part of the BM25 algorithm is the calculation of the IDF shown in Equation 5.2. The IDF
relates the importance of a single word to all words in the collection. Frequently occurring words, e.g., ”the”,
are automatically filtered out by the equation, while infrequently used words receive a high score. An exam-
ple best explains the equation. For this example, one takes a collection of 100 documents (N = 100). Now the
importance of the two words ”the” and ”wing” is compared. The word ”the” is found in 97 documents and the
word ”wing” in 10, so n (qi ) = n(”test”) = 97 and n (qi ) = n(”wing”) = 10, resulting in equations 5.3 and 5.4. The
documents are called top-ranked documents when they have received a high score. Words occurring only in
a few documents, therefore, receive a higher IDF score.

I DF (′′the ′′) = log
100−97+0.5

97+0.5
= log

3.5

97.5
=−1.44 (5.3)
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I DF (′′wi ng ′′) = log
100−10+0.5

10+0.5
= log

90.5

10.5
= 0.94 (5.4)

Interesting cases are the extremes; when words (e.g., ”the”) are found in every manual or found only once
in a single document while the number of documents is high. Equation 5.5 shows for the first case the limit
goes to−∞, meaning this word punishes all documents extremely hard. The second case represents a real-life
scenario when an AMT is in search for a document, does not know where to find it and starts a general search
in all maintenance documents. For this case, shown in Equation 5.6 it is found the limit goes to ∞, meaning
when this word is used as a query, this specific document will receive a massive score and therefore always
shown first. Luckily this is only in extreme cases because the IDF values for finding a word in every document
and finding the word once, for 100 ·106 are -8.301 and 8.301. The expectation is this will never occur because
when a maintenance provider incorporates all of its maintenance documents it will not exceed the amount
of 100 ·106 documents.

lim
n(qi )→∞

log10
0.5

n(qi )+0.5
=−∞ (5.5)

lim
n(qi )→∞

log10
n(qi )+1+0.5

0.5
= lim

n(qi )→∞
log10

n(qi )

0.5
=+∞ (5.6)

The next part of the algorithm having a significant influence is the query term frequency f (qi , D), i.e., the
times a query occurs in one specific document. A scaling parameter k1 is introduced to make the query term
frequency more or less critical. Again, by using an example the importance of the (scaled) term frequency
and influence for the complete algorithm is explained. Suppose the following values (taken on purpose to
simplify a lot of calculations):

• k1 = 2

• b = 1

• |D| = 100

• avgdl = 100

• N = 100

• IDF(”wing”) = 0.94

• f(”wing, Document 1) = 5

• f(”wing, Document 2) = 20

The two documents are equal in length, and both contain the word ”wing”, five times in the first and
twenty times in the second document. Now in Equation 5.7 and Equation 5.8, the BM25 score is calculated
for these documents:

B M25(D1,′′ wi ng ′′) = 0.94 · 5 ·3

5+2
= 2.01 (5.7)

B M25(D2,′′ wi ng ′′) = 0.94 · 20 ·3

20+2
= 2.56 (5.8)

Two remaining parameters, k1 and b, are to scale specific parts of the BM25 algorithm and make these
parts more or less important. The k1 parameter is to scale the document frequency. The literature recom-
mends a value between 1.2 and 2 when collection specific optimization is not possible. The b parameter is
to normalize the document length, necessary because the BM25 algorithm tends to give longer documents,
i.e., documents consisting of more words, a higher score. Without collection specific optimization a value
of around 0.75 is recommended (a value of 0 corresponds to no document normalization, while a value of 1
means fully scale by the document length).

Python calculates the document length by using the ”counter” library, making it easy to calculate the total
amount of words in a document. From this, it is easy to calculate the average document length (in words) by
dividing the total number of words by the total number of documents.
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5.1.7. Feedback

As indicated in the literature study there are three forms of feedback: direct-, indirect- and pseudo-relevance
feedback. It is chosen to use the pseudo-relevance feedback for the experiment with as main reason this type
of feedback is less dependent on users and external resources.

The procedure of pseudo-relevance feedback is described below:

1. Run original script and calculate BM25 score of documents relevant to the user query.
2. Select N number of top ranked documents.
3. Take M number of top ranked words, calculated with TF-IDF.
4. Add M number of words to original query.
5. Run original script again and calculate BM25 of original queries + added words.

During the experiment, the values of N and M will not change between the problem cases. The number
of documents assumed to be relevant is given as five and the number of relevant words is fixed at a value of
ten. It is decided to test the effect of changing N and M values during the sensitivity test described in Chapter
5.3. For the user it is possible to toggle feedback on and off by a simple press on the slider, shown in Figure
5.3.

Figure 5.3: New searchbox with slider to turn feedback on/off shown in the lower right corner.

5.1.8. Search Results

The final part is to show the users the documents considered to be the most important to his search. All
relevant documents are shown on the left in Macster in decreasing order. Documents with the highest score
are shown on top to minimise the necessity of scrolling through many documents. In Figure 5.4 an example
of the search result is shown. In the right box, the user is able to scroll through the specific document.
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Figure 5.4: Example of search results (content is removed from picture).

5.2. Verification

To verify the system is built correctly, it is necessary to assure the scripts are correctly coded. The main build-
ing blocks of the Python code are displayed in Figure 5.1 in the previous chapter. The working of those build-
ing blocks will be verified in the subsequent sections. During the verification phase, the results from the
Python scripts are compared to manual calculations or visual checks. In some cases, the number of docu-
ments used to verify is lower compared to the number of documents used during testing. The reason is to
make the manual calculation easier or even doable. Lowering the number of documents has no influence on
the trustworthiness of the verification. For Macster, only the document score of the BM25 algorithm and their
corresponding ranking score are verified. When the document score and place of the document after ranking
are equal to the ones in Python, one can conclude the program works as expected. This because Macster only
serves as a mean for the visuals and the Python script is still running in the background (on the server).

Note: because a non-disclosure agreement is signed, it is not possible to show the actual AMM and TSM
content.

Documents:

The total number of documents is verified by comparing the number of documents in the local folder on the
laptop to the counted number of documents in Python and Macster. First, the 151 maintenance documents
are placed in the local folder. Using the print statement, it was found all manuals were also correctly found in
Python. The next step is to check if also Macster is able to find all the 151 manuals. To do this, it is necessary
the AMM button is turned on and the TSM button is switched off. Figure 5.5 shows Macster is able to show
all the AMMs.
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Figure 5.5: All 151 AMM are found by Macster.

The same process is repeated for the TSMs and once more for the AMMs and TSMs together. The re-
sults of the TSM search in Macster are shown in Figure 5.6 and the results of the search for all documents in
Figure 5.7. For all cases, it turns out the number of documents in Python and Macster is equal to the once
stored in the local folder. Therefore, it can be concluded both Python and Macster can find all the documents.

Although Macster makes use of the Python script, it is necessary to do an extra check on the number
of documents shown in Macster. The documents used in Macster are stored onto the web server, while the
(identical) documents for Python are stored on a local drive to become less dependent of the (private) web
server during the system development.

Figure 5.6: All 153 TSM are found by Macster.

Figure 5.7: All 304 documents (151 AMM + 153 TSM ) are found by Macster.
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Crawling:
Crawling the documentation is checked by inspection and easily verified because the documents are both
readable in Python as in Macster.

An extra check is performed to see the working of crawling. Searching for specific words in the local folder,
count them and compare the word count to Python and Macster verifies the crawling function. An example
of this word search and word count is shown below. In the local folder, one searches for the word ”wing”
between the TSMs. This is shown in Figure 5.8 where the search function of the laptop is used, showing the
word ”wing” is found eight times. The same search is performed in Python, where ”wing” is also found eight
times in the TSMs, shown in Figure 5.9. Finally, Figure 5.10 shows this search in Macster which concludes this
verification.

Figure 5.8: The word ’wing’ is found in eight documents by the laptop’s search function.

Figure 5.9: Print in Python to show all the TSMs containing the word ’wing’.

Filter / Cleaning:
Verification of the developed filter function is done by visually inspecting the list of unique words. When
unexpected characters, tags or punctuation are found, these are added to a list Python needs to replace.
Due to time constraints, it is impossible to check for all documents (304 in total) if all tags, punctuation
or typos are replaced. It might be possible not everything is filtered out. This will then result in words or
characters are seen as unique words in the calculation for the BM25 score. It would cost too much extra time
to check every single word. Although not ideal, the effect is minimal because the visual inspection through
the inverted index did not show any irregularities. An option is to implement a library and compare the
words from the documents with words in the library. Unfortunately, no library is found designed explicitly for
technical aircraft documentation. A small test with a library of general words showed most technical words
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Figure 5.10: ’wing’ is found eight times in Macster in the TSM selection.

were not recognized. Another option was to develop a specialised library or to add the technical words from
the documents to this library. This option costs time and no guarantee can be given the words are filtered out
unfairly. It is decided to take the risk of possibly ending up with some non-unique words left in the inverted
index.

Indexing:
An inverted index is created to avoid Python and Macster running through all documents for each search
request. The inverted index is a list which stores all words followed by the document name where the word
is found. By using an inverted index the ranking algorithm can find specific words in the list without going
through all documents for every search. The appropriate structure of the inverted index is defined as: invin-
dex = [’word’, ’document name where the word is found’, ’number of times the word is in the document’]. To
check if the inverted index is coded properly three tests are performed. In the first test a document named
’test.html’ containing the simple sentence ’this is a test’ was added to the folder. After running the script the
inverted index is printed. The result of printing the inverted index is [[this, Test.html, 1], [is, Test.html, 1], [a,
Test.html, 1], [test, Test.html, 1]] and is considered as correct.

In the second test, the implemented word counter in the inverted index is tested. The word ”test” is once
more added to the test.html document resulting in the text: ”this is a test test”. Again the inverted index is
printed resulting in [[this, Test.html, 1], [is, Test.html, 1], [a, Test.html, 1], [test, Test.html, 2]]. As can be seen,
the value for ”test” is increased from 1 to 2 and with this, the function of the word counter is verified.

