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SUMMARY

In this thesis, we probe single bacterial cells to further understand both the regulation of
cell divisions during adverse conditions and the phenomenon of cellular heterogeneity.

Firstly, in introductory chapter 1 we provide an overview of the topics in this thesis
and provide some context for the layman. Then, in chapter 2 we describe how we ex-
panded on current methods to investigate the behaviour of single Escherichia coli cells:
we discuss the PDMS device that we used to subject microcolonies of cells to changes in
growth medium and observe them, the software expansions that simplified and enabled
analysis of our single cell time lapse data, and the application of cross-correlation analy-
sis to branched lineage data that is acquired by observing growing microcolonies of cells
(which is relevant for studying heterogeneity).

In chapter 3 we discuss novel findings regarding the regulation of cell divisions dur-
ing adverse conditions. Instead of growing E. coli in favorable conditions, as is often
done in the lab, we subjected the bacteria to adverse real-world conditions like antibi-
otic exposure and high temperature, The cells responded to these adverse conditions by
halting the cell division process, whilst they continued to grow. This process is called fila-
mentation and it leads to characteristic elongated cell morphologies. When we switched
growth conditions back to favorable conditions, the cells started dividing again to even-
tually recover their normal bacillary form. Remarkably, during this process, the cells
continuously re-arranged potential division sites (Fts rings), to place them at specific lo-
cations along the cellular axis. Where Fts rings formed depended on the length of the
individual bacteria, and we showed that this placement was regulated by Min proteins,
which acted as a dynamical ruler. This regulation resulted in actual division locations
appearing according to specific rules. We also showed that the timing of divisions was
set by the so-called adder mechanism. This means bacteria on average divide each time
they have grown by a specific volume. The observations on the Min regulation and adder
mechanism were remarkable, since these systems were hitherto only known for regula-
tion of division in bacillary shaped bacteria. Taken together, the results in chapter 3 in-
dicate that E. coli cells continuously keep track of absolute length to control size, suggest
a wider relevance for the adder principle and provide a new perspective on the function
of the Fts and Min systems.

In chapters 4-6 we investigate the origins of cellular heterogeneity. As described
in chapter 1, even individual bacteria in an isogenic population in a constant environ-
ment can show different behaviour, which ultimately stems from the stochastic nature
of chemical reactions that go on inside the cells. Research into this heterogeneity often
either focuses on processes where stochasticity in a process can be directly linked to a
phenotypic effect or focuses on how signalling can be robust despite noise. How noise
transmits through large biochemical networks, and what effects this has on the cellu-
lar state, is researched less often. In chapter 4 we review literature that focuses on this
question, with a specific focus on the metabolism, since this is an important large bio-
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2 SUMMARY

chemical network in the cell. In chapter 5 we investigate the role of regulatory networks
in heterogeneity. Specifically, we look at the cAMP receptor protein (CRP), which is a
master regulator of metabolic enzyme expression. Metabolic enzymes convert carbon
molecules taken up by the cell into smaller metabolites (which also generates energy
to fuel the cell). Some of these small metabolites also inhibit CRP activity. This nega-
tive feedback was previously reported to be the regulatory interaction that is responsi-
ble for setting metabolic enzyme expression to the optimal level. Given the hypothe-
sis described in chapter 4 that metabolite levels continuously fluctuate in a single cell,
even in steady state, we speculated that the CRP regulatory system must also continu-
ously receive different inputs, to which it might respond. To test this hypothesis we used
a previously constructed E. coli strain that lacked the metabolic feedback. By subject-
ing this strain to alternating high and low input signals, we showed that regulatory sys-
tems can respond on the fast timescales that are associated with stochastic fluctuations.
We then investigated whether the dynamic behaviour of the regulatory interaction was
different between a wild type strain (that had feedback regulation) and the strain lack-
ing the feedback. Using cross-correlation analysis of expression-growth dynamics and
mathematical modelling of the dynamics, we revealed noteworthy differences between
the case with feedback and the case without feedback. This suggested that regulatory
interactions indeed respond to stochastic fluctuations that occur within the cell. These
observations inspired us to speculate that even regulatory networks in cells in a con-
stant environment continuously interact and adjust, resulting in a perpetually changing
cellular state fuelled by random events.

Finally, in chapter 6 we focus on the role ribosomal concentration fluctuations might
have in cellular heterogeneity. It is often suggested that stochastic fluctuations in the ri-
bosomal concentration might contribute to concerted fluctuations in gene expression.
Given the pivotal role of protein production in cellular growth, we additionally hypoth-
esized that fluctuations in ribosomal concentration might even transmit to single cell
growth rates. We investigated these two hypotheses in this chapter. We studied ribo-
somal dynamics by using labeled ribosomal proteins and ribosomal RNA reporters. We
additionally introduced a constitutively expressed fluorescent reporter, which allowed
us to correlate ribosomal concentration with protein production. We measured the ex-
pression of these reporters and growth rates in single cells in different media, and also
tested conditions where cells were exposed to sub-lethal concentrations of antibiotics
that inhibited translation. Cross-correlation analysis of these experiments provided in-
sufficient evidence to clearly support either transmission of ribosomal fluctuations to
protein expression nor transmission to growth rates. We end the chapter by reflecting on
the question whether a single labeled ribosomal protein is good proxy for the concentra-
tion of completely assembled active ribosomes; each of the 58 ribosomal proteins might
have their own dynamics. We also suggest a future experiment to further investigate the
role of ribosomal RNA in gene expression dynamics.



SAMENVATTING

In dit proefschrift beschrijven we onderzoek naar individuele bacteriecellen. We probe-
ren hiermee meer inzicht te krijgen in het proces van celdeling tijdens ongunstige con-
dities en het fenomeen van heterogeniteit in cellulaire populaties beter te begrijpen.

In hoofdstuk 1 geven we een overzicht van de onderwerpen in dit proefschrift, alsook
context voor de leek. In hoofdstuk 2 beschrijven we vervolgens hoe we huidige metho-
den hebben uitgebreid om het gedrag van individuele Escherichia coli cellen te kunnen
bestuderen. We bespreken een PDMS microfluidics opstelling die we gebruiken om mi-
crocolonies van bacteriecellen bloot te stellen aan veranderingen in groeimedium en te
observeren. Daarnaast bespreken we software-uitbreidingen die onze analyse van indi-
viduele cellen faciliteren, en hoe we cross-correlaties kunnen toepassen op onze data-
structuur (cross-correlaties zijn relevant in onze studie naar heterogeniteit).

In hoofdstuk 3 beschrijven we nieuwe inzichten aangaande celdeling in ongunstige
condities. In plaats van cellen te laten groeien in gunstige condities, wat meestal gedaan
wordt in het lab, hebben we cellen laten groeien in ongunstige condities, namelijk bloot-
stelling aan antibiotica en hoge temperaturen, Deze komen cellen in de echte wereld ook
vaak tegen. De cellen reageren op deze ongunstige condities door te stoppen met delen
terwijl ze wel blijven groeien. Dit proces wordt ook wel filamentatie genoemd, en leidt tot
zeer lange cellen. Wanneer we overschakelden naar gunstige groeicondities, herstelden
de cellen zich door weer te gaan delen. Tijdens dit proces verplaatsten de cellen hun po-
tentiële delingsplekken (Fts-ringen) continu. De plaatsing van de Fts-ringen hing af van
de lengte van de individuele bacterie en werd bepaald door regulatie door Min-eiwitten.
De Min-eiwitten bleken te functioneren als waren zij een dynamische liniaal Dit resul-
teerde in zeer precieze regulatie van waar daadwerkelijke celdelingen plaatsvonden. We
laten in dit hoofdstuk ook zien dat de timing van de delingen plaatsvond volgens het zo-
genaamde adder-principe (letterlijk vertaald: toevoeger-principe). Dit dicteert dat cel-
len gemiddeld delen wanneer zij met een specifieke volume gegroeid zijn. Deze obser-
vaties aangaande het Min systeem en het adder-principe zijn opzienbarend, aangezien
deze systemen tot nu toe vooral beschouwd waren in de context van cellen met een nor-
male morfologie. De resultaten in dit hoofdstuk laten zien dat E. coli cellen continu hun
lengte meten om hun grootte te controleren, en duiden op een bredere relevantie van het
adder-principe en werpen een nieuw licht op de functies van het Fts en Min systeem.

In de hoofdstukken 4-6 onderzoeken we hoe heterogeniteit in populaties ontstaat.
Zoals beschreven in hoofdstuk 1, laten zelfs genetisch identieke individuele bacteriën in
een constante omgeving verschillend gedrag zien. Uiteindelijk komt dat door het sto-
chastische (willekeurige) karakter van de chemische reacties die plaatsvinden in de bac-
teriën. Onderzoek naar heterogeniteit focust vaak óf op processen waarin fenotypische
effecten direct kunnen worden verbonden aan een bron van stochasticiteit, óf op hoe
biochemische beslissingsnetwerken robuust kunnen zijn ondanks ruis die ontstaat door
stochastische fluctuaties. Hoe ruis zich voortplant in grote biochemische netwerken, en
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4 SAMENVATTING

wat de effecten zijn op de staat van de cel, wordt minder vaak onderzocht. Hoofdstuk 4
geeft een literatuuroverzicht over deze laatste vragen. We leggen hierin een focus op het
metabolisme, aangezien dit een essentieel biochemisch netwerk in de cel is. In hoofd-
stuk 5 onderzochten we de rol van regulatienetwerken in heterogeniteit. Om deze rol
verder te begrijpen keken we naar het cAMP recepter-eiwit (CRP), een master regulatie-
eiwit dat de expressie van metabole enzymen reguleert. Metabole enzymen zetten kool-
waterstofmoleculen (zoals suikers) om in kleinere metabolieten. Dit dient ook om de cel
van energie te voorzien. Sommige van deze metabolieten remmen CRP regulatie. Deze
negatieve feedback is eerder onderzocht, er wordt gedacht dat deze interactie ertoe leidt
dat het expressieniveau van metabole enzymen optimaal is. In hoofdstuk 4 stellen we
echter dat de concentraties van metabolieten wellicht continu fluctueren door stochasti-
sche ruis in de cel. Dat zou betekenen dat het CRP systeem constant verschillende inputs
krijgt, zelfs in een constante omgeving, en hier wellicht op reageert. Om deze hypothese
te testen gebruikten we een eerder gemaakte genetisch gemanipuleerde E. coli stam die
deze metabole feedback niet heeft. Eerst gaven we op een artificiële manier alternerend
hoge en lage signalen als input aan het CRP regulatiesysteem in deze stam. We alterneer-
den dit signaal redelijk snel (elk uur), omdat stochastische fluctuaties waarschijnlijk ook
op snelle tijdschalen plaatsvinden, en we wilden testen of bacteriën überhaupt op der-
gelijke tijdschalen kunnen reageren. De snelle reactie van de bacteriën op deze signalen
liet zien dat ze in principe in staat zijn te reageren op dergelijke snelle signaalwisselin-
gen. Daarna onderzochten we het verschil in de dynamiek van de CRP regulatie in een
wild type E. coli stam (waarin het feedbacksysteem intact is) en de E. coli stam zonder
feedback. Met behulp van een cross-correlatie analyse van de expressie-groei dynamica
en wiskundige modellen van de dynamica, konden we laten zien dat deze verschillen er
zijn en hier een interpretatie aan geven. De analyse suggereerde dat het regulatienetwerk
inderdaad reageert op stochastische fluctuaties in de cel. Daarnaast waren de resultaten
consistent met een interpretatie van de dynamica waarin de regulatie er voor zorgde dat
ruis zich minder goed kon voortplanten. In bredere zin zou dit erop kunnen duiden dat
regulatienetwerken in cellen in een continu veranderende staat zijn doordat zij continu
reageren op stochastische fluctuaties en daaropvolgende effecten.

Ten slotte onderzoeken we de rol van ribosomen in cellulaire heterogeniteit in hoofd-
stuk 6. Een hypothese die vaak genoemd wordt in de literatuur is dat stochastische fluc-
tuaties in de concentratie van ribosomen leiden tot simultane fluctuaties in genexpres-
sie. Aangezien de productie van eiwitten een essentiële rol heeft in celgroei, hadden we
tevens de hypothese dat op het niveau van één cel fluctuaties in ribosoomconcentraties
wellicht ook een effect zouden hebben op de groeisnelheid van de cel. In dit hoofdstuk
hebben we deze twee hypotheses onderzocht. We hebben de dynamica van ribosomen
onderzocht met behulp van fluorescent gelabelde ribosomale eiwitten en fluorescente
reporters voor de expressie van ribosomaal RNA. Daarnaast hebben we een fluorescent
eiwit ingebracht dat constant tot expressie werd gebracht. Dit eiwit hebben we gebruikt
om het verband te onderzoeken tussen de ribosoomconcentratie en eiwitproductie. We
hebben de expressie van deze reporters en de groeisnelheden gemeten in individuele
cellen in verschillende groeimedia en hebben daarnaast condities onderzocht waarin de
cellen waren blootgesteld aan subletale concentraties translatie inhiberende antibiotica.
Ook hier hebben we cross-correlatie analyses uitgevoerd, maar we hebben onvoldoende
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bewijs gevonden om aan te tonen dat er transmissie plaatsvindt van ribosomale fluctu-
aties naar eiwitexpressie of groeisnelheid. We eindigen dit hoofdstuk 6 met de vraag of
een label aan een enkel ribosomaal eiwit een goede weergave is van de concentratie van
compleet geassembleerde ribosomen; elk van de 58 ribosomale eiwitten heeft wellicht
zijn eigen dynamica. Daarnaast stellen we voor hoe de rol van fluctuaties in ribosomale
RNA concentraties verder onderzocht kan worden.





1
INTRODUCTION

1.1. THE POWER OF NUMBERS

Describing the world around us with numbers is not just an interesting hobby for num-
ber enthusiasts. Quantitative descriptions of phenomena can give insights that other-
wise would have been out of reach. Some examples of such research can be found in the
field of biology. Like the Lotka-Volterra model from the early 1900s, which explains fluc-
tuations in predator and pray numbers using differential equations [1, 2]. Or the math-
ematical reaction-diffusion models created by Turing, which explain how large spatial
inhomogeneities can spontaneously arise from molecules that interact by simple rules
[3]. Such principles are for example hugely important during embryogenesis, when cells
need to decide which part of the body they will develop into. However, perhaps partially
because of reluctance by biology researchers [4] and partially because a lack of proper
quantitative measuring tools [5, 6], such quantitative approaches were not common-
place in biology. But since the turn of the millennium, quantitative biology has taken
a huge flight again. I hope the work in this thesis also offers exciting examples of new
insights that are acquired with this new wave of quantitative measurements.

1.2. PRYING IN THE LIVES OF SINGLE CELLS

Before the onset of techniques that allowed high throughput quantitative measurements,
bacterial researchers usually did not perform studies on individual specimens of their or-
ganism of interest. Experiments were conducted in test tubes on millions of individual
cells at once. While this gives great information about the average behaviour of bacteria,
which filled text-books with the detailed workings of bacteria, it does not allow one to
learn everything about how a bacterium works. New techniques now allow us to better
probe the life of single cells. Where a century ago people had to observe tiny bacterial
colonies by eye through the microscope, painstakingly draw them, and quantify division
times manually [7], we can now do the same using a computer and thoroughly track the
lives of thousands of individual cells in a few days work, as described in chapter 2 of this
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A B

Figure 1.1: Bacterial colonies. These pictures
were taken with a microscope in the Tans lab, and
show a growing microcolony of bacteria in favor-
able conditions (A) and (part of) a colony of bac-
teria that are exposed to a sub-lethal dosis of the
antibiotic tetracycline (B). This colony in panel B
shows a so-called filamentous morphology, be-
cause under the influence of certain stresses bac-
teria can stop dividing but continue elongating.

thesis. Figure 1.2.A shows an example of a snapshot of a microcolony of the rod-shaped
Escherichia coli bacterium, acquired by one of our microscopes. This computerized ap-
proach gives new insights, as illustrated by chapter 3. During single cell experiments
in the Tans lab that probed the effect of antibiotics on E. coli bacteria we noticed a pe-
culiarity. Bacteria stop dividing in this condition, but continue elongating, leading to
so-called filamentous phenotypes with an elongated morphology, see also figure 1.2.B.
When antibiotic stress was removed, and E. coli with elongated morphologies started di-
viding again, we noticed that they always divided at very defined relative positions. Be-
fore these observations, it was thought that filamentous bacteria behave as if they were a
string of multiple bacteria merged together. But our measurement showed that instead
of following rules according to that principle, bacteria followed another set of rules. This
required an unexpected and not previously observed mobility of bacterial division site
structures. It also revealed that one of the bacterial regulation systems for division site
placement has a previously unrecognised functionality when cells are in their filamen-
tous state. Aside from these two novel observations, the results implied that bacterial
cells carefully regulate their size, even in this elongated morphology. This morphology
is not often studied in the lab, but is very relevant in daily life where bacteria might for
example survive antibiotic treatments or cold conditions (fridges) by adopting this fila-
mentous form.

1.3. SINGLE CELLS ARE DIFFERENT

Single cell experiments also allow us to probe the differences between individual bacte-
ria. In a pioneering study in 1976, Spudich and Koshland [8] found that genetically iden-
tical individual bacteria can still show different food-searching behaviour. In brief, some
bacterial individuals favoured swimming straight for long stretches in search of food,
whilst others preferred to re-orient their direction more often to create a more winding
search pattern for food. This was attributed to ‘chance occurrences [in their] internal
processes’. It is now clear that in general, the biochemical reactions that finally lead to
bacterial decision making do not always have the same outcome. It is thought that the
origin of this stochasticity can be traced back to reactions that involve a small number
of molecules in a relatively large volume. Since reactants need to find each other by dif-
fusion, this introduces a component of chance. This stochasticity can also be observed
in gene expression. Even with precisely the same amount of activation by regulatory
molecules, gene expression will fluctuate over time and differ between individuals [9].
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This implies that protein concentrations in bacterial cells fluctuate constantly, which
in turn must affect all cellular processes. Indeed, it has been suggested that even fluc-
tuations in single enzymes can result in fluctuations in single cell elongation rates (i.e.
growth rates) [10]. We review literature about the consequences of stochasticity on the
bacterial metabolism, and subsequent effects on single cell growth and population dy-
namics in chapter 4.

1.4. REGULATION AND STOCHASTICITY

One could ask to what extent these stochastic fluctuations disturb the cellular regulatory
networks. In chapter 5 we show that an important metabolic regulatory protein not only
responds to the cellular environment, but can also respond to stochastic fluctuations
that occur inside the cell itself. This suggests that a stochastic protein concentration
fluctuation occurring somewhere in the cell (e.g. in single a metabolic enzyme), might
be followed by a fluctuation in the concentration of a specific metabolite, in turn leading
to a regulatory response, leading for example to the production of additional proteins,
which consequently triggers again different responses, etcetera. Fluctuations might thus
have cell-wide consequences, for example on cellular growth rate, mediated by regula-
tory interactions. This implies that cells might not exist in a well-defined average state,
but instead by nature have an ever-changing state. This chapter indicates that asking
to what extent stochastic fluctuations disturb regulatory networks might in fact be the
wrong question, and instead one should be asking to what extent fluctuations are an
integral component of regulatory networks [6].

1.5. SOURCES OF CELLULAR INDIVIDUALITY

In the final chapter of this thesis, chapter 6, we try to further understand cellular indi-
viduality. We focus on the ribosome. As a general rule, with a few exceptions, all com-
ponents of the cell either are proteins, or are produced by reactions that are catalyzed by
proteins. Proteins themselves are also produced by complexes (i.e. superstructures) of
many proteins, which are called ribosomes. Ribosomes are also an exception to afore-
mentioned general rule, as they also contain RNA. Ribosomes could be major contrib-
utors to cellular individuality, as they are often cited as a cellular component that can
result in cell-wide protein fluctuations [11–14]. The idea is that when the concentra-
tion of ribosomes fluctuates in a cell, the production rates of all proteins that are being
produced in that cell also fluctuate simultaneously. These cell-wide fluctuations could
potentially have implications on all cellular processes, including behaviour and growth.
We investigated this hypothesis, but could neither validate nor disprove it. This might be
because the ribosome is such a complex structure, of which the different components
that we are able to track experimentally might show different dynamics. This final chap-
ter therefore illustrates that there are still many open questions in our understanding of
cellular individuality.
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DE KRACHT VAN GETALLEN

De wereld om ons heen beschrijven met behulp van getallen is niet slechts een hobby
voor getallenfetisjisten. Kwantitatieve beschrijvingen van fenomenen kunnen inzichten
geven waar men anders niet toe gekomen was. Ook in de biologie zijn hier voorbeelden
van. Zoals het Lotka-Volterra model uit de vroege 20e eeuw [1, 2], dat fluctuaties in hoe-
veelheden roofdieren en prooien verklaart met behulp van differentiaalvergelijkingen.
Of het wiskundige reactie-diffusiemodel van Alan Turing, dat verklaart hoe ruimtelijke
heterogeniteit spontaan kan ontstaan uit moleculen die interageren volgens simpele re-
gels [3]. Dit principe is bijvoorbeeld extreem belangrijk tijdens de embryogenese, wan-
neer cellen moeten bepalen tot welk deel van het lichaam zij zich zullen ontwikkelen.
Echter, wellicht deels vanwege een terughoudendheid bij biologen [4] en deels door een
gebrek aan de juiste onderzoeksmiddelen [5, 6], zijn dit soort kwantitatieve methoden
nooit breed toegepast in de biologie. Sinds het nieuwe millennium heeft kwantitatieve
biologie echter een enorme vlucht genomen. Ik hoop dat het werk dat beschreven wordt
in deze thesis ook spannende voorbeelden geeft van nieuwe inzichten die verkregen zijn
met deze nieuwe golf van kwantitatieve onderzoeken.

HET LEVEN VAN INDIVIDUELE CELLEN BESPIEDEN

Voordat high troughput methoden werden uitgevonden, bestudeerden bacteriële on-
derzoekers doorgaans geen individuele exemplaren van het organisme waar ze in ge-
ïnteresseerd waren. Metingen werden gedaan aan reageerbuizen met miljoenen bacte-
riële cellen. Zulke metingen geven een goed beeld van het gemiddelde gedrag van een
bacterie. Hele studieboeken zijn gevuld met gedetailleerde informatie die zo verkregen
is. Deze manier van onderzoeken geeft echter geen volledig beeld van hoe een bacterie
werkt. Nieuwe technieken stellen ons in staat het leven van de individuele bacterie be-
ter in kaart te brengen. Een eeuw geleden moest men bacteriële kolonies nog met het
blote oog door de microscoop observeren en handmatig natekenen om delingstijden
(een maat voor de groeisnelheid) van individuele bacteriën te bepalen [7]. Tegenwoor-
dig kunnen we hetzelfde doen met een computer, en het leven van duizenden bacterien
in kaart brengen in slechts een paar dagen werk. Figuur 1.2.A laat een voorbeeld zien
van een microscoopopname van een microkolonie van de staafvormige bacterie Esche-
richia coli (E. coli ), verkregen met een van onze microscopen. Zie hoofdstuk 2 van deze
thesis voor meer over hoe wij metingen verrichten. Een dergelijke geautomatiseerde
aanpak om individuele cellen (single cells) te bestuderen geeft nieuwe inzichten, zoals
bijvoorbeeld beschreven in hoofdstuk 3. Hierin beschrijven we dat toen we de effecten
van antibiotica op individuele cellen wilden onderzoeken, ons iets eigenaardigs opviel.
De bacteriën stopten met delen door de antibiotica, maar bleven wel groeien, waardoor
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A B

Figuur 1.2: Bacteriekolonies. Deze twee foto’s
zijn genomen met de microscopen van het Tans
lab, en laten een groeiende microkolonie van
bacteriën zien in gunstige condities (A), en (een
deel van) een bacteriële microkolonie die is
blootgesteld aan een niet-dodelijke concentratie
van het antibioticum tetracycline (B). De bacte-
riën in de kolonie in figuur 1.2.B laten een gefi-
lamenteerd uiterlijk zien doordat zij zijn gestopt
met delen maar nog wel groeien. Dit is een re-
actie op stresscondities, waaronder blootstelling
aan antibiotica.

zogeheten gefilamenteerde bacterien ontstonden. Deze bacteriën hebben een sterk ver-
lengd uiterlijk, zie ook figuur 1.2.B. Wanneer de antibiotica verwijderd werden, en de E.
coli met de verlengde morfologieën weer startten met delen, zagen we dat ze altijd deel-
den op zeer bepaalde relatieve posities. Voorheen dacht men dat gefilamenteerde bacte-
riën zich gedroegen als een ketting van samengevoegde bacteriën. Maar in plaats van te
delen volgens regels zoals je die op basis van deze aanname zou verwachten, volgden de
bacteriën een heel andere set regels. Dit vereist een onverwachte en niet eerder geziene
mobiliteit van de bacteriële delingsstructuren. Dit onderzoek liet ook zien dat bacteri-
ële regulatiesystemen die de delingsstructuren plaatsen een functionaliteit hebben in de
filamenteuze bacteriën. Dit werd eerder niet onderkend. Daarnaast impliceren de resul-
taten dat bacteriën hun grootte nauwkeurig reguleren, zelfs als ze een verlengd uiterlijk
hebben. Deze filamenteuze morfologie wordt niet vaak in het lab bestudeerd, maar is
wel relevant in de praktijk, waar bacteriën bijvoorbeeld antibioticakuren of koude con-
dities (zoals in koelkasten) overleven door een gefilamenteerde vorm aan te nemen.

INDIVIDUELE CELLEN ZIJN ANDERS

Single cell experimenten helpen ons ook verschillen tussen individuele bacteriën beter
te begrijpen. In 1976 lieten de onderzoekers Spudich en Koshland in een baanbrekende
studie zien dat genetisch identieke bacteriën toch ander gedrag laten zien wanneer zij
naar voedsel zoeken [8]. Sommige bacteriën zwommen liever lange rechte stukken, ter-
wijl anderen liever vaker van richting veranderden tijdens het zwemmen, waardoor ze
een kronkeliger zoekpad aflegden. Dit verschil in gedrag werd toegeschreven aan kans-
gebeurtenissen in hun interne processen. Het is nu duidelijk dat in het algemeen geldt
dat biochemische processen die leiden tot het maken van bacteriële beslissingen niet
altijd dezelfde uitkomst hebben. Er wordt gedacht dat de bron van deze stochastici-
teit ligt in reacties tussen moleculen die slechts in kleine aantallen aanwezig zijn, maar
plaatsvinden in relatief grote volumes. Omdat de reactanten elkaar moeten vinden door
diffusie (willekeurige bewegingen), introduceert dat een kanscomponent. Deze stochas-
ticiteit beïnvloedt ook de expressie van genen. Zelfs wanneer een gen op een constant,
gelijk niveau wordt geactiveerd door regulatiemoleculen, zal de expressie van dat gen
fluctueren over de tijd en verschillend zijn tussen individuen [9]. Dit impliceert dat ei-
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witconcentraties in cellen constant fluctueren, wat gevolgen heeft voor alle cellulaire
processen. Inderdaad is aangetoond dat zelfs fluctuaties in de concentraties van één
enzym kunnen leiden tot fluctuaties in de groeisnelheid van individuele cellen [10]. In
hoofdstuk 4 diepen we dit onderwerp verder uit met een literatuurstudie naar de conse-
quenties van stochasticiteit voor het bacteriele metabolisme, en daaruit volgende effec-
ten op de groei van individuele cellen en populatiedynamica.

REGULATIE EN STOCHASTICITEIT

Een open vraag is in hoe verre stochastische fluctuaties cellulaire regulatienetwerken
verstoren. In hoofdstuk 5 laten we zien dat een belangrijke metabool regulatie-eiwit niet
alleen reageert op signalen uit cellulaire omgeving, maar ook reageert op stochastische
fluctuaties die vanuit de cel zelf komen. Dit doet vermoeden dat een stochastische fluc-
tuatie in een eiwitconcentratie die ergens in de cel ontstaat (bijvoorbeeld in de concen-
tratie van een metabool enzym) gevolgd kan worden door een fluctuatie van een speci-
fieke metaboliet, wat op zijn beurt weer leidt tot een regulatoire respons, wat leidt tot
de productie van extra eiwitten, wat vervolgens weer leidt tot andere cellulaire respon-
sen, et cetera. In andere woorden: fluctuaties kunnen via regulatoire interacties wellicht
consequenties hebben voor alle processen in de cel. Dit zou ook een effect kunnen heb-
ben op bijvoorbeeld de groeisnelheid van de cel. Op zijn beurt doet dat vermoeden dat
cellen niet in een constante staat (chemische samenstelling) verkeren die lijkt op de ge-
middelde cel, maar dat zij in plaats daarvan een constant veranderende staat hebben.
Naar aanleiding van dit hoofdstuk kan worden getwijfeld aan de relevantie van de vraag
in hoe verre stochastische fluctuaties regulatienetwerken verstoren. Wellicht is een rele-
vantere vraag in hoe verre stochastische fluctuaties een integraal onderdeel zijn van die
regulatie [6].

DE HERKOMST VAN CELLULAIRE INDIVIDUALITEIT

In het laatste hoofdstuk van deze thesis, hoofdstuk 6, proberen we cellulaire individu-
aliteit beter te begrijpen. Onze focus ligt hierbij op het ribosoom. In het algemeen, op
een paar uitzonderingen na, zijn alle onderdelen van de cel eiwitten, of geproduceerd
door reacties die gekatalyseerd worden door eiwitten. Eiwitten zelf worden ook gemaakt
door complexen (samengestelde structuren) van vele eiwitten. Deze worden ribosomen
genoemd. Ribosomen zijn ook de uitzondering op eerder genoemde regel, aangezien
zij naast eiwitten ook bestaan uit RNA. Ribosomen worden vaak genoemd als bron van
cellulaire heterogeniteit [11–14]. Het idee hierachter is dat als de concentratie riboso-
men fluctueert, de productiesnelheden van alle eiwitten die worden geproduceerd in de
cel mee fluctueren. Deze celbrede fluctuaties kunnen in potentie consequenties hebben
voor alle cellulaire processen, inclusief groei en gedrag. We hebben deze hypothese on-
derzocht, maar konden deze noch valideren noch weerleggen. Dit zou kunnen komen
doordat de ribosomen zo een ingewikkeld complex van eiwitten en RNA zijn, dat elk on-
derdeel ervan dat wij kunnen labelen zijn eigen dynamiek kent en tot andere resultaten
leidt. Dit laatste hoofdstuk laat dus zien dat het onderwerp cellulaire individualiteit nog
vele open vragen kent.





2
METHODS

2.1. INTRODUCTION

A substantial part of the methods used for experiments performed in this thesis were
already discussed in detail, either in publications from other labs [15, 16] or in previous
work from the Tans lab at AMOLF [17–19]. An additional independent method section
can be found in chapter 3 of this thesis as that chapter has been published in a scientific
journal.

In this chapter, I will focus on how I further developed these existing experimental
protocols and analyses. Importantly, we have recently employed an adapted "mother
machine", a microfluidic device that allows growing and observing bacterial microcol-
onies for very long time as superfluous cells are washed away, and also allows for quick
exchange of growth media.

2.2. SINGLE CELL EXPERIMENTS

Observing growing single cells under the microscope provides a novel perspective com-
pared to measuring bacterial behavior in bulk. It can quantify single cell deviations from
the mean behavior (see e.g. [9, 10] and chapters 5, 6), and it provides insights in single
cell morphologic changes over time (of which the filamentation and division processes
are good examples, see chapter 3). One straightforward way to visualize growing mi-
crocolonies of cells under the microscope is by using gel pads [9, 10, 15–17, 20] (Figure
2.1.A). Pads can be produced by adding agarose to the desired growth medium, solidify-
ing the medium into a gel. Since it was found cells can also consume agarose, we employ
polyacrylamide gel pads in our experiments [17]. The gel pads are soaked in the desired
medium, and then transfered to a glass slide. An airtight chamber is created by using
a second glass slide with a hole in the middle, a cover slip, silicon grease and a metal
scaffold (Figure 2.1.A); for a detailed protocol see [18] and [16].

The disadvantage of growing cells on gel pads is that only a limited number of gener-
ations of cells can be recorded. At some point either (a) cells grow to such high densities
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that they form multilayers and single cells cannot be distinguished or (b) nutrients pro-
vided by the pad run out and cell growth stops.

2.2.1. MICROFLUIDIC DEVICES

This advantage can be overcome by using a microfluidic device. In a microfluidic device,
fresh medium is typically pumped through the sample, such that bacteria have continu-
ous access to fresh medium. Additionally, most designs allow for superfluous cells to be
washed out of the sample, such that microcolonies can be observed for very long times
(hundreds of generations, see e.g. [21]). Many microfluidic devices have been developed
and employed recently [21–31].

Some experiments described in this thesis (see e.g. chapter 3) were performed with
a microfluidic device as depicted in Figure 2.1.B. This device has a flow channel on its
bottom. Bacteria are pipetted on a microscope cover slide, and covered by a very thin
membrane. The microfluidic device is placed on top, such that fresh medium flowing
through the channel can reach the bacteria under the thin membrane. The advantage
of this device is that all bacteria have equal and close access to the fresh medium. Dis-
advantages of this device are that continuous growth eventually leads to multilayered
colonies that cannot be analyzed (i.e. superfluous cells are not removed). Additionally,
in practice, this device is prone to leakage. A more detailed description of this device can
be found in [32].

2.2.2. THE MICROFLUIDIC DEVICE USED IN THIS WORK

Most work with microfluidics in this thesis was however done with a more recent mi-
crofluidic design. This device was developed by Daan J. Kiviet (unpublished), it is simi-
lar to the "mother machine" described in ref. [33] but it has wider microcolony wells. As
shown in Figure 2.1.C, this design contains 4 replicate flow channels. Specifically, each
flow channel contains a 200 µm wide main flow channel, splitting into two 100 µm flow
channels. Perpendicular on these are chambers with the following widths: 1x 80 µm, 1x
60 µm, 2x 40 µm, 3x 20 µm, 3x 10 µm and 3x 5 µm; and with depths of 60 µm, 30 µm,
50 µm and 40 µm (Daan Kiviet, personal communications). These blocks forms cham-
bers that are .75 µm high, also referred to as "wells", in which bacterial microcolonies
can grow. The main channel is 23.5 µm high (heights reported here refer to the original
wafer).

EPOXY MOLD FABRICATION

The PDMS devices were made by casting them into an epoxy mold, which was a gift
from Daan J. Kiviet and the Ackermann lab. The production of the epoxy mold was
performed following an online protocol [34]. Briefly, this protocol involved creating a
copy of the original mold using R123 epoxy resin and R614 hardener. The epoxy mixture
was prepared as described by the manufacturer, and bubbles were removed by vacuum
pumping (ultrasonification is an alternative technique). The original PDMS cast from
the wafer mold was placed in a container, and the epoxy mixture was poured on top (ap-
proximately 5 mm thick). The cast was left overnight at room temperature, the PDMS
was then removed (using scalpel and tweezers), after which the mould was baked at 70
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C for one day, and it was then left for another day at room temperature to harden. It was
then cleaned with plasma and silanized using a trichloromethylsilane-saturated atmo-
sphere for 5 min.

PDMS DEVICE FABRICATION

To produce the polydimethylsiloxane (PDMS) device, polymer and curing agent (Syl-
gard 184 elastomer, Dow Corning Corp.) were mixed in a 50 mL Falcon tube using a
polystyrene dinner fork (product nr. 888223, Bright Packaging) and a vortex mixer, using
1 mL of curing agent for each 7.7 g of polymer (i.e. not the recommended 1:10 ratio).
Then, this mixture was cast into an epoxy mold (made by Daan J. Kiviet) that is a pos-
itive copy of the original wafer mold (sometimes dust was removed from the mold by
pressured Nitrogen gas). Air bubbles were removed from the mixture either by putting
the mold and casting in a dessicator for 30 minutes, or by leaving the mixture for several
hours before casting. The mold and casting were then put in a 80 C oven for 1-12 hours.
Subsequently, the casting was removed from the device, and holes were punched for the
liquid in- and outlets. The device was cut into a smaller size using a scalpel to remove
rough, raised or uneven edges. Then the PDMS device was covalently bound to a clean
glass cover slip by treating the PDMS and glass surface with a portable corona device [35]
(5-10 sweeps of approx. 5 seconds for each surface from approx. 5-10 mm distance). The
device was gently tapped using a gloved finger to improve contact between the PDMS
and glass surfaces. (During this procedure the PDMS was only handled with clean metal
pincers, a scalpel, or gloved hands.) Consecutively, the device was baked for another
1-12 hrs. We noticed bonding continued to improve during storage at RT for 1-2 weeks
after completion of this protocol .

INOCULATION OF BACTERIA INTO THE DEVICE

To inoculate bacteria into the device, 2 mL culture of Escherichia coli is grown to high OD
(>1) in a 10 mL Falcon culture tube on a rotator, either at 37 C or 30 C (O/N). The con-
centration of bacteria is further increased by spinning down 1 mL of the sample in an ep-
pendorf tube at 2300-16100 RCF, and removing supernatent such that the concentration
is increased by a factor of approximately 30. The sample is then resuspended. First, 1 µL
of sterile 0.01% Tween (H2O) solution is slowly pipetted (the plunger is pressed down in
approximately 5-10 seconds) into the PDMS device trough one of the holes. Similarly, 1
µL of the concentrated culture is then introduced in the device. Alternatively, a syringe
attached to a piece of polyethylene tubing (Fine Bore Polyethyline Tubing, 0.55 mm in-
ner diameter, 0.96 mm outer diameter, Smiths Medical), attached to a small metal tube
(outer diameter approx. 0.65 mm), which is then inserted into the device at one of the
holes can be used to very slowly introduce first Tween solution and then the condensed
bacterial culture into the device.

