
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://cas.tudelft.nl/

CAS-2022-4351266

M.Sc. Thesis

Application of Emerging Memory
Technologies for Spiking Neural Networks

Jan Maarten Buis B.Sc.

Abstract

Renewed interest in memory technologies such as memristors and
ferroelectric devices can provide opportunities for traditional and
non-traditional computing systems alike. To make versatile, repro-
grammable AI hardware possible, neuromorphic systems are in need
of a low-power, non-volatile and analog memory solution to store the
weights of the spiking neural network (SNN). In addition to being used
for memory, memristive memory can be read out passively and thus
also replaces digital-to-analog circuitry. In this thesis, two solutions
are proposed: one is based on a generalized memristor, the other is
based on ferroelectric memory. Both solutions are implemented and
simulated in SystemC AMS and tested with a SNN. As a final test,
both memory solutions are integrated into a full-sized SNN and simu-
lated against the MNIST dataset. The simulation results validate the
capabilities of memristive and ferroelectric memory when it comes to
providing a sensible weight storage solution for neuromorphic systems.

Application of Emerging Memory Technologies for
Spiking Neural Networks

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Computer Engineering

by

Jan Maarten Buis B.Sc.
born in Loon op Zand, The Netherlands

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2022 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Application of Emerging Memory Technologies for Spiking Neural
Networks” by Jan Maarten Buis B.Sc. in partial fulfillment of the requirements
for the degree of Master of Science.

Dated: December 14, 2021

Chairman:
dr. ir. T.G.R.M. van Leuken

Advisor:
dr. N.K. Mandloi

Committee Member:
dr. ir. J.S.S.M. Wong

iv

Acknowledgments

While I am proud of what I have achieved during the past months, I am very much
aware that it would not have been possible without the support of a number of people.
First, I would like to thank my supervisor René van der Leuken for his guidance and
assistance during the process of writing this thesis and for making time to discuss my
progress every week. I would also like to thank my daily supervisor Neeraj Mandloi
for his input and Stephan Wong for his constructive feedback during the defense of
this thesis. Lastly, I would like to thank the thesis defense committee as a whole for
giving me an opportunity to improve my thesis before I send the definite version to
the university’s repository.
Your efforts are appreciated.

Jan Maarten Buis B.Sc.
Delft, The Netherlands
December 14, 2021

v

vi

Contents

Acknowledgments v

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Goals . 2
1.3 Approach . 3
1.4 Thesis Contributions . 3
1.5 Outline . 4

2 Artificial Neural Networks 5
2.1 Overview . 5
2.2 Implementation . 6
2.3 Models . 8

2.3.1 Integrate-and-Fire Model . 8
2.3.2 Leaky Integrate-and-Fire Model 8

2.4 Simulation . 8
2.4.1 Analyzing the output of the SNN simulation 9

3 Memristors 11
3.1 Introduction . 11
3.2 State of the art . 12

3.2.1 Resistive switching devices . 12
3.2.2 Polarization switching devices 15

3.3 Modeling . 16
3.3.1 Modeling of a TiO2 memristor 16
3.3.2 Modeling of the FeFET . 19

3.4 Simulation Results . 23
3.4.1 Simulation of the TiO2 memristor 23
3.4.2 Memristor Model Simulation Results 24
3.4.3 Simulation of the FeFET . 26

4 Implementation of Weight Memory 31
4.1 Introduction . 31
4.2 Related Work . 32
4.3 Design of a memory cell . 33

4.3.1 Using a HP TiO2 memristor . 33
4.3.2 Using a FeFET memristor . 36
4.3.3 Weight Error . 37

4.4 Simulation Results . 38
4.4.1 TiO2 Cell . 38
4.4.2 FeFET Cell . 44
4.4.3 Overview of SNN accuracy results 50

vii

4.5 Overall Simulation metrics . 54

5 Conclusions 59
5.1 Future Work . 60

viii

List of Figures

3.1 Memristor symbol . 11

3.2 Memristor model, taken from [4]. The memristor is depicted as having
a doped and undoped region of varying sizes. 17

3.3 Plot of the window function f(x), taken from [4]. Increasing the window
function minimizes the edges of the memristor. 18

3.4 Plot showing the resistance of the memristor for a sine wave voltage
input. The resistance of a memristor increases when a positive voltage
is applied and decreases when a negative voltage is applied. 24

3.5 Plot showing the resistance of the memristor versus the voltage for a sine
wave voltage input. Wheras a memoryless device such as a resistor would
show a diagonal line, a memristor shows distinct curves for increasing
and decreasing voltages. 25

3.6 3.6a shows measured data, 3.6b shows the tuned Landau-Khalatnikov
model. The tuned model approximates the experimental data in the left
figure, but the linear section in the middle is smaller for the tuned model. 27

3.7 Polarization over time for a series of 15 square pulses. When short
voltage pulses are used to program the ferroelectric capacitor, the polar-
ization behavior is quite linear. 28

3.8 FeFET drain current over time for a series of 15 square pulses. For the
linear regime of the FeFET, the ferroelectric polarization and the drain
current are directly related. As a result, the plot of the drain current is
very similar to 3.7. Note that this plot shows the relation between the
current and the polarization. The order of magnitude of the current can
be decided by scaling the parameters of the FeFET device. 29

4.1 Diagram showing how a memristor-based weight application block could
work. The synapse current flowing through the (resistive) memristor re-
sults in a voltage scaled by the weight stored in the memristor. An analog
amplifier circuit takes the weighted voltage and generates a current that
has been scaled by the memristor. 33

4.2 Plot of the weight error over the resistance range of the TiO2 memristor
for a resistance tolerance of 10 Ohm. The weight error varies very slightly
with the resistance, but this variation is too small to have a detectable
effect. 35

4.3 Absolute weight error for the FeFET weight storage implementation.
In blue, the weight error per weight is plotted. In orange, the average
weight error is plotted. 37

4.4 Simulation of memristor interface, From top to bottom, the input current
Iin, the output current Iout, the resistance value Rout, the weight value
Weight, the ready signal Ready and the test data input can be seen. . . 38

ix

4.5 Small SNN simulation with a memristor cell as weight storage. The right
of the plot has been truncated for visibility. From top to bottom, the
voltage input Vin, the synapse current Isyn, the output current Iout,
the output voltage Vout, the weight value Weight and the ready signal
Ready can be seen. 39

4.6 Sample from the MNIST database, showing the digits 0 to 9 in various
handwriting styles. Each digit is an image of 28 by 28 pixels. From [21] 40

4.7 Simulation of the SNN with the MNIST dataset of 10 digits in SystemC.
From top to bottom, output neurons 0 to 9 can be seen. 41

4.8 Simulation of the SNN with the MNIST dataset of 10 digits with memris-
tor cells as the weight storage. From top to bottom, the output neurons
0 to 9 can be seen. 41

4.9 Comparison of MNIST simulation for digit ’0’. The top plot shows
the baseline software-based approach, the bottom plot shows the TiO2

weight storage. 42
4.10 Bar plot showing the accuracy measurements for the TiO2 memristor-

based weight implementation. An SNN of 49 inputs and 10 outputs was
simulated with an input of 5000 images of MNIST digits 0 to 9. On the
y-axis is the estimated accuracy and on the x-axis the number of the
simulation. 43