The final test for the inverted index is to check if it is able to loop over multiple documents. Verified
by adding a new document named ’Test2.html’ to the folder containing ’this is another test’. The result of
printing the inverted index is: [[this, Test.html, 1], [is, Test.html, 1], [a, Test.html, 1], [test, Test.html, 2], [this,
Test2.html, 1], [is, Test2.html, 1], [another, Test2.html, 1], [test, Test2.html, 1]] and is considered correct. To
simplify coding in a later stage it is decided to not combine everything together for every unique word, e.g. [this,
[Test.html, Test.html2], [1,1]].

The functionality of the inverted index is now verified with these simple documents. As a next step, the
working is tested in Python using all available TSM documents 1 The result of a search for the word ”engine”
is shown in Figure 5.11 (after some visual manipulation to make it readable, which did not affect the verifi-
cation process). The search function of the laptop is used as a verification method to show each document
also contains the word ”engine” as many times as the Python script indicates. Again but now for all TSMs, the
working of the inverted index is verified.

The Python script has the possibility to find words containing part of a query, although this functionality
will not be active during the experiment. Some simple verification is done by typing part of a word as a
search query. A search of the query ”is” is performed on the previously described documents test.html and

1The reason to verify the working of the model using the TSMs and not the AMMs is because at the time starting the verification phase,
the AMMs were not locally available.
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Figure 5.11: Elements of the inverted index in Python show the search result of ”engine”, the document name and the number of times it
was found.

test2.html resulting in an output of: ”this” and ”is”. The output is correct since the word ”is” is part of ”this”.
Because only the Python function ”in” is used, which is part of the standard Python package, it is considered
as unnecessary to further verify if this function works correctly.

Ranking:
The verification of ranking is done by inspection of the individual BM25 elements. The algorithm used is
given by previously shown Equation 5.1 and Equation 5.2. In the end, the total score of each document is ver-
ified and the scores resulting from Python are compared against the Macster scores. The score of a document
for a query is dependent on the number of words and the total number of documents. It is therefore a small
number of documents is used for the manual verification.

Inverse document frequency (IDF): The inverse document frequency consists of the number of docu-
ments in the collection (N) and the number of documents containing the specific search query n (qi ). The
total number of documents in the collection is already verified. Documents containing specific queries are
indirectly also verified in the indexing section. In here, for a specific query, the document where the query is
found is stated (including the number of times it was found). Taking the sum of each document where the
query was found results in the number of documents with this specific query. Multiple queries are searched
for in the TSM documents, to verify this all goes correct. The document score in Python is compared to a
manual calculation. Table 5.1 shows an overview of the theoretical scores and scores resulting from Python.
The scores are equal for all queries and with this the working of the IDF calculation is verified.

Query n (qi ) Theoretical IDF score IDF score Python
Engine 15 0.95111807523 0.95111807523
Wing 8 1.23344406761 1.23344406761
Valve 15 0.95111807523 0.95111807523
Filter 2 1.78247262417 1.78247262417
Aqua 0 2.48713837548 2.48713837548

Table 5.1: Overview of queries and corresponding theoretical IDF scores and IDF scores calculated by Python (solely TSM are used,
N=153).

Query term frequency (f (qi , D)):
The query term frequency (f (qi , D)) is already verified in the index section.
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Total number of words per document (|D|):
The total number of words per document is verified with the test.html and test2.html file, from which the
word count is considered as correct. The words from one TSM are manually summed up and compared to
the total number of words per document in Python. It is found the results from the manual calculation are
identical to the ones in Python.

Average number of words for all documents (avgdl):
The average number of words for all documents is simply the summation of all words for each document
divided by the total number of documents. The result from the two small test files is that the average word
count was 4.5 and considered correct. During testing the amount of documents and the documents itself
does not change and therefore the average number of words for all documents could be programmed as a
fixed value. To keep the options open for expanding the model the value is not fixed and calculated every
time one runs the script.

BM25 Score: First the scoring of the documents is verified. This is done by comparing a manual calcula-
tion by the calculations performed in Python. A summation is included in the BM25 algorithm and therefore
this part is also verified, by comparing the sum of multiple separate queries in one document with the search
of all these queries in one search.

Feedback: To verify the feedback algorithm some extra steps are required. First, the IDF function is veri-
fied in the same way as described in the example in section 5.1.6. The working of the IDF function is further
verified by comparing the value of a search when no document is found containing a specific query. In case all
the 304 documents are available in Python this would result in an outcome of 2.7846 (Log ( 304+0.5

0.5 ) = 2.7846).
After performing a search on ”clown” (a word which certainly does not exist in one of the manuals) the IDF
value was indeed 2.7846. Next, it is verified with a simple print function Python indeed takes N number of
files and M number of words. All the previous is working correctly and from here the same BM25 algorithm
runs through but now with the addition of the extra M words of the top N files.

5.3. Sensitivity Analysis
In the IR domain, the optimisation of parameters is very expensive because it requires a human evaluation
of many query results, which are also specific to the collection. Often one sees the optimisation procedure
also as computationally costly because it requires more computing power than the search engine itself. The
purpose of the thesis is not to deliver the best-ranking algorithm, however, to be aware of the effect of each
parameter is always preferable. To see this effect, in this section a sensitivity analysis is performed on multi-
ple parts of the algorithm of both BM25 and feedback. In the end, the main conclusions are given about the
findings.

To fairly compare the results from this sensitivity analysis, specifications of the equipment are given first.
This analysis is performed on a Mid 2014 MacBook Pro with the following specifications:

• 2.5GHz quad-core Intel Core i7 processor (Turbo Boost up to 3.7GHz) with 6MB shared L3 cache

• macOS High Sierra 10.13.6

• 16GB Memory

• 512GB Solid State Drive

• Pycharm 2016.3.3

The server is a hosted server from cloudvps and has the following specifications:

• 1 GB Core

• 2.5 GHz Xeon CPU

The sensitivity analysis is performed with only the AMM documents in the collection, unless mentioned
otherwise.
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Time to create index

One part of the research question is to find the efficiency impact on the search results due to the implemen-
tation of the BM25 algorithm. Efficiency relates to the time it takes to find the appropriate results. The system
needs time to deliver results and therefore the first sensitivity analysis is performed on the time to create the
inverted index in Python. In Table 5.2 an overview is given of the time to create an index with a certain amount
of documents. More importantly, is the time to create an index consisting of a number of words. Dividing the
time to create the index by the total words, results in a time to index per word. This can be useful when more
documents (and therefore more words) are added to the collection. It is found the time to create the index is
around the 6.5 ·10−6 seconds/word. The exact time to index is dependent on the script but also depends on
the computer or server used. For every configuration, it is possible to calculate the value of time to index per
word.

Number of documents Total words Index size (unique words) Time to create index (s)
1 2285 292 0.084
5 7769 362 0.124
10 17777 650 0.174
50 84362 1632 0.584
100 147194 2247 1.063
151 (all AMM documents) 222970 2805 1.476
304 (all documents) 350672 3390 2.252

Table 5.2: Time to index documents.

Variation in search time for same queries BM25 algorithm

The next step is to investigate whether the system shows significant variations in search time for the same
queries. In Python and Macster several queries are looked up for multiple times and the time it takes to
return the results is written down. For this analysis, all documents are used (AMM + TSM). An overview of the
Python results is shown in Table 5.3 and the results from Macster in Table 5.4.

Query Time (s) run 1 Time(s) run 2 Time (s) run 3
test 2.322 2.338 2.330
wing 2.278 2.309 2.341
valve 2.306 2.296 2.300
operational 2.329 2.335 2.297
air 2.355 2.327 2.310
intake 2.284 2.300 2.267

Table 5.3: Time to return result for same query in Python without feedback.

The first to notice in Table 5.3 is the variation in search time is in the hundreds of seconds. This is true for
the time to find the same queries, but also to find any other query. Therefore one can say the Python results
are very constant. Secondly, it can be mentioned the time to find the query is the inverted index is extremely
low (in the best case around 1 ·10−2 second). Both cannot be concluded from the results of Macster in Table
5.4. In the worst case, the variation is more than a full second. Also, the time to return the results is in most
cases twice as high as the Python results. One reason for this is possibly the use of the one core server, which
takes a longer time to perform the calculations of the document score. Another reason for the extra time is
the conversion of the queries from Macster into the Python script and back again for the ranked documents
to show. Thirdly, the connection speed (ping) and the internet quality (packet loss) influence the retrieval
time for Macster.
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Query Time (s) run 1 Time(s) run 2 Time (s) run 3
test 5.83 3.65 5.50
wing 5.62 5.48 5.16
valve 4.93 4.32 3.59
operational 3.93 5.40 5.00
air 5.30 4.57 5.87
intake 5.51 5.67 5.72

Table 5.4: Time to return result for same query in Macster without feedback.

Variation in search time for same queries BM25 algorithm and feedback
The same analysis as described in the previous section is performed, but now with feedback enabled. The
feedback procedure requires extra calculations and therefore it takes longer for the model to retrieve the
most relevant documents. In Table 5.5 the Python results are shown and in Table 5.6 the results from Macster.
Again the time to run the Python script and return the results are stable per query and only vary by tenth of
seconds. Unfortunately, for different queries there can be almost a factor two difference which is due to the
feedback procedure. The difference between the queries is due to the fact different documents are retrieved
for the feedback procedure. For some queries, it is required to search through many documents and many
IDF calculations must be performed to determine the most relevant words. Other queries might be specific
and fewer documents and/or shorter documents have to be searched. The problem is that it is impossible
to know beforehand which documents are searched through. What is known, is the speed to perform the
feedback calculations has a major impact on the time to show the results. As expected, the results from Mac-
ster are even worse. Not only the variation in retrieval time for different queries can go up to almost a factor
four, also when the same query is put into the system there can be a difference of more than three seconds.
The variation in different retrieval times for different queries has similar causes as for the differences found
when applying the BM25 algorithm without feedback. The variation in retrieval time using the same query is
strange and expected to be due to internet connection or server performance.