SETTING UP THE EXPERIMENT

Once the device is inoculated with bacteria, it can be placed under the microscope (usu-
ally placed in the same metal scaffold as used for the gel pad experiments, Figure 2.1.A).
Two small metal tubes (outer diameter approx. 0.65 mm) are then inserted in the holes
of the PDMS device, and used as connectors to connect polyethylene tubing (Fine Bore
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Polyethyline Tubing, 0.55 mm inner diameter, 0.96 mm outer diameter, Smiths medi-
cal International Ltd.). One of the tubes is in turn connected to a syringe (either 10 mL
or 50 mL) placed in a microfluidic pumps (ProSense NE-1000 and NE-300) containing
the desired growth medium. The other end of the other tube is placed in a waste col-
lection erlenmeyer flask. When desired, instead of one pump with a medium syringe,
two pumps each containing a syringe with different medium and an automated valve
(Modular valve positioner, RS232, Hamilton) can be used to quickly switch between two
media. Typical flow rates are between 0.5 and 1.0 mL/hr.

2.3. DATA COLLECTION

As also described in chapter 3 and previously [10, 32], cells were imaged with an inverted
microscope (Nikon, TE2000), equipped with 100X oil objective (Nikon, Plan Fluor NA
1.3), cooled CMOS camera (Hamamatsu, Orca Flash4.0), xenon lamp with liquid light
guide (Sutter, Lambda LS), GFP, mCherry, CFP and YFP filter set (Chroma, 41017, 49008,
49001 and 49003), computer controlled shutters (Sutter, Lambda 10-3 with SmartShut-
ter), automated stage (Marzhauzer, SCAN IM 120 x 100) and an incubation chamber (So-
lent) allowing precise 37 C temperature control. An additional 1.5X lens was used, re-
sulting in images with pixel size of 0.0438 µm. The microscope was controlled by Meta-
Morph software (Molecular Devices).

2.4. UPDATES TO THE ANALYSIS

To extract quantitative data from the time lapse movies, further analyses are performed.
Briefly: Cells are first segmented to identify areas that constitute cells in the microscopy
images. Then, after individual cells have been identified, the lineages of the cells are
tracked over the frames of the time lapse. In subsequent analyses cellular parameters
are characterized. Examples of important parameters are length, growth rate and the
concentration of fluorescent reporter.

Many algorithms have been developed that can segment microcolony data, track in-
dividual cells from one frame to the next, and quantify cellular parameters to a greater or
lesser extent. Examples include Schnitzcells [10, 16], Supersegger [36], Oufti [37], MoMA
[38], Sachs et al. [39], Nobs et al. [40], MicrobeTracker [29, 41], CBA [42] and MAMLE
[43]. The employed segmentation procedures range from simple image thresholding to
more advanced combinations of image transformations. A recent development is the
usage of machine learning to effectively segment microcolony data [44].

Throughout this work, we use a custom set of scripts based on the schnitzcells frame-
work, which was developed in the Elowitz lab [16]. These custom scripts are a mostly
written by Daan J. Kiviet [17], Philippe Nghe and Noreen Walker [18]. Updates and novel
functions are also introduced in this work. These improvements are described in the
sections below. Additionally, we introduced a script called

Schnitzcells_masterscript.m,

from which the whole analysis can be run. This script interacts with a custom made
Microsoft Excel configuration file that holds important analysis parameters (directo-
ries, segmentation parameters, fluorescence parameters, etc). This script also provides
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Figure 2.1: (A) Schematic view of a sample that employs a gel pad to grow cells. Two metal parts
(grey) hold the glass slides together using screws. Bacteria are pipetted onto a gel pad (red arrow)
which is placed in a chamber build from a glass microscope slide, a glass slide with a hole, and a
cover slip. The image is placed upside down in the microscope, the eye indicate the direction from
which the microscope will image the sample. Image by Noreen Walker. (B) Cartoon (not on scale)
of a microfluidic device used in some experiments in this thesis. The asterisk indicates bacteria
are grown in between a cover slip (shown at the bottom) and a thin polyacrylamide membrane
(shown in the middle). On top a PDMS slab is placed, which has a flow chamber on its bottom
(blue square and zoom), through which medium is flown using two holes (red arrows) that are
connected to tubing. This fresh medium can access the bacteria by diffusion through the thin
membrane. The 30 by 3 mm chamber contains pillars placed on a 0.6 mm grid (here only a few
are shown for illustration purposes) to keep the thin polyacrylamide membrane in place. (C) A
more advanced microfluidic device employed in this work was designed by Daan J. Kiviet. The
mask shown here at the top is used to produce PDMS slabs with four identical growth medium
channels, which each also fork into two main channels. These channels (which are 23.5 µm high)
have protrusions on the side that are less high (0.75 µm), which we refer to as wells. The PDMS
slab is covalently bound to a glass cover slip, and after the inoculation procedure (see main text)
single layered microcolonies can grow in the wells. Medium is flown through the main channels
such that cells receive fresh medium. When the colonies grows and divides, superfluous cells are
washed away at the side of the well that faces the main channel. (D) A picture of a microfluidic
PDMS device as described in panel C.
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Figure 2.2: (A) Microscopy setup. One syringe pump (see label 1) pumps culture medium into
the sample on the microscope stage in the temperature chamber and then to a waste collection
Erlenmeyer flask (2), the other pump pumps medium directly to a waste Erlenmeyer. The two
pumps in combination with an automated valve (3) that controls which medium goes to the sam-
ple and which directly goes to the waste flask allow for quick switching between the two media. (B)
The microfluidic device under the microscope. Medium is supplied to the sample (1) through a
polyethylene tube (2) and a metal connecting tube (3). Waste medium is disposed through another
polyethylene tube (4).

a graphical user interface to increase the efficiency of the analysis (Figure 2.3). More de-
tailed information about how this "master script" can be run can be found in the com-
ments of the script. The scripts are available in a git repository at

https://bitbucket.org/microscopeguerrillas/schnitzcells_tans.git,

which holds the main files, and a git repository at

https://bitbucket.org/microscopeguerrillas/
schnitzcells_tans_extensions.git

that holds additional files required to run the full analysis.

2.4.1. SEGMENTATION

Throughout this work, we use a segmentation algorithm developed by Philippe Nghe
[18]. Additionally, all frames are manually checked for segmentation mistakes. However,
the Nghe script was developed for data from gel pad time lapse experiments. Thus, some
minor modifications were introduced to handle data from the microfluidic device were
cells also disappear from the experimental observations. Importantly, cells are flushed
away once they reach the main channel, and thus cells that touch the edge of the image
(see Figure 2.4 for an example of the segmentation output) need to be ignored from the
analysis. The original algorithm could not deal with cells touching the edge of the image.
As a simple fix, we introduced a gradient at the edge of the image (Figure 2.4.A) that goes
from transparent to white, see the script

MW_preprocessimagefadeedge,
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Figure 2.3: (A) Screenshot of the GUI introduced to increase the efficiency of the analysis. (B)
Screenshot of the Matlab figure with which the user can interact to manually correct the analysis.
The segmentation is shown by the colors, and the circles show (corrected and uncorrected) centers
of cells from the previous frame.

such that cells touching that edge are considered to have their cell edge at the edge of the
image with some margin by the algorithm (Figure 2.4.C-D). This procedure allows pro-
cessing steps of the algorithm to function as if the data came from a gel pad experiment.
Consecutively, cells to which this was applied are removed from the analysis.

More adjustments were made during the tracking of cells, see next section.

2.4.2. TRACKING

Calculating the lineage of cells using the segmented images is an essential part of the
desired analysis. Two tracking functions already existed, and we have introduced a third
simple tracker matlab script to these. This was done because both the other trackers
relied to methods that represented the location of cells as a point in one way or another
(Figure 2.5.A-B). In one method, cells from both frames to be connected are represented
by three points along their skeleton. In the second method, the centers of cells from one
frame are compared with the cell areas from the other frame [18]. In specific cases this
leads to issues. For example, if cells have atypical shapes (e.g. due to filamentation), the
centers characterize their placement less well. Therefor the introduced method, see

MW_tracker.m, MW_linkframes,

tracks cells by looking at overlap between cell areas. The cell from frame n+1 is consid-
ered to be lineage-connected to that cell from the previous frame n that has most overlap
with it (Figure 2.5.C).

Additionally, during image acquisition the sample can shift tiny amounts (usually
less than a micrometer), which is corrected by the Nghe script by aligning the centers
of the microcolonies for consecutive frames. This procedure leads to issues when cells
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Figure 2.4: (A) The result of the segmentation algorithm, outlines of determined cell areas are
shown in color. (A frame the nucleoid labeled cells time lapse data from chapter 3 is shown.)
Images are cropped to increase computational efficiency, and also to remove the main channel
structure. Note that cells are generally flushed out when they reach the main channel. Growth
results in cells moving towards the well exit at the main channel, or towards the edge of the picture
labeled top here. Cells that are partially outside the cropped image are ignored in the analysis.
(B) The image in panel A is cropped, this panel shows the full image taken by the microscope.
The asterisk indicates the well which is also displayed in other panels. (C-D) Image at the top of
the cropped image are artificially considered to have a cell edge that is aligned with the image
edge. These cells are later removed from the analysis (here indicated with asterisks). Shown are
processing steps early (C) and late (D) in the algorithm. (Note that the artifact shown in red in
panel D will also be removed later in the analysis, either automatically or manually.)
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disappear from the analysis, as is the case with the microfluidic device. (When cells dis-
appear, the centroids do not represent the same set of cells any more, and the procedure
can misalign the microcolonies.) Thus, an additional adjustment was introduced in the
tracking script, which aims to shift the joined areas that are recognized as cells from the
two frames on top of each other, and maximizes the overlap between these two areas
(Figure 2.5.D). Specifically, a binary representation of the image (cells detected or no
cells detected for that pixel) is integrated along one axis, such that both the n-th frame
and the n+1 frame are represented by a line along the other axis. Then, these lines are
shifted until the difference between the lines is minimized along that axis. This is done
both for the x and y directions (i.e. both axes).

2.4.3. SKELETON LENGTH AND STRAIGHTENING OF SKELETON

Previously [17], the length of the cells during the analysis was determined using a third
order polynomial fit through the cell area. In some cases, e.g. in involving filamentation
of cells, a 7-th order polynomial was used. An alternative way of determining length is
using the skeleton of the cell area. The cellular skeletons are determined in the scripts

NDL_addToSchnitzes_skeletonLengthMW, NDL_lengthforfillamentedcellsMW,

which were developed by Nick de Lange. The skeleton is determined using Matlab’s

bwmorph

function, and after removal of branches, it is extrapolated to the edge of the cell’s areas
using 0.95 µm long windows at both ends of the skeleton (Figure 2.6.A-B). Lengths of the
skeleton and the extrapolated parts are determined using Matlab’s

bwdistgeodesic

function (using the quasi-euclidean method). Additionally, an algorithm was developed
to produce straightened representations of the cells using the cellular skeletons. This is
useful when for example the localization or intensity of the fluorescence signal along the
cellular axis needs to be quantified (this is for example done in chapter 3 for fluorescently
labeled division rings and nucleoids). This is done in the script

MW_straightenbacteria

by placing lines of equal length tangential to the skeleton, and subsequently placing the
image pixels corresponding to each line into the columns of a rectangular matrix (Figure
2.6).

2.4.4. CORRELATION FUNCTIONS, SCATTER PLOTS, WEIGHING AND CON-
TROLS

THE CROSS-CORRELATION FUNCTION

An important tool to gain insights into the dynamics and interactions between different
cellular parameters (such as expression of different proteins and growth rate) is the cor-
relation function. As this function is also central in this thesis, We’ll discuss some basic
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frame nrA D
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B frame nr

(bottom)
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Figure 2.5: (A) Default Schnitzcells tracking algorithm, which characterizes cells by three points
along its skeleton. Cells are connected between frames by minimizing the distance between these
characteristic points. See [18] for more information. (B) The algorithm introduced by Noreen
Walker, which links cells between frames by minimizing the distances of centroids in the n+1 frame
and areas of cells in the n-th frame. See [18] for more information. (C) Algorithm introduced
in this work, which links every cell in the n+1 frame to that cell in the n-th frame that has most
overlap with the projection of the n+1 frame cell onto the n-th frame. In this example, the area
of the orange cell in the n+1 frame overlaps with the blue, dark blue, orange, green and purple
cells in the n-th frame, but shows most overlap with the orange cell. Thus, the two orange cells
in these two consecutive frames are connected. (D) An example of the overlapping colony areas
from two consecutive frames from a microfluidic device dataset. Overlap between the colonies is
indicated in white, non-overlap in gray. Alignment using centroids would fail in this case, since the
microcolony centers (shown as circles) do not represent the same subset of cells. For this reason
the overlap of these two areas is maximized to align subsequent frames in data from microfluidic
devices. (The microcolony shown is the same as shown in Figure 2.4.) Images (A) and (B) are made
by Noreen Walker.
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Figure 2.6: (A) Skeleton of an example cell area (gray) calculated by Matlab’s bwmorph function,
after removal of side branches. (B) The skeleton is extrapolated towards cell poles (black circles)
using the ends of the skeleton (purple and yellow dots). The total cell length is calculated by sum-
mation of the lengths of the extrapolated and original skeleton parts. (C-G) Example of cellular
straightening. Based on segmentation (see main text and Figure 2.4) both for the phase image (C)
and the fluorescence image (D) cells can be straightened to produce a fluorescence intensity pro-
file along the cellular axis. This is done by using a series of lines that are placed tangential to the
skeleton (E), as shown here for the cell indicated by the blue arrow in panel (C). The pixels closest
to this line (represented by colored dots here) are used to generate the straightened bacteria, both
for the phase image (F) and the fluorescence image (G). The images shown here are part of the
dataset with nucleoid labeled cells described in chapter 3.
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definitions regarding this quantity here. Simply put, the aim here is to gain insight in to
what extent the value of one signal expected to affect the value of another signal, con-
sidering there might be a delay in the effect. The cross-correlation function R(τ) quan-
tifies to what extent the deviation from the mean value in one parameter f (t ) at time t
is correlated with the deviation from the mean value in another parameter g (t +τ), at
a delay τ later (or earlier). Mathematically, this is expressed as [45, see lemma "Cross-
Correlation"]

S f ,g (τ) = f ? g =
∫ ∞

τ=∞
f̄ (t )ḡ (t +τ)δτ (2.1)

or for a discrete signal the cross-correlation can be defined as [15]:

S f ,g (τ) = 1

N −|τ|
N−|τ|−1∑

n=0
f̃ (n)g̃ (n +τ), (2.2)

where f and g are either continuous and mean-subtracted (indicated by the bar) or dis-
crete and mean-subtracted (indicated by the tilde). N is the number of time points in
the data series. When this is normalized by√

S f , f (0)Sg ,g (0)

the result is often also referred to as the cross-correlation [46]:

R f ,g (τ) = 1√
S f , f (0)Sg ,g (0)

1

N −|τ|
N−|τ|−1∑

n=0
f̃ (n)g̃ (n +τ)

= S f ,g (τ)√
S f , f (0)Sg ,g (0)

= S f ,g (τ)√
σ2

f ·σ2
f

(2.3)

R f ,g (τ) defined in equation 2.3 is also the function that we call the cross-correlation and
use throughout chapters 5 and 6 to quantify relationships between different biological
quantities. Note that S f , f (0) also equals the variance in f, σ2

f . When τ = 0, the cross-

correlation in Equation 2.3 simply becomes the correlation coefficient ρ f ,g (also known
as the Pearson’s correlation) between two the two parameters f and g :

ρ f ,g = 1

σ f σg ·N

N−1∑
n=0

f̃ (n)g̃ (n) =
σ2

f ,g

σ f σg
= cov( f , g )√

var ( f )var (g )
, (2.4)

whereσ2
f again indicates the variance of f , which can be equivalently written as var ( f ).

(σ f simply indicates the standard deviation, the square root of the variance.) The co-
variance is indicated by σ f ,g or cov( f , g ). These quantities are tightly related to the least
squares fitting of b in g = a +b f , which is given by [45, see lemma "Correlation Coeffi-
cient"]:

b = cov( f , g )

var ( f )
; (2.5)
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this also shows that ρ f ,g =p
b ·b′ (defining f = a′+b′g additionally to g = a +b f ).

Note that there is some ambiguity between the terms cross-covariance and cross-
correlations when talking about time series data. While Munsky et al. [46] also define
the cross-correlation R( f , g ) as we do in equation 2.3, Dunlop et al. [15] call the quan-
tity R( f , g ) defined in equation 2.3 the cross-covariance, and call S( f , g ) in equations 2.1
and 2.2 the cross-correlation (as also defined in [45, see lemma "Cross-Correlation"]). To
be consistent with the definitions of the Pearson’s correlation coefficient and the covari-
ance, we follow the definition as given by Munsky et al. [46], as also employed by Kiviet
et al. [10, 17].

DELAYED SCATTER PLOTS

Cross-correlations are particularly good at detecting linear relationships. As an addition
to the analysis using cross-correlations, it can therefor be instructive to analyze time
traces of measured cellular parameters by using scatter plots (Figure 2.7), which might
show non-linear relationships between the parameters of interest. However, cellular pa-
rameters are shown to sometimes correlate with delays; it has for example been shown
that the production rates of some enzymes have an effect on growth rate at some later
point in time [10]. Thus, simply plotting f (n) and g (n) (which could for example be en-
zyme production and growth rate, respectively) against each other for all n values might
not give the maximum insight in the relationships between the two quantities x and y .
Therefor, in the scripts

MW_delayedScatter, MW_getdelayedscatter

f (n) is plotted against g (n+τ) in multiple plots, each plot corresponding to one of (N−1)
values of τ. This procedure is illustrated in Figure 2.8, which shows that the delayed
relationship between two parameters becomes clearer when plotting a scatter plot for
that specific delay. Note that we can also determine the correlation coefficient R(τ) for
each of the scatter plots corresponding to a particular τ. Thus, the scatter plots also
provide a way to generate a cross-correlation function.

MUTUAL INFORMATION

Though not applied in this work, it might be interesting to provide an outlook on how
one could quantify the extent to which parameters are related (in non-linear ways) be-
yond the visual inspection of scatter plots, or the determination of the correlation coeffi-
cient R(τ). One way to investigate this is to look at the independence of two parameters.
If the biological quantity x does not affect another quantity y , the probability to find a
certain value of y should not depend on the value of x, and vice versa. In other words,
when the two parameters are independent of each other p(x, y) = p(x)p(y). To what ex-
tent values of x are constrained by values of y (either by a relationship between the two,
or because of an indirect link) and vice versa, is quantified by the mutual information
[47–49]. For two random variables X and Y , this defines a distance measure between
the product of the two marginal probability densities p(x) and p(y) and the joint proba-
bility p(x, y).

I (X ;Y ) =∑
y

∑
x

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
, (2.6)
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Figure 2.7: (A) Example of a linear relationship, and a cloud of points (each point might repre-
sent an experimental measurement at time n) generated by randomly drawing from that relation
(shown in black) and adding noise (normal distribution with σ = 1). The Pearson correlation co-
efficient R is able to detect the relationship despite the noise. (B-C) Example of a non-linear rela-
tionship (g =−7∗( f ).2+4, shown in black), and a cloud of points generated by randomly drawing
from that relation and adding noise (normal distribution with respectively σ = .25 and σ = 1 in
panels B and C). Since the relationship is non-linear the Pearson correlation coefficient R is not
able to detect the relationship. The gray lines are isolines that represent Kernel Density Estima-
tion of the distribution of points. In all panels, I gives the mutual information I (F ;G) (based on
a Kernel Density Estimation of the probability distribution) of which the non-zero value for panel
B shows it is able to detect a dependence between f and g for non-linear relationships (see text).
Panel C illustrates that non-linear relationships also quickly get harder to detect, even by eye.

Figure 2.8: (A) Two example noisy signals, f (t ) and g (t ). f (t ) shown in blue is a random walk pro-
cess, while g (t ) shows a random walk plus a contribution by f (t −50), i.e. g (t ) = .8 ·w(t )+ .2 · f (t −
50)2, where w(t ) represents a random walk like f (t ). (B-C) As expected, this imaginary scenario
shows that plotting f (t ) against g (t ) reveals the correlation between f and g poorer compared to
plotting f (t ) against g (t −50).
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or equivalently in continuous form:

I (X ;Y ) =
∫

y

∫
x

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
d x d y . (2.7)

(Note that the probability densities are always normalized to one.) It has also been
shown that the mutual information can be found by

I (X ;Y ) = H(X )+H(Y )−H(X ,Y ), (2.8)

with H(X ) being the entropy of a random variable X and H(X ,Y ) the joint entropy1.
When X and Y are independent, the mutual information will be zero, since

p(x, y) = p(x)p(y).

Conversely, the more X and Y depend on each other, the higher the mutual information.
Figure 2.7 illustrates that this offers a way to quantify to what extent two parameters are
related. For our (fake) example data, we have used the

kde2d

function written by Zdravko Botev [50], a kernel density method, to estimate the under-
lying distributions (i.e. the marginal distributions and the joint distribution). However,
to apply this analysis to experimental data, one would need to statistically quantify the
validity of the estimated probability distributions, or use a statistical method that pro-
vides an estimate of the mutual information directly.

2.4.5. OBTAINING CROSS-CORRELATIONS FROM EXPERIMENTAL DATA

The experimental nature of the data that we gather presents us with specific challenges
regarding the cross-correlation analysis. In this section, we will discuss how we obtain
cross-correlations and scatter plots from the experimental data.

EXPERIMENTS LEAD TO A BRANCHED LINEAGE TREE

In a typical experiment, we measure biological quantities over time in growing and di-
viding bacteria. Since we are interested in processes that have time scales similar to or
longer than one bacterial life cycle, we measure over multiple generations of bacteria
(depending on experimental conditions, the generation time of bacteria is typically 20
minutes to 5 hours). For microcolonies growing on gel pads, this leads to a branched
data structure, as was previously described [17, 18], see also Figure 2.9.A. For microcol-
onies growing in the microfluidic device as described above (see also Figure 2.4.B), cells
disappear from the analysis when they exit the well. This means that the datastructure
will also contain lineages that end before the end of the experiment (Fig 2.9.A, branch 4).

1See also http://mathworld.wolfram.com/MutualInformation.html.

http://mathworld.wolfram.com/MutualInformation.html
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DEALING WITH REDUNDANCY IN THE BRANCHED LINEAGE TREES

The first challenge is to use the time series from each branch of the lineage tree to create
a composite cross-correlation or scatter plot that represents all data. For each branch,
cross-correlations and scatter plots can be determined by taking into account all pairs
of points with a specific delay in between them. However, this would result in pairs of
points being used more than once, since they appear in multiple branches. For exam-
ple, the point pair labeled [1] in Figure 2.9.A appears in all branches, and would thus
be overrepresented if no correction is applied. This can be addressed by only taking
into account point pairs that are unique [15]. For the scatter plots, when we plot point
pairs fi (n), gi (n +τ) for all time points n and all branches i , we simply omit point pairs
that are duplicates. For the cross-correlation, we follow a similar procedure. To deter-
mine the final composite cross-correlation, we employ a weighing scheme that grants
less weight to point pairs that are redundant in the dataset. (This was also described
earlier [15, 17, 18]). Specifically, the cross-correlation as defined in Equation 2.3 is ad-
justed to obtain a composite cross-correlation with contributions of points from multi-
ple branches i :

Scomposite,f,g(τ) = 1

Wtotal,τ

∑
i

1

Ni −|τ|
Ni−|τ|∑

n=0
wn,i ,τ f̃i (n)g̃i (n +τ), (2.9)

with wn,i ,τ a weighing factor that corrects for the redundancy of the specific point pair
f̃i (n)g̃i (n +τ) (see below for a more detailed discussion of the value of wn,i ,τ). Further-
more,

Wtotal,τ =
∑
n,i

wn,i ,τ

is the sum of all weights for a specific τ value. (Because any branch i has Ni −τ pairs of
points, the total weight changes per τ value.) Rcomposite(τ) is then again determined by
normalizing with √

Scomposite, f , f (0)Scomposite,g ,g (0).

Also, in this formula, f̃i (n) is defined as

f̃i (n) = fi (n)−〈 fi 〉n ,

i.e. the mean of the value of f (n) for all cells in the colony at that point in time (n) is
determined and subtracted from the value of fi (n) to obtain the mean-subtracted value
f̃i (n) for branch i . In the rest of this thesis, we refer to R(τ)composite also simply as the
cross-correlation, R(τ). The most straight-forward weighing simply aims to achieve what
was also done for the scatter plots, i.e. make sure that duplicate point pairs are counted
only once. Thus, the most straight-forward choice of wn,i ,τ is

wn,i ,τ = 1/λn,i ,τ (2.10)

with λn,i ,τ being the number of times this specific point pair was used. This method
still leaves some redundancy in the data, as there might be point pairs that in which
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one point of the pair was already used, but the other point is unique (this is illustrated
at the label [2] in Figure 2.9). Note that the uniqueness of a point pair is determined
completely by the point in the pair that was measured at the latest time point in the
dataset. This issue is not straightforward to solve, but other choices of weights wn,i ,τ

that try to address this issue are described in [17] and [18]. Additionally, one can consider
additional weighing schemes, e.g.

wn,i ,τ = 1/
(
λn,i ·λn+τ,i

)
,

where λn,i and λn+τ,i are to the number of times the specific points making up the pair
are considered for the composite cross-correlation. Nevertheless, it is hard to choose the
perfect weighing scheme, since the nature of the cross-correlation requires using pairs
of points that are separated by a time delay, and ergo pairs might consist of two points
that have a different degree of uniqueness. One could choose to throw away any pair that
contains a redundant point, but then one would also throw away (valuable) information.
In this work, to be consistent with the scatter plots, we use the weights as described in
Equation 2.10, this is also consistent with [15].

DEALING WITH IMPARTIAL TIME SERIES

As mentioned, the experimental data of the microfluidic device also contains lineages
that end before the end of the experiment (branch 4 in Figure 2.9.A illustrate this). Such
lineages of course also produce time series that end before the experiment ends (Fig-
ure 2.9.B, bottom panel). The fact that branches are of unequal length can be dealt with
in a straightforward manner when computing the composite cross-correlation function.
Equation 2.9 allows for the fact that branch lengths Ni are different for each branch i .
The weighing terms do not need to be adjusted, as wn,i ,τ and Wtotal,τ can be simply cal-
culated for impartial data series. Figure panels 2.9.B-C illustrate this procedure.

CONTROLS

Now that we have a way to determine cross-correlations for experimental data, an im-
portant question that remains is "is the signal that we observe real"? We are aware of two
scenarios that might lead to a false positive signals. One scenario is an under-sampled
dataset. Particularly when timescales of fluctuations are long, e.g. multiple generations
of cells, and the size of fluctuations is high, a particular real temporal dynamic might
dominate the dynamics of the dataset, and lead to a particular cross-corerelation. This
cross-corerelation might then however not characterize the entire dynamics of the pa-
rameters of interest. Another scenario could result from a fluctuating mean signal. In
principle, the aim is to measure in steady state, but experimental conditions might not
be perfect and lead to a fluctuating mean signal, that transpires to the cross-correlation
despite the subtraction of the colony mean. (Potentially, there might also be real colony-
wide dynamics.) The latter scenario underlines the importance of also visually inspect-
ing the signals of all lineages (Figure 2.10.A-C). Both these scenarios underline the im-
portance of replicate experiments. Nevertheless, also for data from one microcolony,
one can quantify parameters that help determine the validity of the calculated cross-
correlation. To provide a control based on the data of one microcolony, we determine
the cross-correlation for time series fi and g j , where fi comes from an arbitrary branch
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Figure 2.9: (A) As cells divide, the data from microcolony experiments will show a branched struc-
ture. This leads to redundancy in the data. For example, data recorded from the cell on the left
will show up in all branches (1-4) of the lineage structure in this cartoon. Additionally, in the mi-
crofluidic device described in this chapter, cells are washed away from the growth well, and thus
from the experimental observations. This is shown in branch 4 in this cartoon. (Note that in a
growth well, the number of cells will remain approximately constant, and lineages originate from
a few cells that remain at the bottom of the well; not shown here). (B) Cartoon representation of
two signals that might come from branches 1 and 4. A block function would produce a saw-tooth
correlation function (see panel C). (C) To determine cross-correlation for these cell branches that
are not present during the whole experiment, a weighing scheme is used that does not simply av-
erage the cross-correlation of the two separate branches, but instead goes over each pair of points
in the branch structure, and weighs the contribution of these two points to the composite cross-
correlation based on the redundancy. For example, the combination of points labeled [1] in panel
(A) will receive less weight than the combination of points indicated by [2]; the aim is to com-
pensate for the fact that points [1] will appear in the time series of all 4 branches and will thus be
considered four times. This weighing is complicated by the fact that for some pairs of point, one
point is more redundant than the other (this is the case for points [2] in panel (A)). See main text
for a more detailed description of the weighing procedure.
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i and g j from an arbitrary branch j ; in other words, we combine time series from two
different lineages, which should not correlate, and ergo cross-correlations should be 0.
Specifically, for gel pad data all branches are of equal size, and whole time series f are
combined with arbitrary time series g from another branch. For microfluidic data from
the device described in this chapter, branches are not of equal length, and thus random-
ization of branch data fi (n) and g j (n) is performed for each point in time n; this might
be slightly less rigorous as this further decorrelates the data. In both cases, we repeat this
procedure 50 times, and determine the minimum and the maximum value of R(τ) result-
ing from these 50 repeats. This provides an estimated region of R(τ) where a non-zero
signal might be observed that is likely false-positive.

Additionally, error bars can be estimated by dividing the data from one colony in
multiple groups, and analyzing these groups independently. Lastly, as a sanity check, the
cross-correlation determined from the scatter plots determined for all different delays τ
can also be determined. The result of these procedures is shown in Figure 2.10.D.
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Figure 2.10: (A) Example of fluorescence images from a gel pad experiment, where typically a small
colony (left) grows into a bigger colony (right). (B) Distribution of growth rates in the microcolony,
the black line shows a fitted normal distribution, the dotted line shows values located at 2 standard
deviations (σ) from the mean. (C) Fluorescent concentrations over time for all lineages from the
microcolony shown in panel (A). Values over the lineages are shown on top of each other (lineages
that are plotted behind others are given thicker lines). Note that values overlap at the beginning
due to the branched structure of the data (see Figure 2.9). The dotted lines indicate values that
are at a distance of 2 and 5 standard deviations (σ) from the mean, as determined by fitting a nor-
mal distribution. (D) The composite cross-correlation as determined between the instantaneous
growth rate (µ) and fluorescence concentration (C ) values over the lineages in this microcolony
(black line). The data was subdivided in 4 groups, which allowed for the determination of stan-
dard errors. For each delay τ also a scatter plot was made from which the correlation coefficient
was determined, which is shown here in red. (Note that this might deviate slightly depending on
the used weighing procedure and the averaging over different sub-groups of data.) Additionally, as
a control, growth rate data from the lineages was combined with fluorescence data from random
other lineages, and by repeating this procedure 50 times correlation values were determined that
should not be interpreted as meaningful deviations from zero.
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SIZE LAWS AND SEPTAL RING

DYNAMICS IN FILAMENTOUS

ESCHERICHIA COLI CELLS

IN BRIEF

Wehrens, Ershov, et al. report a new size control mechanism in E. coli cells, which have
elongated due to stress. Multiple division rings are continuously rearranged in response
to growth and division to control daughter cell size when divisions resume. Divisions are
spatially controlled by the Min system and temporally by the adder principle.

HIGHLIGHTS

• Long filamentous E. coli cells continuously assess and adjust division ring posi-
tions.

• Sudden division site suppression and formation is explained by the Min system.

• Division timing is consistent with the adder principle.

• These rules enable controlled entry in and exit from the filamentous state.

The contents of this chapter have been published as Wehrens, M., Ershov, D., et al., 2018. Size
Laws and Division Ring Dynamics in Filamentous Escherichia coli cells. Current Biology, pp.1–8.
Available at: https://doi.org/10.1016/j.cub.2018.02.006. [51]
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SUMMARY

Our understanding of bacterial cell size control is based mainly on stress-free growth con-
ditions in the laboratory [33, 52–60]. In the real-world however, bacteria are routinely
faced with stresses that produce long filamentous cell morphologies [61–78]. E. coli is ob-
served to filament in response to DNA damage [72–75], antibiotic treatment [61–64, 78],
host immune systems [65, 66], temperature [67], starvation [70], and more [68, 69, 71];
conditions which are relevant to clinical settings and food preservation [76]. This shape
plasticity is considered a survival strategy [77]. Size control in this regime remains largely
unexplored. Here we report that E. coli cells use a dynamic size ruler to determine division
locations combined with an adder-like mechanism to trigger divisions. As filamentous
cells increase in size due to growth, or decrease in size due to divisions, its multiple Fts
division rings abruptly reorganize to remain one characteristic cell length away from the
cell pole, and two such length units away from each other. These rules can be explained
by spatio-temporal oscillations of Min proteins. Upon removal of filamentation stress, the
cells undergo a sequence of division events, randomly at one of the possible division sites,
on average after the time required to grow one characteristic cell size. These results in-
dicate that E. coli cells continuously keep track of absolute length to control size, suggest
a wider relevance for the adder principle beyond the control of normally sized cells, and
provide a new perspective on the function of the Fts and Min systems.

3.1. RESULTS

3.1.1. DIVISION SITE SELECTION RULES IN FILAMENTOUS CELLS

To investigate divisions in filamented Escherichia coli cells we used a microfluidic de-
vice that allows media exchange [32] (Fig. S3.5.A-C). We first grew the cells for 2-3 gen-
erations at 37 °C in minimal medium within the device, and then induced filamentation
in one of three ways: exposure to tetracycline (TET), a temperature increase to 42 °C, or
overexpression of SulA. While the molecular basis in the former cases is unclear, trans-
lation inhibition antibiotics have been reported to induce filamentation [78], and SulA
is a division inhibitory protein [79]. As a result the cells grew to approximately 10-20
times the typical length without dividing (Fig. 3.1.A), while their width remained ap-
proximately constant (Fig. S3.5.D). Division resumed when the stressor was removed
and ultimately returned to normal stress-free growth and division, unless the stress was
too severe and the cells failed to recover (Fig. S3.5.E-G). The relative location of division
events throughout this recovery process was characterized by S = Ld /Lm , where Ld and
Lm are the daughter and mother cell lengths respectively (Fig. 3.1.B).

We found that S displayed a specific pattern when plotted against Lm (Fig. 3.1.D and
S3.5.H-K), which was for instance not the case when plotted against the time elapsed
since stress removal (Fig. 3.1.E and S3.5.L). The same S-Lm pattern was observed for
the different levels and types of stress (Fig. S3.5.H-K). Several features were as expected.
First, normally sized cells of a few microns long divided in the middle, with S = 1/2. Sec-
ond, for increasing Lm , other division sites appear with S-values that remain constant
within a certain length-window (Fig. 3.1.D). These features are consistent with a long-
standing model of division site locations (see Fig. 3.1.C), which was supported by early
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Figure 3.1: Division site rules in filamentous E. coli. (A) Colony of filamentous cells. (B) Relative
division site S, daughter length Ld , and mother length Lm . (C) Possible division sites in classical
scenario, with a minimal equidistant spacing, and hence more sites for longer cells. (D) Divi-
sion sites (see panel B) observed in filamentous cells when switching from stress medium (1 µM
tetracycline) to non-stress medium. Each point corresponds to one division (N = 4108). Data is
symmetric around S = 1/2. Colored lines denote inferred approximate division location (see panel
G). Dashed lines correspond to divisions producing daughter cells of 2 and 4 µm. (E) As panel (D)
but as a function of the time of the division event. (F) The distribution of relative division loca-
tions for cells with a maternal size between 15-21 µm, suggesting a lack of site preference. Dashed
black lines indicate bin boundaries. (G) Division site rules inferred from the data in panel D. n is
the number of possible division sites, m indexes the possible sites in one cell, w is a characteristic
length (about 3µm). See also Figure S3.5.
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time-lapse microscopy experiments in the 70s [80], detection of invaginations in cell di-
vision mutants [81], and consistent with observed roughly equidistant division rings at
multiple locations [82–84] and uniform cell wall growth [85]. In this model, during fil-
amentous growth, the distance between division sites increases progressively, until this
distance doubles and new sites emerge in between existing sites. Note that this scenario
can be compared to normally dividing cells arranged along a line, as new division sites
would then also emerge in between two previous division sites.

At the same time, other features differed substantially. Fig. 3.1.C suggests moderately
filamented cells divide at S = 1/4, 1/2, and 3/4. However, for cells with S = 1/4 and S =
3/4, the site at S = 1/2 was repressed in most of that length-window (Fig. 3.1.D, green
bars). Other sites appeared suppressed as well. For instance, the data did not show cells
with two rings at S = 1/3 and 2/3, or with other odd fractions such as multiples of 1/5
(Fig. 3.1.D). We did not detect a significant spatial preference: the different possible sites
within the length window 15-21 µm displayed a similar probability to divide (Fig. 3.1.F).
On the other hand, the observed sites could be captured in specific rules (Fig. 3.1.G). The
distance between two possible division sites equaled two normally-sized cells (rather
than one as in Fig. 3.1.C), though the distance between a pole and the nearest division
site was one normally-sized cell. More generally, the different possible sites within one
length-window was described by S = (2m − 1)/2n, with m indexing the sites from 1 to
the total n = round(Lm/2w), and w = 3 µm the average length of unstressed cells. These
rules also indicate discontinuous changes. For instance the S values of the green bars
(1/4 and 3/4) disappear in the subsequent length regime with the blue bars (1/6, 3/6,
and 5/6), and so on (Fig. 3.1.D). Thus, potential division sites appear not to be conserved
upon changes in length, unlike the model indicated in figure 1C. To further probe these
various unexpected findings, we analyzed the recovery process in time.