4.11 Simulation of the ferroelectric memory interface. The right part of the
plot has been truncated for visibility. From top to bottom, the input
voltage Vin, the input current Iin, the output current Iout, the polar-
ization value Pout, the ready signal Ready, the weight value Weight and
the test data can be seen. 44

4.12 Simulation of a simple SNN consisting of a single synapse and a single
neuron. The right part of the plot has been truncated for visibility. From
top to bottom, the weight value Weight, the polarization value Pout, the
synapse current Isyn, the output current Iout, the output voltage Vout
and the ready signal Ready can be seen. 45

4.13 Close-up of a section of 4.12. In this plot, the output spikes of the neuron
can clearly be seen. Here, the weight value is 2. The synapse current
Isyn is multiplied with 2, which gives an output current Iout of 0.207 nA. 46

4.14 Another close-up of a section of 4.12. Here, the weight value is 7. The
synapse current Isyn is multiplied by 7, which gives an output current
Iout of 0.266 nA. 46

4.15 SNN simulation of the MNIST dataset, with the baseline weight storage
implemented in software. From top to bottom, output neurons 0 to 9
are plotted. 47

4.16 SNN simulation of the MNIST dataset, with the ferroelectric memory
cells as the weight solution. From top to bottom, output neurons 0 to 9
are plotted. 47

4.17 Comparison of MNIST simulation for digit ’0’. The top plot shows the
baseline implementation the bottom plot shows the FeFET-based weight
storage. 48

x

4.18 Plot showing the accuracy of the FeFET-based weight solution compared
to the baseline weight solution for 10 datasets of 5000 MNIST images of
digits 0 to 9 . 49

4.19 Plot combining the accuracy data of all three weight storage solutions
for an SNN size of 49x10 and 5000 MNIST digits. 52

4.20 Plot combining the accuracy data of all three weight storage solutions
for SNN sizes of 196x10 and 196x50x10 for 5000 MNIST digits. 53

4.21 Plot comparing the runtimes for various SNN sizes. 56
4.22 Plot showing the simulation runtime versus the number of simulated

neurons and synapses. The circles indicate the datapoints, the lines
show how the various weight storage solutions scale for larger network
complexity. Note: the final FeFET datapoint is a projection of the final
runtime. 57

xi

xii

List of Tables

4.1 Table comparing the runtime of various TiO2 and FeFET weight mem-
ory simulations. The first three rows of the table show the baseline SNN
configurations that have been simulated. Then, the different configura-
tions for the TiO2 solution are shown. The last rows show the results for
the different configurations for the FeFET solution. Identical MNIST
datasets were simulated so that the runtimes can be compared. 55

xiii

xiv

Glossary

ADC analog-to-digital converter. 2

AI artificial intelligence. 1, 5

ANN artificial neural network. 2, 5

ASIC application-specific integrated circuit. 7

CPU central processing unit. 6

DAC digital-to-analog converter. 2, 31

FeFET ferroelectric field-effect transistor. 15

FeRAM ferroelectric random-access memory. 15

GPU graphics processing unit. 6

IF integrate-and-fire. 8

LIF leaky integrate-and-fire. 8

MAC multiply-accumlate. 6

MTJ magnetic tunnel junction. 12, 14

PCM phase-change memory. 12

RS resistive switching. 12

SNN spiking neural network. 2, 7, 31

xv

xvi

Introduction 1
For the past two decades, development of AI technology has significantly accelerated.
For the layman, however, it may seem that terms such as ’machine learning’ and
’neural network’ have only recently entered the English language. Yet even though
it seems AI applications are a recent trend, AI has been a research topic since at
least the 1950s. The term ’artificial intelligence’ itself was coined by John McCarthy
at the Darthmouth Conference in 1956 [38]. The goal of AI research is to simulate
learning processes and to develop programs that can improve their performance during
execution by ’learning’.
Even if many ideas relating to AI have existed for at least fifty years, AI research
up until the 1990s had a number of practical limitations, as the average computer
was not powerful enough to run AI applications. This situation changed with recent
advancements in electronic and computer engineering, notably those of the past twenty
years. Indeed, computers have not only become far more powerful, they have also
become more affordable and more portable. For AI research, this had two positive
implications: First, the improvement of hardware made the development process
easier and faster; Second, affordable computers made software development far more
accessible. This accessibility has made possible an influx of researchers from various
fields that traditionally did not work with computers. With the input of this new
generation of scientists, modern high-level programming and scripting languages have
been developed, making it possible to program without being familiar with a computer
system’s inner workings. These languages have now bridged the gap between mostly
abstract AI theory and more practical programming practices.
Nowadays, modern processors and GPUs provide the computing power needed to
process large neural networks, while the internet, another innovation of the 1990s,
provides the huge amounts of data needed to train these networks.
Now that the necessary infrastructure to develop and deploy AI applications is here,
new AI applications are devised in fields varying from agriculture [41] to marketing
[11].
To create a program that can ’learn’, AI researchers use an approach that is quite
different from ’traditional’ programming. Where most software relies heavily on logic
functions, AI applications for the most part use mathematical operations to calculate
the program’s output. Also, instead of dividing the program into separate steps, they
directly relate the inputs to the outputs. Over time, many algorithms have been
developed to create ’learning programs’, but most implementations rely on one or more
’weight matrices’. Such a matrix describes how the inputs and outputs of a program or
function are related by assigning weights. Each weight describes how a certain input
relates to a certain output. These weights can be simply binary (zero or one) or they
can be precise real values. By varying the weights, some aspect of the program can be
tweaked. However, instead of working out a mathematical relation between each input

1

and output by hand, this process is usually automated by feeding the program a large
dataset.
Most current AI research focuses on creating computer programs that execute these
processes. However, since the 1980s, a community of engineers has formed that
researches AI systems based on electronic hardware. This branch of AI research is
called neuromorphic engineering. The goal is to create intelligent electronic systems
of which the design is inspired by neuroscience and neurophysics [25]. Within
the neuromorphic engineering community, there are many approaches to designing
an ’electronic brain’. Some implementations are more abstract and more or less
implement software-designed networks in hardware. Other implementations stay
more true to the human brain and build networks of individual electronic neurons
and synapses. Assuming all aspects of a neural network can be implemented using
analog circuits, there is still one problem that needs to be solved before a working
neuromorphic circuit can be realized: the weights that are needed to run an AI
application need to be stored while the network is in operation. The goal of this thesis
is to find a suitable solution to the problem of weights storage in neuromorphic circuits.

1.1 Motivation

Now that software-based ANNs have become commonplace, hardware-based neural
networks have become the new frontier of AI engineering. Implementing a neural
network directly in silicon will mean a significant increase in efficiency and processing
speed compared to implementations in software. From a power efficiency perspective,
the implementation of a so-called spiking neural network in analog circuits is a good
idea. A direct implementation means that the layers of software and digital electronics
that make modern digital computers inefficient can be bypassed. However, such
a design also presents new challenges. One of the main challenges is to store the
weights of the network. Since the resulting system consists of analog circuits, using
a conventional digital memory will result in the inevitable use of ADC/DAC circuits.
An analog memory, however, can be used passively once it has been programmed,
saving both area and power and making integrated DAC circuits unnecessary.