As an extra check, the time before going to the feedback procedure was printed in Python and for all
queries this was, as expected, to be around 2.3 seconds.

Query Time (s) run 1 Time(s) run 2 Time (s) run 3
test 4.875 4.864 4.757
wing 5.199 5.195 4.915
valve 7.636 7.528 7.852
operational 4.173 4.074 4.098
air 5.839 5.841 5.750
intake 4.588 4.767 4.747

Table 5.5: Time to return result for same query in Python with feedback (N=5, M=10).

Query Time (s) run 1 Time(s) run 2 Time (s) run 3
test 14.96 14.19 15.77
wing 9.85 12.99 10.25
valve 11.67 10.94 13.55
operational 18.79 15.72 19.19
air 6.63 7.88 7.07
intake 8.06 7.76 5.23

Table 5.6: Time to return result for same query in Macster with feedback (N=5, M=10).

Variation in search time when number of queries increases
In Table 5.7 and Table 5.8 the results are shown when the number of words of the query is increased in Python
and Macster. The table shows both the results of the algorithm without feedback and including feedback.
The addition of extra words does not affect the time to deliver results without feedback. Remarkable to see is
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the addition of more queries in Python has a positive influence on the time to deliver results when feedback
is enabled. The results from Macster show again significant fluctuations.

Queries Time (s), no feedback Time(s), with feedback
test 2.279 4.969
test wing 2.352 4.252
test wing valve 2.294 4.158
test wing valve operational 2.345 3.978
test wing valve operational air 2.334 3.967
test wing valve operational air intake 2.361 3.943

Table 5.7: Time to return search results for increase in number of queries for Python

Queries Time (s), no feedback Time(s), with feedback
test 5.60 16.50
test wing 5.46 9.27
test wing valve 5.41 11.83
test wing valve operational 4.22 9.02
test wing valve operational air 3.66 10.67
test wing valve operational air intake 4.42 9.87

Table 5.8: Time to return search results for increase in number of queries for Macster

Comparing the results from Table 5.7 and Table 5.8 shows some interesting facts. First, the time to return
the results to the user is for a regular search around a factor two higher for Macster. However, by enabling
feedback the time to return the results increases by to almost a factor three. Secondly, for the results in Python,
it costs only around two additional seconds to perform the calculation with feedback, while to return the
same results in Macster, the difference is between five and eleven seconds. The fluctuation in the difference
of returning those results is remarkable and further investigation in the future is necessary to provide a clear
explanation. For now, it is expected it is due to server performance.

Baseline for different queries
First the rank of AMM 30-21-00-710-002-A is compared when searching with several different queries. In this
test only the AMMs are in the collection and feedback is not enabled. The values for the tuning parameters
are chosen to be values given in literature (without collection specific tuning), k1 = 1.5 and b = 0.5. The used
queries are guesses from ones mechanics might use. 2

Query Rank correct document Python search time (s)
Operational test 9 1.505
Engine test 76 1.521
Perform engine test 76 1.523
Operational engine test 5 1.521
Air intake ice protection 2 1.515

Table 5.9: Baseline for different queries with k1=1.5 and b=0.5, no feedback and only AMM documents.

Table 5.9 shows the use of different queries results in an enormous difference in rank. This difference in
rank, 74 positions, is due to the fact some words are used very often and therefore they have a low BM25 score,
e.g. ”test” is found in 144 documents (from the total of 151).

2In Table 5.9 there are no results shown for Macster. This because at the time of the analysis of Table 5.9 there was no access to Macster.
Therefore it was impossible to change the available documents Macster can use during the calculation. This is important to mention
because, in standard conditions, Macster uses both AMM documents and TSM documents. The rank of the document, however, does
not change compared to Python.
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For now it can be said for this problem, with only AMMs and feedback is not used, the correct document
is found at the highest rank of two and the lowest of 76.

The next test is to find out what the addition of the TSMs to the collection will do to the results using the
same search queries and tuning parameters. The results can be found in Table 5.10.

Query Rank correct document Python search time (s) Macster search time (s)
Operational test 105 2.343 5.53
Engine test 35 2.275 5.52
Perform engine test 35 2.340 5.63
Operational engine test 35 2.326 5.38
Air intake ice protection 8 2.346 3.91

Table 5.10: Baseline for different queries with k1=1.5 and b=0.5, no feedback and both AMM and TSM documents.

Immediately visible is the highest rank is lowered from two to eight and the relatively good scoring query
”operational test” is dropped significantly. The reason for this drop is clear, the word ”operational” is found 32
times in the AMMs, with the addition of the TSMs it is found in a total of 157 documents. This test shows the
major influence of the number of documents in the collection and their content. The question is if pseudo-
relevance feedback can improve the search results for all these queries or a combination of parameter tuning
and feedback is required.

In Table 5.11 the results are shown from the test where the feedback algorithm is enabled but remaining
parameters are unchanged and kept constant.

Query Rank Python search time (s) Macster search time (s)
Operational test 110 3.335 16.30
Engine test 63 2.365 11.64
Perform engine test 63 2.510 12.26
Operational engine test 63 2.458 12.25
Air intake ice protection 12 4.454 8.54

Table 5.11: Baseline for different queries with k1=1.5 and b=0.5, including feedback (N=5, M=10) and both AMM and TSM documents.

From Table 5.11 it can be concluded feedback in this form does not add any value to the results because
for all queries the results are worse compared to the results without feedback. Important to mention is that
the rank is without making a selection of the type of document.

To see the effect of changing k1 an b values some additional test is performed. In the first test the b value
is kept constant (b = 0.5) and the k1 value is increased in several steps. From the previous results it can be
found that with and without feedback the queries ”operational test” always has the lowest score (worst rank)
and the ”air intake ice protection” has the highest rank. This test is performed on all queries and the results
are shown in Figure 5.12, for the highest scoring (”air intake ice protection”) and lowest scoring (”perform
engine test”) queries the results are shown in Table 5.12.
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Query k1 Rank correct document BM25 score
Air intake ice protection 0.01 2 1.734
Air intake ice protection 0.1 2 1.835
Air intake ice protection 0.5 2 2.218
Air intake ice protection 1 2 2.586
Air intake ice protection 1.5 2 2.867
Air intake ice protection 2 2 3.087
Air intake ice protection 10 2 4.056
Perform engine test 0.01 34 -1.087
Perform engine test 0.1 34 -1.136
Perform engine test 0.5 46 -1.308
Perform engine test 1 63 -1.450
Perform engine test 1.5 76 -1.541
Perform engine test 2 80 -1.600
Perform engine test 10 56 -1.553

Table 5.12: Effect of changing the k1 parameter, where b is kept constant (b = 0.5).

Figure 5.12: Rank of search queries for different k1 values, where b is kept constant (b=0.5)

From both Figure 5.12 and Table 5.12 one can see the best results are achieved when the k1 value is low,
meaning almost no term frequency scaling. To see if this also holds for the b value a new test is performed,
where the b values are changed and the k1 value is kept constant at 1.5.
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Figure 5.13: Rank of search queries for different b values, where k1 is kept constant (k1=1.5)

The results from this test are remarkable, because depending on the query the search results become bet-
ter or worse. This is the case for a b value starting at 0.1 and continues until a value of 1.

In the final test each query is investigated separately, where both the b value as the k1 value is changed.
For the query ”air intake ice protection” it was found the rank is always 2, independent of the combination of
b and k1, therefore the results are not visually shown. The results for the queries ”perform engine test” and
”engine test” are equal because after evaluation it was found the word ”perform” does not occur in any of the
documents. It does therefore not lead to an increase in BM25 score, because a score of 0 (from ”perform”) is
added.

Figure 5.14: Rank of correct document for search queries ”(perform) engine test” for different values of b and k1.
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Figure 5.15: Rank of correct document for search queries ”operational test” for different values of b and k1.

Figure 5.16: Rank of correct document for search queries ”operational engine test” for different values of b and k1.

Feedback

To investigate the effect of feedback multiple tests are performed. For these tests all AMMs and TSMs are
used as part of the collection. The values of b=0.5 and k1=1.5 are used and kept constant. The same queries
are used as the tests without feedback, but now the number of relevant words (M) and relevant files (N) is
changed. The results are shown in Figure 5.17 till Figure 5.20.

Figure 5.17: Rank of correct document for search query ”perform engine test” where number of relevant words (M) and relevant files (N)
is changed.
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Figure 5.18: Rank of correct document for search query ”Air intake ice protection” where number of relevant words (M) and relevant files
(N) is changed.

Figure 5.19: Rank of correct document for search query ”Operational test” where number of relevant words (M) and relevant files (N) is
changed.

Figure 5.20: Rank of correct document for search query ”Engine test” where number of relevant words (M) and relevant files (N) is
changed.

The Figures 5.17, till Figure 5.20 make one thing very clear: the addition of extra relevant files (N) does not
lead to better results for the queries used. For every test the best results are achieved when only one file is
assumed as relevant. The feedback procedure only includes results for the BM25 values of b = 0.5 and k1=1.5.
To make a fair comparison, the results between the two procedures are evaluated only for the same b and k1

values. In Table 5.13 an overview of each search query and its highest rank is given.The results are mixed and
the additional use of pseudo-relevance feedback is not proven at this moment. As indicated earlier, the best
results for the procedure without feedback are achieved when the b and k1 value are as low as possible. Due
to time constraints it is not possible to do an extra investigation on the impact of the b and k1 when feedback
is enabled. Therefore this is given as a recommendation for further research explained in Chapter 7.
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Query Highest rank (no feedback) Highest rank (feedback enabled)
Operational test 9 106
Engine test 76 37
Operational engine test 5 39
Air intake ice protection 2 8

Table 5.13: Highest rank for query with and without feedback, with b = 0.5 and k1 = 1.5

Verification of user items
The purpose of this research is to show the impact of the BM25 algorithm on relevant document retrieval
and corresponding efficiency with and without pseudo-relevance feedback. The verification of the separate
model items is performed. However, the user must be able to work with the model. It is unimportant to the
user to understand its working, as long as it easily retrieves documentation. The user makes use of Macster
and therefore the following items are verified.

