
Exploration of SPAD Based CMOS QRNG

Designs

Alex J.C. Janssen

August 2017

Abstract

In today’s digital life, security and encryption are becoming more and
more important. As random number generators are a fundamental block
of security and encryption, it is crucial to guarantee that these devices
operate securely. Random numbers are usually generated in two ways;
pseudo random number generators (PRNGs) and true random random
number generators (TRNGs). PRNGs output a sequence based on a seed
and a mathematical function. The deterministic nature of pseudo RNG
devices can result in the PRNG not being applicable for all protocols, in
which case TRNGs are needed. Almost all strong cryptography requires
TRNGs to generate keys. The difference is that these devices instead
rely on real world physics in order to generate a random number. The
TRNG implementation explored in this thesis makes use of the quantum
mechanical properties of photons. TRNGs making use of this principle
of elementary quantum mechanical decision making are called quantum
random number generators (QRNGs). This source of entropy provided
by photons can be extracted by utilizing SPADs. QRNG devices based
on SPADs have been made before in different ways, however there are
still large grounds undiscovered when concerning SPAD based designs.
As SPAD based QRNGs can be completely produced using CMOS tech-
nology, a world of possibilities open, including integration with already
existing designs. Different aspects of SPAD QRNG designs will be dis-
cussed in this thesis; size, speed, hybrid designs and QRNG test-benching.
The first part of the exploration focuses on creating an as small as pos-
sible QRNG. This resulted in a QRNG design which is as small as just
one flip-flop and one SPAD. This design has been nicely compared with
existing QRNGs, being the smallest QRNG made so far to the authors
knowledge. Simulations show that the device is able to run up to 25Mb/s
using a SPAD with a deatime in the range of 10ns. This device has
been produced using 130nm technology by STMicroelectronics. The sec-
ond part of the exploration, delves into how fast a SPAD based QRNG
can be. The main goals here were to make the fastest possible QRNG
with good scalability characteristics. This resulted in a design proposi-
tion based on the difference in the time of flight of two photons. This
design is simulated using Matlab, and can reach 70Mb/s per SPAD-duo
depending on the deadtime of the SPAD used. When using a SPAD with
a deadtime of 1µs, the scaled up design needs only 16 % of the SPADS
needed by a state-of-the-art SPAD based QRNG design based on simu-
lations. The amount of SPADs needed however schales almost linearly
with a lower deadtime, having the potential to need only a fraction of the
SPADs needed by the state-of-the-art in order to reach the same speeds.
Then the concept of hybrid devices is explored, making use of a combina-
tion of PRNG and QRNG systems. The first hybrid design proposed is a
design in which a very small QRNG is used to generate the key for mul-
tiple secure PRNG systems. The PRNG system used in this design is a
trivium stream cypher. The design is completely written in VHDL except
for the external QRNG. It then has been compiled and simulated using
ModelSim, again using 130nm technology by STMicroelectronics. This
resulted in a design which is able to reach speeds of 640Gb/s, while using
a total area of 99936µm2. The second hybrid device proposes a LFSR

based design, which makes use of multiple very small QRNG devices to
influence the function that the LFSR implements in order to increase the
security. The last part of the exploration explores how it can be made
easier and faster to test QRNG designs in an early design stage more accu-
rately. As the source of entropy is quantum, the only risk of affecting the
randomness is purely in which form the data of the photons is processed.
By creating a chip which is able to extract the time of flight and the
exact location of where the photon hit, testing potential QRNG devices
can already be done in an early design stage with real-time data. A part
of the chip that measures the time of flight of the photons arriving, has
been designed in 40nm technology by STMicroelectronics. This part is a
novel counter based on the principle of Gray counting, and is simulated
extensively using extracted layout simulations. These simulations show
that the device is able to run at speeds up to 3.6GHz.

ACKNOWLEDGEMENTS

I would first like to thank Prof. Edoardo Charbon. Although he is the busiest
man I have ever met, he always made time for me when I needed it. Furthermore
I would like to thank dr. Francesco Regazzoni at ALaRI for being available daily
to me for any questions. He allowed the thesis to be my own, but steered me
whenever I needed it.

My sincere thanks also goes to Augusto Carimatto and Augusto Ximenes, who
helped me setting up in the early stage of the thesis, and later gave me the
honor to work together with them on the POLIS project.

I would also like to thank my friends Kees Kroep and Peter Stijnman for sup-
porting me and helping by discussing my design choices with me throughout
the year.

Finally, want to thank my parents and my girlfriend Wendy for continuously
supporting and encouraging me throughout my years of study, research and
writing this thesis. This would not have been possible without them.

Alex J.C. Janssen

Contents

1 Introduction 1
1.1 Pseudo randomness . 2

1.1.1 Linear feedback shift register 2
1.1.2 Trivium . 4

1.2 True randomness . 6
1.2.1 Light as source of entropy 7
1.2.2 Single-photon avalanche detectors 7

1.3 State-of-the-art photon based QRNG designs 9

2 Small Integratable QRNG 11
2.1 Design goals . 11
2.2 Design overview . 11
2.3 Expected value Simulations . 12
2.4 Implementation . 15

2.4.1 Basic architecture layout 15
2.4.2 Chip layout . 16

2.5 Conclusion . 18

3 High Speed Scalable QRNG 19
3.1 Design goal . 19
3.2 Design Overview . 19
3.3 Output codes . 20
3.4 Speed simulation . 21
3.5 SPAD tolerances . 23
3.6 Scaling . 24
3.7 Conclusion . 26

4 Hybrid PRNG-QRNG designs 27
4.1 Hybrid Trivium-TRNG . 27

4.1.1 True RNG Seeding . 27
4.1.2 Scaling . 28
4.1.3 Control system . 28
4.1.4 Results . 32
4.1.5 Conclusion . 33

4.2 Quantum Dynamic LFSR . 33
4.2.1 Incorporating TRNG . 34
4.2.2 Conclusion and future work 34

5 Universal QRNG Testbed 36
5.1 POLIS project . 36
5.2 High speed, high accuracy Gray counter 37

5.2.1 Design goals . 37
5.2.2 Problems with conventional counters 37
5.2.3 Gray counting . 38

5.2.4 3-Bit gray counter . 38
5.2.5 Basic architecture . 39
5.2.6 Implementation . 41
5.2.7 Results . 42

5.3 Conclusion . 43

6 Conclusion 45

A Small Integrable QRNG Matlab Simulations 49

B SCS-Block Matlab Simulations 52

C DC Compiler Script 58

D Control System VHDL 62

E Key Control VHDL 67

F Multiplexer VHDL 73

G SR Latch VHDL 74

H Asynchronous to Synchronous signal converter VHDL 75

I 320 Bit Shift Register VHDL 77

J Trivium Control VHDL 78

K 64-Bit Trivium VHDL 84

L JK-flip-flop VHDL 87

M 5-Bit Counter VHDL 88

N 9-Bit Counter VHDL 90

O Control System Testbench VHDL 92

1 Introduction

In our everyday digital life, digital data processing in computers, ATMs, mobile
devices and more have a huge impact on our life. In all these applications
and devices cryptography is an important aspect. Cryptography can simply
be described as ”the art and science of keeping messages secure” [1]. Random
number generators (RNGs) are a very important aspect of cryptography, as a
lot of processing is in need of RNG for security. Random number generation
can be defined as the generation of a sequence of numbers, which cannot be
predicted better than a random chance [2]. RNGs are not only used for security,
but also put to use in gaming applications or Monte Carlo simulations. By
having random numbers, systems can be secured and privacy can be guaranteed.
Having however a RNG which is cracked, or appears to be influenceable, it can
no longer be guaranteed to be secure. This could result in outsiders being able
to decrypt passwords, influence game matchups or even generate TAN codes for
bank accounts. This is why it is important to have reliable and cryptographically
secure RNGs.

RNGs can be distinguished in two categories; pseudo-random number gen-
erators (PRNGs) and true-random number generators (TRNGs). Pseudo ran-
dom number generators make use of mathematical implementations of func-
tions whose statistical properties are the ones of a random distribution, while
TRNGs make use of physical sources of entropy. All strong cryptography re-
quires TRNGs to generate keys [3], which is why it is important to have true
random number generators. In this thesis I will be making an exploration of
TRNGs that generate random numbers based on photons, better known as
quantum RNGs (QRNGs). The QRNGs explored in the thesis are all based
on CMOS technology as this allows for reliable mass production on existing
processes when using photon detectors [4, 5].

In this chapter the different techniques and state-of-the-art systems of pseudo
and true random number generating will be discussed. Chapter 2 starts the ex-
ploration of different QRNG systems by first designing the smallest possible
integrable QRNG system. The next Chapter 3 will take a look at a different as-
pect; reaching an as high as possible speed with a pure QRNG. Succeeding these
two sections, two PRNG-TRNG hybrid systems will be discussed in Chapter 4.
This section describes how the advantages of both PRNG and QRNG systems
can be used to create more secure and faster RNG systems. The last area of the
exploration, Chapter 5, will try to tackle a different aspect of QRNG designing.
Here it will be explained how a chip, that is able to extract all the different
properties of photons, can be used to quickly and efficiently test new potential
QRNG designs. Part of this chip design will be explained in detail, which is a
novel coarse counter used for measuring the time of flight of a photon based on
the principle of Gray counting. The thesis will be concluded in Chapter 6, with
a discussion on the results and what can be expected in the future of QRNG
designs.

1

1.1 Pseudo randomness

A pseudorandom number generator (PRNG) outputs a sequence based on an
initial seed [2]. This is expressed as shown below, where s0 = seed.

si+1 = f(si), i = 0, 1, ... (1)

Thus the only thing that can be done is creating a function implementation
which alters the output in a defined way [2]. There are of course a few require-
ments to these functions, and they have to pass a lot of tests in order to be used
in cryptography, but that is out of the scope. The main point is that the bits
should have good statistical properties.

When talking about RNGs in cryptography we are mostly talking about
CSPRNGs, which means cryptographically secure pseudorandom number gen-
erators. This means that it is a PRNG which is not predictable, and that the
next bit cannot be guessed better than a 50% chance of success. The second
requirement is that the preceding bits should be impossible to calculate know-
ing the next bits. These requirements are unique to cryptography, in almost
all other fields these are not needed. Nevertheless we would like to have sys-
tems that are unconditionally secure, however practical implementations do not
meet this condition. In a world where we can assume infinite computing power,
a CSPRNG is never secure. This is why we stick to computationally secure,
which means we call it secure if the best known algorithm for breaking the
system requires at least a certain amount of operations.

In this thesis only shift register based stream ciphers are discussed and used.
This is because of their easy implementation in hardware, and many stream
ciphers use different kinds of shift register based designs. Two systems will
be discussed, the linear feedback shift register and the Trivium, of which the
latter is a strongly secured design based of using multiple linear feedback shift
registers.

1.1.1 Linear feedback shift register

A standard linear feedback shift register (LFSR) uses flip-flops, which are clocked
storage elements combined with a certain feedback path. The amount of these
flip-flops determine what degree the LFSR is. A simple 3rd degree LFSR is
shown in Figure 1.

When using a seed where FF2 = 1, FF1 = 0 and FF0 = 0, the sequence can
be reconstructed at each clock tick, as seen in Table 1. Note that when using a
different seed or feedback a different output is obtained.

As can be seen it starts repeating after clock cycle 6 and thus there is a
period length of 7 bits. It is known that s1, s2 and s3 are going reveal the
seed that was put in the LFSR. The next bits can be computed easily following
Equation 2.

si3 = si+1 + si mod 2 (2)

2

FF2 FF1 FF0 si

CLK

⊕

Figure 1: 3rd Degree LFSR.

Table 1: A sequence of the 3rd degree LFSR

clk FF2 FF1 FF0(si)

0 1 0 0
1 0 1 0
2 1 0 1
3 1 1 0
4 1 1 1
5 0 1 1
6 0 0 1
7 1 0 0
8 0 1 0
9 1 0 1

It is seen that this LFSR effectively uses all its available states, meaning it
does not get ”stuck” in a state. As soon a LFSR repeats a previous state, it will
start repeating the whole sequence from that point. This means that an LFSR
is not allowed to have the same internal state twice in a specific feedback state.

LFSRs are usually expressed using a polynomial equation. A LFSR which
uses a certain feedback coefficient vector (pm−1, ..., p1, p0) can be expressed by
the polynomial in Equation 3 [2].

P (x) = xm + pm−1x
m−1 + ...+ p1x+ P0 (3)

LFSRs that do not repeat the same internal state twice are called maximum-
length LFSRs, which are recognized mathematically by so called ”primitive
polynomials”. These are irreducible polynomials, which can be compared to
prime numbers, which also only have the multiplication factors 1, and itself.
There are a lot of primitive polynomials per state, as a LFSR of the degree
m = 31 has 69, 273, 666 unique primitive polynomials. This however means
that only 69, 273, 666/231 = 0.0323 of the configurations are maximum-length
LFSRs.

A single LFSR is however a very insecure system. A famous and efficient
attack that even works on very large values of m is a Plaintext attack [2]. The
attack itself is not complicated, however out of the scope of this thesis. The

3

result is that as soon 2m output bits of an LFSR with a degree m are known,
the polynomial of the LFSR can be discovered by solving a simple system of
linear equations.

1.1.2 Trivium

A trivium is a hardware oriented stream cipher [6]. It makes use of multiple
LFSRs in a complex scheme, which has as a result a simple but tested design.
Its strength comes from the fact that although it uses linear elements as a basis,
it uses nonlinear components to derive the output of each register.

Operation The trivium works with three shift registers, A, B and C with the
lengths 93, 84 and 111 respectively, adding up to a 288-bit internal state. The
key stream makes use of an iterative process which uses the values of 15 state
bits, and uses these to update 3 bits of the state and compute one bit which
is at the output of the key stream. The trivium can generate up to 264 bits of
unique key stream. This process is denoted by the pseudo code below, where
tm the output is of a register and zi denotes an output state.

for i = 1 to N do
t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69

(s1, s2, ..., s93)← (t3, s1, ..., s92)
(s94, s95, ..., s177)← (t1, s94, ..., s176)
(s178, s279, ..., s288)← (t2, s178,...,s287)

end for

From the pseudo code can be seen that the critical path is 1 flip-flop, an
AND gate and an XOR gate. This process is visualized in Figure 2. The 3
AND gates, the 11 XOR gates and the 3 LFSRs can clearly be seen here, and
the algorithm can be visualized.

One of the major downsides of this device is its initial Key and IV setup.
First a 80-bit key and 80-bit initial value must be loaded into the 288-bit initial
state.

(s1, s2, ..., s93)← (K1, ...,K80, 0, ..., 0)
(s94, s95, ..., s177)← (IV1, ..., IV80, 0, ..., 0)
(s178, s279, ..., s288)← (0, ..., 0, 1, 1, 1)

4

Figure 2: Visual representation of a trivium [6].

The first register is loaded with the key, and zeroes at the end. The second
register is loaded with an initial value and also ended with zeroes. The third
register is completely loaded with zeroes, except for the last 3 bits, which are
initialized with ones. After the initialization the trivium needs to be ”warmed
up” by rotating it over 4 full cycles following the pseudo code for standard
operation. During the first 4 · 288 = 1152 clock ticks the output of the trivium
should be blocked in order to guarantee a secure output.

Scalability The trivium is a hardware oriented flexible design. It was designed
to be compact, with restrictions on gate count, power-efficiency, and fast in
applications that require high-speed encryption. It is a very scalable design as
any state bit is not used for at least 64 iterations each time a bit is modified.
This means that when the 3 AND gates and 11 XOR gates in the scheme from
Figure 2 are duplicated accordingly, the design can be scaled up to 64 times.
An estimation of the gate count for different degrees parallelization is listed in
Table 2.

A 64 times increase in output only requires a 3488/5504 ·100 = 63% increase
of hardware. Notice that this also speeds up the warm-up process, which now
only requires 1152/64 = 18 clock cycles. This shows that the trivium possesses
great scalability characteristics.

5

Table 2: Estimated gate count for differently scaled implementations [6].

Components 1-bit 8-bit 16-bit 32-bit 64-bit

Flip-flops: 288 288 288 288 288
AND gates: 3 24 48 96 192
XOR gates: 11 88 176 352 704

NAND gate count: 3488 3712 3968 4480 5504

Security The trivium is thus a very high speed PRNG with great scalability
characteristics. On top of that there are at the time of writing no known attack
strategy’s for it as long the the output is hidden during the warmup phase.
However as this is still a relatively new stream cipher, it does not mean it will
stay secure in the future. All in all, this is a very promising PRNG, which will be
used later in the thesis for its strong security and fast hardware implementation.

1.2 True randomness

True random number generators, or just TRNGs have as a characteristic that
their output cannot be reproduced. A PRNG can be reproduced, as when using
for example the same LFSR and using the same seed, the results is the exact
same bit stream. This is why TRNGs do not always share the same applications
as PRNGs, as TRNGs are mostly used for session keys. Later in this thesis it
will be shown how a TRNG can be used to generate a strong seed for PRNGs.

The output of a TRNG cannot be reproduced, as TRNGs are based of phys-
ical sources of entropy, this can be flipping a coin, thermal noise in resistors [7]
or frequency jitter of electronic oscillators [8] and many more. Many of these
kind of physical sources make use of huge and complex behaviour of many phys-
ical phenomena, which results in a close to non-predictable chaotic behaviour.
These classical TRNG systems have in the essence a deterministic nature and
external influences on these device may remain hidden. [9, 10]

Another good source of entropy, the one used in this thesis, is quantum
mechanics. These effects can be used as the law of physics state that this process
is intrinsically random. We do not know yet how to build devices capable of
extracting randomness only from quantum mechanics, since current RNGs using
this source often generate sequences where randomness comes also from other
minor effects. Nevertheless, devices using quantum as a source are capable of
producing sequences with strong random properties.

