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To my parents





Contents

1 Introduction 1
1.1 Enhanced reservoir knowledge . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Linear long-offset forward modeling . . . . . . . . . . . . . . 8
1.4.2 Sparse linear pre-stack waveform inversion . . . . . . . . . . . 8

2 A review of the single interface earth 9
2.1 Theoretical basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Application to amplitude interpretation . . . . . . . . . . . . . . . . 11

3 Layered earth amplitude modeling 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Compressional-to-compressional mode modelling . . . . . . . . . . . 18

3.2.1 Explicit background velocities . . . . . . . . . . . . . . . . . . 22
3.2.2 A linear P-P velocity-separated forward model . . . . . . . . 26
3.2.3 Layering induced anisotropy . . . . . . . . . . . . . . . . . . . 29
3.2.4 Analytic seismic amplitude forward modelling . . . . . . . . . 34

3.3 Compressional-to-shear mode modelling . . . . . . . . . . . . . . . . 39
3.3.1 A linear P-S velocity-separated forward model . . . . . . . . 41
3.3.2 Layering induced anisotropy . . . . . . . . . . . . . . . . . . . 46

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Sparse pre-stack waveform inversion 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Data prediction kernels . . . . . . . . . . . . . . . . . . . . . . . . . 52



ii CONTENTS

4.2.1 The P-P case . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 The P-S case . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 The joint P-P and P-S case . . . . . . . . . . . . . . . . . . . 58
4.2.4 Data driven kernel estimation . . . . . . . . . . . . . . . . . . 59

4.3 Least-squares AVP-waveform inversion . . . . . . . . . . . . . . . . . 61
4.3.1 The data, the kernel, and the SVD . . . . . . . . . . . . . . . 61
4.3.2 Quadratic regularization . . . . . . . . . . . . . . . . . . . . . 65
4.3.3 Nonquadratic regularization . . . . . . . . . . . . . . . . . . . 67

4.4 Quantitative Seismic Fluid Detection . . . . . . . . . . . . . . . . . . 69
4.5 P-P inversion example . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 P-S inversion example . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7 Joint (P-P,P-S) inversion example . . . . . . . . . . . . . . . . . . . 77
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Application to field data 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Practical implementation . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Land data case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Geological description . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Minimum structure inversion . . . . . . . . . . . . . . . . . . 87

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusions, recommendations, and the road ahead 111
6.1 Overall conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Overall recommendations . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3 The road ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 122

Summary 129

Samenvatting 133

Curriculum vitae 139

Acknowledgements 141



1

Introduction

Global demand for energy resources, hydrocarbons in particular, continues to rise,
Figure (1.1), while there is a decline in new reserve discovery and size. This poses a
supply and demand problem that will only get worse as developing economies come
online. Already, the world is beginning to see the development of this economic stress
from the significant increase in the base cost of hydrocarbons, primarily driven by
demand from China and India.

Figure 1.1: Global energy consumption, from 1970 until 2001, and projected con-
sumption from 2001 onward. (after U.S. Energy Information Administration,
www.eia.doe.gov/oiaf/ieo/index.html)
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Figure (1.2) shows the net oil imports, as of 2006, for the various countries of the
world. Notice that after the United States of America and Japan, it is China and
India that are the largest importers of oil. Furthermore, the combined daily con-
sumption of oil from 1980 until 2006 (Figure (1.3)) shows Asia and Oceania to be
the largest daily consumers, as energy is needed to fuel the economic growth of the
region.

Figure 1.2: Oil imports, as of 2006, by country (in barrels per day). (after CIA factbook,
http://www.cia.gov/cia/pubications/factbook/rankorder/2175rank.html)

While strongly contested, the Hubbert [1950] peak oil analysis is still supported and
the petroleum industry is urged to prepare for the coming production decline. A
modern version of this analysis, Figure (1.4), shows the hydrocarbon production
curves using data up to and including 2004.

Berkhout [2007] discusses that it is expected that in 2025 the world will use 50%
more energy than in 2005, while the contribution of nonfossil fuels will decline from
15% to 12%. Furthermore, Jack [1997] estimates global hydrocarbon recovery to be
about 30-35% and that if this can be increased by a mere 1% then global supply is
extended by 2 years. The implication is that the upstream oil and gas industry will
face an enormous challenge to increase capacity and replace reserves. Hence, the cur-
rent priorities are significantly improved technology portfolios and multi-disciplinary
communication skills in the professional workforce. Enhanced reservoir knowledge
is the primary avenue by which to address optimal production from existing fields.
It the responsibility of science to enable technologies and workflows for this purpose.
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Figure 1.3: Regional daily oil consumption from 1980 until 2006 (in thou-
sands of barrels per day). (after U.S. Energy Information Administration,
www.eia.doe.gov/emeu/international/RecentPetroleumConsumptionBarrelsperDay.xls)

1.1 Enhanced reservoir knowledge

Whether or not there is an immediate crisis in the availability of hydrocarbon re-
sources is up for debate, but it is clear that current global reserve recovery will
not be able to sustain demand and carbon-energy replacements are not yet feasi-
ble. Leveraging applied science for enhanced reservoir exploitation, so as to allow
for the discovery of fundamental advances in the transition to a reduced carbon
based global economy, demands innovation. While a dedicated and focused effort is
required by the applied geoscience community, this effort must recognise that the
problems requiring attention cannot just be fractured into disciplinary subproblems,
followed by an independent solution process for each of these subproblems. Modu-
lar/segmented problem solving easily leads to less-than-optimal formulations of the
component elements and the sum of suboptimal solutions is rarely an optimal total
end result.

Berkhout [2005] discusses the so-called Seismic Value Chain (Figure (1.5)). It vi-
sualizes the cyclic interaction between seismic acquisition, imaging and reservoir
characterization. In this double feed-forward and double feed-back value chain, seis-
mic reservoir characterization goals drive structural imaging and structural imaging
drives seismic acquisition (double feed-back). Moreover, new capabilities in acqui-
sition initiate new developments in imaging and these new imaging technologies in-
spire new interpretation concepts that steer developments in characterization (double
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Figure 1.4: Hubbert-style graph, using 2004 data, showing the world’s oil produc-
tion peak/plateau (in thousands of barrels per day). Note that the curves do not
take into account the Organisation of Petroleum Exporting Countries (OPEC)
nor the nations of the former Soviet Union. (after U.S. government document,
www.fossil.energy.gov/programs/reserves/npr/publications/npr strategic significancev1.pdf)

feed-forward). Hence, modern seismic innovation to address the global imbalance in
hydrocarbon supply and demand requires both feed-forward and feed-back processes.

Maximum added-value requires that targets be set at the end of the value chain.
With realisation that each end-goal is a many-to-one process, these final targets
need to be road mapped back all the way to acquisition (Figure (1.6)). Innovational
added-value of Seismic Value Chain depends on the quality of the involved tech-
nological and human capital, as well as the capability of organisations to remove
barriers and allow for the integration of these abilities for maximum economic value
at the end of the chain.

1.2 Statement of the problem

Currently, the seismic value chain paradigm is in a feed-forward mode of cyclic in-
teraction. Large investments over the last 10-15 years in the data acquisition have
produced a dramatic increase in the understanding of designing economical acqui-
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Figure 1.5: The Seismic Value Chain (after Berkhout [2005]).

sition geometries. Modern seismic data now have the potential to yield the best
images in terms of spatial resolution, amplitude accuracy, and increased illumina-
tion in terms of offset and azimuth. In turn, the imaging community as a whole
has introduced new algorithms that exploit the richness of these new data sets so as
to deliver a fundamentally improved image of the subsurface to be used for quan-
titative seismic reservoir characterisation. Today’s challenge lies with the reservoir
characterisation node of the value chain. An immediate requirement is extracting
quantitative rock properties information from these improved data-sets and images,
to move from a geophysically based elastic characterisation of reservoirs towards a
more effective, geologically accessible, parameterization. This leads to the following
fundamental question:

How can quantitative information about a subsurface hy-
drocarbon reservoir be gained using modern surface seismic
data measurements?

That is to say, a knowledge gap exists between common current reservoir analysis
methods that are fundamentally qualitative in nature and the quantitative infor-
mation required to enhance reservoir production. In the time-lapse (i.e. repeated
seismic) sense, we may ask: how can the change in hydrocarbon saturation be es-
timated away from the well? At the most general level, estimating the reservoir
density and its changes are the most direct way to quantify this desired informa-
tion. As is the case in many interdisciplinary questions, the answer is complex and
detailed. Two key questions explored in seeking a solution are as follows.
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Figure 1.6: Illustrative road mapping of a seismic reservoir characterisation goal (after
personal communication about Berkhout [2005]).

THE FORWARD QUESTION: How can the seismic amplitude response of key
reservoir properties be quantitatively simulated for a layered earth?

THE INVERSE QUESTION: How can key reservoir properties be quantita-
tively estimated from the seismic amplitude data of a layered earth?

1.3 Proposed solution

The current state of affairs in reservoir characterization does not fully exploit the
wide-angle information present in seismic data. This is partially due to the fact that
the current paradigm for analyzing reflectivities is at odds with the assumptions
made for standard seismic data processing. This work reconciles these differences
by resolving the issue of scale dependency in forward modeling of wide-angle seismic
data from well logs. Subsequent to this, a framework is created which furthers the



1.4 Thesis deliverables 7

use of pre-critical seismic data in quantitative hydrocarbon reservoir characteriza-
tion and management. The estimation of high-resolution reservoir rock properties
is cast as a linear-in-the-parameters optimization problem where all the primary
information carried in the pre-critical seismic amplitudes can be exploited. Further
improvement to the reservoir property estimates is achieved through the simultane-
ous consideration of compressional and converted wave pre-stack seismic amplitudes.
In turn, these broadband reservoir properties are converted to parameters that can
be used in quantitative fluid detection. Figure (1.7) visualizes the flow and relation-
ship between the answers to the key questions that will address the knowledge gap
outlined in the problem statement.

Figure 1.7: Schematic outline of thesis.

1.4 Thesis deliverables

Integrated hydrocarbon reservoir management is proving to be ideal for optimal
production and development of a reservoir via enhanced production. An accurate
and reliable seismically estimated map of hydrocarbon saturation, or the change in
hydrocarbon saturation, is vital to this process. This is because seismic is the only
measurement that commonly exists between wells that can guide the reservoir sim-
ulator. Given recent advances in seismic data processing and in the acquisition of
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seismic data, quantitatively estimating maps of the change in reservoir hydrocarbon
saturation is now viable. Quantitative seismic amplitude analysis, that can be ap-
plied to the detection of the change in hydrocarbon saturation, is the primary goal
of this research and is realized through the deliverables listed below.

1.4.1 Linear long-offset forward modeling

This research shows that the use of current single interface models to calculate
reflectivities, in a layered earth at long offset, is inconsistent with the assumed
convolutional earth model. Chapter 3 derives a model that is almost fully scale
independent in the earth input and can naturally account for thin-bed effects. The
only limitation in angle-of-incidence is the critical angle at the reservoir top. This
is particularly important if long offset seismic is to be exploited in order to extract
information about reservoir fluid saturation and effective stress, because it is in
the long offset domain that the customary ways to calculate reflectivity violate the
linear convolution data model that underlies the seismic data processing. Also at
long offsets, there are genuine internal multiples being created but it is assumed that
these are removed/handled during imaging or, possibly, calibrated out.

1.4.2 Sparse linear pre-stack waveform inversion

This research also develops a method by which accurate broadband estimates of
reservoir properties are estimated from multi-component seismic data. Chapter 4
shows that the key features of the parameter estimation method (i.e. inversion)
are: simultaneous use of all the pre-critical amplitude information available, ac-
counting for the data’s band-limitation and the ray-parameter dependence of this
band-limitation, and the imposition of a minimum structure condition on the pa-
rameter estimates. Starting with fully linearized P-P and P-S reflectivity equations,
forward model operators are constructed. Ray-parameter dependent band-limitation
is introduced via the matrix representation of convolutional filtering. Then a simul-
taneous inversion operator is formed that is used to build the system of normal
equations with adaptive diagonal regularization which, in turn, are used to estimate
high-resolution (i.e. broadband) reservoir rock properties.
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A review of the single interface earth

2.1 Theoretical basis

Quantitative seismic amplitude analysis is concerned with relating observed changes
in seismic amplitudes to corresponding changes in elastic/reservoir properties. Hence,
the basis of all seismic amplitude analysis is the elastic vector wave equation, as it
is our best current description of observed seismic data. In the frequency domain,
this is expressed as

ρω2U + (λ + μ)∇(∇ · U) + μ∇2U = 0, (2.1.1)

where ρ is the mass density, ω is angular frequency, λ and μ are Lamé parameters.
Note that U is the sum of two fields, relating to the scalar (Φ) potential function
and the vector (Ψ) potential function. These potential functions have the same
dimension as Fourier transformed pressure and the displacement field U can be
written as:

U = UΦ + UΨ =
1

ρω2
(∇Φ + ∇× Ψ) with ∇ · Ψ = 0. (2.1.2)

The seismic amplitude problem of plane wave reflection and transmission at a plane
interface is a 2D problem. This is because only a single plane of propagation is
considered, that being the plane spanned by the incident wave’s slowness vector and
the normal to the interface on which the wave is incident. The incident P -wave’s
energy is partially reflected, partially transmitted, and partially converted to other
modes, as illustrated in Figure (2.1).
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Figure 2.1: Energy/ray partitioning of a plane P -wave incident on the boundary be-
tween two horizontal half-spaces. The incident P -wave’s (Φ+

1 ) energy is partially
reflected(Φ−

1 and Ψ−
1 ) and partially transmitted (Φ+

2 and Ψ+
2 ). Conversion of P -energy

to S-energy gives rise to the Ψ terms. The half-space properties are density (ρ), P -wave
velocity (α), and S-wave velocity (β). Note that horizontal slowness = p = sin i1

α1
= sin i2

α2
=

sin j1
β1

= sin j2
β2

Taking the z-axis normal to the interface and the x-axis to be the slowness vector
direction in the plane of propagation, the situation is described by a wave field with
three independent modes of propagation, each with a scalar wave equation. These are
the scalar longitudinal (or P -wave) equation ∇2Φ+(ω/α)2Φ = 0, the scalar parallel
polarised transverse (or SV -wave) equation ∇2Ψy + (ω/β)2Ψy = 0, and the scalar
perpendicular polarised transverse (or SH -wave) equation ∇2Uy + (ω/β)2Uy = 0.
The SV -wave is a shear-wave vibrating in the plane of propagation and is fully
determined by the y-component of the vector potential Ψ. As the SH -mode (a
shear-wave vibrating perpendicular to the plane of propagation) is fully decoupled,
it is not of interest in this analysis.

These scalar wave equations allow the five waves schematically outlined in Fig-
ure (2.1) to be written as

Φ+
1 = exp[− iω

α1
(x sin i1 + z cos i1)],

Φ−
1 = RPP exp[− iω

α1
(x sin i1 − z cos i1)],

Ψ−
1 = RPS exp[− iω

β1
(x sin j1 − z cos j1)],

Φ+
2 = TPP exp[− iω

α2
(x sin i2 + z cos i2)], and

Ψ+
2 = TPS exp[− iω

β2
(x sin j2 + z cos j2)].

(2.1.3)

Equation (2.1.3) is solved for RPP , RPS , TPP , and TPS by applying continuity of
displacement and continuity of stress as boundary conditions on the systems. The
solution is in terms of media parameters on either side of the interface and the angles
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incidence, reflection, and transmission. In the same manner as Aki and Richards
[2002], the following variables are defined

a = ρ2(1 − 2β2
2p2) − ρ1(1 − 2β2

1p2), b = ρ2(1 − 2β2
2p2) + 2ρ1β

2
1p2,

c = ρ1(1 − 2β2
1p2) + 2ρ2β

2
2p2, d = 2(ρ2β

2
2 − ρ1β

2
1),

E = b cos i1
α1

+ c cos i2
α2

, F = b cos j1
β1

+ c cos j2
β2

,

G = a − d cos i1
α1

cos j2
β2

, H = a − d cos i2
α2

cos j1
β1

, and

D = EF + GHp2.

And the Knott-Zoeppritz equations, Knott [1899] and Zoeppritz [1919], for the re-
flectivities and transmitivities (based on scalar potentials) are

RPP =
[(

b cos i1
α1

− c cos i2
α2

)
F −

(
a + d cos i1

α1

cos j2
β2

)
Hp2

]
/D

RPS = −2 cos i1
α1

(
ab + cd cos i2

α2

cos j2
β2

)
pα1/ (β1D) ·

(
β1
α1

)
TPP = 2ρ1

cos i1
α1

Fα1 (α2D) ·
(

ρ2α2
ρ1α1

)
TPS = −2ρ1

cos i1
α1

Hpα1 (β2D) ·
(

ρ2β2
ρ1α1

)
(2.1.4)

2.2 Application to amplitude interpretation

Although Equation (2.1.4) relates reflection, transmission, and mode-conversion am-
plitudes to media properties, the complexity of the relationships prevents any real
insight. That is to say, these expressions offer little in terms of an amplitude in-
terpretation tool that is of practical use. Gassman [1951] improved the situation
by theoretically developing how systematic changes in reservoir lithology, porosity,
and pore-fill will affect the elastic properties. Thereby providing the petro-physical
link to seismic by showing how changes in reservoir properties will change the elas-
tic properties and seismic amplitude response. However, as thoroughly reviewed
in Hilterman [2001], the era of practical amplitude interpretation is marked by the
seminal paper by Koefoed [1955]. This work relates the angle/offset/ray-parameter
dependance of the compressional-to-compressional mode reflection coefficient at a
boundary to the change in Poisson’s ratio across that boundary. The general con-
clusion is that the shape of the reflection coefficient curve enables making inferences
about the lithological nature of rock strata.
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Specifically, Koefoed [1955] makes fundamental observations observations that form
the basis of modern, quantitative, seismic amplitude analysis. These observations
are paraphrased below.

[1] If the lower medium experiences an increase in P-wave velocity and an increase
in Poisson’s ratio, with other relevant properties of both strata held constant
and equal to each other, then the reflection coefficient increases with angle
of incidence. This effect becomes more pronounced as the velocity contrast
decreases.

[2] If the lower medium experiences an increase in P-wave velocity and the upper
medium an increase in Poisson’s ratio, with other relevant properties of both
strata held constant and equal to each other, then the reflection coefficient
decreases with angle of incidence.

[3] If the lower medium experiences an increase in P-wave velocity while Poisson’s
ratios for both are increased and kept equal to each other, with other relevant
properties of both strata held constant and equal to each other, then the
reflection coefficient increases with angle of incidence.

[4] The interchange of the lower medium and the upper medium only minimally
changes the shape of the reflection coefficient curve for angles of incidence that
are less than 30◦.

This conceptual basis for seismic amplitude analysis received strong forward progress
in the work of Bortfeld [1961], as a tool was provided to explore Koefoed’s ob-
servations and conclusions. Assuming that the media properties did not change
greatly across an interface, the so-called small contrast approximation, Bortfeld
[1961] presents a two-term simplification of the Zoeppritz [1919]. The Bortfeld ap-
proximation is written as

RPP (i1) =
1
2

ln
(

α2ρ2 cos i1
α1ρ1 cos i2

)
︸ ︷︷ ︸

fluid term

+
(

sin i1
α1

)2 (
β2

1 − β2
2

) [
2 +

ln (ρ2/ρ1)
ln (β2/β1)

]
︸ ︷︷ ︸

rigidity term

(2.2.5)

In this simplification, Equation (2.2.5), the first term is the fluid term and responds
to pore-fill, while the second term is the rigidity term and responds to lithology. The
work retained the essence of the complex, full equations but is simple enough to re-
veal the quantitative relationship between the elastic properties of the rock and the
reflection amplitude response of the seismic. It shows that the fluid term (i.e. the
normal incident, or acoustic impedance, reflectivity) can differentiate pore-fluid con-
tent. In fact, the maximum pore fluid discrimination from Equation (2.2.5) is what
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would eventually be called the fluid factor stack by the amplitude analysis commu-
nity. Furthermore, through Gassman [1951], it offers insight into fluid substitution
problems.

The understanding that the acoustic impedance reflectivity has the potential to
discriminate pore fluid gives rise to post-stack seismic amplitude anomaly interpre-
tation. The fluid term of the Bortfeld [1961] equation allows interpreters to identify
three types of post-stack amplitude behaviour related to hydrocarbon detection. A
bright spot anomaly occurs when the seismic amplitudes on the stack brighten with
respect to the background amplitudes. This occurs when a wet reservoir that is
overlain by a layer with higher acoustic impedance becomes hydrocarbon charged.
The migration of hydrocarbons into the reservoir lowers its acoustic impedance, in-
creases the contrast with the cap rock and causes a corresponding increase in the
reflection coefficient. If the overlying layer has a lower acoustic impedance, then
the introduction of hydrocarbon into the reservoir will cause the stack amplitudes
to experience a phase reversal. This is due to the fact that the hydrocarbons now
reduce the reservoir’s acoustic impedance to a level lower than the overlying layer.
As such, the sign of the reflection coefficient changes and a phase reversal amplitude
anomaly occurs. The dim-out anomaly is a third type of seismic amplitude anomaly
that appears on the stack section. This situation is similar to that for the phase
reversal anomaly except that the hydrocarbon charging of the reservoir does not
decrease the acoustic impedance response enough to cause a phase change. Instead,
the acoustic impedance contrast is decreased and the reflection amplitudes become
weaker or dim.

Paige [1973], as discussed in Hilterman [2001], starts to bring the focus back to pre-
stack amplitude behaviour. The emphasis of this work is that hydrocarbon related
amplitude anomalies can be hidden or obscured on the full stack. It goes on to
illustrate that, quite often, hydrocarbon related amplitude changes are more clearly
revealed by analysing partial-offset stacks. That is to say, this work shows that
limited range stacks can highlight anomalous amplitude behaviour that varies as
a function of the range of data being stacked. These can serve as a better direct
hydrocarbon indicator than the full-stack amplitudes alone and is the basis of the
now standard near-mid-far partial-offset stack analysis. This emphasis back to pre-
stack data is highlighted further with the work of Aki and Richards [2002], 1st edition
published in 1980, where the Bortfeld [1961] work is further simplified as:

RPP (θ) =
1
2

Δρ

ρ

(
1 − 4

β2

α2
sin2 θ

)
+

1
2

Δα

α
sec2 θ − 1

2
Δβ

β

(
8
β2

α2
sin2 θ

)
, (2.2.6)

where θ = (i1 + i2)/2, α = (α1 +α2)/2, β = (β1 +β2)/2, ρ = (ρ1 +ρ2)/2, and Δ(·) is
the difference between the upper and lower medium properties. This simplification of
the Knott-Zoeppritz equation clearly brings to light how variations in the reservoir’s
rock properties will affect the pre-stack seismic amplitudes at the boundary between
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the two layers.