• Possibility to search on multiple queries.

• Documents are shown in order (highest ranked documents first).

• The filter option is present and functional.

• Option to enable feedback is present.

The working of the search button must be verified first. It is already shown previously for a one-word
search is properly working, but users must be able to search on multiple queries at once and therefore this
extra test is performed. It is important the document with the highest score is shown first to the user. Al-
ready verified is the calculation of the document score is performed correctly, however it is not shown these
documents are displayed in the correct order (highest score first). This verification is performed for multiple
queries, but the results from only one query search are shown. In Table 5.14 the top five Python results of
using the query ”do a visual inspection” are shown including score and document name. The search uses the
following parameters: k1 = 1.5,b = 0.5. In Figure 5.21 the results from Macster are shown. The working of this
verifies both the working of the use of multiple queries as the visual ordering in Macster.

Document name BM25 score
AMM-30-71-51-200-001-A 1.7615460299
AMM-30-21-49-200-001-B 1.41931081559
AMM-30-21-00-710-001-A 1.330495845
AMM-30-21-51-210-040-A 1.19443975057
AMM-30-81-21-200-001-A 0.215909384689

Table 5.14: Top five Python results from the search ”do a visual inspection”.

During the experiment the user does not have to specify the document type because only the AMMs are
taken into account. The option to use the TSMs is turned off on the server. The option to use the TSMs is
already implemented and it is possible to do a search and filter on document type. The user must be able to
turn the feedback option on and off during the experiment. To verify the feedback option, the same query is
used, but now with only the AMMs and feedback enabled. For feedback the following values are chosen: N =
5 and M = 10. The results are shown in Figure 5.22 and it is found the feedback mechanism indeed changes
the order of documents.
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Figure 5.21: Macster showing the ordered results from the search ”do a visual inspection”.

Figure 5.22: Macster showing the ordered AMM results from the search ”do a visual inspection” with feedback enabled.





6
Test Results and Discussion

This chapter discusses the results of all tests conducted by the AMTs. The first three sections show the results
for the individual problems using all three methods, e.g., the PDF search, BM25 algorithm and the algorithm
in combination with pseudo-relevance feedback. The results from these tests are bundled together and dis-
cussed in the final section. Packing the results together makes it possible to see how each method behaves
in general. Although six tests do not entirely represent a real-life system behaviour, it will give a good first
indication.

Although the results from the sensitivity analysis show the use of b and k1 values to be as low as possible,
values of b=0.5 and k=1.5 are used for all tests. Due to time constraints, it was impossible to shift the tests to
a later stage and at that point in time the sensitivity analysis was incomplete. The b and k1 values are chosen
to be close to the ones given in literature and the results from Figure 5.13, which was already complete, made
it a valid choice.

6.1. Problem 1
Table 6.1 shows an overview of the results from the first problem with a division in the A and B case. Figure
6.1 shows the number of AMTs able to find the correct document including the average search time to find
these documents for the first problem in total. The search time of AMTs who were not able to find the correct
document is not taken into account in the average search time.

Figure 6.1 shows that 27 out of the 34 AMTs were able to find the correct AMM, with an average search
time of 228 seconds for a search using the PDF manuals. This average time is calculated by dividing the total
time all AMTs needed to solve problem 1A and problem 1B, by the number of AMTs able to find the correct
document, which was 27 in the case of using PDF manuals. The mentioned 34 AMTs are the result of two
tests (A + B) with the 17 participants. Not shown in this table, but found as the peak value in Figure 6.3 is one
AMT needed 529 seconds to find the correct document. There were also three AMTs who after 575 seconds,
612 seconds and 833 seconds came to the conclusion they were not able to find the correct document (as
mentioned these results are not accounted for in Figure 6.1). Table 6.1 does not include iterations for the PDF
search because the AMTs were not forced to make use of a query search. Figure 6.3 shows the distribution of
search time for a PDF is equally spread, there are no outliers and is (slightly) right skewed. The figure shows
the variation in average search time is large, which supports the fact that AMTs are sometimes unable to find
the correct documentation on time.

Looking to the results of the BM25 algorithm search it is found that, with and without feedback, 32 AMTs
were able to find the correct document. This shows independently of feedback, 15% more AMTs were able to
find the correct document compared to the current way of working (PDF search). A closer look shows the use
of the BM25 algorithm is able to reduce the search time from 228 seconds to 62 seconds, an efficiency increase
of 27% for this specific problem. When also feedback is applied, the average search time is decreased to 41
seconds. Figure 6.2 shows for the BM25 + pseudo-relevance feedback method, two AMTs more were able
to find the correct document after the first iteration compared to the normal BM25 situation. An iteration
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is when a query did not deliver the expected result and a new query is used to find the same document.
Figure 6.3 shows for both methods the spread in average search time is considerably less compared to the
PDF search, meaning not only on average the AMTs spend less time in finding relevant documentation. For
the BM25 results, one outlier is found from an AMT who needed one iteration. This is remarkable because
one should expect it came from an AMT with three iterations. It is expected that the AMT doubted between
two (or multiple) documents and starting reading them before identifying it as correct. The outliers in the
case of pseudo-relevance feedback are expected to be due to the fact multiple iterations were necessary (two
and three iterations).

Parameter PDF 1A PDF 1B BM25 1A BM25 1B Feedback 1A Feedback 1B
AMTs that found correct document (out of 17) 13 14 16 16 16 16
Accuracy 75.5% 82.4% 94.1% 94.1% 94.1% 94.1%
Average time to find correct document (in seconds) 214 241 72 51 37 46
Average number of iterations - - 1.2 1.3 1.1 1.3
Average place of correct document in top 10 of results - - 4.1 5.7 3.9 6.3

Table 6.1: Results per systems for problem 1A and problem 1B separated.

Figure 6.1: Number of AMTs that found the correct document including average search time for problem 1.
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Figure 6.2: Overview of the number of iterations to find correct document for BM25 with and without feedback for problem 1.

Figure 6.3: Boxplots of search time distribution per method for problem 1.

6.2. Problem 2
Table 6.2 shows an overview of the results from the second problem with a division in the A and B problem.
Figure 6.4 shows the test results of problem 2 in total. 32 AMTs out of the 34 in total, were able to find the
correct document using the PDF system, corresponding to 94% of the total AMTs, in an average search time
of 217 seconds. The percentage of AMTs able to find the correct manual is high, but Figure 6.6 shows four
outliers, where it took one AMT ten minutes to find this document.

The use of the BM25 algorithm results in 28 AMTs able to find the correct document in an average search
time of 71 seconds. The same number of AMTs was able to find the correct document using the pseudo-
relevance feedback, however, the average search time is decreased to 31 seconds. To be precise: the AMTs
who were not able to find the document without feedback, were also not able to find it with feedback. This
supports the assumption of pseudo-relevance feedback that the top results are assumed to be relevant, but
is not always the case. Although the addition of pseudo-relevance feedback does not increase the number
of AMTs able to find the correct document it is found the number of iterations necessary is lower for the
feedback method. Twenty AMTs needed one iteration to find the document when the feedback method was
enabled, against fifteen AMTs for the BM25 algorithm solely. Not only the number of iterations are less,
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but Figure 6.6 shows the variation is search time is considerably lower for the method using feedback. The
addition of feedback does result in faster retrieval with the same accuracy compared to the BM25 method for
this problem.

Parameter PDF 2A PDF 2B BM25 2A BM25 2B Feedback 2A Feedback 2B
AMTs that found correct document (out of 17) 15 17 13 15 13 15
Accuracy 88.2% 100% 76.5% 88.2% 76.5% 88.2%
Average time to find correct document (in seconds) 245 193 119 30 41 22
Average number of iterations - - 1.9 1.3 1.5 1.2
Average place of correct document in top 10 of results - - 4.9 2.2 5.2 3.5

Table 6.2: Results per systems for problem 2A and problem 2B separated.

Figure 6.4: Number of AMTs that found correct document including average search time for problem 2.
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Figure 6.5: Overview of the number of iterations to find correct document for BM25 with and without feedback for problem 2.

Figure 6.6: Boxplots of search time distribution per method for problem 2.

6.3. Problem 3
Table 6.3 shows an overview of the results from the second problem with a division in the A and B problem.
The test results of problem 3 in total can be found in Figure 6.7. Remarkable is the difference between the
results from the PDF search between problem A and B. Again, the difference in average search time using the
PDF manuals is significantly higher compared to the other two methods. In total 30 AMT were able to find the
correct document with an average search time of 165 seconds. Again, it costs an AMT ten minutes to find the
correct document, and even one AMT (not shown in the figure) came after fifteen minutes to the conclusion
that he was not able to find the correct manual.
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The use of the BM25 algorithm results to an increase in number of AMTs able to find the correct docu-
ment compared to the PDF method. Also the average search time is lowered to 34 seconds because most of
the AMTs needed one query to find the correct AMM. This results in a small spread of search time for this
method and a search time of two minutes is already identified as an outlier.

The use of the BM25 algorithm in combination with feedback does not increase the number of AMTs
able to find the correct document. In fact, the same AMTs unable to find the correct document using the
BM25 method, were also unable to find this document with the addition of pseudo-relevance feedback. The
average search time is again lowered to 23 seconds, which cannot be explained by the number of iterations
because these are equal (with and without feedback) and also the average place in the top results is higher for
the method using feedback. The search time is stable since the spread is small and is slightly right skewed,
meaning the average search time is low and only a couple AMTs needed some longer time.

Parameter PDF 3A PDF 3B BM25 3A BM25 3B Feedback 3A Feedback 3B
AMTs that found correct document (out of 17) 17 13 16 15 16 15
Accuracy 100% 76.5% 94.1% 88.2% 94.1% 88.2%
Average time to find correct document (in seconds) 187 138 35 34 25 21
Average number of iterations - - 1.1 1.2 1.1 1.2
Average place of correct document in top 10 of results - - 2.3 3.5 3.8 3.9

Table 6.3: Results per systems for problem 3A and problem 3B separated.