1.2 Thesis Goals

This thesis investigates emerging memory technologies, in particular the application
of such devices to store the weights of an SNN. The main goal is to design a memory
based on emerging technology that can be used in the development of SNN hardware.
This memory should be non-volatile, so that it only has to be programmed once.
Preferably, the memory should be analog as to avoid the use of ADC/DAC hardware.
Considering the SNN hardware itself is largely analog, an analog memory should make
reading (and possibly writing) more convenient.
Once such a memory has been designed, the performance should be investigated as

2

well as compared to existing solutions. Moreover, the impact of the memory on SNN
accuracy and speed should be considered.

1.3 Approach

The first part of the thesis focuses on ANNs in general. An overview of existing
technologies is presented as well as how these technologies translate into hardware
designs. Next, models of such designs and simulation methods are discussed.
The second part of the thesis introduces memristors in general and evaluates which
types of memristors are most suitable as weight memory. Subsequently, the models
of two different types of memristors are presented as well as a method to simulate
them. At the end of the chapter, the simulation results of these memristor models are
presented and evaluated. Note that the effects of process and temperature variations
as well as the effects of aging are not considered in this thesis. The research into these
effects is very broad and would result in significant additional complexity.
The third part of the thesis introduces the problem of storing weights in a hardware
implementation of an SNN. In a related work section, solutions found in literature are
presented. Next, two memory cells are designed that should fit the requirements, one
based on either type of memristor. In the next section, these designs are implemented
so that they can be simulated. The simulation results of the cells are then presented and
discussed. After evaluating the memory designs, they are then integrated into a larger
SNN simulation so that they can be tested for accuracy against an ideal weight memory.

1.4 Thesis Contributions

In this section, the main contributions of this thesis are summarized.

• Design and simulation of an analog memory cell based on the TiO2 memristor.

• Simulation of a TiO2 memory cell integrated with various sizes of SNNs in Sys-
temC.

• Design and simulation of an analog memory cell based on a FeFET.

• Simulation of an analog FeFET memory cell integrated with various sizes of SNNs
in SystemC.

• Accuracy comparison of the baseline, TiO2 and FeFET weight implementations.

• Simulation time comparison of the baseline, TiO2 and FeFET weight implemen-
tations.

3

1.5 Outline

In this section, the content of the thesis is laid out.

• Chapter 2 introduces ANNs, their implementation in hardware and methods to
simulate designs. Related work on ANN hardware is also discussed.

• Chapter 3 provides an introduction to memristors, presents models for two types
of memristors and evaluates simulation results. Related work on memristor
technology is also discussed.

• Chapter 4 investigates using the memristor models to design a memory cell
for SNN weights. Two such designs are evaluated on their own and as part
of a larger SNN simulation. Related work on SNN weight storage is also discussed.

• Chapter 5 concludes the thesis and lays out possible future work.

4

Artificial Neural Networks 2
In this chapter, an overview of ANNs will be provided. After that, the chapter will
focus on SNNs and their implementation in hardware. This is succeeded by a section
about useful models for such hardware. The final section of the chapter will discuss
simulating the given models in software.

2.1 Overview

Starting from the late 2000’s, technology that makes use of some form of AI has become
commonplace. Instead of meticulously analyzing data for patterns and developing
an algorithm by hand, nowadays AI techniques can take care of this process. By far
the most popular form of AI is the neural network. A neural network mirrors in an
abstract sense the behavior of a biological nervous system such as the brain. In the
brain, electrical signals produced by neurons can be either inhibited or transmitted
to other neurons. A network of neurons is organized so that certain signals are
transmitted while others are inhibited, based on the type of connection between the
neurons. If the connection, or synapse, is strong, the signal will be transmitted or even
amplified. If the connection is weak, the signal will be weakened or fully inhibited.
By selectively reinforcing certain connections while weakening others, certain patterns
can be created at the output of the network based on the input signals. This makes
it possible to implement a wide array of functions by using a decentralised network.
Unlike conventional computers, which have dedicated components for decision-making,
arithmetics, long-term and short-term memory, the brain lacks such dedicated parts.
While the brain consists mostly of neuron cells, which are capable of some signal
processing, it is largely the connections between the neurons, the synapses, that handle
most of the ’processing’. Lacking any ’instruction set’, networks of neurons can be
trained to implement patterns. These patterns create a certain input-output relation.
This is what makes it possible for humans as well as AI to recognize things like flowers
or faces. Since the principle of neural networks is based on mathematic functions, a
neural network can be recreated in numerous ways. In a non-biological context, such
a network is generally called an ANN. As computing resources have become freely
accessible, implementations of ANNs in software have become very popular.
There are many ways to implement an ANN, but there is a distinction to be made
between ’supervised learning’ and ’unsupervised learning’.
The first technique tweaks the parameters of the program based on some desired
output. This is done for each point in the dataset. When the learning process is
finished, the program’s output should be as close as possible to the desired output.
The second technique lets the program tweak its parameters based on patterns that

5

might be present in the dataset. The advantage of this technique is that no desired
outputs are necessary, only a large set of sorted data. The disadvantage is that the
results can be unpredictable, depending on the quality of the data and the size of the
network.
Although the human nervous system operates by manipulating the concentration of
certain ions, the resulting signals can be quantified in terms of voltages and currents.
When information is transmitted from one neuron to another, a voltage spike is
generated at the output of the neuron and transmitted to the next neuron by means
of a synapse. The synapse forms the interface between two neurons. Although a
synapse can only connect two neurons, a neuron can be connected to multiple neurons
as it can collect the current signals from multiple synapses. In addition, the synapse
represents the strength of the connection between the neurons. Properties of the
synapse determine the impact of the transmitted spike on the neuron that receives
it. If the connection between the neurons is weak, the synapse will weaken the spike,
making it less likely that the receiving neuron will generate a spike as a result. If
the connection between the neurons is strong, the transmitted spike may exceed the
internal threshold of the receiving neuron, resulting in the generation of a spike at its
output.
Since the spikes themselves are binary in nature, the strength of a signal traveling
through the nervous system is represented by the spike rate. In other words, the more
spikes are generated at the output within a certain time, the stronger the signal.
So-called artifical neural networks operate on the same basic principles as their biolog-
ical equivalents, albeit in an abstracted form. Indeed, the synapse can be considered
the ’multiply’ function, as it takes an incoming signal and weakens or strengthens it.
The neuron can be considered as performing the ’accumulate’ function as it collects
the signals from the synapse. Naturally, implementing a system that performs these
functions can be done in numerous ways.
Artificial neural networks operate on the same basic principles as their biological
equivalents: by amplifying certain signals and inhibiting others, and accumulating
the results to generate new signals. The difference is the implementation of these
principles. While the nervous system is based on biochemical processes, man-made
implementations are based on electronic circuits.
In essence, a neural network, artificial or not, consists of a series of multiply-and-
accumulate operations where the output of each MAC becomes the input of the next
stage.

