Thesis Defense

Sérénic Monté 27-06-2024

Creating a methodology to more objectively measure the performance of reconstruction algorithms for large urban objects generated from low detailed complete ground truth models

Why are reconstruction algorithms usefull?

Why are reconstruction algorithms usefull?

How to get a model

- Using pictures or video
- Scanning
- Modeling in the computer

Photos and videos

Photos and videos

Pros and Cons

- Is cheap to make
- Is easy to make
- Low quality models

[

[2]

Pros and Cons

- Very detailed
- Good for small objects and objects that have no obstruction and can be seen from the scanner
- Takes lots of time
- Expensive
- Obstructions
- Missing elements

Modeling by hand

Pros and Cons

- Details take lots of time
- Simple structures can be made quickly and are complete

Creating a methodology to more objectively measure the performance of reconstruction algorithms for large urban objects generated from low detailed complete ground truth models

Reconstruction algorithms

Reconstruction algorithms

Multi-View Stereo	Novel View	Neural Surface
	Synthesis	Reconstruction

Multi-View Stereo	Novel View Synthesis	Neural Surface Reconstruction
COLMAP	Nerfacto	Neus-Facto
PatchmatchNet	Gaussian splatting	VoISDF

Multi view stereo

NVS Gausian splatting

[1] Signed Distance Field Sphere Tracing Depth Normal

Reconstruction algorithms

	Multi-View Stereo	Novel View Synthesis	Neural Surface Reconstruction
input	Images	Images	Images
output	Point cloud	Images	Mesh

Creating a methodology to more objectively measure the performance of reconstruction algorithms for large urban objects generated from low detailed complete ground truth models

	Pictures	Model
MVS		Х
NVS	Х	
NSR		Х

Creating a methodology to more objectively measure the performance of reconstruction algorithms for large urban objects generated from low detailed complete ground truth models

Large urban objects

	Left	Right
Hausdorff	6.188	5.677
Chamfer	0.553	0.437
F-Score	0.484	0.439

[4]

Courthouse

Can we develop a methodology that allows us to evaluate the quality of reconstruction algorithms, for architectural purposes, without the use of a highly detailed complete ground truth model?

Courthouse

How to get complete ground truth models?

Main: Can we develop a methodology that allows us to evaluate the quality of reconstruction algorithms, for architectural purposes, without the use of a highly detailed complete ground truth model? Main: Can we develop a methodology that allows us to evaluate the quality of reconstruction algorithms, for architectural purposes, without the use of a highly detailed complete ground truth model?

Main: Can we develop a methodology that allows us to evaluate the quality of reconstruction algorithms, for architectural purposes, without the use of a highly detailed complete ground truth model?

- 1. Are the reconstruction algorithms able to reconstruct a scene from a low resolution model of a large urban object.
- 2.What are the features that we can extract from a low resolution model, that can be used to test the quality of the generated meshes.

Main: Can we develop a methodology that allows us to evaluate the quality of reconstruction algorithms, for architectural purposes, without the use of a highly detailed complete ground truth model?

- 1. Are the reconstruction algorithms able to reconstruct a scene from a low resolution model of a large urban object.
- 2.What are the features that we can extract from a low resolution model, that can be used to test the quality of the generated meshes.
- 3.Does the width of the region around the extracted feature influence the

quality of the evaluation metrics.

- 1) Search for models
- 2) Create dataset from the models
- 3) Run algorithm

TUDelft

1) Search for models that after conversion have no or minor texture errors

- 2) Create dataset from the models
- 3) Run algorithm

TUDelft

• Alpha masks

- Alpha masks
- Depth maps

- Alpha masks
- Depth maps
- Normal maps

- Alpha masks
- Depth maps
- Normal maps
- Number of images

- Alpha masks
- Depth maps
- Normal maps
- Number of images
- Distance of camera to object

- Alpha masks
- Depth maps
- Normal maps
- Number of images
- Distance of camera to object
- Maximum vertical oscillation

TUDelft

- Alpha masks
- Depth maps
- Normal maps
- Number of images
- Distance of camera to object
- Maximum vertical oscillation
- COLMAP poses

- Alpha masks
- Depth maps
- Normal maps
- Number of images
- Distance of camera to object
- Maximum vertical oscillation
- COLMAP poses
- Directional light

- Alpha masks
- Depth maps
- Normal maps
- Number of images
- Distance of camera to object
- Maximum vertical oscillation
- COLMAP poses
- Directional light
- Environment lighting

- Alpha masks
- Depth maps
- Normal maps
- Number of images
- Distance of camera to object
- Maximum vertical oscillation
- COLMAP poses
- Directional light
- Environment lighting
- Light intensity

Nerfacto

Splatfacto

PatchmatchNet

COLMAP

COLMAP

COLMAP

VoISDF

Main: Can we develop a methodology that allows us to evaluate the quality of reconstruction algorithms, for architectural purposes, without the use of a highly detailed complete ground truth model?