Figure 6.7: Number of AMTs that found correct document including average search time for problem 3.
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Figure 6.8: Overview of the number of iterations to find correct document for BM25 with and without feedback for problem 3.

Figure 6.9: Boxplots of search time distribution per method for problem 3.
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6.4. System Results

The results of all tests are bundled together per method, to make a system overview. A total of six tests is not
enough to fully represent the system behaviour it gives a good first impression. The results from all tests per
method are shown in Table 6.4. As one can see the percentage of AMTs able to find the correct document is
comparable for all systems. One must be aware no end time was given for the current way of working with
PDF documents, while for the other systems only three iterations were allowed and only documents from
the top ten retrieved documents should be chosen. The results from Figure 6.10 show the spread in average
search time for a PDF search is significant and over 25% of the AMTs need at least 4.5 minutes to find the
correct documentation. This search time can range to ten minutes where one has to keep in mind this is only
the time to find the documentation and there was no pressure on the AMT to finish the task on time.

By using the BM25 algorithm the average search time is lowered to 55 seconds, corresponding to a de-
crease of 72.9% compared to the PDF method. This is possible because 67.6% of the AMTs was able to find
the correct manual after one iteration. The addition of feedback does not lead to more AMTs able to find
the correct document in the top 10 of results, something which was already visible from the individual prob-
lem results. Therefore, it cannot be said the addition of feedback lead to more relevant results in general. A
closer look shows the feedback method is able to retrieve more relevant results after one iteration, which is
a possible reason why the feedback method is able to retrieve the relevant results faster. The average search
time, compared to the BM25 method, to find the correct document is decreased by 42% due to the addition of
feedback. Interesting is the average place where the correct document is found is not increased for the feed-
back procedure, which might be the result of a decrease in the number of iterations. The correct document is
possibly found earlier when feedback is enabled, because it appeared (higher) in the top 10 of results, while
without feedback the document was not in the top 10 of results. Therefore an extra iteration was not neces-
sary for the feedback procedure. For the BM25 this extra iteration made it possible for the correct document
to show up (higher) in the top 10 of results. No conclusive evidence for this is found and more research is
necessary to ground this statement.

Parameter PDF BM25 BM25 + Feedback
AMTs that found correct document (out of 102) 89 91 91
Percentage AMTs that found correct document 87.3% 89.2% 89.2%
Percentage AMTs needed one iteration - 67.6% 73.5%
Percentage AMTs needed two iterations - 15.7% 11.8%
Percentage AMTs needed three iterations - 5.9% 3.9%
Average time to find correct document (in seconds) 203 55 32
Average number of iterations - 1.31 1.22
Average place of correct document in top 10 of results - 3.8 4.4

Table 6.4: Results per method for all tests.
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Figure 6.10: Boxplots of search time distribution per method.

6.5. Validation
To validate the results from the tests a validation test must be conducted. To validate if the lower average
search time is due to the addition of feedback it is required to conduct an additional statistical test. The sam-
ple size is not in all of the test 30 or above, and therefore one must be careful before standard tests are applied.
The boxplots, of both the BM25 method without and including feedback from the separate results, shows the
data is not normally distributed (skeweness of the data). To be independent of the data distribution, and
not to rely on assumptions that data for a population is following a particular (e.g. normally) distribution,
non-parametric statistics are applied [8]. The sample size for all tests are relatively small, are matched pairs
because they have a before and after situation (without and with feedback), make use of one group of partic-
ipants and are measured on a continuous scale. A non-parametric test satisfying all criteria is the Wilcoxon
signed-rank test, which compares the means of the samples.
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The Wilcoxon Signed-Rank test is a non-parametric test for two dependent samples and is known as the
alternative for the paired t-test. The Wilcoxon Signed-Rank test is used when some of the assumptions of the
t-test are not met. In case of the given results this is either that the data is not normally distributed, or the
sample size (of 30) is not met. The Wilcoxon Signed-Rank test is a hypothesis test that attempts to make a
claim about the difference in score from paired samples for the population median. The null hypothesis is
the statement that a difference in the median is due to chance while the alternative hypothesis claims the
opposite. The main properties for this test, making use of two paired samples, are:

• Two dependent samples. Paired or matched samples or repeated measures (measures taken from the
same subjects).

• The test is a non-parametric test and does not require the normality assumption.
• Data must be a least at ordinal scale, so it can be ranked.

To make use of the Wilcoxon Signed-Rank test, one first computes the difference, the absolute difference,
and the sign of the difference between the samples. Next, the samples which are tied (same value) are re-
moved from the data and the samples are organized according the absolute differences in ascending order.
The samples are ranked, where samples with the same absolute value difference receive the same rank.

The formula for the statistic for the Wilcoxon’s Signed-Rank test is given by Equation 6.1:

T = mi n[W +,W −] (6.1)

Where W + is the sum of the positive ranks, and W − the sum of the negative ranks. When the number of
pairs is large (used for the results per method), the normal distribution can be used. From here the z statistic
can be calculated, shown in Equation 6.2:

z = T − n(n+1))
4√

n(n+1)(2n+1)
24

(6.2)

Where n is the number of pairs.

The following null hypothesis and alternative hypothesis are tested for a significance level of α = 0.05 and
a two-tailed type.

H0: Median (difference) = 0

Ha : Median (difference) 6= 0

The calculated T values are compared to the critical T value (Tcr i t ). This Tcr i t can be found in a table with
critical values of the wilcoxon signed rank test (given in Appendix B). When T ≤ Tcr i t the null hypothesis is
rejected. From the results a correlation coefficient r can be calculated as a measure of the effect size, shown
in Equation 6.3:

r = zp
2n

(6.3)

The effect size provides an objective measure of the effect of the addition of pseudo-relevance feedback
[8], where:

• r = 0.10 - 0.30: small effect

• r = 0.30 - 0.5: medium effect

• r = 0.5 - 1.0: large effect
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Problem 1

For this Wilcoxon signed-rank test the null hypothesis H0: median (difference) = 0, i.e. any difference between
the BM25 algorithm and the BM25 algorithm + feedback is due to chance and the alternative hypothesis is
H1: median (difference) 6= 0 is tested with a significance level of α= 0.05.

To be significant, the calculated T value must be equal or less than the critical T value. After conducting
the Wilcoxon signed-rank calculation it is found T = 151 and Tcr i t = 116. So T = 151 > 116 = Tcr i t and therefore
the result is not significant and the null hypothesis is accepted. There is more than 5% probability the results
are due to chance, meaning there is not significant evidence the feedback methods results in better search
times to solve problem 1. The results from the Wilcoxon signed-rank test are summarised in Table 6.5

Parameter Value
n 28
T 151
Mean 203
Variance 1928.5
Standard deviation 43.91
z-score 1.184
Tcr i t 116
p-value 0.236
Significant? Not
Decision Accept H0

r 0.224

Table 6.5: Results from two-tailed Wilcoxon signed-rank test for problem 1 with significance level 0.05.

Conclusion: there is not sufficient evidence to suggest there is any difference between the BM25 algo-
rithm and BM25 algorithm + feedback in terms of search time due to the addition of feedback. Meaning
it is not proven that the addition of pseudo-relevance feedback results in a faster retrieval of the relevant
document.

Problem 2

For this Wilcoxon signed-rank test the null hypothesis H0: median (difference) = 0, i.e. any difference between
the BM25 algorithm and the BM25 algorithm + feedback is due to chance and the alternative hypothesis is
H1: median (difference) 6= 0 is tested with a significance level of α= 0.05.

To be significant the calculated T value must be equal or less than the critical T value. After conducting
the Wilcoxon signed-rank calculation it is found T = 83 and Tcr i t = 89. So T = 83 < 89 = Tcr i t and therefore the
result is significant and the null hypothesis is rejected. There is less than 5% probability the results are due
to chance, meaning there is significant evidence that the feedback methods results in better search times to
solve problem 2. The results from the Wilcoxon signed-rank test are summarised in Table 6.6
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Parameter Value
n 25
T 83
Mean 162.5
Variance 1381.25
Standard deviation 37.17
z-score 2.139
Tcr i t 89
p-value 0.032
Significant? Yes
Decision Reject H0

r 0.428

Table 6.6: Results from two-tailed Wilcoxon signed-rank test for problem 2 with significance level 0.05.

Conclusion: there is sufficient evidence to suggest there is a positive difference between the BM25 al-
gorithm and BM25 algorithm + feedback in terms of search time due to the addition of feedback. Meaning
the addition of pseudo-relevance feedback results in a faster retrieval of the relevant document.

Problem 3
For this Wilcoxon signed-rank test the null hypothesis H0: median (difference) = 0, i.e. any difference between
the BM25 algorithm and the BM25 algorithm + feedback is due to chance and the alternative hypothesis is
H1: median (difference) 6= 0 is tested with a significance level of α= 0.05.

To be significant the calculated T value must be equal or less than the critical T value. After conducting
the Wilcoxon signed-rank calculation it is found T = 93 and Tcr i t = 107. So T = 93 < 107 = Tcr i t and therefore
the result is significant and the null hypothesis is rejected. There is less than 5% probability the results are
due to chance, meaning there is significant evidence that the feedback methods results in better search times
to solve problem 3. The results from the Wilcoxon signed-rank test are summarised in Table 6.7

Parameter Value
n 27
T 93
Mean 189
Variance 1732.5
Standard deviation 41.62
z-score 2.318
Tcr i t 107
p-value 0.020
Significant? Yes
Decision Reject H0

r 0.446

Table 6.7: Results from two-tailed Wilcoxon signed-rank test for problem 3 with significance level 0.05.

Conclusion: there is sufficient evidence to suggest there is a positive difference between the BM25 al-
gorithm and BM25 algorithm + feedback in terms of search time due to the addition of feedback. Meaning
the addition of pseudo-relevance feedback results in a faster retrieval of the relevant document.