Ostrander [1982, 1984] subsequently demonstrates that the direct detection of hydro-
carbon charged reservoirs is possible from actual field acquired data. It was the first
widely disseminated work to confirm the relationship between pre-stack amplitude
variations and reservoir rock properties with successful wells. The observations of
Koefoed [1955] were finally verified with this field experiment. Shuey [1985], armed
with the observations of Koefoed and their verification by Ostrander, provides the
quantitative tool to transform these observations into an amplitude interpretation
theory. By reformulating Equation (2.2.6), Shuey [1985] presents a model for seis-
mic amplitudes that is interpreted in terms of various rock property contributions
at different angle ranges. It relates rock property variations to the near-mid-far
stacks of Paige [1973] and shows which rock property combinations are important
at successive offset/angle ranges. Further rearrangement of the Shuey [1985] model,
by Verm and Hilterman [1995], shows each angle range to have a response from a
single rock-property contribution and is written as

RPP (i1) =

near, 0◦−15◦︷ ︸︸ ︷
1
2

(
Δα

α
+

Δρ

ρ

)
︸ ︷︷ ︸
acoustic impedance

(
1 − 4

β2

α2
sin2 i1

)
+

mid, 15◦−30◦︷ ︸︸ ︷
Δν

(1 − ν)2︸ ︷︷ ︸
Poisson’s ratio

sin2 i1

+

far, ≥30◦︷ ︸︸ ︷
1
2

Δα

α︸ ︷︷ ︸
P-wave velocity

(
tan2 i1 − 4

β2

α2
sin2 i1

)
.

(2.2.7)

Only the first two terms of Equation (2.2.7) are required to verify the observations of
Koefoed. Furthermore, Shuey [1985] shows how to extract the acoustic impedance
and Poisson’s ratio contrasts directly from the amplitudes of a common depth point
gather. After fitting a line to the amplitudes associated with a reflector of interest,
the intersection of this line with the vertical axis is the estimated normal incidence
reflectivity (also called the intercept) and the slope of this line is the estimated
Poisson’s ratio contrast (also called the gradient).

An often overlooked aspect of the Shuey [1985] work is its suggestion of the first
practical method to seismically infer lithology. The proposed workflow is to extract
the rock property contrasts from seismic, cross-plot them, and compare them to
cross-plots of the same properties that have been measured in the well. Rutherford
and Williams [1989] capitalise on this cross-plotting suggestion, combined with the
previous post-stack amplitude anomaly classifications, and propose a qualitative
classification methodology based on the amplitudes from reflections from suspected
hydrocarbon saturated formations. The modern version of this scheme [Asveth et
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al., 2005], based on the North American polarity standard, defines the following
classes of pre-stack amplitude anomalies.

Class I - Dim Out Anomaly The gather amplitudes dim as the angle of inci-
dence increases, with potential phase reversal at incidence angles larger than
30◦. The full stack amplitudes are dimmer over the hydrocarbon saturated
zone than over the water saturated zone. The near stack/traces (i.e. θi ∈
[0◦, 15◦]) display a peak-trough wavelet character over the reservoir.

Class II - Natural/Brightening Anomaly The gather amplitudes are weak troughs
or absent at near normal incidence and amplitudes brighten (i.e. troughs be-
come stronger) as the incidence angle increases. The amplitude variation of
this anomaly carries lithological information, not fluid information, and is high-
lighted well with partial stacks, as the reservoir amplitudes will be very dim
troughs on the full stack. The far stack/traces (i.e. θi ∈ [30◦, θmax]) display a
trough-peak wavelet character over the reservoir.

Class IIp - Phase Reversal Anomaly The gather amplitudes are weakly posi-
tive near normal incidence and experience a phase reversal then trough/peak
brightening as the incidence angle increases. The amplitude variation of this
anomaly also carries lithological information, not fluid information, and is
highlighted well with partial stacks, as the anomaly will disappear on the full
stack. The far stack/traces (i.e. θi ∈ [30◦, θmax]) display a trough-peak wavelet
character over the reservoir.

Class III - Bright Spot Anomaly The gather amplitudes are constant or expe-
rience a very slight increase as the angle of incidence increases. Full and all
partial stacks display bright amplitudes and hydrocarbon prediction is possi-
ble from the full stack alone. The entire angle range displays a trough-peak
wavelet character. These are associated with hydrocarbon charged soft sand
reservoirs.

Class IV The gather amplitudes are constant or experience a very slight decrease as
the angle of incidence increases with phase reversal possible at extremely large
angles of incidence. These are fairly rare and tend to be associated with soft
sand reservoirs that are gas charged and overlain by compacted/silty shales.
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When the intercept (I) and gradient (G) are used to define a cross-plot space com-
posed of four quadrants, these classes can be categorised as in Table (2.1).

Class Impedance Quadrant I G

I high 4 + −

II low/none 3 − −

IIp low/none 4 + −

III low 3 − −

IV low 2 − +

Table 2.1: Intercept-Gradient cross-plot analysis table for the various pre-stack amplitude
anomaly classes, after Asveth et al. [2005]

.



3

Layered earth amplitude modeling

3.1 Introduction

The first step in any quantitative seismic amplitude interpretation study is to assess
the availability and the quality of well data. Well-log information is needed to
assess the validity of the seismic data and for quantitative calibration. This step is
absolutely essential. If no correspondence between seismic data and well data can be
established, either the seismic data or the well data, or both data sets, are in serious
error and there is no point in continuing the study until the discrepancy is resolved.
Acceptance of a certain degree of mismatch between seismic and well data depends
on the amount of noise in either data set. Furthermore, the acceptance of the match
would be strongly guided by the plausibility of the matching filter needed to achieve
correlation between the measured seismic and the forward modelled response from
the well. Once this correlation is accepted, the exercise yields an estimate of the
seismic source wavelet w(t) including quantitative calibration, an estimate of the
noise in the seismic and an estimate of the absorption parameter Q.

The current state of affairs in seismic amplitude interpretation does not fully exploit
the long offset information present in seismic data. A primary reason for this is the
fact that the current paradigm for analyzing amplitudes is at odds with the assump-
tions made for standard seismic data processing. Chapter 3 addresses this issue by
addressing linearity and accuracy in forward modelling of seismic data from well-logs,
for large ray-parameters, wide-angles, or large offsets. Presented is a layered-earth
forward model that is linearized in the elastic properties of the earth. This model
preserves linearity at large ray-parameter and can naturally handle fine-layering in-
duced anisotropy. A low-contrast small ray-parameter model is extended to a large
ray-parameter model by fully linearising the elastic property contrasts. Overall lin-
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earity of the forward model is extended to the layered-earth situation by partitioning
the compressional wave and shear wave velocity fields into two fundamental scales.
A kinematic scale that governs wave-field propagation effects and a dynamic scale
that governs wave-field scattering effects. This partitioning of the velocity fields also
leads naturally to forward modelling with full accounting for stretch effects, to re-
solving the angle-of-incidence versus ray-parameter dichotomy in seismic amplitude
analysis, and to the full accounting of induced anisotropy effects due to fine-layering
of isotropic media.

With the onset of routine long offset acquisition, this forward model recognizes the
physics of seismic wave propagation and allows for a more complete exploitation of
the amplitude information available in pre-critical seismic data. This is particularly
important if long offset seismic is to be exploited in order to extract direct informa-
tion about reservoir fluid saturation; because it is in the long offset domain that the
customary ways to calculate amplitudes violate the linear data model that underlies
the seismic data processing.

3.2 Compressional-to-compressional mode modelling

The basic data set available in a well consists of sonic logs for compressional (P)
and shear (S) waves and a density log, which after editing, depth-matching and
processing, will result in continuous density ρ, compressional-wave velocity α and
shear-wave velocity β curves, usually at a sampling of 0.1524m (i.e. standard 0.5ft
sampling). The link to the seismic data is through the reflectivities Ri, which are a
function of the ρ, α and β values at either side of the interface at depth zi. Reflec-
tivities and transmitivities at a single plane interface between two half spaces are
given by the Zoeppritz [1919] equations. Figure 3.1 illustrates the application of the
Zoeppritz [1919] P-P equation to a standard set of α, β, and ρ logs. This represents
using the P-P Zoeppritz equation to model primaries-only seismic amplitudes in a
layered earth situation.

On the left-hand side is the result of applying the Zoeppritz P-P reflectivity op-
erator to unfiltered logs followed by the application of the depth equivalent of a
0-0-80-120Hz high-cut filter, propagating the response to the top of the log, imag-
ing in pseudo-time (i.e. depth converted time), and, finally, applying a zero-phase
5-10-50-75Hz band-pass seismic wavelet. On the right-hand side is the result of first
high-cut depth filtering the logs, followed by application of the operator. The prop-
agation, imaging, and wavelet of this response is as in the previous panel. For the
(time-invariant) convolutional seismic data model these results should be identical.
This image demonstrates that for the long offsets, large ray-parameters, or wide
angles, the result depends on the choice of band-width for the input data. That is
to say, filtering and reflectivity computation are not commutable operations once
the ray-parameter being considered is greater than half the critical ray-parameter.
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Figure 3.1: An illustration of how the P-P Zoeppritz equation violates the assumed time-
invariant convolutional model for seismic data. The left panel shows the result of computing
primaries-only P-P Zoeppritz reflectivities from input logs and then applying a high-cut
filter. The right panel shows the result of applying the same high-cut filter to the input logs
and then computing the primaries-only P-P Zoeppritz reflectivities. Note that the x-axis
scale represents the ray-parameter being considered as a fraction of the minimum critical
ray-parameter. This allows a clearer picture of how the model breaks down at “long”-offsets.
Also not that filtering and reflectivity calculation are not commutable.

Therefore, the Zoeppritz equation violates the underlying seismic data model in a
long offset layered earth situation. Furthermore, Figure 3.2 illustrates the inaccuracy
of the Zoeppritz operator for long offset layered earth modelling. The primaries-only
Zoeppritz response (left) is compared to the invariant embedding [Ken] full-waveform
response (right), which is also based on the Zoeppritz equations. Both responses
have been imaged to zero-offset time. Notice the breakdown in the accuracy of the
primaries-only Zoeppritz response at long offset.

Bortfeld [1961] simplifies the Zoeppritz [1919] P-P equation by assuming that suc-
cessive rock properties of the earth do not vary greatly. This so-called small contrast
approximation to Zoeppritz’ equation is:
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Figure 3.2: A comparison of a primaries-only P-P Zoeppritz response (left) and its corre-
sponding total elastic P-P response (right). As the critical ray-parameter is approached (i.e.
at the long-offsets), the primaries-only amplitudes are inaccurate.
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(3.2.1)

with

p =
sin θ1

α1
=

sin θ2

α2
=

sin φ2

β2
=

sin φ1

β1
(Snell’s Law).

Notice, however, that the Bortfeld equation is not fully linearised in the compres-
sional wave velocity contrast. To resolve this problem and discover an accurate
long-offset linear forward model, Equation (3.2.1) is revisited. Expanding as a Tay-
lor series in powers of p2 gives:
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From Ω2 onward, the coefficients do not contribute new information as they depend
on α1 and α2 only but they do serve to widen the range for which the pre-critical
reflections, RPP (p), can be accurately calculated. After further linearisation and
application of Snell’s Law, the series converges to:

RPP

(
θ̄
)

= A′ − 4B′
(

β̄2

ᾱ2

)
sin2 θ̄ +

C ′

1 − sin2 θ̄

A′ =
1
2
Δ ln(ρ)

B′ = 2Δ ln(β) + Δ ln(ρ)

C ′ =
1
2
Δ ln(α)

ᾱ = (α1 + α2) /2
β̄ = (β1 + β2) /2
θ̄ = (θ1 + θ2) /2.

(3.2.2)

In a slightly different form this equation was reported in Aki and Richards [2002] as
their Eq.(5.46). The difference lies in the way the contrasts are represented. Aki and
Richards [2002] represent the contrasts as 1

2Δρ/ρ̄, 1
2Δα/ᾱ, and 1

2Δβ/β̄, whereas in
Equation (3.2.2) the contrasts are in the 1

2Δln(·) notation. While for truly small
contrasts this does not make a difference, for not so small contrasts the 1

2Δln(·)
representation is much more accurate. The elastic parameter contrasts described
in this manner are identical to the linear perturbation coefficients δT applied to
the first-order Taylor expansion of the asymptotic ray series described in Chapman
[2004].

Figure 3.3 illustrates that also Equation (3.2.2) is a reflectivity operator that violates
the assumed convolutional/linear seismic data model in a layered earth. Again it is
seen that this operator does not preserve commutability with filtering. Furthermore,
Figure 3.4 shows that Equation (3.2.2) is also inaccurate at long offsets.
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Figure 3.3: An illustration of how the three-term P-P Bortfeld equation violates the assumed
time-invariant convolutional model for seismic data. The left panel shows the result of
computing primaries-only three-term P-P Bortfeld reflectivities from input logs and then
applying a high-cut filter. The right panel shows the result of applying the same high-
cut filter to the input logs and then computing the primaries-only three-term P-P Bortfeld
reflectivities. Filtering is still not a commutable operation.

3.2.1 Explicit background velocities

Equation (3.2.2) is not completely linear and some non-linearity remains due to the(
β̄/ᾱ

)2 factor. This may look somewhat puzzling, because Equation (3.2.2) seems
to be a strict linearisation of the P-P Zoeppritz equation in the material property
contrasts, which, for a single interface, indeed it is. Non-linearity has crept in
when the small contrast approximation is applied to a sequence of contrasts (i.e.
applied to a well-log/layer-earth situation), thereby making ᾱ and β̄ functions of
depth. To avoid this non-linearity, we do not linearise in terms of contrasts across
interfaces. Instead, we linearise in terms of contrasts of material properties, at any
depth, to a background medium. On the one hand this background medium should
be sufficiently smooth for waves to propagate in it without being scattered by its
inhomogeneity, and on the other hand it should be sufficiently close to the real
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Figure 3.4: A comparison of a primaries-only three-term P-P Bortfeld response (left) and its
corresponding total elastic P-P response (right). As the critical ray-parameter is approached
(i.e. at the long-offsets), the primaries-only amplitudes are still inaccurate.

medium to allow linearisation in the contrasts. Whether or not such a background
medium can be defined, depends on the type of experiment being conducted and the
regional earth properties themselves.

At this stage we should realize the nature of the experiment we are trying to simu-
late. A seismic experiment is being forward modelled, the result of which is assumed
to be described by a time-invariant convolution data model (i.e. a linear, primary
reflections only, model) and which should, therefore, have the property that filtering
is a commutable operation. In addition, we realize that for seismic wave propa-
gation in a fine scale inhomogeneous medium, the notions angle of incidence and
ray-parameter are defined in terms of wave-fronts, rather than in terms of a high
frequency ray approximation at the detail-level of the medium. The amplitudes of
these wave-fronts carry quantitative information on the reflectivities of the inter-
faces encountered, at a resolution set by the bandwidth of the seismic wavelet. The
curvatures and slopes of the wave-fronts carry kinematic information on the propa-
gation of the waves, and it is this information that defines propagation angles and
ray-parameters. This kinematic information contained in the wave-front pertains to
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a background medium governing the wave propagation. To calculate a linear seis-
mic response to a layered medium, let the waves propagate in a smooth background
medium and be scattered by the contrasts against this background. Inspecting the
amplitude spectrum of two-way-time converted P-wave and S-wave velocity well-logs
allow for an understanding of the kinematic information band-width contained in
seismic data. What the spectra shown in Figure 3.5 say is that the velocity field is
completely dominated by the low frequency band from 0Hz up to about 2.5− 3Hz.
This is consistent with the observation that it is roughly this spectral band that can
be retrieved from kinematic seismic velocity measurements.
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Figure 3.5: Amplitude spectra of a compressional-wave velocity log (top) and a shear-wave
velocity log (bottom).

With the above in mind, reconsider Equation (3.2.2) when applied to forward mod-
elling of the seismic response to a finely layered medium. The amplitude information
related to the contrasts in the media properties across interfaces is contained in the
A′, B′ and C ′ coefficients. The kinematic information contained in the seismic data,
pertaining to the background medium, is represented by sin2 θ̄ and

(
β̄/ᾱ

)2 sin2 θ̄ in
Equation (3.2.2). However, β̄/ᾱ is still given by the full velocities in the real medium
and, therefore, also carries the contrast information. Mathematically, we separate
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the two sets of information as:

α = α0 + α1

β = β0 + β1

(3.2.3)

where α0 and β0 represent the background velocities defined by the 0-3Hz spectral
bands that dominate the kinematic behavior of the seismic wave-field. If this claim
of wave-field propagation being governed by a kinematic region of the velocity field
is true, then a wavefront propagating in a medium with a detailed velocity structure
will be smooth. Figure 3.6 shows a snapshot of a wavefront that has been propagated
in such a medium via a finite-difference solution to the wave equation.
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Figure 3.6: A seismic wavefront propagated in a detailed velocity model.

Notice the smooth nature of the wavefront. Hence, wave-fronts propagate according
to the trend of the velocity structure and not the detail. This also establishes α0

and β0 as the velocity functions required to map from the angle (θ) domain to the
ray-parameter (p) domain.

In a linear forward modelling procedure, it must hold that α1 � α0 and β1 � β0.
Figure 3.7illustrates this concept of separated velocity fields.
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Figure 3.7: The compressional-wave (top panel) and shear-wave (bottom panel) velocities
decomposed into a background and contrasts against this background (i.e. kinematic and
dynamic parts).

Note that α1 and β1 represent the contrasts of the true medium against the back-
ground medium, whereas A′, B′ and C ′ represent contrasts across interfaces. If the
problem is linearizable, these two types of contrasts should be of the same order of
magnitude.

3.2.2 A linear P-P velocity-separated forward model

Using Equation (3.2.3), instead of ᾱ and β̄, in Equation (3.2.2) and noting that α1B
′

and β1B
′ are now second order quantities, the first order linearisation in terms of

contrasts against a background is:

RPP (θ) = A′ − 4B′
(

β2
0

α2
0

)
sin2 θ +

C ′

1 − sin2 θ
. (3.2.4)

In terms of scattering theory, the α0 and β0 are the zero-order velocity fields rep-
resenting a medium that does not scatter the incident wave-field, but describes the
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travel times (i.e. the kinematics) of the waves in the true medium accurately. The
contrasts against these backgrounds are α1 and β1 and these velocity fields drive
the scattering of the wave-field. In the first-order Born approximation, the scattered
field is linear in the contrasts. From a perturbation theory point of view, Equa-
tion (3.2.4) is seen as small perturbations, or weak contrasts, against a null interface
reference model [Chapman, 2004].

The linearity offered by the reflectivity operator Equation (3.2.4) is shown in Fig-
ure 3.8. The data set available for this modelling, shown in Figure 3.9, consists of
sonic logs for compressional (P) wave velocity, α and shear (S) wave velocity, β,
and a density, ρ, log from an AVO dataset. These α, β and ρ curves are sampled
at a rate of 0.1524m and are the same logs used for the Zoeppritz and three-term
Bortfeld modelling.
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Figure 3.8: An illustration of how the three-term P-P velocity-separated equation agrees with
the assumed time-invariant convolutional model for seismic data. The left panel shows
the result of computing primaries-only three-term P-P velocity-separated reflectivities from
input logs and then applying a high-cut filter. The right panel shows the result of applying
the same high-cut filter to the input logs and then computing the primaries-only three-term
P-P velocity-separated reflectivities. Filtering is now a commutable operation.
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Figure 3.9: The input α, β, and ρ well logs from the MOBIL AVO data set. Note the
overlying (i.e. kinematic/macro scale) α0 , β0, and ρ0 backgrounds.

Linearity is still not exact. This is because, although only slowly varying, α0 and β0

are functions of depth or pseudo-time. However, remembering that the background
medium is sufficiently smooth not to scatter propagating waves in the seismic band-
width, this non-linearity is by definition negligible.

The validity of the proposed forward model can only be proved, of course, by a
comparison with real measurements. In this case that would mean that a synthetic
seismogram, linearly modelled from well-log data, would be compared with a real
imaged seismic data trace. Unfortunately, a fully imaged 3-D seismic data trace over
the well-location, still has an uncertainty attached to it with respect to its positioning
accuracy. The best thing, therefore, is creating a full elastic synthetic from the log
data. As far as issues of linearity are concerned, this will really tell how accurate
the linear modelling is. The comparison between the linearly modelled gather based
on Equation (3.2.4) and full elastic modelling is shown in Figure 3.10. Since the
ray-parameter range used for the comparison leads to fairly large incidence angles
over the time gate shown, the start of amplitude blow-up is seen on the outer most
traces of the linear gather. The limit of the validity of linearisation has been reached.
Note, however, that the amplitudes are still better controlled than in either version
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of the Zoeppritz or Bortfeld result. Overall, the linear modelling tracks the full
elastic modelling amplitude-wise and character-wise, very well. When the reflection
angle gets wider and wider, eventually the reflectivities will become too large for
linearisation and the convolution model breaks down.
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Figure 3.10: A comparison of a primaries-only three-term P-P velocity-separated response
(left) and its corresponding total elastic P-P response (right). As the critical ray-parameter
is approached (i.e. at the long-offsets), the primaries-only amplitudes are now much more
accurate.

3.2.3 Layering induced anisotropy

In any finely layered medium there is velocity dispersion and anisotropy. This is
not due to intrinsic anisotropy in the individual layers, but to multiple scattering
at the layer interfaces. Recall, however, that in order to linearise the modelling
algorithm for a layered earth situation, the contrasts of the local medium parameters
are defined against a background medium, rather than across interfaces, as the
parameters to be linearized. This background medium, which only describes the
propagation of the waves that are scattered by the contrasts, can be, and often
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should be, anisotropic and dispersive.

It may look contradictory that a smoothly varying medium, specifically defined as
non-reflective for the frequencies in the seismic wavelet, would show dispersion which
is based on multiple scattering. This paradox is explained by considering the fol-
lowing argument. Given the highest frequency in the wavelet, the smoothly varying
velocity profile of the background medium can be represented as a staircase of very
small steps, none of which would give a measurable reflection at any frequency in
the wavelet. For a wave propagating in such a medium there is a gradual, but very
systematic, accumulation of peg-leg multiples leading to a phase-shifted and broad-
ened ‘pseudo primary’ arrival, as described by O’Doherty and Anstey [1971]. This
effect is all the more observable because of the systematic change in the smoothly
varying media properties. The energy that is scattered back to the surface, on the
other hand, is very small at any one time and is spread out over the full two-way
propagation time of the ‘pseudo-primary’ , and beyond.

In theoretical work by Shapiro et al. [1994] and Shapiro and Hubral [1995], reviewed
in Mavko et al. [1998], on horizontally layered random media, it is derived that
dispersion is driven by the auto-correlations and cross-correlations of the medium
properties α, β, and ρ. The correlation functions of the contrasts are small com-
pared to the correlation functions of the background functions themselves. In other
words, the smoothly varying background model by itself already explains most of
the dispersion.

Anisotropy induced by fine layering is another manifestation of the dispersion effect
described above. Having established that this anisotropy can be accounted for in
the background medium, it is now of interest to investigate how the background
anisotropy affects the reflection coefficients. Of particular concern is investigating
the similarity between accounting for background anisotropy and the more tradi-
tional approach of defining an anisotropy contrast across a single interface as shown
in Thomsen [1993], Rüger [1996], and Tsvankin [2001].