A TRNG using a quantum source is called a QRNG. Such a source could
be the decay of a radioactive nucleus [11], however using radioactive substances
is quite demanding in precautions. Another source which can be used for its
elementary quantum mechanical decision making are photons, many systems
have been using these as a source of entropy already, of which comparable state
of the art devices are discussed in Section 1.3.

6

1.2.1 Light as source of entropy

Light will be the basic building block for all of the TRNG based architectures
presented in this thesis. As is generally known, photons are a special kind of
particles. They sometimes behave like a particle, sometimes a wave, they have
no mass, yet do have momentum. Photons are thus a special case in all physi-
cal ways, its elementary quantum mechanical decision making can be used for
random number generating. For the application of random number generating,
two properties of photons are important, the arrival time and the arrival rate at
a certain location. These can be modelled using a Poisson distribution, which is
the probability of observing k events in an interval, which is given in Equation
4.

P (k) =
λke−k

k!
(4)

In this case the chance of a photon having hit a certain area is k. λ Is
the event rate, which is in this case the average amount of photons hitting
per interval, this is the illumination in this case. λ Can be easily tuned, as
this this would mean shining more or less light on average over a certain area
over a certain amount of time. Using this, it is possible to give the Poisson
distribution any form. From this it can be understood that photons can indeed
be used as a QRNG seed, but what the eventual results is will still need to be
measured in order to use it for generating numbers. This is done using single-
photon detectors, which have some additional properties which contribute to
the random behaviour of a QRNG.

1.2.2 Single-photon avalanche detectors

A single-photon detector is defined as a detector capable of measuring one or
more characteristics of a single photon with no other present photons [4]. One
type of single-photon detector is a single-photon avalanche detector (SPAD)
which can be completely made in a CMOS process [4, 5]. Being able to detect
photons using CMOS process allows for mass-production at reasonable costs and
high yields [4]. This is a huge advantage for RNG designing, as it is possible this
way to manufacture a QRNG without the need of an expensive custom process.

Basic operation SPADs are devices based on a p-n junction at a certain
voltage that exceeds the breakdown voltage of the junction. At this bias the
electric field is high enough that a single photon in the depletion layer has a
certain chance to trigger a self-sustained avalanche. This current caused by
a photon hit rises quickly up to a stable point somewhere in the mA range
depending on the technology used. The photon induced current then continues
until the the circuit is quenched, meaning that the bias voltage has to be lowered
below the breakdown voltage of the junction. After lowering the voltage and
stopping the avalanche current, the voltage needs to be brought back to the
voltage point above the breakdown voltage again.

7

Quenching and recharge circuits A circuit that is able to make a SPAD
operational is called a recharge circuit. This circuit is able to lower the bias
voltage after avalanche down the breakdown voltage, called quenching, and then
restore the junction back to operation level. Passive recharge is the simplest
form of a recharge circuit [12, 4]. A passive quenching and recharge circuit is
simply a resistor in series with the SPAD, as is depicted in Figure 3.

Figure 3: Passive recharge circuit [12].

The avalanche current causes a voltage drop across the resistance, which
brings the voltage down the breakdown voltage again. This causes the avalanche
to stop, which in turn reduces the voltage drop and brings the SPAD back to the
operating point above the breakdown voltage. There are a couple of downsides
to passive recharge, which have to do with the slow recharging time of the
circuit. The biggest problem is that a SPAD may avalanche even before being
completely recharged. This has as a result that afterpulsing is problematic with
passive recharging [4], which is an avalanche that is not triggered by a photon
but instead correlated to the last avalanche. This is unwanted in all applications,
especially random number generation.

In order to combat this, active recharge circuits are used. A wide variety
of active recharge circuits exist which are usually integrated on chip [13]. The
basic idea of an active recharge circuit is to place a transistor which is turned
on for a certain amount of time after an avalanche [4]. The big difference in
using an active recharge circuit like this compared to passive recharge is that
it is now possible to create a necessary amount of delay. In order to reduce
the afterpulsing, an additional active quenching circuit can also be added. This
helps the quenching process by detecting the avalanche onset and reducing the
amount of free charge carriers flowing through the diode [4, 14].

Noise Noise is an unwanted property of every device, including SPADs. Es-
pecially when designing random number generators, correlated noise can be
catastrophic to the device. There are two types of noise, uncorrelated and cor-
related noise. Starting with uncorrelated noise sources, there is noise caused by
tunneling and strap-assisted noise [4]. Tunneling noise is mostly constant over
temperature ranges, and is caused by particles ”tunneling” through a poten-

8

tial wall that has more energy than the particle. Trap-assisted noise is due to
Shockley-Read-Hall recombination, which is in turn caused by lattice defects.
This noise is heavily temperature dependent, increasing with a factor two for
every 10 degrees increase [4]. This can be reduced by reducing the amount of
lattice defects, or by maintaining a lower temperature.

Correlated noise sources are the most dangerous to the entegrity of a QRNG.
One of these sources has already been mentioned, which is afterpulsing. After-
pulsing is caused by electrons being trapped in states in the forbidden energy
gap. During an avalanche a lot of electrons are in a state of conduction, being
able to get trapped in an higher energy state than the valence band. When
the device is quenched, and brought back to the bias in the breakdown voltage
region, these electrons require much less energy to go back to the conduction
band again. An electron receiving little energy for example from heat, will cause
another avalanche, not based on a photon, but on an electron that got trapped
during a previous avalanche. This thus creates a correlation between the last
avalanche, and a new one caused by afterpulsing. By increasing the deadtime,
it is possible to reduce the afterpulsing. It is thus important to set a deadtime
long enough to reduce the chance of afterpulsing to virtually zero.

The second source of correlated noise is crosstalk, which is a correlation
between two SPADs. There are two types of crosstalk, optical and electrical
crosstalk. Optical crosstalk is caused by the photon emission of a SPAD when
in avalanche, which in turn hits another SPAD. Optical crosstalk has been often
observed, especially in dense packed SPAD arrays [15]. Electrical crosstalk
less common [4] and is caused by another firing SPAD having an effect on the
power line, which in turn makes another SPAD fire. Electrical crosstalk can
also happen due to electrons tunneling from one to another SPAD. Crosstalk
can generally be avoided by simply placing two SPADs far enough apart from
eachother.

1.3 State-of-the-art photon based QRNG designs

There are different ways of utilizing photons in order to generate random num-
bers. A technique which has been used multiple times is a variety of systems
using lasers to achieve high speeds. There is for example a high speed quantum
random number generator with a speed of over 6.25Gb/s, based on the quantum
phase fluctuations of a laser operating near threshold [10]. Another system that
is used is based on splitting a beam of photons using a polarizing beam splitter
(PBS) [9]. This system makes use of a weak light beam which then passes the
PBS which is set to polarize the incoming light at a 45 degree angle with respect
to the PBS. Then two SPDs are used, where one is set to be a ′1′ when a photon
is detected, and the other a ′0′. There are a few disadvantages though to using
such a device, they require warmup time, calibration of the tube voltages of the
photomultipliers and quite a setup size, namely 25x19x3 cm3. Another device
which operates in a similar way, by making use of a weak mirror which only
reflects 50% of the photons, is a commercial QRNG by ID Quantique [3]. This
device is able to reach speeds up to 16Mb/s. The problem with these kind of

9

devices is that they are fabricated in a custom process, and require extensive
calibration. Furthermore it is hard with these devices to maintain a stable,
high-quality stream of random numbers.

It is interesting to explore QRNG devices, which are producible in CMOS
technology. Commercial QRNGs are usually build in very expensive custom
processes, while CMOS processes have the potential to achieve the same, and
even much higher speeds at a much lower cost. Creating a QRNG has been
done in multiple occasions, but the parallelization has proven to be limited
and this area of massively parallel QRNGs is still a largely unexplored area.
A paper that did explore this area of CMOS QRNGs and parallelization of
these devices, is the paper of reference [16]. Here is an already existing imager
composed 512x128 SPADs being used to create a QRNG which is able to run
up to 5Gb/s. This shows that it is indeed possible to create a fast QRNG
using CMOS process with parallelization. A point that would be interesting to
explore, is to create a CMOS based QRNG which is made purely for quantum
random number generating. Creating a device with this in mind from the start
allows for more design options.

10

2 Small Integratable QRNG

Many state-of-the-art QRNG systems described in Section 1.3 rely on precise
calibration or use a large area in order to reach higher speeds. In this section I
want to step out of this design space, and explore largely undiscovered grounds;
very small integratable QRNGs. Instead of focusing on high speed, high tech and
large area based designs, I will be exploring how to make the smallest possible
CMOS based QRNG for integrated designs. This comes with an advantage for
the industry, as the device could easily be integrated in already existing designs
which require RNG. On top of that a very small QRNG has the potential to
open a whole new field of RNG designing, this will be discussed in Section 4.

2.1 Design goals

First of all the QRNG must be able to be produced in CMOS technology, so
it can be universally used in different systems. Secondly, in order to make it
easily integrable it is usefull to be as small as possible. Furthermore a simple
interface benefits integrability. At last the system should have good entropy
characteristics, in order to be able to connect it directly to another device. No
requirements concerning the speed of the device are set, since the minimization
of the area is the main goal. These requirements and goals can be confined to
the following.

• The QRNG must be as small as possible.

• The QRNG must be able to be produced using CMOS technology.

2.2 Design overview

In order to explore the area of small QRNGs effectively, it is important to keep
the design simple. The architecture exists by attaching a single SPAD with
an active quenching and recharge circuit, to a T-flip-flop. These circuits are
needed to make sure the deadtime can be set, and by using active quenching
afterpulsing is reduced. The circuit diagram is depicted in Figure 4.

The operating principle of this architecture is to initialize the T-flip-flop at
any value and invert its output at every pulse that arrives. This architecture
relies on the fact that a photon can arrive at any given moment in time. The
problem would seem that it is possible to predict the output of this device,
based on a simple expected value calculation. If the average time of arrival of a
photon is 100µs, it could be expected that at 200µs the output of the flip-flop
is in its initial state again. However it can be expected that when the wait time
is long enough, the output of this flip-flop can no longer be estimated with an
accuracy of more than 50%. This is due to the poisson distrubtion in the arrival
time of the photons as described in Section 1.2.1. Because of this distribution
it is expected that the illumination levels have a big influence on the expected
value. If the SPAD used had a certain deadtime, and the illumination levels
are infinite, the SPAD would fire as soon it is recharged. This would mean

11

D Q

CP

Out

DFF

SPAD

Figure 4: T-FF made using a D-FF and an invertor connected to a SPAD.

that the system will stay predictable as the correlation to the previous read out
value will not dissapear. In this case a simple expected value calculation would
be a good approximation. However if the illumination levels bare low enough,
the time frame in which the flip-flop can switch becomes large compared to the
deadtime. The expectation is that in that case it might be possible to undo
the correlation to its last read out value over time. Furthermore it is expected
that there is an optimum illumination level, that does not cause the SPAD to
instantly fire when unquenched, but is also not so low that it takes a long time
to converge the entropy to 1 Shannon.

2.3 Expected value Simulations

The architecture is dependent on a few parameters, the deadtime denoted by
τdead, the light intensity hitting the SPAD, and the photon detection probability
of the SPAD. These last two are combined for the simulations into a single
parameter; pulses per second (PPS). This is the amount of pulses that the
SPAD would generate on average per second when there would be no deadtime
involved. There are two things that are interesting to find out using simulations
of this device. The first point is to see at what values of PPS the device is able
to converge to 1 Shannon, and how fast this can approximately go. The second
important point is to find out what the effect of the deadtime of the SPAD is
on the range of PPS that can be used, and on the maximum speed that can be
reached. The simulation is done using Matlab of which the code can be found
in Appendix A. The simulation assumes no external influences and that at time
t = 0 the value of the T-flip-flop is known as well that at t = 0 the SPAD is
not being quenched. The design is simulated by calculating the chance of an
event occurring using the poisson distribution, and comparing it with a random
generated number by the PC. If it is a hit, the SPAD is actively quenched
and recharged, thus any further hits during this process do not create another
inversion of the T-flip-flop. This process is repeated during the whole selected
time frame for one single instance of the simulation. This whole simulation is
then repeated a few thousands of times, and the results are averaged, which

12

gives the probability mass function P (t). The entropy in Shannon is calculated
using Equation 5.

H(t) = −
i=1∑
n

P (t)logbP (t) (5)

The plot in Figure 5a depicts the probability mass function, while Figure 5b
depicts the entropy on the Y axis, for the same PPS.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

time [µs]

p
ro

b
ab

il
it

y
[−

]

(a) Chance of finding a ′1′

pps = 5 · 104

pps = 5 · 105

pps = 5 · 106

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

time [µs]

en
tr

op
y

[S
h

an
n
on

]

(b) Entropy

pps = 5 · 104

pps = 5 · 105

pps = 5 · 106

Figure 5: Expected value simulations for the deadtime of 10µs under different
PPS conditions.

The plots in Figure 6 depict the results of the simulations for the different
deadtimes: 1µs, 100ns and 10ns. Figure 6b makes use of a different amount
of PPS than the other simulations, in order to see how the scaling in deadtime
corresponds with scaling the PPS.

Simulation Results In Figure 5a, the effect of having too much illumination
on a device with high deadtime is illustrated. The blue line behaves like a square
wave which confirms the expectation. This is because under high illumination a
photon will have a bigger chance to hit the area within a certain timeframe. If
the deadtime is big, this timeframe will be very small compared to the deadtime.
Having too much illumination on a device can cause that the device will not
be able to converge within a reasonable timeframe. The green line in Figure 5
shows the effect of having a bit too much illumination, however the system is
still converging to an entropy of 1 Shannon. The red line is somewhat optimized,
and converges really fast to an entropy of 1 Shannon. This line confirms the
operation of the device, as it is indeed possible to completely converge to an
entropy of 1 Shannon. On top of that the line converges fast compared to the
deadtime of 10µs, around 40µs for this amount of PPS.

Figures 6a and b, look exactly the same, which must mean that the scaling of
the PPS versus deadtime is linear. On top of that we can also see here that the

13

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time [µs]

en
tr

o
p
y

[S
h

a
n

n
on

]

(a) Deadtime of 1µs

pps = 5 · 104

pps = 5 · 105

pps = 5 · 106

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

time [µs]

en
tr

op
y

[S
h

an
n

on
]

(b) Deadtime of 100ns

pps = 5 · 105

pps = 5 · 106

pps = 5 · 107

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time [µs]

en
tr

op
y

[S
h

an
n
on

]

(c) Deadtime of 10ns

pps = 5 · 104

pps = 5 · 105

pps = 5 · 106

Figure 6: Entropy simulations for the deadtimes of 1µs, 100ns and 10ns for
different PPS conditions.

system converges in 4µs and 400ns for the plots in Figures 6a and b respectively.
This is to be expected, as the scaling between deadtime and PPS is linear and
the plots in Figure 5 show a converge time to 1 Shannon of around 40µs for a
deadtime of 10µs. This means that the convergence time can be optimized for
one deadtime, and the optimum amount of PPS can then be calculated for all
other SPAD deadtime values.

Figure 6 shows that there is a maximum converge speed that can be reached
for a certain PPS. Figures 6a and 6c depict an equal convergence time for a
PPS of 5 · 104.

From these simulations it can be concluded that it is indeed possible to
remove the correlation of the previous value with the next value by using time.
Furthermore having a lower deadtime scales linearly with the speed and the
amount of PPS it can converge for. It is however important to restrict the
maximum amount of PPS as the system will start oscillating when the PPS

14

becomes too high. When this happens it will take much longer to converge to a
entropy of 1 Shannon, or it will not be reached at all. On top of that quite high
speeds can be reached, for a device of the size of only one SPAD and flip-flop.
Assuming a 10ns deadtime SPAD, speeds of 1

40ns = 25Mb/s can be reached!

2.4 Implementation

The system is implemented using 130nm technology provided by ST semicon-
ductor. The chip is fabricated, and received however still needs to be tested. In
this section the layout of the chip will be discussed.

2.4.1 Basic architecture layout

The base circuit itself is as simple as it can be, just one D-flip-flop and an
inverter with sufficient delay to make the D-flip-flop toggle. The circuit and
layout are shown in Figures 7 and 8 respectively. The T-flip-flop is able to
toggle in approximately 130 ps in a typical process, which is fast enough, even
when having a SPAD deadtime of only 10ns.

Figure 7: T-flip-flop schematic. Figure 8: T-flip-flop layout.

In order to connect a SPAD to the T-flip-flop, it needs to be quenched
and recharged, followed by a buffer, and in this case a pulse generator which
generates a pulse long and strong enough to flip the T-flip-flop that will be
connected to it. Figure 9 shows the schematic and the layout of the circuit
which will quench and recharge the SPAD and generate a pulse when the SPAD
fires.

As can be seen this is a passive quenching and recharge circuit instead of
an active circuit which is preferable. This was however implemented this way
as designing an active recharge circuit requires and is out of the scope of this
exploration. The resistor is able to operate in the area of several mega ohms
in its resistive operation region. The pulse generator uses the smallest available
inverter at the input in order to minimize the load for the SPAD and generates
a pulse of approximately 200 ps with the T-flip-flop attached to the output.

15

Figure 9: Quenching and pulse generation.

2.4.2 Chip layout

Figure 10 shows the whole chip layout, which is 814.070 x 725.235µ2 in size.

Figure 10: Visual representation of a trivium.

In the middle area of the chip 5 different types of SPADs can be seen, as
there were at the time of creating the chip no available tested SPADs. This
increases the chance of having a functional SPAD for testing the device. Due to
the lack of library components, a simple PAD ring is made by hand. This exists
out of two inner rings were made on two metal layers, one for the substrate
ground, and one for the normal ground. The outer ring functions as the VDD
line for the circuit. ESD protection is made by placing multiple hand-designed
diodes in parallel.