Methods
In Table 6.8 and Figure 6.10 the results are shown to check whether the assumption of non-normally dis-
tributed data was correct. In fact, if the data is normally distributed other more powerful tests can be applied
since the sample size is sufficient. From the boxplot it is clear none of the systems produces normally dis-
tributed data (both are highly skewed and not symmetrical), indicating the use of the non-parametric statisti-
cal tests is best to apply. This is also confirmed by the calculation of the skewness and excess kurtosis. A value
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for the skewness above +1 indicates highly positively skewed data which is for both methods the case. The
values for the kurtosis are above 3 meaning they can be named leptokurtic (heavy tailed). For both methods
most of the AMTs were able to find the documentation in a search time lower as the average for that method.

Parameter PDF BM25 BM25 + Feedback
Sample size (n) 89 91 91
Sample average (x) 203.0 55.2 31.9
Sample standard deviation 145.0 68.8 33.9
Skewness 0.97 2.68 1.99
Excess kurtosis 0.58 9.04 3.54

Table 6.8: Results of normality check per system.

Parameter Value
n 80
T 944
Mean 1620
Variance 43470
Standard deviation 208.5
z-score 3.242
Tcr i t 1211
p-value 0.001185
Significant? Yes
Decision Reject H0

r 0.362

Table 6.9: Results from two-tailed Wilcoxon signed-rank test for all results with significance level 0.05.

For the Wilcoxon signed-rank test of all data the null hypothesis H0: median (difference) = 0, i.e. any dif-
ference between the BM25 algorithm and the BM25 algorithm + feedback is due to chance and the alternative
hypothesis is H1: median (difference) 6= 0 is tested with a significance level of α= 0.05.

The T value equals 944 and Tcr i t = 1211 and because T < Tcr i t the the null hypothesis H0 can be rejected.
In other words, the difference between the values of the BM25 algorithm and the BM25 algorithm + feedback
is large enough to be statistically significant. A summary of the results can be find in Table 6.9.

Conclusion: there is sufficient evidence to suggest there is a positive difference between the BM25 al-
gorithm and BM25 algorithm + feedback in terms of search time due to the addition of feedback. Meaning
the addition of pseudo-relevance feedback results in a faster retrieval of relevant documents.





7
Conclusions and Recommendations

This final chapter gives the concluding remarks, discusses the research contribution, and recommendations
for future research are proposed.

7.1. Conclusions
The execution of aircraft maintenance has always been a time-consuming task and with airliners increasing
the productivity of aircraft, the pressure on AMTs is high. The high pressure on AMTs is a well-known problem
in the industry. The combination of high pressure on the AMT and the enormous amount of maintenance
documents, which are either paper-based or almost unsearchable, puts the AMT for a terrible decision. Ei-
ther save some time by not consulting documentation or risk the chance on flight delays. This impossible
situation was the reason to make this the problem statement of this thesis: ”Aircraft maintenance techni-
cians are unable to find the correct maintenance documentation and perform their corresponding tasks
during aircraft turnaround time.”.

It is decided to focus on the improvement of finding relevant digital maintenance documentation as a
solution to the problem statement. The paper on-screen solutions are the first step in this digitalisation, but
also come with some limitations because they are, for example, hard to search through and only exact key-
word matches will deliver results. Supported by the fact that, the transition from paper-based documentation
towards digital documentation is in the early stages, it is important to have a reference of what is possible with
ranking algorithms in the future of aircraft maintenance. Researchers already spent much effort on document
retrieval in the IR domain and from here it is found the BM25 algorithm is used very often as a consistently
good performing algorithm. As the literature on maintenance systems in the aircraft domain is limited, it
is unknown if ranking aircraft documentation delivers the same results compared to other domains. Many
algorithms could be investigated, but without a solid baseline, it is difficult to compare different methods in
the future. It is due to this gap in literature the first research question is stated as:

”Does the implementation of the BM25 algorithm lead to more relevant search results for aircraft
maintenance technicians searching for documentation, and what is the time efficiency impact due to this
algorithm?”

It was expected that more experience and knowledge would lead to better results in a shorter time for the
BM25 algorithm because the AMT would be able to use more specific queries resulting in fewer iterations,
with the correct document higher in the top of results.

The outcome of the experiments showed mixed results for the three categories of problem definitions as
formulated in Table 4.1, which have decreasing frequency in daily operations. The first two problems (1A and
1B), which the AMT is most likely to face, showed the accuracy of the BM25 algorithm was higher compared to
the current way of working with PDF documentation. From the total of 34 AMTs, only 27 were able to find the
correct document using the PDF document while 32 were able to find it making use of the BM25 algorithm.
Not only the accuracy is increased due to the use of the algorithm, also the time efficiency is improved. Going
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from 214 seconds on average to 72 seconds for problem 1A and from 241 seconds to 51 seconds for problem
1B can be seen as an improvement.

The most surprising results come from the data of the problems in the second category. In none of the two
problems, the use of the BM25 algorithm showed any improvement in accuracy. The number of AMTs able to
find the correct document is dropped from 32 (PDF) to 28. Surprising is the time difference between problem
A and B for the BM25 algorithm results (119 seconds against 30 seconds on average). A possible explanation
for this is can be found in the task description of problem 2B, the exact words are already described, while this
is not the case for problem 2A. This is supported by the fact the average number of iterations is significantly
lower (1.3 vs 1.9) and the average place in the top 10 significantly higher (2.2 vs 4.9). These results support
the hypothesis that more knowledge leads to faster retrieving of the correct documentation. These problems
are less frequently occurring as the problems from the first case, which can also be seen in the average search
time. However, one must be aware the range in average search time between the A and B problem is large.

The problem cases in the third category showed that, in general, the accuracy of the BM25 algorithm
is higher compared to the current way of working. However, the difference between the AMTs able to find
the correct document using the algorithm and PDF documentation was only one person (30 and 31). The
difference in results between problem 3A and 3B solved by PDF documents is remarkable. For problem 3A
100% of the AMTs was able to find the correct document, while for problem 3B only 76.5% of the AMTs was
able to find it. A possible reason for this could be that although problem 3A does not occur many of times in
practice, it is a simple to imaging problem case and solution. The AMT might, therefore, had a good idea in
which section of the chapter he had to look to perform the task. Problem 3B, however, is very specific and
advanced and might therefore not be found as often. To find out the exact reason it is best to perform the
test again and ask the AMTs for a reason why they did not find the task. Although the accuracy of the BM25
algorithm in this problem is not significantly higher, the time difference is significant. The results conflict
with the mentioned hypothesis because these problems do occur the less frequent, but AMTs were able to
find them in the shortest time (for all methods).

The results are taken together, to provide results per method, and from this, the first research questions
can be answered. In general, it is concluded that the implementation of the BM25 algorithm does not lead to
more relevant results but performs at least as good as the current way of working with PDF manuals. In 50%
of the problem cases it gave better results, while in 50% it did not. An important note in here is that for the
use of the BM25 algorithm a limit of three iterations was given to the AMTs and only the top 10 of results was
available to investigate. Although this might have an influence on the number of AMTs able to find the cor-
rect document, it was a necessary step in avoiding AMTs starting a manual search (and thereby not making
use of the ranking algorithm). Still, in 89.2% of the cases, the AMTs were able to find the correct document
by using the BM25 algorithm. On average, it took an AMT 55 seconds and 1.3 iterations (this means slightly
more than one iteration on average per person) to find the correct document. This average time to find the
correct documentation corresponds to only 27% of the original time when the PDF manuals were used.

The use of relevance feedback has shown some potential in literature because the technique is able to
improve the users’ initial query and facilitate a better document retrieval. However, like the BM25 algorithm,
no information is found for the aircraft maintenance domain and therefore the second research question is
defined as:

Does the addition of pseudo-relevance feedback to the BM25 algorithm lead to more relevant search
results compared to the BM25 alone, and what is the time efficiency impact due to feedback?

The results show the addition of pseudo-relevance feedback did not result in the retrieval of more relevant
documents in any of the problems compared to the BM25 algorithm. The correlation between feedback and
time efficiency is interesting because the Wilcoxon signed-rank test showed in two of the three cases it is not
by chance results are retrieved faster. Compared to the current way of working with PDF documents, there is
an average decrease in search time of almost three minutes (171 seconds). This corresponds to a decrease of
42% compared to the method where solely the BM25 algorithm is used. This is an unexpected result because
the results of the sensitivity analysis showed in only one of the four cases the feedback mechanism performed
better compared to the BM25 algorithm on its own. The sensitivity analysis also showed the best results are
retrieved when only one document and one file are assumed to be relevant for the pseudo-relevance feed-
back. However, during the experiment, the top five documents and the top ten words were chosen to be
relevant (because the sensitivity analysis was performed after the experiment due to time constraints). It in-
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dicates better results are possible, but one must be aware the test size of the sensitivity analysis was low.

Concluding on this research study into implementing the BM25 algorithm in the aircraft maintenance
domain is that it has been shown that it does provide significantly faster results as the current method mak-
ing use of PDF manuals. This study touched upon the possibilities which ranking algorithms can offer to the
aircraft maintenance domain. In this study, it is shown an AMT spent 203 seconds on average to find the
correct document using PDF documentation. The average search time is lowered to 55 seconds by using the
BM25 algorithm as search method. The addition of pseudo-relevance feedback to the BM25 algorithm made
it possible to lower the average search time to 32 seconds, which is 15.8% of the original search time (PDF).
These results, while preliminary, suggest it is likely that AMTs who only spend 15.8% of their original search
time on finding documentation, have to make the aforementioned trade-off, between time and safety, much
less. It is advised to academia and the industry to invest more in research for ranking functionalities in the
aircraft maintenance domain because one algorithm is able to significantly reduce the AMTs search time.