Following the above authors, the case of weak anisotropy is written as:

α0 (θ) = αi
0

[
1 + δ0 sin2 θ cos2 θ + ε0 sin4 θ

]
β0 (θ) = βi

0

[
1 +

αi2

0

βi2
0

(ε0 − δ0) sin2 θ cos2 θ

]
(3.2.5)

where ε0 and δ0 are the well known Thomsen [1986] parameters, describing a ver-
tically transverse isotropic (V.T.I.) background model. The isotropic part of the
velocities is denoted by αi

0 and βi. Substituting the anisotropic velocity expres-
sions in the equation for the reflectivity (Equation (3.2.4)) and linearising in the
coefficients ε0 and δ0 gives:
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RPP (θ) = Ri
PP (θ) + Ra

PP (θ) (3.2.6)

with

Ri
PP (θ) = A′ − 4B′

(
βi2

0

αi2
0

)
sin2 θ +

C ′

1 − sin2 θ

and

Ra
PP (θ) = −8B′ sin4 θ

[
ε0 − δ0

(
1 − βi2

0

αi2
0

)
cos2 θ

]
.

Ra
PP (θ) is that part of the reflectivity that is caused by the anisotropy in the back-

ground medium. Note that Ra
PP (θ) contains all the fine detail present in B′ , which

represents the contrasts between the fine scale layers that are isotropic themselves.
Reconciling fine layering effects on seismic amplitudes in the manner described above
allows for the proper use of seismically estimated (i.e. data driven) Thomsen’s pa-
rameters. This is because the anisotropy parameters are estimated and used at the
background scale. In forward modelling of a synthetic seismic response from well-
logs, the background anisotropy constants ε0 and δ0 could be estimated from the
logs, using Backus averaging (Backus [1962]) or an algorithm like the one presented
by Shapiro and Hubral [1995]. Anisotropy estimates at the appropriate scale can
also be taken from seismic in the way described by Hilterman [2001].

Let us compare this result directly to the result obtained by Rüger [1996] for a single
interface between two anisotropic layers with anisotropy contrasts Δε and Δδ:

Ra
PPRüger

(θ) =
1
2
Δδ sin2 θ +

1
2
Δε sin2 θ tan2 θ.

The anisotropy contrasts Δε and Δδ for the single interface can be translated to
equivalent background anisotropy constants ε0 and δ0 that drive the isotropic con-
trast B′ to produce the same anisotropy contribution to the reflectivity. Should the
situation arise where both intrinsic and layering-induced anisotropy are present (i.e.
a thick shale cap overlying a reservoir of stacked thin sandstones), then a proper
accounting of the effects on the reflection coefficients involves combining the Rüger
[1996] result with Equation (3.2.6). This case is written as:

RPP (θ) = Ri
PP (θ) + Ra

PP (θ) + Ra
PPRüger

(θ) (3.2.7)

where all terms are defined as before.
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Alternatively, Equation (3.2.4) could be written in terms of the ray-parameter p :

RPP (p) = A′ − 4B′β2
0p2 +

C ′

1 − α2
0p

2
. (3.2.8)

Realize, however, that when calculated for a stack of thin isotropic layers, RPP (p, z)
and RPP (θ, z) do not refer to the same physical experiments. Whereas RPP (p, z) is
the result of a single experiment with an incident plane wave with horizontal slowness
p, RPP (θ, z) can only be constructed from many different experiments with plane
waves selected to give the same angle of incidence at all depths z . For this reason
RPP (p, z) is preferred for the purpose of seismic-to-well matching.

Under the same weak anisotropy assumption, the anisotropy equations for α0 and
β0 in terms of the same ε0 and δ0 coefficients, can be re-written as a function of p:

α0 (p) = αi
0

[
1 + δ0α

i2

0 p2
(
1 − αi2

0 p2
)

+ ε0α
i4

0 p4
]

β0 (p) = βi
0

[
1 +

αi2

0

βi2
0

(ε0 − δ0)αi2

0 p2
(
1 − αi2

0 p2
)] (3.2.9)

When substituting these expressions in Equation (3.2.8), the result for Ra
PP (p) is

different because α0 now appears in the C ′ term, rather than in the B′ term. This
should not be surprising because, as pointed out above, RPP (θ, z) and RPP (p, z)
refer to different experiments. RPP (p, z) is the more physically meaningful quantity.
The contribution to RPP (p) , stemming from the anisotropy in the background, to
first order in ε0 and δ0 is:

Ra
PP (p) = − 8B′αi4

0 p4
(
1 − αi2

0 p2
)

(ε0 − δ0)

+
2C ′αi4

0 p4(
1 − αi2

0 p2
)2 [δ0

(
1 − αi2

0 p2
)

+ ε0α
i2

0 p2
]
.

When applied to a stack of thin layers, αi
0, δ0 and ε0 are slowly varying with depth

while B′ and C ′ are functions of depth at the fine scale.

The full elastic gather in Figure 3.10, computed from the logs shown in Figure 3.9,
shows no indication of thin layering induced velocity anisotropy. Both the linearly
modelled gather and the full elastic gather have been imaged with an anisotropy-free
(i.e. isotropic) background velocity field. If the full elastic modelling at the fine log
scale had introduced anisotropy, then the imaged gather would display anisotropic
pull-up, at the scale at which propagation effects can be observed. No such pull-up
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is observed. Figure 3.11 shows that the Thomsen parameters ε and δ for weak elastic
anisotropy, computed following Backus [1962], are quite small. This implies that the
reflectivity response must be dominated by the isotropic contribution.
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Figure 3.11: Backus average computed effective weak elastic anisotropy (Thomsen) parame-
ters for the logs shown in Figure 3.9.

Further investigation shows that this minimal induced anisotropic effect is not sur-
prising since Figure 3.12 shows that, on the basis of Backus averaging, the expected
maximum P-wave anisotropy of about 6.5 % and the expected maximum S-wave
anisotropy of around 18 % are not sustained over time durations long enough (or
thicknesses large enough, rather) to produce an observable pull-up.

As an illustrative example of how velocity anisotropy due to multiple scattering from
thin layering can be handled using the ray-parameter formulation of Equation (3.2.6)
is shown in Figure 3.13. The choice of values for ε0 and δ0 are made based on those
reported in Thomsen [1986], Alkhalifah et al. [1996], and Berryman et al. [1999].
Note the strong anisotropic pull-up, observed at the scale of the background.
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Figure 3.12: Backus average computed amounts of induced compressional-wave and shear-
wave anisotropy for the logs shown in Figure 3.9.

3.2.4 Analytic seismic amplitude forward modelling

Now consider, analytically, the seismic response to the subsurface seen in the well,
in terms of amplitude versus ray-parameter (AVP) amplitudes, imaged at the well
location. This is basically the imaging step, referred to in the previous section, that
extracts in-situ AVP amplitudes from surface recorded or forward modelled data.
The reason this analysis is relevant to wide-angle linear forward modelling, is that
non-linearities may be introduced when one picks the wrong scale for the velocity
field used in imaging and in the description of the stretch involved when imaging
wide-angle data.

In the data-driven approach taken within the DELPHI consortium, the seismic AVP
amplitudes are treated as being the result of successive shot-receiver re-focusing
(back-propagation). The one-way-travel-time re-focusing (back-propagation) oper-
ators required for this are obtained from the seismic data explicitly by use of the
Common Focal Point (CFP) technology [Thorbecke, 1997; Berkhout, 1997a,b].

In Figure 3.14 the well stick is shown at the location of the well xw. In the well, there
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Figure 3.13: An illustration of handling induced anisotropy with ε0 = 0.1 and δ0 = −0.005.
The left panel shows the isotropic linear response and the right panel shows the anisotropic
linear response.

are interfaces at depths zj with reflectivities Rj , calculated using Equation (3.2.4).
This is done at the original 0.1524m sampling of the logs, but having established the
linearity of the reflectivity operator, the reflectivities can be filtered and re-sampled
to the seismic sampling rate. The analysis begins at the point where there is a
re-focused receiver, positioned at depth zj in the well, recording data from a source
located at the surface at position xs. The re-focusing of the receivers to the location
(xw, zj) is performed using the one-way-travel-time re-focusing operator Tj (xw, xs).

For the signal recorded by the receiver at position (xw, zj) we write:

s (xs, 0;xw, zj ; t) =
∑

i

Ri (pij)
w(t − Tij)

Tij
(3.2.10)

where w(t) is the seismic source wavelet and where pij = sin (θij) /vi is is the slowness
of the wave reflected at the ith interface. Tij and θij are generally unknown, but for
i = j the relation Tjj = Tj holds, which is the re-focusing operator that is known,
and therefore θjj = θj . In Figure 3.14 an example position i > j is shown. The
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Figure 3.14: Diagram showing a set of horizontal reflectors at the well location. There is a
re-focused receiver location at depth zj , shot into from the surface source location xs. The
travel-time Tj is part of the one-way-travel-time re-focusing operator for depth zj . Arrivals
at the receiver location at zj from other reflectors have arrival times Tij .

geometrical meaning of Tij is then immediately clear. Bear in mind, however, that
Equation (3.2.10) describes a re-focused record and that Tj is not the first arrival
time, but is preceded by reflections related to the interfaces for which i < j . Tij for
i < j is perfectly well defined, but there is no simple geometrical interpretation of it,
like for the case where i > j. Subsequent re-focusing of the sources to the location
(xw, zj) would create a full stack image there. For the extraction of AVP amplitudes,
however, we do not integrate over all source positions, but only over those from
which the rays arrive at the reflection point (xw, zj) with slowness pj = sin (θj) /vj .
In the Common Focal Point (CFP) technology developed at Delft University of
Technology [van de Rijzen, 2007] this information is explicitly available, but there
are other imaging techniques where the image gathers in offset can be translated to
ray-parameter, or incident angle, at the reflection point (i.e. ray-parameter or angle
gathers).

Analytic extraction of AVP amplitudes from the record described by Equation (3.2.10)
now simply means filling in Tj for t in Equation (3.2.10) and correcting the ampli-
tudes for propagation effects by multiplying by Tj , resulting in:

a (zj , pj) =
∑

i

Ri (pij)
Tj

Tij
w (Tj − Tij) . (3.2.11)
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In the summation over i in Equation (3.2.11), the jth term w(0)Rj (pj) contains the
desired information on the reflector at zj , whereas the remainder of the summation:∑

i �=j

Ri (pij)
Tj

Tij
w (Tj − Tij)

describes the interference effects from surrounding reflectors, due to the non-zero
length of the seismic source wavelet. For a delta-pulse wavelet the interference
contribution to Equation (3.2.11) would disappear.

In the following analysis, assume that the seismic wavelet w(t) is short compared to
the one-way-travel-times Tj . This means that in the summation in Equation (3.2.11)
only a relatively small number of neighboring interfering reflectors need to be con-
sidered. Also assume that in the small neighborhood around the jth reflector the
following approximations hold:

Tj

Tij
≈ 1

sin (θij) ≈ sin (θj)

pij ≈ pj

Tij − Tj ≈ 2 cos (θij)
i∑

k=j+1

d

vk

(3.2.12)

where d is the layer thickness. Introducing the pseudo-two-way-travel-times:

τi = 2
i∑

k=1

d

vk
and τj = 2

j∑
k=1

d

vk
(3.2.13)

and using the above approximations, Equation (3.2.12) can be written as:

Tj − Tij = (τj − τi)
√

1 − p2
jv

2
j .

Equation (3.2.11) then reads:

a (τ, p) =
∑

i

Ri (p) w
[
(τ − τi)

√
1 − p2v2

]
. (3.2.14)

where we dropped all subscripts j because τ now becomes the running variable for
all depth points for which AVP amplitudes are extracted. From the discussion on
the band-width of the geometrical velocity information in seismic data, it should
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now be clear that for the velocity function v in Equation (3.2.11) one should use
the narrow band low frequency velocity function α0. The approximations made in
Equation (3.2.12) are consistent with this.

The trace a(τ, p) in Equation (3.2.14) looks like a simple convolution of the primary
reflection series R(τ, p) with a stretched seismic wavelet w(τ/ζ), where

ζ =
1√

1 − p2α2
0

is the well known stretch factor. Note that Equation (3.2.14) is not an exact con-
volution because α0 in the stretch factor ζ depends on the pseudo-time τ . Given
the length of the seismic wavelet and the slowly varying character of α0, this non-
linearity is negligible.

Equation (3.2.14) illustrates the fundamental problem of reduced resolution for illu-
mination with oblique incidence and is generally valid, independent of the imaging
algorithm used. Equation (3.2.14) is derived here because stretch is an inevitable
consequence of using wide angle seismic. With the help of the background velocity
function, which has such a scale that it can be derived from seismic, one can cal-
culate the stretch as a function of slowness and account for it in the seismic-to-well
match. It is interesting to note that the non-linearity that would be introduced when
using a fine scale velocity model in Equation (3.2.14) is of the same nature as the
non-linearity observed if using Equation (3.2.2) instead of Equation (3.2.4) for the
modelling of the reflectivities.

Although stretch cannot be avoided as far as resolving the subsurface in depth or
pseudo-time is concerned, it can be avoided in a comparison of seismic and well-
derived amplitudes for the purpose of extracting the seismic source wavelet. Rather
than comparing the imaged data, analytically represented by Equation (3.2.14), with
the well reflectivities and obtain a stretched wavelet, we can propagate the well data
and the imaged seismic data back to the surface, as plane waves, and perform the
comparison in the linear Radon domain, which is a proper time domain where the
wavelet should be undistorted, as demonstrated below.

Under the same approximations as made before ( θij ≈ θj and pij ≈ pj ) and using
Equation (3.2.13), Equation (3.2.14) can be re-written as:

a (τj , p) =
∑

i

Ri (p) w

(
j∑

k=1

2d

vk

√
1 − p2v2

k −
i∑

k=1

2d

vk

√
1 − p2v2

k

)
. (3.2.15)

Propagating this amplitude as a plane wave to the surface through a stack of hori-
zontal plane layers with velocities 1

2vj , means assigning the sample a (τj , p) to time
t of the time-trace s (xw, t, p) at the surface, where:

t =
j∑

k=1

2d

vk

√
1 − p2v2

k
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is the propagation time of a slanting plane wave from depth zj to the well-head.
This then gives:

s (xw, t, p) =
∑

i

Ri (p) w

(
t −

i∑
k=1

2d

vk

√
1 − p2v2

k

)
, (3.2.16)

which indeed shows the undistorted wavelet w(t). Note that Equation (3.2.16) is
just a trick to avoid stretch in the seismic-to-well comparison. Since both the well
data and the imaged seismic are propagated to the surface using a well-derived
horizontally layered velocity model, Equation (3.2.16) will never represent the true
linear Radon transform of a surface seismic record. If we do not use imaged data
as a starting point for our quantitative analysis, the stretch can simply be avoided
by considering fully redatumed seismic data at the top of the logged interval. This
data can directly be compared to the synthetic data modelled from the logs.

3.3 Compressional-to-shear mode modelling

P-S converted wave amplitude modelling is beset with many of the same problems
as P-P modelling. Figure 3.15 illustrates the application of the Zoeppritz [1919]
P-S equation to a standard set of α, β, and ρ logs. This represents using the P-S
Zoeppritz equation to model primaries-only seismic amplitudes in a layered earth
situation.

On the left-hand side is the result of applying the Zoeppritz P-S reflectivity operator
to unfiltered logs followed by the application of high-cut filtering. On the right-hand
side is the result of first high-cut filtering the logs and then applying the P-S operator.
As in the P-P case, these results should be identical. This image demonstrates that
for the long offsets, large ray-parameters, or wide angles, filtering and reflectivity
computation are also not commutable operations in the P-S case. This is particularly
noticeable once the ray-parameter being considered is greater than half the critical
ray-parameter. Therefore, the P-S Zoeppritz equation is not consistent with the
underlying seismic data model in a long offset layered earth situation. Furthermore,
in the same manner as the P-P case, Figure 3.16 illustrates the inaccuracy of the
operator for long offset layered earth modelling. The P-S Zoeppritz response (left) is
compared to the full-waveform response (right). Notice the progressive breakdown
in the accuracy of the Zoeppritz response at longer and longer offsets.

Aki and Richards [2002] simplifies the non-linear P-S equation in the same way as the
P-P equation and this linearised approximation, with respect to potentials instead
of particle displacement, is:
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Figure 3.15: An example of how the P-S Zoeppritz equation is inconsistent with the assumed
time-invariant convolutional model for seismic data. The left panel shows the P-S Zoeppritz
reflectivities computed from input logs and then filtered. The right panel shows the result of
first filtering the logs and then computing the reflectivities.

RPS

(
θ̄
)

= −1
2

pβ̄

cos φ̄
(ξ0Δln ρ − ξ1Δln β)

ξ0 = 1 − 2β̄2p2 + 2β̄2 cos θ̄

ᾱ

cos φ̄

β̄

ξ1 = 4β̄2p2 − 4β̄2 cos θ̄

ᾱ

cos φ̄

β̄

ᾱ = (α1 + α2) /2
β̄ = (β1 + β2) /2
φ̄ = (φ1 + φ2) /2
θ̄ = (θ1 + θ2) /2

(3.3.17)

with
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Figure 3.16: Comparing the primaries-only P-S Zoeppritz response (left) and its correspond-
ing total elastic response (right). As the critical ray-parameter is approached, the primaries-
only amplitudes becomes inaccurate.

p =
sin θ1

α1
=

sin θ2

α2
=

sin φ2

β2
=

sin φ1

β1
(Snell’s Law).

Figure 3.17 illustrates that Equation (3.3.17) is also a reflectivity operator that
violates the assumed convolutional/linear seismic data model in a layered earth.
Again it is seen that this operator does not preserve commutability with filtering.
Furthermore, Figure 3.18 shows that Equation (3.3.17) is also inaccurate at long
offsets.

3.3.1 A linear P-S velocity-separated forward model

As in the P-P case, using Equation (3.2.3), instead of ᾱ and β̄, in Equation (3.3.17)
and noting that α1B

′ and β1B
′ are now second order quantities, the first order

linearisation in terms of contrasts against a background is:
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Figure 3.17: The linearised P-S Aki and Richards equation also violates the assumed data
model for seismic measurements. The left panel shows the result of computing linearise P-S
reflectivities and then filtering. The right panel shows the result of first filtering the input
wire-line logs and then computing the reflectivities.

RPS (θ) = −1
2

pβ0

cos φ
(ξ0Δln ρ − ξ1Δln β)

ξ0 = 1 − 2β2
0p2 + 2β2

0

cos θ

α0

cos φ

β0

ξ1 = 4β2
0p2 − 4β2

0

cos θ

α0

cosφ

β0
.

(3.3.18)

Using Snell’s law to rewrite Equation (3.3.18) in terms of p gives:
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Figure 3.18: Comparing the linearised P-S response (left) and the full elastic P-S response
(right) shows that, at the long-offsets, the primaries-only amplitudes are still inaccurate.

RPS (p) = −1
2

pβ0√
1 − β2

0p2
(ξ0Δln ρ − ξ1Δln β)

ξ0 = 1 − 2β2
0p2 + 2β2

0

√
1 − α2

0p
2

α0

√
1 − β2

0p2

β0

ξ1 = 4β2
0p2 − 4β2

0

√
1 − α2

0p
2

α0

√
1 − β2

0p2

β0
.

(3.3.19)

The linearity offered by the reflectivity operator Equation (3.3.18) is shown in Fig-
ure 3.19 and its comparison to the P-S full elastic response is shown in Figure 3.20.
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Figure 3.19: The left panel shows the result of computing reflectivities and then filtering using
the P-S velocity-separated equation, while the right panel shows the result of first filtering
and then computing reflectivities.
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Figure 3.20: Comparing the P-S velocity-separated response (left) and the full elastic P-S
response (right) shows that the primaries-only amplitudes are now more accurate at long
offset.
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3.3.2 Layering induced anisotropy

Following from the case of P-P anisotropy [Thomsen, 1993; Rüger, 1996; Tsvankin,
2001] and linearising in accordance with weak elastic anisotropy gives:

RPS (p) = Ri
PS (p) + Ra

PS (p) (3.3.20)

with Ri
PS(p) defined by Equation (3.3.19) and

Ra
PS (p) =

1
2

(ξ2Δln ρ − ξ3Δln β)

ξ2 =
c

d
+

g

h
+

k

l

ξ3 =2
(
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h
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k

l

)

c =
β0p√
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]
.

As an illustrative example of how velocity anisotropy due to multiple scattering
from thin layering can be handled using the ray-parameter formulation of Equa-
tion (3.3.20) is shown in Figure 3.21. The choice of values for ε0 and δ0 are made
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based on those reported in Thomsen [1986], Alkhalifah et al. [1996], and Berryman et
al. [1999]. Note the strong anisotropic pull-up, implying that induced anisotropy has
a very pronounced effect on P-S converted wave seismic and should not be neglected.
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Figure 3.21: An illustration of handling induced anisotropy with ε0 = 0.1 and δ0 = −0.005.
The left panel shows the isotropic linear P-S response and the right panel shows the
anisotropic linear P-S response.

3.4 Conclusions

Advances in seismic acquisition has created a need for innovation in seismic imag-
ing and characterisation. The fact that very long offset data maintains amplitude
fidelity, and its acquisition has now become routine, demands new methods to anal-
yse these long offset amplitudes. This chapter has developed an accurate method to
simulate long offset amplitudes that is in agreement with the assumed convolutional
model of seismic data.

The essence of the approach has been to achieve consistency between the assump-
tions underlying the seismic signal processing and imaging on the one hand, and the
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reflectivity model to be used for forward modelling and inversion, on the other. This
is particularly important if long offset seismic is to be exploited to extract informa-
tion about reservoir fluid saturation and effective stress, because it is in the long
offset domain that the customary ways to calculate reflectivity violate the linear
convolution data model that underlies the seismic data processing. Scale depen-
dency in the forward modelling is introduced when applying a non-linear method to
calculate reflectivities to match seismic data processed on the basis of a linear data
model. This chapter resolves this inconsistency by introducing a forward modelling
operator that is linearised in the earth input as far as physically meaningful.

For clarity it is good to review once more what is meant by linearity. The forward
system being considered is the whole seismic set-up, including sources, recording
and some data processing. The input to this system is the earth or a model of it,
the output is a seismic data set. The inverse system creates a quantitative image
of the earth from the seismic data set. According to the time-invariant convolu-
tion model the forward system should be strictly linear, but neither the P-P and
P-S Zoeppritz equations, nor the Bortfeld equation, nor even Equation (3.2.2) or
the P-S Aki and Richards equation are linear in this regard. The proposed Equa-
tions ( 3.2.4 ) or ( 3.2.8 ), and its P-S counterpart, are not strictly linear either. But,
within the range of applicability set by the physics of the problem, they serve the
purpose of allowing quantitative interpretation of long offset seismic amplitudes.

The key to a true linearisation of forward modelling of seismic data is the intro-
duction of a background velocity model in which all wave propagation takes place.
This one simple concept solves a host of nasty issues that have dogged quantitative
seismic interpreters ever since quantitative interpretation was invented, notably:
non-linearity in the linearized Zoeppritz equations (scale dependency), the angle-
of-incidence versus ray-parameter dilemma, the forward modelling of stretch and
the handling of induced anisotropy in linear forward modelling. As a result the
maximum angle of incidence (or ray-parameter or offset) allowable in linear forward
modelling is pushed much further out than would have been possible with conven-
tional two-term, or even three-term reflectivity approximations.

Reduced vertical resolution in imaging with waves with oblique angles of incidence
is an inescapable fact. Ever since NMO was invented this effect has been called
stretch. For forward modelling and inversion of long offset seismic, stretch is an
important factor that needs to be taken into account. When attempting to describe
stretch at the input log scale, it would constitute a strongly non-linear component
of the forward modelling process. In our linearised approach it comes out naturally
that stretch should be described at the scale at which the propagation of waves is
observed (i.e. in the background medium).