3.1.2. TIME AND LENGTH CHANGES BETWEEN DIVISIONS

To study the recovery process in time, we quantified cellular lengths along lineages after
stress removal. The resulting traces displayed sudden drops denoting division events, as
the long cells progressively converted into normally sized cells (Fig. 3.2.A and S3.6.A,D).
Notably, we rarely observed multiple divisions occurring at the same time within one
cell – after a single division event some time elapsed (for cells over 10 µm long recovering
from tetracycline exposure, 89% of the interdivision times were 10 min. or more) before
the next division took place. Thus, in cells that were long enough to fit multiple possible
division sites, division occurred in just one site at a time.

The interdivision time was also found to decrease with increasing cell length; cells
that were born longer divided faster (Fig. 3.2.B). However, the interdivision time ap-
peared to level off at about 10 min, consistent with divisions in a minCDE null strain and
cells having a limited ‘division potential’ [86]. This dependence on cell length was sim-
ilar for the different filamentation triggers (Fig. 3.2.C and S3.6.B,E,G). The tetracycline
and temperature data differed significantly in one bin only (two sample t-test, p = 0.05),
while the SulA data set showed a somewhat smaller interdivision time. The latter may
reflect the more downstream role and limited growth-rate effect of SulA. Interestingly,
the length added between two divisions appeared constant and independent of birth
size (Fig. 3.2.D, S3.6.C,F). This added length was similar to the length of normal new-



3

40 3. SIZE LAWS AND SEPTAL RING DYNAMICS IN FILAMENTOUS ESCHERICHIA COLI CELLS

Figure 3.2: Time and length changes between divisions. (A) Measured cell lengths over time af-
ter switching from stress medium (1 µM tetracycline) to non-stress medium. Grey traces corre-
spond to single cell lengths. Colored lines are lineages following the longest daughter, black line
the shortest daughter. Black squares indicate end of measurement. Data is from five 1µM tetra-
cycline recovery experiments (N = 4134 cells). (B) Interdivision time against mother birth size,
for recovery from 1µM tetracycline. Black dots are averages, bars are standard deviations (N =
4108 division events). (C) Average interdivision time against mother birth size, for recovery from
1µM tetracycline (blue), 42 °C heat shock (red), and overexpression of the division-inhibitor SulA
(green) (N=4108, N=404, and N=494 division events, respectively). Error bars show SEM. (D) Ab-
solute length added between two divisions against mother birth size. Black dots are averages (N =
4108 division events.), error bars show SEM. See also Figure S3.6.
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born cells (1.6 vs. 1.8 microns respectively, Fig. S3.6.H). Thus, strikingly, long and short
new-born cells grow a similar absolute amount until the next division, while the shorter
cell takes more time to produce that added length. The latter is consistent with larger
cells producing cell mass faster because they contain more biosynthetic machinery (Fig.
S3.6.I). Consistently, we find that the average area under the length versus time curve is
proportional to the added length divided by the growth rate (Figure S3.6.J).

A constant added volume or length between divisions has been reported for normal
stress-free growth, when cells are not filamentous and divide mid-cell [33, 57–59]. This
"adder" principle can explain how cells in these conditions maintain a constant aver-
age size despite stochastic variability in birth size [33, 58, 59]. Here, the adder principle
does not strictly govern size, as birth sizes of filamentous cells are affected more strongly
by the position of division sites. The findings suggest that the time between divisions is
coupled to the growth process. The added length in stress-free cells has been reported to
be proportional to the number of origins of replication [87, 88]. We found nuclei to con-
tinue to multiply during filamentation in accordance with length increases, as observed
by fluorescent labeling (Fig. S3.6.K), which suggests that the origins continue to increase
as well. Note that the unstressed interdivision time here is about 60 mins (Fig. 3.2.C),
which is associated with non-nested replication. Thus, while the number of nuclei dif-
fers several fold between normal and filamented cells, the added size between divisions
remains approximately the same, suggesting that the number of origins does not set the
added size in this stressed regime. We find that the cell volume to nucleoid ratio was
approximately constant for cells of different length within the filamentous regime (Fig.
S3.6.L). The ratio of cell volume to the number of replication origins was studied previ-
ously for non-filamentous cells [89, 90].

3.1.3. DYNAMIC REORGANIZATION OF DIVISION RINGS

The data revealed that the reductive divisions during recovery occur in concert with sub-
stantial cellular growth (Fig. 3.2.A and S3.6.M). To illuminate how continued growth
affected division site positions, we imaged the division machinery by fluorescently la-
beling the essential cell division protein FtsA with sYFP2 [91, 92]. As expected, we ob-
served a number of bands of fluorescence intensity along the cell axis indicating divi-
sion rings [82–84] (Fig. 3.3.A). When tracked in time however, these division rings dis-
played an unexpectedly dynamic behavior, both during growth of the filament and upon
division events. For instance, upon a division, a new ring appeared at a new location
(Fig. 3.3.B, top arrow), within the smaller daughter. At the same time, one of the other
rings that had been present in the mother cell, disappeared in the other daughter at the
same moment (Fig. 3.3.B, bottom arrow). Indeed, most division events were immedi-
ately followed by the rapid reorganization of division rings (Fig. 3.3.B). Independently
of division events, growing filamentous cells also showed sudden reorganization of ring
positions (Fig. 3.3.C, S3.7). For instance, all four rings in one cell abruptly disappeared at
the same time, while five rings appear in the next frame at different positions (Fig. 3.3.C,
grey arrow).

Once formed, division rings often remained fixed at the same position for over 50
mins (Fig. 3.3.B). The sudden reorganization dynamics of these mature division rings in-
dicated that such positional memory can be erased rapidly. In early stages of ring forma-
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Figure 3.3: Dynamic reorganization of division rings. (A) Fluorescence image of sYFP2-FtsA sig-
nal in cells filamented by heat shock at 42 °C. FtsA is an essential component of the division ap-
paratus. Blue lines indicate cell edge determined from phase contrast imaging. (B) Kymograph
of sYFP2-FtsA intensity profiles along the long cellular axis, for cells recovering from 1µM tetracy-
cline. Red indicates division events, blue the resulting separation between daughters. See main
text for arrow. (C) Similar kymograph for filamentous cells during heat shock at 42 °C. (D) Relative
locations of sYFP2-FtsA peaks along the cellular axis, during heat shock at 42 °C and subsequent
growth at 37 °C. Colored bars correspond to inferred division site rules (Fig. 3.1.D-E). Peaks were
identified using a Matlab peak finder algorithm (N = 1572 cell images, taken from 400 cell cycles).
See also Fig. S3.7.
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tion, FtsZ clusters have been reported to display positional dynamics in non-filamentous
cells [93]. The observed ring dynamics also explained the observed ‘suppression’ of di-
vision events at certain sites: it for instance allows a central ring at S = 1/2 in a normally
sized cell to disassemble when filamentous growth causes entry into the second length
window with rings at S = 1/4 and 3/4. Similarly, it explains when rings are added. Cells
do not add multiple rings when the distances between existing rings has doubled, but
rather add a single ring when the total cell length has become 2w longer, and corre-
spondingly the entire pattern of rings changes. Indeed, more generally, the observed
division ring positions (Fig. 3.3.D) followed the same spatial rules as the division event
positions (Fig. 3.1.D,G). Note that one does not observe division rings at all the sites de-
noted by the spatial rules (Fig. 3.1.D,G), such as the middle region of the cell depicted in
Fig. 3.3.B. Furthermore, as expected, we did not see division events unless a fluorescent
band was observed first (see Fig. 3.3.B). In cells with multiple rings, division typically oc-
curred at one site at a time (Fig. 3.3.B, see also Fig. 3.2.A-B). The fluorescence intensity
of the bands did not correlate significantly with division probability (Fig. S3.7.B).

Thus, the dynamics of the division rings is important to obeying the spatial division
rules. Growth and division events can ’move’ lineages from one length-window to an-
other, and hence require changes in the pattern of possible division sites. Note that
for cellular growth within a length window, rings do not change their relative positions.
Thus, the cells continuously assess the locations of their division machinery, and repo-
sitions the potential division locations, resulting in daughter cells of specific size.

3.1.4. MIN OSCILLATIONS CAN EXPLAIN DIVISION SITE RULES

The spatial position rules indicate absolute bounds for the distance between putative
sites. Specifically, this distance is on average between 1.5 and 2.5w , with w being ap-
proximately 3 µm. These observations indicate a mechanism able to measure absolute
lengths. We surmised that this function is served in E. coli by proteins encoded at the
min locus: MinC, MinD, and MinE. MinD can bind to the cell membrane, and the MinD
and MinE reaction-diffusion system results in pole to pole oscillations of MinD along
the cell membrane. In non-filamentous cells, the time-averaged concentration profile of
MinD shows a minimum value localized at S = 1/2. Because MinC binds MinD, but also
inhibits ring formation, non-filamentous cells form division rings mid-cell [94, 95].

To test whether MinD oscillations could contribute to the division rules in filamen-
tous cells, we extended the reaction-diffusion model of Meinhardt and De Boer [96] (Ma-
terials and Methods). Strikingly, the simulations recapitulated all key features of the spa-
tial position rules (Figs 3.1.D,G and 3.4.A): distinct length windows of equal size, dis-
continuous changes in all minima positions between adjacent windows, and absolute
bounds for the distance between minima. A similar MinD pattern was obtained using
model of Huang et al. [97] as implemented by Fange et al. [98, 99] (Fig. S3.8.A). To obtain
further support for a role of the Min system in the position rules, we used a YFP-MinD fu-
sion to assess the MinCD distribution. The resulting time-averaged fluorescence profiles
validated the simulation results (Fig. 3.4.B).

Next, we characterized filamentation and recovery in minCDE null cells. Divisions
no longer obeyed the division rules (Fig. 3.4.C). Division sites were more uniformly dis-
tributed, and for instance no longer peaked at S = 1/4 and 3/4, nor showed the previously



3

44 3. SIZE LAWS AND SEPTAL RING DYNAMICS IN FILAMENTOUS ESCHERICHIA COLI CELLS

Figure 3.4: Min oscillations can explain division site rules. (A) Computed time-averaged MinD
concentration profile along the longitudinal cellular axis for cells of different lengths, using the
Meinhardt and De Boer [96] model. Green corresponds to high MinD concentrations. Grey dots
are observed divisions (Fig. 3.1.D). Simulation results are scaled linearly along x-axis for best cor-
respondence with the experimental data. (B) Experimentally obtained time-averaged intensity
profiles of YFP-MinD fusion proteins for cells of different sizes. Top to bottom indicated 1, 3
and 5 minima. Low values at cell poles are artefacts due decreasing cellular width. (C) Division
sites in minCDE null strains filamented by 2 µM tetracycline. Each point corresponds to one di-
vision (N = 1260). Data is symmetric around S = 1/2. Colored dotted lines denote division rules
in wild type cells (Fig. 3.1.D). Minicells were observed (inset), but were not included in the analy-
sis (grey shaded region). (D) Cartoon illustrating the observed division site plasticity. Changes in
cell length, due to continued cell growth (top) or division events (bottom) produce discontinuous
changes in the MinD profile, and corresponding reorganization of the pattern of division rings,
and ultimately locations of division events. See also Figure S3.8, Table S3.1 and S3.2.
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observed suppression at S = 1/2 or other S-values. The positions were not completely
arbitrary, with S = 1/2 remaining frequent, suggesting the involvement of other mech-
anisms such as nucleoid occlusion. The interdivision time was similar as observed for
wild-type cells, and consistent with earlier observations [86] (Fig. S3.6.N-P). While the
length added between divisions remained independent of cell length, it was now more
broadly distributed (Fig. S3.6.O). Moreover, the recovery produced numerous non-viable
mini-cells [86, 100] that were arrested in their cell cycle and stopped growing. These find-
ings further support the notion that the Min system is central to the spatial division rules
in filamentous cells.

3.2. CONCLUSIONS

Cell size control of E. coli is actively studied in continuous laboratory cultures, where
cells grow in the bacillary form (see e.g. [33, 52–58, 60]). Here, size-control typically
concerns maintaining a constant cell size in the presence of stochastic variability, for in-
stance in birth size and growth rate. E. coli is also known to adopt the longer filamentous
form in response to diverse stressors. Here we surmised that size regulation mechanisms
could also be relevant to enter into, maintain, and exit from filamentous states. We find
that within growing filamentous cells, multiple non-constricting division rings remain
at specific fixed relative positions when the cells remain within a specific length range,
while all the rings abruptly change in number and position when exceeding this range,
which can be caused by growth and division events (Fig. 3.4.D). These spatial rules are
explained by the Min system, which is found to produce a pattern that is strikingly simi-
lar to sound standing waves, with minima at matching positions that change discontinu-
ously when an additional minimum fits along the cell length. Hence, the Min system can
be thought of as a ruler mechanism that measures absolute size, with division rings as
tick marks that have a spacing corresponding to not one but two unstressed cells. Upon
disappearance of the stressor, divisions occur in sequence, at just one of these multiple
putative division sites at a time, with the interdivision time decreasing with cell length.
The length added in between divisions is rather invariant with cell length, in a manner
that is reminiscent of the on average constant added length for non-filamentous cells
that experience small variations in birth size during normal growth, suggesting that this
adder principle is more broadly relevant beyond normal growth. How these long cells
divide just once and then add a fixed length remains an intriguing question. One may
consider additional suppression of division at certain sites by nucleoid occlusion mech-
anisms [101, 102], though this would not naturally explain the suppression of division for
a certain amount of growth. Another possibility is a limiting septal protein that must in-
crease in number after division [103], though the multiple chromosomes and FtzA rings
were observed. Overall, it is puzzling how cells that strongly vary in size, would be lim-
ited similarly to just one division. Taken together, the findings reveal a system of size
sensing and division control in filamentous E. coli cells, and bring a new perspective to
the functional role of Min and Fts dynamics.
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3.3. STAR METHODS

REAGENT or RESOURCE SOURCE ID
Bacterial and Virus Strains
E. coli , strain ASC555: wild type MG1655 (ilvG- rfb-
50 rph-1)

AMOLF lab ASC555

E. coli , strain ASC884: wild type W3110 (λ- IN(rrnD-
rrnE)1 rph-1) with SulA plasmid.

Gift from Alexan-
der Dajkovic [79]

ASC884

Escherichia coli, strain ASC777: ASC555 with sYFP2-
FtsA plasmid.

Gift from Svet-
lana Alexeeva,
Tanneke den
Blaauwen lab

ASC777

E. coli , strain ASC784: ASC555 with pFX40 plasmid. Gift from Cees
Dekker lab

ASC784

E. coli , strain PB114 (also known as ASC1035 or
PAL40): MG1655 (F- lambda- ilvG- rfb-50 rph-1
∆minCDE, KanR)

Gift from Piet de
Boer lab [104]

PB114 /
PAL40 /
ASC1035

E. coli , strain SJ182 (also known as ASC1106):
MG1655 low motile (F- lambda- ilvG- rfb-50 rph-1
hupA::[hupA::mCherry FRT kanR])

Gift from Suck-
joon Jun lab

SJ182 /
ASC1106

Recombinant DNA
SulA plasmid: pACT3 (Plac-sulA, CamR) Gift from Alexan-

der Dajkovic [79]
N/A

sYFP2-FtsA plasmid: pSA018 (PTRCdown-sYFP2-
FtsA, AmpR)

Gift from Svet-
lana Alexeeva
and Tanneke den
Blaauwen

N/A

YFP-MinD plasmid: pFX40 (Plac::yfp-minD
minE,AmpR)

Gift from Cees
Dekker lab

pFX40

KEY RESOURCE TABLE. Bacterial strains and recombinant DNA used in this manuscript.
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REAGENT or RESOURCE SOURCE ID
Software and Algorithms
Metamorph 7.8.0.0 Molecular De-

vices

a

Matlab 9.1.0.441655 (R2016b) MathWorks b

Custom Matlab segmentation and analysis scripts Tans lab c

Meinhardt and De Boer simulation scripts (trans-
lated to Matlab syntax in Tans lab)

[96] d

MesoRD simulations software [99] e

Other
Microfluidic SU-8 master mold for PDMS device 1 [32], MicroChem N/A
Epoxy mold for Mother Machine like PDMS device 2 Daan J. Kiviet,

Martin Acker-
mann lab

N/A

KEY RESOURCE TABLE. Software and miscellaneous items used in this manuscript.

ahttps://www.moleculardevices.com/
bhttps://mathworks.com/products/matlab.html
chttps://github.com/TansLab/Tans_Schnitzcells,
https://github.com/TansLab/Tans_filamentation,
https://github.com/TansLab/Common_libraries

dhttp://www.pnas.org/content/suppl/2007/11/23/98.25.14202.DC1/p10.html
ehttp://mesord.sourceforge.net/

3.3.1. CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and
will be fulfilled by the Lead Contact, Sander Tans (Tans@amolf.nl).

3.3.2. EXPERIMENTAL MODEL AND SUBJECT DETAILS

For tetracycline stress experiments, wild type strain MG1655 (rph-1 ilvG- rfb-50) was
used (ASC555, Key Resource Table). For experiments involving SulA we used wild type
strain W3110 (λ- IN(rrnD-rrnE)1 rph-1) with pACT3 plasmid containing Plac-sulA, a kind
gift of Alexander Dajkovic [79] (ASC884, Key Resource Table). For experiments involv-
ing temperature recovery and sYFP2-FtsA, we used wild type strain MG1655 with plas-
mid pSA018 containing PTRCdown-sYFP2-ftsA (ASC777, Key Resource Table), a kind gift
from Svetlana Alexeeva and Tanneke den Blaauwen (University of Amsterdam). For ex-
periments involving MinD dynamics, we used strain MG1655 with plasmid pFX40, con-
taining Plac::yfp-minD minE (AmpR) (ASC784, Key Resource Table), a kind gift from the
Cees Dekker Lab (Delft University of Technology). For experiments with minCDE null
mutants we used strain MG1655 with the minCDE gene deleted (ASC1035, Key Resource
Table), a kind gift from Piet de Boer [104]. For experiments with labeled nucleoids [105],
we used an MG1655 strain with hupA::[hupA::mCherry FRT kan] (ASC1106, Key Resource
Table), a kind gift from the Suckjoon Jun lab (University California, San Diego). All cell
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lines were stored at -80 °C in freeze mix stocks. Before experiments, they were inoculated
in TY medium and grown at 37 °C into exponential phase, then transferred to culture
tubes with M9 media, grown overnight to reach exponential phase next day, and trans-
ferred to microfluidic setup or gel pad the next morning where they were supplied with
M9 minimal medium. The microfluidic setup or gel pad was then imaged under the mi-
croscope. Freeze mix contained 0,7% g/ML Peptone (Bacto™, BD Biosciences) and 24%
V/V glycerol (Merck) dissolved in sterile dH2O. TY medium contained 1% gr/mL Tryp-
tone (Bacto™, BD Biosciences), 0,5% gr/mL Yeast Extract (Bacto™, BD Biosciences) and
0,5% gr/mL NaCl (Merck) dissolved in sterile dH2O. M9 minimal medium contained 47.7
mM Na2HPO4, 25 mM KH2PO4, 9.3 mM NaCl, 17.1 mM NH4Cl, 2.0 mM MgSO4, 0.1 mM
CaCl2; all the chemicals were provided by Merck. M9 medium was supplemented with
0.2 mM uracil and 0.1% g/mL lactose (tetracycline, minCDE null mutant and labeled nu-
cleoids experiments) or 0.1% g/mL maltose (temperature, SulA and MinD experiments);
all provided by Merck. Tetracycline stock solutions (1mM in ethanol) were made from
tetracycline powder (Merck) and stored at -20 °C for not more than 4 weeks, final con-
centrations were 1µM, 2µM and 10µM for tetracycline experiments and 2µM for minCDE
null mutants and labeled nucleoids experiments. IPTG (Merck) stock solutions (1mM in
water) were stored at -20 °C.

3.3.3. METHOD DETAILS

EXPERIMENTS WITH MICROFLUIDIC DEVICE 1

For experiments with wild type cells (ASC555) exposed to and recovering from tetracy-
cline, microfluidic device 1 was used, see also Fig. S3.5.B. This device [32] consisted of
cover slip, a polyacrylamide gel membrane (thickness, 500 µm) and a polydimethylsilox-
ane (PDMS) flow cell whose channel (3 cm * 3 mm * 91 µm) contained evenly spaced
square pillars (400 µm, spaced by 600 µm) to ensure a uniform pressure on the mem-
brane. The polyacrylamide gel membrane was formed by mixing 1.25 mL 40% acry-
lamide (Bio-Rad), 3.7 mL deionized sterile water, 50 µL 10% ammonium persulfate (Sigma)
and 5 µL TEMED (Bio-Rad). 450 µL of the mixture was poured in a mold and the solution
was left to polymerize for about 1.5 h. After polymerization, the gel was cut in a piece of
4 x 1.5 cm and stored in a flask with sterile water. The master PDMS mold consisted of
one layer patterned by negative phototransparency masks on a silicon wafer. This layer
was deposited using SU-8 (MicroChem). The PDMS flow cell was fabricated by molding
silicone elastomer (Sylgard 184, Dow Corning) to this master mold. PDMS was mixed in
a 1:10 (v/v) ratio of catalyst and resin, poured into the master mold, degassed for 1 h in
a desiccator and cured in an oven at 75 °C for 1 h. To perform experiments 1uL (OD ≈
0.005) of the desired culture was pipetted on a cover slip and covered by the polyacry-
lamide membrane and then the microfluidic device. The device was then connected
to two syringe pumps (ProSense, NE-1000 and NE-300) by polyethylene tubing of 0.58
mm internal diameter (Smiths medical International Ltd.). The flow was controlled by a
manual valve (Hamilton, HV 4-4). The culture medium flow rate during the experiments
was 60 µL/min.
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EXPERIMENTS WITH MICROFLUIDIC DEVICE 2

Another PDMS device was used for experiments involving the minCDE null mutant (ASC-
1035) and labeled nucleoids strains (ASC1106). The device was developed by Daan J.
Kiviet in the Martin Ackermann lab. It is similar to the device described in ref. [33], but
it has wider microcolony wells. It contains a 200 µm wide main flow channel, splitting
into two 100 µm wide flow channels (both 23.5 µm high). Perpendicular to these flow
channels are 5 times repeated 0.75 µm high cavities (also known as "wells", where mi-
crocolonies of cells grow during the experiments) with widths of 1x 80µm, 1x 60µm, 2x
40 µm, 3x 20 µm, 3x 10 µm + 3x 5 µm, and depths of 60 µm, 30 µm, 50 µm and 40 µm.
The PDMS devices were made by casting them into an epoxy mold, a gift from Daan J.
Kiviet and the Martin Ackermann lab. To produce the PDMS device, polymer and cur-
ing agent (Sylgard 184 elastomer, Dow Corning Corp.) were mixed in ratio of 1 mL of
curing agent to 7.7 g of polymer (we found this deviation from the recommended 1:10
ratio provided a better rigidity of the PDMS). This mixture was cast into the epoxy mold.
Air bubbles were removed from the mixture either by putting the mold and casting in
a desiccator for 30 minutes, or by leaving the mixture for several hours before casting.
The mold and casting were then put in an 80 °C oven for 1-12 hours. Subsequently, the
mold was removed from the casting, and holes were punched for the liquid in- and out-
lets. The casting was cut into a smaller size using a scalpel to remove rough, raised or
uneven edges. Then the PDMS casting was covalently bound to a clean glass cover slip
by treating the PDMS and glass surface with a portable laboratory corona device (model
BD-20ACV, Electro-Technic Products, Inc.) (5-10 sweeps of approx. 5 seconds for each
surface from approx. 5-10 mm distance). The casting was gently tapped using a gloved
finger to improve contact between the PDMS and glass surfaces. Consecutively, the de-
vice was baked for another 1-12 hrs and stored for a couple of weeks before the experi-
ment was started. To perform an experiment, 2 mL culture of E. coli was grown to high
OD (>1) in a 10ml Falcon culture tube on a rotator at 37 °C. The concentration of bacteria
was further increased 30x by spinning down 1ml of the sample in an Eppendorf tube at
2300 RCF, removal of supernatant and resuspension. To inoculate the device, first, 1 µL
of sterile 0.01% Tween (dH2O) solution was slowly pipetted into the PDMS device, after
which 1 µL of the concentrated culture was introduced in the device. When bacteria had
penetrated the growth wells, the device was connected to polyethylene tubing, pumps
and a valve controller similar to the other microfluidic device. Superfluous bacteria in
the flow channels were removed by the culture medium flow. The flow rate during these
experiments was 16 µL/min.

EXPERIMENTS WITH GEL PADS

Experiments with the SulA strain (ASC884) and the sYFP2 labeled FtsA strain (ASC777)
were performed on polyacrylamide gel pads. To produce polyacrylamide pads [10], a
mold was created by placing two 25 mm x 76 mm x 1 mm silanized microscopy glass
slides (Thermo Scientific) on top of each other. The top glass slide contained a 18 mm
x 52 mm rectangular hole, and the two slides were sealed together with high vacuum
grease (Dow Corning). Polyacrylamide mix (1.25 mL 40% acrylamide, 3.7 mL deionized
sterile water, 50 µL 10% ammonium persulfate, 5 µL TEMED) was poured into the cavity
and covered by a silanized coverslip. The mix was placed at room temperature for half
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an hour to allow polymerization, and then cut into gel pads of approx. 5 mm x 5 mm x
1 mm which were stored in sterile dH2O. To perform experiments, a gel pad was soaked
in the desired medium, placed in the cavity of a clean two-glass slide setup identical to
the mold (except that glass slides were not silanized), inoculated on top with 1 uL (OD ≈
0.005) of the desired bacterial culture, covered with a glass cover slip, and mechanically
sealed with a metal clamp to avoid drying of the sample (see also Fig. S3.5.C).

SINGE CELL MICROSCOPY

In tetracycline experiments, strain ASC555 (see Key Resource Table) was grown in the
microfluidic device first in clean M9 medium, then M9 medium with 1µM tetracycline
(or 2µM or 10µM tetracycline for supplemental datasets), and then clean M9 medium
again (see experimental model and subject details for detailed information on growth
media). For temperature experiments, strain ASC777 was grown on M9 medium soaked
polyacrylamide gel pads subsequently at 37 °C, 42 °C and 37 °C; sYFP2-FtsA expression
was induced with 3.5µM IPTG. For SulA experiments, SulA expression was induced in
strain ASC884 with 200µM IPTG during O/N growth in culture tubes with M9 medium,
and cells were transferred to polyacrylamide pads soaked in clean M9 medium next day.
For YFP-MinD experiments, ASC784 cells were grown in culture tubes with M9 medium
at 37 °C. Filamentation was induced by 1 µM tetracycline and expression of YFP-MinD
was induced by addition of IPTG (20µM final concentration) half an hour before imag-
ing. 2 µL of culture was then imaged under the microscope between a glass slide and
a cover slip. For minCDE null mutant experiments, cells were grown and filamented in
M9 media with 2µM tetracycline, while divisions still occurred. For nucleoid labeling
experiments, cells were grown and filamented in M9 media with 2µM tetracycline. For
all time lapse experiments, phase contrast images were acquired at 1-2 minute intervals.
Additionally, during the temperature experiment, fluorescent pictures were taken every
4 minutes, with an exposure time of 200ms. For nucleoid visualization, additional flu-
orescent images were taken every 5 minutes, with an exposure time of 25 ms. For the
YFP-MinD experiments, only fluorescent images were taken at maximum acquisition
rate with a 500 ms exposure time (i.e. with a rate of approximately 2 frames per second).

IMAGING AND IMAGE ANALYSIS

Cells were imaged with an inverted microscope (Nikon, TE2000), equipped with 100X
oil immersion objective (Nikon, Plan Fluor NA 1.3), cooled CMOS camera (Hamamatsu,
Orca Flash4.0), xenon lamp with liquid light guide (Sutter, Lambda LS), GFP, mCherry,
CFP and YFP filter set (Chroma, 41017, 49008, 49001 and 49003), computer controlled
shutters (Sutter, Lambda 10-3 with SmartShutter), automated stage (Märzhäuser, SCAN
IM 120 x 100) and an incubation chamber (Solent) allowing precise 37 °C temperature
control. An additional 1.5X lens was used, resulting in images with pixel size of 0.041
µm. The microscope was controlled by MetaMorph software. Series of phase contrast
images were analyzed with a custom Matlab (Mathworks) program originally based on
Schnitzcells software [16], which allows for automated segmentation of cells growing in
a colony. The number of segmented and analyzed colonies was: 5 (1 µM tetracycline), 3
(2 µM tetracycline), 3 (10 µM tetracycline), 5 (SulA), 2 (temperature), 1 (nucleoid), 5 (Min
deletion). In the Min deletion experiments, mini-cells were observed (inset Fig. 3.4.C)
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but not segmented because of their abnormal size and dynamics. For all experiments,
some cell cycles could not be monitored completely because the cells grew outside the
field of view or because the experiment stopped, and were hence excluded from the anal-
ysis. To follow the cells over time, the images were manually corrected where necessary,
and tracked to create a lineage branch-like structure. Each cell’s length (polynomial fit-
ted to a cell’s curved segmentation region, or the segmented region’s skeleton length for
the temperature and sulA datasets) is computed for each frame. To determine relative
division locations S, daughter cell lengths were divided by the maternal cell length (de-
fined as the summed length of the two daughters). Growth rates were determined by
fitting an exponential function to recorded cell lengths over multiple frames. For the
experiments involving labeled FtsA or nucleoids, the fluorescent intensity along the cel-
lular axis was determined using 1 pixel wide slices perpendicular to the morphologically
computed skeleton. Peaks were then identified using the function peakfinder.m written
by Nathanael C. Yoder; only peaks with a signal above a threshold level of 400 A.U. were
considered (against an estimated background signal of approximately 50-100 A.U.). In
Figure 3.3.A, the signal intensity outside cells was decreased for visualization purposes.

SIMULATIONS WITH THE MEINHARDT AND DE BOER MODEL

We simulated the Min system behavior using the differential equations and rate con-
stants described in Table S3.1, which were developed by Meinhardt and De Boer [96]. We
extended the range of bacterial lengths simulated. This simulation numerically solves
the differential equations, with stochastically fluctuating reaction constants, to calculate
the protein numbers in each length element of a cell for multiple reaction species. We
ran simulations for bacterial lengths of 15 to 100 a.u. for 106 iterations and recorded the
system state every 1000 iterations. We then calculated the time-averaged MinD protein
number profiles for each bacterial length.

SIMULATIONS WITH THE KC HUANG MODEL USING MESORD

We simulated Min system behavior using the software MesoRD [98], "a tool for stochas-
tic and deterministic simulation of chemical reactions and diffusion in 3D and planar 2D
spaces". The model of the protein interactions is described in Table S3.2, and based on a
stochastic adaptation [99] of the K.C. Huang model [97]. Ref. [99] also provides the reac-
tion scheme in Systems Biology Markup Language (SBML). We used a diffusion constant
of 8.2 µm2/s as measured from cytoplasmic diffusion of GFP, which has a mass similar
to MinD (26.9 kDa and 29.4 kDa respectively) [106], the other parameters indicated in
table S2 are taken from [99]. We ran 100-300 s simulations for a range of cellular sizes
(with a compartment size of 5 ·10−8, and recording the system state every second) and
determined time-averaged concentration profiles.

3.3.4. QUANTIFICATION AND STATISTICAL ANALYSIS

The number of data points for each experiment can be found in the figure captions. To
compare interdivision times, two sample t-tests were used (p = 0.05), as described in the
main text and caption of Figure S3.6. Error bars always show SEM.
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3.3.5. DATA AND SOFTWARE AVAILABILITY
Analysis and plotting was performed using custom Matlab scripts, which can be found
at:
https://github.com/TansLab/Tans_Schnitzcells,
https://github.com/TansLab/Tans_filamentation, and
https://github.com/TansLab/Common_libraries.
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3.4. SUPPLEMENTAL DATA

Reaction scheme Rate constants
Dynamics of membrane associated FtsZ:
∂F
∂t = ρF f F 2+σF

1+kF F 2 −µF F −µDF DF +DF
∂2F
∂x2

Dynamics of freely diffusible cytosol FtsZ:
∂ f
∂t =σ f −ρF f F 2+σF

1+kF F 2 −µ f f +D f
∂2 f
∂x2

µF = ρF = 0.004;
kF = 0; σF = 0.1;
µDF = 0.002; DF = 0.002;
σ f = 0.006; µ f = 0.002;
D f = 0.2.

Dynamics of membrane associated MinD:
∂D
∂t = ρD d

(
D2 +σD

)−µD D − µDE DE +DD
∂2D
∂x2

Dynamics of freely diffusible cytosol MinD:
∂d
∂t =σd − ρD d

(
D2 +σD

)−µd d + Dd
∂2d
∂x2

µD = ρD = 0.002; σD =
0.05; µDE = 0.0004; DD =
0.02; σD = 0.0035; µd = 0;
Dd = 0.2.

Dynamics of membrane association of MinE:
∂E
∂t = ρE e D

(1+kDE D2)
(E 2+σE )
(1+kE E 2) −µE E +DE

∂2E
∂x2

Dynamics of membrane associated MinD:
∂e
∂t =σe − ρE e D

(1+kDE D2)
(E 2+σE )
(1+kE E 2) −µe e +De

∂2e
∂x2

µE = ρE = 0.0005;
kDE = 0.5; σE = 0.1;
kE = 0.02; DE = 0.0004;
σe = 0.002; µe = 0.0002;
DE = 0.2.

Table 3.1: Related to Figure 3.4. Reaction rules used in the Meinhardt and De Boer [96] simula-
tions, see main text for a description.

Reaction scheme Rate Constants

Mi nD AT P
c y t

kd→Mi nDmem kd = 0.0125µm−1s−1

Mi nD AT P
c y t +Mi nDmem

kdD→ 2Mi nDmem kdD = 9 ·106 M−1s−1

Mi nE +Mi nDmem
kde→ Mi nDE kde = 5.56 ·107 M−1s−1

Mi nDE
ke→Mi nD ADP

c y t +Mi nE ke = 0.7 s−1

Mi nD ADP
c y t

k ADP→AT P

→ Mi nD AT P
c y t k ADP→AT P = 0.5 s−1

Table 3.2: Related to Figure 3.4. Reaction rules used in the Huang et al./Fange et al. [97, 99]
stochastic MesoRD model of the Min system, see main text for a description.
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Figure 3.5: Division sites in filamentous E. coli. Related to Figure 3.1. (A) Three phases of the
filamentation experiments: the pre-exposure phase during which cells grow normally; the expo-
sure phase with filamentation-inducing stress; the recovery phase when stress is removed. Time
t = 0 is the moment when stress is switched off; time Trec is time when the growth rate recov-
ers to the half of its initial pre-exposure value. (B) Schematics of the flow cell set-up. Medium
is exchanged through inlets, and diffuses to cells through the acryl-amide membrane, which also
holds the cells in place. (C) Schematics of the pad set-up, during which the medium is constant.
The acryl-amide pad is soaked in the medium of interest and is kept in a windowed glass slide
sandwiched between a normal glass slide and a glass coverslip. (D) Cellular width. Grey dots show
bacterial width, determined as the cell area divided by the cell length, black dots the average width
per length-bins. Red line is an estimate for the area divided by length, assuming a width of 0.74µm
and rounded caps of the rod-shaped bacteria, using that a bacterium of size L and width W has
an area of W ·L µm2 minus ((0.74 µm)2 −π(0.74 µm/2)2). (E) Growth rate of cells before, during,
and after tetracycline exposure. Growth rates were determined by fitting time evolution of single
cell lengths to L02µt , and averaging over multiple cells in five datasets. (F) The time to recover
to half the growth rate after removal of tetracycline for different tetracycline concentrations Ctet
(see Fig. S1D). The star indicates that cells did not grow or filament at this tetracycline concentra-
tion. Error bars are SD. (G) The time to recover to half the growth rate after removal of tetracycline
for different tetracycline exposure times Texp. The star indicates that cells did show filamentous
growth, but failed to recover from the exposure and/or lysed. Error bars are SD. (H) Filamentation
induced by growing cells at 42C. When temperature was decreased to 37C, divisions resumed and
relative division locations are displayed for each division. When the time since the last division
is < 20 minutes, division events are marked by open circles. n=404 division events are shown. (I)
Filamentation induced by overexpression of the division-inhibitory protein SulA. n=494 division
events are shown. (J,K) Filamentation induced by 2 µM (J) or 10 µM (K) tetracycline. (L) Each
dot shows the relative division location within a single cell against the time it took place. Different
panels respectively correspond to the three conditions: recovery of filamentation after tetracycline
exposure, 42C heat shock, or overexpression of division inhibitory protein SulA. Colors correspond
to different datasets. (Respectively n=4108, n=404 and n=494 division events are shown.)
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Figure 3.6: Timing, length changes, and nucleoid imaging. Related to Figure 3.2. (A,D) Single
cell lengths versus time during recovery from temperature (A) or SulA (D). Grey dots represent the
length of a single cell at a specific point in time. Colored lines trace example cell lineages, where
drops in length correspond to divisions. Black squares indicate where measurements ended. (Re-
spectively N=409 and N=499 cells were analyzed.) (B,E) Time between two subsequent divisions
against birth size, for recovery from temperature (B) or SulA (E). The colored dots show average in-
terdivision times (± SEM, respectively n=404 and n=494 division events). (C,F) Dots corresponds
to a single cell, and shows how much length that cell added in between two divisions, versus birth
size; again either for temperature (C) or SulA (F). Lines indicate averages (± SEM). (G) The top
panel: data from Fig. 2B, Fig. S2B and S2E shown for comparison. Bottom panel: Corresponding
Kernel Density Estimates per length bin. Stars indicate significant difference (two-sample t-test,
p=0.05) compared to the tetracycline data set. For bins with n<11 points, single points are shown.
(H) The distribution of newborn cell sizes observed in the tetracycline recovery experiment. The
inset shows the distribution for the window 1-3 µm, with a smaller bin width. The red line indi-
cates the maximum value at 1.78 µm (N=4108). (I) Derivative of cell length over time (dL/d t ) for
different lengths, as determined from every two consecutive frames, for in the tetracycline dataset,
showing larger cells add more length per unit time. Error bars are SEM. (J) Grey dots: area A un-
der the cell-length vs. time data, for the tetracycline dataset. Black dots: average values. These
data agree with expectations for the adder behavior, in which A depends on added length ∆L and
growth rate µ as A = ∆L/(µ · log (2)) (see dotted line, using ∆L of 1.6 µm). (K) Nucleoid location.
Black denotes signal from a HupA-mCherry fusion construct that labels the chromosome, plotted
against cell size. Data is for growing filamenting cells. Fluorescence profiles along the cell axis were
averaged within cell length bins of 1 µm. n = 5382 fluorescent profiles from Nc = 286 unique cells.
Top panel: number of unique cells per bin. White dotted lines: 2m multiples of cell birth length
(1.8 µm), at which the number of nucleoids is expected to double if the concentration of nucleoids
would be constant. (L) The number of nucleoids Nn (Matlab peakfinder algorithm) plotted against
cell length L (n = 5382 observations). The ratio between these quantities remains approximately
constant within the filamented regime, as shown by the line (which has a slope corresponding to
2.25µm/nucleoid). This is also reflected by the probability distributions PNn (L/Nn ), which show
overlapping distributions of the cell lengths divided by the number of nucleoids, per number of
nucleoids observed. (M) Growth rates (db/hr) vs. cell length, color coded for time after removal
of stress. Panels indicate recovery from tetracycline, high temperature (42C), SulA overexpres-
sion, respectively. Number of cells: N=4134, N=409 and N=499. Number of data points n=129722,
n=11049 and n=7304, respectively. (N) Interdivision time vs. birth length for minCDE null strains.
Orange dots are averages, bars are SEM. Purple points: data from 1996 Donachie and Begg paper
[86], showing data sets are consistent. (O) Added size between divisions for minCDE null strains.
Orange dots are averages, bars are SEM. (P) As panel G, but in addition, now also data from the
minCDE null strains is shown (orange).
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Figure 3.7: Division ring imaging. Related to Figure 3.3. (A) Fts ring localization in cells fila-
mentous at 42C. Kymographs of sYFP2-FtsA intensity along the cellular axis over time. Each panel
corresponds to an individual cell in between two divisions. The top three panels show cells grow-
ing during exposure to 42C, the bottom two panels show cell born small after temperature was
lowered to 37C. (B) Intensity of sYFP2-FtsA ring and probability of division at this ring. About 35%
of observed divisions occurred at the brightest FtsA ring, showing no clear preference for dividing
at the brightest ring.
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Figure 3.8: Min patterns. Related to Figure 3.4. (A) Results of stochastic simulations using the
Huang et al. model implemented by Fange et al. [97, 99]. Heat maps show the membrane con-
centration of MinD for cells of different lengths. Data is consistent with division rules (left). (B)
YFP-MinD fluorescence for cells filamented in the presence of 1 µM of tetracycline. Three cells of
different lengths representing different division windows are shown. Cells of different lengths are
shown, corresponding to division regimes with respectively 1, 3 and 4 division sites.
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STOCHASTICITY IN CELLULAR

METABOLISM AND GROWTH:
APPROACHES AND CONSEQUENCES

HIGHLIGHTS

• Single cell data shows that metabolism undergoes stochastic fluctuations.