2.2 Implementation

As said earlier, implementation of an ANN can be done in various ways. In the case
of software-based implementations, various programming languages can be used to
create a program that describes the behavior of the neural network. This program
can then be executed on a computing system based on one or more CPUs and GPUs.
Such an implementation has a number of advantages, mostly development speed
and adaptability. A complete description of a neural network can readily be tested

6

and changed. However, a software-based approach also has disadvantages, most
prominently the power inefficiency that comes with general purpose digital electronics.
A single desktop computer simulating a simple neural network uses around 400 Watts,
whereas the human brain uses only 15 Watts. It has to be said that significant
efforts have been made to make ANN implementations in software more efficient, from
software optimizations to the design of specialized hardware. However, software-based
neural network implementations are inherently limited by the constraints of digital
computing systems. If the man-made neural network implementations are ever to
approach the gold standard set by the human brain, a more direct approach is needed.
The inefficiency inherent to the software-based approach is the large number of
translation steps that are needed. The mathematical relations describing the neural
network are translated into code, which are translated into instructions, which are
translated into logic, which are finally translated into voltage levels. A neural network
implementation can be made more efficient by eliminating any of these steps. For
example, one can eliminate the software layer and design a specialized computing
system that describes the behavior of the neural network.
As one might expect, there are many ways to design such a system. If the existing
abstract ANN designs based on MAC operations are used, one could envision an ASIC
consisting only of MAC hardware and perhaps a number of registers to keep the stages
of the network synchronized. Although such an implementation would likely be more
efficient than a general-purpose computing system, it would not solve the underlying
problem: simulating an analog system on digital hardware. A better solution would
be to use analog hardware to implement an analog system. This branch of AI research
is called neuromorphic computing. The aim is to realize AI applications by creating
electronic circuits that are (more directly) inspired by biological neurons. These neural
networks, which use spikes to represent signals between neurons, are called spiking
neural networks. The principle of operation is similar to the software AI application,
but the implementation approach is very different. SNN implementations stay closer
to the biological brain by replicating the behavior of neurons and synapses. This
behavior has been studied and numerous models have been developed to represent it as
a dynamic system. Examples of such models are the integrate-and-fire model and the
leaky integrate-and-fire model. These models describe the current and voltage at the
output of a neuron or synapse over time. Electrical circuits representing neurons and
synapses can be developed by observing these models and implementing its electrical
equivalents. These circuits can then be used to create a hardware implementation
of an SNN. The advantages of such an implementation over a software-based ANN
are a reduced power consumption and reduced area. A major disadvantage is the
considerable design effort that is typically required for a large analog circuit. An-
other disadvantage is the increased complexity that comes with the interconnections
of the neurons and synapses. These and other issues complicating the design of a
practical SNN implementation on an integrated circuit are the topic of ongoing research.

7

2.3 Models

2.3.1 Integrate-and-Fire Model

The earliest and simplest model to represent the electrical behavior of a neuron is
the IF model [13]. It assumes a neuron with a certain capacitance C and a threshold
voltage Vth. The current at the input of the neuron is integrated by the capacitance.
The voltage over the capacitance increases until the threshold voltage Vth is reached.
At that point in time, the capacitance is discharged and a voltage spike (represented
as a delta function) is transmitted at the output of the neuron.

2.3.2 Leaky Integrate-and-Fire Model

The most important shortcoming of the IF model is the fact that it doesn’t account for
leakage. The charge that is accumulated by the capacitance of the neuron is assumed
to stay constant, whereas in real neurons the charge slowly leaks away. This leakage
current adds a time dimension to the neuron model. Indeed, not only the number of
current pulses is important, but also the rate of the pulses. If the rate is too low, the
threshold voltage of the neuron will not be reached as a result of the leakage current.
The improved model, which includes a leakage current, is called the LIF model [13].

2.4 Simulation

Software-based neural networks can be endlessly tweaked or can even tweak themselves.
Hardware-based neural networks, however, offer far less freedom to change the design of
the network implementation, if at all. This means that to confirm the circuit’s design,
it has to be simulated.

Since a finished AI circuit will not be changeable, it is all the more important
that the final implementation is correct. For this reason, the workflow to design
an AI circuit needs to integrate electronic design practices. However, the nature of
AI applications makes the design process more challenging than a typical electronic
circuit. Typical electronic designs can be split up in smaller parts that can be designed
and simulated individually. AI applications, however, are more monolithic in nature.
The smallest entity that can be designed and tested is a single neuron or synapse.
Simulating a large SNN circuit will quickly become problematic. This is because
every electronic neuron consists out of a dozen components. The simulation software
will attempt to take the behavior of every single component into account. For small
circuits of only a couple neurons, this is not yet a problem. However, to do anything
useful, far greater numbers of neurons are required.
The potential of hardware-implemented AI applications is significant, but the limit on
the number of neurons that can be simulated at the time forms a major impediment
on the development of such applications. To overcome this limit, there are several
paths that can be investigated. Firstly, one can invest in more powerful hardware to
run the simulation on. This will speed up the simulation somewhat, but very large
gains should not be expected since the simulation software was not designed to run

8

on high-end computers. Besides, for even larger numbers of neurons, the simulation
time will again become too large. A second solution that could be investigated is
to create a circuit simulation program from scratch. However, this would be a large
investment of time and effort, and improving the performance significantly beyond that
of commercially available software is not likely. A third and more realistic option is to
model the circuit at a higher level. Instead of simulating the circuit one component at
the time, only the behavior of individual neurons should be taken into account. An
additional way of optimizing the simulation is to use an event-based simulation tool.
Circuit simulation software simulates components in continuous time. This means
that even when the input of a component does not change, the software still tracks its
behavior. For neuron-based circuits, this is not necessary since the circuit will only
process very short spikes. Event-based simulation would only simulate the behavior of
a component once its input changes. Since the circuit would be idle for most of the
time, this type of simulation could greatly reduce the total simulation time.
This type of simulation is possible with a hardware simulation library such as SystemC
and its extension SystemC AMS. SystemC provides C++ functions that can be
used to simulate both synchronous and asynchronous hardware on a number of
abstraction levels. Hardware ’blocks’ represented by SystemC objects can be created
and interconnected with different rules that allow simulation of different systems.
With SystemC, asynchronous logic blocks can be created which are only simulated if
one of their inputs changes. With SystemC AMS, continously updating blocks can
be created to simulate analog systems. By implementing the SNN circuit model in
SystemC/AMS a greatly optimized SNN circuit simulation can be created.
For this thesis, an existing codebase for simulation of SNN circuits in SystemC/AMS
is used as a baseline. This codebase simulates neuron and synapse circuits proposed by
Indiveri and others[23][24]. The provided software makes it possible to create spiking
neural networks of various sizes and simulate them, given that input spike signals and
an appropriate weight sets are available. In addition to the SystemC implementation of
the SNN configuration, a number of datasets and weight sets have been provided. This
data can be used to test various implementations of SNNs in SystemC. By feeding the
SNN sorted data, the effectiveness of a specific SNN implementation can be evaluated.
This baseline SNN model does not simulate any specific implementation of a weight
memory. Instead, it reads the weights from a text file and applies them directly to the
synapse currents. The simulation results from the baseline implementations are not
realistic, but they are useful as a comparison, since they represent the performance of
an ideal weight memory.