Layering induced velocity anisotropy can and should be taken into account in long
offset linear forward modelling, especially when considering a P-S converted wave
situation. This can be achieved by defining seismic scale ε0 and δ0 Thomsen parame-
ters in the background medium. There are several different approaches to obtaining
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these parameters from the log data. The most rigorous one is apply the statistical
method outlined by Shapiro et al. [1994] and Shapiro and Hubral [1995] Alterna-
tively, one could estimate ε0 and δ0 in the long wavelength limit from sequential
Backus averaging of the elastic parameters of the individual 0.1524m thick isotropic
layers represented by the log samples. Yet another approach would be running a full
elastic forward model at the 0.1524m log sampling scale and deriving ε0 and δ0 via
the Hilterman [2001] approach.
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4

Sparse pre-stack waveform inversion

4.1 Introduction

An immediate demand on quantitative seismic amplitude analysis technology is to
deliver a more detailed areal understanding of the reservoir. A particularly pressing
need is a quantitative map of the hydrocarbon saturation in the reservoir. Seismi-
cally estimating the reservoir density is the most direct way to address this need.
Traditionally, seismic density estimates have been considered inaccurate and un-
reliable due to various shortcomings in acquisition, processing, and quantitative
interpretation. Recent advances in acquisition and imaging have created a technol-
ogy push in characterization to explore density estimation by exploiting both the
compressional-to-compressional (P-P) mode and the compressional-to-shear (P-S)
mode amplitudes. Parameter estimation from pre-stack seismic amplitude data is
addressed in de Nicolao et al. [1993] via an eigenstructure analysis of a single inter-
face model. Veire and Landro [2001] demonstrate the ability to seismically estimate
density via the inversion of multi-component seismic data. A simulated annealing
(i.e. nonlinear) approach to the joint inversion problem is demonstrated by Dariu et
al. [2003], using small offset amplitude attributes (intercept and gradient) as input.
Mahmoudian and Margrave [2004] and Hampson et al. [2005] also put forth methods
to potentially estimate density from small offset seismic.

Chapter 4 extends these previous efforts to seismically estimate density and creates
a framework which furthers the use of seismic data in quantitative hydrocarbon
reservoir characterization and management. Within the paradigm of inverse theory,
the estimation of high-resolution reservoir rock properties from compressional wave
and converted wave data is cast as a linear-in-the-parameters optimization problem.
Through the formal separation of wave propagation and reflection effects, in addition
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to the inclusion of the seismic source wavelet’s ray-parameter dependency, all the
first order information carried in the pre-critical P-P and P-S seismic amplitudes
can be exploited through the forward models. Furthermore, the forward models
are combined for a simultaneous consideration of compressional and converted wave
pre-stack seismic amplitudes. The established inverse theory tools of least squares,
iteration, regularization, and singular value decomposition are employed to overcome
the ill-conditioning of the problem. In addition, these tools are used to handle the
noise corruption and band-limitation of seismic data. Numerical analysis shows this
inverse problem to have an optimal solution that is an accurate broadband reservoir
rock properties estimate. In turn, these broadband reservoir properties can be used
in quantitative seismic fluid detection.

Starting with the linear layered-earth P-P and P-S reflectivity equations devel-
oped in Chapter 3, forward model operators are constructed for compressional-to-
compressional mode and compressional-to-shear mode data. Then a simultaneous
forward operator is formed. Following this, a data driven approach to creating these
operators is reviewed. After presenting the forward problem, least-squares seismic
amplitude inversion is considered. Here, the concept of sparse regularization plays
a key role. It enables a better seismic characterization of the reservoir by moving
away from traditional band-limited parameter estimates and towards obtaining high-
resolution rock properties. Singular value decomposition (SVD) is employed to gain
a full understanding of the forward operators and the estimates they provide from
the seismic. In particular, the SVD clearly establishes the effect of parameterization,
how various parameterizations relate to different data, and shows the specific role
of sparse regularization. Various aspects of the discussion will be illustrated with
the use of the simple model shown in Figure (4.1) that consisting of an oil saturated
clastic reservoir embedded in a shale background.

4.2 Data prediction kernels

Analyzing any physical system begins by identifying a minimum set of parameters
that describe the system (i.e. the principle of parsimony), measurements of the sys-
tem, and a relationship that links the parameters to the measurements. As such,
parameter estimation begins by describing the observed data and means obtaining a
mathematical abstraction by which to predict the data given the parameters of inter-
est. This abstraction is a mathematical model that concisely captures the physics of
interest contained in the data and is called a data kernel, forward operator or model.
A model that captures all the physics can be claimed to be exact, but bear in mind
that even exact models are imprecise as the physics itself is an idealized description
of the observed natural phenomenon.
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Shale base rock: 0 = 2500 m/s, 0 = 1250 m/s, 0 = 2250 kg/m3

Shale cap rock: 0 = 2500 m/s, 0 = 1250 m/s, 0 = 2250 kg/m3

80% oil saturated sandstone reservoir:

= 2348 m/s, = 1373 m/s, = 2156 kg/m3

Figure 4.1: The elastic properties of an ideal 80% saturated oil bearing sandstone reservoir
with shale cap and base rocks.

4.2.1 The P-P case

Dey and Gisolf [2007] present the linear layered-earth P-P reflectivity equation that
is fully developed in Chapter 3. Being stable and accurate throughout the entire
pre-critical range for a horizontally layered earth, as well as incorporating 1st-order
layering effects, Equation (3.2.8) will be the base of the mathematical model for P-P
seismic data. Re-parameterizing from velocity and density reflectivities to acoustic
impedance reflectivity (δI

P
), shear impedance reflectivity (δI

S
), and density reflec-

tivity (δρ), the matrix representation of Equation (3.2.8) for a single ray-parameter
becomes

rPP =
[

A B C

]
⎡⎢⎢⎢⎢⎢⎣

δIP

δIS

δρ

⎤⎥⎥⎥⎥⎥⎦ (4.2.1)

where A, B, C are diagonal matrices with Aii = 1/
(
1 − α2

0i
p2
)
, Bii = −8β2

0i
p2,

Cii = 1 + 4β2
0i

p2 − 1/
(
1 − α2

0i
p2
)
, δIP =

[
1
2Δln α1ρ1 . . . 1

2Δln α
nt

ρ
nt

]T, δIS =[
1
2Δln β1ρ1 . . . 1

2Δln β
nt

ρ
nt

]T, δρ =
[

1
2Δln ρ1 . . . 1

2Δln ρ
nt

]T, α
i

= compressional-
wave velocity, β

i
= shear-wave velocity, ρ

i
= density, α0i

= background compressional-
wave velocity, β0i

= background shear-wave velocity, p = ray-parameter, and i ∈
[1, nt] is the ith pseudo-time sample τ [Dey and Gisolf, 2007]. Debski and Taran-
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tola [1995] show that the chosen parameters (δIP , δIS , δρ) are optimal for seismic
reservoir characterization, since it is this parameter set that can be reliably resolved
from seismic data. In addition, impedance and density reflectivities are deviations in
actual rock properties that can be directly related to reservoir hydrocarbon satura-
tion Sh and reservoir effective stress σeff . This is critical in quantitative integrated
hydrocarbon reservoir management.

Extending Equation (4.2.1) to the situation of many ray-parameters pi ∈ [p1, pnp
]

gives

RPP =

⎡⎢⎢⎢⎢⎢⎢⎣
rPP
1

...

rPP
np

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
A1 B1 C1

...
...

...

Anp
Bnp

Cnp

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
δI

P

δI
S

δρ

⎤⎥⎥⎥⎥⎥⎦ . (4.2.2)

Accounting for the band-limitation of seismic data and the ray-parameter depen-
dence of this band-limitation, means Equation (4.2.2) is multiplied by a block di-
agonal matrix WPP. This block diagonal matrix has Toeplitz convolution matrices
along the diagonal containing the ray-parameter dependent imaged source wavelets.
As is reported in Dey and Gisolf [2007], these wavelets have the functional form

w(t, p) = w
[
t
(√

1 − α0p2
)]

and Figure (4.2) illustrates the stretching effect of the p-dependence. Equation (4.2.2)
now becomes

dPP = GPPx = WPPRPP

=
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WPP

1 . . . 0

...
. . .
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0 . . . WPP
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1

...

rPP
np
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=

⎡⎢⎢⎢⎢⎢⎢⎣
WPP
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...
. . .

...

0 . . . WPP
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⎤⎥⎥⎥⎥⎥⎦

(4.2.3)
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Figure 4.2: The ray-parameter dependent P-P seismic source wavelets.

and the P-P data kernel is

GPP =

⎡⎢⎢⎢⎢⎢⎢⎣
WPP

1 A1 WPP
1 B1 WPP

1 C1

...
...

...

WPP
np

WPP
np

Bnp
WPP

np
Cnp

⎤⎥⎥⎥⎥⎥⎥⎦ .
(4.2.4)

4.2.2 The P-S case

Aki and Richards [2002] derive a linear P-S reflectivity equation for a single horizon-
tal interface. Chapter 3 extends their equation to be linear in a horizontally layered
earth by explicitly separating the macro-velocity field and the detailed-velocity field.
The single ray-parameter matrix-vector form of Equation (3.3.19), parametrized in
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terms of shear impedance reflectivity and density reflectivity, is

rPS =
[

D E

]⎡⎢⎢⎣ δIS

δρ

⎤⎥⎥⎦ (4.2.5)

where D and E are diagonal matrices with

Dii =
β3

0i
p3(

1 − β2
0i

p2
) 1

2
− β2

0i
p

α0i

(
1 − α2

0i
p2
) 1

2

and

Eii =
−β0i

p(
1 − β2

0i
p2
) 1

2
.

Equation (4.2.5), extended to many ray-parameters pi ∈ [p1, pnp
] reads:

RPS =

⎡⎢⎢⎢⎢⎢⎢⎣
rPS
1

...

rPS
np

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
4D1 E1 − 2D1
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...

4Dnp
Enp

− 2Dnp

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣ δIS

δρ

⎤⎥⎥⎦ . (4.2.6)

Equation (4.2.6) is multiplied by a block diagonal matrix, WPS, to account for
the ray-parameter dependent band-limitation of seismic data. As in the P-P case,
this block diagonal matrix has Toeplitz convolution matrices containing the ray-
parameter dependent P-S wavelets. These imaged wavelets have the functional form

w(t, p) = w

[
1
2
t

(√
1 − α0p2 +

α0

β0

√
1 − β0p2

)]

and Figure (4.3) illustrates the stretching effect of the p-dependence. The P-S
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Figure 4.3: The ray-parameter dependent P-S seismic source wavelets.

seismic data relation is now written as

dPS = GPSxPS = WPSRPS

=

⎡⎢⎢⎢⎢⎢⎢⎣
WPS

1 . . . 0

...
. . .

...

0 . . . WPS
np

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
rPS
1

...

rPS
np

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
WPS

1 . . . 0

...
. . .

...

0 . . . WPS
np

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
4D1 E1 − 2D1

...
...

4Dnp
Enp

− 2Dnp

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣ δIS

δρ

⎤⎥⎥⎦
(4.2.7)
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and the data kernel is

GPS =

⎡⎢⎢⎢⎢⎢⎢⎣
4WPS

1 D1 WPS
1 E1 − 2WPS

1 D1

...
...

4WPS
np

Dnp
WPS

np
Enp

− 2WPS
np

Dnp

⎤⎥⎥⎥⎥⎥⎥⎦ .
(4.2.8)

4.2.3 The joint P-P and P-S case

Combining the P-P and P-S forward operators and re-ordering along common ray-
parameter instead of common wave propagation mode allows the multi-component
(P-P,P-S) data equation to be written as:

d = Gx =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WPP
1 0 . . . 0 0

0 WPS
1 . . . 0 0

...
...

. . .
...

...

0 0 . . . WPP
np

0

0 0 . . . 0 WPS
np

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 B1 C1

0 4D1 E1 − 2D1

...
...

...

Anp
Bnp

Cnp

0 4Dnp
Enp

− 2Dnp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
δIP

δIS

δρ

⎤⎥⎥⎥⎥⎥⎦

(4.2.9)

and the (P-P,P-S) data kernel is

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WPP
1 A1 WPP

1 B1 WPP
1 C1

0 4WPS
1 D1 WPS

1 Enp
− 2WPS

1 D1

...
...

...

WPP
np

Anp
WPP

np
Bnp

WPP
np

Cnp

0 4WPS
np

Dnp
WPS

np
Enp

− 2WPS
np

Dnp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.2.10)
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Equation (4.2.9) is the fundamental system that needs to be solved using Equa-
tion (4.2.10) in order to estimate rock property reflectivities from band-limited multi-
component seismic data.

4.2.4 Data driven kernel estimation

Before using Equation (4.2.4), Equation (4.2.8), or Equation (4.2.10), the data ker-
nels must be calculated. Outputs from the imaging node of the Seismic Value Chain
(i.e. the data processing stage) enable this. A necessary by-product of preparing
the seismic data for amplitude analysis is a velocity model that explains the kine-
matics of the data. In addition to determining the location of subsurface reflectors,
it is precisely this velocity model that plays the role of the background velocity field
needed by the data kernel in an attempt to estimate reservoir lithology and pore-
fill. Furthermore, ray-tracing in this macro-velocity field gives the kinematic-scale
ray-parameters that are also required by the forward operator. Bjørke and Nilsen
[2005] present a statistical method of trend/background determination, but the most
common approach to estimating kinematic velocities is Migration Velocity Analysis
(MVA). In this process, an initial velocity macro-model is created in some way and
iteratively adjusted until the image gathers show flat horizontal events.

Thorbecke [1997] and Berkhout [1997a,b] present a fundamentally different approach
to imaging based on Common Focal Point (CFP) technology. The method is a data
driven approach that requires no a priori velocity model information. Building on
the Berkhout [1980] WRW-model, CFP technology estimates re-focusing (back-
propagation) operators [van de Rijzen, 2007] based on the principle of equal travel-
time. These re-focusing operators are one-way Green’s functions that are directly
estimated from the seismic data itself and not computed from an a priori veloc-
ity model. In other words, the back-propagation operators represent the surface
recorded responses from secondary sources (the so-called focal points) in the subsur-
face. Applying these operators to all subsurface points of the recorded wave-fields
allows for the focusing of seismic data without the need of a velocity model. A very
general summary of this focal transform approach to imaging is:

(a) estimate a focusing operator,

(b) generate a CFP gather,

(c) compute a Differential Time Shift (DTS) panel,

(d) if the zero-time event is not flat then pick the event,

(e) and use the picked event to update the focusing operator.



60 Sparse pre-stack waveform inversion

The process is illustrated in Figure (4.4). Final imaged/migrated data, and as-
sociated background velocity field, is created through via a wave-equation based
tomographic inversion of the focal operators themselves [Cox, 2004]. Estimating
the data kernels using the CFP approach allows reservoir characterization via lin-
ear model-based inversion of pre-stack seismic amplitude to be as data-driven as
possible.
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Figure 4.4: The Common Focal Point approach to seismic imaging (images courtesy of
doctordoctorandus Barbara Ellen Cox). Starting with an initial operator (a), compute the
CFP gather (b) and DTS panel (c). Based on the deviation from t = 0 of the picked event
(d), update the operator (e). Repeat steps (b) - (e) until the zero-time event in the DTS
panel is flat (f) and the correct focusing operator is obtained.
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4.3 Least-squares AVP-waveform inversion

From data prediction, the analysis of a physical system proceeds to inversion. De-
pending on the particular area of study, inversion is synonymous with parameter es-
timation, regression, optimization and systems/parameter identification. Tarantola
[2005] discusses that discovering the physics of a model and its minimal parameteri-
zation is inductive while inversion itself is, to a large extent, a deductive process. In-
version is defined as applying the methods of inverse theory [Menke, 1989; Tarantola,
2005] to make inferences about real world parameters given experimental measure-
ments and a relationship to these measurements. Specifically, the response of the
data kernels developed in the previous section are fitted to a finite set of pre-stack
seismic amplitude data in order to estimate the impedance and density reflectivities
of the earth. As all the forward data prediction relations (Equations 4.2.3, 4.2.7,
and 4.2.9) are of the explicit linear form f(d,x) = [I − G][d x]T = d − Gx = 0,
estimating the desired medium properties of the earth involves solving a linear in-
verse problem. The desired parameter vector x is approximated as the solution to
the optimization problem

minimize
x∈Rn

{
J = eTe = e · e = ‖d−Gx‖2

2

}
(4.3.11)

where J is the objective function, d is either P-P or P-S or joint (P-P,P-S) data,
G is the corresponding data kernel, ‖ · ‖2

2 is the square of the �2-norm, and x ∈ R
n

specifies that only real-valued parameter realizations are allowed. The solution x is
such that ∇J(x) = 0. Equation (4.3.11) is a least-squares problem and its solution
is

x =
(
GTG

)−1

GTd.

Lines and Treitel [1984] lucidly review the mathematical robustness of least-squares
for parameter estimation from real seismic data, whose nature tends to be “in-
accurate, insufficient, and inconsistent” [Jackson, 1972]. The data kernels Equa-
tion (4.2.4), Equation (4.2.8), and Equation (4.2.10) all capture the amplitude-
versus-ray-parameter (AVP) nature of the data and also account for the ray-parameter
dependence of the imaged source wavelet (i.e. source waveform/wavelet stretching
effect). As such, Equation (4.3.11) is more correctly termed a linear least-squares
AVP-waveform inverse problem.

4.3.1 The data, the kernel, and the SVD

Given the fact that seismic data is non-ideal and the kernel is always (somewhat)
deficient, difficulties are likely to arise while solving Equation (4.3.11). The singu-
lar value decomposition (SVD) is the most informative way of analyzing a linear
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inversion. SVD is analogous to spectral decomposition in terms of sinusoidal ba-
sis functions [Lines and Treitel, 1984] and, following Gill et al. [1991], allows an
arbitrary m × n matrix G to be factored into the product

G = UΣVT

where U is an m×m orthogonal matrix, V is an n×n orthogonal matrix, and Σ is
an m × n diagonal matrix with diagonal elements being the s = min(m,n) singular
values σ (arranged in descending order). The number of non-zero σ’s is the rank
r of the matrix G. If r < s, then G is said to be singular or rank deficient and
σr+1 = σr+2 = · · · = σs = 0. In this case, the singular value decomposition proceeds
in a reduced form where only the non-zero σ’s are considered and the size of the
matrices U and V scale accordingly.

Estimating hydrocarbon reservoir rock properties from pre-stack seismic amplitudes
using a linear data kernel generally results in m ≥ n and the singular value decom-
position proceeds with the following steps:

− compute GTG,

− expand det
(
GTG − σ2I

)
into the characteristic polynomial,

− solve for the r non-zero eigenvalues and compute σ1 . . . σr,

− form Σ and compute Σ−1,

− find corresponding eigenvectors v1 . . .vr,

− form V = [v1, . . . ,vr] and compute VT,

− and, finally, compute U = GVΣ−1 = [u1, . . . ,ur] .

In the formal language of geophysical inverse theory, U is the rank r data space
matrix while V is the rank r solution space matrix and the columns of both span
their respective spaces [Menke, 1989]. This allows the AVP rock properties to be
written as

x̂ =
(
GTG

)−1
GTd =

1
σ1

v1u
T
1
d + · · · + 1

σ
r

v
r
uT

r
d =

γ1

σ1

v1 + · · · + γ
r

σ
r

v
r
. (4.3.12)

Hence, the SVD shows the least-squares solution to be a weighted sum of the so-
lution space eigenvectors. A very small weight γi/σi means that the contribution
of the corresponding term (γi/σi)vi to the solution will be negligible. Likewise, a
large weight causes its corresponding term to have a dominant effect on the solution.
Another diagnostic of the linear inverse problem that the SVD provides is through
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the singular values themselves. The ratio of the largest singular value to the smallest
singular value is called the condition number, or conditioning, of the problem. It is
a measure of the data kernel’s ability to recover the desired parameters. The smaller
the condition number the better suited the data kernel is for parameter estimation.
Very large, or infinite, condition numbers (corresponding to very small or zero sin-
gular values) indicate poor kernel structure. An alternative model parameterization
may address this problem by leading to better conditioning. While the singular
value decomposition can be simply and elegantly stated as a mechanical process, do
not be fooled! The algebra quickly grows exponentially without bound and becomes
intractable. For this reason, singular value decomposition is primarily employed as
a numerical tool to obtain information about the inverse problem at hand. To il-
lustrate how useful the SVD is, consider the ideal reservoir in Figure (4.1) and the
waveforms shown in Figures (4.2) and (4.3). SVD is used to assess seismic rock
property estimation as a function of data availability and model parameterization.

P-P data kernel conditioning

Figure (4.5) illustrates how various P-P amplitude inversion kernels behave as longer
offset information is available. The parameterization from this chapter in terms of
impedance and density (IP , IS , ρ) is compared to the parameterization from Chap-
ter 3 in terms of velocities and density (α, β, ρ). A third comparison is made to a
parameterization from Gisolf [2005] in terms of well as P-velocity, shear-modulus
and density (α, μ, ρ). Notice that the choice of parameterization directly impacts
the condition number behavior of the data kernel. Specifically, parameterizing in
terms of impedance and density seems to be the best behaved. This is in accor-
dance with reflectivity inversion analysis of Debski and Tarantola [1995]. As the
available data range gets closer and closer to the critical angle, the various param-
eterizations converge to the same conditioning. For all the data kernels considered,
the conditioning improves significantly as usable long-offset data becomes available.
However, this improvement does not arise gradually. It is seen that the condition
numbers are extremely high and then suddenly experience a rapid decrease. This
indicates that before this transition, seismic parameter estimation from P-P data
can be problematic. For the reservoir situation outlined in Figure (4.1), the avail-
able P-P data should span at least 60% of the pre-critical range if AVP-waveform is
to be undertaken.

P-S data kernel conditioning

The situation for P-S data is markedly different, as is seen in Figure (4.6). The
conditioning of the P-S inversion problem is two orders of magnitude lower than the
P-P case, at less than 30% of the critical ray-parameter. Furthermore, the condition
number curves possess the desirable property of smooth descent behavior so there
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Figure 4.5: The conditioning of various linear P-P AVP-waveform inversion kernels. These
kernels are parametrized in terms of velocities and density (α, β, ρ), impedance and density
(IP , IS , ρ), as well as P-velocity, S-modulus and density (α, μ, ρ). As the ray-parameter
ratio increase, there is longer and longer offset available for the inversion.

is no extreme behavior in the kernel. As in the P-P case, parameterizing in terms
of impedance and density facilitates the best problem conditioning. Contrary to
the P-P case, the different parameterizations do not converge in the P-S case. The
impedance-density formulation retains its advantage as the critical ray-parameter
is approached. The multi-component scenario of simultaneous considering P-P and
P-S data kernels has very desirable condition number behavior.