• They produce fluctuations in cellular growth, gene expression, and other pheno-
types.

• They can be detrimental to populations, but also beneficial.

• They raise new questions on the interplay between different enzymes and fluxes.

ABSTRACT

Advances in our ability to zoom in on single cells has revealed striking heterogeneity
within isogenic populations. Attention has so far focussed predominantly on underlying
stochastic variability in regulatory pathways and downstream differentiation events. In
contrast, the role of stochasticity in metabolic processes and networks has long remained
unaddressed. Here we review recent studies that have begun to overcome key technical
challenges in addressing this issue. First findings have already demonstrated that metabolic
networks are stochastic in nature, and highlight the plethora of cellular processes that are
critically affected by it.

The contents of this chapter have been published as Wehrens, M., Buke, F., Nghe, P., & Tans, S. J.
(2018). Stochasticity in cellular metabolism and growth: Approaches and consequences. Current
Opinion in Systems Biology, 8, 131–136. http://doi.org/10.1016/J.COISB.2018.02.006. [107]
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4. STOCHASTICITY IN CELLULAR METABOLISM AND GROWTH: APPROACHES AND

CONSEQUENCES

4.1. STOCHASTICITY AND METABOLISM

Elucidating the role of molecular stochasticity in metabolic processes is a central issue
in cellular physiology. It is key to understanding cellular homeostasis, and could help
explaining heterogeneous phenotypes ubiquitously observed across all domains of life,
ranging from persistence to cancer [108, 109]. Stochasticity in metabolism could under-
lie bet-hedging strategies, in which distinct sub-populations anticipate future environ-
mental change [110, 111]. On the other hand, metabolic stochasticity could limit optimal
growth and require regulatory mechanisms to ensure homeostasis [112]. More generally,
as metabolism ultimately drives all cellular processes, fluctuations and instability could
impact a myriad of phenomena ranging from the cell cycle to differentiation events. So
far however, stochastic variability is commonly considered to have negligible effects in
metabolic networks, as reflected by current theoretical models [113]. Indeed, metabolic
fluctuations may be insignificant because of averaging over the many reaction events
underlying metabolism in cells, chemical equilibration, metabolite secretion, or a lack
of limiting steps within metabolic pathways [113–120].

At the practical level, quantifying any type of metabolic fluctuations comes with its
own specific challenges. In contrast to regulatory proteins within signalling networks,
which can be tagged fluorescently, metabolites are difficult to visualize at the single-cell
level. Metabolites can be quantified by single-cell mass spectrometry [121], but so far
not dynamically in time. Spectroscopic methods can follow metabolite abundance in
time, but only for specific highly abundant molecules such as lipids [122]. FRET and
fluorescent sensors hold a lot of promise, but remain limited to some metabolites and
cannot yet quantify stochastic fluctuations [123–127].

Recently, important progress has been made in developing novel approaches that
circumvent these limitations. In this review, we will examine these new efforts, their first
findings, as well as related theoretical modelling. We will also cover recent work that is
addressing the impact metabolic variability has on other cellular phenomena.

4.2. ENZYME EXPRESSION GENERATES METABOLIC NOISE

Early single-cell experiments showed how the expression of transcription factors fluctu-
ate and propagate to downstream genes [15, 128, 129]. Similarly, such expression noise
in key metabolic enzymes could generate variations in the flux of the reaction they catal-
yse, even if reaction-event noise averages out [130]. Moreover, if these flux variations
propagate down-stream along the pathway, they could produce variations in the rate
of cellular growth. A recent study by Kiviet et al [10] was based on this premise. While
such an approach presents the challenge of quantifying enzyme expression and cellu-
lar growth with high accuracy, it avoids the need to measure fluctuations in metabolite
concentrations.

Growth was quantified by following the size of individual cells by time-lapse mi-
croscopy. Specifically, using the known overall shape of E. coli - a rod capped with half-
domes - its length could be determined to below the diffraction limit, which may be
compared to how fluorophores are positioned in super-resolution microscopy [10]. Cur-
rently, a range of different single-cell image analysis approaches are available [36–43],
including ones utilizing machine learning [44, 131, 132]. Cellular growth has also been
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quantified by measuring cellular dry mass [133], and by using AFM-like cantilevers [134],
as will be discussed more exhaustively below.

The data on the instantaneous cellular growth rate appeared correlated with the ex-
pression of metabolic enzymes [10]. However, such correlations could signal that growth
fluctuations perturb expression, rather than the other way around. Time dependent cor-
relation analysis can be used to address this issue [15, 128] (Fig. 4.1). This approach
showed that the correlations were on average stronger after a certain delay, consistent
with enzyme production fluctuations happening first, and growth fluctuations happen-
ing some time later (Fig 1a). In line with the idea that enzyme (expression) fluctuations
affect the flux of the reaction they catalyze, this delay was observed only for genes that
were considered limiting, such as gltA and icd in acetate media, and pfkA and icd in
lactose media.

Interestingly, even when considering non-limiting genes, the expression rate was still
strongly correlated with growth – however the correlations were now instantaneous and
did not show a delay (Fig. 4.1b). It suggested that more generally, proteins are expressed
significantly faster in cells that transiently grow faster, which is actually not unreason-
able given that some cells grow twice as fast others for almost a full generation, and ex-
pression needs diverse metabolites. Put differently, fluctuations in growth-controlling
factors, which may be anything from ribosomes to ATP, are also a source of gene ex-
pression noise [135]. In turn, metabolic fluctuations may thus affect processes that are
controlled by gene expression, such as differentiation events [136, 137]. Metabolic noise
can be compared to other noise sources such as transcription factors [9] and the cell
cycle [138], which can also affect more than one gene or process and hence may be con-
sidered as extrinsic noise sources. A picture thus emerges of a system as a cycle of re-
ciprocally interacting sources of extrinsic noise: metabolic fluctuations simultaneously
affecting the expression of multiple genes, including transcription factors, polymerases,
and metabolic enzymes, and conversely, noise in the latter resulting in fluctuations in
metabolic fluxes. At the same time, the precise relations between noisy signals, and
hence their ultimate mechanistic origin remains largely unresolved. For instance, it is
unclear whether different pathways fluctuate independently, or alternatively, whether
observed fluctuations result from a continuous dynamic interplay between them. Over-
all, the data so far shows that expression and growth are tightly intertwined, not only in
terms of their mean levels when comparing different media [139], but also dynamically
within constant external conditions.

4.3. (MIS)MATCHING PATHWAYS

The notion that metabolic pathways are stochastic raises questions about the dynamic
interaction between them. For instance, it is thought that cells co-regulate functionally
related genes to balance their overall input and output fluxes [130, 140]. In yeast, genes
related to either stress response, mitochondria or amino acid biosynthesis were found to
fluctuate jointly in response to general regulators [141]. Mismatches between (parts) of
the cellular pathways can have large effects. Specifically, it was observed that metabolic
imbalance within glycolysis can amplify non-genetic variability within the population
[142]. When the upper and lower parts of this central pathway are not well matched, gly-
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Figure 4.1: Fluctuations from enzyme expression to metabolism, and from metabolism to en-
zyme expression. Expression measurements of a single metabolic enzyme and growth rates in in-
dividual cells can be used to reveal metabolic stochasticity. Two key modes of noise transmission
have been observed, which can act both individually and jointly, and may interact. (a) Noise in the
expression of a single enzyme (blue trace), result in fluctuations in metabolic flux that are transmit-
ted through the metabolic network and affect growth with some time delay (orange trace). The de-
lay can be quantified by cross-correlation analysis. The cross-correlation curve illustrates that on
average, current enzyme expression correlates better with growth some time later, as illustrated by
the expression-growth scatter plots. Note that the sources of expression noise here are not only in-
trinsic, or caused by molecular processes specific to one gene. They also include extrinsic or trans-
mitted noise from other processes, such as transcription factor, polymerase, or metabolic factors
such as amino acid abundance, which may affect expression but not growth. Noise sources that
affect both expression and growth are discussed in panel b. (b) Noise sources within the metabolic
network that perturb both expression (green trace) and growth (orange trace). Fluctuations in
components that affect both expression and growth, such as ATP and other central metabolites,
could define such sources of noise. In contrast to panel a, the cross-correlation here is symmetric
because expression and growth respond approximately equally fast to the fluctuations. Note that
the resulting expression noise may affect growth (panel a), or may not (this panel) - for instance
because the expressed enzyme is not metabolically active or because it is abundant and hence
does not limit growth.
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colytic intermediates can accumulate while ATP levels are reduced, thus strongly affect-
ing cellular physiology. Expression variability has also been suggested to drive changes
in flux partitioning [143]. These studies underscore the importance of further dissecting
how cells coordinate different cellular processes in the face of the random fluctuations
of its components, and which regulatory mechanisms they employ.

4.4. METABOLISM AT THE CENTER

Metabolism and growth ultimately power all cellular activity. A fluctuating or unsta-
ble metabolism thus could have wide-ranging effects. For instance, perturbations of
metabolic homeostasis may cause fluxes to collapse and metabolite pools to deplete,
which in turn can induce persistence [109]. Metabolic heterogeneity has been suggested
to affect the synchronization of metabolic oscillations observed in dense yeast popula-
tions, and hence the communication between cells [144], while a recent study revealed a
coupling between metabolic oscillations and the cell cycle in yeast [145]. Strikingly, it has
recently been reported that slow-growing yeast sub populations display downregulated
ribosomal activity and upregulated stress response genes, increased RNA polymerase
error rates and indications of DNA damage, which may be explained by oxidative stress
[146].

One may also expect that metabolic and growth fluctuations impact cell size. Bac-
teria grow in exponential fashion - increases in growth rate could thus produce large
increases in cell size, which could be further amplified and diverge in subsequent cycles
because larger cells effectively grow faster. Some answers to how cells deal with this is-
sue are already emerging. First, the timescale of growth fluctuations in E. coli was found
to be just below that of the cell cycle for a range of growth media [10]. Cells thus inherit
faster growth for just one or two generations, which limits amplifying effects. Second,
while the molecular mechanism is unclear, it has been found that cells compensate for
growth variability [33, 57, 58, 147–150]. Cells that grow faster on average have a smaller
interdivision time, thus yielding similar sizes at division as slow-growing cells (Fig. 4.2a).
Moreover, faster-growing cells were also found to initiate DNA replication earlier, provid-
ing a further indication of underlying regulatory compensations [57, 147]. These findings
support the suggestion that the cells compensate for growth variability by measuring size
rather than time.

4.5. BENEFITS OF METABOLIC FLUCTUATIONS

Stochasticity of growth and expression is directly observed within individual cells, but
it can also affect the composition of the population in non-trivial ways. This issue has
been studied theoretically and in experiments [27, 151, 152]. Counter-intuitively, analy-
sis showed that growth rate distribution along a single a lineage is not necessarily equal
to the distribution within the population at a single time point [27]. The cause how-
ever is actually quite simple: faster growing phenotypes produce more offspring, and
hence become overrepresented within the population (Fig. 4.2b). The effects are most
striking when the mean concentration of a growth-controlling enzyme is suboptimal, as
gene expression noise and resulting growth noise can then increase the growth rate of
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Slower growth Faster growth

Figure 4.2: Impact on
cell cycle and popula-
tion structure. (a) Cell
cycle compensations.
Recent work has shown
that spontaneously faster
growing cells initiate
DNA replication earlier,
and divide earlier, than
slower-growing cells in
the population. Such
compensations limit the
effects of heterogeneity in
growth rate on cell size.
(b) Effects on population
structure. Faster-growing
and faster-dividing cells
increase their frequency
within the population.
As a result, growth noise
can result in population
growth rates that are
higher than the average
cellular growth rate within
a lineage.

the population as a whole [151]. Such sub-optimal regulation of enzyme expression has
been observed experimentally (e.g. [153]), and in one direct study, population growth
rates were found to be almost 10% faster than the average single-cell growth rate [27].
A similar study in yeast showed a 4-7% increase in growth rate for the population as a
whole [152]. Additionally, an artificial reduction of gene expression noise in catabolic
networks decreased heterogeneity in cellular division times [152], consistent with noise
in metabolic enzymes controlling growth [10]. The advantage of fluctuating gene ex-
pression in variable environments was studied earlier in a synthetic system, in which
bistable switching allowed cells to be prepared for environmental change [154]. The idea
of "stochastic sensing" has been addressed theoretically [110] and observed in metabolic
networks [32, 155, 156]. It has been proposed that the regulatory control of metabolic
genes constrains the space of possible random metabolic phenotypes, and hence come
with entropic energy costs [157]. Overall, noise in metabolic systems thus may not exclu-
sively limit optimal growth, but can also be beneficial. This point is further illustrated by
observed evolutionary adaptation towards more heterogeneous phenotypes [146, 158–
161].
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4.6. AN EXPANDING ARRAY OF EXPERIMENTAL APPROACHES

Tracking cell size and fluorescence has already led to surprising insights to the dynamics
of cellular physiology. Novel approaches will open up additional possibilities. Fluores-
cence methods have been used to detect the synthesis of single proteins in eukaryotic
cells [162]. The growth rates of eukaryotic cells are difficult to measure using time-lapse
microscopy, given their complex three-dimensional shapes. A recent technique over-
comes this problem, by quantifying how the cell volume reduces the abundance of flu-
ophores in the surrounding medium [163]. The accuracy of gene expression measure-
ments is also improving. Single proteins could be visualized in E. coli cells by slowing
down their diffusion [164]. Measuring metabolite concentrations would allow direct ac-
cess to fluxes. Concentrations of FAD and NADH can be measured using auto fluores-
cence [144, 165], while FRET sensors have already been developed for calcium [123, 124],
ATP [125, 126] and cAMP [127]. Additionally, it is possible to obtain single cell Raman
spectra, which allow for determination of concentrations of certain abundant metabo-
lites [122]. Together, these novel and existing approaches will be central to arrive at a
dynamic view of physiology at the single-cell level.

4.7. CONCLUDING REMARKS

In this review, we have discussed recent studies that have revealed the stochastic na-
ture of metabolism and its interplay with gene expression and other cellular processes.
The results press the notion of cells as autocatalytic and stochastic systems engaged in
a dynamic equilibrium, with metabolism and enzyme expression as two fluctuating and
interdependent processes. One may expect other processes to be in similar dynamic
equilibria, and it will be intriguing to decipher how the result can be stable and robust.
In recent decades, growth has not been considered as an important piece of the cellular
puzzle. This new wave of experiments is revising this view, and re-affirms metabolism
and growth at the center of cellular activity and dynamics.

CITATIONS OF OUTSTANDING INTEREST

• Kiviet et al. (2014) [10]: Stochastic fluctuations in the concentration of a single
enzyme can correlate with future cellular growth rates, indicating transmission of
noise through cellular networks. Fluctuations in growth rate can also affect en-
zyme expression, showing the interdependence of these parameters.

• Hashimoto et al. (2016) [27]: Experimentally measured discrepancies between sin-
gle cell growth rate distributions and population growth rate distributions can be
understood theoretically, and show that single cell growth noise can be beneficial
to population growth.

• Cerulus et al. (2016) [152]: Experiments show that population growth can benefit
from growth noise on the single cell level, and stochastic catabolic gene expression
can contribute to single cell growth noise.
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CITATIONS OF INTEREST

• Van Valen et al. (2016) [44]: Machine learning algorithms are applied to segment
time-lapse movies of single cells.

• Walker et al. (2016) [138]: Volume increase and gene duplication during replica-
tion during the cell cycle both affect gene expression, leading to non-genetic cel-
lular heterogeneity.

• Van Dijk et al. (2015) [146]: Sub-populations of slow-growing cells are analyzed
and found to have distinct phenotypes that also have higher mutation rates.

• Adiciptaningrum et al. (2015) [147]: Replication and division timing compensate
for both growth rate variability and cell size variability in single cells.

• Towbin et al. (2017) [153]: Metabolic enzyme expression is optimized for most
conditions, but not all.

• Schreiber et al. (2016) [158]: Phenotypic heterogeneity is increased in response to
nitrogen limitation, and benefit thereof is experimentally shown.

• Morisaki et al. (2016) [162]: A smart combination of fluorescent techniques allows
probing of single-molecule translation events and mRNA translation kinetics.
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CRP RESPONDS DYNAMICALLY TO

INTERNAL NOISE

5.1. INTRODUCTION

5.1.1. ENVIRONMENTAL AND STOCHASTIC INPUT TO REGULATORY NETWORKS

The world is unpredictable. A bacterial cell observes both its extracellular environment
and its intracellular environment, and adjusts its gene expression to optimize its chances
of survival in this world. To control gene expression a bacterium — like any other cell —
relies on chemical interactions between proteins and small molecules [166–169]. These
interactions, also referred to as "biochemical networks", allow cells to deal with unpre-
dictable situations both in the intracellular and extracellular environment. Changes in
the extracellular environment might require the cell to adjust gene expression accord-
ingly. In other words, the cell responds to "environmental inputs". On the other hand,
even without environmental changes, the stochastic nature of chemical reactions can
lead to fluctuations of proteins and metabolites over time within the cell [9, 10]. Such
fluctuations might present regulatory networks with "stochastic inputs". The architec-
ture of the biochemical network might enable the cell to deal with these fluctuations, or
even use them to its advantage (see also chapter 4). To what extent networks respond to
stochastic inputs, and what the implications of dealing with such inputs are for network
architecture is a largely unaddressed question. In this work, we investigate the link be-
tween environmental and stochastic regulation for the first time in a native cellular con-
trol circuit. Specifically, we ask: are regulatory interactions that are known for their role
in adaptation to environmental changes also activated by concentration fluctuations in
the intracellular environment due to noise?

5.1.2. STOCHASTIC AND ENVIRONMENTAL INPUT IN A MODEL SYSTEM: CRP
To investigate this question, we looked at the regulation of metabolic enzyme expres-
sion by the cAMP receptor protein (CRP). Activated CRP stimulates metabolic enzyme
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expression, but CRP activation is inhibited by the metabolites that are produced by met-
abolic enzymes [170]. It was recently discovered that when cells are grown in environ-
ments with different sugar sources, this sensing of the metabolite concentrations by neg-
ative feedback is the regulatory interaction which allows cells to express the appropri-
ate amount of metabolic enzymes for most sugar sources [153]. This can involve large
changes in proteome composition [140, 170]. However, when a population of cells is
growing in a constant environment with a constant carbon source, there is still a large
heterogeneity observed in growth rates and metabolic enzyme expression levels [10] (see
also chapter 4). Observations by Kiviet et al. suggest that single cell enzyme concentra-
tions fluctuate stochastically over time, which in turn results in fluctuations in metabo-
lite fluxes and eventually in growth rate [10]. Thus, single cell metabolite concentrations
might fluctuate over time due to stochastic fluctuations . That would imply that also
the CRP system receives a large variation of inputs in single cells, even when there are
no changes in the extracellular environment. We here set out to investigate whether the
CRP system indeed experiences and acts on these different stochastic inputs.

5.1.3. THE CRP SYSTEM

Before turning to how we manipulate and measure the dynamics of the CRP system, we
would also like to provide some context on this considerably researched system [171–
174]. CRP might be called a master regulator of metabolic enzyme expression in Es-
cherichia coli1, since it is thought to control the expression level of all catabolic genes in
concert [140, 170, 175]. CRP controls 378 promoters, among which 70 transcription fac-
tors [176–179]. Amidst these targets are all enzymes in the TCA cycle, see also figure 5.12.
Such catabolic enzymes are of major importance to the cell, as they convert large carbo-
hydrate molecules into smaller metabolites, and generate energy for the cell during this
process in the form of ATP [180]. The concerted regulation of catabolism related genes
leads to large scale cellular changes, as illustrated by experimental observations. One
study showed that a CRP reporter (based on the lactose gene) showed a tenfold change
in activity in response to different growth media [170]. A second study showed that in
response to artificial limitations on cellular carbon import, cells adjusted the fraction of
the proteome dedicated to catabolism from 10% up to to 25% [140].

CRP is allosterically activated by the small signaling molecule cyclic adenosine mono-
phosphate (cAMP), which is produced from ATP by the enzyme adenylate cyclase (CyaA).
The cell can also control cAMP concentration by active degradation, which is catalyzed
by the cAMP phosphodiesterase (CpdA) enzyme2. cAMP production by adenylate cy-
clase is thought to be inhibited by α-ketoacids, such as oxaloacetate (OAA), α-ketoglu-
tarate (α-KG) and pyruvate (PYR) [170]. (Previously, also the phosphorylated enzyme
IIA of the phosphotransferase system was thought to activate adenylate cyclase [171,
173, 174], but it has now been suggested that the role of α-ketoacids feedback is bigger
[170].) Thus, the CRP-cAMP regulation is wired such that metabolites from the TCA cy-

1CRP was previously called catabolite gene activator protein, or CAP.
2It is sometimes mentioned in literature that cAMP is also actively exported from the cell by the

membrance channel protein TolC, but the primary publication that made this claim has been
retracted [181].
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cle and glycolysis pathway provide negative feedback on metabolic enzyme expression,
see also figure 5.1.A. The effect of CRP regulation can be quantified by the relationship
between the cAMP concentration and cellular growth rate, which was done for differ-
ent sugar sources [153]. For each sugar, there appeared to be a specific optimal con-
centration of cAMP, consistent with the idea that too low enzyme concentrations limit
metabolite fluxes, and too high concentrations draw resources from other cellular pro-
cesses [153, 170, 182–185]. This leads to a concentration-growth relationship with a clear
optimum, which we will therefor call the optimum curve, see also figure 5.1.B. When
cells use different sugars as carbon source, they respond by adjusting the concentration
of metabolic enzymes [170]. As mentioned, it is thought that the CRP system is respon-
sible for finding the optimal concentration of enzymes for most sugar sources, which is
thought to be achieved by the negative feedback from metabolites [153].

5.1.4. CRP WITH AND WITHOUT FEEDBACK

To find out whether the CRP system responds to stochastic input we decoupled the
responses to stochastic and environmental inputs. To achieve this, we employed two
strains that had the appropriate mean CRP activity for the sugar source they were grown
on, but where in one strain the feedback loop could not respond to stochastic input it
might receive. The two strains we used are a wild type MG1655, and a cyaA, cpda null mu-
tant [153] (see also table 5.1 in the methods section). As mentioned, cyaA enables cAMP
production and cpda cAMP degradation, which means that the cyaA, cpda null mutant
was unable to modify its cAMP levels, and had a crippled feedback loop that could not
respond to both environmental and stochastic input signals. We therefore call this strain
the ∆cAMP strain. To repair this strain’s ability to express the right amount of metabolic
enzymes with regard to their environment, we provided cAMP extracellularly in the cells’
growth medium. This bypassed the feedback loop and directly set the correct CRP activ-
ity for the sugar they were grown on [153], but left the feedback loop unable to respond
to stochastic input signals, see also figure 5.1.C. This experimental design allowed us to
compare a cell that has the correct mean CRP activity and could respond to stochastic
input signals, with a cell that had the correct mean CRP activity but could not respond to
stochastic input signals. We then used single cell time lapse microscopy and fluorescent
labeling to determine single cell growth and CRP dynamics. We first used these single
cell techniques to see whether the CRP system could respond on timescales at which
the stochastic fluctuations take place. Secondly, we used cross-correlation analyses to
quantify the dynamical growth and CRP behavior of the two strains described above.
These analyses showed that the CRP system can indeed operate on timescales that are
comparable to time scales of stochastic fluctuations, and moreover that the dynamics of
metabolism and growth change remarkably when its regulation is not able to respond
to stochastic inputs. These observations suggested that regulatory interactions also re-
spond to stochastic inputs. This implied in turn that perhaps our notion of steady state
behavior should be updated, as the cellular state might be constantly changing in a way
that is facilitated by regulatory interactions.
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Figure 5.1: (A) This diagram depicts the regulation of metabolic enzyme expression in E. coli. Met-
abolic proteins import sugars and convert these large carbohydrate molecules to smaller metabo-
lites, a process in which the cellular energy source ATP is produced. The metabolites are also a
cellular resource and are building blocks for other cellular components, and are thus needed for
cellular growth. They also inhibit cAMP production, thereby inhibiting CRP activation by cAMP.
CRP is a master regulator (hence represented by a small ship’s wheel): the concentration of acti-
vated CRP sets the metabolic enzyme concentration. (B) This cartoon illustrates the general re-
lationship between enzyme expression (which for metabolic enzymes is controlled by cAMP) and
growth rate. In a constant environment, too little expression will limit metabolic fluxes, and too
much expression draws cellular resources from other cellular processes. Therefore, there is an op-
timal concentration at which the growth rate is highest, as indicated by the red dot. (C) In our
cyaA, cpda null mutant, the cell is unable to modify cAMP concentration and metabolites are thus
unable to set the CRP activity (indicated by the black cross) nor metabolic enzyme expression.
Instead, we supply cAMP in the medium such that we can artificially control metabolic enzyme
expression. This external setting of the cAMP concentration makes that these mutants are unable
to respond to intracellular fluctuations of metabolites.
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5.2. RESULTS

5.2.1. THE CRP SYSTEM IS ABLE TO RESPOND TO DYNAMIC SIGNALS

Our hypothesis is that stochastic fluctuations in metabolic enzyme concentration re-
sult in metabolite concentration changes, which in turn lead to a response by the CRP
system. However, the response to such stochastic fluctuations — which can occur on
timescales shorter than the cellular division rate — might be limited because the frac-
tion of the proteome regulated by CRP is so large and because the cell only has a limited
capacity to produce proteins or to reduce their concentration. Therefore, we first wanted
to see whether the CRP system was at all capable of responding to a quickly changing in-
put signal, such as stochastic fluctuations might generate. In this section we show that
the CRP system indeed responds considerably at sub cell cycle timescales to changes in
the cAMP signal it receives.

To probe the response of the CRP system to a quickly changing signal, we used our
∆cAMP strain that does not respond to intracellular metabolic feedback. Instead of the
intracellular signal, we provided it with an artificial cAMP signal by providing high (2100
µm) or low (43 µm) concentrations of cAMP in the cellular growth medium. These con-
centrations were chosen to lay respectively above and below the optimal cAMP value,
which we determined at 800 µm cAMP (supplementary figure 5.13). Additionally, to as-
sess the response of the CRP system we equipped these cells with a chromosomally in-
serted reporter construct that reads out the expression level of metabolic enzymes [153].
This reporter construct uses a lac operon promoter from which the lacI binding site has
been removed (see supplementary figure 5.14). The promoter is fused to an mVenus flu-
orescent reporter protein which allowed us to assess the expression level of metabolic
enzymes as induced by CRP. We therefor call this the metabolic reporter. We also in-
troduced a second reporter to our cells: a constitutive promoter fused to an mCerulean
fluorescent protein, see also figure 5.14. This will allow us to compare protein expres-
sion regulated by CRP with protein expression not regulated by CRP. We will refer to this
reporter as the constitutive reporter.

We grew the ∆cAMP cells in our microfluidic device (see methods section and chap-
ter 2) under the microscope, and first alternated between the low and high concentra-
tions of cAMP at 1 hour intervals ("fast pulses"), and then alternated between the same
concentrations at 5 hour intervals ("slow pulses"). The metabolic reporter responded
as expected, as its concentration went up when the concentration of cAMP was high,
and down when the cAMP concentration was low. During the fast pulses, the range of
reporter concentration was narrower (with population averages between 215 a.u. and
258 a.u) than during the slow pulses (where population average concentrations ranged
between 144 a.u. and 407 a.u.), indicating cellular metabolic concentrations could not
reach an equilibrium within a one hour-long pulse. Our data also allowed us to calcu-
late protein production rates, which we based on the slope (determined from a linear
fit) of the total fluorescence of the metabolic reporter at time points ti−1, ti and ti+1

(i.e. the value at time point t and the previous and subsequent values), divided by the
cellular area at ti (see methods section). Consistent with the observations on the con-
centrations, we saw that also the production rate of the metabolic reporter went up and
down with the cAMP concentration (supplementary figure 5.15.A). Additionally, we saw
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that the constitutive reporter concentration went down as the CRP reporter went up, and
vice versa (supplementary figure 5.15.B-C). This observation is consistent with the idea
that when certain large groups of genes are up-regulated, other genes are expressed less
[170]. In general, these observations confirm that we can control the CRP activity by con-
trolling the external cAMP concentration and that the reporter adequately reflects this
in our dynamical experiment. Importantly, in the fast regime, we see that the reporter
signal responds at time scales that are below the cell cycle time, which ranges between
approximately 1-2 hours.

This led to our next question: what is the effect of these changes in metabolic en-
zyme concentration on the cell? To gauge this, we looked at how cellular growth rate re-
sponded to the fluctuations in cAMP signal. Figure 5.2.B shows that also the growth rate
varied substantially, again suggesting the cell is susceptible to fluctuations in the cAMP
regulatory molecule. In the regime where the cAMP concentration changes hourly, we
see that low concentrations of cAMP correspond with lower growth rates, and that high
concentrations of cAMP correspond with higher growth rates (figure 5.2.B, supplemen-
tary figure 5.16.B). This indicates that during the fast pulses, the range of metabolic en-
zyme concentrations remained below the optimal value. Additionally, during the fast
pulses, the data points right before and after the time of switching cAMP concentration
show large changes in growth rate, whilst there is only 20 minutes in between two dat-
apoint and CRP controls a substantial fraction of genes in the proteome. This indicates
that the metabolic fluxes (and therefor growth rates) might be very sensitive to the met-
abolic enzyme concentration in this range of enzyme concentrations.

During the first slow pulse (with a low concentration of cAMP), the growth rate ap-
pears to decrease almost monotonically. However, both during the second and third
pulse (with a high and low concentration of cAMP respectively), the growth rate first
rises, and then decrease again. This can also be understood in the context of the opti-
mum curve (figure 5.1.B), as this probably indicates the concentration of enzymes now
reaches values both below and above the optimum.

To further investigate the behavior of the cells during the pulsing experiment, we
plotted a time trace of the growth rate against the metabolic reporter. Some parts of this
curve, especially those stemming from the slow pulses (figure 5.2.C, arrows 8-11), can
be related to the optimum curve. For example, parts indicated by arrows labeled 8 and
11 (figure 5.2.C), seem to follow such a curve. Also the part labeled by arrows 9 and 10
seem to follow an optimum curve, although it is not overlapping with the parts labeled
8 and 11. The lack of overlap indicates that the dynamics are more complicated than
simply tracing back and forth on a path described by a fixed function of two parame-
ters, like for example an optimum curve. This is further emphasized by the puzzling
behavior of the trace that stems from the fast pulses (arrows 1-7, figure 5.2.C). During
fast pulses, growth rates seem to change considerably in comparison with the change
in metabolic reporter, and moreover the overall slope of the trace seems to be negative.
This is striking, as we previously determined — based on the supplied cAMP concentra-
tion and observed growth rates — that during fast pulses the concentration of enzymes
remained lower than the optimal concentration. In contradiction, the negative slope of
the trace in figure 5.2.C now seems to suggests the opposite, namely that the concentra-
tion of metabolic enzymes is above the optimum. An explanation for this disagreement,
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and for the fact that the trace doesn’t adhere to a single path, could be that expression
of the metabolic promoter and expression of metabolic enzymes is not completely syn-
chronous. For example, there could be a delay between expression from the reporter
gene and the expression of other CRP-controlled genes. Given that not all promoters
that respond to CRP are equal, both in gene sequence and location in the chromosome,
it would not be surprising if the behavior of the CRP-responsive promoters is more rich
than a simple response in unison.

Nevertheless, taken together, the observations from the pulsing experiment show
that we can control and monitor CRP-induced expression by extracellular cAMP in a dy-
namical manner, and that the cell responds to cAMP pulses that occur on sub cell-cycle,
which indicates that it might also respond to stochastic fluctuations.
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Figure 5.2: The response of the CRP system to external variations. (A-B.) The concentration of
the metabolic reporter (A) and growth rate (B) over time during the cAMP pulsing experiment. Blue
dots correspond to single cell observations, and the black line is the population average. The con-
centration of cAMP in the growth medium is plotted above the graph on the same time scale, for
convenience, the times of switches are also indicated by dashed lines that end in coloured circles
on the x-axis. Red indicates a switch to a cAMP concentration of 2100 µM, and green a switch to 43
µM. (C) These two panels show how the relation between the growth rate and metabolic reporter
concentration evolves over time, where the colors of the trace and the numbered arrows indicate
the progression of time. The left panel shows the same data as the right panel, but zooms in on
the part of the trace where switches occur every hour. The regime with fast pulses (every hour) is
indicated by the colours black, light blue and pink, whilst the regime with slow pulses (every five
hours) is indicated in blue, green and yellow. Only the population average is shown (see supple-
mental figure 5.20 for a few examples of single cell traces). Black squares indicate the start and
end of the experiment. Big red and green circles indicate the switches towards high or low cAMP
concentrations respectively (these circles are placed at the centers of line segments connecting
two data points), small circles matching the color of the line segments indicate data points. In
between each data point are 20 minutes. See supplemental figure 5.15 for time traces of other
parameters measured during this experiment.

5.2.2. THE EFFECT OF STOCHASTIC FLUCTUATIONS ON CRP REGULATION

THE FEEDBACK LOOP AFFECTS POPULATION DYNAMICS

Since the CRP system seemed sensitive to changing input, we wanted to further probe
how cells growing in a constant environment respond to intracellular stochastic fluctua-
tions. We wanted to isolate and/or manipulate the regulatory response to these fluctua-
tions. We aimed to remove any potential response of the regulatory system to stochastic
fluctuations, while maintaining the mean expression level required in the cellular en-
vironment. This was done by growing our ∆cAMP strain on a gel pad with minimum
medium supplemented with lactose and 800 µM cAMP, the cAMP concentration that
we determined to be optimal (supplementary figure 5.13). On the other hand, in sin-
gle cells, the CRP feedback system will be unable to respond to internal fluctuations in
the metabolite concentrations. Using our metabolic reporter construct, we were able to
assess the CRP dynamics in the feedbackless cells. This experimental design gave us a
way to potentially decouple the regulatory response to stochastic intracellular changes
from the regulatory response to environmental changes, and thus give us a way to study
whether there is regulatory activity in response to stochastic changes.

We compared CRP expression dynamics in these cells without feedback against strain
ASC990, which are wild type E. coli cells, except that they have chromosomal inserts with
the metabolic and constitutive reporter constructs (see table 5.1). For simplicity, we refer
to this strain as wild type. The left panel in figure 5.3.A shows a scatter plot that relates
the concentration of metabolic reporter to the growth rate for a single cell experiment
with wild type cells on a gel pad. The scatter cloud appears to lay on a straight line with
a negative slope. The ∆cAMP cells without feedback on the other hand seem to show
a relationship between metabolic expression and growth rate which lays on a flat line,
instead of a negative slope (figure 5.3.A, green cloud in right panel). The contrast be-
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tween the wild type cells and ∆cAMP cells suggests that the CRP regulatory interactions
play a role in shaping stochastic fluctuations in the cell. To probe whether the changes
were not due to generic changes in cellular dynamics, we also investigated the consti-
tutive reporter that we introduced in our strains. As mentioned earlier, this probe was
aimed to report for protein expression dynamics of proteins not regulated by CRP. Fig-
ure 5.3.B shows that the expression-growth relationship of this constitutive reporter does
not change between cells with or without feedback (blue and green clouds). This sup-
ports the attribution of the change in dynamics observed in 5.3.A to the CRP regulation
responding to stochastically fluctuating metabolite concentrations. We will later try to
understand the nature of these changes using simulations (see section 5.2.3).