2.4.1 Analyzing the output of the SNN simulation

Since the neuron produces more or less identical voltage spikes at the output, the
strength of the output signal can be measured by the spike rate. This means that
the output of a neuron can range from few spikes to the maximum number of spikes
per time interval. However, this poses a problem when evaluating the output of
an SNN, since in most cases a binary (’yes’ or ’no’) output is desired. Therefore,
the output spikes have to be decoded. Such a decoder or classifier function can be

9

implemented by what is essentially a high-pass filter, only letting through a signal
when a high spike rate is detected. The pass-through condition or threshold has to
be carefully chosen, since a low threshold could generate false positives while a high
threshold could generate false negatives. The value of this threshold can be chosen
by comparing the outputs of the SNN implementation. If all output neurons generate
spikes, regardless of input, these spikes should be filtered out by the decoder. Once
there is an effective method to decode the output spikes, computing the accuracy of
the SNN implementation can be done by simulating the network with a large dataset
and counting the number of correct classifications done by the SNN implementation.
In the provided SNN implementation in SystemC, a spike decoder function has been
implemented. This decoder works by accumulating the output of each neuron over
a given time frame. If the accumulated value exceeds the threshold, the decoder
generates a ’high’ signal for the given output neuron. If not, it generates a ’low’ signal.
This process is repeated for every time step.
The accuracy of the SNN implementation can thus be computed by counting the high
and low signals for the entire duration of the simulation. For a known input, the
accuracy can be calculated by counting the number of correct frames (as presented by
the spike decoder) divided by the number of expected frames.

10

Memristors 3
In this chapter, the topic of memristors will be covered. The chapter starts with an
introduction, after which an overview will be given of the current state of the art
of memristor technology. Then, models will be discussed for two types of memis-
tors. In the final section, the models will be simulated and the results will be discussed.

3.1 Introduction

Figure 3.1: Memristor symbol

The memristor was originally conceived by Leon Chua in 1971 as a theoretical
’missing’ electrical device that forms the link between magnetic flux and electric charge
[9]. The idea of a fourth passive electrical component was conceived after the resistor,
capacitor and coil had already been identified as relating voltage and current, voltage
and charge, and current and magnetic flux respectively. In 2008, researchers at HP
Labs claimed to have created the first memristor [48]. Following this announcement, it
was debated whether the HP device was a ’true’ memristor, since it did not show ideal
memristor behavior [18]. Since HP’s claim, other technologies have been developed
that exhibit similar ’memristive’ properties [45]. When considered as merely an
electrical component, the most important property of a ’memristive device’ is its
hysteresis or memory behavior. This means that the output current of a memristor
is dependent on the voltage applied as well as the current state of the device. Since
the creator of the memristor concept only described its behavior and not the specifics
of a practical implementation, numerous upcoming technologies can be classified as
’memristor technologies’ [10]. As a consequence, today, the term ’memristor’ is used
more freely and applies in most cases to the concept of non-volatile storage based on a
passive device, without referring to any specific implementation or technology.
Since its conception, numerous technologies have been proposed to implement the
memristor [45]. Some of these are close implementations of the original concept, others
more or less emulate the electrical behavior of a memristor while actually using a
different operating principle.

11

When writing this thesis, none of the existing memristor technologies have had
significant market impact. For example, ReRAM (Resistive RAM) has been around
since the 2000s, but thusfar its applications have been very limited because of scaling
issues [8]. On the other hand, more recent technologies such as Magnetic Tunnel
Junction-based memory show promise as a replacement for flash, but are far from
being mature [12]. It goes without saying that there are numerous other technologies,
but for this thesis, the focus is on the technologies that show the most potential.

3.2 State of the art

In its simplest form a ’memristive device’ links the voltage over its terminals with the
current flowing through it by changing its resistance [10]. If the device is so constructed
that this function is voltage or current controlled, the device becomes essentially a
voltage-controlled or current-controlled resistor. Since the ideal behavior of the device
is both non-volatile and passive, memristive devices are prime candidates for the
creation of energy-efficient non-volatile memories. The state of an ideal memristor is
preserved as its voltage-current behavior.
In recent years, there are memristor-like devices that are not based on the original
memristor concept, such as magnetic tunnel junctions (MTJs) or phase change memory
(PCM). However, since the input-output behavior that these devices show is similar,
they can be considered part of the memristor family [45]. At the time of writing,
there are many different memory technologies that are actively being researched.
To introduce and discuss all of them would make this chapter overly long without
providing any clarity. In addition, for many of these novel technologies it is unlikely
that they will result in practical applications.
In the broadest definition, a memristor is a passive non-volatile device that can hold
a state. By this definition, a broad spectrum of novel devices can be classified as
memristor. This includes technologies that do not implement Chua’s original concept
of a device linking electric and magnetic flux. To create some order within this broad
family of memristors or memristor-like devices, a distinction can be made between
resistive switching devices and other devices. Most types of memristors currently being
researched are resisitive devices. This means that even though the underlying physical
principle may be different, it is the resistance, or more generally the voltage-current
relation of the device, that shows useful properties. Examples of RS devices are
the TiO2 memristor, MTJs and PCM. All these devices are used as variable or
’programmable’ resistors. An example of a non-RS device is a ferroelectric capacitor.
In this device, it is not the resistance that is of interest, but the capacitive properties.
In the next sections, these two classes of memristors will be further elaborated.

3.2.1 Resistive switching devices

Resistive memristors are the oldest and most popular types of memristor devices
when it comes to research, with the first publications dating back to the 1960s

12

[40][1]. Various ’dioxide’ materials can be used to create thin films that will show
variable resistance effects. Only in 2008 were these devices brought into the context
of memristor research, which up until then had been a mostly theoretical topic. Even
today, it is debated whether resistive switching devices should be counted as ’true’
memristors. Today, memristors have become more or less synonymous with passive
non-volatile devices with a voltage-current relation that can be manipulated. Even
though the original research into RS devices started half a century ago, research is
still ongoing. If anything, the association with memristors has sparked new interest
in them. Indeed, a ’programmable’ resistor has a myriad of potential uses, primarily
in analog electronics. In digital electronics, an array of memristors implemented as
two-state devices could form a memory circuit, to give an example. Another, more
exotic design could use resistive memristors as an analog memory, similar to magnetic
tape.

3.2.1.1 Titanium-dioxide Memristors

The most famous resistive memristor is the device created by HP based on titani-
umdioxide (TiO2). Metal-dioxide memristors are still the most popular because of
their low cost, high switching speed, durability and retention [40]. Their precise
operation is complex and relies on the interaction between principles of chemistry and
solid-state physics. A thorough analysis of these fields is beyond the scope of this
thesis. Therefore, only a concise description of the construction and the behavior of
the device is given in this section.
HP’s device consists of a ’sandwich’ of two electrodes with a thin layer of TiO2 in
between. The dioxide film itself consists of two layers, one of which is slightly depleted
of oxygen atoms. These vacancies or ’holes’ act as charge carriers. When an electric
field is applied, the holes move and the boundary between the two layers is changed.
As the boundary changes, the high or low resistance layer begins to dominate the
overall resistance of the device. It is evident from this relation that the resistance
of the device can never be higher or lower than a certain value. Once one layer is
dominant, the change in resistance will become smaller and smaller until the device
is saturated and the resistance remains more or less constant. When the polarity of
the electric field is changed, the process is restarted, but in the other direction. This
leads to an effect called hysteresis, which means that the curves for increasing and
decreasing resistance do not (fully) overlap. The result of the hysteresis effect is that
for a certain voltage, two different currents are possible.
The fact that the resistance of the memristor can be driven by an electric field is
both a blessing and a curse. On the one hand, it makes ’programming’ the device
straightforward. On the other, the device becomes sensitive to voltage noise, which
will result in drifting behavior over time. However, this problem is not significant
when the device is used as a binary device, since noise typically will not result in a full
switching cycle. When used as an analog device, there is also the range of resistance
to consider. A very large range in resistance will make the device less susceptible to
noise, but the switching cycle will likely take longer to traverse.
Performance of various RS memristors greatly depends on the materials used and

13

the specifics of the construction. Reviews of recent memristor publication mention
a resistance range of 109, sub-nanosecond operation speed and 1012 switching cycles
when it comes to endurance of the device [40]. However, these figures are somewhat
speculative as they are based on experiments on one-of-a-kind prototypes. As of
yet, high-performance memristor-based technology has yet to become commonplace.
On the other hand, considering both the interest in these devices and the resources
allocated to its further development, it is likely that the TiO2 memristor (or any
metal-dioxide memristor, for that matter) will see commercial use in the near future.