Joint (P-P,P-S) data kernel conditioning

For simultaneous multi-component inversion, Figure (4.7) shows that the condition-
ing comes under control at smaller offsets and has a strong but smooth descent.
In particular, joint (P-P,P-S) inversion has its best conditioning at the minimum
data range required to bring the conditioning of P-P inversion under control. The
implication from Figures (4.5), (4.6), and (4.7) is that road mapping of a seismic
project is essential. Should a project goal be seismically estimating reservoir rock
properties in a quantitative manner, then the minimal long offset data range that
needs to be acquired has to be assessed. Furthermore, the ability to properly pro-
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Figure 4.6: The conditioning of various linear P-S AVP-waveform inversion kernels. As the
ray-parameter ratio increase, there is longer and longer offset available for the inversion
and the conditioning improves.

cess this data in a true-relative-amplitude sense needs to be objectively considered.
Cyclical interactions in this manner can greatly improve the seismic understanding
of an area.

4.3.2 Quadratic regularization

In addition to ill-conditioning due to very small or zero singular values, least-squares
rock properties estimation can be ill-posed. Hadamard [1902] proposes that an ill-
posed problem is one that has no solution or one of which the solution is not unique
or is not a continuous function of the data. Hadamard himself believed these types
of problems to be a purely mathematical concern with no actual consequence or
physical significance. This proves to be incorrect as almost all industrially applied
inverse problems turn out to be ill-posed. Addressing these issues of ill-conditioning
and ill-posedness means regularizing the inverse problem.

Regularization is the inclusion in the inverse problem of additional, or constraining,
information about the solution. Geophysical inverse problems are regularized, most
commonly, by requiring the solution to be smooth. Levenberg [1944] introduces a
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Figure 4.7: The conditioning of various linear P-P-P-S AVP-waveform inversion kernels. As
the ray-parameter ratio increase, there is longer and longer offset available for the inversion.

regularization criterion that imposes smoothness on a least-squares solution. The
details of the method using this technique are fully developed by Marquardt [1963].
This Levenberg-Marquardt approach forces the solution to be smooth by bounding
the energy of the solution by some amount b. For this type of constraint, following
Lines and Treitel [1984], Equation (4.3.11) becomes

minimize
x ∈ Rn

{
J = eTe + ζ

(
xTx − b

)
= ‖d− Gx‖2

2 + ζ
(
‖x‖2

2 − b
)}

, (4.3.13)

where ζ is a damping parameter. Equation (4.3.13) is minimized when

x =
(
GTG + ζI

)−1

GTd. (4.3.14)

The multiplier ζ is also called the regularization, or trade-off, parameter and it
controls the amount of smoothness imposed on the solution. This is the classical
damped least-squares, or minimum quadratic norm, solution. The factor ζ damps
the non-smooth components of x and ζI can be viewed as a specific type of Tikhonov
[1963] regularizer. To achieve even greater smoothness, iterative non-linear least-
squares is used where Equation (4.3.14) is iterated and the damping factor ζ is
multiplicatively adjusted with each iteration [Neumaier, 1998; Lines and Treitel,
1984].
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4.3.3 Nonquadratic regularization

Across many areas of physics, least-squares inverse problems arise where smooth so-
lutions are not desired. These problems aim for solutions with desirable properties,
other than smoothness, by introducing non-quadratic regularization. The concept
comes from the field of robust statistics where the goal is to diminish the influence of
data outliers by imposing non-quadratic norms on the data space. When the desire
is to have a non-smooth parameter estimate, the goal is to minimize the effect of pa-
rameter outliers by applying non-quadratic norms to the model space. This approach
is successfully applied to estimate sparse (i.e. non-smooth) solutions for a wide range
of geophysical inverse problems. Sacchi and Ulrych [1995] use a Cauchy norm to re-
construct velocity gathers, while sparse inversion with a generalized Cauchy norm
is used in the Fourier domain by Zwartjes [2005] to interpolate missing seismic data
traces. Other geophysical applications of least-squares with non-quadratic regular-
ization include the inversion approach to 3-D surface related multiple elimination
[van Dedem and Verschuur, 2005], implementing the radon transform [Trad et al.,
2003], and the wavelet deconvolution problem [Sacchi, 1999]. A simultaneous inver-
sion approach to the AVO and NMO problems that explores the Cauchy regularizer
is presented by Downton and Lines [2003] in a Bayesian framework.

In the same way, estimating broad-band differential rock properties through an it-
erative least-squares scheme with non-quadratic regularization is presented here.
The Cauchy norm is the non-quadratic regularizer of choice. This results in sparse,
broad-band, non-smooth, parameter estimates. Of course, the validity of imposing
sparsity on the solution is only as good as the assumption that the input seismic
data can be represented as the superposition of the earth’s reflections. That is to
say, the sparsity constraint on rock properties estimates is valid as long as the time-
invariant convolutional data model of seismic processing holds true. Consequently,
the following objective function is defined for high-resolution linear AVP-inversion:

minimize
x ∈ Rn

{
J = eTe + R = ‖d− Gx‖2

2 + ςξ (x)
}

, (4.3.15)

where ξ(xi) = ln
(
1 + x2

i /ν2
i

)
is the Cauchy norm, ς is the trade-off parameter,

and νi is the Cauchy regularization parameter. This objective function is simply
Equation (4.3.13) with the Cauchy norm, instead of

(
‖x‖2

2 − b
)
, for regularization.

One drawback to this particular type of nonlinear regularization is that the Cauchy
norm is not convex and, therefore, modern combinatorial optimization methods
cannot be used. This does not pose a serious problem as the sparse solution can be
sought by a classical method. Equation (4.3.15) is minimized using classical iterative
re-weighted least squares (IRLS) on the normal equations. The minimum structure
(or sparse) differential rock properties are determined via

x(k) =
[
GTG + ςQ(k−1)

]−1

GTd (4.3.16)
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where Q(k−1) is a diagonal matrix with

Q
(k−1)
i,i =

2

ν2 + x(k−1)
i

,

and the iteration, starting at 1, terminates once a prescribed tolerance is met or the
specified maximum number of iterations is exceeded. As three parameter vectors of
differential rock properties are to be estimated from band-limited noise-corrupted
seismic amplitude data, both hyper-parameters ς and ν must be dynamic in nature.
That is to say, they are typically different for each property vector being estimated
and must be adapted accordingly. This is termed dynamic diagonal regularization.
The SVD form of this iteration is

x(k) =
σ1

σ2
1

+ ς1Q
(k−1)
1,1

v1u
T
1
d + · · · + σ

r

σ2
r

+ ς
r
Q(k−1)

r,r

v
r
uT

r
d

=
γ1σ1

σ2
1

+ ς1Q
(k−1)
1,1

v1 + · · · + γ
r
σ

r

σ2
r

+ ς
r
Q(k−1)

r,r

v
r
. (4.3.17)

Equation (4.3.17) is an iterative weighted sum of the solution space eigenvectors. If
the value of a particular weight is dominated by Q

(k−1)
i,i , then the contribution to the

solution of the corresponding term comes primarily from the sparsity constraint. In
both Equation (4.3.16) and Equation (4.3.17), the hyper-parameters play a key role
in regularizing the estimation of parameters and in imposing desired properties on
the parameter estimates themselves. Unfortunately, determining these parameters
beforehand is not possible. Neumaier [1998] reviews the mathematical properties of
regularization for estimates to be optimal, with attention paid to how the quantities
such as ς and ν should be determined. Within the context of solving geophysical
inverse problems, Farquharson and Oldenburg [2004] compare automated hyper-
parameter determination by the generalized cross-validation approach to the L-curve
approach.

Qualitatively, IRLS with nonlinear regularization yields results that are similar to
post-stack sparse spike inversion but have very different interpretations. A post-stack
sparse-spike inversion results from optimizing a solution to an �1-problem. Here, the
objective/cost function is designed to minimise the effect of noise on the solution
and, in doing so, a sparse solution is found. On the other hand, Equation (4.3.15)
seeks to optimize an �2-problem with informative nonlinear a priori information. In
this case, an assumption is made about the structure of the solution (i.e. it is sparse)
and an earth model is sought with this structure that is a least-squares best-fit to the
acquired data. That is, the problem at hand is one of making inferences about some
desired parameters from imprecise observations and additional knowledge. Formal
analysis in this manner should be carried out in a probabilistic/Bayesian framework.
Tarantola [2005] uses probability theory and Bayes’ Rule [Bayes, 1763] to show that
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a regularized least-squares solution has the form

x =
(
GTC−1

d G + C−1
x

)−1 (
GTC−1

d d + C−1
x x0

)
, (4.3.18)

where C−1
d is the inverse data/noise covariance matrix, C−1

x is the inverse covariance
matrix of the a priori information, and x0 are the prior parameter estimates. The
proposed iteration, Equation (4.3.16), with nonlinear regularization, results from as-
suming that the uncertainties follow a normal/Gaussian distribution and that the a
priori probability follows a Cauchy distribution. By comparison to Equation (4.3.18),
it is seen that Equation (4.3.16) has C−1

d = I, C−1
x = ςQ (x), and x0 = 0. Map-

ping uncertainties in the data and the data kernel onto the parameter estimates is
achieved via C−1

d . Constraining information, or a priori knowledge, maps onto the
estimates through C−1

x . If the non-trivial construction of C−1
d is possible, then Equa-

tion (4.3.18) delivers a least-squares solution with uncertainty estimates. Downton
[2004] discusses how to form C−1

x using local geological information and rock physics
so that the problem incorporates as much geological knowledge as possible.

As an alternative to using the normal equations GTGx = GTd in solving a linear
least-squares problem, Saunders [1996] suggests forming an augmented system and
use a Cholesky matrix factorization based method. This factorization approach is
preferred when the inverse problem is very large and horribly ill-conditioned. Gill et
al. [1991] notes that decomposing into Cholesky factors instead of using the normal
equations is also desirable because the conditioning will be better than when the
normal equations are used and the process of forming the normal equations can
potentially lead to numerical information loss.

4.4 Quantitative Seismic Fluid Detection

Integrated hydrocarbon reservoir management is proving to be ideal for optimal pro-
duction and development of a field. An accurate and reliable seismically estimated
map of hydrocarbon saturation Sh, or the change in hydrocarbon saturation ΔSh

(where Δ now means time-lapse change), is vital to this process. This is because seis-
mic is the only measurement that commonly exists between wells that can guide the
reservoir simulator. Given recent advances in the time-lapse seismic method, quan-
titatively estimating maps of ΔSh with minimal reliance on a rock physics model
looks feasible.

If the input to the previously discussed inverse problem is time-lapse multi-component
seismic data, then the estimated time-lapse density reflectivity parameter Δr

ρ
(where

r
ρ
≡ δ ln ρ) may be converted to a time-lapse interval density Δρ. In turn, this Δρ

can be used to estimate ΔSh. So long as the time-lapse compressional wave reflec-
tion coefficients and time-lapse converted compressional wave reflection coefficients
have an absolute magnitude that is less than about 0.3, the Δρ can be estimated
from
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Δr
ρ
(τ) = Δd

[
1
2

ln ρ(τ)
]

by

Δρ = ρ0 exp

(
2

u=τ∑
u=0

Δr
ρ
(u)

)

where ρ0 is the background density, as is reported in Oldenburg et al. [1983].

Letting

ρB = φ
[
SB

h ρh +
(
1 − SB

h

)
ρw

]
and

ρM = φ
[
SM

h ρh +
(
1 − SM

h

)
ρw

]
represent the densities for the baseline (B) and monitor (M) surveys allows the Δρ
to be defined as

Δρ = ρB − ρM

= φ (ρh − ρw)
(
SB

h − SM
h

)
= φ (ρh − ρw) ΔSh,

where φ is the reservoir porosity, ρh is the hydro-carbon density, ρw is the brine
(water) density, ΔSh is the hydro-carbon saturation change, and Δ is the time-
lapse difference between the baseline and monitor surveys. Combining the two Δρ
expressions allows ΔSh to be estimated by the following:

ΔSh =
ρ0 exp

(
2
∑u=τ

u=0Δ
{
d
[

1
2 ln ρ(u)

]})
φ (ρh − ρw)

.
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4.5 P-P inversion example

Noise-corrupted P-P amplitude data is generated for the ideal reservoir illustrated
in Figure (4.1). The data, shown in Figure (4.8), has a signal-to-noise ratio of 15
(SNR=15) and covers an angle of incidence range of 0◦ − 60◦ along the top of the
reservoir, where the angles increase in steps of 2.5◦. The angle range is converted
to ray-parameter p range using the shale background velocity of α0 = 2500(m/s).
As the critical ray-parameter is 4.0 × 10−4, the p-range investigated spans from 0%
to 86.6% of the critical ray-parameter. Although this is far beyond the standard
range of AVP-analysis, current marine acquisition technologies now obtain usable
angles up to 60◦ and it is reasonable to investigate using such long-offset data.
Notice that the near offset traces (i.e. 0%− 35% of the critical ray-parameter) have
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Figure 4.8: Noise corrupted pre-stack P-P amplitude input data for inversion.

very different waveform character than the middle and far offset ranges. Notice
the pronounced and non-negligible variation in the waveforms as the critical ray-
parameter is approached. These are exactly the kind of ray-parameter dependent
stretching effects handled by the wavelet matrices in the P-P data kernel.

Figure (4.9) shows how the P-P objective function behaves under iteration. Specif-
ically, it shows how Equation (4.3.15) behaves when Equation (4.3.16) is iterated
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with input data d from Figure (4.8) and Equation (4.2.4) as the data kernel G.
The objective function J rapidly decreases with the first 5 iterations of the non-

0 5 10 15 20 25 30
0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016
PP−inversion objective function

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Iteration number

Figure 4.9: The P-P residual misfit as a function of iteration number.

quadratically regularized least-squares parameter estimate and then seems to level
off. The IRLS solution developed in this chapter minimizes J to a final value of
7.2× 10−3 while the damped least-squares solution (equivalent to Equation (4.3.16)
after 1 iteration) minimizes J to 1.5× 10−2. In other words, non-quadratic regular-
ization finds parameters x that minimize J better than quadratic minimization.

Figure (4.10) shows these estimates of acoustic impedance reflectivity, shear impedance
reflectivity, and density reflectivity (δIP , δIS , δρ) against the actual rock property
reflectivities. For the for the incomplete, imprecise, and noise-corrupted data shown
in Figure (4.8), Equation (4.3.16) almost perfectly recovers the acoustic impedance
reflectivity while the shear impedance reflectivity is underestimated and the density
reflectivity is slightly underestimated. Integrating the reflectivities convert the esti-
mates from interface rock properties to layer rock properties. The layer properties
in Figure (4.11) show the underestimation, due to noise effects and a linear data
kernel, more clearly. Also seen is that the subtle noise imprint on the parameter
estimates, not visible when displayed as reflectivities, comes out after integration
as the background shale values are slightly different above and below the reservoir
unit. This is most evident on the density estimate.
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Figure 4.10: Interface rock properties estimated from sparse pre-stack inversion of P-P data.
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Figure 4.11: Layer rock properties after integrating the P-P interface property estimates.
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4.6 P-S inversion example

The mode conversion situation of compressional-wave-to-shear-wave is now consid-
ered. As before, P-S amplitude data with a signal-to-noise ratio of 15 is created for
the ideal Lego-block reservoir. The data, shown in Figure (4.12), covers the same
angle of incidence range along the top of the reservoir and has the same Δθ of 2.5◦.
As such, the p-range investigated is identical and spans from 0% to 86.6% of the
critical ray-parameter. The P-S data shows a gradual increase of amplitude with ray-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.6

0.7

0.8

0.9

1

1.1

  Ray−parameter ratio ( p/p
c
 )

 P
se

ud
ot

im
e 

(s
) 

Noise corrupted PS data (SNR=15)

Figure 4.12: Noise corrupted pre-stack P-S amplitude input data for inversion.

parameter at the very near offsets (i.e. at 0% − 15% of the critical ray-parameter),
followed by strong AVP-behavior out to about 65% of the critical angle, and then
a polarity reversal with brightening at the ultra-far offsets (from 70% to over 80%
of the critical ray-parameter). The amplitude behavior is quite complicated and
the converted wave data suffers from reduced offset-dependent stretch effects. The
implication is that imaging affects the multi-component waveform in a less severe
manner.

For the P-S case, Figure (4.13) shows the evolution of the objective function Equa-
tion (4.3.15) as Equation (4.3.16) is iterated. The iteration of Equation (4.3.16)
proceeds with input data from Figure (4.12) and Equation (4.2.8) as the data ker-
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nel. The objective function’s behavior is very different than in the P-P case. For
the first 15 iterations there is marginal reduction in the misfit. Then there is a rapid
descent to the minimum over the next 10 iterations before leveling out. The IRLS
approach finds an optimum x that minimizes J to 2.7 × 10−4 while the damped
least-squares solution delivers an optimal value for J as 5.96 × 10−4. While non-
quadratic regularization does reduce the residual by more than a factor of 2, it is
not as dramatic as the order of magnitude reduction seen in the P-P situation.
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Figure 4.13: The P-S residual misfit as a function of iteration number.

As for parameter estimates, in this case, only two interface rock properties are
estimated. This is because the P-S mode converted amplitudes only depend on shear
impedance reflectivity and density reflectivity. Figure (4.14) shows these estimates
of (δIS , δρ) against the actual interface rock property values.

When estimating reservoir parameters from P-S data, Equation (4.3.16) almost per-
fectly recovers both the shear impedance reflectivity and the density reflectivity.
However, as in the P-P case, converting to layer properties brings out subtleties
not present when the estimates are analyzed as interface properties. Integrating
the reflectivities to layer properties, Figure (4.15) shows the effects of noise and a
linear data kernel more clearly in that it is now seen that the shear impedance is
underestimated. Also seen is that both the shear impedance and density estimates
predict slightly different reservoir thicknesses than are actually present.
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Figure 4.14: Interface rock properties estimated from sparse pre-stack inversion of P-S data.
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Figure 4.15: Layer rock properties after integrating the P-S interface property estimates.
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4.7 Joint (P-P,P-S) inversion example

Finally, a situation where both the P-P and P-S datasets from Figures (4.8,4.12) are
considered simultaneously. The objective function’s behavior in Figure (4.16) now
shows how Equation (4.3.15) evolves when Equation (4.3.16) is iterated with ordered
multi-component input data as d and Equation (4.2.10) as the data kernel G. The
pattern is similar to the P-P case in that there is a rapid decline at first and then
the residual levels off. This implies that the P-P part of the optimization dominates.
Notice, however, that the descent to a minimum is faster and the initial misfit is
smaller than in the case of P-P data alone. This increase is due to simultaneously
considering all the data. In this situation of joint inversion, damped least-squares
gives the misfit J as 7.9 × 10−3 while the final residual value from IRLS is 3.8 ×
10−3. When compared to the inversion of P-P data alone, (P-P,P-S) inversion using
Equation (4.3.16) minimizes the objective to the P-P level in one step and then
continues the reduce the misfit function using the additional information from the
P-S data.
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Figure 4.16: The P-P-P-S residual misfit as a function of iteration number.

Simultaneous (P-P,P-S) inversion aims for same three rock properties estimates as in
the P-P case. Figure (4.17) and Figure (4.18) show these estimates of the interface
and layer properties, respectively. Notice that both the shear impedance and density
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estimates have improved from the P-P case. Also note that, since the acoustic
impedance does not factor into the converted mode, there is no appreciable change
in the acoustic impedance estimate.
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Figure 4.17: Interface rock properties from sparse (P-P,P-S) pre-stack inversion.

4.8 Conclusions

The application of stable and accurate linear, layered-earth, long-offset models, for
estimation of three rock properties reveals some interesting things. Despite the
notorious ill-conditioning and ill-posedness of AVP-waveform inversion, quantitative
reservoir rock property estimates can be made. This chapter shows that data kernels
built with the amplitude models developed in Chapter 3 and the imposition of non-
quadratic regularization on the least-squares solution enables reliable broadband
reservoir rock properties to be estimated from pre-stack seismic amplitudes. That
is to say, IF the data is multi-component AND it has sufficiently long offsets AND
there is an accurate background velocity field THEN linear target oriented high
resolution inversion can deliver three broad-band rock properties .

This quantitative reservoir characterization results from several factors working to-
gether. Foremost among these is long offset, wide angle, or large ray-parameter
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Figure 4.18: Layer rock properties after integrating the (P-P,P-S) interface properties.

data. There is no free lunch. Should more information be wanted from linear meth-
ods then more informative data must be acquired. For years, this was a problem
as amplitude fidelity at the required offsets could not be guaranteed. Innovations
in acquisition technologies can now deliver the data that is needed for quantitative
characterization.

It is not enough to have this input data. The input seismic amplitude data itself can
no longer be regarded as idealized delta functions from various layer interfaces in
the subsurface. These data are actually wave-amplitudes with associated waveform
effects that cannot be ignored at long offset. Accounting for these effects is crucial
for the full exploitation of the available pre-critical information. Another require-
ment is that P-S converted wave amplitudes are needed. The examples show that
P-S inversion delivers better estimates of parameters that suffer in P-P inversion
alone. Furthermore, considering P-S data simultaneous with P-P data improves the
conditioning and the parameter estimates.

Sparse, or non-smooth, rock properties that exploit the robustness of the �2-norm
have been shown to be achievable through non-quadratic regularization. It should
be noted, however, that low-frequency initial models will still need to be constructed
to convert linear inversion results to absolute layer properties. Also shown is how
to use the singular value decomposition to evaluate the parameterization of the
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AVP-waveform inversion problem, how it can be used to assess the added value
of long-offset data, and how the data and regularization contribute to the rock
property estimates. Another aspect is that the non-quadratically regularized least-
squares solution to the pre-stack amplitude inversion problem is shown to be an
idealized version of a Bayesian solution. This means that if a proper probabilistic
framework can be built, then high-resolution linear AVP-waveform inversion can
deliver quantitative rock properties estimates with uncertainty measures.



5

Application to field data

5.1 Introduction

Inverse theory is a powerful, well developed, tool that enables the inference of model
parameters given some set of observations. Solutions to problems of a practical
interest that involve using inverse theory typically begin by establishing a linearised
relationship, or model, or system, between the desired parameters and the available
data. Aki and Richards [2002], Downton and Lines [2003], and Tarantola [2005]
(among others) discuss the use of inverse theory to investigate geophysical problems
in various contexts. Due to the fact that seismic amplitude data are incomplete,
imprecise, and noise-corrupted, linear inverse theory cannot be applied in a straight
forward way to infer a possible earth system. As such, constraint (or regularisation)
is employed in seismic inversion to limit the family of feasible earth models admissible
to the solution space. Previous applications of regularised inverse theory to problems
in the oil and gas industry include, among others, the reconstruction of velocity
gathers [Sacchi and Ulrych, 1995] and surface related multiple elimination in three
dimensions [van Dedem and Verschuur, 2005].

There is a specific and immediate need for an efficient method to generate well-
resolved rock property estimates of the subsurface, using pre-stack seismic ampli-
tudes, in order to provide a more accurate picture of the hydro-carbon reservoir.
This chapter addresses this need by taking aspects of linear inverse theory, devel-
oped in Chapter 4, and applying it to create a novel and practical method to infer
sparse, high-resolution/well-resolved, rock properties from pre-stack compressional
wave seismic amplitude data. This method evolves from current industry standard
techniques for linear inversion and is a natural extension of the solution to the
classical damped least-squares problem. The final deliverable is a pre-conditioned



82 Application to field data

conjugate gradient algorithm that performs minimum structure, broad-band, least-
squares inversion of pre-stack seismic field data.