In total 7 testing circuits are attached. Three identical circuits at the left
side of the chip, connected to the left three PADs. Three circuits at the right
side which have more SPADs connected to them for each circuit, and one circuit
at the top side. The circuit at the top side is shown in Figure 11.

16

Figure 11: Main testing circuit where a SPAD of choice can be connected to.

This circuit contains a single passive quenching circuit and T-flip-flop, the
SPAD is left out. This is the most basic, and most important circuit of the
whole chip. In this way any SPAD can be connected to the circuit in case
all the SPADs in this technology are non-functional. The top-middle PAD is
meant to connect the external SPAD and the top-right PAD for the output of
the QRNG. The next three testing circuits are identical and shown in Figure
12.

Figure 12: Testing circuit with two SPADs attached.

These circuits have two SPADs attached with the quenching and pulse gen-
erator, which are then connected together with an OR gate, which is then con-
nected to the T-flip-flop. This is done to test the effect of scaling with SPADs
for the Entropy. For each of the circuits a different type of SPAD is used, in
order to have a greater chance of being able to test properties when using two
SPADs instead of just one. The last three circuits are at the right, which are
shown in Figure 13.

These 3 circuits are for testing the randomness when a lot of SPADs per
QRNG. The top two at the right side have 8 SPADs connected with pulse
generators, with again OR gates and a T-flip-flop at the output. Using this
circuit, the effects of crosstalk can be investigated, while also investigating the
effect of having multiple SPADs together has on the speed of the device. The
last of these 3 circuits is the same, except it lacks ESD protection and has only
4 SPADs connected, in case there is something wrong with the custom made
protection.

17

Figure 13: Testing circuit with eight SPADs attached.

2.5 Conclusion

The resulting design is very small and nicely compared with existing QRNGs,
even the smallest QRNG made so far to the authors knowledge. On top of that
the design is able to operate as QRNG on its own, where the speed is heavily
dependent on the deadtime. When using SPADs with a deadtime as low as
10ns, it is possible to reach speeds of up to 25Mb/s, while using only one
flip-flop and SPAD! At last the device is fully made in CMOS technology, with
a very simple 1-output interface. These characteristics have as a result that
the design can be easily integrated in already existing designs. An example of
integration would be already existing PRNG architectures, as will be shown in
Section 4, or other designs that are in need of RNG while sacrificing a minimum
amount of area.

18

3 High Speed Scalable QRNG

3.1 Design goal

The second point in the design space in QRNG designing that will be explored
is speed. This is a huge difference compared to the small QRNG in previous
section, as the area size is no longer priority number one. More high speed
QRNGs have been made in the past in CMOS process, most notably an image
detector converted in a QRNG reaching up to 5Gb/s [16]. Building a QRNG in
CMOS process however from the ground up opens up a lot of new possibilities
and design choices. In this section a design is proposed with a focus on high
speed and good scalability characteristics, while maintaining robustness. This
design is therefore not aimed to be small in other designs, but rather to have
a speed as high as possible with as main purpose a standalone QRNG. These
requirements of this design can be confined to the following.

• The QRNG must be able to be produced using CMOS technology.

• The QRNG should be as fast as possible.

• The QRNG should have good scalability characteristics.

3.2 Design Overview

In order to have a fast design, it is important to be able to generate a number
out of the first photon that arrives, which resulted in the architecture shown in
Figure 14.

QR D

Comparator

SPAD SPAD′0′ ′1′

Out

BitReady

Reset

Figure 14: SPAD-Comparator-SPAD block.

The operation principle of this circuit is to have two identical SPADs con-
nected to a comparator, where if the left SPAD fires first, the output of the
comparator will be a ′0′ and if the right SPAD fires first, the output will be
′1′. An active quenching and recharge circuit is needed, where if one of the
two SPADs goes in avalanche, both SPADs are quenched. The comparator will
give a BitReady signal, when the output is ready, and will only recharge both
SPADs when the system is read out with a reset signal. This is done to increase
the speed of the device, the moment the signal is read out, the comparator can

19

start generating a new number. Otherwise the one of the SPADs might receive
another photon after the quenching time, which wastes power. Also the situa-
tion might arise where it is still quenching after it is read out, wasting potential
time where a new bit could have been generated.

Throughout this chapter a few assumptions concerning this system will be
made. The first assumption is that the SPADs are exactly identical. The second
assumption is that as soon one of the SPADs fire, both are quenched and are
unable to fire for a certain deadtime τdead, which is set in such a way that no
afterpulsing is present. The last assumption is that at all time, both SPADs are
illuminated with the same light intensity. If this is not the case, it will cause a
bias towards ′1′ or ′0′.

3.3 Output codes

There are a few output possibilities for this architecture, and with the assump-
tions in place, 4 cases can be distinguished which are shown in Table 3. The
two bits in the code show if it was the left SPAD that received the pulse first
within a certain time range or the right SPAD. Code ′00′ means that no pulse
has arrived during the time. ′10′ Means that the left SPAD got into avalanche
first, ′10′ that the right SPAD avalanched first. The ′11′ code means that both
photons arrived at the same time and caused an avalanche within a certain
timeframe.

Table 3: Possible output codes.

Code Result

00 ?
10 ”0”
01 ”1”
11 ?

When two pulses arrive at exactly the same time within the sample time
this gives a ”11” code, no new bit will be generated and the ready signal stays
′0′. Of course the chance of two photons arriving at exactly the same time is
almost infinitely small. The ”11” code occurs within a certain timeframe, which
is dependent on the speed in which the comparator can converge to a value,
or the speed in which both SPADs can be quenched. In the case the SPADs
can be quenched faster than the comparator can set the value, this will be the
maximum timeframe in which a ”11” code can occur after the first SPAD fired.
In the case the comparator can converge faster than the quenching circuit can
quench both SPADs, the comparators speed be the maximum timeframe. In
this thesis I will assume that the quenching will determine the timeframe in
which the ”11” code can occur. A fast quenching circuit will approximately
take 1ns, an average circuit 2ns and a very slow quenching circuit 5ns.

A ”00” code means that no new number is generated within the time frame.
This is the biggest problem with the system in its current state as it is asyn-

20

chronous. A solution would be to simply be so certain of having a value in a
timeframe so that other factors like SPAD tolerances weigh heavier than the
chance of a ′00′ or ′11′ code appearing. This is however not reliable and the
additional waiting time would slow down the system. A definitive solution to
this however will be provided when scaling the system.

3.4 Speed simulation

Before looking how to scale the system, it is important to know the speed that
the system can reach. It is expected that the speed is heavily reliant on the
deadtime τdead of the SPADs. In order to find this out, the device has been
simulated using Matlab. The source code for this simulation can be found in
Appendix B. For the active quenching system is assumed; if within 2ns the
second SPAD fires, it is regarded as a ”11” code, and the bit is disregarded.
Figure 15 shows the PPS, which is the amount of photons potentially causing
an avalanche multiplied with the PDP, on the X-axis and speed of the device
in Mb/s at the Y axis. The graph is plotted for three different deadtimes; 1µs,
100ns and 10ns. For these deadtimes is assumed that they are selected in such
a way that no afterpulsing is present.

105 106 107 108 109 1010
0

2 · 107

4 · 107

6 · 107

8 · 107

1 · 108

PPS [−]

sp
ee

d
[b
/
s]

Speed of a SCS block with 2ns quenching time

τdead = 10ns
τdead = 100ns
τdead = 1µs

Figure 15: Expected value simulations for the deadtime of 10µs under different
PPS conditions.

The first thing that is observed is that the deadtime of the SPAD used has
a huge impact on the maximum speed of the device. This is to be expected,

21

and it can also be observer that this scaling is almost linear, the reason that
it is not however, has to do that at really low deadtimes, the quenching time
becomes comparable in speed, and will have a larger influence on the total
resulting speed. What can be further observed is that under low illumination
levels, the QRNG has to wait for too long for a single photon to arrive, which
has a huge impact on the speed. However as photons arrive faster, the chance
of getting a ”11” code also increases. After the peak, the amount of ”11” code
becomes so big that the speed starts decreasing again. The amount of Mb/s
that is discarded because of ”11” codes occuring is shown in Figure 16, which
corresponds with the same deadtimes as Figure 15.

105 106 107 108 109 1010
0

2 · 107

4 · 107

6 · 107

8 · 107

1 · 108

PPS [−]

sp
ee

d
[b
/
s]

Amount of bits lost due to ”11” codes with 2ns quenching time

τdead = 10ns
τdead = 100ns
τdead = 1µs

Figure 16: Expected value simulations for the deadtime of 10µs under different
PPS conditions.

From this figure it can be seen the ”11” code is an important factor. It is
also clear that the speed of the QRNG should increase when the the timeframe
in which this code can occur becomes smaller. It is thus interesting, to see in
how far how the quenching speed relates to the speed of the QRNG. Figure
17a depicts the speed plotted against the PPS for fast quenching of 1ns, while
Figure 17b show this for slow quenching of 5ns.

The results from the graphs are taken, and put together in a table. The
maximum speeds that can be reached, with the according PPS, is shown in
Table 4 for the different quenching speeds τq and deadtimes τdead.

From the table it is seen that there is a difference based on the time window in

22

105 106 107 108 109 1010
0

2 · 107

4 · 107

6 · 107

PPS [−]

sp
ee

d
[b
/s

]
(a) 1ns Quenching time

10ns
100ns
1µs

105 106 107 108 109 1010
0

2 · 107

4 · 107

6 · 107

PPS [−]

sp
ee

d
[b
/s

]

(b) 5ns Quenching time

10ns
100ns
1µs

Figure 17: Speed simulations of SCS blocks for different quenching times.

Table 4: Counting sequence of a simple asynchronous counter.

τdead = 10ns τdead = 100ns τdead = 1µs

τq = 1ns 70.0Mb/s | 2.7e8PPS 8.95Mb/s | 8.8e7PPS 0.86Mb/s | 3.0e7PPS
τq = 2ns 64.0Mb/s | 2.5e8PPS 8.9Mb/s | 9.3e7PPS 0.97Mb/s | 2.9e7PPS
τq = 5ns 60.3Mb/s | 2.5e8PPS 8.87Mb/s | 9.3e7PPS 0.97Mb/s | 2.5e7PPS

which a ”11” code can occur, however it has only an influence when working with
high speeds and low deadtimes. No big influence is detected when concerning
higher deadtime SPADs. This is as the deadtime is a much larger number than
the quenching speed which is only a couple of nanoseconds. When compared
to a deadtime of 10ns, the quenching speeds become a comparable number,
and has a more significant influence on the speed of the device. Thus when
looking at the different speeds the device can reach, it is mainly dependend on
the deadtime of the SPADs used. When using a low deadtime of 10ns, the
speed of a single SCS block can reach up to a 70Mb/s!

3.5 SPAD tolerances

There is another potential problem when working with a system like this, which
is the fact that due to production, not all SPADs are identical. The problem
with differences in the SPADs is clear, the device is not as random as we would
expect it to be as it will have a bias towards a ′0′ or a ′1′. This can be because
one SPAD has more afterpulsing and is in need of a longer deadtime, or more
likely a difference in the photon detection efficiency.

This problem is however not as big as it would appear as the differences
in the PDP is usually small, and the afterpulsing can be regulated by simply
introducing a longer deadtime to both SPADs. This system is also not meant
for being directly connected to other systems as might be done with the QRNG

23

from Section 2. This means that the biased output can be post processed in
order to create a balanced output. However in the case that it is important to
have a good as possible balanced output of ones and zeroes, a few solutions can
be introduced. These solutions are mainly aimed at solving the difference in the
PDP of the two SPADs used.

One solution would be using multiple SPADs at both sides connected to-
gether with OR gates, which would balance out the average PDP at each side.
As soon one SPAD fires, everything else is quenched until the system is read
out. It is important to use lower illumination conditions than normally opti-
mal when implementing such a system. This is because the chance at having
double pulses becomes bigger, up to the point that there are always two pulses
within the given time limit of each other, no longer creating an output. This
implementation thus drastically decreased the power/bit ratio, as the amount
potential pulses thrown away becomes huge.

The best option is to make use of SPADs of which it is known what the
characteristics are, and pair those up, in order to create a more balanced output.
This can be done by placing the SPADs close to each other during production
so the silicon characteristics do not change much, or by choosing and measuring
SPADs that are already there. Mind that crosstalk in the case of placing the
SPADs closely together can become a problem, as crosstalk can cause ”11” codes
to occur, and thus decrease the speed of the system.

In case the previous solution is not a possibility, looking at the illumination
might be a good option. If the difference in the PDP is too big, it might be
useful to tune the illumination on the two SPADs differently. By measuring the
results over a long time, and adjusting when needed a balanced output can be
produced. The big downside to this implementation is that two light sources are
needed, both on a separate voltage. This means that it is possible to influence
one of the two light sources, which then completely destroys the randomness of
the device.

Concluding, it is possible to solve this problem in multiple ways, the most
convenient way is to simply use post processing to maximize the entropy. How-
ever it is important that the system outputs ′0′s and ′1′s balanced to a certain
degree, as that is the strength of the device. The simplest way to accomplish
that is to design the system in such a way that the two SPADs are close to each
other and the silicon does not differ too much during production, or simply
picking two identical SPADs that are already there. The solution to make use
of different light sources is also a very good option in case the previous is not
possible, but one has to be careful with potential influences on these separate
light sources. Using multiple SPADs per side is discouraged, as this lowers the
efficiency of the device because of the non-linear increase in speed.

3.6 Scaling

Scaling the system up can be done in two dimensions, speed per bit and the
amount of bits at the output. The first point that is going to be discussed is the
speed per bit, and also making the system synchronous in the process of doing

24

this. Figure 18 depicts a selector switch with multiple SCS blocks connected to
it, and the small QRNG design from Section 2.

Q

SCS
Reset
Ready

Q0

Reset0

Ready0

Q

SCS
Reset
Ready

Q1

Reset1

Ready1

Q

SCS
Reset
Ready

Q2

Reset2

Ready2

TFF
Q

Q3

Reset3

Ready3′1′SPAD D

Clk

Out

Figure 18: Selector with SCS blocks and a small T-flip-flop based QRNG at-
tached.

Selector switch system The operating principle of this circuit is that the
selector will check each time a bit is requested which input has set the ′R′x signal
to ′1′ and give the bit back from that block. After it sent a bit the selector resets
the block, so it can generate a new bit asynchronous.. Using this system, it is
possible to synchronize the different asynchronous SCS blocks. There is however
still always a chance that none of the SCS blocks has a new bit set ready. For
the case none of the SCS blocks have a bit ready, the small QRNG design
from Section 2 is attached. This block has its ready signal permanently set on
′1′, so the selector can always output a value. Keep in mind that the T-flip-
flop is not meant to increase the speed, just to make the system synchronous.
The system now scales linearly with the amount of SCS blocks connected to a
selector switch. The amount of bits can simply be scaled by adding more of
these complete selector systems.

Potential problem The challenge with this device is to make sure that the
T-flip-flop based design is only read out after its stabilization time. This cannot
be guaranteed using this system, however the chances of that happening should

25

be made so low by using enough SCS blocks or by lowering the clock readout
frequency, that the chance of that happening becomes neglectable.

3.7 Conclusion

The goal was to make a highly scalable, fast as possible QRNG. By using a
comparator system, a bit can be provided as soon a single photon lands on one
of the two SPADs. This is mainly bottle-necked by the deadtime of the SPADs
used, as was shown in the simulations. Using SPADs with a low deadtime, it
is possible to reach high speeds up to 70Mb/s per SCS block. When compar-
ing this to the small QRNG described in Chapter 2, it is 70/25 = 2.8 times
faster per single block, at the cost of more area. The SCS blocks also possess
good scaling properties. By using a selector switch and the small QRNG from
Section 2 the system can be made synchronous and multiple SCS blocks can
be used to increase the speed per bit linearly. A state-of-the-art QRNG imager
sensor is able to reach up to 5Gb/s using 512x128 = 65.536 SPADs [16]. When
assuming an average SPAD with a deadtime of 100ns, this system would only

need 5Gb/s
8.9Mb/s · 2 = 1124 SPADs! This is only a 1.7% of the SPADs that the

mentioned system requires in order to reach the same speed. When assuming

SPADs in need of a deadtime of 1µs, it would need 5Gb/s
0.97Mb/s ·2 = 10.310 SPADs,

which is still only 16% of the amount of SPADs needed in comparison with the
state-of-the-art.

26

4 Hybrid PRNG-QRNG designs

Devices that make use of both a TRNG and PRNG in order to generate random
numbers I call Hybrid devices. This can be only a QRNG seed as will be seen
in Section 4.1, or a mixed up design using both elements as will be shown in
Section 4.2. In the current status of security a computionally secure RNG is
strong enough, as it cannot be deciphered within an achievable time limit [2].
Only using SPADs for making a pure QRNG limits the speed and efficiency, so
it is worth looking at hybrid structures in order to utilize the upsides of both
systems, while reducing or even solving the downsides of QRNG and PRNG
systems.

4.1 Hybrid Trivium-TRNG

In Chapter 1.1.2 the trivium has been discussed. The main point of this design
is that it has been safe for many years, and has proven to be still computionally
secure. It is able to run at a high speed as the critical path is only 1 flip-flop and
2 gates. On top of that it can be easily scaled up to 64 bits, without any penalty
on the security and only a relatively small increase in the power consumption
and area. The big downside to this device, as with all PRNGs, is that it is in
need of a seed. When one would be looking to influence the number generation
of this device, it is the best idea to start at the seed for this. The main goal
of this design is to create a fast as possible, scalable RNG, which is made more
secure using a QRNG.