3.2.1.2 Magnetic Tunnel Junctions

Another prominent technology that can be considered a member of the family of
resistive memristors is the MTJ.
Memory technologies based on magnetic tunnel junctions (MTJ) make use of an
interesting physical property of some ferromagnetic materials. This property, called
’magnetoresistance’, was experimentally demonstrated in 1975 [16]. A later variation
on this property, called giant magnetoresistance (GMR) was later discovered [12].
Memory technologies go by different names, depending on the variation of the effect
that is used. Besides MRAM, the name spin-transfer torque RAM (STT-RAM) is also
used.
By guiding a current along a material enclosed between two ferromagnetic materials,
two device ’states’ can be created. As a result of the current’s magnetic field, one of
the layers can be magnetically polarized in one or the other direction. If the direction
of the remnant magnetic fields in the two layers align, the device is in the parallel (P)
state, while if they point in opposite directions, the device is in the anti-parallel (AP)
state. When the resistance of the device is measured, the value will be much higher in
the AP state than in the P state.
Since this thesis focuses on memory, the physics of the MTJ will not be discussed in
detail. Interested readers are referred to the rich literature dedicated to the topic of
tunnel magnetoresistance. A thorough and fairly recent review of MTJ technology can
be found in [12].
The range of resistance values that can be reached by the MTJ is described by the
Tunnel Magnetoresistance Ratio (TMRR), which expresses the range normalized
for the P (or off) resistance. An MTJ can be ’written’ by magnetizing one of the
ferromagnetic layers in the parallel or anti-parallel direction [28]. The magnetic field
that remains in the material after the writing process is complete is called the remnant
magnetization. Since the device can be in one of two states, the device can only store
1 bit of information.
Since the physics of an MTJ is complex and relies on statistical calculations, its
behavior is difficult to simulate. Because of this, several empirical models have been
developed for the different modes of operation [22][51]. A switching model can be used
to simulate the device’s transition from one state to another, while a circuit model can
be used to simulate its operation while in a certain state. An additional model may be
used to simulate the decay of the remnant field over time. This might not be critical
since good ferromagnetic materials have been shown to keep their magnetization for

14

long periods of time [12]. Using these models, a more or less complete simulation of
the MTJ can be carried out.
Reading out the device can be done similarly to other resistive devices, since the
data (or state) is effectively stored as a resistance value. When written, the device
is entirely passive and becomes essentially a non-linear resistor. Whether an MTJ is
a ’true’ memristor is certainly up for debate, in particular because of its stochastic
properties. However, becaue of its resistive properties it should certainly be considered
part of the memristor ’family’ of devices [44].
Although MRAM is considered suitable for memory design, as of writing the technology
is not yet commercially available. However, it is considered more mature than most
other emerging memory technologies and therefore it has already drawn interest from
the neuromorphic engineering community [43][42][50].
Despite ongoing research, the most important disadvantage of MRAM based on MTJs
remains its high power needs. The energy needed to write an MRAM cell is relatively
high compared to conventional CMOS memories [12].

3.2.2 Polarization switching devices

A fairly new addition to the memristor family are passive non-volatile devices which
are not based Chua’s original concept and are technically not RS devices. The most
promising of these technologies is the ferroelectric capacitor.
Ferroelectric memory, often called FeRAM or FRAM, is random-access memory (RAM)
based on so-called ferroelectric materials. These materials can be electrically polarized
by an applied electric field, similar to how a ferromagnetic material can be magnetized
by a magnetic field. When the applied electric field is removed, the material retains
its polarization in the direction of the electric field. The polarization present in the
material can be reversed by applying an electric field with opposing polarity [33].
In addition, the remnant polarization in the material creates a (weak) electric field of
its own that can be measured as a small voltage. When replacing the dielectric of a
conventional capacitor with a layer of ferroelectric material, a non-volatile capacitor
can be created. Since the ferroelectric capacitor can be polarized in two directions, the
device has two ’states’ [3]. When used as a non-volatile storage medium, the ferro-
electric capacitor can be written by applying an electric field that exceeds the internal
threshold of the ferroelectric layer. The internal threshold depends on the current state
of the device [49].
A FeFET can be created by applying a layer of ferroelectric material onto the gate
of the transistor. If the electric field created by the polarization in the ferroelectric
material is strong enough, it can keep the channel in the transistor open (or closed)
without requiring an active gate voltage. Devices based on this principle can function
as non-volatile or ’programmable’ transistors. Conversely, it is possible to create a de
facto ’negative capacitance’ at the gate of the transistor, which will minimize the ex-
isting input capacitance of the CMOS transistor. Since both the switching speed and
the power dissipation of a CMOS transistor depend on the gate capacitance, reducing
it can greatly improve the overall performance of the device [30][35][33]. This property,
no matter how useful, is not (directly) of interest when designing a memory, however.

15

Ferroelectric memory was proposed in the 1950s but did not became feasible until fur-
ther advancements of semiconductor technology [35]. Since then, FeRAM based on
ferroelectric capacitors has been used commercially in certain applications since the
1990s [17]. FeRAM never became widely popular because of issues that were encoun-
tered when attempting to scale it beyond 100 nm. FeFETs were proposed not long after
FeRAM, but various chemical issues could not be solved until fairly recently. The intro-
duction of the practical FeFET is therefore more recent [47] [33]. With new advance-
ments in both chemistry and semiconductor physics, research into high-performance
ferroelectric memory has gained popularity again [35].
As a memory technology, FeFETs have a number of advantages. First of all, it combines
the non-volatile properties of a ferroelectric capacitor with the versatility of a CMOS
transistor. Secondly, reading the value of the ferroelectric capacitor is more convenient
through a FeFET since the write (gate) and read (drain and source) lines are inherently
separated. Third, FeFETs can be written by small voltage pulses, making low-power
non-volatile memories practical [3][49].
Lastly, the polarization value is converted through the FeFET into a resistance value
[35]. This last property could make FeFETs incredibly useful as a replacement for
ADC circuits in crossbar networks, compute-in-memory (CIM) applications or as ana-
log weights for neuromorphic circuits [7][33].

3.3 Modeling

In this section, models of two types of memristors will be discussed in detail.