Following this theoretical development, the algorithm is applied to seismic data
acquired over a glauconitic sandstone reservoir in Alberta, Canada. The seismic
interpretation reveals three direct hydrocarbon indicators from the amplitude be-
havior. Though suffering from some lateral coherency and wavelet problems, the
inversion confirms all of these indicators and identifies an additional one. Further-
more, the results of the inversion demonstrate that the proposed method successfully
identifies the reservoir and its properties at a significantly higher resolution than is
currently available with standard, commercially available techniques and that the
results are more geologically plausible. The overall message from this case study is
that sparse, broad-band/well-resolved, seismic reservoir characterization is possible
from field acquired pre-stack seismic amplitude data. Generally, this case study en-
deavors to illustrate how linearised inverse theory can be used as a framework to
further the use of seismic data in quantitative hydrocarbon reservoir characterization
and management.

5.2 Practical implementation

Dey et al. [2006] shows that minimizing

J (y) = ‖d− My‖2
2 + λ2

N∑
i=1

ln
(

1 +
y2

i

σ2
i

)
(5.2.1)

leads to minimum structure (or sparse) estimates of the subsurface elastic param-
eters. In Equation (5.2.1), d is the pre-stack P-P seismic amplitude data, M is
the robust model (or physical system matrix) described in Dey and Gisolf [2005],
λ is the regularisation/trade-off parameter controlling the sparsity of the solution,
ΣN

1 ln(1 + y2
i /σ2

i ) is the regularisation term, yi is the ith model parameter, σi is the
the ith scale factor and N is the total number of model parameters. This objec-
tive function is simply the least-squares solution with a Cauchy norm, instead of a
minimum quadratic norm, for regularisation. In same manner as in Sacchi and Ul-
rych [1995], Equation (5.2.1) is minimized using classical iterative re-weighted least
squares to obtain

y(k) =
{
MTM + λ2Q

[
y(k−1)

]}−1

MTd, (5.2.2)

where Q is a diagonal matrix which, for the kth iteration,has elements
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Qjj =
1

1 +
[
y
(k−1)
j /σ

(k−1)
j

]2 . (5.2.3)

Direct implementation of Equation (5.2.2) and iterating until convergence is not
advised when dealing with realistic data volumes. The two primary reasons to
avoid this approach are that it does not exploit the fact that Equation (5.2.1) is a
sparse linear system of normal equations (Figure (5.1)) and it does not recognize
the fact that the convergence of the iteration can be quite slow (if it converges at
all). Equation (5.2.2) can be used to understand and illustrate the effect of non-
quadratic Cauchy norm regularisation in example situations but is not of practical
use for inverting field seismic data.
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Figure 5.1: A representative data kernel from CDP330 with angle of incidence θ = 20◦.
Notice the sparsity of the system in that very few matrix elements are non-zero.

Saad [2004] gives a rigorous overview of iterative methods for sparse linear systems,
with special attention paid to efficient methods for solving a large system of normal
equations. In particular, pre-conditioning the system before iteration and using the
method of conjugated gradients is one way to rapidly obtain a solution. Successful
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preconditioning strategies for seismic inverse problems have been reported by Trad
et al. [2003] and their approach of finding an appropriate pre-conditioner is employed
to solve inverse problem at hand.

Notice that, for a known Q, a y that minimizes Equation (5.2.1) is similar to the
solution of

J (y) = ‖d− My‖2
2 + λ2

∥∥∥Q1/2y
∥∥∥2

2
. (5.2.4)

A change of variables where we let z = Q1/2y transforms Equation (5.2.4) to

J (z) = ‖d−MPz‖2
2 + λ2 ‖z‖2

2 , (5.2.5)

where P = Q−1/2 is a diagonal matrix pre-conditioner which, for the kth iteration,
has elements

Pjj = Q
−1/2
jj =

√
1 +

[
y
(k−1)
j /σ

(k−1)
j

]2
. (5.2.6)

Minimizing this new objective function is a Tikhonov-type problem [Hansen, 1998]
and Equation (5.2.5) is re-written as

J (z) =
∥∥∥∥(d

0

)
−
(
MP
λ2I

)
z
∥∥∥∥2

2

. (5.2.7)

Setting
(
d
0

)
= b,

(
MP
μI

)
= A, and x = z transforms the original problem in Equa-

tion (5.2.1) into standard form

J (z) = ‖b− Ax‖2
2 . (5.2.8)

In same manner as Sacchi and Liu [2005], Hansen [1998], and Wang [2005], the
following pre-conditioned conjugate gradient procedure for the efficient estimation
of sparse/blocky rock properties from acquired pre-stack seismic amplitudes is pro-
posed.
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d ⇐ data; M ⇐ model; ε ⇐ tolerance; z0 ⇐ initial guess;

P0 = Q−1/2 (z0)

FOR ALL u ∈ [0, 1, . . . , umax] (start update loop)

s0 = d− MPuz0

r0 = PT
uMTs0

p0 = r0

q0 = MPup0

FOR ALL i ∈ [0, 1, . . . , imax] (start iteration loop)

αi+1 =
(
rT

i ri

)
/
(
qT

i qi

)
zi+1 = zi + αi+1pi

si+1 = si − αi+1qi

ri+1 = PT
uMTsi+1

if rT
i+1ri+1 ≤ ε then BREAK

βi+1 =
(
rT

i+1ri+1

)
/
(
rT

i ri

)
pi+1 = ri+1 + βi+1pi

qi+1 = MPupi+1 END (end iteration loop)

Pu+1 = Q−1/2 (zi) END (end update loop)

Figure 5.2: A pre-conditioned conjugate gradient algorithm with restarts.
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5.3 Land data case study

The theory and algorithm of the preceding section is now considered within the
framework of a quantitative interpretation case study where the goal is to assess
the method with respect to an observed reservoir amplitude anomaly. Under con-
sideration is a mature sand trend in Alberta, Canada, where seismic data has been
acquired and the inversion methodology is applied to generate minimum structure
rock properties estimates. The validity of such sparse rock property estimates from
seismic can be seen following a consideration of geological scaling phenomena (or 1/f
geology). Pilkington and Todoeschuck [1990], working from the results of Walden
and Hosken [1985], show that the geophysical expression of many geological prop-
erties have power spectra of the form 1/f (i.e. they are scaling phenomena). They
conclude that the upper sedimentary part of the Earth’s crust exhibits a degree of
self-organisation. The macroscopic observations related to this so-called scaling ge-
ology are quasi-cyclic and blocky layering of the rock strata. Shtatland [1991] goes
on to theoretically justify these (multi)fractal spectra from a consideration of en-
tropy rate and shows blockiness to be a limiting case of quasi-cyclicity. In doing so,
the blocky/sparse/minimum structure assumption used in seismic inversion for rock
properties is given theoretical justification and meaningfulness in terms of geology.
Furthermore, this means that should the fractal nature of crustal rock layering be
uncovered, then a natural/fractal interpolation scheme could be derived that cor-
rectly goes from pore-to-seismic scale. Currently, this remains a challenging and
open problem.

5.3.1 Geological description

The reservoir zone of interest in this investigation is the Colony sand member of
east-central Alberta, Canada. This member is comprised primarily of shales, silt-
stones, coals and sands. It trends north/north-west and is the uppermost unit of
the informal subdivision of the Manville Group [Royle, 2002]. Putnam and Oliver
[1980] note that the Colony member is commonly associated with thick shoestring
channel sandstones and define the depositional environment as channel sandstones
encased within siltstones, shales, coals, and thin-sheet sandstones. Three facies units
are associated with the Colony sand: the channel facies, the crevasse splay facies,
and the inter-channel wetland facies. This upper Manville sub-group is overlain
by the marine shales of the Joli Fou formation and Wrightman et al. [1981] show
that the reservoir sands are comprised of stacked paleochannels. While the stacked
paleo-sand-channels are known to be gas and oil bearing, in this particular area
the reservoir is gas charged. Figure (5.3) illustrates the depositional model for the
Colony sand member.
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facies
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Figure 5.3: The depositional model of the Colony sandstone and its three associated facies
units.

5.3.2 Minimum structure inversion

A 2-D seismic survey was acquired in this area and a single line was made available
for this study. From this line, every 10th common-depth-point (CDP) gather, with
each gather comprised of 8 traces, was extracted. In addition, 3 more gathers near
the start, middle, and end of the line are also used. Figure (5.4) shows the 23 gathers
to be used as input for the inversion. Note the brightening of seismic amplitudes
between 0.6s and 0.7s in the middle of the line.

After stacking these gathers, (Figure (5.5)) several hydrocarbon indicators are no-
ticed. Hilterman [2001] illustrates that a Class 3 gas sand amplitude anomaly
[Rutherford and Williams, 1989] appears as a bright spot on the stack section, the
amplitudes are fairly constant over the extent of the anomaly, a phase change can
occur off-structure at the reservoir edges, and the wavelet character is a trough-peak
pair under the North American polarity standard. All of these characteristics are
observed on the stack within the 0.60s-0.65s time window, between CDP numbers
10 and 15. The presence of multiple hydrocarbon indicators on the stack, combined
with regional analogue knowledge, leads to the interpretation of an inter-channel wet-
land facies (the peaks at approximately 0.625s) terminating against a gas charged
paleo-sand-channel facies.

Following this analysis of the stack section amplitude, the gathers are inverted us-
ing the minimum structure method presented in Figure (5.2). That is to say, the
least informative earth model that can adequately reproduce the data is sought.
An angle range of 5◦ to 23◦ is available for the inversion. This limited angle range
implies that the estimation of only 2 rock properties, at most, should be attempted
and is an example of data acquisition that fails to exploit the full reservoir char-
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Figure 5.4: The 23 common-depth-point (CDP) gathers, displayed in time, that are input
data for the pre-stack inversion. Cumulative trace number annotates the x-axis.

acterization potential of seismic amplitudes. In other words, the ultimate goal of
reservoir characterization was not road-mapped back through the data processing
to the acquisition survey design stage.

Parameterisation analysis

Since this is a bright spot anomaly, the gathers are used to estimate different rock
properties via various two-term parameterisations of Equation (5.2.1). The popular
intercept-gradient formulation (δIP ,G) of Shuey [1985] is not considered. This is be-
cause, traditionally, intercept and gradient have been extracted attributes obtained
by model fitting, rather than data inversion. Furthermore, the gradient is the rate
of change with which the intercept (or zero-offset reflectivity) response changes, not
a direct rock property. Instead, the acoustic-shear impedances (δIP , δIS) of Gidlow
et al. [1992], and the acoustic-Poisson impedances (δIP , δν) of Hilterman [2001] are
considered due to their direct link to lithology and fluids (as they are directly es-
timated rock properties). These have all been modified to explicitly separate the
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Figure 5.5: The common-depth-point (CDP) stack. Notice the amplitudes, between traces
10 − 15 within the time gate 0.60s − 0.65s (inside the rectangle), displaying features of a
traditional Class 3 anomaly.

kinematic and dynamic aspects of the reflection amplitudes as outlined in Chap-
ter 3. All of the parameterisations estimate the acoustic impedance reflectivity, or
intercept. This is the zero-offset response and should emphasize a bright spot. A
benefit of our limited angle range means that the CDP stack can be used as a rea-
sonable proxy for comparison to the filtered δIP estimates. The shear impedance
reflectivity and Poisson’s ratio reflectivity are both lithological properties which are
a measure of the integrity of the rock matrix. Ideally, both, Gidlow et al. [1992] and
Hilterman [2001] estimate one fluid related rock property and one lithology related
rock property. It remains up to the experimental design (i.e. the seismic survey)
and the kinematic background to determine which pair of rock properties are best
estimated from the data. That is to say, the kernels developed in Chapter 4 can aid
in evaluating an inversion’s quality. The singular value decomposition, or SVD, is
the tool to exploit in this respect.

Figure (5.6) shows, SVD computed, representative solution weights for the various
parameterisations. Recalling that the final earth model delivered by the inversion
is a weighted sum, Equations (4.3.12) and (4.3.17), allows one to see that both
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Figure 5.6: The, SVD computed, estimation weights for various inversion parameterisations.
Parameters with relatively larger weights will dominate the inversion solution.

parameterisations will give solutions that are dominated by a relatively small number
of parameters (an empirical justification of the sparsity assumption). Furthermore,
the weights for the Hilterman [2001] parameterisation are seen to be about 1.5-2
times as large as those for the Gidlow et al. [1992] parameterisation. Hence, it is
expected that the sparsity of the former to be stronger than that of the latter.

Independent of the weighted sum interpretation of a linearised inverse problem,
the singular values are a diagnostic tool for parameter estimation. The ratio of
the largest singular value to the smallest singular value, or condition number, is a
measure of how well suited the experimental design is for estimating the parameters
of interest. In other words, the condition number is a measure of reliability that
the desired rock properties (or geology) can be recovered from the seismic data.
This condition number can be computed a priori with a general knowledge of the
background geology and, as such, can be used to evaluate various survey acquisition
designs with respect to the final reservoir characterization goals. It is a tool for road
mapping back through the double feed-back loop of the Seismic Value Chain.

Representative data kernel conditioning, Figure (5.7), illustrates how the P-P am-
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Figure 5.7: The conditioning of various linear P-P amplitude inversion kernels. These
kernels are parameterised in terms of the rock property reflectivites for acoustic impedance
and Poisson’s ratio (δIP , δν), as well as acoustic impedance and shear impedance (δIP , δIS).

plitude inversion behaves as a function of parameterisation and the available angles
of incidence. Notice that the choice of parameterisation directly impacts the con-
dition number behaviour of the data kernel. This implies that the desired rock
properties to be estimated must be considered not only during the reservoir char-
acterisation stage but also during the acquisition survey design stage. Overall, for
this case study’s data, parameterising in terms of impedance reflectivity seems to be
the best behaved and would be most reliably estimated. However, as the available
data range gets closer and closer to the maximum usable angle of incidence, the
various parameterisations converge to conditioning that is of the same order. This
convergence does not arise gradually, nor at the same rate. Note that the condition
numbers are extremely high and then, suddenly, experience a rapid decrease, with
the (δIP , δIS) parameterisation having a faster rate of conditioning improvement.
For this particular survey design, the conditioning behaviour implies that seismic
rock properties estimation from P-P amplitudes will be problematic for the angles
of incidence smaller than 12◦.
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The interface parameter estimates, made by the two inversion formulations, are
shown in Figures (5.8) and (5.9). From the gathers, Figure (5.4), and the stack,
Figure (5.5), the rock properties response of the reservoir is expected between CDPs
10−15 and times 0.60s−0.65s. Notice the very sharp definition at the top and base
of the reservoir in the property estimates from both parameterisations. Also note
the preservation of the phase change at the reservoir edges. One problematic issue
with the results of the estimated acoustic impedance contrasts in Figure (5.8)is that
the trough delineating the top of the reservoir disappears along the structure while
the base reservoir peak remains stable. This is an indication that the regularisation
parameters may not be optimal and need to be adjusted using some prior geological
knowledge of the area.
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Figure 5.8: A comparison of the acoustic impedance reflectivity (δIP ), estimated using the
(δIP , δν) and (δIP , δIS) inversion parameterisations.

In contrast, Figure (5.9) shows the second estimated rock property reflectivity (δν
and δIS , respectively) to clearly define the top and base of the reservoir. This
provides another possible explanation as to why the trough delineating the reservoir
top disappears. Since each of δν and δIS are so-called lithology indicators and δIP
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is comparatively sensitive to fluids (i.e. it is a fluid indicator), it could very well
be that the measured amplitudes are dominated by the response to rock type. As
such, the inversion focuses on estimating the rock property that forms the majority
of the amplitude response. That is to say, the inversion estimates best the property
which directs the physics of the geology’s seismic response. It can be speculated that
if a three-term pre-stack inversion were attempted with this data, an improvement
would be seen in the δIP estimate but there would be no uplift in the δIS or δν
estimates, with the δρ estimate containing no information at all. Essentially, a
three-term inversion would serve only to improve the δIP estimate.
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Figure 5.9: A comparison of Poisson’s reflectivity (δν) and shear impedance reflectivity
(δIS), estimated using the (δIP , δν) and (δIP , δIS) inversion parameterisations.

Also, note that the estimate of δν is superior to that of δIS . This may be somewhat
surprising since the condition number analysis indicates that the (δIP , δIS) formu-
lation to be the most reliable and, thus, expected to give the best results. However,
looking at the estimated earth model in terms of a weighted sum (Figure (5.6)) in-
dicates that the Hilterman [2001] formulation has stronger sparsity than that of the
Gidlow et al. [1992] parameterisation. In this case, it seems as if sparseness (i.e. the
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SVD weights) are a stronger factor in driving the inversion results than conditioning.
Rather than undertaking many costly inversions, an SVD analysis should be carried
out and inversion decisions be based on a balance of sparseness and conditioning.
Alternatively, the approach of Downton [2004] can be used where a single inversion
for the preferred rock properties is undertaken and the result transformed to any
other desired set of rock properties.

Before further analysis of the inversion results, recall that the depositional model
states that the overlying unit of the regional gas-charged sand is a marine shale.
The expected behaviour of a gas bearing sand overlain by a shale that displays a
seismic bright spot response is to have a fluid indicator (i.e. δIP ) and a lithology
indicator (i.e. δν or δIS) at the top of the reservoir that is less than that for the
overlying shale cap rock. That is to say, the fluid and lithology indicators at the top
of the Colony sand should be expected to deflect to the left from the background Joli
Fou shale (assuming gas-charging and North American polarity standard). This is
precisely what is seen in both inversion results (albeit, before the trough definition
is lost in the δIP estimates) and represents another direct hydrocarbon indicator
that holds true for this prospect.

Similar behaviour is expected when the interface properties are integrated to rela-
tive layer properties. Figure (5.10) and Figure (5.11) show this mapping and the
preservation of the expected behaviour. Notice that the relative acoustic impedance
estimates lose fidelity half-way across the reservoir in that the inversion estimates
stop deflecting to the left of the background shale. These figures also highlight,
in a real-world practical sense, the legitimacy of the sparseness assumption. When
mapped from interfaces to layers, the final rock properties result in geologically plau-
sible (local) horizontal layered earth models with abrupt/blocky transitions, rather
than the more common smoothly varying geophysical earth models.

Figures (5.12)–(5.16) enable further analysis of the inversion results. Standard resid-
ual analysis (Figure (5.12) and Figure (5.13)) shows the input gathers, the final pre-
dicted gathers for the two parameterisations being considered, and their respective
residuals. The residuals for both seem to show a faint hint at some coherent informa-
tion remaining. These differences are, however, less noticeable when the predicted
gathers are stacked and the residual computed with respect to the actual CDP stack
(see Figure (5.14) and Figure (5.15)).

One possible explanation for the remaining coherent energy in the residual is due
to the sparse nature of the inversion. The adopted approach seeks an earth model
with the least information required to adequately explain the acquired data. That
being the case, non-dominant reflectivities are rejected to preserve sparsity. This
would lead to weak coherent energy remaining in the residual. Another, equally
probable, explanation is that this possible remaining coherent energy indicates that
using offset/ray-parameter/incidence-angle dependant wavelets estimated from the
data does not adequately reflect the situation. While not pursued further in this
study, it is expected that using a wavelet that results from a seismic-to-well matching



5.3 Land data case study 95

−1 0 1 2 3 4 5 6

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

P
se

ud
ot

im
e 

(s
)

Trace number

Relative sparse I
P
 from ( δI

P
 , δν ) inversion

−1 0 1 2 3 4 5 6

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

P
se

ud
ot

im
e 

(s
)

Trace number

Relative sparse I
P
 from ( δI

P
 , δI

S
 ) inversion

Figure 5.10: A comparison of the relative acoustic impedance (IP ), estimated using the
(δIP , δν) and (δIP , δIS) inversion parameterisations.

exercise and then imposing the physics of normal moveout, will improve the inversion
results.

The engine of the inversion developed and applied in this chapter is Equation (5.2.1).
Its ability to estimate rock properties that explain the input data is measured by the
magnitude of the misfit between the real data and the forward modeled (or predicted)
data. This misfit would, ideally, be zero, but, because of practical issues (such
as noise and experimental design inadequacies), is usually some user determined
tolerance ε that is deemed close enough to the acquired data being used to obtain
parameter estimates. Quite often this tolerance, itself, cannot be achieved and
a result with an undesirable misfit is accepted because the maximum number of
iterations has been exceeded (see Figure (5.2)).

The final misfit for the two parameterisations of the inversion objective function
considered in this chapter is shown in Figure (5.16). Supporting the previous ob-
servation that the (δIP , δν) formulation delivers superior results, the final misfit
over the reservoir region (spanned by the 10th–15th CDP gather) is smallest for the
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Figure 5.11: A comparison of relative Poisson’s ratio (ν) and relative shear impedance (IS),
estimated using the (δIP , δν) and (δIP , δIS) inversion parameterisations.

Hilterman [2001] set of parameters. Not only does the (δIP , δν) combination have
strong sparsity/blockiness, it also forward models the reservoir seismic more accu-
rately. This on top of the fact that these rock properties can be directly linked to
pore-fill and lithology. All of this combines to support a strong case for (δIP , δν)
being an ideal set of seismic rock properties for this data.



5.3 Land data case study 97

Cumulative trace number

P
se

ud
ot

im
e 

(s
)

Input gathers

50 100 150

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

P
se

ud
ot

im
e 

(s
)

Cumulative trace number

(δI
P
,δν) predicted gathers

50 100 150

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Cumulative trace number

P
se

ud
ot

im
e 

(s
)

Residual

 

 

50 100 150

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
4

Figure 5.12: The actual gathers compared to the (δIP , δν) predicted gathers.
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Figure 5.13: The actual gathers compared to the (δIP , δIS) predicted gathers.
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Figure 5.14: A comparison of the actual stack and the (δIP , δν) predicted stack.
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Figure 5.15: A comparison of the actual stack and the (δIP , δIS) predicted stack.
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Figure 5.16: A comparison of the final objective function misfit for the (δIP , δν) and
(δIP , δIS) parameterisations of the inverse problem. The points within the rectangle show
the misfit for the gathers which span the reservoir.
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Resolution analysis

Another aspect of sparse inversion is that of resolution. In the Berkhout [1984]
sense, resolution goes beyond thin-beds and is more about focus. Very generally,
high-resolution is an issue of better/sharper focus. With respect to this case study,
the Berkhout [1984] interpretation of resolution views the minimum-structure rock
property estimates as ones that have high-resolution (high frequencies) but do not,
necessarily, detect thin-beds. Figure (5.17) shows that over the zone of interest,
the most noticeable difference between the sparse and standard acoustic impedance
reflectivity results is in bandwidth. Though not full-band, the sparse result shown
in Figure (5.17) represents a broad-band result that is much higher resolution than
the output from standard least-squares inversion.
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Figure 5.17: A comparison of the smooth and sparse acoustic impedance reflectivity (δIP ),
estimated using the (δIP , δν) parameterisation.