4.1.1 True RNG Seeding

The QRNG systems described earlier in the thesis can be used to generate a seed,
more specifically the very simple T-flip-flop based architecture from Chapter 2.
As the trivium already has a warm-up time, it is not meant for immediate
operation, except when it is already warmed up. Using a system that increases
the warm-up time does not bring a new penalty to the system. Using a T-
flip-flop based design is a very area efficient, and most of all the most robust
option for generating a seed. As the seed only needs to be generated once before
starting the device, it thus only introduces additional warm-up time. The slow
speed that a T-flip-flop based QRNG brings, has zero influence on the operation
speed, covering the biggest weakness of that particular architecture, while its
strengths cover the trivium’s weakness.

The system works by having every clock cycle of a slower clock a value loaded
from the T-flip-flop into another memory element. This clock has to be slow
enough under the correct illumination in order to reach a stable random value
with an entropy of 1 Shannon. A trivium needs a 80 bit initial seed, so there
are a few ways to implement this principle in hardware. First of all by loading
the seed one by one directly into the trivium, by blocking its feedback paths
while being seeded. The second option is to have a 80 bit register, which loads
one by one the value from a single T-flip-flop, and when reaching 80 it loads it

27

all at once into the trivium. The last option is to have 80 T-flip-flop’s and all
load at once into the trivium. Using 80 T-flip-flops is unnecessary, as there is no
need for decreasing the warm-up time, while it increases the area taken by the
seed generation by a factor 80. As SPADs are quite big in this technology, and
while the warm-up speed is not necessarily an issue, it is not the best solution
for this implementation. The first solution to load the values one by one needs
an additional gate to block the feedback. This increases the longest path, and
thus reduces the maximum speed of the trivium. So the first and third solution
are not desirable for this implementation.

The second option was to have a 80 bit shift register, it does not increase the
total size significantly, but has one big point of advantage. Reseeding is done
often in security, and by using a separate 80 bit shift register a new seed can be
generated while the trivium itself is operating. This means that only the first
and initial warm-up of the trivium is longer, but when reseeding, the system no
longer has any drawbacks due to the seeding. On top of that it does not affect
the speed of the trivium in any way. An enable input is needed on the register
as it only needs to run, when a new seed can be produced.

4.1.2 Scaling

The goal is to have a RNG as fast as possible. As discussed in the paragraph
before, the relatively slow generation of the seed does not impact the eventual
output speed of the device. Using 130nm technology by STMicroelectronics, the
longest path is τFF + τxor + τand ≈ 100ps+ 100ps+ 100ps ≈ 300 ps, one trivium
will run at 1

0.3ns · 64 = 213Gb/s. This is when reading the worst case scenario
from the data sheet. Experience has shown that in reality systems can be slower
by a factor two. On top of that, this neglects all the connections that a control
system would need to the Trivium which would introduce slower flip-flops. In
this system 4 triviums will be run parallel, which will show how easy it is to
increase the speed of the system. Using 4 triviums means of course that the 80
bit shift register now becomes a 320 bit shift register, and the startup time for
the TRNG seed is increased by a factor 4.

4.1.3 Control system

The challenge with this system is to integrate the 4 triviums and the TRNG
seed generation as one system using a control system. It is however useful to
split the system up in two parts; the key control and the trivium control which
combined form the whole control system. The reason to keep these two systems
strictly apart is because they will both operate at a different clock speed. The
key generation requires a slow clock because of the way a T-flip-flop based
QRNGs operates. The triviums however need to operate as fast as possible,
thus require a very fast clock. Furthermore the user must be able to reseed the
device manually without having to reset and generate the seed all over again.
This requires a Reseed input, and user feedback to indicate that a new key has
been generated. For testing purposes it is not needed to block the output from

28

the triviums during the 18 count warm-up cycle, however in the future this is
needed. This is why a TriviumReady signal is also added to the output, as this
signal will indicate if the outputs should be blocked, or passed through. The
whole system overview with all the inputs, outputs and the two subsystems is
shown in Figure 19.

Key Control Trivium Control
Clock 1

Clock 2

Reset Reset

Reseed

ClockClock

Loadkey

Key

KeyReady

LoadKey

Key

Reset

Reseed

T1

T2

T3

T4

0 to 63

64 to 127

128 to 191

192 to 255

TReady

ReseedReady

TriviumReady

Trivium1

Trivium2

Trivium3

Trivium4

Figure 19: Control system overview.

Key control First the design of the key control will be discussed, which has
a few requirements.

The system must be able to:

1. generate a 320 bit QRNG key.

2. start generating a key as soon the system is reset.

3. send a LoadKey signal to the Trivium control when the first key is gen-
erated.

4. generate a second reseed key after a key is loaded.

5. stop generating new bits when a reseed key is ready.

6. reseed the triviums on user command, when a key is ready.

7. provide a KeyReady signal to the user, when a reseed key is ready.

This system is thus in need of a few components, first of all a counter to
keep track of the amount of bits loaded in the shift register. Secondly a 320
bit shift register to store the key in. A D-flip-flop to keep track if it is the first
time the system is seeding, if so, it needs to send the loadkey signal by itself.
Another D-flip-flop to keep track if a key has been generated, be it the first one
or the reseed key. The total circuit for the key control is shown in Figure 20.

It must be kept in mind that the devices all use a negative reset. The counter
is needed to determine if a key that is being generated is finished. When the

29

Figure 20: Key control circuit.

counter reaches a value of ”101000000”, a pulse is generated. This pulse will
then reset the counter, and enter an SR-latch, which will hold the the value of
′1′. This latch is connected to the enable input of the counter and the shift
register, which will cause these device to pause.

The latch is also connected to a D-flip-flop which indicates if a key has been
generated. If it is the first time seeding, the KeyReady signal will not be send
to the user, but the system will automatically sent the LoadKey to the Trivium
Controller. This will then cause the top D-flip-flop with the First seed output
to set its output to ′0′, which means that the system has loaded its first key
since its previous reset. As the LoadKey signal is connected to the R input of
the SR-latch, it will reset this latch, which in turn re-enables the counter and
the 320 bit shift register.

This process starts generating a second key, while the Trivium Control loads
the key in its next clock cycle. When the second key is generated, the counter
and shift register are again disabled, and the D-flip-flop with the KeyGenerated
output is set to ′1′. This time however the D-flip-flop which indicates if the sys-
tem has seeded the first time already is set to ′0′. The key will thus not load
automatically, because of the AND-gate, until the user sets the reseed signal. If
the reseed signal is permanently set on 1, it will have the same effect as if the

30

system is doing its first reseed permanently.

The key control system in this design fulfills all requirements. It tracks if the
system has seeded the first time and automatically seeds after a reset. Fur-
thermore it stops the shift register and the counter when a reseed key is ready
and provides the user feedback if a key is ready. It is also able to reseed on
command whenever a reseed key is ready, or it can be done automatically if the
user demands it.

Trivium control The second part of the hybrid Trivium-D-flip-flop RNG is
the control part around the trivium. This part runs on a much higher clock
frequency, and has the following requirements.

The system must be able to:

1. have 4 triviums running at the same time in parallel output.

2. load the 320 bit key from the Key Control when the LoadKey signal is
given.

3. provide a signal to the user when the triviums are warmed up.

4. be able to reseed when a new LoadKey signal is given.

The schematic overview is shown in Figure 21.

Figure 21: Trivium control circuit.

31

The trivium control uses a 5 bit counter to keep track of the warm-up phase,
which sets a signal to 1 as soon ”10010” or 18 in decimal is reached. The
counter uses the exact same architecture as the one in the Key control, which is
a standard synchronous counter. The output signal of the triviums is directly
sent to the user, as this is the signal that will be used to block or pass the output
of the triviums in the future.

The counter itself needs some feedback, as is seen in Figure 21, as it must
not count when the reset is ′0′ or when the counter has reached ”10010”. Fur-
thermore it must reset to zero in case of a reseed, or when a reset signal is
given. This is done by connecting the reset to an AND gate with the inverse
of a KeyReady signal on the other input, as the counter resets on a negative
reset.

The triviums have a LoadKey input which will take the values from the
KeyControl its 320 bit shift register, and directly put the values into the flip-
flops inside the triviums.

Concluded, this system is able to control multiple triviums, which can easily
be scaled up by adding another one. As soon a LoadKey signal is sent, the
counter is reset, and the triviums load the values from the Key Control during
the first clock tick. The next clock cycles the triviums will start warming up
and the counter will keep track if they are warmed up. After the triviums are
warmed up, the control system will set the TReady output to ′1′, which can be
used in the future to block or pass the values of the triviums.

4.1.4 Results

The triviums and the control system are written in VHDL and compiled using
DC compiler. For this the STMicroelectronics 140 nm technology is used. Each
component has an individual code, as this helps with debugging during the syn-
thetization process. The script used for DC compiler can be found in Appendix
C. The VHDL code of each block of the design can be found in Appendixes D
to N. Note that more blocks can be found in the appendix than in the figures.
This is due to the fact that in order to make the whole design synthesizable,
most code has to be written in structural, instead of behavioural. The counters
for example are done are made using JK flip-flops written in structural code,
as can be seen in Appendixes L, M and N. The whole design including the 4
triviums after compilation report an area usage of 99936µm2. Compiling a sin-
gle trivium takes 20842µm2 of the area. Figures 22 and 23 show the ModelSim
simulation of the compiled design, in order to check if the design operates as
expected and check the delays. The VHDL code of the testbench can be found
in Appendix O.

From Figures 22 and 23 it is extracted that it takes 400 ps from the start of
the clock cycle to make the triviums out appear to the user. As is known from
Section 1.1.2, the output of the trivium is made using 2 XOR gates. The glitch
that is seen is thus the direct line passing through the XOR at the output, and
the final value is when the output of XOR behind the XOR at the output has

32

Figure 22: Timing of the start of a clock cycle.

Figure 23: Timing of a stable value at the output.

progressed through the line. As the propagation time of a single XOR-gate is
50 ps in this simulation, it is calculated that the critical path of the triviums
during operation is only 300 ps. This is what was expected from the calculations
in Section 4.1.2, however there worst case values for gate delays were used there.
This is now roughly compensated by the fact that additional connections to the
trivium are needed, and the simulation uses normal case delay values. This
ModelSim simulation is however still very optimistic, and does not take into
account the wiring, connections, corners or any other factors other than the
set gate delay. To stay on the safe side, it can be stated from this ModelSim
simulation that each trivium can run at 160Gb/s. This means for 4 triviums,
that the whole system will run at 640GB/s!

4.1.5 Conclusion

By using the advantages of the simple QRNG architecture, and combining it
with a already known strong PRNG architecture, a strong implementation of a
random number generator is made. The high speed of the Trivium is combined
with a QRNG seed, which covers the weakness of this secured PRNG. Further-
more it can be seen that it is easy to get to very high speeds by using multiple
Triviums. In this 130nm technology by STMicroelectronics it is possible to reach
a speed of approximately 640Gb/s using 4 triviums! Concluding this design, it
is shown that by using the vast speeds that a PRNG like a Trivium can reach
can be used to create random numbers much faster as long the PRNG is secure.
In this case the seed is secured by using a QRNG and as long the Trivium stays
secure this is a very reliable high speed hybrid implementation.

4.2 Quantum Dynamic LFSR

As stated in section 1.1.1, the main problem with QRNGs thus far is the lack
of speed. This was compensated last time using a Trivium, while only using the
QRNG as a seed, as security was not a problem at the time of writing. A strong
example of what incorporating QRNG elements in a PRNG can mean to the

33

security of a PRNG design itself is using an LFSR, which is one of the simplest
and weakest PRNG architectures. This has as a result a hybrid PRNG-QRNG,
which is much stronger than the original design while covering the weaknesses
of both PRNGs and QRNGs. This is not a fully fleshed out design, but an
introduction to an idea with potential, which can inspire new ideas of how slow
and simple QRNGs can be used to improve the security of PRNGs.

4.2.1 Incorporating TRNG

The problem with traditional LFSRs as explained in Section 1.1.1 is the speed
with which these PRNGs can be cracked, which is only 2m where m the degree
of the LFSR is. What creates an uncrackable LFSR is when we change the
polynomial of the LFSR before 2m clock cycles. Figure 24 shows a traditional
LFSR with but now with a Q block attached in the feedback. This Q block is a
QRNG implementation, which will close the connection when it is ′1′ and open
the connection when it is ′0′. A logical implementation for this would be the
small QRNG design from Chapter 2, connected with an AND-gate.

FF2FF3 FF1 FF0 si

CLK

⊕⊕⊕

Q2 Q1Q3

Figure 24: Dynamic 4th Degree LFSR.

What happens now is that at any given point in time, a feedback loop can
close or open, changing the polynomial of the device, and if this happens before
2m, it can no longer be cracked. The problem that occurs to someone trying
to break the device is that the person does not know when it changed, it is
a separate Poisson function per feedback loop. There is no longer a starting
point for the 2m, and if it can be guaranteed to a certain level that at least one
feedback was always changed within 2m clock cycles, the system is no longer
crackable. This way it is possible to significantly speed up a T-flip-flop based
TRNG design using a simple PRNG like a LFSR.

4.2.2 Conclusion and future work

There are however some flaws with this system in the way it is now implemented.
All polynomials are possible, including ones that are not primitive polynomials,
or polynomials that can get the system ”stuck”. The best solution to this
would be a mathematical solution. Instead of directly connecting the feedback
to a QRNG, which has been done in this case, a control system around it
could be made. This system should implement a certain mathematical function

34

which would make the system only use primitive polynomials, or filter out the
polynomials that make the system stuck and have a very low cycle length.

A simpler solution could be implemented by calculating the average cycle
length of an LFSR with degree m. Then a very large value for m must be chosen,
and a value lower than 2 ·m in which the system needs to have its polynomial
changed, which is the time to crack the system taken. It can then be tuned how
often the system gets a situation where it can be cracked within the limit of its
cycle length to an acceptable percentage. The thing to keep in mind is that the
attacker does not know when the cycle started, even if there is a certain small
chance that the amount of cycles exceeds that the attacker could know what the
LFSR’s next output would be based on the LFSR repeating itself, or because
the small chance occurs that the feedback has not changed yet, it is still a very
hard nut to crack.

35

5 Universal QRNG Testbed

SPAD based QRNG designs make mainly use of two possible properties; time
of arrival or the amount of arrivals. This can be done however in many differ-
ent ways, two QRNG systems have been proposed before; the small T-flip-flop
based design and the comparator based design. There are however many more
possibilities to explore for example such as using a Time to Digital Converter
(TDC) to measure the time of arrival, or perhaps designs that make use of a
lot of SPADs and different arrival times to create high speed designs. As it has
proven so far to be a quite intensive process to simulate a design, making the
schematic, layout and produce the chip, it would severely help an exploration of
designs if ideas could be accurately tested in an early design stage. That would
mean to have a design with a lot of SPADs which can extract all the data about
photons that a SPAD can give you, instead of making a new chip for every
design idea. If this data could then be saved to a file from this device, it could
be used to have much more accurate simulations, as all the data extracted from
the SPADs are real measurement results. The device could then also be directly
connected to an FPGA, for a more direct implementation testing approach and
real time data. This way any possible SPAD based QRNG design idea can be
tested almost directly after introducing a basic architecture.

5.1 POLIS project

A chip which could accomplish this would be a chip which is currently being
developed at the TU Delft. It was originally meant as a versatile image detector,
however in the scope of this project it was discovered that it could serve much
more SPAD oriented fields. The idea of converting an image detector into a
QRNG is not new, as it has already been done before in the paper of reference
[16]. There is a big difference here however, as the aim here is to have a testing
platform, and not anything performance related. The chip exists of a big array
of SPADs from which all the important information about a photon can be
extracted. With this chip it is possible to see exactly which SPAD fired at
which location in the array, at which time. The comparator based design for
example could easily be tested with extracted information by appointing two
SPADs without having to produce the whole chip. Even two arrays of the
POLIS chip could be used, one array would be pointed to be a ′0′ code and
another as a ′1′ code in order to test scalability of the comparator based design.
Also the efficiency of attaching multiple SPADs could be easily measured before
producing the chip and deciding on how many SPADs to use. I will not go into
details about the exact architecture of this chip, as it has not been published.
Nevertheless I did work on the part of the chip that measures the time of flight
of a photon of a SPAD. For this a coarse counter and a TDC are needed, where
I designed the coarse counter.

36

5.2 High speed, high accuracy Gray counter

This section will be used to explain the design of the counter. First a short
section is spend on why an ordinary counter does not suffice, after which the
most important design choices for the counter and the design itself are explained.
The section will be concluded with the results of the device.

5.2.1 Design goals

The counter of this system has a few requirements that call for a custom design
approach instead of using a conventional counter. The system has the following
set of constraints to be met.

• The counter must drive a 10 bit output.

• The counter must be able to run at a minimal clock speed of 2GHz.

• The counter must be able to be reset and start counting at 0.

The design has the following objectives in order of importance.

1. During count transitions there should be minimal to no glitches.

2. The time difference between each count transition should be as close to 0
as possible.

3. The resolution should be as high as possible.

4. Area ∗ Power/Speed ratio should be as low as possible.

5.2.2 Problems with conventional counters

A conventional synchronous counter counts in the usual bit convention. The
problem with this convention is that multiple bits can flip at the same time.
Table 5 shows the amounts of bits flipping per count.

Table 5: Bit flips in conventional counting system.

Count Q2 Q1 Q0 Bit flips

0 0 0 0 3
1 0 0 1 1
2 0 1 0 2
3 0 1 1 1
4 1 0 0 3
5 1 0 1 1
6 1 1 0 2
7 1 1 1 1

37

When the counter would be read out while it is flipping, the number read out
can be nowhere close to what should have been read out because of the multiple
bits flipping. When using a conventional synchronous counter while not running
at maximum speed, the chance of encountering an error due to multiple bits
flipping per count is minimal as the counter is most of the time waiting for a
new clock tick. However when running it at a high speed to maximum speed,
which is wanted in the POLIS project, this becomes a problem. When looking
at normal synchronous counters, it is not possible to evade these multiple bit
flips during a transition as it is the way traditional bit counts work. There is
however a solution to the problem of these bits flipping, which makes use of a
different way of counting. This method is called Gray counting, named after its
inventor Frank Gray.