3.3.1 Modeling of a TiO2 memristor

As one might expect, many models have been developed to predict the behavior of RS
metal oxide memristors. Since the application of materials and construction techniques
can significantly impact the operational behavior of the final device, any available
model will have to be tuned to a particular variation of memristor before it will return
useful results. Indeed, since there are so many variations, it is difficult to point to an
instance that shows a ’typical’ memristor.
Furthermore, there is also the difference between physical models and empirical
models. The first type of model is based on underlying physical principles related to
the material and the construction of the device. The second type treats the device as
a sort of black box and attempts to recreate its behavior through careful observation
of its output. Physical models are often preferred because they tend to give a more
complete picture of a device’s predicted behavior, while empirical models only show
behavior that was already observed. In other words, empirical or curve-fitted models
reveal no new insights. That does not mean that empirical models are not useful,
however. Physical models, in particular for solid-state devices, are often inherently
computationally intensive as a result of the scale at which they operate. Empirical
models, on the other hand, often rely on simple combinations of mathematical curves,
abstracting away more complex behavior. Naturally, this can only be done as a result

16

of a number of assumptions, such as a limited number of parameters and a limited
range of the used parameters.
For the TiO2 memristor, in particular, the most used models are ’informed’ empirical
models. That is, an abstracted mathematical model of which the inputs are based
on some physical parameters such as resistance, size or physical constants [37][20].
The most popular model to predict the behavior of RS memristors is the so-called
linear ion drift model. This [3][7][33] model was first used broadly to model HP’s
TiO2 memristor, which is the memristor of choice for this thesis. The model will be
discussed in detail later in the chapter, but it should be noted that the most important
drawback of the linear ion drift model is that it assumes a linear relation at all
times. Experimental data has shown that when the boundary layer of the memristor
approaches saturation, the device starts showing non-linear behavior. To predict this
edge behavior and correct the model, a number of non-linear extensions for the linear
ion drift model have been developed [20]. The resulting model is a non-linear model
based on the linear ion drift model mentioned earlier. This non-linear ion drift model
introduces a window function that reduces the slope of the linear curve at either
boundary. Since this model essentially moves all non-linearity into the new window
function, different types of non-linear functions can be used, an overview can be found
at [36].
For this project, the memristor model proposed by Biolek will be used, which is a
variant of the linear ion drift model, which as discussed is based on HP’s device
[4]. To add non-linear behavior to this model, Joglekar’s window function is used
[15]. This type of window function meets four out of five of the conditions that are
needed for a window function, which makes it the best performing window function [36].

Figure 3.2: Memristor model, taken from [4]. The memristor is depicted as having a doped
and undoped region of varying sizes.

RMEM(x) = RONx+ROFF (1− x),

where x =
w

D
∈ (0, 1)

(3.1)

17

dx

dt
= k i(t)f(x)

where k =
µvRON

D2

and f(x) = 1− (2x− 1)2p

(3.2)

Figure 3.3: Plot of the window function f(x), taken from [4]. Increasing the window function
minimizes the edges of the memristor.

As can be seen in figure 3.2, the device contains two regions: a doped region and
an undoped region. The relative size of these regions, x, is used to determine the
current resistance value of the device, as is described by equation 3.1. The size of the
regions can be changed by setting a voltage over the terminals of the device. The value
of x, which represents the fraction of the doped and undoped regions, respectively,
then changes over time according to differential equation 3.2. The speed at which the
regions shift can be adjusted by changing constant k. The slope of the differential
equation is also tuned by a window function f(x), which uses a window size consant
p. This window function models the edge regions of x, where either D >> w or
D << w. In these cases it is expected that some saturation would occur as the value
of x approaches either 0 or 1. The speed at which the device saturates can be adjusted
by changing the window size p. A plot of the window function can be seen in figure
3.3.
The indirect relation between the electrical field and the measured resistance make
it possible to treat the device as a programmable resistor. Evidently, if there was a
direct linear relation between the electrical field and the output current it would be
impossible to ’program’, since any input would immediately change the output and no
information would be stored. The fact that the device has state makes it interesting as
a possible memory device. The fundamental disadvantage of a two-terminal memory
device is of course that in practice it is not possible to read the device without
disturbing the stored value, since there are no separate ’read’ and ’write’ terminals.

18

The voltage that would be necessary to create an output current will change the
resistance value, making any read operation somewhat inaccurate. A relatively simple
way of minimizing this effect could be to use a high voltage to set the device and then a
small voltage or current to read the resistance value. If the readout circuit is accurate
enough to detect a small current, the device can be read out without disturbing its
state significantly. Another advantage of this strategy is the small amount of power
that is necessary compared to existing memory solutions. Since spiking neural network
circuits already work with very small currents, this requirement should not pose a
major roadblock.

3.3.1.1 Model considerations

As useful as the Biolek model is to simulate memristor behavior, there are a number
of assumptions that are made that are relevant for this project.
First, the model does not describe the impact of process and temperature variations.
Since the model is mathematical and not physical, no specific technology parameters
are used.
Second, it is assumed that the simulated device is completely uniform and therefore
shows identical behavior at every physical point. In reality, doping in a semiconductor
might vary over the length of the device.
Third, the model does not simulate retention over time. If no voltage is present at the
terminals of the device, it is assumed that the device’s state does not change.
With these assumptions in place, the rest of the chapter will focus on how to implement
the weight storage using an ideal memristor.

Once the model has been implemented in a simulation environment, a number of
things need to be simulated before a weight storage application can be attempted.
First, the model needs to be simulated for a simple voltage input such as a sine wave.
The output should show the behavior described earlier in this chapter, which would
be a resistance value that changes with the input voltage. Second, the voltage versus
current behavior needs to be observed. If the current versus voltage plot shows only one
curve, this means that the hysteresis behavior in the model is very weak. The model
can be tuned to show stronger hysteresis behavior by tweaking the window function.
The ideal voltage versus current plot would be between two extremes: extreme hys-
teresis would result in a circular plot, since in that case the rising and falling curves do
not overlap; the other extreme, no hysteresis at all, would result in a straight line, since
that would mean the rising and falling curve overlap for every point. From these simu-
lations, the model parameters should be chosen that are used for the rest of the project.

3.3.2 Modeling of the FeFET

Due to the stable remanent polarization in combination with an electric field-based
writing process, ferroelectric memory is currently the most promising of proposed
memory technologies [35]. The technology is based on the use of certain novel

19

ferroelectric materials (e.g. hafnium oxide) as a replacement of dielectric material in
capacitors. In conventional dielectric materials used in capacitors, an electric field can
be stored for a limited amount of time. After a certain amount of time, the charge
will leak away until the capacitor is completely discharged. As a result, non-volatile
memory based on capacitors is impractical. In addition, if used for volatile memory,
capacitors can only be used for data storage if the charge is regularly refreshed. This
regular charging and discharging results in a higher power dissipation than other
memory technologies. However, capacitor-based volatile memory has the advantage of
being much denser relative to other technologies based solely on transistors.
A novel approach is to manufacture capacitors intended for memory use using a
ferroelectric material instead of a dielectric. Unlike dielectric materials, which act
more like insulators, ferroelectric materials can be semi-permanently electrically
polarized. This means that the electric field remains in place much longer than for a
traditional capacitor. The behavior of the ferroelectric capacitor is somewhat similar
to memristor behavior in that it has a certain stored state.
A ferroelectric capacitor can be polarized in one direction or the other by applying an
electric field over its terminals. The device will remain in its state until the electric
field exceeds a certain threshold. When the electric field is large enough, the device
will ’flip’ its state and the new polarization will follow the direction of the electric field
that is applied. After the electric field is removed, the polarization will remain and
sustain an electric field of its own.
The described behavior is particularly useful to create non-volatile low-power memory.
Since the capacitor can be polarized by an electric field alone, very little current is
needed and as a result only a small amount of power is dissipated. This gives ferro-
electric technology an important advantage over other technologies (e.g. phase-change
memory and magnetic tunnel junction memory), which typically require relatively
high voltages or currents to change a cell’s state. In addition, ferroelectric memory
is easier to manufacture, since it can be integrated with existing CMOS processes.
One disadvantage is that the ferroelectric materials that are typically used are highly
reactive and tend to form poorly conducting layers when combined with semiconductor
materials. This issue could be mitigated with adding buffer layers, but these additional
layers will create their own capacitive behavior, which in turn makes the device less
predictable. Nonetheless, the advantages of ferroelectric memory are evident and it’s
likely the technology will mature in the coming decades.
In the next sections, a a strategy for simulating ferroelectric devices and finally
ferroelectric memory will be laid out. These simulations will rely on mathematical
models that have been developed for this purpose. In the ideal case, the results
from the simulations should be compared with experimental data and observations
should be made on how the simulation can be improved. For this thesis, however, no
experimental data from real ferroelectric devices is available. Therefore, in the results,
only the simulation data will be presented and discussed.