The use of ranking algorithms, and in particular the BM25 algorithm, is not new but the adoption in the
aircraft maintenance domain is limited. This thesis is (one of) the first that investigated the impact of the
BM25 algorithm on accuracy and efficiency. It is able to retrieve the same accuracy, but with higher effi-
ciency, as the current way of working. From here the baseline is set for new research in the aircraft mainte-
nance domain to investigate if accuracy, as well as efficiency, can be increased. Literature already provides
many algorithms or variations of the BM25 algorithm in other domains able to retrieve an even higher effi-
ciency. Notwithstanding the limitations, this thesis suggests the possible efficiency increase of using ranking
algorithms in the aircraft maintenance domain must not be underestimated. Much effort is spent on more
efficient repair methods, while for efficiency improvements, the industry might need to consider to focus on
more efficient search methods.

7.2. Recommendations
The research has been one of the first attempts to thoroughly examine the use of the BM25 algorithm is a
valuable addition for aircraft maintenance in terms of efficiency. The addition of pseudo-relevance feedback
has shown efficiency is increased further without losing accuracy. Although considered as valuable already,
there is always room for improvement. As mentioned already in Chapter 3 the research is bounded by a scope
and other limitations. To researchers interested in future development of ranking algorithms in the aircraft
maintenance domain, or to further extend the current model, several recommendations are given.

General

The first general limitation is that the AMTs were still in training. It is without a doubt this group has less ex-
perience compared to AMTs in the field. Although more participants were able to perform in the experiment,
the total number of different participants is low. If possible, it is recommended to conduct new research by
using experienced AMTs to investigate whether the effect of experience is significant or not. As the results
indicate more experience does not always lead to the faster retrieval of relevant documents, it might be ques-
tioned if this result was due to the manner of asking the questions. It is possible the faster retrieval of the
results is due to the fact a word was present in both the question as well as in the name of the AMM. An in-
teresting question is if the same results are present when the problem cases are tested on the tarmac without
asking the question to the AMT on paper.

Also recommended is to investigate if the implementation of a table of contents per chapter leads to a
higher accuracy of retrieved documents. During the experiment, many AMTs went to the table of contents
(for the PDF method) to find out which specific section to use. The addition of this table of contents might
become handy when only general search results are found for specific queries. By a simple questionnaire it
is possible to test if this table of contents is also often used by experienced AMTs. Indicated multiple times
is a more stable and computationally faster server is a must for the industry. The server must be able to
handle more users at the same time and perform the ranking calculations faster. For research purposes, it is
preferable to have a more powerful server, although it is not a must if the number of users is below ten people.
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Model
A natural progression of this work is to optimise the model. First, the Python code itself can be improved
or to make it consistent with Macster; the programming language can be changed to Javascript. Secondly,
the functionalities of the model can be expanded. At the moment the model is only able to search for text,
while AMTs also want to use technical drawings. It is also recommended to implement a search option able
to search for figures and drawings, with an option to specifically filter on it. One must be aware that different
ranking algorithms are used to retrieve pictures and drawings. The functionality of the filter function can
further be extended to filter on tail number. One of the advantages is an AMT cannot perform a task with a
manual corresponding to a different aircraft type. Also by limiting the number of documents, the necessary
calculations for the ranking algorithm require less powerful servers or calculations are performed faster. This
thesis focussed on the implementation of ranking algorithms, but no time is spent on user-friendliness. The
search bar is a simple option to find documentation, but many improvements to make the model more user-
friendly are possible. One can implement visuals (bars, scores, or percentages) that show the user how well
the retrieved documents relate to their query, while at the moment the user does not know this.

Ranking
The literature study showed many different ranking algorithms are used in various research fields. Researchers
in other domains as aircraft maintenance have already demonstrated other ranking algorithms can be more
efficient than the BM25 algorithm. In general, it is therefore recommended to test whether this statement
also holds for the aircraft maintenance domain. It is best to use the same collection of documents, as used
in this study, to fairly compare the results. To be more specific, it is also possible to extend the BM25 ranking
algorithm making use of different weights (k1 and b) for different fields, e.g., title and tables. This variant of
the BM25 algorithm is called BM25F. Another option is to use the BM25+ variant which uses one additional
parameter, to let long documents which match a query score more fairly. Another possibility is to develop
a library of technical words in the aircraft maintenance domain that makes stemming possible. Stemming
reduces or derives words to their root and therefore it is no longer necessary to have exact word matches.
This can be supplemented with lemmatisation which makes it possible to distinguish the meaning of a word
(when one word has several contexts). By developing a technical word library, it is also possible to compare
the most frequently used words with this library. When the words are not in the library but very commonly
used, these so-called ”stop words”, can be removed from the calculations in the algorithm to make a retrieval
performance improvement possible. Another improvement to the ranking algorithm is to implement a func-
tion that compares the order in which the words occur. The current model does not take this word order into
account while this might have a significant influence on the meaning of the user.

The sensitivity analysis showed for low k1 and b values the best results are retrieved. This is remarkable
because it suggests the IDF formula would lead to better retrieval results compared than the more complex
BM25 algorithm and therefore it is recommended to investigate this in future research. Also, the number of
documents has a high impact on the results. A possible extension of this research is to continue with the
model and extend the number of maintenance manuals and do a thorough investigation of its impact. This
can be done in combination with the research if the IDF algorithm leads to more relevant and faster results
because only some parameters in the model have to be changed.

Feedback
During the experiment the k1, b, N and M values where fixed. More research is necessary to investigate the
impact of changing these values. Before this experiment, it was hard to perform a better evaluation because it
was unknown which queries the AMTs would use. Although the queries are not shown in this report, they are
available on paper. Also interesting is to take into account the results from the sensitivity analysis. Although
the Wilcoxon signed-rank test shows the feedback results are significant for the system as a whole, it is sug-
gested to perform an extensive sensitivity analysis for the pseudo-relevance feedback mechanism on aircraft
maintenance documents. This because the results from the feedback sensitivity analysis showed no evidence
and is in contradiction to the results of the experiment.

To be less dependent on the user input and to lower the amount of data storage, there is chosen to make
use of pseudo-relevance feedback. In case there are more AMTs available for a longer period, one must con-
sider the option to implement other feedback methods. In particular implicit feedback options might be
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useful because the AMT does not notice the use of it, but many data can be retrieved from the model and
stored. By applying machine learning techniques, this data can be used to make a prediction on which air-
craft maintenance manual is requested by the AMT. Another option is to create a feedback loop able to adjust
the k1, b, N, and M after each iteration. By using a feedback loop in this way, the model can adapt itself and
possibly find a global optimum (for different query).
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A
Appendix A - Python code

1 # ! / usr / bin / env python
2 import time , re
3 from myfunctions import *
4
5 start_t ime = time . time ( ) # S t a r t timer
6
7 user_queries = [ ’ wing ’ , ’ t e s t ’ ] # Place where user queries have to be f i l l e d in
8 queries = [ ] # Empty l i s t to place f i l t e r e d queries
9 for user_query in user_queries : # F i l t e r and append every user query

10 queries . append( f i l t e r ( user_query ) )
11
12
13 directory = ’ /Users/ guusgeurts / PycharmProjects / Thesis_draft /Macster/ Crawler output ’ # Path to f i l e s
14 selectTopFiles = 5 # Top N f i l e s f o r feedback

calculation
15 selectTopWords = 10 # Top M words f o r

feedback calculation
16
17 ( docLength , numberOfDocuments , invindex , totaluniquewords , total_words_per_f i le ) = importFiles ( directory ,

debug=True )
18 avgdl = f l o a t ( docLength / numberOfDocuments) # Average document length ( avg number of documents

per f i l e )
19
20
21 # Calculate the BM25 score of a l l documents
22 bm25s = calculat ion ( queries , avgdl , numberOfDocuments , invindex , totaluniquewords , total_words_per_fi le ,

debug=True )
23
24 r e l e v a n t F i l e s = [ ]
25 for key , value in sorted (bm25s . i ter i tems ( ) , key=lambda( k , v ) : ( v , k ) , reverse=True ) :
26 print ( "Document %s has a t o t a l BM25 score of %s for a l l queries together . " % ( key , value ) )
27 r e l e v a n t F i l e s . append( key )
28
29
30 # PART FOR FEEDBACK CAN BE FOUND BELOW #
31
32 newQueries = queries # Take over o r i g i n a l queries
33
34 # Append from the top f i l e s the words with highest score f o r TF−IDF and append them to the o r i g i n a l query
35 for key , value in idfPerTotalUniqueWordsFeedback ( \
36 numberOfDocumentsPerTotalUniqueWords ( \
37 r e l e v a n t F i l e s [ : selectTopFiles ] , numberOfDocuments , invindex , totaluniquewords ) , \
38 numberOfDocuments) [ : selectTopWords ] :
39 newQueries . append( key )
40
41 print ( newQueries )
42
43
44 # Calculate the BM25 score f o r a l l f i l e s , but now with new queries ( from a f t e r feedback ) .
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45 bm25s = calculat ion ( newQueries , avgdl , numberOfDocuments , invindex , totaluniquewords , total_words_per_fi le
, debug=False )

46 for key , value in sorted (bm25s . i ter i tems ( ) , key=lambda( k , v ) : ( v , k ) , reverse=True ) :
47 print ( "Document %s has a BM25 Score %s a f t e r feedback " % ( key , value ) )
48 r e l e v a n t F i l e s . append( key )
49
50 print ( "−−− %s seconds −−−" % ( time . time ( ) − start_time ) ) # End timer and print time to run program
51
52 # print ( len ( totaluniquewords ) )
53 # print ( totaluniquewords )

1 # A l l modules that need to be imported
2 import os , math , re
3 from bs4 import BeautifulSoup
4 from c o l l e c t i o n s import Counter , d e f a u l t d i c t
5 from operator import itemgetter
6
7
8 # Function to f i l t e r html tags and punctuation .
9 def f i l t e r ( s t r i n g ) :