5.2.3 Gray counting

A Gray counter solves the main problem, which is the amount of bit flips per
count. This is done by not following the conventional counting system, as is
shown in Table 6. This table shows that when gray counting, indeed only one
bit is flipped per count.

Table 6: Gray counting system.

Gray Normal Q2 Q1 Q0 Bit flips

0 0 0 0 0 1
1 1 0 0 1 1
2 3 0 1 1 1
3 2 0 1 0 1
4 6 1 1 0 1
5 7 1 1 1 1
6 5 1 0 1 1
7 4 1 0 0 1

5.2.4 3-Bit gray counter

Gray counting however not a simple perfect solution as it means that the bits
have to be forced to count in this way, instead of following the natural way of
counting. When a lot of bits are needed, all these bits are dependent on each
other. A direct implementation of a 10 bit gray counter would result in having
feedback loops with a huge amount of gates, making the system very slow.

In order to make an efficient design it is important to start small and then
scale it up. First an implementation of a 3-bit Gray counter will be explained.
For a 3 bit counter, 3 flip-flops are needed, named A, B and C, where C is
the LSB. As speed is an important parameter, the amount of feedback in the
counter needs to be confined, preferably to just 1 gate plus a flip-flop in the
longest path. A good feedback path can be determined by studying Table 6.

38

After carefully looking, it can be seen that when Cs = 1, As+1 = As.
Furthermore when Cs = 1 it is observed that Bs+1 = A′s. The next step is to
see what can be found when Cs = 0, which is in this case As+1 = Bs and that
Bs+1 = Bs. Now only the feedback for C needs to be determined, it is seen that
an XNOR gate can be used for C with A and B connected to the inputs. This
XNOR can also be implemented with a MUX if needed. Nicely organizing the
resulting feedback in the case statements below, starting with the feedback for
A gives the following results.

As+1 =

{
As if Cs = 1

Bs otherwise
(6)

For the feedback of flip-flop B is defined below.

Bs+1 =

{
Bs if Cs = 0

A′s otherwise
(7)

For the last feedback of flip-flop C which is simply a XNOR gate.

Cs+1 = As XNOR Bs (8)

The result is a fast implementation of a 3 bit Gray counter, as there is only
1 flip-flop and 1 logical gate in the longest feedback path. In this technology a
normal MUX is slower than a MUX with one of its inputs inverted. This requires
some slight adjustments to the connections. The load has to be balanced as
inverted input D0 of each MUX is twice as hard to drive compared to the
inputs D1 and the selection input S0. For the XOR gate the inputs make no
difference. The circuit diagram of the whole system using MUXes having one
inverted input is shown in Figure 25. Here the load distribution connected to
each output gate of the FF is optimized. The flip-flops used here are D-FF with
a negative triggered reset, meaning that it will reset to ’0’ if a ’0’ is on the RN
connection.

This basic system has a worst case delay of τtotal = τFF + τMUX = 250ps+
100ps = 350ps, or simply put a worst case speed of 2, 9GHz. Comparing this
implementation to the requirements, it can be concluded that this basic struc-
ture meets almost all of the constraints, except for the 10 bit implementation.

5.2.5 Basic architecture

As explained it is not possible to directly implement 10 bits, as it would cause
a huge feedback and the counter will no longer be able to reach the required
speed. This is why the previous 3 bit block is reused as a standard block, and
being used as a part of the total 10 bit system. A system overview is depicted
in Figure 26.

Each block is a 3-bit implementation of a Gray counter as shown in Figure
26. The C blocks are some implementation of control in order to make the parts
behind the first block count. They will provide a pulse at count ”111” to the
next block. The extra block under the three blocks is the 10th bit.

39

clk

reset

FF2

clk Q̄

Q
RN

D
FF0

clk Q̄

Q
RN

D
FF1

clk Q̄

Q
RN

D

Z
D

1

D
0 S
0

Z

D
1

D
0S
0

Q1Q2 Q0

Figure 25: Circuit of the designed 3-bit Gray counter.

C C

1 2

3

4 5

6

7 8

9

0

clk
clkN

Figure 26: 10 bit implementation.

10th Bit There is a strict restriction of a 10 bit output, which could be solved
by simply placing an extra FF behind the last 3-bit block, however there is a
smarter method. With the use of what I call a ”negative bit” the accuracy of the
counter can be doubled, next to introducing the 10th required bit. This works
because of the way this methodology is introduced, 3 different 3-bit counters.
The addition of this bit count wise is shown in Table 7.

To make the circuit count like this is very simple; just connect a single flip-
flop to the negative edge of the clock. The downside to this is that it might be
possible to have a slight shift in the duration between each count. Because of
this it is important to make a clock divider which has minimal delay between
its negative and positive clock output. The upside is that the accuracy of the
counter has been doubled, by only adding 1 single flip-flop! Furthermore the
system is still a ”true” Gray counter.

40

Table 7: Addition of the extra bit.

Count NegativeBit A B C

0 0 0 0 0
1 1 0 0 0
2 1 0 0 1
3 0 0 0 1
4 0 0 1 1
5 1 0 1 1
6 1 0 1 0
7 0 0 1 0

Count NegativeBit A B C

8 0 1 1 0
9 1 1 1 0
10 1 1 1 1
11 0 1 1 1
12 0 1 0 1
13 1 1 0 1
14 1 1 0 0
15 0 1 0 0

5.2.6 Implementation

The implementation of the device seems straightforward, however some small
changes have to be made in order to fill in the basic architecture. Again, a more
elaborate explanation can be found in appendix A. First the connection block
will explained, and then the changes that were made to the second and third
counting blocks.

Connection blocks The connection blocks provide a pulse, which starts a
clock cycle before the second and third 3-bit blocks should count. The pulse
duration is exactly one count duration long, so the clock cycle afterwards, the
second and third block will count. The first connection block is depicted in
Figure 27a. It needs only 1 AND gate to start the pulse, but in order to make
the whole design clocked and keep the longest path at just one flip-flop and one
gate, additional flip-flops are needed. In between each gate a flip-flop is placed
in order to guarantee that the longest path of the device stays 1 flip-flop and 1
gate. This means that the signal for when the next 3-bit block should count,
already starts its propagation path at count 011. The second connection block
is depicted in figure 27b. The third 3-bit block should only count if the the
second block has to count too, which is the C2 connection depicted in both
figures. As shown, an additional AND-gate is needed. As the 3-bit AND gate
already has the value ready for a long time, the 2 AND-gates are not in need of
another flip-flop in between, and the count will be set ready at 101.

2nd and 3rd counting blocks As can be expected, the second and third
blocks operate a bit different, as they should count depending on the clock and
a pulse, where the first 3-bit block is only dependent on the clock. Simply using
an AND-gate with the clock and the pulse connected does not work in this case,
as it will influence the length of the counts significantly as a delay in the clock
is generated for two of the three 3-bit blocks that way. This is why I have
opted to make use of enable-disable D-flip-flops. The pulse that comes out of
the connection block connected to one of the 3-bit blocks will be connected to
the enable input. The enable D-flip-flops have been made by simply adding a

41

clk

reset

clk

Q

RN

D

clk

Q

RN

D

QN0

Q1

Q2

pulse

C2

(a) Connection block to 3-bit block 2.

clk

reset

clk

Q

RN

D

Q0

QN1

Q2
pulse

C2

(b) Connection block to 3-bit block 3.

Figure 27: The connection blocks (a) and (b) generating the pulses to 3-bit
block 2 and 3 respectively.

MUX in front of the D-flip-flop with one of the connections connected to the
current output, and one to the calculated next bit. This does not cause any
problems concerning the longest path of the system, as the second and third
counting blocks have at least 7 counts to get the value from the feedback MUX
ready at the input of the enable-disable MUX. This thus creates a longest path
from the enable-disable MUX to the flip-flop, thus only two gates.

Problems There is one problem with this system, as one in the eight counts
there is a double bit flip. This can be easily solved by adding another flip-flop,
or by calling two bits the same bit. This system however requires the full 10-
bit scale, and cannot output 11 bits, as the connections for 10 bits are already
there. This is thus a solvable problem, however there is not enough design
room available in this particular application. The total system still meets the
requirements as it stated that the system should have minimal to no glitches,
where one in the eight counts a double bit flip can be called minimal glitches
during transitions. And again, this problem can be easily solved in the future
designs by providing an 11-bit output for a 10-bit counter, or by designing an
on chip decoder which outputs 10 bits again.

5.2.7 Results

The schematic of the final design is depicted in Figure 28 and the layout is
depicted in Figure 29.

42

Figure 28: Final schematic of the 10-bit Gray counter.

Figure 29: Implemented layout of the 10-bit Gray counter.

The design has been integrated in the rest of the POLIS project, and being
taped out at the time of writing. The size of counter itself is 14.95x 10.20µm2.
Extracted simulations while under-volting at 1V , using SS corners run com-
pletely stable at 2.25GHz. These are the most pessimistic circumstances for a
design in this technology. Running the extracted simulations of the device at
normal conditions using 1.1V with TT corners result in a stable 3.6GHz.

5.3 Conclusion

It can be concluded that the properties of the designed counter are for this
specific system are a vast improvement over a normal synchronous counter for
this, and more potential applications. While being more complicated than a
normal synchronous counter, the Gray counter is not slow at all because of
all the small design changes to keep the longest path the same as its simple

43

counterpart. As it is able to run at 3.6GHz under normal conditions, and has
only one double bit flip once in the 8 counts. The only future work that can be
done on the system is to remove this double bit flip once in the eight counts,
which can be done by using an additional flip-flop in the system.

When the whole system operates as designed, it will be easier for QRNG
designs to be tested in an early stage of the process. This will significantly
increase the speed in which ideas can be tested. Furthermore it will increase
the results of the taped-out QRNGs as the device was can be accurately tested
in advance on an FPGA with this chip attached.

Concluded it can be said that the coarse counter project was successful and
an addition towards a multi-functional device. This device can then be used as
an universal QRNG testbed system that will help in the design process of future
QRNG designs.

44

6 Conclusion

There are a lot of ways to use SPADs for random number generation, of which
different aspects have been explored. Having a very small QRNG opens up a lot
of possibilities, mainly when looking to integrate a QRNG in already existing
PRNG devices in order to create a device which can use the advantages of both
systems. In this thesis a very small QRNG was made using only one T-flip-flop
and one SPAD. Having run simulations in Matlab, it is shown that it is possible
to undo the correlation to its last read out value over time. This however comes
with the requirement that the illumination levels are adjusted to the deadtime
of the SPAD. When this is done the system is able to reach a speed of 25Mb/s,
while only existing out of one SPAD and one flip-flop. The architecture has
been made on a chip and has been produced using 130nm technology provided
by STMicroelectronics.

The second part of the exploration explores how to design a SPAD based
QRNG which is as fast as possible. This was not a new subject, however the area
of building a QRNG from the ground up with the goals of speed and scalability
in mind in CMOS process is a largely uncovered field. The fast scalable QRNG
proposed in this thesis is based on a comparator system. Two SPADs are used,
and the first one to receive a photon will determine if a ′1′ or ′0′ is set. The
system is simulated, showing that the deadtime is the mainly dominant factor,
next to the amount of overlapping pulses that could occur if both SPADs fired
within a certain timeframe. The design is then made synchronous by the use
of the small QRNG architecture as a backup bit. It is possible, depending on
the deadtime, to run the comparator based system up to 70Mb/s per SPAD
duo. When comparing the scalability of this design to the state-of-the-art using
simulations, it is able reach the same speed of 5Gb/s as the CMOS imager, while
only needing 16% of the amount of SPADs needed when assuming an average
SPAD with a deadtime of 1µs.

The next step of the exploration explores the effect a QRNG can have on
already existing PRNG systems. These hybrid systems have essentially two
ways in which a QRNG can be integrated in a PRNG. By generating a seed
for a very strong PRNG, or by using a QRNG to actively change the function
that is implemented by a QRNG. The first way of making hybrid systems is
demonstrated by building a system in which one QRNG provides the key for 4
triviums. This has been implemented using VHDL and DC Compiler, assuming
130nm Technology by STMicroelectronics. This resulted in a design that is able
to reach a speed of 640Gb/s while using an area of 99936µm2.

The second way a hybrid device can be implemented is by using a small
QRNG to change the feedback path of a LFSR for a small as possible increase
in area. If the feedback is c hanged before 2m outputs have been generated,
the LFSR can no longer be cracked by a plaintext attack. With this design it is
shown that using a QRNG to change the function implementation of a PRNG
can improve the security of a PRNG to a point the PRNG is no longer vurnable
to a plain text attack.

In order to be able to test all these systems, a lot of time is needed which

45

makes the time needed for a bigger exploration out of bounds. The time that
is needed would however be significantly reduced by having a chip that can
extract all the information about photons. By extracting the location where
the photons hit, and the time of flight, all of the previous systems could easily
be tested with real data. Just by implementing the main architecture on an
FPGA, except for the SPADs, very accurate measurements can be done before
taping-out the new QRNG design. A chip that can do this has been made during
the thesis, where I designed the coarse counter for measuring the time of flight
as part of a team. The coarse counter is an implementation of Gray counting,
as the system had to be as accurate as possible. Usually Gray counters are not
used because of their size and slow speeds. However in this case novelties were
introduced to enable the counter to reach speeds up to 3.6GHz under normal
conditions with extracted simulations, while remaining much more accurate than
an ordinary counter. The chip is currently being taped out in 40nm technology
by STMicroelectronics.

Concluding, the exploration in the domain of SPAD based QRNGs has
proven to be successful. It is shown how small a QRNG can still be quite
fast and advantageous for other designs. The high-speed QRNG appears to
be a big improvement compared to the state-of-the-art in terms of amount of
SPADs needed. Furthermore it is shown how QRNGs can improve the secu-
rity of already existing PRNG systems. It turned out to take a lot of time to
completely test an architecture. This did however result in the idea to use an
already being developed chip and exploit it for quantum random number gener-
ating. This way it will be much easier in the future to test SPAD based QRNG
designs in an early design stage.

46

References

[1] Bruce Schneier. Applied cryptography: protocols, algorithms, and source
code in C. john wiley & sons, 2007.

[2] Christof Paar and Jan Pelzl. Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media, 2009.

[3] ID Quantique. “White paper: Random number generation using quantum
physics”. In: ID Quantique SA, Switzerland, Tech. Rep. Version 3 (2010).

[4] Matthew W Fishburn. Fundamentals of CMOS single-photon avalanche
diodes. fishburn, 2012.

[5] E Charbon. “Single-photon imaging in complementary metal oxide semi-
conductor processes”. In: Phil. Trans. R. Soc. A 372.2012 (2014), p. 20130100.

[6] C Trivium De Canniere. “A stream cipher construction inspired by block
cipher design principles”. In: Information Security (2006), pp. 171–186.

[7] W Timothy Holman, J Alvin Connelly, and Ahmad B Dowlatabadi. “An
integrated analog/digital random noise source”. In: IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications 44.6
(1997), pp. 521–528.

[8] JT Gleeson. “Truly random number generator based on turbulent electro-
convection”. In: Applied physics letters 81.11 (2002), pp. 1949–1951.

[9] Thomas Jennewein et al. “A fast and compact quantum random number
generator”. In: Review of Scientific Instruments 71.4 (2000), pp. 1675–
1680.

[10] Feihu Xu et al. “Ultrafast quantum random number generation based on
quantum phase fluctuations”. In: Optics express 20.11 (2012), pp. 12366–
12377.

[11] Masatugu Isida and Hiroji Ikeda. “Random number generator”. In: Annals
of the Institute of Statistical Mathematics 8.1 (1956), pp. 119–126.

[12] S Cova et al. “Evolution and prospects for single-photon avalanche diodes
and quenching circuits”. In: Journal of modern optics 51.9-10 (2004),
pp. 1267–1288.

[13] Robert GW Brown et al. “Characterization of silicon avalanche photo-
diodes for photon correlation measurements. 2: Active quenching”. In:
Applied Optics 26.12 (1987), pp. 2383–2389.

[14] F Zappa et al. “Monolithic active-quenching and active-reset circuit for
single-photon avalanche detectors”. In: IEEE Journal of solid-state cir-
cuits 38.7 (2003), pp. 1298–1301.

[15] Thomas Frach et al. “The digital silicon photomultiplier—Principle of op-
eration and intrinsic detector performance”. In: Nuclear Science Sympo-
sium Conference Record (NSS/MIC), 2009 IEEE. IEEE. 2009, pp. 1959–
1965.

47

[16] Samuel Burri et al. “Jailbreak imagers: transforming a single-photon im-
age sensor into a true random number generator”. In: International Image
Sensor Workshop. EPFL-CONF-191217. 2013.

48

A Small Integrable QRNG Matlab Simulations

clc;

close all;

clear;

colorspec = {[0.4 0 0.8]; [0.4 0.8 0]; [0.4 0.7 0.7]; ...

[0 0.4 0.8]; [0.8 0.4 0]; [0.7 0.4 0.7]; ...

[0.8 0 0.4]; [0 0.8 0.4]; [0.7 0.7 0.4]; ...

[0 0 0.7]; [0 0.7 0]; [0.7 0 0]};

colorspec = {...

[0.0 0 1.0]; ...

[0.2 0 0.8]; ...

[0.4 0 0.6]; ...

[0.6 0 0.4]; ...

[0.8 0 0.2]; ...

[1.0 0 0.0]; ...