THE AVERAGE CELL

First, our "feedbackless" ∆cAMP cells allowed us to investigate a second question: how
do the stochastic deviations from mean behaviour relate to the mean behaviour itself? To
further probe the behavior of cellular populations, we performed two additional single
cell experiments where we grew them at 80 or 5000 µM cAMP respectively, in addition to
the previous experiment where we grew them at 800 µM cAMP.

Reassuringly, for the metabolic reporter and growth rate, the population average re-
lationship appears to follow an optimum curve for these three conditions (i.e. growth in
medium with 80, 800 or 5000µM cAMP), see figure 5.3.A. This is consistent with the opti-
mum curve we observed in bulk experiments (figure 5.13) and optimum curves observed
in earlier experiments [153]. Strikingly, we see that also for the constitutive reporter, the
population average relationship with growth rate seems to resemble an optimum curve,
but mirrored along the x-axis (figure 5.3.B). This observation prompted us to think about
the relationship between the concentrations of the two reporters, and hypothesize that
an increase in metabolic protein expression leads to a mandatory equal decrease in con-
stitutive protein expression and vice versa. Such an effect might result from limitations
on the total protein budget of the cell, and is consistent with previously described growth
laws [170]. This would predict that the the sum of the concentrations of metabolic re-
porter and constitutive reporter remains constant, which indeed appears to be the case
(supplementary figure 5.7, bottom left panel); see also supplementary note I. This al-
lowed us to predict a trend line for the population average relationship between consti-
tutive reporter and growth rate, which appears consistent with our data (figure 5.3.B).
Besides the concentrations of reporters, we can also quantify the production rates of
the reporters in single cells. These show striking population average relationships with
growth rate (supplementary figure 5.22). However, in supplementary note I, we show
that the population average production rates (both for the metabolic and constitutive
reporter) can be predicted well by the concentration, growth rate, and a simple math-
ematical model. This model was also used to generate algebraic curves that describe
the relationship between production rate and growth rate, that appear to be consistent
with the population average relationships between these two quantities (supplemen-
tary figure 5.22). We also plotted the relationship between the concentrations of the two
reporters, and the relationship between the production rates of the two reporters (sup-
plementary figure 5.23); the population average curves for these two relationships can
also be determined from the fact that the sum of the concentrations remains constant
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and by using aforementioned mathematical model, respectively. Thus, the relationships
between the population average parameters can be captured well by a few rules and a
simple model. In the next paragraph, we will discuss the behavior of single cells, which
appears to deviate from the relationships that we observed for population averages.

THE NOT SO AVERAGE CELL

We saw in the previous paragraph that the population average behavior of the CRP sys-
tem can be captured well by a simple model. However, the single cell behavior of both
the wild type and the ∆cAMP cells seems to deviate from the mean behavior, as shown
by the scatter clouds that show the concentration and growth rate for the single cells for
both these strains (figure 5.3). The single cell data of the wild type cells simply show a
negatively sloped relationship between CRP concentration and growth rate, whilst the
feedbackless single cells seem to follow a flat line of constant growth rate. The single cell
data points from the non-optimal cAMP concentrations (80 or 5000 µM cAMP) do show
a positive and negative slope respectively (5.3.A), consistent with the concentrations be-
ing below and above the optimal concentration, but overall the clouds from the three
conditions do not seem to lay on a continuous concave curve.

This deviation from the population average behavior across conditions is even more
pronounced in the concentration-growth relationship of the constitutive reporter: whilst
the population averages from the different conditions follow a concave curve, the scatter
clouds for all conditions — the wild type strain, and the ∆cAMP strains at, above and
below the optimum — all show a negative slopes (figure 5.3.B).

Taken together, these observations suggest that the dynamical behavior of single
cells does not follow relationships that exist for average quantities between different
conditions. Additionally, the fact that ∆cAMP cells that are unable to respond to inter-
nal metabolite fluctuations show substantially different behavior from those that can,
indicates that the CRP regulation network is actively responding to inputs when the cell
resides in a constant environment. To further understand the behavior of the single cells,
we turn to cross-correlation analyses in the next paragraph.

5.2.3. THE CRP RESPONSE TO STOCHASTIC FLUCTUATIONS

We want to understand the effect of fluctuations in cellular parameters on regulatory
interactions and other parameters (such as growth) at the single cell level. To under-
stand these dynamic relationships time is an important component. In this paragraph
we dissect the time dynamics with cross-correlations to show that metabolic fluctua-
tions would transfer to cellular growth rate if it were not for the existence of the negative
feedback CRP regulation.

CROSS-CORRELATIONS REVEAL MAJOR CHANGES DUE TO REMOVAL OF FEEDBACK

We start by considering the effect that single cell metabolic concentration fluctuations
have on growth rates. We use the cross-correlation RCM ,µ(τ) to determine the relation
between the metabolic reporter concentration (CM ) and past and future growth rates µ.
More precisely, as explained in chapter 2, the cross-correlation RCM ,µ(τ) calculates the
average correlation between CM at time t with µ at time t +τ. The colored lines in fig-
ure 5.4.A-B show the cross-correlation RCM ,µ(τ) for wild type (green) and feedbackless
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Figure 5.3: Artificial removal of negative feedback regulation changes the growth-metabolism
relationship and reveals its dynamic role. (A) Colored dots show single cell growth rate values
plotted against respective single cell concentrations of metabolic reporter, which is a proxy for the
concentration of metabolic enzymes. The left panel shows that wild type cells which deviate from
the population average (indicated by a black circle in the middle of the cloud) show a negative cor-
relation between metabolic reporter and growth rate. The green cloud corresponds to externally
supplied cAMP levels that lead to wild type growth rates (800 µM cAMP), the red and orange dots
correspond to cAMP concentrations that lead to diminished growth rates (80 and 5000 µM respec-
tively). The black lines show the average growth rate for cells that are binned according to concen-
tration, and the black isolines reflect kernel density estimates of the probability distribution (using
the Matlab function kde2d [50]). A comparison between the shape and slope of the cloud of the
wild type cells with the shape and slope of the ∆cAMP cells’ cloud, suggest that these two strains
show different metabolic dynamics. The white trend line is a second order polynomial fitted to the
population average values. (B) As panel A, except that this panel shows the relationship between
growth and the concentration of a constitutive reporter. The white line is a prediction based on
the optimum curve displayed by the metabolic reporter and the observation that the sum of the
metabolic and constitutive reporter concentrations remains constants.
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∆cAMP cells (blue). From these curves it is immediately apparent that the dynamic met-
abolic concentration-growth relationship is very different between cells that possess the
endogenous CRP feedback and those that do not. Firstly, as expected, the R values at
τ= 0 — which reflect the correlation in the scatter plots shown in figure 5.3 — are differ-
ent. But secondly and more importantly, the concentration-growth relationship of the
wild type cells shows a strong negative correlation at negative delays, whilst the ∆cAMP
cells show correlations that are moderately positive for most delays and approximately
equally strong at positive and negative delays. Thus, in wild type cells fluctuations in
single cell growth rate negatively correlate with future metabolic reporter fluctuations,
whilst in∆cAMP cells growth rate and metabolic reporter concentration fluctuate in con-
cert, but are less correlated. This indicates there is a difference in dynamics between the
wild type cells with feedback and the feedbackless cells. We will later use a model to
further interpret these dynamics (see the next section).

However, before further interpreting these dynamics, we will look at the relation be-
tween protein production rates and growth, as a previous study showed this can give
further insights in the dynamics of metabolism and growth [10]. We calculated cross-
correlations for the relation between the metabolic reporter production rate (pM ) and
the growth rate µ, both for the wild type and ∆cAMP strain. For both strains, the cross-
correlations show positive values, but the correlations at positive delays are more pro-
nounced in the ∆cAMP strain (figure 5.4.A-B). This shows that in single ∆cAMP cells,
there is more correlation between protein production and future growth rate. This anal-
ysis again indicates there is a difference in dynamics between the wild type cells with
feedback and the feedbackless cells.

Next, we examined the behavior of the constitutive reporter, to investigate whether
the difference in dynamics between wild type and feedbackless cells are indeed due to
CRP regulation and not due to an overall change in protein expression-growth dynam-
ics. We generated cross-correlations RCQ ,µ and RpQ ,µ, which correlated the concentra-
tion CQ and production pQ of the constitutive reporter (indicated with a Q) with growth
rate µ. These cross-correlation curves share similar features for both the wild type and
the ∆cAMP cells. The RCQ ,µ curves for these two strains both show negative correlations
at negative delays, and the RpQ ,µ curves of these two strains both show only very small
correlations (5.4.C-D). The fact that these cross-correlations are similar suggests that the
constitutive reporter has similar dynamics both in wild type cells as in∆cAMP cells. This
contrasts with the cross-correlations of the metabolic reporter, which are very different
for the wild type and ∆cAMP cells. This is consistent with our hypothesis that the dy-
namics between metabolic enzyme expression and growth are affected by the feedback
loop in the CRP system, and that dynamics of other protein expression are not affected
by this feedback interaction. This is in turn consistent with the idea that the feedback
loop is performing an active role in the wild type cells in response to stochastic signals.

In general, these observations highlight that the dynamic interactions between cellu-
lar parameters go beyond instantaneous relationships that are captured by scatter plots,
but instead show richer interactions that act over delays. To further interpret these rela-
tionships we turn to a minimal model of the cell.
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Figure 5.4: Without feedback, metabolic dynamics change and transmit to growth. (A-B) Cross-
correlations RCM ,µ(τ) between single cell metabolic reporter concentration M and growth rate
values µ (colored lines) and cross-correlations RpM ,µ(τ) between metabolic production rate pM
and growth rate values µ (black lines). Correlations for wild type cells are shown in A, while cor-
relations for feedbackless ∆cAMP cells (supplemented with 800 µM cAMP) are shown in B. (C-D)
Cross-correlations RCQ ,µ(τ) between single cell constitutive reporter concentration Q and growth
rate values µ (colored lines) and cross-correlations RpQ ,µ(τ) between constitutive production rate
pQ and growth rate values µ (black lines). Correlations for wild type cells are shown in C, while
correlations for feedbackless ∆cAMP cells (supplemented with 800 µM cAMP) are shown in D. For
all panels, the correlation (which is normalized) is plotted on the y-axis, and reflects the average
correlation between two parameters between time points t and t + τ, the delay τ is plotted on
the x-axis (in hours). The faded lines indicate cross-correlations from different microcolonies, the
darker lines their averages. The cross correlations are calculated from cell lineages as described in
chapter 2. Cross-correlations for cells that were grown at non-optimal cAMP concentrations are
shown in supplementary figure 5.24.
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A MINIMAL MODEL HELPS TO INTERPRET THE CROSS-CORRELATIONS

In the following sections we present a model that suggests the experimental data is con-
sistent with the hypothesis that without feedback, metabolism-growth dynamics would
be dominated by fluctuations that originate in metabolic protein production and metabolism
itself, but that with feedback, the transmission of these fluctuations is suppressed.

To establish our model, we drew on previous models by Dunlop et al. [15], Kiviet et
al. [10] and Towbin et al. [153]. The Kiviet et al. model used coupled stochastic linear dif-
ferential equations to elucidate the the dynamics between growth µ, enzyme production
p and enzyme concentration C . We also use these parameters, and — based on Towbin
et al. — we additionally use the parameter x to represent the metabolite concentration.
In our adapted model we model each of these four parameters by its own differential
equation. Similar to the Kiviet model, the influence of any parameter X on any other
parameter Y is mathematically modeled by coupling coefficients TY ←X , such that

Ẏ = (..)+TY ←X ·X .

Furthermore, also like Kiviet et al. we added terms that introduced noise into the sys-
tem, as well as dampening terms, to allow us to introduce stochastic fluctuations into
our model. Using such coupling terms and noise sources, we created a model for the
parameters µ, p, C and x that we think represents the biology of the cell, see figure 5.5.A.
In this model, the parameter x allowed for a concrete interpretation of metabolic dy-
namics, as growth µ and production of proteins p can be influenced by the metabolite
concentration x (trough transmission coefficients Tµ←x and Tµ←x respectively). In turn,
the protein concentration is set by production rate p and dilution rate µ, i.e.

Ċ = p −µC .

When a protein is enzymatically active, protein concentration fluctuations might influ-
ence the metabolite concentration x through transmission coefficient Tx←C . Finally,
this model also allows for a conveniently simple interpretation of the metabolite feed-
back onto the CRP regulation: it might be implemented as a negative contribution to the
transmission coefficient Tp←x . We propagated this model numerically to simulate dif-
ferent modes, which we can use as reference to understand our experimental data. See
supplementary note II for a more detailed description of the model.

THE MODEL CONNECTS EXPERIMENTAL CROSS-CORRELATIONS TO TYPES OF DYNAMICS

Previously, the Kiviet et al. model presented three biologically relevant modes of how
fluctuations transmit from one parameter to the next [10]. We first used our model to re-
produce these modes, which are the dilution mode, the catabolic mode and the common
mode. Using our model, we simulated for each mode the dynamics between produc-
tion rate (p), concentration (C ), metabolite concentration (x), and growth rate (µ), and
calculated the appearance of the associated cross-correlations RC ,µ(τ) and Rp,µ(τ) (see
supplemental notes II for details). In the first mode, called the dilution mode, generic
fluctuations in the cellular growth rate (i.e. growth rate fluctuations not attributed to
metabolism or fluctuations in the concentration of the enzyme of interest) are the largest.
This leads to dynamics in which dilution by volume growth dominates the cross-correlations.
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Fluctuations in growth rate are thus followed by negatively correlated fluctuations in
concentration, as expressed by the negative values of RC ,µ(τ) at negative τ values. Since
volume growth does not interact with protein production, the correlation between our
other pair of observables p and µ was found to be zero for all τ values. Both the RC ,µ(τ)
cross-correlations and the Rp,µ(τ) cross-correlation for the dilution mode are shown in
figure 5.5.B. In the second mode, the catabolic mode, fluctuations in p dominate the
system, and are propagated via C and x to µ. This leads to positive values of RC ,µ(τ)
and Rp,µ(τ) at positive τ values, as shown in figure 5.5.C. Such a mode implies that con-
centration fluctuations can have cell-wide consequences, even affecting the growth rate
of the cell. Finally, the common mode relates to propagation of noise that arises in
the metabolite concentration as a result of fluctuations arising in metabolic processes.
This mode represents a situation where such fluctuations have simultaneous effects on
growth and protein production, which led to positive values of RC ,µ(τ) for both posi-
tive and negative τ values, whilst correlations with concentration lagged slightly behind.
Cross-correlations for the common mode are shown in figure 5.5.D. These modes can be
used a reference to interpret our own experimentally obtained cross-correlations. See
supplementary notes II for parameter values and further details.

AN ACTIVE ROLE OF FEEDBACK IN CONSTANT ENVIRONMENT

We first compared the cross-correlations of these three modes (figures 5.5.B-D) with
the cross-correlations of the constitutive reporter in wild type and ∆cAMP cells (figures
5.4.C-D). The constitutive cross-correlations, both for wild type and feedbackless cells,
appeared to match with the dilution mode. In this mode, protein fluctuations are not
correlated with future growth correlations, which is associated with proteins that do not
have a big effect on metabolism or growth rate. This is consistent with a constitutively ex-
pressed fluorescent protein reporter that does not interact with cellular processes. This
mode also provided an explanation for the negative slope in the scatter plots that show
the single cell relationship between constitutive reporter concentration and growth rate
(figure 5.3.B): the negative slope could originate from the response of the metabolic re-
porter to stochastic growth rate fluctuations.

Next, we looked at the dynamics of the metabolic reporter, which were distinctively
different between the wild type cells and the feedback-less∆cAMP cells (figure 5.4.A and
5.4.B respectively). The wild type cells showed cross-correlations that also seem simi-
lar to the dilution mode. This implied that in wild type cells (which still have feedback
regulation), no fluctuations are propagated from metabolic expression to growth. On
the other hand, the ∆cAMP cells without feedback, showed different cross-correlations.
These were harder to directly connect to one of the modes, as the pair of RC ,µ(τ) and
Rp,µ(τ) curves did not exclusively fit a single of the three presented modes. When we
however simulated a combination of all of the three presented modes, this showed cross-
correlations that were similar to the RC ,µ(τ) and Rp,µ(τ) curves we saw for the meta-
bolic reporter in the ∆cAMP cells without feedback (compare figures 5.4.B and 5.5.E,
see supplementary notes II for simulation details). This suggests that fluctuations in
∆cAMP cells might originate at three spots: in the production of metabolic enzymes, in
metabolism and in processes related to cellular growth. At τ= 0 the combined mode pre-
dicts a strong positive slope between the concentration and growth rate, and a smaller
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positive slope between production rate and growth rate. The latter is indeed observed
(see figure 5.22.A), and the slope between concentration and growth rate is indeed smaller,
but not clearly positive (figure 5.3.A). Note however that the correlation at zero delay
(τ = 0) appears to be an exception, as at other delays there is a positive correlation be-
tween the metabolic reporter and growth rate.

The model also provided a way to to analyze the effect of the feedback in the CRP
system. Following the topology that is described in literature, where CRP-induced genes
are inhibited by metabolites (see introduction), we added a negative component to the
x → p coupling; i.e. we decreased the value of Tx←p . Strikingly, we saw that when we
added feedback to the mixed mode presented in figure 5.5.E, it began to resemble the
dilution mode — as presented in figure 5.5.F. This is indeed consistent with the cross-
correlation curve that we saw for the wild type cells that still possess the feedback regula-
tion 5.4.A. Thus, since the possession of the feedback loop is the key difference between
the wild type and ∆cAMP strain, this suggests we can attribute the change in dynamics
between ∆cAMP and wild type cells to the negative feedback. Our model shows that the
change in dynamics is consistent with a scenario where wild type cells experience fluc-
tuation from many sources — as shown by the mixed mode for the ∆cAMP cells — but
that transmission of these fluctuations is negated by the negative feedback loop. This
also gives an interpretation for the shape of the scatter clouds observed earlier where
the metabolic reporter concentration was plotted against growth rate for wild type cells
(figure 5.3.A). The negative slope might result from growth rate fluctuations, that have
become dominant in the system due to the reduction of transmission of fluctuations
that originate in the metabolism.

Thus, although this model is rather simple and a biological cell much more com-
plicated, the cross-correlations are consistent with modeling results in which the CRP-
regulation by negative feedback plays an active role even in a constant environment.
Specifically, it suggests that the CRP regulation might reduce the transmission of meta-
bolic fluctuations, and prevent them from having cell-wide effects, such as on the cellu-
lar growth rate.
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Figure 5.5: A simple model explains how feedback filters out noise transmission. (A) We used
a coupled stochastic differential equations model with noise sources and dampening terms (also
called Ornstein-Uhlenbeck processes). Here, p represents the production rate of any protein with
concentration C that might influence the cells metabolic processes — represented here by an x
that refers to the metabolic system involved that may give feedback to the production rate — and
µ represents the growth rate of the cell. The production rate is set by the overall performance
of the metabolism (hence the arrow from x to p), inhibitory feedback by metabolites (hence the
inhibitory arrow) and noise on the production process. The concentration is set by a combina-
tion of production and dilution terms (hence the positive and inhibitory arrow pointing towards it
from these quantities). The cell’s metabolic performance x is set by the concentration of proteins
C and noise from other cellular sources. This performance x then sets the growth rate µ, which
also experiences noise from other cellular sources. All parameters that are displayed in boxes are
modeled explicitly by differential equations. Arrows indicate interactions. Circles with a twiddle
in it represent noise sources. See main text and supplementary note II for equations. (B) When
the noise source on µ is largest, and transmission of noise only occurs through the arrow going
from µ to C , this is called the dilution mode. This mode represents a case where fluctuations in
the protein concentration C do not have a large effect on the cell’s metabolism. This might be
because the protein has no metabolic function, but it could also be that the protein does play an
important cellular role but the cell is insensitive to fluctuations in the protein. (C) In the catabolic
mode, noise on the production rate p is largest, and this is transmitted from p to C , from C to x
and finally from x to µ. This leads to a delayed positive correlation between protein expression
and growth. (D) In the common mode, the noise source on x is the largest, and this affects both
production and growth simultaneously, leading to the symmetric Rp,µ(τ) peak. (E) When the cat-
egories represented by panels B-D are combined, all kinds of dynamics are possible. This panel
shows a combination of the three modes with an emphasis on the dilution and catabolic modes,
leading to a broad RC ,µ correlation and a taller Rp,µ correlation. (F) By adding feedback to the
situation in panel E (effectively decreasing the strength of the x → p interaction), these positive
correlations can be suppressed, reverting the dynamics to something that is more similar to the
dilution mode.

5.3. CONCLUSIONS

In this chapter, we investigated how the CRP regulatory networks responds to environ-
mental inputs versus stochastic inputs. A negative feedback loop, which inhibits CRP
activity (through cAMP) when metabolite concentrations increase, is known to be re-
sponsible for adjusting metabolic enzyme expression to the growth medium of the cell.
We hypothesized that this regulatory interaction may respond also to metabolite fluctu-
ations that occur in the cell due to noise.

We first subjected the CRP system to a quickly changing cAMP input signal. To
artificially control the input signal, we used ∆cAMP cells that do not respond to internal
regulation, but instead responded to the cAMP concentration that we provided in the
cellular growth medium. We also introduced a reporter construct to gauge the metabolic
enzyme expression levels. The cellular response to an input that alternated between a
high and low signal showed that it takes hours before cells reach a new steady state, but
much less than an hour before a change in metabolic expression or growth rate can be
detected. We thus concluded that cellular networks have the potential to react at sub
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cell-cycle timescales to changing inputs such as stochastic fluctuations in metabolite
concentration.

Next, we aimed to uncover the regulatory dynamics, if any, of the CRP system to
stochastic input signals. We grew ∆cAMP cells in 800 µM cAMP, the optimal concen-
tration, which sustained growth rates that compare to wild type growth rates. This re-
sulted in cells that expressed the right amount of metabolic enzymes, but whose CRP
regulation could not respond to stochastically changing metabolite concentrations. By
comparing metabolic expression versus growth scatter plots of these ∆cAMP cells with
scatter plots of wild type cells (which could respond to both environmental and stochas-
tic inputs) we saw that metabolism-growth dynamics was markedly different between
the two conditions. Since the absence of stochastic input to the CRP system resulted in
a change in metabolism-growth dynamics, this suggested that the CRP system responds
to stochastic fluctuations in metabolite concentrations.

To further investigate what these changes in dynamics mean, we not only compared
metabolic expression values with growth rates that were both obtained at the same point
in time, but also calculated the correlation between metabolic expression with past, cur-
rent and future growth rates. This was done by calculating cross-correlations. Using
cross-correlations we saw that correlations in the feedback-less ∆cAMP cells and wild
type cells were different over a wide range of delays. This strengthened our idea that
stochastic fluctuations have a profound effect on the CRP regulatory system dynamics.

In order to understand the meaning of the difference in dynamics, we used a stochas-
tic differential equation model. This model suggested that the positive correlations we
observed between metabolic reporter expression and growth in feedbackless ∆cAMP
cells are consistent with dynamics that are influenced by fluctuations in enzyme expres-
sion, metabolism itself and volume growth. The negative correlations between met-
abolic concentration and past growth rate observed in wild type cells are consistent
with dynamics dominated by fluctuations in volume growth only. This difference be-
tween wild type and ∆cAMP cells, i.e. cells with and without feedback respectively, sug-
gested to us that the negative feedback regulation might actually prevent fluctuations in
metabolism from propagating throughout the cellular biochemical network.

5.3.1. DISCUSSION AND OUTLOOK

Given the idea that fluctuations might be prevented from propagating, we also investi-
gated whether the coefficient of variation (CV) of the growth rate was higher for ∆cAMP
cells compared to wild type cells. As supplementary figure 5.21 shows, it is indeed very
slightly higher, but more data is required to make statistical claims.

Nevertheless, we observed that the CRP metabolic regulation responds to stochastic
fluctuations in cellular concentrations. We know that the CRP regulation also func-
tions to adjust enzyme expression in response to the extracellular environment. The
negatively sloped relationship between metabolic enzyme expression and growth that
we observe (figure 5.3), brings to mind the negatively sloped C-line [170] that can be
used to understand growth in different conditions. The idea behind the C-line and as-
sociated growth laws is that some carbon sources provide a higher energy yield, which
allows cells to express less metabolic enzymes and spent more resources on other cel-
lular processes, leading to a higher growth rate. Since cells in our experiments all grow
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in the same environment in the same sugar, such an explanation however does not ap-
ply to our observations. We argue that the trend we observed should be viewed in the
context of the underlying growth-metabolism dynamics, instead of the context of the
system’s response to perturbations in the cellular environment. This might also apply
more broadly. The response of biochemical networks to the change in one parameter
(e.g. a change in sugar source), is often well understood. However, stochastic fluctua-
tions might occur in all cellular components, meaning that many input parameters to
regulatory networks are constantly changing. This is perhaps why it is hard to under-
stand the fluctuations using a mechanistic description of a regulatory network (it is for
example hard to apply equations in supplementary note III and understand the stochas-
tic dynamics), but instead it is possible to describe the mechanics with a coarse grained
linear model as we did (figure 5.5).

Another question one might ask is: why do not all single cells simply grow at the
rate of the fastest growing cell in the population? Our observations indicate that fluctua-
tions can have large effects on the cellular state, as illustrated by the correlation between
metabolic expression and the growth rate. It might simply be too difficult for the cell
to control such fluctuations and set a constant high growth rate. On the other hand, a
versatile cellular population might have an evolutionary benefit (see also chapter 4). It
could be that therefor there is no evolutionary pressure for cells in a population to all
become fast growing and similar individuals.

To further probe these questions, one could device additional experiments. Firstly,
an interesting alternative to also create a feedbackless strain, would be to create a con-
struct with an inducible promoter that expresses constitutively active CRP protein. A
challenge in this experimental approach might be that the known constitutive forms of
CRP have a rather low activity, or are still mildly responsive to cAMP [186, 187]. Secondly,
it might be interesting to probe different conditions, and e.g. change the sugar source in
the growth medium. For certain sugar sources, like glucose, we expect similar behaviour
as observed in this manuscript, but some sugar sources might be more challenging for
the cell to handle, and alter the dynamics. For example, xylose is a sugar source for which
it was observed that concentrations need to fall in a very narrow concentration range to
observe growth at all [188]. Growing cells in such a sugar source might provide an op-
portunity to observe a bigger effects of feedback removal. Or, other interesting alternate
sugar sources are pyruvate, glycerol and galactose. These are sugar sources where the
metabolic enzyme expression is known to be sub-optimal, since the negative feedback
loop only provides a "rule of thumb" to the cell, which is not adequate for these sugar
sources [153]. This might lead to different dynamics also. Follow-up experiments could
also involve further investigating the role of the α-ketoacids, which could be introduced
in experiments to disturb the feedback loop. More broadly speaking, CRP is a versa-
tile regulatory protein.As pointed out by the Ecocyc database [171], it is also involved in
osmoregulation [189], stringent response [190], biofilm formation [191], virulence [192]
nitrogen assimilation [193, 194], iron uptake [195], competence [196], multidrug resis-
tance to antibiotics [197], and expression of CyaR sRNA [198]. An open question remains
what the effect of fluctuations in CRP activity is on these processes. And finally, there are
many other regulatory systems that are known for their regulatory role in responding to
environmental changes. It will be interesting to investigate whether all of these systems
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are also actively responding to stochastic input signals. If so, that would mean that the
often used term "growing in steady state" requires thorough revision.

5.4. METHODS

ASC number Shorthand Description Source
ASC838 Wild type MG1655 strain obtained from Ben-

jamin Towbin, Uri Alon lab (also known as
strain bBT12 and CGSC number 8003). This
is the basis for all Towbin et al. strains.
Known mutations: λ-, ∆fnr-267, rph-1. (No
resistance modules.)

[153]

ASC839 cyaA, cpda null mutant. Obtained from Ben-
jamin Towbin, Uri Alon lab (also known as
strain bBT80). Based on ASC838. (No resis-
tance modules.)

[153]

ASC841 p_s70 MG1655 wild type strain with modified lac
promoter fused to GFP (sigma 70 reporter)
on pSCS101 plasmid. (Kanamycin resistant.)

[153]

ASC842 p_CRPr MG1655 wild type strain with modified lac
promoter fused to GFP (CRP reporter) on
pSCS101 plasmid. (Kanamycin resistant.)

[153]

ASC990 Wild type strain, except for ∆(galk)::s70-
mCerulean-kanR and ∆(intc)::rcrp-mVenus-
cmR. (Kanamycin and chloramphenicol re-
sistant.)

VS

ASC1004 ∆cAMP Strain based on ASC839 (∆cyaA ∆cpda), in-
troduced ∆(galk)::s70-mCerulean-kanR and
∆(intc)::rcrp-mVenus-cmR. (Kanamycin and
chloramphenicol resistant.)

VS

Table 5.1: Strains used in this work. ASC stands for AMOLF strain collection. VS indicates this
strain is produced at AMOLF by technician Vanda Sunderlikova.

Strains See also table 5.1. Strains ASC838, ASC839, ASC841 and ASC842 were a kind
gift from the Alon lab. The sequence of the modified lac promoter which reports for CRP
activity (p_CRPr) is:
CGTCAGGAGGAGAGGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCT
CACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGT
TGTGTGCATGGATAAGTAGCTAGGAATTTCACACTGCAAACAGCT.
Which is the LacZ promoter with LacI1 site reshuffled (created by Towbin et al. using
synthetic oligos [153]). The sequence of the lac promoter modified to report for consti-
tutive fluctuations (p_s70) is:
CGTCAGGAGGAGAGGGGCAGTGAGCGCAACGCAATCAGATCAAATGTGTC
GTTTCCATAGGCACCCCAGGCTTGACACTTTATGCTTCCGGCTCGTATAA
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TGTGTGCATGGATAAGTAGCTAGGAATTTCACACTGCAAACAGCT.
This sequence has reshuffled CRP binding sites and a reshuffled lacI binding site. The
sigma 70 site was changed to a consensus binding site [153]. Figure 5.6 highlights some
important features of the LacZ promoter and indicates where the synthetic promoters
differ from the native promoter. To be able to use the p_CRPr and p_s70 reporters in
the same strain, the reporters in strains ASC841 and ASC842 were used to create new
reporters using the promoters created by Benjamin Towbin but fused mCerulean and
mVenus fluorescent proteins. These reporters were chromosomally inserted in the ASC838
and ASC839 strains using a lambda red protocol, resulting in the strains labeled ASC990
and ASC1004, respectively. Strains that were obtained or made for the purpose of this
project but not used for experiments presented here, are listed in supplementary table
5.2. All strains listing ref. [153] as source were kindly supplied by the Alon lab.

Pulsing experiment. Strain asc1004 was grown O/N at 30 °C and 10X concentrated
by spinning the cells down at 2300 RCF, removing supernatant and resuspension in a
table top centrifuge. Cells were introduced into microfluidic device 2 (see chapter 3) with
a syringe, after which the device was placed under the microscope in a 37 °C temperature
chamber and we supplied TY medium (flow rate 8 µl/min) for a few hours, whereafter
we switched to M9 minimal medium plus 0.2 mM uracil, 0.1 % lactose, 0.01 % tween and
300 µM cAMP (flow rate 7 µl/min). After this cells were grown in the same medium but
supplemented with 0.001 % tween and sequentially 1hr of 2100 µM cAMP ("high") and
1hr of 43 µM cAMP ("low"), which was repeated 5 times (totaling 10hrs), and then 5 hrs
low, 5 hrs high, and 5 hrs low (all at a flow rate of 8 µl/min). Times at which the valve
switches were recorded and in the analysis corrected by adding the arrival delay of 58
minutes (in this particular experiment that delay was not yet optimized). Fluorescent
images were taken every 20 minutes, using a CFP and YFP filter set (chroma models
49001 and 49003 respectively), both with exposure times of 150ms. A selection of this
sequence was analyzed and displayed. Data in the figure 5.3 is based on experiments in
which the same physical xenon arc light bulb was used to measure fluorescence for each
experiment. Figure 5.4 is based on experiments in similar conditions, but contains more
experiments, which also include experiments with a different fluorescent light bulb.

Gel pad experiments. A detailed description of the protocol for gel pad experiments
including a list of the involved chemicals can be found in chapter 3. Briefly, polyacryla-
mide gel pads were soaked (at 37 °C and on a shaker) trice in the desired growth medium
for a period of 30-90 minutes right before the experiment. In this case, M9 minimal
medium was used supplemented with lactose (0.01 % g/mL) and uracil (0.2mM), and
only in the last wash step also with Tween20 (0.001%). Also, the medium was supple-
mented with the desired concentration of cAMP (Sigma Aldrich) if applicable. 1 µl cul-
ture of the applicable strain was grown O/N in the same medium (OD 0.005; or diluted
to that OD if necessary from exponential growth phase) and inoculated on the gel pad.
Data acquisition was then performed as described in chapters 2 and 3.

More detailed information on the computer analyses. For a description of the com-
puter analyses and more information see chapters 2 and 3. However, some details are
also worth mentioning here. Since concentrations, production rates and growth rates
play a large role in this chapter, it is good to indicate how they are calculated. Concen-
tration (a.u./px) is defined as the mean fluorescence signal (a.u.) over all pixels of the
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attlacZ_146upstream_region_reversecomplemented      ggtttcccgactggaaagcgggcagtgagcgcaacgca aatgtgagttagctcactc 
Benjamin_CRP_reporter                            -----CGTCAGGAGGAGAGGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTC 
                                                      *   *   * *   ***************************************** 

lacZ_146upstream_region_reversecomplemented      attaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtga 
Benjamin_CRP_reporter                            ATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGCATGGATAA 
                                                 *************************************************** *    * * 

lacZ_146upstream_region_reversecomplemented      gcggataacaatttcacacaggaaacagcta 
                            GTAGCTAGGAATTTCACACTGCAAACAGCT- 

                                                 *  * **  ********** * ********  

ATTBenjamin_CRP_reporter      CGTCAGGAGGAGAGGGGCAGTGAGCGCAACGCA AATGTGAGTTAGCTCACTCATTAG 
Benjamin_s70_reporter      CGTCAGGAGGAGAGGGGCAGTGAGCGCAACGCAATCAGATCAAATGTGTCGTTTCCATAG 
                           *********************************** *     * *  *     **  *** 

Benjamin_CRP_reporter      GCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGCATGGATAAGTAGC 
Benjamin_s70_reporter      GCACCCCAGGCTTGACACTTTATGCTTCCGGCTCGTATAATGTGTGCATGGATAAGTAGC 
                           ************* ************************  ******************** 

Benjamin_CRP_reporter      TAGGAATTTCACACTGCAAACAGCT 
Benjamin_s70_reporter      TAGGAATTTCACACTGCAAACAGCT 
                           ************************* 

atg
atg

Figure 5.6: Promoter constructs used in this manuscript for metabolic and constitutive re-
porters. This figure displays additional details about the promoter sequences used for the re-
porters in this study. These promoter sequences were designed by Towbin et al. [153]. This image
supplies additional information about them. (A) This panel compares the upstream sequence
of the LacZ coding sequence (and the start codon, shown in green) as retrieved from the NCBI
database (accession: NC_000913; region: 363231..366305; version: NC_000913.3) with the syn-
thetic CRP reporter promoter sequence by Towbin et al [153]. For reference, the CRP binding sites
as reported in refs [199] and [200] are highlighted, as are the LacI binding site and the -10 and -35
upstream locations. (B) This panel shows the promoter for the CRP reporter construct compared
with the sigma 70 (constitutive) promoter sequence by Towbin et al. [153].
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bacterial cell. To calculate the production rate (a.u. px−1 min−1), first the sum of the
fluorescence signal (a.u.) over all pixels that make up a cell is calculated. For each frame
n where a fluorescence image was taken, the production rate is determined as the slope
of a linear fit through three points n−δn, n, and n+δn, where δn is the interval at which
fluorescence pictures are taken. This production rate is then subsequently divided by
the total number of pixels of the cell in frame n. The growth rate (units dbl/hr when
the symbol µ is used and units /min when the symbol λ is used) is determined for each
frame n by fitting an exponential curve through frames n−δn/2 until n+δn/2 (or some-
times a smaller range). Note that to determine scatter plots and correlations, only frames
where fluorescence images were taken are considered. This means that the choice for a
growth rate fitting window of width δn +1 ensures that all data is used, but no point is
used twice
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SUPPLEMENTARY NOTES

I. UNDERSTANDING STEADY STATE VALUES OF METABOLIC AND CONSTITU-
TIVE PRODUCTION RATES, CONCENTRATION, AND GROWTH RATES

MOTIVATION

The purpose of this chapter is to understand single cell stochastic deviations away from
steady state. However, understanding the steady state relationships themselves between
metabolic and constitutive protein production, concentration and the cellular growth
rates helps us place the stochastic fluctuations away from the steady state values in the
right context. We explain our understanding of this matter in this supplementary.