Similarly, the smooth and sparse Poisson’s ratio reflectivity are compared in Fig-
ure (5.18). In addition to the sharper focussing, the two estimates show quite a lot
of difference in their respective information content. The smooth result has more
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Figure 5.18: A comparison of the smooth and sparse Poisson’s reflectivity (δν), estimated
using the (δIP , δν) parameterisation.

detail, but also appears noisier. At the same time, the sparse/high-resolution esti-
mate has fewer events (i.e. less information) but they are clear and sharp. When
transformed to relative layer properties, Figures (5.19) and (5.20), and compared to
the typical output from a commercial package, the added value of sparse estimation
becomes even clearer. Traditional methods deliver smooth models that geologists
are uncomfortable with, because they know geology is anything but smooth, well-
behaved, and continuous. The minimum-structure approach, developed in this and
in the previous chapter, delivers geologically plausible blocky earth models with
sharp boundaries that are readily interpretable by geologists.

On the other hand, from a pure statistical parameter estimation point of view,
least-squares parameter estimation with quadratic regularisation has appeal. Apart
from being the maximum a-postori estimator for Gaussian distributed parameters
that are uncorrelated, standard least-squares solutions provide the most smoothly-
varying detailed property estimates that best-fit the data. Non-quadratic regularised
least-squares deliver the least informative parameter estimates that fit the data
and tend to be more robust in the presence of noise. Typically, this difference in
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Figure 5.19: A comparison of the smooth and sparse relative acoustic impedance (IP ).

regularisation results in smooth objective functions having lower misfit values than
sparse objective functions. Figure (5.21) illustrates this. Notice that the misfit
curve for the quadratically regularised objective function tracks that of the sparse
objective function but has a lower overall misfit.

A final consideration is the spectra of the smooth and sparse rock properties that
have, to this point, been exclusively analysed in the spatial domain. When con-
sidered spectrally, the differences between smooth and sparse parameter estimates
become even more pronounced. These estimates are presented in pseudo-time, which
is defined to be the vertical two-way travel time mapping. This domain is chosen so
that the spectral mapping can be represented using Hertz when, in fact, the proper
spectral domain represents vertical wave-number.

The spectra shown in Figure (5.22) and Figure (5.23) are for the estimates of rock
property reflectivities. On the left in both of these figures is the frequency domain
response for the estimated interface rock properties based on a blocky earth assump-
tion. Both have a fairly flat, broad-band, response. By comparison, on the right of
these images, are the spectral representations of parameters estimated assuming a
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Figure 5.20: A comparison of the smooth and sparse relative Poisson’s ratio estimates.

smoothly varying earth. This assumption of smoothness gives rise to interface prop-
erties with spectra that are partitioned. In particular, the damped least-squares
estimates have a high magnitude spectral region between about 20–80Hz, with the
remainder of the spectra being in a 30dB-down region.

When the spectra of the relative layer properties are considered, Figure (5.24) and
Figure (5.25), the geologic meaningfulness of the sparseness assumption also stands
out. The spectra behave more like those for rock properties that have been measured
in-situ by wire-line logs in the borehole. Compare the spectra of the sparse inversion
estimates to those of the measured rock properties shown in Figure (3.5) and it is
seen that both have the same decreasing manner from d.c. to greater than 30dB-
down. However, the smooth relative layer properties display spectra that deviate
significantly from this. In fact, they also appear to be partitioned into a region
of higher magnitude between about 20–65Hz with a critical drop-off point around
70Hz. It cannot be said that these spectral observations were wholly unexpected.
As blocky layering is the macroscopic observable of the limit of 1/f , scaling, geology,
it stands to reason that estimates of geology made with such an assumption would
be more realistic.
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Figure 5.21: The final objective function misfit for the smooth and sparse inversions.

While the method put forth generates inversion results with much greater resolu-
tion, in the Berkhout [1984] sense, than the standard damped least-squares approach,
some difficulties remain. The largest issue plaguing the results of minimum struc-
ture inversion is the apparent lateral discontinuity/disappearance of some reflectors.
One way to address this is to impose some type of structure preservation on the in-
version results. Wang et al. [2006] present a method to accomplish this by applying
a frequency-space, f -x, filter to the inversion results after each iteration. This has
appeal in that f -x filtering has established itself as an industry standard method for
mitigating noise while preserving signal, but the drawback that it is essentially intro-
ducing a processing step into the inversion. An alternative approach is through the
use of an objective function that is sparsely regularised in the time/depth/vertical
direction and smoothly regularised in the offset/angle/ray-parameter/lateral direc-
tion, as outlined in Wang [2005]. This approach has the added elegance that the
structure preservation is anticipated by the inversion itself and not imposed as a pro-
cessing step within an inversion algorithm. Further appeal comes from the fact that
geology is generally considered to be laterally locally flat, smooth, and continuous.
Including a geologically explicit term into an objective function that is traditionally
dominated by physics and statistics makes the inversion process more accessible to
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Figure 5.22: The frequency response, after mapping vertical wave-number to pseudo-time, of
a representative smooth and sparse acoustic impedance reflectivity (δIP ), estimated using
the (δIP , δν) parameterisation and the 13th CDP gather as input data.

non-specialists. As we are concerned with an amplitude inversion problem, where
locally plane reflectors are assumed, it is anticipated that including a local smooth-
ing constraint will not adversely affect the physics which the method outlined in this
work exploits. The new twice regularised objective function, for the kth iteration,
has the form

J (zk) = ‖d− MPzk‖2
2 + μ

∥∥∥√Qk−1D1hx
zk

∥∥∥2

2
,

where D1hx
is a first-order derivative operator that imposes local structure preser-

vation in the lateral direction. In other words, it laterally imposes geological rea-
sonability.
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Figure 5.23: The frequency response of a representative smooth and sparse Poisson’s ra-
tio reflectivity (δν), estimated using the (δIP , δν) parameterisation and a gather over the
reservoir (the 13th CDP gather).
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Figure 5.24: The frequency response of a representative smooth and sparse relative acous-
tic impedance (IP ), estimated using the (δIP , δν) parameterisation and a gather over the
reservoir (the 13th CDP gather).
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Figure 5.25: The frequency response of a representative smooth and sparse relative Poisson’s
ratio (δν), estimated using the (δIP , δν) parameterisation and a gather over the reservoir
(the 13th CDP gather).
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5.4 Conclusions

From the outset, the goal was to develop a practical high-resolution attribute esti-
mation method using pre-stack seismic amplitude gathers at input. This has been
achieved though using insights from linear inverse theory. By casting the desired
goal as the solution of a linearised inverse problem and applying the accumulated
knowledge of inverse theory, a method is developed that successfully infers high-
resolution rock properties. Rock property estimates beyond the seismic band-width
are achieved by imposing a sparseness constraint on the inversion in the ‘vertical’
direction via the use of a Cauchy norm as the regularisation term in the objective
function. Furthermore, the method is made efficient for real data situations by
recasting the regularised inverse problem as a pre-conditioned inverse problem. Fur-
ther efficiency is obtained by Tikhonov reformulation of the new problem to standard
form and then using the very rapid method of conjugate gradients. The combination
of all these aspects was successfully demonstrated by generating geologically mean-
ingful, high-resolution, rock property responses for a gas bearing sandstone reservoir
from band-limited pre-stack seismic amplitude gathers. Overall, it is seen that regu-
larised linear inverse theory provides a means through which high-resolution reservoir
characterization can be achieved from noise-corrupted, incomplete, and inaccurate
seismic amplitude data.



110 Application to field data



6

Conclusions, recommendations, and
the road ahead

6.1 Overall conclusions

Advances in seismic acquisition recreated a need for innovation in seismic imaging
and characterisation. The fact that very long offset data maintains amplitude fi-
delity, and its acquisition has now become routine, demands new methods to analyse
these long offset amplitudes. This thesis develops an accurate method to simulate
long offset amplitudes that is in agreement with the assumed convolutional model
of seismic data.

The philosophy behind the approach applied has been to achieve consistency between
the assumptions underlying the seismic signal processing and imaging on the one
hand, and the reflectivity model to be used for forward modelling and inversion, on
the other. Recall that the time-invariant convolution model for seismic data demands
that the forward system (survey design, acquisition itself, and some data processing)
be strictly linear, but neither the P-P and P-S Zoeppritz equations, nor the Bortfeld
equation, nor even Equation (3.2.2) or the P-S Aki and Richards equation meet
this linearity requirement. The proposed Equations (3.2.4) or (3.2.8), and their
P-S counterparts, also violate the linear data model. However, the physics of the
problem defines a range of practical applicability and these proposed models serve
the purpose of allowing quantitative interpretation of long offset seismic amplitudes.
This is of critical importance if the seismic amplitude data is to be exploited to
extract information about reservoir fluid saturation. It is in the long offset domain
that the existing methods to calculate the reflectivity response violate the linear
convolution data model that underlies seismic data processing. Scale dependency in
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the modelling of the synthetic seismic response is introduced when applying a non-
linear method to calculate reflectivities to match seismic data processed on the basis
of a linear data model. The research pursued in this thesis resolves the inconsistency
by introducing a forward modelling operator that is linearised in the earth input as
far as physically meaningful.

Chapter 3 shows that the key to a true linearisation of forward modelling of seis-
mic amplitude data is the realisation that the kinematics (wave-field propagation)
and the dynamics (wavefield scattering) are separate phenomena at vastly different
scales. Explicitly recognising this and introducing a background velocity model in
which all wave propagation takes place is an elegantly simple concept that solves
a host of nasty issues that have dogged quantitative seismic interpreters. Notably,
these are: non-linearity in the linearised Zoeppritz equations (scale dependency), the
angle-of-incidence versus ray-parameter dilemma, the forward modelling of stretch
and the handling of induced anisotropy in linear forward modelling. As a result
the maximum usable angle of incidence (or ray-parameter or offset) is pushed much
further out than would have been possible with conventional two-term, or even
three-term reflectivity approximations. Furthermore, in the proposed linearised ap-
proach it comes out naturally that wavelet stretch associated with normal move-out
is described at the scale at which the wave propagation is observed (i.e. in the
background medium). The reduced vertical resolution in imaging with waves with
oblique angles of incidence cannot be avoided. For forward modelling and inversion
of long offset seismic, stretch is an important factor that needs to be taken into ac-
count. Attempting to account for this effect at the input log scale, would introduce
a strong non-linearity into the forward modelling process. Another advantage of
the layered earth models developed in this thesis is that layering induced velocity
anisotropy, a kinematic effect, can be handled at the scale of wave propagation (i.e.
the scale at which it occurs). This is achieved by defining seismic scale ε0 and δ0

Thomsen parameters in the background medium.

Applying these stable and accurate linearised, layered-earth, long-offset models to
estimating three rock properties reveals that, despite the notorious ill-conditioning
and ill-posedness of AVP-waveform inversion, quantitative reservoir rock property
estimates can be made. Within the framework of linear seismic inversion, this the-
sis goes on to show that data kernels built from the previously developed amplitude
models combined with non-quadratic regularization deliver reliable broadband reser-
voir rock properties from long-offset pre-stack seismic amplitudes. That is to say,
once more, IF the data is multi-component AND it has sufficiently long offsets AND
there is an accurate background velocity field THEN linear target oriented high
resolution inversion can deliver three broad-band rock properties .

This quantitative reservoir characterization is an innovation that requires modern
acquisition and imaging results to be projected onto the characterisation capability
axis, as illustrated in Figure (1.6). Foremost among these is long offset, wide angle,
or large ray-parameter data. Increased acquisition and imaging costs are the burden
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to bear should more information be wanted from linear methods. Nothing comes
for free and if quantitative amplitude analysis is desired then more informative data
must be acquired. But, this modern data is not enough. There must also be a
conceptual paradigm shift where the input seismic amplitude data itself is no longer
thought of as idealized delta functions from various layer interfaces but, instead,
must be thought of as actual wave-amplitudes that have associated waveform effects
which cannot be ignored at long offset. Accounting for these effects is a crucial aspect
for the full exploitation of the available pre-critical information. Furthermore, it is
clear that P-S converted wave amplitudes are needed as P-S inversion delivers better
estimates of parameters that suffer in P-P inversion alone.

Chapters 4 and 5 show that sparse rock properties are reliably estimated by exploit-
ing the �2-norm with non-quadratic regularization but that full-band low-frequency
models still need to be constructed to map the relative inversion results to ab-
solute layer properties. In addition, the added-value of singular value decompo-
sition to evaluate the parameterization of the AVP-waveform inversion problem,
how it can be used to assess long-offset data, and how the data and the regular-
ization contribute to the rock property estimates is developed. Furthermore, the
non-quadratically regularized least-squares pre-stack amplitude inversion problem is
shown to be an idealized version of a full Bayesian solution. The implication being
that if a proper probabilistic framework can be built, then high-resolution linear
AVP-waveform inversion can deliver quantitative rock properties estimates with un-
certainty measures. Projecting this research into an application meant building a
practical high-resolution attribute estimation method using pre-stack seismic am-
plitude gathers as input. Delivering this algorithm required insights from casting
the desired goal as the solution of a linearised inverse problem and applying the
accumulated knowledge of inverse theory. As a result, rock property estimates be-
yond the seismic band-width are achieved by imposing a sparseness constraint on
the inversion in the vertical direction via the use of a Cauchy norm in the objective
function. Keep in mind, however, that the bandwidth/resolution enhancement is
driven by the Cauchy statistics. Whether or not these statistics have an underlying
physical interpretation is still an open problem. As research continues into aspects
of the multi-scale earth, there are indications that a minimum-structure (or sparse)
earth may represent the macroscopic/seismic-scale limit of the pseudofractal earth.
Adapting the methodology so that it is made efficient for real data situations meant
recasting the regularised inverse problem as a pre-conditioned inverse problem. The
efficiency is further improved by Tikhonov reformulation into standard form and
then, finally, using a modified conjugate gradient algorithm. The sum total of all
these aspects are successfully demonstrated by generating geologically meaningful,
high-resolution, rock property responses for a gas bearing sandstone reservoir from
band-limited pre-stack seismic amplitude gathers. The overall take-away is that
regularised linear inverse theory provides a means through which high-resolution
reservoir characterization can be achieved from noise-corrupted, incomplete, and
inaccurate seismic amplitude data.
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6.2 Overall recommendations

• Introduce a background medium in which all wave propagation phenomena
take place.

• Linearise long offset reflectivity operators in terms of contrasts of material
properties, at any depth, to this background medium.

• Analyse long offset data for induced anisotropic effects and account for these
effects in the background medium.

• Include wavelet stretch effects when simulating long offset seismic data.

• Always attempt amplitude analysis in a true time domain.

• Acquire long offset compressional-to-compressional mode and compressional-
to-shear mode seismic data.

• Form data kernels that have linearised rock properties in terms of contrasts,
at any depth, to a background.

• Include relevant waveform effects in the data kernel.

• Estimate the kernel in a data-driven manner.

• Regularize �2-inversion with a Cauchy norm.

• Ultimately, take an Bayesian �2-approach.

• Leverage the feed-back nature of the Seismic Value Chain and road-map seis-
mic reservoir characterisation goals back to acquisition survey design parame-
ters through forward modelling the desired rock properties response .

• Analyse seismic data kernels using singular value decomposition to determine
sparseness promoting parameterisations.

• Estimate seismic rock properties with the strongest sparseness and transform
to others of interest.

• Do not estimate wavelets on the fly, undertake a seismic-to-well matching
exercise and then impose normal moveout stretch effects.

• Assume sparseness in the vertical direction and smoothness in the horizontal
direction.
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6.3 The road ahead

This thesis develops how existing quantitative amplitude analysis techniques need to
be extended so that their full potential can be exploited. The extended methodolo-
gies, however, remain within the current seismic imaging paradigm. Daring to gaze
into a crystal-ball, this thesis concludes with a few words about what lies ahead
for seismic reservoir characterisation. Through an analysis of a simple synthetic
example, the critical influence of non-linearity on the stability and quality of the in-
version result is demonstrated. It highlights fundamental limits caused by assuming
a linear relationship between surface recorded wave-field data and subsurface earth
properties (i.e. the current imaging and analysis paradigm).

Gisolf and Verschuur [2010], Chapter 13, sketches a path for full non-linear inversion
in the acoustic approximation from the inverse scattering perspective. The modelling
analysis is a review of their synthetic experiment to illustrate a fundamental limi-
tation of the linear approach. In the same manner, consider a set of well-logs (as
in Figure (6.1)) where the true well-log properties have had the variability in the
medium property contrasts reduced to one hundredth (0.01) of the true variability
(relative to respective mean of the property being considered). This data is unreal-
istically linear in the contrasts but is expected to fully obey the assumptions that
drive a standard linear least-squares inversion approach.

In addition to the mass density (ρ), compressional-wave velocity (α), and shear-
wave velocity (β), Figure (6.1) shows very smooth overlying curves representing
the background medium properties (as developed in Chapter 3). These background
properties are extracted as outlined earlier and this simulates the kinematic velocity
information that can be extracted directly from the seismic data by the Common
Focal Point technique described in Chapter 4. In terms of practical applications,
the mass density background that can only be inferred from the velocity background
properties through a locally calibrated rock physics transform (i.e. via the use of a
local, macro-scale, velocity-density relationship).

These log properties are used to simulate the exact plane wave full-waveform re-
sponse (Figure (6.2)), as a function of the horizontal slowness (ray-parameter). The
maximum ray-parameter corresponds to a maximum angle-of-incidence, (θmax), of
50◦. This is where the background medium has maximum compressional-wave veloc-
ity . The seismic source is simulated using a 6− 12− 50− 75Hz zero-phase wavelet.
Finally, 5% random white noise is added to the synthetic data. Notice that, due
to the artificially imposed very low contrasts, a coda of internal reverberations is
absent.

Figure (6.3) compares the damped linear least-squares estimates to the actual medium
properties. This is the same approach from Chapter 5 that yields the standard,
smooth/damped, relative rock properties estimates. The estimated relative rock
properties are integrated and transformed to absolute property values. Note that
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Figure 6.1: The input α, β, and ρ well logs that have had their contrasts artificially reduced
by 0.01, relative to their mean values. Overlying these logs are the kinematic/macro scale
α0 , β0, and ρ0 background properties.

these estimates are an accurate realisation of the actual earth model in the sense that
the input data is faithfully reproduced. All that remains in the data residual is the
5% additive noise. However, several things need to be considered. As the logs have
very low property contrasts and there is relatively low noise corruption, one expects
that an almost perfect estimate would result since this experiment uses as linear as
possible synthetic data without actually committing an inversion crime. In addition,
the diagonal damping (i.e. the velocities and density have different damping factors)
had to be tuned before this result was obtained and, in fact, the damping relating
to the mass density had to be 25 times stronger than the damping for the compres-
sional and shear velocities. In spite of all the idealised conditioning, linear inversion
is not able to produce ideal predictions of the absolute property values. This is
because a spectral gap remains in the linear inversion estimates. Partitioning of the
wavefield velocities enables accurate layered earth forward modelling but there is a
gap between the top-end of the kinematic bandwidth and low-end of the dynamic
bandwidth (i.e. the wavelet band). This spectral gap will remain in the medium
property estimates from true one-step damped linear least-squares inversion. That
being said, it appears as if the mass density predictions suffer less from the spectral
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Figure 6.2: The total elastic P-P reflectivity response imaged to t = 0s, from the logs shown
in Figure (6.1), with 5% noise corruption and the data residual after standard damped
linear least-squares inversion. Note that the background properties are not used to generate
this response, except for establishing θmax = 50◦.

gap than the velocity predictions do.

Now consider a more realistic synthetic experiment using the true logged properties
in Figure (6.4) to generate full-waveform synthetic data (Figure (6.5)), under exactly
the same conditions as for the low contrast experiment. An immediate difference is
the coda of internal multiple scattering trailing the primary reflections, particularly
on the traces with the larger horizontal slownesses. The multiple contamination ex-
isits above the noise corruption level and indicates that the wavefield is significantly
non-linear in the property contrasts across the interfaces. This synthetic represents
the ideal data that could be expected from standard production processing in that
all free surface effects have been perfectly handled, in addition to random noise being
reduced to 5%. What remains unaccounted for are the transmission losses, losses
due to mode conversions, and internal reverberations. These effects are left in the
data as it is standard processing practices to turn a blind-eye to these realities.

Figure (6.6) shows an inversion result that is extremely sensitive to the damping ap-
plied and even these less-than-optimal results could not have been achieved without
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Figure 6.3: Actual medium properties (α, β, ρ), shown in Figure (6.1), and estimates of those
properties (αest, βest, ρest) from the damped linear least-squares inversion of the data shown
in Figure (6.2).

knowing what the target result is. Furthermore, the estimates worsen with depth,
indicating that the non-linearity is a depth dependant phenomenon. Further obser-
vational evidence of this is seen by considering the inversion data residual. Over
the time window of the primary reflections, as shown in Figure (6.2), the residual is
mainly noise. However, rigorously linear inversion can never match the coda below
the primary reflections and it is in this depth region where the residual amplitudes
are the highest. The existence of a significant coda confirms that there is non-
negligible multiple internal scattering, yet all the primary data is explained by the
linear inversion. Damped linear least-squares inversion misinterprets the internal
multiples deeper in the time window, as primaries, leading to incorrect property
predictions deeper in the depth domain.

All seismic data suffers from the fundamental issues illustrated through the two sim-
ple toy examples above. Furthermore, there can never be any resolution of these
problems with a pure linear approach. Presently, two basic ways to address filling
the spectral gap and handling the higher order data effects that exist. One is by
exploiting the true, intrinsic, non-linearity within the system. The other is by main-
taining a linearity assumption about the data and imposing an iterative non-linear
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Figure 6.4: The original, unaltered, input α, β, and ρ well logs. Note the overlying (i.e.
kinematic/macro scale) α0 , β0, and ρ0 backgrounds.

constraint on the medium properties estimates. Ideally, this constraint is based on
some a priori knowledge of the geology. The latter can be considered a weakly non-
linear approach while the former is a full non-linear approach. A significant portion
of this thesis, Chapter 4 and Chapter 5, concerns itself with the latter approach.
This was a pragmatic choice as almost all seismic imaging workflows try to identify
the part of the wave-field that is non-linear in the earth property contrasts and re-
move it to yield a seismic data-set that better fits the linearity assumption (as in
the first example, above).

The road ahead, both immediately and longer-term, lies in the strong non-linear
approach. It is reasonable to expect target oriented non-linear inversion to mature
in the near future, while general full-waveform inversion – where all the raw seismic
is directly inverted for detailed subsurface properties – will be further down the road.
In either case, the critical point involves building a forward model that honours, to
some extent, the intrinsic data non-linearity and use this in an iterative non-linear
inversion scheme. It represents the only direct data-driven way to fill the spectral
gap that will always remain in the medium properties estimated using a linear data
relationship and, also, ensures that real earth effects (like internal scattering) are
properly accounted for.
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Figure 6.5: The full-waveform P-P synthetic seismogram, as calculated by the reflectivity
method, of the well logs shown in Figure (6.4) with 5% noise corruption and the data residual
remaining after standard damped linear least-squares inversion. Again, the background
properties are not used to generate this response, except for establishing θmax = 50◦.