};

%graphics_toolkit gnuplot;

%figure ("visible", "off");

PPS = [5e4 5e5 5e6]; % [Hz]

endTime = 100e-6; % [s]

stepSize = 1e-9; % [s]

deadTime = 10000e-9; % [s]

deadTimeSteps = round(deadTime/stepSize);

%endTime = 2e-3; % [s]

%stepSize = 1e-6; % [s]

waitingTime = 0:stepSize:endTime;

iterations = 50e3; % [-]

values = zeros(1,length(waitingTime));

legendString = {};

for pps = PPS

P_hit = 1-poisspdf(0, pps*stepSize) % chance that one or more

photons arrive during t_stepT↪→

for dTime = deadTimeSteps

for j=1:10

fprintf('%d0\n', j);

for i=1:iterations/10

new_value = zeros(1,length(waitingTime));

49

current = 0;

dead = 0;

for t=1:length(waitingTime)

if dead>0

dead = dead - 1;

elseif rand<P_hit

current = mod(current+1,2); % flip the

current value↪→

dead = dTime;

end

new_value(t) = current;

%dead = dead - 1;

end

values = values + new_value;

end

end

values = values./iterations;

values2 = -(values).*log2(values) -

(1-values).*log2(1-values);↪→

%plot(waitingTime.*1e6, values);

filename = sprintf('pps-%d_dead-%dns2.csv', pps,

1e9*stepSize*deadTimeSteps);↪→

fid = fopen(filename, 'w');

fprintf(fid, 'time values2\n');

fclose(fid);

waitingTimePrint = waitingTime(1:100:length(waitingTime))';

valuesPrint = values2(1:100:length(values2))';

dlmwrite(filename, [waitingTimePrint valuesPrint],

'-append','Delimiter', ' ');↪→

%legendString{end+1} = sprintf('PPS = %d', pps);

filename = sprintf('pps-%d_dead-%dns2.csv', pps,

1e9*stepSize*deadTimeSteps);↪→

fid = fopen(filename, 'w');

fprintf(fid, 'time values\n');

fclose(fid);

waitingTimePrint = waitingTime(1:100:length(waitingTime))';

valuesPrint = values(1:100:length(values))';

50

dlmwrite(filename, [waitingTimePrint valuesPrint],

'-append','Delimiter', ' ');↪→

end

end

%plot(waitingTime*1e6, 0.5*ones(1,length(values)), 'k');

%hold off;

%plot(C1(:,1),C1(:,4), 'Color', colorspec{mod(i,12)+1});

%axis([C1(1,1) C1(end,1) min(min(C1))*1.1 max(max(C1))*1.1]);

%xlim([waitingTime(1)*1e6, waitingTime(end)*1e6]);

%ylim([1e-1, 1e2]);

%xlabel('time [us]', 'fontsize', 14);

%ylabel('probability of measuring ''1''', 'fontsize', 14);

%set(gca, 'FontSize', 12)

%legend(legendString, 'Location', 'northeast');

%title(sprintf('deadtime = %d us', 1e6*stepSize*deadTimeSteps));

%

%print('-dpdf', '-color', fullfile(pwd, 'sneep.pdf'));

%print('-deps', '-color', fullfile(pwd, 'lineplot.eps'));

51

B SCS-Block Matlab Simulations

clc;

close all;

clear;

deadTime = [1e-6 100e-9 10e-9]; % [s]

pulseTime = 1e-9;

% Amount of runs, based on different illumination levels

beginPPS = 4;

endPPS = 10;

NumberPoints = 1000;

PPSstepSize = 1;

% Time for which the simluation will run for each PPS

idependently↪→

endTime = 2e-3; % [s]

stepSize = 1e-9; % [s]

waitingTime = 0:stepSize:endTime;

%PPS will be looped at the end

PPS = 5e5;

pps =PPS;

P_hit = 1-poisspdf(0, pps*stepSize);

% Kijk, die

new_value = zeros(1,length(waitingTime));

current = 0;

dead = 0;

pulse = 0;

spad1 = 0;

spad2 = 0;

outputString = [0 0];

count = [0 0 0];

overlap = [0 0 0];

overlapoutputString = [0 0 0 0];

fprintf('%d\n', P_hit);

X = logspace(beginPPS,endPPS,NumberPoints);

PPSoutputString = zeros(NumberPoints,4);

overlapoutputString = zeros(NumberPoints,4);

%For loop for the X-axis -> PPS

52

for n = 1:NumberPoints

currentPPS = X(n);

P_hit = 1-poisspdf(0, currentPPS*stepSize);

%For loop for the deadtimes

for i=1:3

count(i) = 0;

overlap(i) = 0;

for t=1:length(waitingTime)

%A SPAD has fired!

if pulse>0

pulse = pulse - stepSize;

%Pulse is over, check what happened

if pulse <=0

if spad1 == 1 && spad2 == 0

%outputString = [outputString;

(waitingTime(t)-1e-12)

outputString(end)];

↪→

↪→

%outputString = [outputString;

waitingTime(t) 0];↪→

%fprintf('0');

count(i) = count(i) + 1;

elseif spad1 == 0 && spad2 == 1

%outputString = [outputString;

(waitingTime(t)-1e-12)

outputString(end)];

↪→

↪→

%outputString = [outputString;

waitingTime(t) 1];↪→

%fprintf('1');

count(i) = count(i) + 1;

end

if spad1 == 1 && spad2 == 1

spad1 = 1;

spad2 = 1;

overlap(i) = overlap(i) + 1;

%fprintf('2');

end

end

elseif dead>0

dead = dead - stepSize;

if dead<=0

spad1=0;

spad2=0;

end

else

if rand<P_hit

53

spad1 = 1; % flip the current value

dead = deadTime(i)-pulseTime;

pulse = pulseTime;

end

if rand<P_hit

spad2 = 1; % flip the current value

dead = deadTime(i)-pulseTime;

pulse = pulseTime;

end

end

new_value(t) = current;

%dead = dead - 1;

end

fprintf('\n');

end

count = count/endTime

PPSoutputString(n,:) = [currentPPS count(1) count(2)

count(3)];↪→

overlap = overlap/endTime

overlapoutputString(n,:) = [currentPPS overlap(1) overlap(2)

overlap(3)];↪→

currentPPS = currentPPS+beginPPS

end

semilogx(PPSoutputString(:,1),PPSoutputString(:,2), 'Linewidth',

2);↪→

hold on;

semilogx(PPSoutputString(:,1),PPSoutputString(:,3), 'Linewidth',

2);↪→

hold on;

semilogx(PPSoutputString(:,1),PPSoutputString(:,4), 'Linewidth',

2);↪→

hold off;

figure;

semilogx(overlapoutputString(:,1),overlapoutputString(:,2),

'Linewidth', 2);↪→

hold on;

semilogx(overlapoutputString(:,1),overlapoutputString(:,3),

'Linewidth', 2);↪→

hold on;

semilogx(overlapoutputString(:,1),overlapoutputString(:,4),

'Linewidth', 2);↪→

54

hold off;

%plot(outputString(:,1),outputString(:,2), 'Linewidth', 2);

%title(sprintf('count: %d', count));

[Max1,Loc1] = max(PPSoutputString(:,2))

[Max2,Loc2] = max(PPSoutputString(:,3))

[Max3,Loc3] = max(PPSoutputString(:,4))

X(Loc1)

X(Loc2)

X(Loc3)

filename = sprintf('SCS.csv');

fid = fopen(filename, 'w');

fprintf(fid, 'time values\n');

fclose(fid);

%waitingTimePrint = waitingTime(1:100:length(waitingTime))';

%valuesPrint = values2(1:100:length(values2))';

dlmwrite(filename, [PPSoutputString(:,1)

PPSoutputString(:,2)], '-append','Delimiter', ' ');↪→

%%%

filename = sprintf('SCS1.csv');

fid = fopen(filename, 'w');

fprintf(fid, 'time values\n');

fclose(fid);

%waitingTimePrint = waitingTime(1:100:length(waitingTime))';

%valuesPrint = values2(1:100:length(values2))';

dlmwrite(filename, [PPSoutputString(:,1)

PPSoutputString(:,3)], '-append','Delimiter', ' ');↪→

%%%

filename = sprintf('SCS2.csv');

fid = fopen(filename, 'w');

fprintf(fid, 'time values\n');

55

fclose(fid);

%waitingTimePrint = waitingTime(1:100:length(waitingTime))';

%valuesPrint = values2(1:100:length(values2))';

dlmwrite(filename, [PPSoutputString(:,1)

PPSoutputString(:,4)], '-append','Delimiter', ' ');↪→

%%%

filename = sprintf('SCSover.csv');

fid = fopen(filename, 'w');

fprintf(fid, 'time values\n');

fclose(fid);

%waitingTimePrint = waitingTime(1:100:length(waitingTime))';

%valuesPrint = values2(1:100:length(values2))';

dlmwrite(filename, [PPSoutputString(:,1)

overlapoutputString(:,2)], '-append','Delimiter', ' ');↪→

%%%

filename = sprintf('SCSover1.csv');

fid = fopen(filename, 'w');

fprintf(fid, 'time values\n');

fclose(fid);

%waitingTimePrint = waitingTime(1:100:length(waitingTime))';

%valuesPrint = values2(1:100:length(values2))';

dlmwrite(filename, [PPSoutputString(:,1)

overlapoutputString(:,3)], '-append','Delimiter', ' ');↪→

%%%

filename = sprintf('SCSover2.csv');

fid = fopen(filename, 'w');

fprintf(fid, 'time values\n');

fclose(fid);

56

%waitingTimePrint = waitingTime(1:100:length(waitingTime))';

%valuesPrint = values2(1:100:length(values2))';

dlmwrite(filename, [PPSoutputString(:,1)

overlapoutputString(:,4)], '-append','Delimiter', ' ');↪→

%%%

57

C DC Compiler Script

Simple DC script for the Simple Scan Register

#

#

Analyze VHDL sources

#

set ENTITY_NAME Control_System

set ARCH_NAME Structural

set CLK_NAME1 CLK1

set CLK_NAME2 CLK2

set CLK_PERIOD1 1000;#ns

set CLK_PERIOD2 2.5;#ns

set DESIGN_ENTITY "${ENTITY_NAME}_${ARCH_NAME}"
set DESIGN "${ENTITY_NAME}_clk${CLK_PERIOD2}ns"

Check syntax

analyze -format vhdl { \

HDL/RTL/JK_FF.vhd \

HDL/RTL/Trivium_64_Bit.vhd \

HDL/RTL/5_Bit_Counter.vhd \

HDL/RTL/9_Bit_Counter.vhd \

HDL/RTL/Reset_Controller.vhd \

HDL/RTL/320_Bit_Shift_Register.vhd \

HDL/RTL/SR_Latch.vhd \

HDL/RTL/1_Bit_2_to_1_Multiplexer.vhd \

HDL/RTL/Trivium_Control.vhd \

HDL/RTL/Key_Control.vhd \

HDL/RTL/Control_System.vhd\

}

Elaborate design

Check if synthesizable, will give a warning

elaborate ${ENTITY_NAME} -library DEFAULT

Save elaborated design

#

write -hierarchy -format ddc -output DB/${DESIGN}.ddc

58

Link design

#

Define constraints

#

create_clock -name ${CLK_NAME1} -period ${CLK_PERIOD1} -waveform

↪→ { 0 1.25 } { CLK1 }

create_clock -name ${CLK_NAME2} -period ${CLK_PERIOD2} -waveform

↪→ { 0 500 } { CLK2 }

set_max_area 0

#set_load 10 [all_outputs]

current_design ${ENTITY_NAME}
set_fix_multiple_port_nets -all

check_design

Force the use of scan FF

#set_register_type -exact -flip_flop DFSC3_HV

uniquify

check_design

ungroup -all -flatten

check_design

compile_ultra

check_design

optimize_netlist -area

check_design

link

#check_design

#compile -map_effort high -area_effort high -

↪→ boundary_optimization

#check_design

Map and optimize design

#

#compile -map_effort medium -area_effort medium

#ungroup -all -flatten

Save mapped design

write -hierarchy -format ddc -output DB/${DESIGN}_mapped.ddc

59

Generate reports

report_constraint -nosplit -all_violators > RPT/${DESIGN}
↪→ _mapped_allviol.rpt

report_area > RPT/${DESIGN}_mapped_area.rpt
report_timing > RPT/${DESIGN}_mapped_timing.rpt
report_resources -nosplit -hierarchy > RPT/${DESIGN}

↪→ _mapped_resources.rpt

Generate Verilog netlist

change_names -rule verilog -hierarchy

write -format verilog -hierarchy -output HDL/GATE/${DESIGN}
↪→ _mapped.v

Generate SDF timing file

write_sdf -version 2.1 TIM/${DESIGN}_mapped.sdf

Generate design constraint file

write_sdc -nosplit SDC/${DESIGN}_mapped.sdc

Generate the VHDL netlist

remove_design -all

read_file -format ddc DB/${DESIGN}_mapped.ddc
change_names -rule vhdl -hierarchy

write -format vhdl -hierarchy -output HDL/GATE/${DESIGN}_mapped.
↪→ vhd

prepare for the scan chain insertion

report_dft_signal -view exist

Connect the scan protocol to existing signals

set_dft_signal -view spec -port ScanEnablexSI -type ScanEnable

set_dft_signal -view spec -port ScanDataInxDI -type ScanDataIn

set_dft_signal -view spec -port ScanDataOutxDO -type ScanDataOut

#set_dft_signal -view existing_dft -type ScanClock -port ClkxCI -

↪→ timing [list 45 55]

#set_dft_signal -view existing_dft -type Reset -active 0 -port

↪→ ResetxRBI -timing [list 55 45]

#set_scan_config -exclude_elements i_controlUnit*

report_dft_signal -view spec

create_test_protocol -infer_async -infer_clock

dft_drc

#

#preview_dft -show cells

60

preview_dft -show all

#preview_dft

insert_dft

report_constraint -nosplit -all_violators > RPT/${DESIGN}
↪→ _scan_mapped_allviol.rpt

report_area > RPT/${DESIGN}_scan_mapped_area.rpt
report_timing > RPT/${DESIGN}_scan_mapped_timing.rpt
report_resources -nosplit -hierarchy > RPT/${DESIGN}

↪→ _scan_mapped_resources.rpt

write -hierarchy -format ddc -output DB/${DESIGN}_scan_mapped.ddc
remove_design -all

read_file -format ddc DB/${DESIGN}_scan_mapped.ddc

generate the vhdl netlist

change_names -rule vhdl -hierarchy

write -format vhdl -hierarchy -output HDL/GATE/${DESIGN}
↪→ _scan_mapped.vhd

change_names -rule verilog -hierarchy

write -format verilog -hierarchy -output HDL/GATE/${DESIGN}
↪→ _scan_mapped.v

Generate SDF timing file

write_sdf -version 2.1 TIM/${DESIGN}_scan_mapped.sdf
Generate design constraint file

write_sdc -nosplit SDC/${DESIGN}_scan_mapped.sdc

Quit the script

exit

61

D Control System VHDL

--

-------------------- LIBRARY DECLARATIONS ----------------

--

library IEEE;

use IEEE.numeric_std.all;

use IEEE.STD_LOGIC_1164.ALL;

--

-------------------- RESET CONTROLLER ENTITY ------------

--

entity Control_System is

Port

(

CLK1 : in STD_LOGIC; -- Slow Clock for the

Control System↪→

CLK2 : in STD_LOGIC; -- Fast clock for the

triviums↪→

RESET : in STD_LOGIC; -- Reset signal for the

circuit, active low input↪→

RESEED : in STD_LOGIC; -- If this signal is

1, it will reseed the trivium as soon a new key is

ready

↪→

↪→

TENABLE : in STD_LOGIC; -- Pause output signal,

by pausing the Clock 2 output when circuit is warmed

up

↪→

↪→

KEY_STREAM : in STD_LOGIC; -- Connect the

external key generator to it, in this case our QRNG↪→

RNGSELECT : in STD_LOGIC; -- 0 is the QRNG and 1

the other input↪→

KEY_STREAM2 : in STD_LOGIC; -- The external RNG

that can be connected to the system.↪→

T1OUT : out STD_LOGIC_VECTOR(63 downto 0); --

64 bit output of Trivium 1↪→

T2OUT : out STD_LOGIC_VECTOR(63 downto 0); --

64 bit output of Trivium 2↪→

T3OUT : out STD_LOGIC_VECTOR(63 downto 0); --

64 bit output of Trivium 3↪→

T4OUT : out STD_LOGIC_VECTOR(63 downto 0); --

64 bit output of Trivium 4↪→

TREADY : out STD_LOGIC; -- Feedback on

triviums, if they are warmed up↪→

KEYREADY : out STD_LOGIC; -- Feedback to the user

if the system can be reseeded↪→

62

-- Scan map in and outputs

ScanEnablexSI : in STD_LOGIC;

ScanDataInxDI : in STD_LOGIC;

ScanDataOutxDO : out STD_LOGIC

);

end Control_System;