MODEL AND FITTING OF MODEL TO DATA

To better understand steady state relationships it is convenient to write down the differ-
ential equations that describe the (supposed) time evolution of the system, and consider
the steady state condition where the time derivative is zero. Let us here start with an
equation for the metabolic reporter. Generally, the change in metabolic protein concen-
tration CM (a.u/(px)) over time is set by a production and a dilution term:

˙CM = pM −CMλ=φM (cAMP)λ−CMλ, (5.1)

where pM is the production rate (a.u/(px min)) of metabolic protein and λ (/min) the
growth rate of the cell. (We use the symbol λ here for growth rate instead of µ to be
able to distinguish the units used; we use µ for growth rates which are expressed in
doublings/hour.) We can determine all these three parameters from our single cell ex-
periments. Following Towbin et al. [153], we additionally propose pM = φM (cAMP)λ,
where φM (a.u/(px)) is a function of the concentration of cAMP and scales proportion-
ally to it; the fractional production φM sets the production rate pM as a fraction of λ. To
understand the interaction between the metabolic reporter expression and the constitu-
tive reporter expression we were inspired by the linear regulation model posed by You et
al. [170], and pose

φQ = T −φM , (5.2)

where φQ is the fractional production of the constitutive reporter, and T the total frac-
tional production of both CM and CQ , which we consider a constant independent of the
cAMP concentration. (Note that this ignores interaction with other cellular protein sec-
tors such as ribosomes.) This implies that

ĊQ = pQ −CQλ=φQλ−CMλ= (T −φM (cAMP))λ−CMλ, (5.3)

where CQ is the concentration of the constitutive reporter, p its production rate and φQ

its fractional production rate. Based on equations 5.1-5.3 and the steady state assump-
tion ˙CM = ĊQ = 0 we can make some predictions. Firstly, this suggests that the produc-
tion rates (a quantity that we determine directly from our experiments) divided by the
growth rates should be equal to the concentration for both the reporters. The top two
panels in figure 5.7 show that this is indeed the case. Secondly, it implies that the sum



SUPPLEMENTARY NOTES

5

97

of the concentration of the two reporters should be equal, since φM (cAMP) = CM and
φQ (cAMP) =CQ and thus

T =CM +CQ . (5.4)

This relationship is confirmed in the bottom left panel of figure 5.7. One might have
expected that ribosomal expression also factors into the relationship between CM and
CQ — e.g. T = CQ +CM +R with R the ribosomal concentration. Surprisingly, equation
5.4 implies that this is not the case here; R either remains constant or R does change with
CM but does not affect CQ . (Note that the observations in [170] are in wild type cells; so
the observations here do not necessarily contradict their observations.) In any case, the
steady state condition implies thatφM (cAMP) =CM (equation 5.1), and thus that we can
set the concentration of CM directly by adjusting the supplied cAMP concentration. In
other words: CM ∝ cAMP. Furthermore, Towbin et al. observed a concave relationship
between the CRP concentration and growth rate λ, which they call the "O-curve" (where
the O stands for "open loop" [153]) and we call the optimum curve. We indeed observe a
similar relationship, as shown in figure 5.7. Towbin et al. derive a functional form for this
relationship, but for simplicity we have fitted a 3rd degree polynomial to this O-curve, i.e.

λ= fλ(CM ) = aC 2
M +bCM + c, (5.5)

where a, b and c are fitting parameters. Using the relationships we have seen so far
(figure 5.7), we can predict the relationships between the parameter pairs λ-CQ , pM -pQ ,
pM -λ, and pQ -λ. Firstly, the relationship between λ and CQ is defined by:

λ= fλ(T −CQ ), (5.6)

which is indeed supported by the top left panel in figure 5.8. Secondly, the relationships
between p and λ can be parameterized by CM and CQ :(

pM ,λ
)= (

CM fλ(CM ), fλ(CM )
)(

pQ ,λ
)= (

CQ fλ(T −CQ ), fλ(T −CQ )
)

; (5.7)

which can be found using the steady state condition and 5.1. These equalities in equa-
tion 5.7 are corroborated by the bottom left and bottom right panels in figure 5.8. Thirdly,
we find that pM and pQ can be related through parameterizing (pM , pQ ) by CM :(

pM , pQ
)= (

CM fλ(CM ), (T −CM ) fλ(CM )
)

. (5.8)

This relationship is indeed confirmed in the top right panel of figure 5.8. Note that no
additional fitting was performed in figure 5.8.

CONCLUSION

In conclusion, three ingredients determine the steady state relationships between metabolism,
constitutive protein expression, and growth in this chapter: (1) The interaction between
protein production and dilution that set the concentration, (2) the concave relation-
ship ("O-curve") between metabolism and growth (figure 5.7 bottom right panel) and
(3) the fact that the total concentration metabolic and constitutive expression remains
constant. For a more extensive treaty and mathematical description of the steady-state
CRP regulation the reader is referred to Towbin et al. [153].
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Figure 5.7: Fitted relationships between concentration, production rate and growth rate. Circles
are based on population means of microcolonies of wild type cells (blue circles) or ∆cAMP cells
supplied with 80, 800 and 2000 µM cAMP (red, green and yellow circles respectively), which were
grown on gel pads with lactose-supplemented minimal medium; this data was also used for the
scatter plots (figures 5.3, 5.22, 5.23). (Top) Concentration is predicted to equal production rate
divided by growth rate. Though there is a minor offset to the line x=y (solid black line) as shown
by the fits (dashed and dotted lines), this prediction seems approximately correct. (The dotted
line only is based on the average offset, whereas the dashed line is a polynomial fit.) (Bottom left)
This panel shows that the sum of the metabolic and constitutive reporter concentrations remains
approximately equal. The mean sum is 445 a.u./px. (Bottom right) This panel shows the concave
relationship between growth and the metabolic reporter concentration. The dashed line shows a
second degree polynomial fit to the data points, which describes the optimum curve. The fitted
parameters (equation 5.5) are a =−4.38 ·10−7, b = 2.55 ·10−4 and c =−0.0276.
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Figure 5.8: Observed and predicted (not fitted) relationships. As figure 5.7, circles are based
on population means of microcolonies of wild type cells (blue circles) or ∆cAMP cells supplied
with 80, 800 and 2000 µM cAMP (red, green and yellow circles respectively), which were grown
on gel pads with lactose-supplemented minimal medium; this data was also used for the scatter
plots (figures 5.3, 5.22, 5.23). (Top left) The observed and predicted (equation 5.6) relationship
between the constitutive reporter production and growth rate. (Top right) The observed and pre-
dicted (equation 5.7) relationship between the constitutive and metabolic production rates. (Bot-
tom left) The observed and predicted (equation 5.7) relationship between the metabolic produc-
tion rate and growth rate. (Bottom right) The observed and predicted (equation 5.8) relationship
between the constitutive production rate and growth rate.
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Noise source Noise transmission

Figure 5.9: (A) Original diagram as printed in Kiviet et al. [10], except that we updated the symbols
to match our notation. p is production rate, C is the concentration of the protein of interest, and
λ the growth rate. (B) More technical diagram that describes the relations between parameters
that are described by ODEs (boxes with solid outlines), and noise sources Np , Nx , and Nλ, as they
were modeled in Kiviet et al. C stands for the concentration of the protein of interest, λ for growth
rate. Arrows indicate how ODEs or functions that describe the parameters of interest are coupled.
Arrows that go trough the dashed box labeled p correspond to terms that not only couple the two
parameters connected by the arrow, but also make up the production rate parameter p (see also
main text). Arrows that go through the dashed box labeled x are arrows which are thought to be
biologically connected to the metabolism. Compared to the model used in this manuscript, which
describes all four parameters p, C , λ and x by ODEs (see also figure 5.5.A), Kiviet et al. model less
parameters by ODEs [10].

II. ORNSTEIN-UHLENBECK FLUCTUATIONS MODEL

INTRODUCTION

In these notes I discuss a model which models how noise originates and transmits from
and between observables respectively. I will discuss the model proposed by Philippe
Nghe in the work by Kiviet et al. [10], which is more succinct than the model used in this
chapter.

Parameters that are considered in general are the number of enzymes (C ), the rate at
which these enzymes are made (p), and the growth rate of the cell (λ)3. There is also the
parameter x, which can be interpreted as a general noise source or the concentration
of metabolites. Typically, enzymes disappear by dilution due to growth. Furthermore,
there are noise sources, which add noise to these parameters. Depending on how they
are implemented these source appear as Nx , Nλ and Np or Γx , Γλ and Γp , the subscripts
indicate to which parameter the noise source adds noise.

The goal of this model is to interpret the cross-correlations between λ, C and p —
RC ,λ(τ), Rp,λ(τ) — that are obtained from experimental data.

IMPLICIT NOISE EQUATIONS

A straight forward way to model a system with these parameters, is writing down an or-
dinary differential equation (ODE) for each parameter involved. The Kiviet et al. model

3In this chapter, we use both the symbols λ and µ to indicate growth rate, λ when the units are
/min and µ when the units are doublings/hour.
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takes a somewhat different approach (it is more concise), which will be discussed later.
The ODEs below relate to the cartoon in Fig. 5.5.A and describe the dynamics per pa-
rameter:

ẋ =− (x −x0)

τ

+ cx ·Γx

+Tx←C · c ′x · (
C

C0
−1) (5.9)

λ̇=− (λ−λ0)

τλ

+ cλ ·Γλ
+Tλ← x · c ′λ · (

x

x0
−1) (5.10)

ṗ =− (p −p0)

τp

+ cp ·Γp

+Tp←x · c ′p · (
x

x0
−1)

+Rp←x · c ′p · (
x

x0
−1) (5.11)

Ċ = p −λC (5.12)

Where x describes the state of the metabolism, λ is the growth rate, p is the production
rate, C is the amount of enzyme, τ is a dampening term (X0 is the equilibrium value),
TX←Y is the noise transmission constant from X towards Y , cX and c ′X are constants that
set the size of the fluctuations, ΓX is a white noise source. RX←Y indicates a regulatory
interaction, an addition to the model, but this notation is just cosmetic, as Teffective =
T +R. This model assumes all parameters have an average value from which fluctuations
deviate, but always return. Hence the dampening terms. With respect to transmission, I
furthermore rescale the absolute value of the noise to be comparable to the target noise
(hence the x−1

0 and cX terms in combination with the TX←Y term).
This is similar to the model that Philipe Nghe suggested in Kiviet et al. [10], which

was inspired by Dunlop et al. [15] (see supplement of that manuscript for a description
of the Dunlop model). A difference between my equations, the Nghe equations and the
Dunlop equations lies in the dampening terms (those containing τ, β or λE ). In my
model noise is effected through the ODE, and dampening occurs on the parameter of
interest. In Dunlop et al., there are two dampening terms, one specifically dampening
the noise and a second term dampening the parameters of interest. Nghe also takes the
latter approach, see below.
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Analytical expressions for the correlations between these equations can be found by
linearizing them, writing the correlations in Fourier space, and back-transforming them
using residue integration techniques. These notes do not cover this. Out of practical
considerations, we numerically solved Eq. 5.9-5.12 by simple Euler propagation imple-
mented in Matlab.

SETTINGS OF THE NUMERICAL IMPLEMENTATION

The script growthnoisepropagatorv2.m that numerically solves the equations will be
made available in an online Github repository, parameter settings that were used are
shown below. For the dilution mode:

C0 = 2000,λ0 = 1,λ0 = 0.0116,

p0 = 23.1049, x0 = 1,τλ = 120,Γλ = 8.3255e −04,Γ′λ = 8.3255e −04,

τp = 120,Γp = 0.0048,Γ′p = 0.0048,τx = 120,Γx = 1.0000e −03,Γ′x = 1.0000e −03,

Tx→λ = 0,Tx→p = 0,TC→x = 1,Tλ→C =−1;

(λ is given in units of mi n−1 here.) For the catabolic mode:

C0 = 2000,λ0 = 1,λ0 = 0.0116,

p0 = 23.1049, x0 = 1,τλ = 60,Γλ = 0,Γ′λ = 8.3255e −06,

τp = 60,Γp = 1.5200,Γ′p = 1.5200,τx = 60,Γx = 0,Γ′x = 0.3162,

Tx→λ = 0.9000,Tx→p = 0,TC→x = 0.9000,Tλ→C =−1;

For the common mode:

C0 = 2000,λ0 = 1,λ0 = 0.0116,

p0 = 23.1049, x0 = 1,τλ = 6,Γλ = 0,Γ′λ = 8.3255e −06,

τp = 6,Γp = 0,Γ′p = 0.0481,τx = 60,Γx = 0.3162,Γ′x = 0.3162,

Tx→λ = 0.9000,Tx→p = 0.9000,TC→x = 0,Tλ→C =−1;

For the combined scenario:

C0 = 2000,λ0 = 1,λ0 = 0.0116,

p0 = 23.1049, x0 = 1,τλ = 60,Γλ = 2.4034e −04,Γ′λ = 2.4034e −04,

τp = 60,Γp = 0.5308,Γ′p = 0.5308,τx = 60,Γx = 0.1459,Γ′x = 0.1459,

Tx→λ = 0.2700,Tx→p = 0.3000,TC→x = 0.2700,Tλ→C =−1,

Cross-correlations were calculated based on 100000 one-minute timesteps, noise was
introduced with the matlab function normrnd. The feedback is added by subtracting
0.27 from the Tx→λ parameter, i.e. setting it to zero.

SEPARATE NOISE EQUATIONS

Both Nghe and Dunlop define separate ODEs for the noise terms:

ṄX =
√

IX ·ΓX −NX /τ, (5.13)
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though their notation might be slightly different (I used Daniel Gillespie’s notation [201];
a capital I is used here to follow Gillespie’s square root notation,

p
IX = ix ). With for our

case X equaling λ, x or p. Note that τ−1 =β (β is used in Nghe and Dunlop).
Not so relevant for our case, but noteworthy, is that in the Dunlop model, which mod-

els a completely different process than the one described here [15], the solutions of the
ODEs describing the noise are plugged into the ODEs describing the protein dynamics.
This leads to an additional memory effect. That is:

Ẋ =NX +F (X )+X /τ, (5.14)

with F (X ) some arbitrary function of X . Note that the NX function also contains a τ term
(see Eq. 5.13), which is effectively integrated, thus leading to effects of the fluctuations
much longer timescales than τ. This effect is (partially) countered by the third term in
Eq. 5.14, which also contains the τ term.

KIVIET ET AL. MODEL

As mentioned, the Kiviet et al. model takes a different approach. The formulae that
follow correspond to Fig. 5.9.B (Fig. 5.9.A contains the version of the cartoon which was
published in Kiviet et al.). The starting point,

Ċ = p −λC , (5.15)

is the same in my model, but after linearization (defined as X = X0 +δX ) this leads to
only one ODE:

δĊ

C0λ0
+ δC

C0
= δp

C0λ0
+TC←λ

δλ

λ0
. (5.16)

Noise terms are introduced with ODEs that are also shown above in Eq. 5.13. Addition-
ally, two functions are defined for p and λ. These are not ODEs, as the effects on these
parameters are thought to happen on fast timescales. The parameters are however lin-
earised around X0 (and thus written as δX ). The equation

δλ

λ0
= Tλ←C

δC

C0
+Tλ←G NG +Nλ (5.17)

simply defines the evolution of δλ. There is also a similar equation for δp:

δp

C0λ0
= TC←C

δC

C0
+TC←G NG +NE , (5.18)

which plays a bit more complicated role. It is defined using terms that pertain to C, like
TC←G , such that it can be directly plugged into Eq. 5.16. Indeed, plugging Eq. 5.18 into
Eq. 5.16 leads to equation:

δĊ

C0λ0
+ δC

C0
=

[
TC←C

δC

C0
+TC←G NG +NE

]
+TC←λ

δλ

λ0
(5.19)
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which corresponds to equation 5 in the Kiviet et al. [10] manuscript. I say it is a bit
complicated, since Eq. 5.18 has no role in the model (we could also just have defined Eq.
5.19 immediately), except that it shows us which part of the model can be interpreted as
being the production rate. This is also the reason why p is depicted as a red dashed box
in Fig. 5.9.

Note that dampening terms can be implicitly present in the Nghe model, in the form
of a transmission from the parameter to itself. Specifically, TC←C can fulfill this role.
Second order dampening can also occur, as is pointed out in the Kiviet et al. supplemen-
tary information, which states that the time scale of the C fluctuations is set by the term
λ0(1−TC←λTλ←C −TC←C ).
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III. THE TOWBIN ET AL. MODEL EQUATIONS

THE EQUATIONS

This supplementary note offers a brief overview of the formulae used in Towbin et al. to
describe the CRP regulation system, and its relation to metabolite concentrations and
growth. This is meant as a reference, to allow comparison between the linearized noise
model that was used in this chapter to model the dynamics of metabolism and growth
(described in supplementary note II), and a more sophisticated model of the biochem-
ical network that is aimed to model the population average response to changes in the
extracellular environment. These equations are directly taken from the supplementary
notes of Towbin et al. (Equations 7-9), except that some parameter symbols have been
changed to match our notation [153]. The equations are the following:

˙CM =λ(
k f

k f +x
−CM ), (5.20)

ẋ = α

k2

(
β fM (CM )

k1

x +k1
−λ

)
, (5.21)

λ= γ(1−CM )
x

x +k2
. (5.22)

Here, CM represents the metabolic enzyme expression, x the pool of carbon metabo-
lites which give feedback to the CRP system, and λ the cellular growth rate4. Further-
more, k1, k2, and k f are Michaelis Menten rate constants, where k1 pertains to car-
bon import (which is self-inhibited), k2 to biomass production and k3 to feedback by
metabolites. α, β and γ are also constants, α sets the conversion ratio between metabo-
lite consumption and growth,β the maximum import rate of metabolites, andγ the max-
imum catalytic rate of ribosomes. fM (CM ) is a function of CM , which describes ‘the reg-
ulation of the limiting enzyme for carbon uptake and catabolism by CRP’ [153]. The left
and right terms (within brackets) in Eq. 5.20 relate to production and dilution and in Eq.
5.21 the left and right terms in brackets relate to import and consumption. The growth
rate is a function of metabolite consumption and ribosome concentration CR = 1−CM .

GRAPHIC REPRESENTATIONS OF THE MODEL

The relationships that are set in the differential equations are presented in a diagram in
figure 5.10. The contributions of the left and right terms can be plotted separately to un-
derstand the dynamic behavior of the system when these terms change independently,
see figure 5.11.

4In this chapter, we use both the symbols λ and µ to indicate growth rate, λ when the units are
/min and µ when the units are doublings/hour.



5

106 SUPPLEMENTARY NOTES

x

pM, µ

px, consumption

CM

CR =1-CM

Figure 5.10: Diagram of Towbin et al. ODE model. This diagram shows how the parameters in
the Towbin et al. model relate to each other. CM and x are the metabolic enzyme and metabolite
concentration respectively, which are both modeled using differential equations. The ribosome
concentration is only implicitly present as CR = 1−CM . Metabolic enzyme production pm , growth
rate λ, metabolite production/import rate px and metabolite consumption are all terms that are
part of these differential equations.
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Figure 5.11: Using models to understand the dynamic behavior of stochastic metabolic and
growth fluctuations. (Left) Illustrations of the contributions from the positive (production) and
negative (dilution) terms to the differential equation that describes the time evolution of the con-
centration of metabolic enzymes as a function of that concentration C , according to the Towbin
et al. model [153]. The different lines correspond to different values of the metabolite concen-
tration x (x = 0.9,1.0,1.1). (Right) Similar as on the left, except that the terms are production and
consumption of metabolites as a function of metabolite concentration x and that the different
lines correspond to different values of the metabolic enzyme concentration C (C = 0.45,0.50,0.55).
(Towbin et al. focus on import of metabolites as rate limiting step in the rate at which they are cre-
ated, but we have used the more general term production here.) These plots are merely to illustrate
the systems behavior, so all parameter values were simply set to 1.
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Figure 5.13: Optimum curve based on bulk measurements. The black line with solid black
squares indicates exponential phase growth rates of ∆cAMP cells at different concentrations of
cAMP as measured in a platereader that measured bacterial density over time. The growth rate
was determined by an exponential fit, based on a manually selected part of the bacterial density
curve that displayed exponential growth. We also used an alternative method to determine growth
rates (gray dashed line), were we fitted an exponential to part of the bacterial density curve that
fell between two threshold values. We consider this less reliable, as growth is not guaranteed to
be exponential. We also show the optimum curve as measured by Towbin et al [153] (dashed blue
line), who calculated growth rate based on an exponential fit to a two hour window, which was
selected by an algorithm that looked for the longest period of stable growth rate.

Figure 5.12: Regulation of the TCA cycle and ED pathway. Some regulatory proteins control
the expression of many tricarboxylic acid (TCA) cycle and/or enzymes glycolysis pathway simul-
taneously. This diagram shows the regulatory effects of CRP, but also of the Catabolite repressor
activator (Cra) and the Anoxic redox control A (ArcA) protein. Cra controls the direction of the
metabolite flux through metabolic pathways [171, 202]. Cra is activated by the metabolite fructose-
1,6-bisphosphate [203]. ArcA is part of a two component system (ArcAB) which controls gene ex-
pression in response to aerobic versus anaerobic conditions [171, 204]. Metabolites are displayed
in larger font, enzymes that catalyze reactions in smaller fonts. In the colored boxes, regulation by
CRP is displayed by an oval symbol marked "CRP". Similarly, when an enzyme is regulated by Cra
or ArcA this is displayed next to the boxes; a plus or minus symbol indicates positive or negative
regulation. Additionaly, in the boxes this diagram displays the concentration of particular enzymes
in ppm, as annotated in PaxDb (retrieved in 2015) [205]. The boxes are also color-coded accord-
ing to abundance of the enzymes. The diagram is based on EcoCyc [171]. From top to bottom,
clockwise, enzymes abbreviations stand for glucose 6-phosphate, fructose 6-phosphate, fructose
1,6-biphosphate, glyceraldehyde 3-phosphate, 1,3-biphospho-D-glycerate, 3-phospho-glycerate,
2-phospho-glycerate, phosphoenolpyruvate, pyruvate, acetyl coenzyme A, citrate, cis-aconitate,
d-threo-isocitrate, (succinate, glyoxalate, acetyl-CoA), 2-oxo-glutarate, succinyl-CoA, succinate,
fumarate, malate, oxaloacetate.
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Figure 5.14: The reporters used in this study. (Top left panel) This panel shows the lac operon, on
which these promoters are based. The lac operon consists of three genes, lacZ, lacY and lacA, that
are required to metabolize lactose. These three genes are regulated by the same promoter, which
is activated by CRP. When there is no lactose, transcriptional repressor lacI blocks gene expression
from the lac operon. The lacI gene is encoded at a location near to the lac operon, and is also dis-
played (it is also regulated by CRP). When there is lactose, transcriptional repressor lacI is inhibited
by lactose and LacZ, LacY and LacA are produced. CRP recruits initiation factor sigma 70, which is
followed by polymerase binding and transcription. (It is furthermore also known that pleiotropic
transcription factor H-NS can bind to the lac operon and repress gene expression.) (Top right and
bottom left panel) Using the lac promoter as a starting point, Towbin et al. created two reporters
[153]. Both posses mutations which result in the removal of the LacI binding site (indicated with a
black cross). The CRP sensitive promoter is then created by fusing the promoter to a GFP fluores-
cent protein sequence. We call this the CRP reporter or metabolic reporter. In the promoter of the
second reporter, which is intented to measure background fluctuations in gene expression, also
mutations have been introduced that remove the CRP binding site. Instead, a consensus binding
site for the sigma 70 initiation factor is introduced, effectively making it a constitutive promoter
that is otherwise similar to the promoter used for the CRP reporter. It was also fused to GFP, and we
call this the sigma 70 reporter or constitutive reporter. (Bottom right panel) To be able to perform
single cell measurements that involve both reporters, we replaced the GFP sequences of the met-
abolic and constitutive reporters with mVenus and mCerulean sequences respectively. The GFP
reporters were introduced to cells using plasmids as vector, whilst the mVenus and mCerulean
reporters were chromosomally inserted at the intC and galK locations respectively.
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Figure 5.15: Additional time traces from the cAMP pulsing experiment. This figure displays ad-
ditional data for figure 5.2. It shows time traces for parameters measured in a population of∆cAMP
cells (blue dots are single cell measurements, the black line is the population average) that were
grown alternately in minimal medium supplemented with 43 µM cAMP and minimal medium
supplemented with 2100 µM cAMP. Red and green dotted lines indicate times where the concen-
tration was switched, as indicated in the legend. For this experiment, also the production rate of
the metabolic reporter was determined (top panel). Furthermore, also the production rate and
concentration of a constitutive reporter where determined (bottom two panels), see main text for
more on these quantities.
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Figure 5.16: Growth rates during the pulsing experiment against cAMP concentration. This plot
shows the population average growth rate of∆cAMP cells during the pulsing experiment (see main
text). In the left panel the growth rates are shown from the regime where the cAMP concentration
in the medium was switched every hour between low and high concentrations (43 and 2100 µM
respectively), and in the right panel data is shown from the regime where the cAMP concentration
switched every five hours. Note that these cells are not in steady state. Growth rates are not only
determined by the cAMP concentration, but also by the history of the population.
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Figure 5.17: Time evolution of production versus growth rate during block pulses of high and
low cAMP concentrations. (Top) The production rate of the CRP reporter plotted against growth
rate, color coded for time. Production is determined here by the difference in absolute signal be-
tween two timepoints, divided by the amount of time inbetween these two points and divided by
the area of the cell. Note that the production rate might also depends on the growth rate, as does
the final concentration of the protein. This makes this data not trivial to interpret. (Middle) Sim-
ilar to top panel, but production rate is divided by growth rate, since production rates might be
more faithfully represented as fractions of the growth rate. (Bottom) Similar to top panel, but pro-
duction rate is divided by the production rate of the constitutively expressed label, which serves a
reference for the total production rate capacity of the cell.
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Figure 5.18: Time evolution of metabolic reporter concentration normalized by constitutive
reporter concentration. This figure is similar to figure 5.17, but shows the concentration of the
metabolic reporter divided by the constitutive reporter on the x-axis, instead of production rates.

Figure 5.19: Scatter plots of growth rate versus metabolic and constitutive reporter from sin-
gle cell measurements. These plots relate to the pulsing experiment with ∆cAMP cells, figure 5.2
in the main text. Every point in these plots corresponds to a single cell observation on growth
rate and fluorescent label concentration that was made during a time series of pulses of high and
low concentrations of cAMP. On the left, growth rate plotted against the concentration of the meta-
bolic reporter. On the right, growth rate plotted against the concentration of a constitutive reporter
based on the same lac metabolic reporter but with the CRP binding site replaced by a σ70 consen-
sus binding site. The black lines indicate the average signal for corresponding concentrations and
standard deviations. The red lines are interpolated 2nd degree polynomial fits of the displayed
mean values. The red square shows the maximum value of the interpolated values at a metabolic
reporter concentration of 225 a.u. (corresponding to a growth rate of 0.63 doublings/hr).
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Figure 5.20: Time evolution of growth rate and metabolic reporter concentration for single cells.
Each panel is identical to main figure 5.2.C, except that each panel corresponds to the behavior of
a lineage of single cells.
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Figure 5.21: Comparison of population averages of different parameters in different exper-
imental conditions. This figure shows growth rates (doublings per hour), production rates
(a.u./(px min)), concentrations (a.u./px) and coefficients of variations (CV). C is the abbreviation
used for the constitutive reporter (which uses a cyan mCerulean label), and Y is the abbreviation
used for the metabolic reporter (which uses a yellow mVenus label). WT stands for wild type, indi-
cating wild type cells except the addition of our metabolic and constitutive reporter constructs. No
FB stands for no feedback, indicating the ∆cAMP cells that also carry the metabolic and constitu-
tive reporter constructs. Low, med and high correspond to extracellularly provided cAMP concen-
trations of 80, 800 and 5000 µM cAMP respectively. Bars are averages over multiple experiments,
and each open circle corresponds to a value observed in one experiment.
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Figure 5.22: Scatter plots of production rates against growth rate. (A) Colored dots show single
cell growth rate values plotted against respective single cell production rates of metabolic reporter,
which is a proxy for the production rate of metabolic enzymes. Dots correspond to data points
from WT cells with endogenous negative metabolic feedback, and ∆cAMP cells which have been
grown at concentrations of 80, 800 and 5000 µM cAMP (colored blue, and red, green and orange,
respectively). The white lines show predicted population average behavior based on a model de-
scribed in supplementary note I. The black lines show the average growth rate for cells that are
binned according to production rates, and the black isolines reflect kernel density estimates of the
probability distribution (using the matlab function kde2d [50]). The circles with thick black edges
show population average values per experiment. (B) As panel A, except that this panel shows the
relationship between growth and the production rate of a constitutive reporter.
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Figure 5.23: Concentration-concentration and production-production relationships between
metabolic and constitutive reporters. This figure is similar to Figure 5.22, except that the rela-
tionships plotted are different. Blue, red, green and orange dots again correspond respectively to
data points from WT cells with endogenous negative metabolic feedback, and ∆cAMP cells which
have been grown at concentrations of 80, 800 and 5000 µM cAMP. (Top panel) Scatter plots for
concentration of metabolic (CRP) reporter against the concentration of constitutive reporter. The
white line reflects the fact that the sum of the concentrations of the two reporters remains con-
stant (not that the axes are log-log scale; this line would be straight on a linear scale). (Bottom
panel) Scatter plots for production rate of metabolic reporter against the production rate of con-
stitutive reporter. The white line is based on the optimum curve and a simple model describing
the relationship between production rate, concentration and growth, see supplementary note I.
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Figure 5.24: Cross-correlations for non-optimal cAMP expression levels. Also for the non-
optimal concentrations of cAMP, 80 µM ("low") and 5000 µM ("high") respectively, the cross-
correlations were determined both for the metabolic and constitutive reporters. Colored lines
indicate concentration-growth correlations, whereas black lines indicate production-growth cor-
relations. The shaded lines are experiments from independent colonies, whereas the dark lines
indicate the average over those experiments. (A) At lower than optimal cAMP concentrations, we
see a similar pattern for the metabolic reporter as at cAMP concentrations of 800 µM (figure 5.4.B),
namely positive correlations between growth and expression of metabolic proteins. (B) At higher
than optimal cAMP concentrations, we see a slightly different pattern for the metabolic reporter
than in the 800µM case; there is still a positive correlation between protein production and growth
rate, but the concentration seems more typical of the dilution mode. (C) The cross-correlations
for the constitutive reporter also seem different from the case with 800 µM cAMP (figure 5.4.D),
although there is quite some discrepancy between the two experiments shown (shaded lines), and
hence more experiments might be needed to elucidate these cross-correlations further. (D) The
cross-correlations for the constitutive reporter at 5000 µ cAMP also seem different from the case
with 800 µM cAMP (figure 5.4.D), although there is again quite some discrepancy between the two
experiments shown (shaded lines).
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ADDITIONAL SUPPLEMENTAL FIGURES

This section contains additional supplemental figures that were not referenced in the
chapter.
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Figure 5.25: Scatter plots for growth versus production, with selection on the high/low condi-
tion. These plots relate to the pulsing experiment with ∆cAMP cells, figure 5.2 in the main text.
Every point in these plots corresponds to a single cell observation on growth rate and fluorescent
label concentration that was made during a time series of pulses of high and low concentrations
of cAMP. In these scatter plots, the production of the metabolic (left plots) or constitutive (right
plots) reporter is plotted against growth rate, where in the top plots only data from the low cAMP
condition is shown and in the bottom plot only data from the high cAMP condition is shown. The
gray lines are the exception, they show the average values from the high condition in the plot for
the low condition, and vice versa.
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Figure 5.26: Scatter plots for growth versus concentration, with selection on the high/low con-
dition. This figure is similar to supplemental figure 5.25, but deals with concentration instead of
production rates. These plots relate to the pulsing experiment with ∆cAMP cells, figure 5.2 in the
main text. Every point in these plots corresponds to a single cell observation on growth rate and
fluorescent label concentration that was made during a time series of pulses of high and low con-
centrations of cAMP. In these scatter plots, the concentration of the metabolic (left plots) or con-
stitutive (right plots) reporter is plotted against growth rate, where in the top plots only data from
the low cAMP condition is shown and in the bottom plot only data from the high cAMP condition
is shown. The gray lines are the exception, they show the average values from the high condition
in the plot for the low condition, and vice versa.
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Figure 5.27: Scatter plots for metabolic reporter versus constitutive reporter, with selection
on the high/low condition. This figure is similar to figures 5.25 and 5.26. These plots relate to
the pulsing experiment with ∆cAMP cells, figure 5.2 in the main text. Every point in these plots
corresponds to a single cell observation on growth rate and fluorescent label concentration that
was made during a time series of pulses of high and low concentrations of cAMP. In these plots,
concentration-concentration (left) or production-production (right) scatter plots are presented for
the metabolic versus the constitutive reporters. In in the top plots only data from the low cAMP
condition is shown and in the bottom plot only data from the high cAMP condition is shown. The
gray lines are the exception, they show the average values from the high condition in the plot for
the low condition, and vice versa.
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Figure 5.28: Metabolic concentration-growth cross-correlations RM ,µ(τ) per experiment.
These graphs show cross-correlations (CCs) per condition, per experiment. They display not only
the overall cross-correlation (black), but also the cross-correlation based on the scatter plots (red)
and the control (gray area); see chapter 2 and also figure 2.10, for more information. The error bars
in the black curves are SEM, based on dividing data from a single experiment into four groups,
and calculating four CCs, for which the SEM is calculated. The black CCs here correspond to the
shaded CCs that are shown in other figures where multiple experiments are combined into one
plot. (A) RM ,µ(τ) for the wild type cells. (B) RM ,µ(τ) for the∆cAMP cells, with 80 µM cAMP supple-
mented to the growth medium. (C) RM ,µ(τ) for the∆cAMP cells, with 800µM cAMP supplemented
to the growth medium. (D) RM ,µ(τ) for the∆cAMP cells, with 5000 µM cAMP supplemented to the
growth medium. (In the y-axis label, "Y" stands for the yellow fluorescent reporter concentration
that was tracked here.)
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Figure 5.29: Metabolic production-growth cross-correlations RpM ,µ(τ) per experiment. This
figure is similar to figure 5.28, except that production-growth correlations are shown here, instead
of concentration-growth correlations. These graphs show cross-correlations (CCs) per condition,
per experiment. They display not only the overall cross-correlation (black), but also the cross-
correlation based on the scatter plots (red) and the control (gray area); see chapter 2 and also figure
2.10, for more information. The error bars in the black curves are SEM, based on dividing data from
a single experiment into four groups, and calculating four CCs, for which the SEM is calculated.
The black CCs here correspond to the shaded CCs that are shown in other figures where multiple
experiments are combined into one plot. (A) RpM ,µ(τ) for the wild type cells. (B) RpM ,µ(τ) for the
∆cAMP cells, with 80 µM cAMP supplemented to the growth medium. (C) RpM ,µ(τ) for the∆cAMP
cells, with 800 µM cAMP supplemented to the growth medium. (D) RpM ,µ(τ) for the ∆cAMP cells,
with 5000 µM cAMP supplemented to the growth medium. (In the y-axis label, "Y" stands for the
yellow fluorescent reporter production that was tracked here.)
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Figure 5.30: Constitutive concentration-growth cross-correlations RQ,µ(τ) per experiment.
This graph is similar to supplemental figure 5.28, except that it relates to constitutive reporter
measurements. These graphs again show cross-correlations (CCs) per condition, per experiment.
They display not only the overall cross-correlation (black), but also the cross-correlation based
on the scatter plots (red) and the control (gray area); see chapter 2 and also figure 2.10, for more
information. The error bars in the black curves are SEM, based on dividing data from a single ex-
periment into four groups, and calculating four CCs, for which the SEM is calculated. The black
CCs here correspond to the shaded CCs that are shown in other figures where multiple experi-
ments are combined into one plot. (A) RQ,µ(τ) for the wild type cells. (B) RQ,µ(τ) for the ∆cAMP
cells, with 80 µM cAMP supplemented to the growth medium. (C) RQ,µ(τ) for the ∆cAMP cells,
with 800 µM cAMP supplemented to the growth medium. (D) RQ,µ(τ) for the ∆cAMP cells, with
5000 µM cAMP supplemented to the growth medium. (In the y-axis label, "C" stands for the cyan
fluorescent reporter concentration that was tracked here.)
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Figure 5.31: Constitutive production-growth cross-correlations RpQ ,µ(τ) per experiment. This
figure is similar to figure 5.29, except that it relates to constitutive reporter measurements. These
graphs shows cross-correlations (CCs) per condition, per experiment. It displays not only the over-
all cross-correlation (black), but also the cross-correlation based on the scatter plots (red) and the
control (gray area); see chapter 2 and also figure 2.10, for more information. The error bars in the
black curves are SEM, based on dividing data from a single experiment into four groups, and cal-
culating four CCs, for which the SEM is calculated. The black CCs here correspond to the shaded
CCs that are shown in other figures where multiple experiments are combined into one plot. (A)
RpQ ,µ(τ) for the wild type cells. (B) RpQ ,µ(τ) for the∆cAMP cells, with 80 µM cAMP supplemented
to the growth medium. (C) RpQ ,µ(τ) for the ∆cAMP cells, with 800 µM cAMP supplemented to
the growth medium. (D) RpQ ,µ(τ) for the ∆cAMP cells, with 5000 µM cAMP supplemented to the
growth medium. (In the y-axis label, "C" stands for the cyan fluorescent reporter production that
was tracked here.)
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Figure 5.32: Growth rate for all cell lineages per conditions per microcolony. Each panel cor-
responds to a microcolony, letters indicate conditions. The gray lines show single lineage traces,
the black lines the population average. Colored lines highlight example single lineage traces to
illustrate single cell behavior. Dashed and dotted lines indicate 2 ·σ and 5 ·σ boundaries from the
overall mean respectively. As before, the displayed conditions are (A) wild type cells, (B) ∆cAMP
cells growing on 80 µM cAMP, (C) ∆cAMP cells growing on 800 µM cAMP and (D) ∆cAMP cells
growing on 5000 µM cAMP.
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Figure 5.33: Metabolic reporter concentrations for all cell lineages per conditions per micro-
colony. Each panel corresponds to a microcolony, letters indicate conditions. The gray lines show
single lineage traces, the black lines the population average. Colored lines highlight example sin-
gle lineage traces to illustrate single cell behavior. Dashed and dotted lines indicate 2 ·σ and 5 ·σ
boundaries from the overall mean respectively. As before, the displayed conditions are (A) wild
type cells, (B) ∆cAMP cells growing on 80 µM cAMP, (C) ∆cAMP cells growing on 800 µM cAMP
and (D) ∆cAMP cells growing on 5000 µM cAMP.
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Figure 5.34: Metabolic reporter production rates for all cell lineages per conditions per micro-
colony. Each panel corresponds to a microcolony, letters indicate conditions. The gray lines show
single lineage traces, the black lines the population average. Colored lines highlight example sin-
gle lineage traces to illustrate single cell behavior. Dashed and dotted lines indicate 2 ·σ and 5 ·σ
boundaries from the overall mean respectively. As before, the displayed conditions are (A) wild
type cells, (B) ∆cAMP cells growing on 80 µM cAMP, (C) ∆cAMP cells growing on 800 µM cAMP
and (D) ∆cAMP cells growing on 5000 µM cAMP.
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Figure 5.35: Exploratory experiments with plasmid reporters show similar results as experi-
ments with our chromosomal reporters. The interaction of metabolic and growth fluctuations
was also measured by plasmid constructs in initial experiments, where the metabolic reporter and
constitutive reporter were put into different cell lines on similar plasmids with a GFP reporter. The
plasmids on which these cross-correlations are based are the same as described in ref [153]. Ex-
cept for the fact that the reporters are on plasmids instead of chromosomally inserted, and both
placed in separate cell lines instead of the same cell line, the experimental conditions are exactly
the same as in the experiments presented earlier involving wild type and ∆cAMP cells plus 800
µM cAMP (figure 5.4). Consistently, in this supplemental figure, we observe slightly different but
qualitatively similar cross-correlations as in figure 5.4. The constitutive reporter (top right for wild
type cells and bottom right for ∆cAMP cells plus 800 µM cAMP) shows cross-correlations that
are most similar to a dilution scenario, and as before (figure 5.4), the metabolic reporter in wild
type cells shows a similar behavior. On the other hand, without feedback, the metabolic reporter
shows very different behavior in the ∆cAMP cells plus 800 µM cAMP. As before, black lines cor-
respond to production rate-growth cross-correlations, and colored lines to concentration-growth
cross-correlations. Darker lines are averages of multiple experiments, the shaded lines show the
separate experiments (when more than 1 experiment was conducted).
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ASC number Shorthand Description Source
ASC840 ∆CRP cyaA crp null mutant, also known as

bBT92. In addition to the crp gene, also
the cyaA gene has been knocked out, since
some of the constitutive CRP proteins still
have a residual response to cAMP.