10 r e s u l t = s t r i n g \
11 . lower ( ) \
12 . replace ( " ( " , " ( " ) \
13 . replace ( " ) " , " ) " ) \
14 . replace ( " , " , " " ) \
15 . replace ( " . " , " " ) \
16 . replace ( " : " , " " ) \
17 . replace ( " </div >" , " </div > " ) \
18 . replace ( " </span>" , " </span " ) \
19 . replace ( " </thead>" , " </thead> " ) \
20 . replace ( " </ table >" , " </ table > " ) \
21 . replace ( " table >" , " table " ) \
22 . replace ( " </td>" , " </td> " ) \
23 . replace ( " </th>" , " </th> " ) \
24 . replace ( " </ tr >" , " </ tr > " ) \
25 . replace ( " / c t l " , " / c t l " ) \
26 . replace ( "c/b−" , " c/b− " ) \
27 . replace ( "<a>" , " <a> " ) \
28 . replace ( "<b>" , " <b> " ) \
29 . replace ( "<i >" , " <i > " ) \
30 . replace ( "p/bsw−" , " p/bsw− " ) \
31 . replace ( "bsw−" , "bsw" ) \
32 . replace ( " oat=" , " oat " ) \
33 . replace ( ’ " ’ , ’ ’ ) \
34 . replace ( " ’\ u25b8 ’ " , " test1234 " ) \
35 . replace ( " fonctional " , " functional " ) \
36 . replace ( " / " , " / " )
37 r e s u l t = re . sub ( r ’ [ − ! ; > < ? . , ] $ ’ , ’ ’ , r e s u l t ) # Remove characters l i s t e d in [ brackets ] , only i f

l a s t characters
38 return r e s u l t
39
40 # Function to import the HTML f i l e s .
41 def importFiles ( directory , debug=False ) :
42 invindex = [ ] # Empty l i s t f o r inverted index
43 totalUniqueWords = d e f a u l t d i c t ( lambda : 0) # Empty dictionary f o r t o t a l number of unique words in a l l

f i l e s
44 totalWordsPerFile = { } # Empty dictionary f o r t o t a l number of words per f i l e
45
46 f i l e s = os . l i s t d i r ( directory ) # L i s t with names of f i l e s in d i r e c t o r y
47 total_num_words_all_fi les = 0 # Set t o t a l number of words in a l l f i l e s to 0
48 for f i l e in f i l e s :
49 path = os . path . join ( directory , f i l e ) # Path to s p e c i f i c document
50 document = open( path , " r " ) # Open s p e c i f i c document
51 soup = BeautifulSoup ( f i l t e r (document . read ( ) ) , ’ lxml ’ ) # Read s p e c i f i c document and f i l t e r
52 words = soup . t e x t . s p l i t ( ) # Separate words in document
53 uniquewords = Counter ( words ) . keys ( ) # "Names of " unique words per f i l e
54 values = Counter ( words ) . values ( ) # Number of unique words per f i l e
55 for uniqueword in uniquewords :
56 i f uniqueword != totalUniqueWords : # I f the word i s not in dictionary of

t o t a l unique words
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57 totalUniqueWords [ uniqueword ] += 1 # Add the word to the dictionary
58
59 for i in xrange ( 0 , len ( uniquewords ) ) : # For a l l unique words
60 invindex . append ( [ uniquewords [ i ] , f i l e , values [ i ] ] ) # Make an inverted index [ word , f i l e where

word was found , number of times word i s found ]
61 i f debug :
62 print ( "Document %s has %s unique words and %s t o t a l number of words" % ( f i l e , len ( uniquewords )

, len ( words ) ) )
63 totalWordsPerFile [ f i l e ] = len ( words ) # Dictionary with f i l e name + t o t a l number

of words in t h i s f i l e
64 total_num_words_all_fi les += len ( words ) # Total number of words in a l l f i l e s
65
66 i f debug : # I f debug i s " True " print −−−
67 print ( "−−−−−−−−−−−−−−−−−−−−" )
68 return total_num_words_all_files , len ( f i l e s ) , invindex , totalUniqueWords , totalWordsPerFile
69
70 def calculat ion ( queries , avgdl , numberOfDocuments , invindex , totaluniquewords , total_words_per_fi le , debug

=True ) :
71 # Part to c a l c u l a t e document s p e c i f i c values
72 word_idf = { } # Empty dictionary f o r word inverse document

frequency
73 bm25s = { } # Empty dictionary f o r new BM25 calculation
74 for query in queries :
75
76 r e s u l t s = [ ] # Empty l i s t f o r match between word in inverted

index and query
77 other_words = [ ] # Empty l i s t i f query i s part of a word in

inverted index
78 for inv in invindex :
79 i f query == inv [ 0 ] :
80 r e s u l t s . append( inv ) # I f word in inverted index i s equal to query . Add

to r e s u l t s .
81 i f query in inv [ 0 ] and not query == inv [ 0 ] : # I f query i s part of word ( example : arg i s

inside argument )
82 other_words . append( inv ) # Add t h i s word to other_words
83
84 similar_words = [ ] # Empty l i s t f o r similar words
85 for item in other_words :
86 i f item [ 0 ] not in similar_words and not item [ 0 ] == query : # I f word i s not in l i s t and not

equal to query
87 similar_words . append( item [ 0 ] ) # Add word to similar_words
88
89 num_doc_contain_query = 0 # Set number of documents to

0
90 for r e s u l t in sorted ( re su l ts , key=itemgetter ( 2 ) , reverse=True ) : # For a l l matches of query
91 i f debug :
92 print ( " ’%s ’ found in %s (%s h i t s ! ) " % ( r e s u l t [ 0 ] , r e s u l t [ 1 ] , r e s u l t [ 2 ] ) ) # Print ( "

query " , f i l e , number of h i t s per f i l e )
93 i f r e s u l t [ 2 ] >= 1 :
94 num_doc_contain_query += 1 # Add 1 to number of documents containing the query
95 i f num_doc_contain_query > 0 :
96 i f len ( similar_words ) >= 1 :
97 i f debug :
98 print ( "Be careful , these words are almost s imilar : %s " % similar_words ) # Print when

similar words found
99

100 for word in totaluniquewords : # Calculate t f−i d f of every query
101 word_idf [ query ] = math . log10 (
102 f l o a t ( ( numberOfDocuments − num_doc_contain_query + 0 . 5 ) ) / f l o a t ( 0 . 5 +

num_doc_contain_query ) )
103 i f debug : # I f debug " True " print
104 print ( "The Inverse Document Frequency for ’%s ’ i s %s " % ( query , word_idf [ query ] ) )
105 else :
106 word_idf [ query ] = math . log10 (
107 f l o a t ( ( numberOfDocuments − num_doc_contain_query + 0 . 5 ) ) / f l o a t ( 0 . 5 +

num_doc_contain_query ) )
108 i f debug :
109 print ( "%s not found anywhere ! The Inverse Document Frequency i s : %s " % ( query , word_idf [

query ] ) )
110
111 # Part to c a l c u l a t e BM25 of query f o r each document
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112 k1 = 1.5 # 1.2 < k < 2
113 b = 0.5 # 0.5 < b < 0.8
114
115 bm25 = 0
116 for item in sorted ( r e su l ts , key=itemgetter ( 2 ) , reverse=True ) :
117 bm25 = word_idf [ query ] * item [ 2 ] * ( k1 + 1) / (
118 item [ 2 ] + k1 * (1 − b + b * total_words_per_f i le [ item [ 1 ] ] / avgdl ) )
119 # print ( len ( uniquewordsperfile [ item [ 1 ] ] ) )
120 i f debug :
121 print ( "For the term : ’%s ’ the BM25 Score of %s i s %s " % ( query , item [ 1 ] , bm25) )
122 i f item [ 1 ] in bm25s :
123 bm25s[ item [ 1 ] ] = bm25s[ item [ 1 ] ] + bm25
124 else :
125 bm25s[ item [ 1 ] ] = bm25
126
127 i f debug :
128 print ( "−−−−−−−−−−−−−−−−−−−−" )
129 return bm25s
130
131
132 def numberOfDocumentsPerTotalUniqueWords ( f i l e s , numberOfDocuments , invindex , totaluniquewords ) :
133 allWords = [ ]
134 r e s u l t = { }
135 for inv in sorted ( invindex ) :
136 i f inv [ 1 ] in f i l e s :
137 allWords . append( inv [ 0 ] )
138
139 for word in Counter ( allWords ) . keys ( ) :
140 r e s u l t [ word ] = 0
141 for inv in invindex :
142 i f inv [ 0 ] == word :
143 r e s u l t [ word ] = r e s u l t [ word ] + 1
144 return r e s u l t
145
146 def idfPerTotalUniqueWordsFeedback ( numberOfDocumentsPerTotalUniqueWords , numberOfDocuments) :
147 r e s u l t = { }
148 for uniqueWord in numberOfDocumentsPerTotalUniqueWords :
149 r e s u l t [ uniqueWord ] = math . log10 (
150 f l o a t ( ( numberOfDocuments − numberOfDocumentsPerTotalUniqueWords [ uniqueWord ] + 0 . 5 ) ) /

f l o a t ( 0 . 5 + numberOfDocumentsPerTotalUniqueWords [ uniqueWord ] ) )
151 return sorted ( r e s u l t . i ter i tems ( ) , key=lambda( k , v ) : ( v , k ) , reverse=True )



B
Appendix B - Critical Values of the

Wilcoxon Signed-Rank test

Critical Values of the Wilcoxon Signed Ranks Test 
 
 
 

Two-Tailed Test One-Tailed Test n α = .05 α = .01 α = .05 α = .01 
5 -- -- 0 -- 
6 0 -- 2 -- 
7 2 -- 3 0 
8 3 0 5 1 
9 5 1 8 3 
10 8 3 10 5 
11 10 5 13 7 
12 13 7 17 9 
13 17 9 21 12 
14 21 12 25 15 
15 25 15 30 19 
16 29 19 35 23 
17 34 23 41 27 
18 40 27 47 32 
19 46 32 53 37 
20 52 37 60 43 
21 58 42 67 49 
22 65 48 75 55 
23 73 54 83 62 
24 81 61 91 69 
25 89 68 100 76 
26 98 75 110 84 
27 107 83 119 92 
28 116 91 130 101 
29 126 100 140 110 
30 137 109 151 120 
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