--

------------------- SYSTEM CONTROLLER ARCHITECTURE -------

--

architecture Structural of Control_System is

--

------------------ COMPONENTS --------------------

--

component Key_Control is

Port

(

CLK : in STD_LOGIC; -- Slow Clock for the Control

System↪→

RESET : in STD_LOGIC; -- Reset signal for the

circuit, active low input↪→

RESEED : in STD_LOGIC; -- Signal to reseed the

key↪→

QRNG : in STD_LOGIC; -- Input of the QRNG bit

stream↪→

RNGSELECT : in STD_LOGIC; -- 0 is the QRNG and 1 the

other input↪→

RNG_2 : in STD_LOGIC; -- The external RNG that

can be connected to the system.↪→

LOADKEY : out STD_LOGIC; -- LOADKEY signal, which

gives the command to load the key↪→

KEY : out STD_LOGIC_VECTOR (319 downto 0); --

Contains the 320 bit key connected to the Trivium

Control

↪→

↪→

KEYREADY : out STD_LOGIC -- Feedback to the user if

the system can be reseeded↪→

);

end component;

component Trivium_Control is

Port

(

63

CLK : in STD_LOGIC; -- Slow Clock for the Control

System↪→

RESET : in STD_LOGIC; -- Reset signal for the

circuit, active low input↪→

LOADKEY : in STD_LOGIC; -- Signal that gives the

ready signal to the Trivium to readout the key and

initialize

↪→

↪→

KEY : in STD_LOGIC_VECTOR(319 downto 0); --

Connected to the QRNG control block, which contains

the key

↪→

↪→

TREADY : out STD_LOGIC; -- Wether the trivium is

warmed up or not, so you know when it can be paused,

a 0 is warmed up, 1 is still warming up

↪→

↪→

T1OUT : out STD_LOGIC_VECTOR(63 downto 0); -- 64

bit output of Trivium 1↪→

T2OUT : out STD_LOGIC_VECTOR(63 downto 0); -- 64

bit output of Trivium 2↪→

T3OUT : out STD_LOGIC_VECTOR(63 downto 0); -- 64

bit output of Trivium 3↪→

T4OUT : out STD_LOGIC_VECTOR(63 downto 0) -- 64

bit output of Trivium 4↪→

);

end component;

--

-------------------- SIGNALS --------------------

--

signal LoadKey_S : std_logic;

signal Key_S : std_logic_vector(319 downto 0);

signal Clock2_S : std_logic;

signal Tready_S : std_logic;

begin

--

----------- INSTANTIATE COMPONENTS -----------------

--

-- Instantiate the Shift Register

Key_Control_Block : Key_Control

PORT MAP (

-- Inputs

CLK => CLK1,

RESET => RESET,

RESEED => RESEED,

QRNG => KEY_STREAM,

64

RNGSELECT => RNGSELECT,

RNG_2 => KEY_STREAM2,

-- Outputs

LOADKEY => LoadKey_S,

KEY => Key_S,

KEYREADY => KEYREADY

);

-- Instantiate the Reset Controller

Trivium_Control_Block : Trivium_Control

PORT MAP (

-- Inputs

CLK => Clock2_S,

RESET => RESET,

LOADKEY => LoadKey_S,

KEY => Key_S,

-- Outputs

TREADY => Tready_S,

T1OUT => T1OUT,

T2OUT => T2OUT,

T3OUT => T3OUT,

T4OUT => T4OUT

);

--

------------------ CONNECTIONS ---------------------

--

-- Enables pausing the trivium WHEN warmed up, before it's

warmed up it won't have effect↪→

Clock2_S <= CLK2; --(Tready_S XOR TENABLE) AND CLK2;

-- Signal to enable feedback to the user if the triviums are

warmed up, a 1 means warmed up↪→

TREADY <= Tready_S;

--

-------------------- PROCESS --------------------

--

--

------------- COMPARISON STATEMENTS -----------------

65

--

end Structural;

66

E Key Control VHDL

--

-------------------- LIBRARY DECLARATIONS ----------------

--

library IEEE;

use IEEE.numeric_std.all;

use IEEE.STD_LOGIC_1164.ALL;

--

-------------------- RESET CONTROLLER ENTITY ------------

--

entity Key_Control is

Port

(

CLK : in STD_LOGIC; -- Slow Clock for the Control

System↪→

RESET : in STD_LOGIC; -- Reset signal for the

circuit, active low input↪→

RESEED : in STD_LOGIC; -- Signal to reseed the

key↪→

QRNG : in STD_LOGIC; -- Input of the QRNG bit

stream↪→

RNGSELECT : in STD_LOGIC; -- 0 is the QRNG and 1 the

other input↪→

RNG_2 : in STD_LOGIC; -- The external RNG that

can be connected to the system.↪→

LOADKEY : out STD_LOGIC; -- LOADKEY signal, which

gives the command to load the key↪→

KEY : out STD_LOGIC_VECTOR (319 downto 0); --

Contains the 320 bit key connected to the Trivium

Control

↪→

↪→

KEYREADY : out STD_LOGIC -- Feedback to the user if

the system can be reseeded↪→

);

end Key_Control;

--

------------------- SYSTEM CONTROLLER ARCHITECTURE -------

--

architecture Structural of Key_Control is

--

------------------ COMPONENTS --------------------

--

67

component Counter9Bit is

Port (CLK : in STD_LOGIC;

ENABLE : in STD_LOGIC;

RESET : in STD_LOGIC;

OUTPUT : out STD_LOGIC_VECTOR (8 downto 0));

end component;

-- Reset Block NOT USED

component reset_controller is

Port (

RESET_ASYNC : in STD_LOGIC;

CLK : in STD_LOGIC;

RESET_SYNC : out STD_LOGIC

);

end component;

component ShiftRegister320Bit is

Port (DATA : in STD_LOGIC; -- Per bit input

CLK : in STD_LOGIC;

ENABLE : in STD_LOGIC;

OUTPUT : out STD_LOGIC_VECTOR(319 downto 0)

);

end component;

component S_R_latch is

Port (S : in STD_LOGIC;

R : in STD_LOGIC;

Q : out STD_LOGIC);

end component;

component Multiplexer_2_to_1 is

Port (INPUT0 : in STD_LOGIC;

INPUT1 : in STD_LOGIC;

SEL : in STD_LOGIC;

OUTPUT : out STD_LOGIC);

end component;

--

-------------------- SIGNALS --------------------

--

-- Signals for the 9 bit counter

signal Counter9Bit_SO : std_logic_vector(8 downto 0);

signal Counter9BitActivate_S : std_logic;

68

signal Counter9BitReset_S : std_logic;

signal Comparator_S : std_logic;

signal ReseedKeyReady_SAsync : std_logic; -- Signal that

indicates if the reseed key is ready Async↪→

signal ReseedKeyReady_SSync : std_logic; -- Signal that

indicates if the reseed key is ready after flipflop, so

sync

↪→

↪→

signal FirstTimeSeeding_S : std_logic;

signal ProcSeed_S : std_logic;

signal LoadKey_S : std_logic;

signal Reseed_S : std_logic;

signal SRLATCH_R_S : std_logic;

signal ShiftRegActivate_S : std_logic;

signal RandomNumber_S : std_logic; -- The signal connecting

CounterBlock9Bit and the Multiplexer↪→

begin

--

----------- INSTANTIATE COMPONENTS -----------------

--

-- Instantiate the 11 bit counter

CounterBlock9Bit : Counter9Bit

PORT MAP (

CLK => CLK,

ENABLE => Counter9BitActivate_S,

RESET => Counter9BitReset_S,

OUTPUT => Counter9Bit_SO

);

ShiftRegisterBlock320Bit : ShiftRegister320Bit

PORT MAP (

DATA => RandomNumber_S,

CLK => CLK,

ENABLE => ShiftRegActivate_S,

OUTPUT => KEY

);

SRLATCH : S_R_latch

PORT MAP(

S => Comparator_S,

69

R => SRLATCH_R_S,

Q => ReseedKeyReady_SAsync

);

Multiplexer : Multiplexer_2_to_1

PORT MAP(

INPUT0 => QRNG,

INPUT1 => RNG_2,

SEL => RNGSELECT,

OUTPUT => RandomNumber_S

);

--

------------------ CONNECTIONS ---------------------

--

SRLATCH_R_S <= (NOT RESET) OR LoadKey_S;

-- Feedback to let the user see that the key is ready for

reseed↪→

KEYREADY <= ReseedKeyReady_SSync and (NOT

FirstTimeSeeding_S);↪→

Counter9BitReset_S <= (not Comparator_S) AND RESET;

Counter9BitActivate_S <= not ReseedKeyReady_SAsync;

-- Triggers the loadkey signal, dependend on if the key is

ready aka ReseedKeyReady and if the key should be sent if

ready aka ProcSeed_S

↪→

↪→

LoadKey_S <= ReseedKeyReady_SSync AND ProcSeed_S;

-- ProcSeed_S can be triggered in two ways, the first way is

if the circuit is booted for the first time, second way

is by the reseed signal

↪→

↪→

ProcSeed_S <= Reseed_S OR FirstTimeSeeding_S;

LOADKEY <= LoadKey_S;

-- Makes sure the shiftregister is paused while the counter

is not counting↪→

ShiftRegActivate_S <= RESET AND Counter9BitActivate_S;

--

-------------------- PROCESS --------------------

--

70

-- checks if the counter has reached 101000000

Comparator_S <= '1' when Counter9Bit_SO = "101000000" else

'0';↪→

-- Fixes that the first time booting, the system is seeded

automatically↪→

process (CLK)

begin

if (CLK'Event and CLK = '1') then

if (RESET='0') then

FirstTimeSeeding_S <= '1';

elsif (FirstTimeSeeding_S = '1' and LoadKey_S = '1')

then↪→

FirstTimeSeeding_S <= '0';

end if;

end if;

end process;

-- Syncs the resetkey for the output

process (CLK)

begin

if (CLK'Event and CLK = '1') then

if (RESET='0') then

ReseedKeyReady_SSync <= '0';

else

ReseedKeyReady_SSync <= ReseedKeyReady_SAsync;

end if;

end if;

end process;

-- Sync the reseed signal

process (CLK)

begin

if (CLK'Event and CLK = '1') then

if (RESET='0') then

Reseed_S <= '0';

else

Reseed_S <= RESEED;

end if;

end if;

end process;

--

------------- COMPARISON STATEMENTS -----------------

--

71

end Structural;

72

F Multiplexer VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Multiplexer_2_to_1 is

Port (INPUT0 : in STD_LOGIC;

INPUT1 : in STD_LOGIC;

SEL : in STD_LOGIC;

OUTPUT : out STD_LOGIC);

end Multiplexer_2_to_1;

architecture Behavioral of Multiplexer_2_to_1 is

begin

OUTPUT <= INPUT1 when (SEL = '1') else INPUT0;

end Behavioral;

73

G SR Latch VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity S_R_latch is

Port (S : in STD_LOGIC;

R : in STD_LOGIC;

Q : out STD_LOGIC);

end S_R_latch;

architecture Behavioral of S_R_latch is

signal Q2 : STD_LOGIC;

signal notQ : STD_LOGIC;

begin

Q <= Q2;

Q2 <= R nor notQ;

notQ <= S nor Q2;

end Behavioral;

74

H Asynchronous to Synchronous signal converter
VHDL

--

-------------------- LIBRARY DECLARATIONS ----------------

--

library IEEE;

use IEEE.numeric_std.all;

use IEEE.STD_LOGIC_1164.ALL;

--

-------------------- RESET CONTROLLER ENTITY ------------

--

entity reset_controller is

Port

(

RESET_ASYNC : in STD_LOGIC;

CLK : in STD_LOGIC;

RESET : in STD_LOGIC;

RESET_SYNC : out STD_LOGIC

);

end reset_controller;

--

-------------------- RESET CONTROLLER ARCHITECTURE -------

--

architecture Behavioral of reset_controller is

--

-------------------- SIGNALS --------------------

--

signal memory_FF : std_logic;

signal output_FF : std_logic;

signal clear_FF : std_logic;

begin

--

------------------ CONNECTIONS ---------------------

--

RESET_SYNC <= output_FF;

75

--

-------------------- PROCESS --------------------

--

process(CLK)

begin

if (CLK'Event and CLK = '1') then

if(RESET = '0') then -- Resets the shit

output_FF <= '0';

clear_FF <= '0';

memory_FF <= '0';

end if;

if(RESET_ASYNC = '1' and memory_FF = '0') then -- If

first rising edge of the reset signal is there↪→

clear_FF <= '1'; -- Flag to clear next output

round↪→

output_FF <= '1'; -- Ouput to 1

memory_FF <= '1'; -- Tag the past rising edge

end if;

if(clear_FF = '1') then -- Clear the signals one

pulse later↪→

output_FF <= '0';

clear_FF <= '0';

end if;

if(RESET_ASYNC = '0' AND memory_FF = '1') then

memory_FF <= '0';

end if;

end if;

end process;

end Behavioral;

76

I 320 Bit Shift Register VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ShiftRegister320Bit is

Port (DATA : in STD_LOGIC; -- Per bit input

CLK : in STD_LOGIC;

ENABLE : in STD_LOGIC;

OUTPUT : out STD_LOGIC_VECTOR(319 downto 0)

);

end ShiftRegister320Bit;

architecture Behavioral of ShiftRegister320Bit is

signal ShiftReg_D : STD_LOGIC_VECTOR(319 downto 0);

begin

process (CLK)

begin

if (CLK'event and CLK = '1' and ENABLE = '1') then

ShiftReg_D(318 downto 0) <= ShiftReg_D(319 downto 1);

-- Shift to next D-FF↪→

ShiftReg_D(319) <= DATA; -- Load next value

end if;

end process;

OUTPUT <= ShiftReg_D;

end Behavioral;

77

J Trivium Control VHDL

--

-------------------- LIBRARY DECLARATIONS ----------------

--

library IEEE;

use IEEE.numeric_std.all;

use IEEE.STD_LOGIC_1164.ALL;

--

-------------------- RESET CONTROLLER ENTITY ------------

--

entity Trivium_Control is

Port

(

CLK : in STD_LOGIC; -- Slow Clock for the Control

System↪→

RESET : in STD_LOGIC; -- Reset signal for the

circuit, active low input↪→

LOADKEY : in STD_LOGIC; -- Signal that gives the

ready signal to the Trivium to readout the key and

initialize

↪→

↪→

KEY : in STD_LOGIC_VECTOR(319 downto 0); --

Connected to the QRNG control block, which contains

the key

↪→

↪→

TREADY : out STD_LOGIC; -- Wether the trivium is

warmed up or not, so you know when it can be paused↪→

T1OUT : out STD_LOGIC_VECTOR(63 downto 0); -- 64

bit output of Trivium 1↪→

T2OUT : out STD_LOGIC_VECTOR(63 downto 0); -- 64

bit output of Trivium 2↪→

T3OUT : out STD_LOGIC_VECTOR(63 downto 0); -- 64

bit output of Trivium 3↪→

T4OUT : out STD_LOGIC_VECTOR(63 downto 0) -- 64

bit output of Trivium 4↪→

);

end Trivium_Control;

--

------------------- SYSTEM CONTROLLER ARCHITECTURE -------

--

architecture Behavioural of Trivium_Control is

--

------------------ COMPONENTS --------------------

78

--

component Counter5Bit is

Port (CLK : in STD_LOGIC;

ENABLE : in STD_LOGIC;

RESET : in STD_LOGIC;

OUTPUT : out STD_LOGIC_VECTOR (4 downto 0));

end component;

-- Reset Block

component reset_controller is

Port (

RESET_ASYNC : in STD_LOGIC;

CLK : in STD_LOGIC;

RESET : in STD_LOGIC;

RESET_SYNC : out STD_LOGIC

);

end component;

component Trivium is

Port (CLK : in STD_LOGIC;

LOADKEY : in STD_LOGIC; -- Signal that gives

the ready signal to the Trivium to readout the

key and initialize

↪→

↪→

KEY : in STD_LOGIC_VECTOR(79 downto 0); --

Connected to the QRNG control block, which

contains the key

↪→

↪→

RESET : in STD_LOGIC;

OUTPUT : out STD_LOGIC_VECTOR(63 downto 0)); --

64 bit output↪→

end component;

--

-------------------- SIGNALS --------------------

--

-- Signals for the 11 bit counter

signal Counter5Bit_SO : std_logic_vector(4 downto 0);

signal Counter5BitActivate_S : std_logic;

signal ResetCounter_R : std_logic;

signal WarmedUp_S : std_logic; -- If trivium is warmed up,

shown by the counter↪→

79

-- Signal to enable output

signal Trivium1_SO : std_logic_vector(63 downto 0);

signal Trivium2_SO : std_logic_vector(63 downto 0);

signal Trivium3_SO : std_logic_vector(63 downto 0);

signal Trivium4_SO : std_logic_vector(63 downto 0);

signal KeyReadyPulse_S : std_logic;

begin

--

----------- INSTANTIATE COMPONENTS -----------------

--

Trivium1 : Trivium

PORT MAP (

CLK => CLK,

LOADKEY => KeyReadyPulse_S, -- Signal that gives the

ready signal to the Trivium to readout the key and

initialize

↪→

↪→

KEY => KEY(319 downto 240), -- Connected to the QRNG

control block, which contains the key FIX THIS WHEN

ALL ARE ACTIVE!

↪→

↪→

RESET => RESET,

OUTPUT => Trivium1_SO -- output stream

);

Trivium2 : Trivium

PORT MAP (

CLK => CLK,

LOADKEY => KeyReadyPulse_S, -- Signal that gives the

ready signal to the Trivium to readout the key and

initialize

↪→

↪→

KEY => KEY(239 downto 160), -- Connected to the QRNG

control block, which contains the key FIX THIS WHEN

ALL ARE ACTIVE!

↪→

↪→

RESET => RESET,

OUTPUT => Trivium2_SO -- output stream

);

Trivium3 : Trivium

PORT MAP (

CLK => CLK,

80

LOADKEY => KeyReadyPulse_S, -- Signal that gives the

ready signal to the Trivium to readout the key and

initialize

↪→

↪→

KEY => KEY(159 downto 80), -- Connected to the QRNG

control block, which contains the key FIX THIS WHEN

ALL ARE ACTIVE!

↪→

↪→

RESET => RESET,

OUTPUT => Trivium3_SO -- output stream

);

Trivium4 : Trivium

PORT MAP (

CLK => CLK,

LOADKEY => KeyReadyPulse_S, -- Signal that gives the

ready signal to the Trivium to readout the key and

initialize

↪→

↪→

KEY => KEY(79 downto 0), -- Connected to the QRNG

control block, which contains the key FIX THIS WHEN

ALL ARE ACTIVE!