[153]

ASC843 MG1655 WT strain (bBT12) + GFP w/o
promoter PSCS101 (control), plasmid aka
pU66 (kanamycin resistance on plasmid).

[153]

ASC847 pHA5 p_CRP-CRP construct in a pBR322 plas-
mid; stored in DH5α. This is the CRP pro-
tein sequence behind its native promoter.
(Ampicilin resistance on plasmid.)

[153, 186]

ASC845 pHA7 p_bla-CRP construct in a pBR322 plasmid;
stored in DH5α. This is the CRP protein
behind a bla promoter. (Ampicilin resis-
tance on plasmid.)

[153, 186]

ASC859 pHA7*1 p_bla-CRP*1 construct in a pBR322 plas-
mid; stored in DH5α. The star indicates
this is a constitutively active version of
CRP, the number indicates which version.
See Aiba et al. for more information [186].
(Ampicilin resistance on plasmid.)

[153, 186]

n/a pHA7*2 p_bla-CRP*2 construct in a pBR322 plas-
mid; plasmid only. Idem. (Ampicilin resis-
tance on plasmid.)

[153, 186]

n/a pHA7*3 p_bla-CRP*3 construct in a pBR322 plas-
mid; plasmid only. Idem. (Ampicilin resis-
tance on plasmid.)

[153, 186]

Table 5.2: Additional strains produced for this work, but not used in experiments presented
here. ASC stands for AMOLF strain collection. FB indicates this strain was acquired by Ferhat
Büke, a member of both the Sander Tans lab and Greg Bokinsky lab. VS indicates this strain is pro-
duced at AMOLF by technician Vanda Sunderlikova. Note with ASC844: this plasmid was received
from the Alon lab in a DH5α strain, other plasmids were received purified and were transferred to
DH5α strains at AMOLF.
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ASC number Shorthand Description Source
ASC858 pHA7*4 p_bla-CRP*4 construct in a pBR322 plas-

mid; stored in DH5α. Idem. (Ampicilin re-
sistance on plasmid.)

[153, 186]

ASC846 pHA7*5 p_bla-CRP*5 construct in a pBR322 plas-
mid; stored in DH5α. Idem. (Ampicilin re-
sistance on plasmid.)

[153, 186]

ASC844 pHA7*6 P_bla::CRP*6 construct in a pBR322 plas-
mid; stored in DH5α. Idem. (Ampicilin re-
sistance on plasmid.)

[153, 186]

ASC852 pHA7 strain, with additionally p_CRPr
plasmid.

ASC853 pHA7 strain, with additionally p_s70 plas-
mid.

ASC854 pHA7*5 plasmid and p_CRPr in ∆cAMP
strain.

ASC855 pHA7*5 plasmid and p_s70 in ∆cAMP
strain.

n.a. Wild type strain with pHA7*2 and P_s70.
(This strain was attempted to be made, but
grew very slowly in TY which resulted in
failure to produce it in a first attempt.)

ASC878 Wild type strain with pHA7*6 and p_s70.
ASC879 Wild type strain with pHA7*2 and P_RCRP.
ASC880 Wild type strain with pHA7*6 and P_RCRP.
ACS893 ∆cAMP strain plus P_CRPr plasmid.

(ASC894 is identical to this strain.)
asc1005 ∆CRP with the following additional

chromosomally inserted reporters:
delta(galk)::s70-mCerulean-kanR
+ delta(intc)::rcrp-mVenus-cmR.
(Kanamycin and chloramphenicol re-
sistant.)

VS

asc1018 pzs101-yfp; ptet system + repressor,
expressing a YFP fluorescent reporter.
(Ampicilin resistant.)

FB

asc1021 ASC1005 plus ptet-CRP*2 in asc1018 vec-
tor (instead of yfp) (Ampicilin resistant.)

VS

asc1022 ASC1005 plus ptet-CRP*5 in asc1018 vec-
tor (instead of yfp) (Ampicilin resistant.)

VS

asc1023 ASC838 strain plus ASC1018 plasmid (con-
trol).

VS

Table 5.2 continued.
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RIBOSOMAL DYNAMICS, A

PUZZLING AFFAIR

6.1. INTRODUCTION

6.1.1. THE CENTRAL ROLE OF THE RIBOSOME

Ribosomes are life. In 1958, Francis Crick, who discovered the structure of DNA with
James Watson and Rosalind Franklin, formulated what is called the central dogma of
molecular biology. It states that DNA holds the amino acid sequence information re-
quired to build a protein, and that this sequence information is first translated to RNA,
which is then transcribed into a protein [211]. The dogma relates immediately to some of
the features that are said to define life: the capability to store information and the regen-
eration of components from scratch [212, 213]. Slightly earlier, in 1955, "new cytoplas-
mic components" were already discovered under an electron microscope [214]. These
components turned out to be the components in the cell that perform the last step of
the central dogma: the synthesis of proteins using mRNA molecules as templates; also
known as transcription. The components became known as ribosomes. Given the idea
that early life consisted only of RNA molecules that could catalyze other reactions (the
"RNA world" [215]), it is not surprising that the ribosomes consist of both catalytic RNA
molecules and (many) proteins, as shown in figure 6.1. Given these facts, we can say
ribosomes are (a key element of) life.

6.1.2. UNDERSTANDING THE ROLE OF RIBOSOMES IN PROTEIN FLUCTUA-
TIONS

In this thesis, we investigate temporal fluctuations in the concentrations of cellular com-
ponents.As mentioned in earlier chapters (4 and 5), these fluctuations are a result of the
intrinsic stochastic nature of chemical processes that occur in the cell. Given the central
role of the ribosome in the cell that was just discussed, ribosomes might play a big role
in such fluctuations. Indeed, it is often suggested that fluctuations in ribosomal con-
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Figure 6.1: Picture of the ribosome. The ribosome consist of a small and a large subunit. These
two come together on messenger RNA templates to perform protein synthesis. The complete ribo-
some is made of 3 ribosomal RNA molecules and more than 50 proteins, shown in grey and color
in the picture above, respectively [206]. The 16S rRNA and 23S rRNA molecules function as back-
bone. Proteins labeled S1 up to S22 bind to the 16S rRNA to form the small subunit, and proteins
labeled L1-L36 and the 5S rRNA bind to the 23S rRNA to form the large subunit [171]. The Ecocyc
database lists 58 ribsomal proteins, though also different numbers of ribosomal proteins are listed
(ref. [206] e.g. talks about 54 ribosomal proteins). Interestingly, the ribosomal RNA constitutes
73-80% of the total RNA found in an E. coli cell (mRNA constitutes 3-4.5% and tRNA 15-20%) [207].
Assembly of the ribosome requires many co-factors [206]. This image is based on x-ray crystal-
lography (PDB ID: 4v4q, [208]). Pdb files downloaded from www.rcsb.org [209] visualized with
UCSF Chimera (version 1.11.2, build 41376, [210]).
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centration could lead to in cell-wide protein concentration fluctuations [11–14]. Such
concerted concentration fluctuations are also referred to as extrinsic noise (as opposed
to intrinsic noise, which refers to fluctuations that only occur in one cellular species) [9].

6.1.3. QUANTIFYING RIBOSOMAL DYNAMICS

In a previous thesis from the Tans lab, Noreen Walker quantified the dynamic relation-
ship between single cell ribosomal expression fluctuations and growth in steady state
conditions [18]. The experiments involved presented many challenges, of which a num-
ber are described in her thesis. Given the previously described central role of the ribo-
some, it was hypothesized that the stochastically fluctuating concentration of ribosomes
might be limiting, meaning that ribosomal fluctuations might result in growth rate fluc-
tuations. In single cell time lapse experiments, no clear indications were found to sup-
port this hypothesis. Instead, ribosomal proteins L19 and L31 that were labeled with
mCherry (L31-R and L19-R) showed expression-growth cross-correlations (CCs) indica-
tive of dilution-scenario behaviour in minimal medium, or none at all in rich medium
(see chapters 4 and 5 for discussions about the use of cross-correlations to interpret dy-
namics, and also Kiviet et al. [10]). mCerulean labeled L31 ribosomal protein (L31-C)
showed expression-growth CCs with small correlations around zero delay in minimal
medium. This difference between the L31-C and L31-R experiments was unexpected, as
only the label was different. In rich medium, the L31-C cross-correlation was consistent
with the L31-R cross-correlation, and showed almost no correlation. Since the ribosome
mainly consists of RNA, a GFP reporter under the control of one of the ribosomal RNA
promoters was also used (rrna-G). Like the L31-C reporter, the dynamics of this rrna-G
reporter showed positive correlations in minimal medium and only very small correla-
tions in rich medium. It remained unclear whether the differences between these obser-
vations were due to physical effects or due to day-to-day experimental variation. Also
growth-expression scatter plots were used, to investigate possible interesting shapes of
growth-expression relationships, but this yielded no noteworthy shapes.

In an attempt to force the cell in a scenario where ribosomes are limiting, experi-
ments were conducted where cells were grown in the presence of sub-inhibitory con-
centrations of tetracycline, an antibiotic. Though also interesting in itself, the outcome
of such an experiment could serve as a reference to interpret other experiments. In rich
medium, both for the L31-R and the rrn-G reporter, the antibiotic did not result in more
limiting behaviour, i.e. correlations did not become more positive. Given the disparate
observations, both between reporters and conditions, and the absence of a point of ref-
erence, the nature of the ribosomal dynamics remained elusive; it was concluded that
ribosomal fluctuations perhaps do not have a pivotal role in steady state cellular growth
dynamics.

6.1.4. NEW WORK

In this chapter, we will describe additional experiments that were aimed at gaining fur-
ther insights in the ribosomal dynamics. Specifically, we tried to understand whether
fluctuations in ribosomal concentration could have cell-wide implications. To answer
this question, we tried both new experiments as well increase the throughput of existing
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experiments. Since this is an ongoing project, some sections in this chapter will be more
succinct.

6.2. RESULTS

6.2.1. ADDITIONAL STRAINS

ASC number Shorthand Description Source
ASC976 Prrna-C, pn25-Y Δphp::pn25-mVenus-cmR,

Δche::Prrsa-mCerulean-kanR.
(Kanamycin and chloramphenicol
resistance.)

VS

ASC968 L19-C, pn25-Y L19-gc-mCerulean-kanR (GC
linker), Δphp::pn25-mVenus-cmR.
(Kanamycin and chloramphenicol
resistance.)

VS

ASC1058 L9-R, S2-Y Also known as JE202. rplI-mCherry-
KanR (L9), rpsB-venus-CmR (S2).
(Kanamycin and chloramphenicol
resistance.) Gift from Johan Elf lab.

[57]

ASC666 L31-R, gltA-G L31::mCherry-kanR, gltA::gfpA206K-cat [10]
ASC810 L31-C L31-gc-mCerulean-kanR (GC linker).

(Kanamycin resistant.)
NW, VS

Table 6.1: Strains used in this chapter. Strain ASC1058 was a kind gift from the Johan Elf lab.
VS indicates these strains were created by Vanda Sunderlikova, technician in the Tans lab. ASC
stands for AMOLF strain collection. Note that Y, C, G and R indicate yellow, cyan, green and red
fluorescent reporters, respectively. The first two strains in this table were specifically created for
experiments described in this chapter, and the third strain was requested specifically for work
described in this chapter. The last two strains in the table were created earlier.

To be able to further explore the implications of ribosomal fluctuations, we produced
additional strains. Importantly, we were interested in the effect that fluctuations in ribo-
somal expression would have on the single cell capacity to produce proteins. We there-
fore created two dual-label strains that both carried ribosomal reporter constructs, as
well as constitutively expressed fluorescent reporters. The constitutive reporter served
as a readout for fluctuations in protein production that likely affect all proteins that are
produced in the cell. In the first strain, we fused the mCerulean fluorescent reporter
sequence to the ribosomal RNA promoter (rrsa), and additionally inserted an mVenus
sequence to the constitutive pn25 promoter. Both were chromosomally inserted. In
the second strain, we introduced an mCerulean sequence behind the chromosomal L19
ribosomal protein sequence, thus creating a strain that produces L19 ribosomal pro-
teins that are fused to mCerulean fluorescent labels. We also introduced the constitutive
pn25-mVenus reporter to this strain. These strains, the Prrna-C, pn25-Y strain and the
L19-C, pn25-Y strain are listed in table 6.1. Additionally, supplementary table 6.2 gives
an overview of the operons in which the ribosomal proteins are encoded.



6.2. RESULTS

6

147

Furthermore, as the ribosome consists of many ribosomal proteins, we wanted to be
able to confirm dynamics observed for one labeled ribosomal protein, also for other la-
beled ribosomal proteins. For this purpose, we requested a strain from the Elf lab which
had both the L9 and S2 ribosomal proteins labeled by the mCherry and Venus fluores-
cent proteins, respectively [57]. This strain was kindly supplied by the Elf lab, and is also
listed in table 6.1 with the shorthand notation L9-R, S2-Y.

Thus, we expanded our ability to track ribosomal dynamics by expanding our col-
lection of ribosomal reporters, and introduced a way to probe the effect of ribosomal
fluctuations on protein expression by the introduction of the pn25 reporter.

6.2.2. ANTIBIOTIC SHIFT EXPERIMENTS TO CREATE LIMITING SITUATIONS

To understand the dynamics of a process, it is often convenient to grasp what happens
in extreme cases. We therefore attempted to device an experiment which would lead to
a situation where single cells that expressed more ribosomes than the population aver-
age would have a growth advantage, thus possibly forcing a "limiting" situation. We did
this by growing cells in minimal medium in our microfluidic device 1 for a few hours,
and then switching to minimal medium supplemented with antibiotics (see chapters 2
and 3 for a description of the microfluidics device). We hypothesized that right after the
medium has switched, cells in the population — which at that point are calibrated for
growth in minimal medium — that happen to express more ribosomes have a growth
advantage. To analyse whether this was indeed the case, we made growth-concentration
scatter plots for multiple points in time during the experiment. We further analysed
these measurements by calculating the slope and correlation of these scatter plots for
each point in time.

Some data involving an antibiotic switch was already gathered by Tans lab alumni
Sarah Boulinea for the L31-R, gltA-G strain (see table 6.1); we also ran our analysis on
this dataset. Also, two additional experiments were conducted, one with the L31-C strain
where one microcolony was analyzed, and one with the rrsa-C, pn25-Y strain, where
three microcolonies were analyzed. Before looking at the scatter plots, we first look at
the trends in fluor concentration for all these five datasets, which are shown in figure
6.2. This figure shows that for the Prrna-C strain datasets, the signal goes up after the
switch to antibiotics supplemented medium. However, for both for the L31-R and L31-C
datasets, the signal appears to be going down after the shift (though pre-shift fluctua-
tions on the population average level of the L31-R data make it unclear what is exactly
going on). It is unclear why this happens, since ribosome inhibition should increase ri-
bosomal demand and accordingly, expression [170]. We now turn to the scatter plots.
For brevity we only show the representative series of scatter plots that relates to the L31-
C dataset, see figure 6.3. This figure shows that there is no clear change in correlation
visible by eye after the switch to medium with antibiotics. We further quantified the data
by calculating both the slope (least square fit by Matlab’s polyfit function) and correla-
tion coefficient for each of the scatter plots. The analyses for all five datasets are shown
in figures 6.4-6.8. The L31-R dataset (figure 6.4) arguably shows a small increase in cor-
relation approximately 200 minutes after the switch, but the correlation also decreases
swiftly after that. The L31-Y dataset (figure 6.5) is difficult to interpret, likely the positive
correlations before the switch are caused by chance as there are only a few cells in the
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Figure 6.2: Fluorescence intensity for switch from clean medium to medium supplemental with
antibiotics. Red dots show single cell obsvervations, the black line indicates the colony average.
(Top left) L31-R strain. (Top right) L31-C strain. (Bottom three) All are rrsa-C strains. "C", "Y"
and "R" indicate the fluorescent labels by their colors: mCerulean (cyan), mVenus (yellow) and
mCherry (red) respectively.

microcolony at those points in time. The first Prrsa-Y dataset (figure 6.6) shows a change
in signal right after the switch, but this is not seen in the two other Prrs-Y datasets (6.7-
6.8). In conclusion, it is difficult to interpret these datasets, as the different datasets show
different trends.

6.2.3. HIGHER THROUGHPUT AND ADDITIONAL CROSS-CORRELATIONS

MANY EXPERIMENTS IN ONE

One reason that it is hard to analyse the data from the antibiotic switch experiments
using microfluidic device 1, is that the size of the microcolony starts out small, which
leads to a high variability of the correlation during the first part of the experiment. To
produce a dataset with a constant large amount of cells, we performed additional antibi-
otic switch experiments in microfluidic device 2. Conveniently, microfluidic device 2 al-
lows for multi-day experiments, which allowed us to also measure additional steady state
expression-growth cross-correlation curves. Importantly, we performed these additional
experiments with the new Prrna-C, pn25-Y and L19-C, pn25-Y strains, to investigate the
effect of ribosomal fluctuations on protein production rates with the pn25-mVenus re-
porter. An example of a typical experimental design is given by the measurements we
performed on the L19-R pn25-Y strain, which involved the following sequence of sup-
plied medium: 6 hours TY, 6 hours TY + TET, 2 hours TY, 2 hours TY + TET, 2 hours TY, 2
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Figure 6.3: Scatter plots for switch from clean medium to medium supplemental with antibi-
otics. Growth (doublings per hour) is shown on the y axes, and ribosome concentration (a.u.) is
shown on the x axis. Data shown here is from the L31-C ribosomal reporter strain. It was first
grown in M9 medium (indicated by red scatter plots), and then in M9 medium plus 0.5 µM tetra-
cycline (indicated by blue scatter plots). The labels additionally indicate the correlation R, and the
time t (in minutes).
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Figure 6.4: Quantification
of the correlation between
growth and ribosomal ex-
pression in the antibiotics
switch experiment. Data
from the L31-R strain. The
number of cells gradually in-
creased over the course of
the experiment (A), whilst
growth rate decreased after
the switch (B). The dynam-
ics of growth and expres-
sion were quantified by the
slope (C) and correlation co-
efficient (D) of the growth-
expression scatter plots at
each point in time. Data dis-
played in black is based on
the whole colony, blue sym-
bols indicate single cell data.

Figure 6.5: Quantification
of the correlation between
growth and ribosomal ex-
pression in the antibiotics
switch experiment. Data
from the L31-C strain. The
number of cells gradually in-
creased over the course of
the experiment (A), whilst
growth rate decreased after
the switch (B). The dynam-
ics of growth and expres-
sion were quantified by the
slope (C) and correlation co-
efficient (D) of the growth-
expression scatter plots at
each point in time. Data dis-
played in black is based on
the whole colony, blue sym-
bols indicate single cell data.
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Figure 6.6: Quantification
of the correlation between
growth and ribosomal ex-
pression in the antibiotics
switch experiment. Data
from the Prrsa-C, pn25-Y
strain. The number of cells
gradually increased over the
course of the experiment (A),
whilst growth rate decreased
after the switch (B). The
dynamics of growth and
expression were quantified
by the slope (C) and corre-
lation coefficient (D) of the
growth-expression scatter
plots at each point in time.
Data displayed in black is
based on the whole colony,
blue symbols indicate single
cell data.

Figure 6.7: Quantification
of the correlation between
growth and ribosomal ex-
pression in the antibiotics
switch experiment. Data
from the Prrsa-C, pn25-Y
strain. The number of cells
gradually increased over the
course of the experiment (A),
whilst growth rate decreased
after the switch (B). The
dynamics of growth and
expression were quantified
by the slope (C) and corre-
lation coefficient (D) of the
growth-expression scatter
plots at each point in time.
Data displayed in black is
based on the whole colony,
blue symbols indicate single
cell data.
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Figure 6.8: Quantification
of the correlation between
growth and ribosomal ex-
pression in the antibiotics
switch experiment. Data
from the Prrsa-C, pn25-Y
strain. The number of cells
gradually increased over the
course of the experiment (A),
whilst growth rate decreased
after the switch (B). The
dynamics of growth and
expression were quantified
by the slope (C) and corre-
lation coefficient (D) of the
growth-expression scatter
plots at each point in time.
Data displayed in black is
based on the whole colony,
blue symbols indicate single
cell data.

hours TY + TET, 2 hours TY, 6 hours M9, 6 hours M9 + TET, 2 hours M9, 2 hours M9 + TET,
2 hours M9, 2 hours M9 + TET. (M9 indicates M9 minimal medium here, supplemented
with lactose, uracil and tween20; see chapter 3 for further description of used media).

Thus, to recapitulate, each experiment with microfluidic device 2 can potentially give
(1) data on the ribosome-growth dynamics during antibiotic shifts, (2) data on ribosome-
protein expression dynamics during antibiotic shifts, (3) additional CCs regarding ribosome-
growth dynamics to characterize steady state relationships, and (4) CCs of previously un-
characterised ribosome-protein expression dynamics. Additionally, we could also anal-
yse the response growth medium shifts and the response to medium shifts that occur at
high frequency, but we will not focus on this here.

RESULTS OF THE EXPERIMENTS

The large amount of data generated by microfluidic device 2 is both an advantage and
a disadvantage. We will not go into technical details here, but both the amount of data
and also the nature of the growth in the wells presented the computer analysis with new
challenges. We therefore only analysed parts of the data that was produced by these ex-
periments.We chose to first analyse the data where we assumed cells had reached steady
state; and where we can perform cross-correlation analyses (i.e. analyses mentioned in
points 3 and 4 in the previous paragraph). Additional data recorded at the times of the
switches exists but has not been fully analysed yet. We also note that additional manual
corrections could perhaps further refine the analyses that we show here. For example,
some of the tracked lineages show unrealistic fluctuations which might be due to arte-
facts in the computer analysis and might be removed or corrected (see supplemental
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figures 6.26 and 6.27), and also the analysis now only takes into account a selection of
the total amount of imaged cells, this selection could be extended to obtain more data.

RESULTS FROM STRAINS WITH RIBOSOME AND CONSTITUTIVE REPORTERS

Figures 6.10-6.15 show cross-correlation functions obtained from the Prrna-C, pn25-Y
and L19-C, pn25-Y strains. We also generated negative control cross-correlations by
correlating the time trace from one lineage branch with the time trace from another
randomly selected lineage branch; random pairs of branches should not correlate for
steady state measurements with a sufficient sample size. This procedure is also de-
scribed in section 2.4.5 in the methods chapter, under subheading "Controls". The mean
and maximum correlations of 50 of such randomly generated negative control curves
are also plotted in figures 6.10-6.15. Most of the Prrna-C, pn25-Y and L19-C, pn25-Y
cross-correlations show large error bars, and often the values are in the same range as
negative control values (figures 6.10-6.15). This indicates that more data is required to
draw definitive conclusions. Furthermore, figure 6.9 shows that the concentration of ri-
bosomal RNA reporters was quite low in comparison to other reporters. This might be
due a weak ribosomal binding site, and further emphasizes caution is required when
interpreting this data. Nevertheless, figures 6.10 and 6.11 show the CCs calculated for
the pn25 constitutive expression-growth relationship for growth in minimal medium,
TY medium, and TY medium supplemented with sub-inhibitory concentration of the
antibiotic tetracycline (0.5 µM). Most of the pn25 concentration-growth curves show
negative correlation values for negative delays (figure 6.10). The production rate-growth
curves do not show clear trends (figure 6.11). We saw earlier (see chapter 5) that consti-
tutive reporters often show dilution mode dynamics. The CCs we observe here could be
consistent with that transmission mode. Furthermore, figures 6.12 and 6.13 show data
from the same strains, but show the expression-growth CCs for the ribosomal reporters
(rRNA or L19). The concentration-growth and production-growth CCs for the labeled
L19 protein (panel A in figures 6.12 and 6.13 respectively) do not show a clear trend.
The concentration-growth and production-growth CCs for the behaviour of the rrna re-
porter (shown in panels 6.12B-D and 6.13.B-D respectively), show behaviour that also
might be consistent with dilution mode transmission of noise; negative concentration-
growth at negative delays correlations are seen both for M9 and TY medium, and also for
the condition where antibiotic was added to the medium. It is striking that there are no
noticeable differences in the rRNA expression growth dynamics between different con-
ditions. One explanation might be that the promoter–reporter construct does not fully
capture the dynamics of ribosomal RNA expression, as the construct does not directly
label ribosomal RNA (which is something that can only be done for proteins).

The dual reporter strains with both ribosomal and pn25 constitutive reporters were
constructed to allow us to not only study ribosome-growth dynamics, but also allow us
to study the impact of ribosomal fluctuations and protein expression. To understand
whether ribosomes indeed have an effect on protein production, we look at the CCs be-
tween ribosomal concentration and constitutive reporter concentration, and CCs be-
tween ribosomal production rate and constitutive production rate. The L19-C, pn25-Y
concentration-concentration CC shows a very unclear pattern (figure 6.14.A), but the
Prrna-C, pn25-Y concentration-concentration CCs show a positive peak around τ = 0
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delay in various conditions, indicating concerted fluctuations (figure 6.14.B-D). Positive
correlations are expected, since concerted fluctuations were observed earlier for a pair
of two constitutive reporters [9], for groups of proteins [141] and in general is expected to
some extent for any two proteins because of the existence of extrinsic noise [13]. How-
ever, here, we look at two proteins of which one reports for ribosomal concentration,
which might have an impact on protein production itself. This might change the dy-
namics. Additional features in the CC on top of the positive peak at 0 delay might tell us
something about the ribosome-protein expression dynamics. For example, if we were
to observe more pronounced correlations at positive delays this could indicate trans-
mission of fluctuations from ribosomes to protein expression. However, The Prrna-C,
pn25-Y concentration correlation for M9 medium (figure 6.14.B) seems to show the op-
posite: there is more positive correlation at negative delays. This implies that ribosome
concentration fluctuations correlates with past protein concentration fluctuations. The
two reporters might have different maturation times, which could lead to artificial cor-
relations negative delay. Maturation times are however in the order of tens of minutes
[18, 216], and a discrepancy between the two is thus not expected to cause such a big
effect as observed here. A very speculative hypothesis is that fluctuations in protein
abundance might positively regulate ribosomal production, which might help the cell
anticipate ribosomal demand.

For TY medium (figure 6.14.C), the CC does not show a stronger correlation at nega-
tive delays. One could speculate this is because ribosomes become more limiting here,
thus shifting the balance from negative delays in M9 medium to positive delays in TY
medium. The CC for TY medium with antibiotics (figure 6.14.D) shows multiple peaks,
but the negative control CCs also shows high correlation values. This indicates the sec-
ond peak in the cross correlation curve at negative delays might be an artefact of insuf-
ficient data. More data is required to draw any conclusions for this condition.

The production-production CCs for the same conditions (figure 6.15) all appear to
show peaks at 0 delay, that are rather symmetrical around the y-axis, and appear to not
show additional features. This is consistent with aforementioned concerted protein ex-
pression fluctuations.

RESULTS FROM STRAINS WITH TWO RIBOSOMAL REPORTERS

As mentioned, to get a wider view on ribosomal dynamics, we employed a strain which
has labels on additional ribosomal proteins. This L9-R, S2-Y strain has a red fluorescent
reporter on the L9 ribosomal protein, and a yellow reporter on the S2 ribosomal protein,
see table 6.1. We performed measurements on this strain to obtain additional data on
the single cell dynamics between ribosomal expression and growth. Furthermore, the
presence of two ribosomal reporters in one strain allowed us to investigate the interac-
tion between them. To investigate the effect of ribosomal stress on ribosomal dynamics,
we analysed strain L9-R, S2-Y growing in steady state both in M9 minimal medium and
M9 minimal medium with sub-inhibitory doses of the translational inhibitory antibiotic
tetracycline (0.5 µM). To check the validity of the reporters, we first looked at the popu-
lation level response of the reporter concentration to the presence of antibiotics. Figure
6.16 shows that due to the presence of antibiotics, the population average growth rate
decreased by 12%, whilst the concentration of ribosomal reporter more than doubles.
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Figure 6.9: Population mean values of different parameters measured in different strains and
conditions. In the labels, (A) indicates the L19-C, pn25-Y strain and (B) the Prrna-C, pn25-Y strain.
Growth media are indicated between brackets. M9 indicates M9 minimal medium, TY indicates
TY medium and TY+AB indicates TY medium supplemented with antibiotics. "C", "Y" and "R"
indicate the fluorescent labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry
(red) respectively.
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Figure 6.10: Cross-correlations between concentration of constitutive reporter and growth. (A)
L19-C, pn25-Y strain. Grown in M9 minimal medium. (B) Prrna-C, pn25-Y strain. Grown in M9
minimal medium. (C) Prrna-C, pn25-Y strain. Grown in TY medium. (D) Prrna-C, pn25-Y strain.
Grown in TY medium supplemented with antibiotics. "C", "Y" and "R" indicate the fluorescent
labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry (red) respectively. Both
the black and red curves show the cross-correlation, based on two different calculation methods
(see section 2.4.5). Grey areas and blue lines indicate respectively the range and mean of negative
control curves (see text for discussion). Except for the left panel in panel B, which is based on a
gel pad experiment, all data is based on experiments with microfluidic device 2 (see also methods
section).
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Figure 6.11: Cross-correlations between production rate of constitutive reporter and growth.
(A) L19-C, pn25-Y strain. Grown in M9 minimal medium. (B) Prrna-C, pn25-Y strain. Grown in M9
minimal medium. (C) Prrna-C, pn25-Y strain. Grown in TY medium. (D) Prrna-C, pn25-Y strain.
Grown in TY medium supplemented with antibiotics. "C", "Y" and "R" indicate the fluorescent
labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry (red) respectively. Both
the black and red curves show the cross-correlation, based on two different calculation methods
(see section 2.4.5). Grey areas and blue lines indicate respectively the range and mean of negative
control curves (see text for discussion). Except for the left panel in panel B, which is based on a
gel pad experiment, all data is based on experiments with microfluidic device 2 (see also methods
section).
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Figure 6.12: Cross-correlations between concentration of ribosomal reporter and growth. (A)
L19-C, pn25-Y strain. Grown in M9 minimal medium. (B) Prrna-C, pn25-Y strain. Grown in M9
minimal medium. (C) Prrna-C, pn25-Y strain. Grown in TY medium. (D) Prrna-C, pn25-Y strain.
Grown in TY medium supplemented with antibiotics. "C", "Y" and "R" indicate the fluorescent
labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry (red) respectively. Both
the black and red curves show the cross-correlation, based on two different calculation methods
(see section 2.4.5). Grey areas and blue lines indicate respectively the range and mean of negative
control curves (see text for discussion). Except for the left panel in panel B, which is based on a
gel pad experiment, all data is based on experiments with microfluidic device 2 (see also methods
section).
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Figure 6.13: Cross-correlations between production rate of ribosomal reporter and growth. (A)
L19-C, pn25-Y strain. Grown in M9 minimal medium. (B) Prrna-C, pn25-Y strain. Grown in M9
minimal medium. (C) Prrna-C, pn25-Y strain. Grown in TY medium. (D) Prrna-C, pn25-Y strain.
Grown in TY medium supplemented with antibiotics. "C", "Y" and "R" indicate the fluorescent
labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry (red) respectively. Both
the black and red curves show the cross-correlation, based on two different calculation methods
(see section 2.4.5). Grey areas and blue lines indicate respectively the range and mean of negative
control curves (see text for discussion). Except for the left panel in panel B, which is based on a
gel pad experiment, all data is based on experiments with microfluidic device 2 (see also methods
section).
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Figure 6.14: Cross-correlations between concentration of ribosomal reporter and concentra-
tion of pn25 reporter. (A) L19-C, pn25-Y strain. Grown in M9 minimal medium. (B) Prrna-C,
pn25-Y strain. Grown in M9 minimal medium. (C) Prrna-C, pn25-Y strain. Grown in TY medium.
(D) Prrna-C, pn25-Y strain. Grown in TY medium supplemented with antibiotics. "C", "Y" and "R"
indicate the fluorescent labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry
(red) respectively. Both the black and red curves show the cross-correlation, based on two different
calculation methods (see section 2.4.5). Grey areas and blue lines indicate respectively the range
and mean of negative control curves (see text for discussion). Except for the left panel in panel B,
which is based on a gel pad experiment, all data is based on experiments with microfluidic device
2 (see also methods section).
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Figure 6.15: Cross-correlations between production rate of ribosomal reporter and production
rate of pn25 reporter. (A) L19-C, pn25-Y strain. Grown in M9 minimal medium. (B) Prrna-C,
pn25-Y strain. Grown in M9 minimal medium. (C) Prrna-C, pn25-Y strain. Grown in TY medium.
(D) Prrna-C, pn25-Y strain. Grown in TY medium supplemented with antibiotics. "C", "Y" and "R"
indicate the fluorescent labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry
(red) respectively. Both the black and red curves show the cross-correlation, based on two different
calculation methods (see section 2.4.5). Grey areas and blue lines indicate respectively the range
and mean of negative control curves (see text for discussion). Except for the left panel in panel B,
which is based on a gel pad experiment, all data is based on experiments with microfluidic device
2 (see also methods section).
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Such large increases of ribosomal concentration are consistent with earlier observations
of growth in the presence of antibiotics, although in earlier observations this large in-
crease was accompanied by a larger decrease in growth rate [140]. Nevertheless, earlier
ribosomal labels even showed a decrease in concentration with increasing growth rate
(see section 6.2.2), so these labels show behavior that is much more consistent with ex-
pectations. Figures 6.17 and 6.18 show CCs from the S2 r-protein expression-growth
dynamics, and figures 6.19 and 6.20 show CCs from the L9 r-protein expression-growth
dynamics. Furthermore, figures 6.21 and 6.22 show expression–expression CCs between
the ribosomal labels. Just as we did for the strains discussed earlier, we also generated
negative control CCs for these datasets using randomly combined time traces. These
negative controls again showed high correlations (grey areas in figures 6.17-6.22) instead
of very low values as expected for steady state experiments with sufficient amounts of
data. This indicates that more experiments are required to make claims about this data.

Nevertheless, we can try to interpret the current data. The S2 reporter concentration-
growth cross correlation for cells growing in M9 minimal medium (left panel in figure
6.17.A) shows negative correlations. Negative correlations at negative delays are consis-
tent with the dilution mode of noise transmission [10], but this curve also shows negative
correlations at positive delays, which is not consistent with that mode of noise trans-
mission. The CC of second experiment with this strain in the same conditions (right
panel in figure 6.17.A) shows less pronounced negative correlations, but we also note
that cross correlation analysis of other parameters from this experiment showed indi-
cations of poor data quality (as discussed later, see also figure 6.21.A). Interestingly, the
S2 reporter concentration-growth CC for cells growing in the same M9 medium supple-
mented with antibiotics, does not show these negative correlations, see figure 6.17.B.
This could be indicative of a situation where ribosomes are more limiting due to the
antibiotic stress, and fluctuations transmit from ribosomal fluctuations to the growth
rate of the cell. Production rate-growth CCs of the S2 reporter, shown in figure 6.18, are
harder to interpret, both for M9 medium and M9 medium with antibiotics. They are
however not inconsistent with the earlier observations and interpretation.