The above experiments, and these few brief paragraphs, are meant to illustrate and
introduce the concept that a non-linear data-model is the ultimate solution to the
seismic rock properties estimation problem. There is no doubt that the future of
quantitative amplitude analysis belongs to the non-linear data model and Gisolf and
Verschuur [2010], Chapter 13, provides a doorway to this journey. To those who
travel down this path, I wish you faith and Godspeed.
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Figure 6.6: A comparison of the actual medium properties (α, β, ρ), shown in Figure (6.4),
and the estimates of those properties (αest, βest, ρest), from the damped linear least-squares
inversion of the data shown in Figure (6.5).
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Summary

Quantitative Seismic Amplitude Analysis

The Seismic Value Chain quantifies the cyclic interaction between seismic acquisi-
tion, imaging and reservoir characterization. Modern seismic innovation to address
the global imbalance in hydrocarbon supply and demand requires such cyclic inter-
action of both feed-forward and feed-back processes. Currently, the seismic value
chain paradigm is in a feed-forward mode. Modern seismic data now have the po-
tential to yield the best images in terms of spatial resolution, amplitude accuracy,
and increased illumination in terms of offset and azimuth. Today’s challenge lies
with reservoir characterisation. An immediate requirement is extracting quantita-
tive rock properties information from these improved data-sets and images, to move
from a, geophysically based, smooth elastic characterisation of reservoirs towards
a, geologically accessible, blocky layer-based rock properties parameterisation. Cur-
rently reservoir characterization does not fully exploit the wide-angle information
present in seismic data. This is primarily due to the fact that the current paradigm
for analyzing reflectivities is at odds with the assumptions made for standard seismic
data processing. The current practice of using single interface models to calculate
reflectivities in a long-offset layered earth is inconsistent with the assumed time-
invariant convolution data model for seismic. The interplay of the modelling and
inversion enables a better seismic characterisation of the reservoir by moving away
from traditional band-limited, smooth, elastic attributes and towards obtaining high-
resolution, blocky, rock properties that correlate better to well measurements.

A new layered earth forward model is developed that preserves linearity at large ray-
parameter and handles kinematic wave-field effects at their proper scale. This full
linearization of the elastic property contrasts for successive layers means partitioning
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the compressional wave and shear wave velocity fields into two fundamental scales: a
kinematic scale that governs wave-field propagation effects and a dynamic scale that
governs wave-field scattering effects. Introducing a background/kinematic velocity
model in which all wave propagation phenomena takes place is a simple and elegant
concept solves the problems of non-linearity in the linearised Zoeppritz equations
(scale dependency), the angle-of-incidence versus ray-parameter dilemma, and the
forward modelling of stretch and the handling of induced anisotropy. As a result, the
maximum angle of incidence (or ray-parameter or offset) allowable in linear forward
modelling is pushed much further out than is possible with conventional two-term,
or even three- term single-interface reflectivity approximations. An explicit medium
at the kinematic scale handles the inescapable fact of reduced vertical resolution
when imaging waves with oblique angles of incidence. For exploiting the long offset
seismic amplitude information, stretch is an important factor that needs to be taken
into account. Attempting to describe stretch at the dynamic scale governing wave-
field scattering would introduce a strongly non-linear component into the forward
modelling process. In the linearised approach presented, it comes out naturally that
stretch is described at the kinematic scale where the propagation of waves is observed
(i.e. in the background medium). Another wave-field propagation phenomenon to
be accounted for at the kinematic scale is layering induced velocity anisotropy. This
is achieved by defining seismic scale Thomsen parameters, ε0 and δ0, in the back-
ground medium. The proposed layered-earth forward model recognizes the physics
of seismic wave propagation, in addition to wave-field scattering, and allows for a
more complete exploitation of the information available in the pre-critical seismic
amplitudes.

Following the extension of linear amplitude analysis to the layered earth, in so far as
to be physically meaningful, a second step in quantitative seismic amplitude analysis
is taken. Leveraging the knowledge gained from the forward analysis, a methodology
to extract quantitative layer properties from the acquired seismic data is developed.
Particularly, there is a need for quantitative maps of reservoir (not elastic) proper-
ties. Seismically estimating the interval rock properties is the most direct way to
deliver a detailed areal understanding of the reservoir. Quite often, seismic rock
properties (especially density estimates) are considered inaccurate and unreliable
due to various shortcomings in acquisition, processing, and interpretation. Recent
advances in acquisition and imaging, however, have created a technology push in
characterization to explore 3-term, high-resolution, reservoir properties estimation
by exploiting both the compressional-to-compressional mode and the compressional-
to-shear mode amplitudes. The current work extends previous efforts and creates a
framework which furthers the use of seismic data in quantitative hydrocarbon reser-
voir characterization and management. Within the paradigm of linear inverse theory,
the estimation of high- resolution reservoir rock properties from compressional wave
and converted wave data is cast as a linear-in-the-parameters optimization problem.
Through the previously developed linear layered earth forward models, all the first
order information carried in the pre-critical compressional and converted-wave seis-
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mic amplitudes can be exploited, despite the notorious ill-conditioning of Amplitude-
Versus-ray-Parameter waveform- inversion, and quantitative reservoir rock property
estimates can be made. Data kernels built with these new forward models combines
with the imposition of non-quadratic regularisation (in the vertical direction) on the
least-squares solution to deliver reliable broadband reservoir rock properties esti-
mates from pre-stack seismic amplitudes. This quantitative characterization results
from several factors working together. Foremost of which is long offset, wide an-
gle, or large ray-parameter data. This is the cost of enhanced reservoir knowledge.
Should more information be wanted from linear methods then more informative
data must be acquired. It is not enough to have this data. There must also be
a shift in how modern seismic data is viewed. No longer can the amplitudes be
regarded as idealised delta functions from independent layer interfaces in the sub-
surface. These data are actually wave-amplitudes with associated waveform effects
that cannot be ignored at long offset. Accounting for these effects is crucial for the
full exploitation of the available pre-critical information. Another requirement is
that the compressional-to-shear converted wave amplitudes are needed. The analy-
sis shows that this converted wave inversion delivers better estimates of parameters
that suffer in the compressional wave inversion alone. Furthermore, considering
both wave-modes simultaneously improves both the problem conditioning and the
parameter estimates.

The final thrust of the inversion analysis takes the theoretical inversion develop-
ment and applies it to create a novel and practical method to infer sparse, high-
resolution/well- resolved, rock properties from pre-stack compressional wave seismic
amplitude data. Evolving from current industry standard techniques for linear inver-
sion, the method is an extension of the solution to the classical damped least-squares
problem. The final deliverable is a pre-conditioned conjugate gradient algorithm
that performs broad-band, minimum structure, least-squares inversion of pre-stack
seismic field data. After mapping to a form that is computationally efficient, an
algorithm is constructed and applied to seismic data acquired over a glauconitic
sandstone reservoir. Though suffering from some lateral coherency and wavelet
problems, the inversion confirms three direct hydrocarbon indicators and identifies
an additional one. The outcome of the inversion demonstrates that the proposed
method successfully identifies the reservoir and its properties at a significantly higher
resolution than is currently available with most standard, commercial, techniques
and that the results are more geologically plausible. The overall message from this
case study is that sparse, well-resolved, seismic reservoir characterization is possible
from field acquired pre-stack seismic amplitude data.

The essence of the approach taken in this thesis is to achieve consistency between
the assumptions underlying the seismic signal processing and imaging on the one
hand, and the reflectivity model to be used for forward modelling and inversion,
on the other. This is particularly important if long offset seismic is to be exploited
to extract reservoir information about saturation and stress. Because it is in the
long offset domain that the customary ways to calculate reflectivity violate the lin-



132 Summary

ear convolution data model that underlies the methods of seismic data processing.
From the outset, the goal was to develop a practical high-resolution attribute es-
timation method using long-offset pre- stack seismic amplitude gathers at input.
This is achieved though using insights from forward modelling and linear inverse
theory. By casting the desired goal as the solution of a linearised inverse problem
and applying the accumulated knowledge of inverse theory, a method is developed
that successfully infers high-resolution rock properties. Rock property estimates be-
yond the seismic band-width are achieved by imposing a sparseness constraint on
the inversion in the ‘vertical’ direction via the use of a non- quadratic regularisation
term in the objective function. Furthermore, the method is made efficient for real
data situations by recasting the regularised inverse problem as a pre- conditioned
inverse problem and then applying Tikhonov reformulation of the new problem to
standard form. This makes the problem suitable for solution using the very rapid
method of conjugate gradients. The combination of all these aspects is successfully
demonstrated by generating geologically meaningful, high-resolution, rock property
responses for a gas bearing sandstone reservoir from band-limited pre-stack seismic
amplitude gathers. Overall, it is seen that regularised linear inverse theory provides
a means through which high-resolution reservoir characterization can be achieved
from noise-corrupted, incomplete, and inaccurate seismic amplitude data.

Unfortunately, all seismic data suffers from fundamental issues that can never be
resolved with a pure linear approach. Presently, two basic ways to address handling
the higher order physical effects that exist. One is by exploiting the true, intrinsic,
non- linearity within the system. The other is by maintaining a linearity assumption
about the data and imposing an iterative non-linear constraint on the properties
estimates. Ideally, this constraint is based on some a priori knowledge of the geology.
The latter can be considered a weakly non-linear approach while the former is a full
non-linear approach. A significant portion of this thesis concerns itself with the latter
approach. This is a pragmatic choice as almost all seismic imaging workflows try to
identify the part of the wave-field that is non-linear in the earth property contrasts
and remove it to yield a seismic data-set that better fits the linearity assumption.
The road ahead, both immediately and in the longer-term, lies in the strong non-
linear approach. It is reasonable to expect target oriented non-linear inversion to
mature in the near future, while general full-waveform inversion – where all the raw
seismic is directly inverted for detailed subsurface properties – is further down the
road. In either case, the critical point involves honouring the intrinsic data non-
linearity and uses this in a non-linear inversion scheme. It represents the only direct
data-driven way to fully explain all the physics within the data and, also, ensures
that all real earth effects are properly accounted for. There is no doubt that the
future of quantitative amplitude analysis belongs to the non-linear data model and,
to those who travel down this path, I wish you faith and Godspeed.

Ayon Kumar Dey
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Kwantitatieve Seismische Amplitude Analyse

De Seismische Waardeketen beschrijft de wederzijdse interactie tussen seismische
acquisitie, afbeelding en reservoir karakterisering. Moderne seismische innovaties
vereisen, om de wereldwijde onbalans tussen vraag naar en aanbod van olie en gas
te bestrijden, dat deze drie processen zowel voorwaarts als terugwaarts wisselwerken.
Echter, het huidige paradigma is dat van een voorwaartse seismische waardeketen.
Modernde seismische data hebben de capaciteit om de best mogelijke afbeeldingen
te verkrijgen in termen van spatile resolutie, amplitude nauwkeurigheid en bestral-
ingsapertuur. De uitdaging ligt hedendaags in de reservoir karakterisering. Een
sterke vereiste daartoe is het extraheren van kwantitatieve eigenschappen van de
gesteentes uit deze superieure datasets en afbeeldingen. Er moet van een, op ge-
ofysica gebaseerde, langzaam varirende, elastische reservoir karakterisering richting
de geologisch correctere blokkerige, gelaagde gesteente beschrijving gewerkt wor-
den. Hedendaagse reservoir karakterisering benut de aanwezige informatie in wijde
apertuur seismische data niet ten volle. Dit komt voornamelijk doordat de huidige
denkwijze om reflectiviteiten te bepalen, conflicteert met de gemaakte aannamen
in standaard seismische dataverwerking. De gewoonte om reflectiviteiten in wijde
apertuur metingen van een gelaagde aarde te berekenen aan de hand van mod-
ellen van enkelvoudige laagovergangen, conflicteert met het seismische tijd-invariante
convolutie model. De wisselwerking tussen modellering en inversie leidt tot betere
overeenkomst tussen seismische karakterisatie en bron metingen, omdat de tradi-
tionele, band gelimiteerde, uitgestreken elastische eigenschappen vervangen worden
door hoge resolutie, blokkerige gesteente beschrijvingen.

Een nieuw voorwaarts model om een gelaagde aarde te beschrijven is ontwikkeld,
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waarin lineariteit gehandhaafd blijft voor grote hoek van inval en kinematische
golfveld effecten op de juiste schaal behandeld worden. De volledige linearisatie
van de contrasten in elastische eigenschappen vereist dat de druk- en afschuiv-
ingsgolfvelden op twee fundamenteel verschillende schalen behandeld worden: een
kinematische schaal waarop de propagatie effecten een rol spelen en een dynamis-
che schaal die de verstrooiingseffecten voor zijn rekening neemt. Door een achter-
grond/kinematisch snelheidsmodel te introduceren, worden op elegante wijze de
problemen ten gevolge van niet-lineariteit in de gelineariseerde Zoeppritz vergeli-
jkingen (als gevolg van schaalafhankelijkheid), de discrepantie tussen de hoek van
inval en de zogeheten straal parameter en de voorwaartse modellering van span-
ning en de daardoor veroorzaakte anisotropie aangepakt. Als gevolg hiervan kan
de maximaal toegestane hoek van inval (of straal parameter of dislocatie) voor lin-
eaire voorwaartse modellering ver opgerekt worden in vergelijking met modellering
waarbij gebruik wordt gemaakt van conventionele twee- of drieterms enkelvoudige
overgangs reflectiviteiten. Dankzij een expliciete mediumbeschrijving op de kinema-
tische schaal is tevens de onvermijdelijke reductie in verticale resolutie bij scherende
inval meegenomen. Spanning is een belangrijke factor die meegenomen dient te wor-
den om de seismische amplitudeinformatie verkregen op grote dislocatie uit te kun-
nen buiten. Echter, pogingen om spanning te beschrijven op de dynamische schaal,
welke verstrooiing beschrijft, introduceert sterke niet- lineariteiten in de voorwaartse
modellering. In de gelineariseerde formulering is het vanzelfsprekend dat spanning
op de kinematische schaal, waar de golfpropagatie plaats vindt, beschreven wordt.
Een ander fenomeen in golfveld propagatie dat meegenomen dient te worden op
kinematische schaal, is anisotropie ten gevolge van een gelaagd medium. Dit is
bewerkstelligd door Thomsen parameters ε0 and δ0 in het achtergrond medium te
definiren. Het geopperde voorwaartse gelaagde aarde-model omvat de fysica van
zowel seismische golfpropagatie als verstrooiing, en faciliteert een betere benutting
van de aanwezige informatie in seismische amplitudes verkregen met grote apertuur.

Om tot fysisch zinnige inzichten te komen, wordt na de lineaire amplitude analyse
in de gelaagde aarde een tweede stap in kwantitatieve seismische amplitude analyse
genomen. Gebruik makend van de kennis opgedaan tijdens de voorwaartse anal-
yse is een methode ontwikkeld om kwantitatieve laageigenschappen uit de verkregen
seismische data te extraheren. Er is in het bijzonder behoefte aan het kwantitatief
in kaart brengen van reservoir (dus niet elastische) eigenschappen. Het seismisch af-
schatten van de eigenschappen van gesteentes is de meest directe manier om inzicht
in het reservoir te verkrijgen. Seismische gesteenteparameters, en dichtheidsschat-
tingen in het bijzonder, worden vaak als onnauwkeurig en onbetrouwbaar beschouwd
door tekortkomingen in dataacquisitie, -verwerking en -interpretatie. Recente on-
twikkelingen in acquisitie- en afbeeldingstechnieken hebben echter een technologische
ontwikkeling in de richting van drie-terms, hoge resolutie reservoirparameterschat-
ting bewerkstelligd waarbij gebruik wordt gemaakt van zowel druk-naar-druk als
druk-naar-afschuif conversie modes. Dit werk bouwt voort op voorafgaand werk
en schetst een methode om seismische data meer en beter te gebruiken bij kwan-
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titatieve reservoir karakterisering en bij het beheren van een reservoir. Binnen de
lineaire inversie theorie wordt het afschatten van hoge resolutie reservoir parameters
uit data over drukgolven en golfconversie aangepakt als een optimalisatie van een
probleem dat lineair is in deze parameters. Met behulp van de hierboven ontwikkelde
voorwaartse gelaagde aarde modellen kan alle eerste orde informatie van druk- en
conversiegolven, aanwezig in de seismische amplitudes, gebruikt worden, ondanks
de instabiliteit in de golfvorm inversie als gevolg van de conversie van amplitude
naar straal parameter. Hierdoor kunnen kwantitatieve schattingen van de reser-
voir parameters verkregen worden. Data kernels welke met deze nieuwe voorwaartse
modellen opgezet worden leiden, tezamen met niet-kwadratische regularisatie (in
de verticale richting) op de kleinste-kwadraten oplossing, tot betrouwbare, breed-
bandige reservoir parameter schattingen uit pre-stack seismische amplitudes. Deze
kwantitatieve karakterisatie wordt bewerkstelligd door een combinatie van factoren.
De belangrijkste hiervan is het verkrijgen van data onder grote dislocatie of apertuur.
Dit is de prijs die men moet betalen voor verbeterd reservoirinzicht; als lineaire meth-
oden meer informatie op moeten leveren dan zal meer informatie verzameld moeten
worden. Echter, het is niet voldoende enkel over deze data te beschikken; er dient
ook verandering plaats te vinden in hoe moderne seismische data beschouwd wordt.
Amplitudes kunnen niet langer gezien worden als delta pieken welke onafhankelijk
zijn van de aardlaagovergangen. Deze data zijn in werkelijkheid golfamplitudes met
bijbehorende pulsvorm effecten welke op grote dislocaties niet verwaarloosd kunnen
worden. Om alle aanwezige informatie in seismische data te kunnen benutten, is het
van cruciaal belang dit soort effecten mee te nemen. Een andere vereiste is dat druk-
naar-afschuiving conversiegolf amplitudes bekend zijn. Het blijkt dat inversie van
deze conversiegolven betere schattingen van reservoir parameters oplevert welke on-
nauwkeurig afgeschat worden indien enkel drukgolven gebruikt worden. Bovendien
verbeteren zowel de conditionering van het probleem en de parameter schattingen
wanneer druk- en conversiegolven tegelijk beschouwd worden.

In het laatste deel van de inversie analyse worden theoretische inversieontwikkelin-
gen toegepast om op praktische wijze schone, hoge-resolutie gesteente-eigenschappen
uit pre-stack seismische drukgolf amplitude data te verkrijgen. Voortbouwend op
standaard lineaire inversie technieken (in de huidige industrie), betreft de inversie
een uitbreiding van de oplossing van een klassiek gedempt kleinste-kwadraten prob-
leem. De laatste schakel is een gepreconditioneerd Conjugate Gradient algoritme
dat de breedbandige, minimale structuur, kleinste kwadraten inversie van pre-stack
seismische data uitvoert. Nadat dit algoritme is omgeschreven tot een computation-
eel efficinte vorm, is het toegepast op seimische data gemeten aan een glauconitisch
zandsteenreservoir. Afgezien van enkele pulsvorm- en fase-aberraties, worden drie
koolwaterstofindicatoren bevestigd en een vierde indicator aangewezen. Het resul-
taat van deze inversie toont aan dat de voorgestelde methode succesvol het reservoir
identificeert en de reservoirparameters met significant hogere resolutie dan met de
meeste standaard commercile technieken afschat. Tevens zijn de resultaten aan-
nemelijker vanuit een geologisch standpunt. Het blijkt hieruit dat het mogelijk is
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om, uit pre- stack seismische data verkregen uit metingen in het veld, tot heldere
reservoir karakterisering te komen.

De essentie van de aanpak in dit proefschrift is om de aannames gemaakt in seismis-
che signaalverwerking en afbeeldingstechnieken samen te laten gaan met het reflec-
tiviteitsmodel gebruikt in zowel voorwaartse modellering als inversie. Het samen-
gaan van deze aspecten is vooral van belang als seismische metingen gedaan met
grote apertuur gebruikt worden om reservoir informatie over spanning en verzadig-
ing te verkrijgen, aangezien in het bijzonder voor grote dislocaties de gebruikelijke
reflectiviteitsberekeningen niet voldoen aan de aannames in het lineaire datacon-
volutiemodel. Van meet af aan was het doel de ontwikkeling van een praktische
methode welke met hoge resolutie materiaal parameters af kan schatten uit wijde
apertuur, pre-stack seismische amplitude metingen. Dit is verwezenlijkt met be-
hulp van inzichten verkregen uit voorwaartse modellering en lineaire inversie theo-
rie. Door het gewenste doel in de vorm van een gelineariseerd inversie probleem te
gieten is, gebruik makend van de opgedane kennis van inversie theorie, een methode
ontwikkeld welke met succes hoge resolutie gesteenteparameters voorspelt. De hoge
resolutie kan voorbij gaan aan de bandbreedte in seismische metingen door, via een
niet-kwadratische regularisatieterm in de te minimaliseren functie, een zogeheten
sparseness eis op te leggen aan de inversie in de verticale richting. De methode is
vervolgens in een voor echte data efficinte vorm gegoten door het geregulariseerde
inversieprobleem te schrijven als een gepreconditioneerd inversieprobleem, en daar-
bij het nieuwe probleem middels Tikhonov herformulering tot standaard vorm te
herleiden. Hierdoor wordt het mogelijk het probleem op te lossen met de zeer snelle
Conjugate Gradients methode. Het succes van de combinatie van deze aspecten
is gedemonstreerd door geologisch zinnige, hoge resolutie gesteenteparameters voor
een gashoudend zandsteenreservoir te bepalen uit bandbreedte beperkte pre-stack
seismische amplitude metingen. Samenvattend kan gesteld worden dat men met
geregulariseerde lineaire inversietheorie in staat is om hoge resolutie reservoir param-
eters te bepalen uit aan ruis onderhevige, incomplete en onnauwkeurige seismische
amplitude data.

Helaas is alle seismische data onderhevig aan fundamentele beperkingen welke nooit
weggenomen kunnen worden met een zuiver lineaire aanpak. Op dit moment bestaan
er twee principes om met de hogere orde fysische effecten om te gaan. Het eerste is
het uitbuiten van de ware, intrinsieke niet-lineariteit van het systeem. Het tweede
berust op het vasthouden aan de aanname van lineariteit in de data terwijl een
iteratieve niet-lineaire eis aan de parameterschattingen opgelegd wordt. In het ideale
geval is deze eis gebaseerd op a priori kennis van de geologie. Dit tweede principe
kan gezien worden als een zwak niet-lineaire aanpak, waar het eerste principe een
volledig niet-lineaire aanpak is. Een significant gedeelte van dit proefschrift houdt
zich bezig met dit tweede principe. Dit is een verstandige keuze, daar vrijwel alle
seismische afbeeldingsschema’s trachten dat deel van het golfveld dat niet-lineair in
de materiaalparameters is, te identificeren en verwijderen. Dit om een seismische
dataset te verkrijgen die beter voldoet aan de niet lineariteitsaanname. De toekomst,
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zowel op korte als op lange termijn, is die van de volledige niet-lineaire aanpak.
De rijping van doelgerichte niet-lineaire inversie is redelijkerwijs op korte termijn
te verwachten, terwijl voor algemene inversie van het complete golfveld – waarbij
alle ruwe seismische data direct genverteerd wordt voor gedetailleerde onderaardse
eigenschappen – nog flink aan de weg getimmerd zal moeten worden. Hoe dan
ook is het essentieel om de intrinsieke niet-lineariteit van de data te erkennen en
deze te gebruiken in een niet-lineair inversieschema. Dit is de enige directe manier
om op grond van de data alle fysica in de data te verklaren, en tevens garandeert
de methode dat alle voorkomende aardeffecten correct meegemodelleerd worden.
Het is onbetwist dat de toekomst van kwantitatieve amplitude analyse ligt bij het
volledig niet-lineaire datamodel, en zij die dit pad bewandelen wens ik een goede en
vruchtbare reis.

Ayon Kumar Dey
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