- 1. Are the reconstruction algorithms able to reconstruct a scene from a low resolution model of a large urban object.
- 2.What are the features that we can extract from a low resolution model, that can be used to test the quality of the generated meshes.
- 3.Does the width of the region around the extracted feature influence the

quality of the evaluation metrics.

What are the features that we can extract from a low resolution model, that can be used to test the quality of the generated meshes.

ŤUDelft

What are the features that we can extract from a low resolution model, that can be used to test the quality of the generated meshes.

What are the features that we can extract from a low resolution model, that can be used to test the quality of the generated meshes.

Main: Can we develop a methodology that allows us to evaluate the quality of reconstruction algorithms, for architectural purposes, without the use of a highly detailed complete ground truth model?

- 1. Are the reconstruction algorithms able to reconstruct a scene from a low resolution model of a large urban object.
- 2.What are the features that we can extract from a low resolution model, that can be used to test the quality of the generated meshes.
- 3.Does the width of the region around the extracted feature influence the

quality of the evaluation metrics.

Does the width of the region around the extracted feature influence the quality of the evaluation metrics.

Does the width of the region around the extracted feature influence the quality of the evaluation metrics.

		NeuS-facto			VolSDF		
		Hausdorff↓	chamfer↓	F-score↑	Hausdorff↓	chamfer↓	F-score↑
large small	25	22.570	5.097	0.188	22.135	5.047	0.457
	40	20.931	6.871	0.240	35.061	8.986	0.402
	60	27.048	9.561	0.234	39.463	13.761	0.084
	25	22.998	4.997	0.185	22.579	5.556	0.473
	40	20.980	6.814	0.257	35.293	10.165	0.435
	60	27.277	9.774	0.233	39.870	14.245	0.049
	full	17.407	1.801	0.397	11.907	1.159	0.541

		Hausdorff	chamfer	F-score	combined
	25	50%	50%	40%	46.7%
large	40	50%	70%	30%	50%
_	60	50%	70%	40%	53.3%
	25	60%	60%	40%	53.3%
small	40	60%	70%	40%	56.7%
	60	50%	70%	50%	56.7%
	full	50%	40%	50%	46.7%

Main: Can we develop a methodology that allows us to evaluate the quality of reconstruction algorithms, for architectural purposes, without the use of a highly detailed complete ground truth model?

- 1. Are the reconstruction algorithms able to reconstruct a scene from a low resolution model of a large urban object.
- 2.What are the features that we can extract from a low resolution model, that can be used to test the quality of the generated meshes.
- 3. Does the width of the region around the extracted feature influence the

quality of the evaluation metrics.

In this thesis we show that it is possible to create a methodology for a more objective evaluation of the performance of mesh reconstruction algorithms of large urban objects generated from low detailed complete ground truth models. We have also demonstrated that it is possible to render large urban objects from low detailed manual modeled buildings with photo (realistic) textures for the three algorithm groups.

References

- 1. Xie, Yiheng, et al. Neural Fields in Visual Computing and Beyond. arXiv, 5 Apr. 2022
- 3D Laser Scanning Buildings Using SLAM100 LiDAR Scanner, (Jun. 10, 2022). [Online Video]. Available: https://www.youtube.com/watch? v=2A5D0NLpHxQ
- 3. VARS Augmented Reality for Tourism, Cultural Heritage and History, (Feb. 24, 2020). [Online Video]. Available: https://www.youtube.com/watch? v=ZdWeYBBtxZA
- 4. Z. Li et al., "Neuralangelo: High-Fidelity Neural Surface Reconstruction." arXiv, Jun. 12, 2023. doi: 10.48550/arXiv.2306.03092.
- 5. "Photos." [Online]. Available: https://www.atlaslandsurveying.com/photos
- 6. "Track Technology," iRacing.com. [Online]. Available: //www.iracing.com/track-technology/
- 7. "SketchUp x GenAI: realize your vision faster with Diffusion." [Online]. Available: https://blog.sketchup.com/article/sketchup-x-genai-realize-yourvision-faster-with-diffusion
- 8. "Fourth Workshop on Image Matching: Local Features & Beyond." [Online]. Available: https://image-matching-workshop.github.io/challenge/
- 9. "3D Warehouse." [Online]. Available: https://3dwarehouse.sketchup.com/
- 10. "InstantSplat: Sub Minute Gaussian Splatting Radiance Fields." [Online]. Available: https://radiancefields.com/instantsplat-sub-minute-gaussiansplatting
- 11. K. Yurkova, "A Comprehensive Overview of Gaussian Splatting," Medium. [Online]. Available: https://towardsdatascience.com/a-comprehensiveoverview-of-gaussian-splatting-e7d570081362
- 12. T. Rouch, "PatchMatch Multi-View Stereo," Medium. [Online]. Available: https://betterprogramming.pub/patchmatch-multi-view-stereo-1-2fc46e5df_012

Thank you for your attention