Next, using the same experimental data, we calculated the CCs for the other ribo-
somal reporter in this strain to see whether it shows similar behaviour. The first ex-
periment (in M9 medium) also showed negative concentration-growth CCs of the L9
reporter (figure 6.19.A, left panel), consistent with the CCs of the S2 reporter. Yet, the
CC from the second experiment in M9 medium shows a different pattern; though we
note that cross-correlation analysis of other parameters from this experiment showed
indications of poor data quality (as discussed later, see also figure 6.21.A). The dynam-
ics in M9 medium plus antibiotics again seemed different compared to the experiment
without antibiotics (figure 6.19.B), as negative correlations now manifest as positive de-
lays (instead of at negative delays). The negative correlations are however different from
the positive correlations we saw for the S2 reporter in the same experiment. This indi-
cates that either repetitions of these experiments might yield different results, or one of
the labels does not appropriately reflect ribosomal concentration, or different ribosomal
proteins might have their own dynamics. Production-growth CCs of the L9 reporter (fig-
ure 6.20) are again hard to interpret, although the condition with antibiotic stress shows
a distinct peak around zero delay.
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Aside from expression-growth dynamics, we can additionally look at the interaction
between expression of the two ribosomal proteins in the experiments with this strain.
In general, we expect CCs for this interaction to show positive correlations that are sym-
metrical around zero delay, since we expect both reporters to represent the ribosomal
concentration. The first experiment (in M9 medium) showed an S2-L9 concentration-
concentration CC that is — against expectations — not symmetric (left panel in figure
6.21.A). The second experiment in the same condition (M9 medium) showed an S2-L9
concentration-concentration CC that has a shape that we cannot interpret in our current
framework (figure 6.21.A, right panel). The correlations in this CC also do not go to zero
for large delays, which is indicative for poor data quality. If data quality is indeed poor
for this experiment, this might also have implications for other CCs based on this exper-
iment (all the right panels in figures 6.17.A, 6.18.A, 6.19.A and 6.20.A.) Furthermore, the
S2-L9 concentration-concentration CC for the experiment with this strain in M9 mini-
mal medium supplemented with antibiotics is different, but also not symmetric (figure
6.21.B). This asymmetry is consistent with the earlier differences in expression growth
CCs between the two labels. Again, it might be that repetitions of these experiments
might yield different results, or one of the labels does not appropriately reflect riboso-
mal concentration, or different ribosomal proteins might have their own dynamics.

Furthermore, the CCs between the production rates of the S2 and L9 labels (figure
6.21) do seem symmetric in both the M9 minimal medium and M9 minimal medium
with antibiotics, which is consistent with aforementioned expectations. We do not ob-
serve further noteworthy features in the production–production CCs.

6.3. DISCUSSION AND CONCLUSION

6.3.1. ANTIBIOTIC SHIFT EXPERIMENTS ON DEVICE 1

In conclusion, we have used different single cell approaches in an attempt to further
understand the ribosome. We first performed an experiment using our microfluidic de-
vice 1 to subject cells to a switch from growth in minimal medium to growth in minimal
medium with antibiotics. Based on literature, we expected that cells needed a higher
concentration of ribosomes when they were exposed to translational antibiotics (see e.g.
ref. [170]), and thus that single cells that expressed more ribosomes relative to the popu-
lation average would benefit shortly after the switch. If we would be able to observe such
single cell growth advantages, this might imply ribosomes are limiting in this scenario.
Their behaviour could then serve as positive control and point of reference for other
experiments. To our surprise, the L31 reporter did not show the expected increased con-
centration during exposure to antibiotics after the switch. This was also observed before
[18] for this particular ribosomal protein, and it raises the question how representative
the L31 reporter is for the ribosomal concentration. A second reporter we used, a riboso-
mal RNA promoter fused to a cyan fluorescent reporter protein, did show the expected
increase of ribosomal concentration after the switch to medium supplemented with an-
tibiotics. The results from these experiments regarding single cell growth advantage were
however inconclusive, they neither showed a clear absence nor a clear presence of an in-
creased correlation after the switch.
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Figure 6.16: Population mean values of different parameters measured in L9-R, S2-Y strain ex-
periments. Shown are data from growth in M9 minimal medium ("M9") versus growth in M9 min-
imal medium supplemented with antibiotics ("M9+AB"). "C", "Y" and "R" indicate the fluorescent
labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry (red) respectively.
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Figure 6.17: Cross-correlations between the concentration of the S2 ribosomal protein and
growth. (A) L9-R, S2-Y strain. Grown in in M9 minimal medium. (B) L9-R, S2-Y strain. Grown in
in M9 minimal medium supplemented with antibiotics. "C", "Y" and "R" indicate the fluorescent
labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry (red) respectively. Both
the black and red curves show the cross-correlation, based on two different calculation methods
(see section 2.4.5). Grey areas and blue lines indicate respectively the range and mean of negative
control curves (see text for discussion). All data is based on experiments with microfluidic device
2 (see also methods section).
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Figure 6.18: Cross-correlations between the production rate of the S2 ribosomal protein and
growth. (A) L9-R, S2-Y strain. Grown in in M9 minimal medium. (B) L9-R, S2-Y strain. Grown in
in M9 minimal medium supplemented with antibiotics. "C", "Y" and "R" indicate the fluorescent
labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry (red) respectively. Both
the black and red curves show the cross-correlation, based on two different calculation methods
(see section 2.4.5). Grey areas and blue lines indicate respectively the range and mean of negative
control curves (see text for discussion). All data is based on experiments with microfluidic device
2 (see also methods section).
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Figure 6.19: Cross-correlations between the concentration of the L9 ribosomal protein and
growth. (A) L9-R, S2-Y strain. Grown in in M9 minimal medium. (B) L9-R, S2-Y strain. Grown in
in M9 minimal medium supplemented with antibiotics. "C", "Y" and "R" indicate the fluorescent
labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry (red) respectively. Both
the black and red curves show the cross-correlation, based on two different calculation methods
(see section 2.4.5). Grey areas and blue lines indicate respectively the range and mean of negative
control curves (see text for discussion). All data is based on experiments with microfluidic device
2 (see also methods section).
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Figure 6.20: Cross-correlations between the production rate of the L9 ribosomal protein and
growth. (A) L9-R, S2-Y strain. Grown in in M9 minimal medium. (B) L9-R, S2-Y strain. Grown in
in M9 minimal medium supplemented with antibiotics. "C", "Y" and "R" indicate the fluorescent
labels by their colors: mCerulean (cyan), mVenus (yellow) and mCherry (red) respectively. Both
the black and red curves show the cross-correlation, based on two different calculation methods
(see section 2.4.5). Grey areas and blue lines indicate respectively the range and mean of negative
control curves (see text for discussion). All data is based on experiments with microfluidic device
2 (see also methods section).
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Figure 6.21: Cross-correlations between concentrations of two ribosomal proteins. (A) L9-R,
S2-Y strain. Grown in in M9 minimal medium. (B) L9-R, S2-Y strain. Grown in in M9 minimal
medium supplemented with antibiotics. "C", "Y" and "R" indicate the fluorescent labels by their
colors: mCerulean (cyan), mVenus (yellow) and mCherry (red) respectively. Both the black and red
curves show the cross-correlation, based on two different calculation methods (see section 2.4.5).
Grey areas and blue lines indicate respectively the range and mean of negative control curves (see
text for discussion). All data is based on experiments with microfluidic device 2 (see also methods
section).
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Figure 6.22: Cross-correlations between production rates of two ribosomal proteins. (A) L9-R,
S2-Y strain. Grown in in M9 minimal medium. (B) L9-R, S2-Y strain. Grown in in M9 minimal
medium supplemented with antibiotics. "C", "Y" and "R" indicate the fluorescent labels by their
colors: mCerulean (cyan), mVenus (yellow) and mCherry (red) respectively. Both the black and red
curves show the cross-correlation, based on two different calculation methods (see section 2.4.5).
Grey areas and blue lines indicate respectively the range and mean of negative control curves (see
text for discussion). All data is based on experiments with microfluidic device 2 (see also methods
section).
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6.3.2. SINGLE CELL RIBOSOME EXPRESSION AND GROWTH

To follow up on these experiments, we performed experiments using microfluidic device
2, which allows for measurements that are longer and thus allows for more switches, and
additionally enables tracking a higher and constant number of cells. This set of exper-
iments could have provided additional information on the ribosomal behavior during
switches from medium that requires less ribosomal expression to medium that requires
more ribosomal expression.Additionally, the long time lapse capabilities of the device
would allow us to record data in steady state. On top of this, we used newly constructed
strains in these experiments that allowed us to measure the effect of ribosomal fluctua-
tions on single cell protein expression, as the strains also contained a constitutive pn25
reporter construct. However, the analysis of data in this device presented additional
challenges for the analysis. We therefore only analysed a subselection of the data and
focused on analyses of steady state behaviour.

On top of this, the data that we did analyse showed a very high background sig-
nal, which indicated that more data needs to be analysed or additional experiments
are required to draw definitive conclusions. Nevertheless, we made several observa-
tions regarding the interaction between single cell ribosomal fluctuations and single cell
growth rate fluctuations. Firstly, in experiments involving the ribosomal RNA reporter,
we saw that cross-correlation analysis in most conditions could be consistent with dilu-
tion mode transmission of noise. This would be consistent with the idea that ribosomal
RNA does not affect growth rate, but growth rate fluctuations instead result in ribosomal
fluctuations. Secondly, in experiments in M9 minimal medium involving labeled ribo-
somal proteins (L9 and S2), we also saw cross-correlations that might be consistent with
dilution mode dynamics. However, when this strain grew on M9 minimal medium sup-
plemented with antibiotics, cross-correlations were less consistent with dilutions mode
dynamics. Hence, contrary to what the r-RNA data indicated, this data suggested that ri-
bosomal fluctuations could become more consequential for the cell when it experiences
translational stress.

Similar experiments were described earlier by Noreen Walker [18], we briefly sum-
marized her experimental observations in section 6.1.3 of this chapter. Observations
by Walker on a strain with a ribosomal RNA reporter in medium M9 medium supple-
mented with acetate (our lactose-supplemented M9 sustains a higher growth rate) or
defined rich medium did not show dilution mode behaviour, which could mean ribo-
somal RNA shows different dynamics in different media. Some of the experiments in-
volving L19 and L31 reporters that she performed showed dilution mode behavior in
M9 minimal medium, similar to our observations on the labeled S2 and L9 ribosomal
proteins in minimal medium, but some of her experiments did not. (This depended on
the fluorescent label that was used, mCherry or mCerulean respectively.) Walker also
performed CC analyses of steady state growth in rich medium supplemented with an-
tibiotics, which resulted only in subtle changes in the dynamics, both for a labelled L31
ribosomal protein and for a ribosomal RNA promoter reporter construct. It is unclear
how these results obtained in different media connect to our results.
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6.3.3. SINGLE CELL RIBOSOME EXPRESSION AND PROTEIN EXPRESSION

In this chapter, we also performed experiments on strains that carried both a riboso-
mal expression reporter and a constitutive reporter. The latter reporter was intended
to probe the effect of ribosomal expression fluctuations on the cell’s ability to produce
proteins. We observed positive correlations in the CCs between the concentrations of
these two reporters. Such correlations are however expected between the expression of
any two proteins, and thus do not necessarily imply that there is an effect of ribosomal
expression fluctuations on protein production in the cell. We did observe additional fea-
tures in the CCs. These depended on the medium in which the cells were growing. In
most media, these features were not consistent with an effect of ribosomal fluctuations
on protein production, except in TY. In TY medium we observed additional correlations
between constitutive protein expression and past ribosome expression, which is consis-
tent with an effect of ribosomal fluctuations on protein production rates. TY medium
sustains very fast bacterial growth rate, which could explain an increased sensitivity to
ribosomal fluctuations. As mentioned however, more experiments are needed to draw
definitive conclusions.

To shed further light on these matters, one could additionally look at the cross-correlation
between the concentration of the ribosomal reporter and the production of the consti-
tutive reporter. This would require a rather straightforward extension of our analysis
scripts.

6.3.4. THE RIBOSOME IS A COMPLEX STRUCTURE

We have discussed many experiments, which employed different ribosomal labels and
probed dynamics in different conditions. Different conditions sometimes showed dif-
ferent results. Often however, results also depended on which ribosomal protein was
tracked. One explanation for that observation is that ribosomal subunits have their own
dynamics. Though the ribosome is often viewed as a complex that has a fixed com-
position, recent discoveries in eukaryotes show that this might actually not be the case
[217, 218]. Purification and mass-spectrometry of ribosomes in yeast and mouse embry-
onic stem cells showed that pools of ribosomes with different ribosomal protein compo-
sition exist, which could also be linked to functional properties [218]. This raised the sug-
gestion that the cell can modulate expression of different ribosomal proteins separately,
to achieve specific regulatory goals. It is not impossible this is also the case in E. coli , and
this would explain why experiments tracking different ribosomal proteins show different
dynamics. This potential added layer of regulation makes it more difficult to understand
the effect of ribosomal concentration fluctuations. Coincidentally, for eukaryotes, it has
been observed that especially ribosomal surface proteins vary. Surface proteins are also
convenient targets for labelling. In fact, the L9, S2 and L19 proteins that we labelled are
also on the surface of the ribosome, see figure 6.23. Also the L31 protein that we labelled
is only loosely attached to the ribosome [18]. Consistent with the view that the ribo-
somal proteins are not expressed equally for functional reasons, not all operons from
which the ribosomal proteins are expressed are regulated by exactly the same regulators
[171]. Additionally, some ribosomal subunits are observed to be essential, whilst others
are not (i.e. some respective null mutants are viable, whilst others are not). This further
illustrates that different ribosomal proteins might have different functional expression
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Figure 6.23: Some of the ribosomal proteins that were labeled for experiments in this chapter.
The structure of the ribosome is displayed twice in grey, with on the left the L19 ribosomal protein
highlighted in red, and on the right the L9 and S2 ribosomal subunits highlighted in red and yellow,
respectively. This image is based on x-ray crystallography (PDB ID: 4v4q, [208]). Pdb files were
downloaded from www.rcsb.org [209] visualized with UCSF Chimera (version 1.11.2, build 41376,
[210]). These two visualizations were made by Giulia Bergamaschi.

profiles. From the proteins that we labelled, L9 and L31 are non-essential, and S2 and
L19 are essential. This distinction might also be reflected in different relationships be-
tween expression and growth rate for the different ribosomal proteins, though our data
might be too limited to draw conclusions about this. Concluding, understanding ribo-
somal dynamics based on labelling ribosomal proteins might prove a challenging task.

6.4. OUTLOOK

6.4.1. MAKING RIBOSOMES LIMITING

As mentioned in the results section, it can sometimes be very useful to create an ex-
treme situation to better understand the dynamics of a system. For ribosomal dynam-
ics, an extreme situation might be one where ribosomes are limiting, i.e. a situation in
which single cell growth rates correlate strongly with ribosomal expression.This topic
is also discussed in the previously mentioned thesis by Walker [18]. We think it is not
straightforward to create such a situation. For example, whilst it might be a sensible idea
that adding sub-inhibitory concentrations of antibiotics to the cellular growth medium
might cause translational stress and thus more limiting behaviour of ribosomes, the ad-
dition of antibiotics to growth medium was observed to have limited consequences in
experiments. One explanation for this might be that a population of cells reacts to an
antibiotic disturbance by altering its ribosomal expression level in such a way that lo-
cal deviations from the newly established level have similar effects as deviations from
the original expression level. This idea is further illustrated by the cartoon in figure 6.24.
Different stressors instead of antibiotics might be used to put the cell under translational
duress. To create an alternative situation where ribosomal capacity is challenged, we
constructed strain ASC1088 (see table 6.3) which carries a plasmid that expresses the
mCherry protein at a high expression level. Similar to the antibiotic treatment, protein
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Figure 6.24: Cartoon of how ribosomal expression might affect growth rate. Ribosomal expres-
sion in single cell deviates from the population average. Both the average and single cell expression
levels might not lie exactly at the optimum. Low expression might lead to slower growth because
ribosomes become limiting. High expression might decrease growth rate because resources to
produce these ribosomes are drawn from other essential cellular processes. Panel (a) shows how
the expression-growth relationships in single cells might relate between cells not exposed to an-
tibiotics (black line) and cells exposed to antibiotics (red line). Panel (b) shows that these relation-
ships might be similar if we consider only the deviations from the population averages (which are
here assumed to coincide with optimal expression levels). R and µ respectively indicate ribosomal
expression and growth rate, ∆R and ∆µ indicate mean-subtracted respective values.

over–expression might also put a large burden on ribosomal capacity, thus increasing
the effect ribosomal fluctuations have on growth rate (see Walker’s thesis for a longer
discussion on this topic [18]). However, partially based on earlier observations of the
limited effect of unneeded protein expression [219], we suspected that experiments with
over-expression might yield similar results as the antibiotic experiments, we abandoned
experiments with this strain.

Future experiments might be devised in which ribosomes are forced to become limit-
ing. As also mentioned by Walker [18], previously constructed rrs null mutants [220–224]
might provide a venue towards this aim. Given the role of the ribosomal RNA as back-
bone for the ribosome, shortages in ribosomal RNA content might have profound effects
on the cellular growth rate. Ribosomal RNA is expressed from multiple partially redun-
dant operons labelled rrna up to rrnh, as shown in supplementary figure 6.25. Bollen-
bach et al. [223] created several null mutants which had more and more of these operons
removed, as also shown in supplementary figure 6.25. In these null mutants, ribosomal
RNA fluctuations might have a large effect on growth rate. Ribosomal proteins on the
other hand might still be expressed at normal levels, and thus would be present at plen-
tiful levels. Hence, the concentration of ribosomal RNA might be limiting, whilst the
concentration of ribosomal proteins is not. The expression of ribosomal RNA is however
hard to track directly. One way for future experiments to get around this might be the
creation of a plasmid that expresses ribosomal RNA and a reporter simultaneously. A
fluorescent reporter sequence (and ribosome binding site) could be fused at the end of
an rrn operon sequence, which could be expressed from a plasmid in one of the deletion
strains. This would result in both rRNA and coding RNA being expressed simultaneously,
and thus allow for a way to track whether fluctuations in ribosomal content can affect
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single cell growth rate. Some research on how such a construct could look was already
performed and can be found in supplementary note I (section 6.7) to this chapter.

Furthermore, single cell methods are developing rapidly, and future advances might
help us to further understand the complex dynamics between the ribosome, protein pro-
duction and cellular growth rate.

6.5. METHODS

Where minimal medium is mentioned, this refers to M9 minimal medium (also described
in chapter 3). Minimal medium in this chapter was always supplemented with uracil
(0.2 mM), lactose (0.1% g/mL). TY medium is described in chapter 3. During time lapse
experiments under the microscope, tween20 (0.001% g/mL) was added to the medium
additionally. When antibiotics are mentioned, this refers to tetracycline, which was used
at a concentration of 0.5 µM. All experiments were conducted using microfluidic device
2 as described in the methods section of chapter 3, except for one experiment (this is
indicated in the figure caption), which was performed using a gel pad (see also chapter
3). See also chapter 2 for further information.
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6.7. SUPPLEMENTARY NOTE I
6.7.1. MAKING RRNA CONCENTRATION LIMITING AND TRACEABLE

In this supplementary section, we aim to show how one could create an artificially lim-
iting situation involving ribosomal genes and also track ribosomal expression to show
this. Or in other words, how to create a strain in which traceable ribosomal RNA fluc-
tuations have an effect on the growth rate. As briefly described in the main text, the
∆rrn strains created by Bollenbach et al. [223] could experience ribosomal RNA limi-
tations. One could introduce a plasmid containing a ribosomal RNA operon sequence,
followed by a ribosomal binding site sequence and fluorescent reporter sequence, to in-
vestigate correlations between additional ribosomal RNA expression (from the plasmid)
and single cellular growth rate. To achieve this, one could either use the pK4–16 plas-
mid constructed by Quan et al. [225] — which contains the rrnb operon — as a starting
point, or clone the rrnb operon into another vector (for which one could use primers se-
quences for rrnb also published by Quan et al [225]). The new vector should have a low
copy number and its antibiotic resistance module should not be the same as the mod-
ules used in strains the vector might be introduced to (ampicilin might be a convenient
choice, but not streptavadin or chloramphenicol). To track rRNA expression one could
add a fluorescent reporter (e.g. mCerulean2.0) to the rrnb operon, which could be in-
serted after the coding sequences and accompanying RNA cleavage sites, but before the
operon’s terminator sites. The structure of the operon and the cleavage and terminator
sites are described in Kaczanowska et al. [226] (see also Shajani et al. [227]), and termi-
nator sites are also annotated in the Ecocyc database1 [171]. In addition to a fluorescent
protein sequence itself, the reporter sequence would also have to contain a ribosome
binding site, which could be synthetically made using the Salislab ribosome binding site
(RBS) calculator2 [228, 229]. Furthermore, to prevent interference with ribosomal RNA
maturation, a linker could be introduced between the ribosomal RNA sequences and the
reporter sequence. The resulting plasmid could be introduced in strain ∆2 (also known
as CGSC 12340 and SQ40), which lacks the rrne and rrng operons that are both similar
to rrnb, see table 6.25. The copy number of a low copy number plasmid would likely be
variable in single cells, which aids towards the goal of investigating the effect of different
single cell expression levels of the ribosomal RNA.

6.7.2. ADDITIONAL CONSIDERATIONS

An additional consideration might be the strength of the rrn promoters. These are dif-
ferent per operon, the rrne is by far the strongest [230]. The rrnb promoter strength is
two to several times less depending on the condition. This is compatible with our aim to
keep ribosomal RNA expression limited.

A challenge to this strategy might be that tRNA turns out to be limiting, as suggested

1In the E. coli genome, the region with the terminators lies between nu-
cleotide 4171756 and 4171760, and an annotated sequence can be found via
https://ecocyc.org/ECOLI/select-gen-el.

2Using https://salislab.net/software/ and the mCerulean2.0 sequence, an RBS sequence
might look like:
CTTTCAATCAATTCGTAATTTTAGATAAATAATAAGGAGGTCTCTAA.
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Figure 6.25: Table showing the rrn operons in E. coli with cartoon overlay indicating different
rrn null mutant strains created by Bollenbach et al.. Ribosomal RNA in E. coli is expressed from
multiple partially overlapping operons. Operons contain different ribosomal parts (and tRNA
molecules). rrs encodes 16S rRNA, rrl encodes 23S rRNA, and rrf encodes 5S rRNA. Other ab-
breviations indicate genes that encode tRNA molecules. This is also indicated in the second line
of the "ribosomal parts" column. Symbols in the third column indicate equivalence between the
operons. The last column indicates regulators of the operons, symbols in brackets indicate evi-
dence is not definitive. (This information was obtained from the online database Ecocyc [171]).
The overlayed crosses and circles indicate the null mutants that were constructed by Bollenbach
et al. [223]. Each column of crosses corresponds to one strain, a cross indicates that the respective
strain lacks the operon indicated. A circle indicates additional tRNA was expressed from a plas-
mid. These strains were also referred to as ∆1-6, where the number corresponds to the number of
operons that were removed.

by Quan et al. [222]. tRNA is also expressed from the rrn operons. To make sure we
are not mistaking tRNA limitations for ribosomal limitations, additional artificial tRNA
expression (for example from plasmid ptRNA67 described in Zaporojets et al. [222, 231])
could be a tool to make sure this is not the case.
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6.8. SUPPLEMENTAL FIGURES AND TABLES

r-protein Gene name Operon Fluorescent label
L31 rpmE none Cerulean, mCherry
L19 rplS rpsP-rimM-trmD-rplS Cerulean, mCherry
L9 rplI rpsF-priB-rpsR-rplI mCherry
S2 rpsB ttf-rpsB-tsf Venus

Table 6.2: Labeld ribosomal proteins in the Tans lab.



6.8. SUPPLEMENTAL FIGURES AND TABLES

6

179

0 50 100 150

0

1

2

A

0 200 400

0.5

1

1.5

2

B

0 100 200

0

1

2

0 20 40 60

-20

0

20

C

0 50 100

-10

-5

0

5

D

Time (minutes)

G
ro

w
th

 r
at

e 
(d

ou
bl

in
gs

/h
r)

Figure 6.26: Growth of single cells of the different strain populations in the different conditions.
(A) L19-C, pn25-Y strain. Grown in M9 minimal medium. (B) Prrna-C, pn25-Y strain. Grown in M9
minimal medium. (C) Prrna-C, pn25-Y strain. Grown in TY medium. (D) Prrna-C, pn25-Y strain.
Grown in TY medium supplemented with antibiotics.
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ASC number Shorthand Description Source
ASC656 L31-R L31-mCherry-kanR (no linker).

(Kanamycin resistant.)
NW, VS

ASC657 L19-R L19-mCherry-kanR (no linker).
(Kanamycin resistant.)

NW, VS

ASC680 L31-R, Prrn-G L31-mCherry-kanR (no linker),
Δ(cheZ)::Prrn-GFP-catR. (Kanamycin
and chloramphenicol resistant.)

NW, VS

ASC779 Prrn-G Δ(cheZ)::Prrn-GFP, rrsa promoter. (No re-
sistance.)

NW, VS

L19-C L19-mCerulean L19-gc-mCerulean-kanR
(GC linker) (Kanamycin resistance.)

VS

Prrn-C Δ(cheZ)::Prrn-mCerulean-kanR
(Kanamycin resistance)

VS

ASC1088 mCherry+ ASC968 + high copy plasmid w. pn25-
mCherry (Resistances: kanamycin, chlo-
ramphenicol, ampicilin.)

VS

Table 6.3: Miscellaneous strains. NW indicates these strains were used in Noreen Walker’s thesis
[18]. VS indicates these strains are created by Vanda Sunderlikova.
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Figure 6.27: Growth of single cells of the different strain populations in the different conditions.
(A) L9-R, S2-Y strain. Grown in in M9 minimal medium. (B) L9-R, S2-Y strain. Grown in in M9
minimal medium supplemented with antibiotics.



7
IMPLICATIONS FOR SOCIETY

This chapter discusses scientific and technical implications of the research in this thesis
for society.

7.1. AN UNDERSTANDING OF THE FUNDAMENTALS

All organisms, from bacteria to bird, from jellyfish to jungle tree, consist of cells. Some
simple organisms, like bacteria, consist of only one cell. Some organisms consist of
many more cells. Humans for example consist of around ten trillion cells (a one with
thirteen zeroes) [232, BNID 102390]. A cell consists of a membrane that seperates the
outside environment from its inside environment, which is filled with proteins, other
biomolecules like signalling molecules and building blocks, and DNA which stores ge-
netic building plans. Interactions between proteins and other cellular molecules, com-
bined with sensory input from the environment outside the cell, determine how the cell
behaves, what molecules are produced in the cell and whether it will grow. Like in an
electronic circuit board, the properties of the components and their interactions can
be identified and quantified, such that the workings of the cell can be understood and
manipulated. Currently, we do not understand all the processes that go on in the bi-
ological cell. Quantitative biology approaches like this work allow us to further chart
the processes that go on in the cell, where in this case we have used the bacterium Es-
cherichia coli as a model organism. The aim is to obtain a better understanding and abil-
ity to manipulate the biological processes in the biological cell. Since cells are building
blocks of all organisms, including humans and pathogenic microorganisms, this even-
tually might bring us closer to understanding and solving human disease. Additionally,
microorganisms play an important role in industry, for example in food production and
sewage treatment. What exactly the direct implications of understanding fundamental
cellular processes are is hard to predict, but such knowledge has the potential to have a
wide impact on society.

181
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7.2. KILLING BACTERIA

Nevertheless, we will try to reflect more specifically on the impact of different aspects
of this work. In chapter 3, we described how bacteria manage resuming their divisions
after they paused the division process due to situations they experienced as stressful.
This is thought to be a bacterial survival mechanism. Knowledge about bacterial sur-
vival mechanisms might be useful in situations where from a human perspective it is
desired to kill or inhibit bacterial growth. Though bacteria filament in response to many
adverse conditions, practically relevant conditions include antibiotic exposure and high
or low temperatures. These conditions are relevant in clinical and food preservation set-
tings, respectively. Information about the filamentation process might improve predic-
tions about bacterial survival in these settings, and eventually might help adjusting clin-
ical treatments or preservation processes to increase their effectiveness. Furthermore,
targeting the components of the filamentation mechanism specifically might decrease
bacterial proliferation in such settings.

7.3. METHODS WITH A WIDER RELEVANCE

Besides division of filamentous bacteria, there are two more topics in this thesis. These
are: (1) how stochasticity, regulation and individuality of bacteria relate to each other, in-
vestigated in the CRP metabolic regulatory system, discussed in chapter 5, and (2) how
stochasticity in ribosomal expression relates to bacterial individuality and growth, dis-
cussed in chapter 6. Firstly, it is noteworthy to mention that the methods used in the
studies of these two topics (see chapter 2) could have a societal relevance. Automated
image analysis of large quantities of individual cells as used in this thesis has wide ap-
plications, and experience from this type of analysis might also prove useful in a more
clinical settings. Conceivable examples include analysis of blood cells or other tissue
samples for the purpose of diagnostics. Furthermore, growing biological cells in mi-
crofluidic chambers in order to obtain single cell data is also a technique that can be
applied more broadly. Single cell data can be and is already being acquired from human
cell lines, which might improve our understanding of human biology and disease. Im-
provements in single cell microfluidic methods might contribute to the advancement of
this research.

7.4. THE IMPORTANCE OF HETEROGENEITY

One can speculate about the more direct, albeit future, impacts on society of the work
described in chapters 5 and 6. In chapter 5 we saw that regulation systems might be
important in transmitting stochastic fluctuations, which contributes to heterogeneity
in the population. In chapter 6 we investigated the role of ribosomes in cellular indi-
viduality, which relates immediately to population heterogeneity. Understanding the
mechanisms behind heterogeneity gives us fundamental insights in the workings of the
biological cell, but heterogeneity might also have a more direct relevance. For exam-
ple, microorganisms are also used in industrial applications. Practical examples include
the production of yoghurt and beer. Perhaps less well known is the effort to genetically
modify organisms to produce fuels [233, 234]. In such applications, microorganisms are
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usually employed to perform a single task. Like the production of a specific beer, or a
specific molecule that can be used as fuel. There likely is an optimal state for an in-
dividual microorganism to perform such a task, but the phenomenon of heterogeneity
prevents cells in the population to uniformly be in that state. Thus, whilst heterogeneity
might be beneficial from an evolutionary perspective, genetic engineering to alter this
phenomenon could potentially improve the yield and/or allow better fine-tuning of in-
dustrial processes that involve microorganisms.

Furthermore, as also discussed in chapter 4, heterogeneity might contribute to en-
hance the survival chances of a population, because different individuals can be pre-
pared for different future scenarios (bet hedging). Knowledge about the origins of het-
erogeneity might thus be relevant in a clinical setting, where the desire often exists to
prevent the growth of microorganisms like bacteria.





IMPLICATIES VOOR DE

SAMENLEVING (NL)

In dit hoofdstuk worden wetenschappelijke en technische implicaties van dit onderzoek
voor de samenleving besproken.

HET BEGRIJPEN VAN DE FUNDAMENTEN

Alle organismen, van bacterie tot boomvalk, van kwal tot Koreaanse spar, zijn opge-
bouwd uit cellen. Sommige simpele organismen, zoals bacteriën, bestaan uit slechts
één cel. Sommige organismen bestaan uit heel veel cellen. Mensen bestaan bijvoor-
beeld uit ongeveer tien biljoen cellen (een één met dertien nullen) [232, BNID 102390].
Een cel heeft een membraan dat een scheidingsbarriere vormt tussen dat wat zich in de
cel bevindt en dat wat zich daarbuiten bevindt. In de cel bevinden zich eiwitten, andere
biomoleculen zoals signaaleiwitten en bouwstenen, en DNA waarop genetische infor-
matie opgeslagen is. Interacties tussen eiwitten en andere cellulaire moleculen, in com-
binatie met sensorische inputs vanuit wat buiten de cel gebeurt, bepalen hoe de cel zich
gedraagt, welke moleculen er geproduceerd worden in de cel, en of de cel gaat groeien.
Zoals in een elektronisch circuit kunnen de eigenschappen van componenten en hun
interacties geïdentificeerd en gekarakteriseerd worden, zodat de werking van de cel be-
grepen en gemanipuleerd kan worden. Momenteel begrijpen we niet alle processen die
in de biologische cel plaatsvinden. De aanpak van de kwantitatieve biologie, zoals in
deze thesis, is erop gericht cellulaire processen verder in kaart te brengen. Hierbij wordt
de bacterie Escherichia coli als modelorganisme gebruikt. Het doel is om een beter be-
grip te krijgen van biologische processen in de cel, en die processen ook te kunnen ma-
nipuleren. Aangezien alle organismen opgebouwd zijn uit cellen, inclusief mensen en
ziekteverwekkende micro-organismen, kan dit uiteindelijk bijdragen aan het begrijpen
en genezen van menselijke ziektes. Daarnaast spelen micro-organismen een belangrijke
rol in de industrie, bijvoorbeeld in voedselproductie en rioolwaterzuivering. Wat precies
de directe implicaties zullen zijn van een beter begrip van fundamentele processen die
plaatsvinden in de cel is moeilijk te voorspellen, maar in potentie kan zulke kennis een
grote impact hebben.

BACTERIËN DODEN

Desalniettemin zullen we meer specifiek proberen te reflecteren op de impact van het
werk in deze thesis. In hoofdstuk 3 beschrijven we hoe bacteriën verder kunnen de-
len nadat het delingsproces gepauzeerd is door situaties die de bacterie als stressvol er-
vaart. Er wordt gedacht dat dit proces een overlevingsmechanisme is. Kennis over hoe
overlevingsmechanismen werken zijn nuttig in situaties waarin het vanuit een menselijk
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oogpunt gewenst is bacteriën te doden of hun groei te remmen. Bacteriën filamente-
ren (stoppen met delen terwijl ze blijven groeien) in reactie op vele vijandige condities.
Praktisch relevante condities waarin dit gebeurt zijn bijvoorbeeld blootstelling aan an-
tibiotica en hoge en lage temperaturen. Deze condities zijn respectievelijk relevant in
klinische context en in de context van conservering van voeding. Kennis over het fila-
mentatieproces kan bijvoorbeeld voorspellingen met betrekking tot overlevingskansen
van bacteriën verbeteren, en zou uiteindelijk kunnen bijdragen aan het aanpassen van
klinische behandelingen of conservering van voeding effectiever kunnen maken. Daar-
naast kunnen in deze context componenten van het filamentatiemechanisme wellicht
specifiek worden uitgeschakeld om bacteriegroei te remmen.

METHODEN MET EEN BREDERE RELEVANTIE

Naast de deling van filamenteuze bacteriën zijn er nog twee onderwerpen in deze thesis.
Te weten: (1) hoe stochasticiteit, regulatie en individualiteit van bacteriën in verhouding
staan met elkaar, een vraag die we onderzoeken in het CRP metabole regulatiesysteem,
zoals beschreven in hoofdstuk 5, en (2) hoe stochasticiteit in ribosomale expressie zich
verhoudt tot bacteriële individualiteit en groei, zoals beschreven in hoofdstuk 6. Ten eer-
ste is het noemenswaardig dat de methoden die in deze twee studies gebruikt zijn (zie
hoofdstuk 2) van nut kunnen zijn voor de samenleving. Geautomatiseerde analyse van
afbeeldingen met grote hoeveelheden individuele cellen heeft bredere toepassingen, en
opgedane ervaringen met dit type analyse kan nuttig zijn in een klinische setting. Dit zou
bijvoorbeeld nuttig kunnen zijn bij de analyse van bloedcellen of andere weefselanalyse
voor diagnostische toepassingen. Daarnaast kan ook de techniek waarmee individuele
cellen in microkamers gekweekt worden (single cell microfluidics) breder toegepast wor-
den. Momenteel zijn er al onderzoeken waarbij data wordt verkregen van individuele
humane cellijnen, wat kan bijdragen aan een beter begrip van humane biologie en ziek-
tes. Vorderingen in single cell microfluidics methoden kunnen wellicht bijdragen aan de
verdere ontwikkeling van dit onderzoek.

HET BELANG VAN HETEROGENITEIT

We kunnen slechts speculeren over meer directe, toekomstige impact op de samenle-
ving van hoofdstukken 5 en 6. In hoofdstuk 5 zagen we dat regulatiesystemen wellicht
een rol spelen in het doorgeven van fluctuaties, wat bijdraagt aan de heterogeniteit van
populaties. In hoofdstuk 6 hebben we onderzocht hoe ribosomen bijdragen aan cel-
lulaire individualiteit, deze individualiteit draagt ook bij aan de heterogeniteit van po-
pulaties. Het begrijpen van heterogeniteit in populaties verschaft ons fundamentele
inzichten in hoe de cel werkt, maar heterogeniteit heeft ook een directere relevantie.
Micro-organismen worden ook gebruikt in de industrie. Bijvoorbeeld bij de productie
van yoghurt en bier. Wellicht minder bekend is het idee om micro-organismen gene-
tisch te modificeren om zo brandstof te produceren [233, 234]. Bij zulke toepassingen
worden de micro-organismen doorgaans gebruikt om één specifieke taak uit te voeren.
Bijvoorbeeld de vergisting van een specifiek bier, of de productie van een molecuul dat
als brandstof gebruikt kan worden. Waarschijnlijk is er een optimale staat (configuratie)



IMPLICATIES VOOR DE SAMENLEVING (NL)

7

187

waarin een individueel micro-organisme zo’n taak kan uitvoeren, maar heterogeniteit
in de populatie zorgt ervoor dat niet de gehele populatie diezelfde staat kan aannemen.
Dus hoewel heterogeniteit wellicht voordelig is uit evolutionair oogpunt, zou genetische
modificatie van deze eigenschap wellicht de opbrengst en/of regulatie van industriële
processen waar micro-organismen bij betrokken zijn kunnen verbeteren.

Voorts, zoals ook in hoofdstuk 4 beschreven, kan heterogeniteit bijdragen aan de
overlevingskans van populaties, omdat verschillende individuen voorbereid kunnen zijn
op verschillende toekomstige scenario’s (bet hedging). Kennis over de oorsprong van die
heterogeniteit kan dus relevant zijn in een klinische context, waar het vaak juist gewenst
is de groei van micro-organismen zoals bacteriën af te remmen.
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