↪→

↪→

RESET => RESET,

OUTPUT => Trivium4_SO -- output stream

);

-- Instantiate the Reset Controller

ResetBlock : reset_controller

PORT MAP (

RESET_ASYNC => LOADKEY,

CLK => CLK,

RESET => RESET,

RESET_SYNC => KeyReadyPulse_S

);

-- Instantiate the 5 bit counter

CounterBlock5Bit : Counter5Bit

PORT MAP (

CLK => CLK,

ENABLE => Counter5BitActivate_S,

RESET => ResetCounter_R,

OUTPUT => Counter5Bit_SO

);

--

------------------ CONNECTIONS ---------------------

--

81

ResetCounter_R <= RESET AND NOT KeyReadyPulse_S;

-- makes sure the output is disabled when warming up the

trivium --------TODO: FIX THIS SHIT FOR MULTIPLE

CONNECTIONS aka 4x64 bits

↪→

↪→

T1OUT <= Trivium1_SO;

TREADY <= WarmedUp_S;

T2OUT <= Trivium2_SO;

T3OUT <= Trivium3_SO;

T4OUT <= Trivium4_SO;

--

-------------------- PROCESS --------------------

--

-- Warmed up when it is 0

process (CLK)

begin

if (CLK'Event and CLK = '1') then

if (RESET='0' OR KeyReadyPulse_S = '1') then --

Important because if it does not set to 1 at

readypulse, the last bit is shown at the output,

now it is always a set 0 and ouptut is blocked

from start till end of warmup

↪→

↪→

↪→

↪→

WarmedUp_S <= '0'; --

Potential discussion: First number is set,

and always the same, can leave

KeyReadyPulse_S = '1' out.

↪→

↪→

↪→

elsif(Counter5Bit_SO = "10010") then -- Change to

warmed up when certain number is reached↪→

WarmedUp_S <= '1';

end if;

-- Fix the Counter 5 bit thing

if(RESET = '0') then

Counter5BitActivate_S <= '0';

elsif(KeyReadyPulse_S = '1') then

Counter5BitActivate_S <= '1';

elsif(Counter5Bit_SO = "10010") then

Counter5BitActivate_S <= '0';

end if;

end if;

end process;

82

--

------------- COMPARISON STATEMENTS -----------------

--

-- Fixes when the counter is activated and deactivated,

amount of warmup cycles needs to be exact the number of

the counter,

↪→

↪→

-- as when the counter is at 0, is loading the key for the

trivium.↪→

--Counter5BitActivate_S <= '0' when RESET = '0' else

--'1' when KeyReadyPulse_S = '1' else

--'0' when Counter5Bit_SO = "10010";

-- Activating and deactivating the counter

-- When Triviums should activate

--T1Activated_S <= '0' when Reset_S = '0' else

--'1' when Counter8Bit_SO = "01001111" else --79 (start of

warmup phase)↪→

--'0' when Counter5Bit_SO = "10001111111" else --1151 (end of

warmup phase)↪→

--'1' when ActivateT1andT2_S = '1';

end Behavioural;

83

K 64-Bit Trivium VHDL

library IEEE;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

--

--------------------- Entity Trivium ---------------------

--

entity Trivium is

Port (CLK : in STD_LOGIC;

LOADKEY : in STD_LOGIC; -- Signal that gives the

ready signal to the Trivium to readout the key

and initialize

↪→

↪→

KEY : in STD_LOGIC_VECTOR(79 downto 0); --

Connected to the QRNG control block, which

contains the key

↪→

↪→

RESET : in STD_LOGIC;

OUTPUT : out STD_LOGIC_VECTOR(63 downto 0)); -- 64

bit output↪→

end Trivium;

architecture Behavioral of Trivium is

constant num_bits : integer := 63; -- 0 means 1 bit, so 64

bits is 63↪→

--

------------------------ Signals -------------------------

--

-- Registers

signal RAxD : STD_LOGIC_VECTOR(92 downto 0);

signal RBxD : STD_LOGIC_VECTOR(83 downto 0);

signal RCxD : STD_LOGIC_VECTOR(110 downto 0);

--signal RAxNew : STD_LOGIC_VECTOR(92 downto 0);

--signal RBxNew : STD_LOGIC_VECTOR(83 downto 0);

--signal RCxNew : STD_LOGIC_VECTOR(110 downto 0);

-- Signal Out of the three registers

signal RAxSO : STD_LOGIC_VECTOR(num_bits downto 0);

signal RBxSO : STD_LOGIC_VECTOR(num_bits downto 0);

signal RCxSO : STD_LOGIC_VECTOR(num_bits downto 0);

84

-- Signal in for the three registers (with the added

feedback)↪→

signal RAxSI : STD_LOGIC_VECTOR(num_bits downto 0);

signal RBxSI : STD_LOGIC_VECTOR(num_bits downto 0);

signal RCxSI : STD_LOGIC_VECTOR(num_bits downto 0);

begin

--

-------------------- Create feedback ---------------------

--

GEN_FEEDBACK:

for i in 0 to num_bits generate

-- feedback concerning registry A

RAxSO(i) <= RAxD(92-i) XOR RAxD(65-i); -- CHECKED T1

RAxSI(num_bits - i) <= RCxSO(i) XOR (RCxD(108-i) AND

RCxD(109-i)) XOR RAxD(68-i);↪→

-- feedback concerning registry B

RBxSO(i) <= RBxD(83-i) XOR RBxD(68-i); -- CHECKED T2

RBxSI(num_bits - i) <= RAxSO(i) XOR (RAxD(90-i) AND

RAxD(91-i)) XOR RBxD(77-i); --↪→

-- feedback concerning registry C

RCxSO(i) <= RCxD(110-i) XOR RCxD(65-i); -- CHECKED T3

RCxSI(num_bits - i) <= RBxSO(i) XOR (RBxD(81-i) AND

RBxD(82-i)) XOR RCxD(86-i); -- Make RCxSI(num_bits -

i) if feedback switched around

↪→

↪→

-- Connecting them together with a 3-XOR gate

OUTPUT(i) <= RAxSO(i) XOR RBxSO(i) XOR RCxSO(i);

end generate GEN_FEEDBACK;

--

--------------- Make the Trivium clocked -----------------

--

process (CLK)

begin

if (CLK'event and CLK = '1') then

if(RESET = '0') then -- Choose if we want this reset

or not, will also work without it but that will

consume power, while generating key

↪→

↪→

RAxD(92 downto 0) <= (others => '0');

RBxD(83 downto 0) <= (others => '0');

RCxD(110 downto 0) <= (others => '0');

85

elsif(LOADKEY = '1') then-- INITIALIZE

RAxD(9 downto 0) <= (others => '0'); -- IV

RAxD(32 downto 10) <= (others => '0'); -- IV

RaxD(92 downto 11) <= (others => '0'); --

Everything else 0↪→

RBxD(79 downto 0) <= KEY; -- Load key, note that

it is 80 bit per trivium!↪→

RBxD(83 downto 80) <= (others => '0'); --

Everything else 0↪→

RCxD(110 downto 108) <= (others => '1'); -- The

three rightmost bits set to 1 (given by

theory about trivium)

↪→

↪→

RCxD(107 downto 0) <= (others => '0'); --

Everything else 0↪→

else -- simply run

RAxD(92 downto 0) <= RAxD(91-num_bits downto 0) &

RAxSI; -- Shift to next D-FF↪→

-- RAxD(0) <= RAxSI; -- Load next value

RBxD(83 downto 0) <= RBxD(82-num_bits downto 0) &

RBxSI; -- Shift to next D-FF↪→

-- RBxD(0) <= RBxSI; -- Load next value

RCxD(110 downto 0) <= RCxD(109-num_bits downto 0)

& RCxSI; -- Shift to next D-FF↪→

-- RCxD(0) <= RCxSI; -- Load next value

end if;

end if;

end process;

end Behavioral;

86

L JK-flip-flop VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

entity JK_FF is

port(J : in std_logic;

K : in std_logic;

RESET : in std_logic;

ENABLE : in std_logic;

CLK : in std_logic;

OUTPUT : out std_logic);

end JK_FF;

architecture Behavioral of JK_FF is

signal temp: std_logic;

begin

process (CLK)

begin

if(CLK'event and CLK = '1') then

if RESET='0' then

temp <= '0';

elsif ENABLE ='1' then

if (J='0' and K='0') then

temp <= temp;

elsif (J='0' and K='1') then

temp <= '0';

elsif (J='1' and K='0') then

temp <= '1';

elsif (J='1' and K='1') then

temp <= not (temp);

end if;

end if;

end if;

end process;

OUTPUT <= temp;

end Behavioral;

87

M 5-Bit Counter VHDL

library IEEE;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Counter5Bit is

Port (CLK : in STD_LOGIC;

ENABLE : in STD_LOGIC;

RESET : in STD_LOGIC;

OUTPUT : out STD_LOGIC_VECTOR (4 downto 0));

end Counter5Bit;

architecture Behavioral of Counter5Bit is

component JK_FF is

port(J : in std_logic;

K : in std_logic;

RESET : in std_logic;

ENABLE : in std_logic;

CLK : in std_logic;

OUTPUT : out std_logic);

end component;

--

-------------------- SIGNALS --------------------

--

signal output_S : STD_LOGIC_VECTOR (4 downto 0);

signal input_S : STD_LOGIC_VECTOR (4 downto 0);

begin

--

------------------ CONNECTIONS ---------------------

--

GEN_FF:

for i in 0 to 4 generate

JK_FF_Block : JK_FF port map(

input_S(i),

input_S(i),

88

RESET,

ENABLE,

CLK,

output_S(i)

);

end generate GEN_FF;

OUTPUT <= output_S;

input_S(0) <= '1';

input_S(1) <= output_S(0);

GEN_FB:

for i in 2 to 4 generate

input_S(i) <= output_S(i-1) AND input_S(i-1);

end generate GEN_FB;

--

-------------------- PROCESS --------------------

--

end Behavioral;

89

N 9-Bit Counter VHDL

--

-------------------- LIBRARY DECLARATIONS ----------------

--

library IEEE;

use IEEE.numeric_std.all;

use IEEE.STD_LOGIC_1164.ALL;

--

-------------------- COUNTER ENTITY ---------------------

--

entity Counter9Bit is

Port (CLK : in STD_LOGIC;

ENABLE : in STD_LOGIC;

RESET : in STD_LOGIC;

OUTPUT : out STD_LOGIC_VECTOR (8 downto 0));

end Counter9Bit;

architecture Behavioral of Counter9Bit is

component JK_FF is

port(J : in std_logic;

K : in std_logic;

RESET : in std_logic;

ENABLE : in std_logic;

CLK : in std_logic;

OUTPUT : out std_logic);

end component;

--

-------------------- SIGNALS --------------------

--

signal output_S : STD_LOGIC_VECTOR (8 downto 0);

signal input_S : STD_LOGIC_VECTOR (8 downto 0);

begin

--

90

------------------ CONNECTIONS ---------------------

--

GEN_FF:

for i in 0 to 8 generate

JK_FF_Block : JK_FF port map(

input_S(i),

input_S(i),

RESET,

ENABLE,

CLK,

output_S(i)

);

end generate GEN_FF;

OUTPUT <= output_S;

input_S(0) <= '1';

input_S(1) <= output_S(0);

GEN_FB:

for i in 2 to 8 generate

input_S(i) <= output_S(i-1) AND input_S(i-1);

end generate GEN_FB;

--

-------------------- PROCESS --------------------

--

end Behavioral;

91

O Control System Testbench VHDL

--

------------------ LIBRARY DECLARATIONS ----------------

--

library IEEE;

use IEEE.numeric_std.all;

use IEEE.STD_LOGIC_1164.ALL;

--

----------- CONTROL SYSTEM TESTBENCH ENTITY ------------

--

entity Control_System_tb is

end Control_System_tb;

architecture Behavior of Control_System_tb is

--

------------------ COMPONENT OF UUT --------------------

--

component Control_System is

Port

(

CLK1 : in STD_LOGIC; -- Slow Clock

for the Control System↪→

CLK2 : in STD_LOGIC; -- Fast clock

for the triviums↪→

RESET : in STD_LOGIC; -- Reset signal

for the circuit, active low input↪→

RESEED : in STD_LOGIC; -- If this

signal is 1, it will reseed the trivium as

soon a new key is ready

↪→

↪→

TENABLE : in STD_LOGIC; -- Pause output

signal, by pausing the Clock 2 output when

circuit is warmed up

↪→

↪→

KEY_STREAM : in STD_LOGIC; -- Connect

the external key generator to it, in this

case our QRNG

↪→

↪→

RNGSELECT : in STD_LOGIC; -- 0 is the QRNG

and 1 the other input↪→

KEY_STREAM2 : in STD_LOGIC; -- The

external RNG that can be connected to the

system.

↪→

↪→

92

T1OUT : out STD_LOGIC_VECTOR(63 downto

0); -- 64 bit output of Trivium 1↪→

T2OUT : out STD_LOGIC_VECTOR(63 downto

0); -- 64 bit output of Trivium 2↪→

T3OUT : out STD_LOGIC_VECTOR(63 downto

0); -- 64 bit output of Trivium 3↪→

T4OUT : out STD_LOGIC_VECTOR(63 downto

0); -- 64 bit output of Trivium 4↪→

TREADY : out STD_LOGIC; -- Feedback on

triviums, if they are warmed up↪→

KEYREADY : out STD_LOGIC; -- Feedback to

the user if the system can be reseeded↪→

-- Scan map in and outputs

ScanEnablexSI : in STD_LOGIC;

ScanDataInxDI : in STD_LOGIC;

ScanDataOutxDO : out STD_LOGIC

);

end component;

--

---------------- TEST INPUT SIGNALS --------------------

--

signal Clock1_C : std_logic := '0';

signal Clock2_C : std_logic := '1'; -- Reset high

signal Reset_R : std_logic := '0';

signal Reseed_S : std_logic := '1';

signal TriviumEnable_S : std_logic := '1';

signal QRNGstream_D : std_logic := '1';

signal RNGselect_S : std_logic := '0';

signal RNG2_D : std_logic := '0';

signal ScanEnablexSI_S : std_logic := '0';

signal ScanDataInxDI_S : STD_LOGIC := '0';

constant clk1_period : time := 10 ns;

constant clk2_period : time := 2 ns;

begin

--

------------------ INSTANTIATE UUT ---------------------

--

UUT : Control_System

PORT MAP(

-- Inputs

CLK1 => Clock1_C,

93

CLK2 => Clock2_C,

RESET => Reset_R,

RESEED => Reseed_S,

TENABLE => TriviumEnable_S,

KEY_STREAM => QRNGstream_D,

RNGSELECT => RNGselect_S,

KEY_STREAM2 => RNG2_D,

-- Outputs

T1OUT => open,

T2OUT => open,

T3OUT => open,

T4OUT => open,

TREADY => open,

KEYREADY => open,

-- Scan map in and outputs

ScanEnablexSI => ScanEnablexSI_S,

ScanDataInxDI => ScanDataInxDI_S,

ScanDataOutxDO => open

);

--

----------------------- PROCESS ------------------------

--

-- Slow clock connected to the Key Control

clk_process1 :process

begin

Clock1_C <= '0';

wait for clk1_period/2;

Clock1_C <= '1';

wait for clk1_period/2;

end process;

-- Fast clock connected to the Trivium Control

clk_process2 :process

begin

Clock2_C <= '0';

wait for clk2_period/2;

Clock2_C <= '1';

wait for clk2_period/2;

end process;

-- Reset

reset_process :process

94

begin

Reset_R <= '0';

wait for 35 ns; --signal is '1', on first run a reset

will be fired after 50 ns↪→

Reset_R <= '0';

wait for 40 ns; --signal is '0'.

Reset_R <= '1';

wait for 10000 ns; --signal is '1', this will keep going

for X + 50ns, then the next reset is fired.↪→

end process;

Reseed_S_process : process

begin

Reseed_S <= '0';

wait for 4000 ns; --signal is '1', on first run a reset

will be fired after 50 ns↪→

Reseed_S <= '1';

wait for 400 ns; --signal is '1', this will keep going

for X + 50ns, then the next reset is fired.↪→

end process;

end Behavior;

95

	Introduction
	Pseudo randomness
	Linear feedback shift register
	Trivium

	True randomness
	Light as source of entropy
	Single-photon avalanche detectors

	State-of-the-art photon based QRNG designs

	Small Integratable QRNG
	Design goals
	Design overview
	Expected value Simulations
	Implementation
	Basic architecture layout
	Chip layout

	Conclusion

	High Speed Scalable QRNG
	Design goal
	Design Overview
	Output codes
	Speed simulation
	SPAD tolerances
	Scaling
	Conclusion

	Hybrid PRNG-QRNG designs
	Hybrid Trivium-TRNG
	True RNG Seeding
	Scaling
	Control system
	Results
	Conclusion

	Quantum Dynamic LFSR
	Incorporating TRNG
	Conclusion and future work

	Universal QRNG Testbed
	POLIS project
	High speed, high accuracy Gray counter
	Design goals
	Problems with conventional counters
	Gray counting
	3-Bit gray counter
	Basic architecture
	Implementation
	Results

	Conclusion

	Conclusion
	Small Integrable QRNG Matlab Simulations
	SCS-Block Matlab Simulations
	DC Compiler Script
	Control System VHDL
	Key Control VHDL
	Multiplexer VHDL
	SR Latch VHDL
	Asynchronous to Synchronous signal converter VHDL
	320 Bit Shift Register VHDL
	Trivium Control VHDL
	64-Bit Trivium VHDL
	JK-flip-flop VHDL
	5-Bit Counter VHDL
	9-Bit Counter VHDL
	Control System Testbench VHDL