20

3.3.2.1 Simple Model (FeRAM)

To be able to use the ferroelectric capacitor, first a model is needed that can ade-
quately predict the device’s behavior. In order to do that, a basic understanding of
the underlying physics is needed.
In a real ferroelectric material, the material is divided into discrete domains that can
switch polarization more or less instantly. It’s important to note, however, that these
domains can switch at different threshold values. When the material as a whole is not
polarized in any direction, the individual domains are polarized in arbitrary directions.
Then, when an electric field is applied and slowly increased, more and more domains
will align their polarization with the applied field as the field strength exceeds their
threshold. The result of this is is that for a large device, the polarization switching will
happen more gradually than for a very small device, as the number of domains will be
smaller for the small device. Because the distribution of threshold values will follow
a normal distribution for a large number of domains, the polarization process will
saturate for larger electric fields, as fewer and fewer additional domains are switched.
Another important feature that can be observed in ferroelectric devies is the hysteresis
effect. The threshold that has to be overcome before the polarization can be changed
depends on the current polarization. Indeed, to reverse the polarization, a reverse
electric field is required. This means that the polarization curve is split up in two
curves: one for switching the polarization in one direction and one for switching the
polarization in the other direction.
Over the years, numerous models have been developed to simulate ferroelectric
materials. Most of these models can be placed in one of two groups.
The first group is the statistical models, which simulate N devices and accumulate
the results. These are typically based on the Preisach model, which has been used
to describe magnetic hysteresis in physics [34][35]. Unlike a typical Preisach model,
here, the simulated devices are very simple, it can only output a small number of
polarization values (often only two) and it switches instantly when a certain threshold
has been reached. By varying the threshold parameters among the set of simulated
devices, a more or less smooth switching curve can be obtained, depending on the size
of N . Here, the N simulated devices represent a set of N ferroelectric domains This is
arguably the most realistic model since it is based on the physics behind ferroelectric
polarization [30][7].
The second group consists of the empirical models. These models will generate a curve
that can be very similar to the behavior of a real device. However, since they are not
(directly) based on actual physics, these models will have to be tuned until they show
the desired behavior. This type of model is far less computationally intensive because
only one simulation is necessary to simulate a device. However, when a small number
of domains needs to be simulated the accuracy will decrease since it can not simulate
discrete switching behavior [7].
The model used here falls in the second group. It is based on the Landau-Khalatnikov
model [34][2][35] . This model has been used to simulate phase transitions, it is based
the thermodynamic theory of free energy potentials.The model is implemented as a
differential equation, it takes the electric field strength E and the current electric
polarization P as input and predicts the change of the polarization for an abitrary

21

timestep δt. The model also uses the ferroelectric anisotropy constants α, β and γ,
which in this case can be regarded as tuning parameters that can be used to weight
each exponential term in the equation. Lastly, the damping parameter ρ represents
the internal resisitivity of the ferroelectric material and can be used to scale the value
of the change in polarization that occurs in a single timestep.

ρ
δP

δt
= − δu

δP
(3.3)

with u represents the free energy and is defined as

u = αP 3 + βP 4 + γP 6 − EP (3.4)

Substituting equation 3.4 into 3.3 and solving for δP
δt

results in equation 3.5.

δP

δt
= −1

ρ
(3αP 2 + 4βP 3 + 6γP 5 − E) (3.5)

Using equation 3.5, the change in polarization can be calculated when an electric
field E is applied at the device’s terminals.

3.3.2.2 Extended Model (FeFET)

In this section, the model discussed in the previous section will be extended so that it
can describe the behavior of FeFETs.
The ferroelectric capacitor, as discussed earlier, has a number of great advantages over
the conventional capacitor when it comes to creating a memory. There are, however,
some practical issues when it is used as a replacement for conventional memory, in
particular for neuromorphic systems. Although the ferroelectric capacitor is fairly easy
to write to, reading is a bit more difficult, since the polarization in the device has to
be measured. In addition to that, the measured polarization has to be converted in a
unit that is convenient to use. These steps will require additional circuitry to perform,
making the memory more complex and less energy efficient. In the previous section,
these steps are neglected in order to keep the model more simple.
To make the ferroelectric capacitor more versatile as a storage device, it can be
combined with a MOSFET to create a ferroelectric field-effect transisotr (FeFET).
For neuromorphic applications, the FeFET has the great advantage of converting the
polarization of the ferroelectric capacitor into a drain current. Over a limited range,
a larger polarization value results in a larger current, following a similar curve as the
linear regime of a MOSFET. This current can then be used as input for an analog
circuit, such as a neuron circuit.
There are a number of different models that describe the interaction between the
polarization of the ferroelectric capacitor and the transistor that it is attached to.
Here, a model for a FeFET with a single buffer layer will be discussed, a so-called
metal-ferroelectric-insulator-semiconductor device (MFIS). The buffer layer is added

22

between the ferroelectric material and the semiconductor material to prevent them
from reacting chemically. Although the buffer layer prevents degradation of either
material, it effectively creates two additional capacitances in the device. The changed
dynamics as a result of one or more buffer layers is still an active topic of research.
In this case, the dynamic behavior of the capacitances is neglected since the device is
only simulated with low frequency signals.

Equations 3.6, 3.7 and 3.8 describe the relation between the drain current of a MFIS
FeFET and the ferroelectric polarization in the transistor’s linear regime [47]. It can be
seen that the polarization in the ferroelectric capacitor offsets the gate voltage (VGS) of
the transistor. If the gate voltage is kept constant, an increase of the polarization value
can also be interpreted as a lowering of the threshold voltage. The drain current ID is
scaled by the ratio of the width and length of the transistor and the hole mobility µh.
C is the combined capacitance of CB and CFe in series, as seen in equation 3.7. CB and
CFe are the capacitance between the metal contact and the ferroelectric material layer
and the ferroelectric material and the buffer layer, respectively. The width, length,
mobility and capacitance values of the FeFET are all technology-specific parameters.
Since no specific technology data is available, normalised values will be used.

ID = (
W

L
)µh[P

∗ + C(VGS − VT)]VDS (3.6)

C =
CBCFe

CB + CFe

(3.7)

P ∗ is defined as

P ∗ = P
CB

CB + CFe

(3.8)

In equation 3.8, the relation between the scaled polarization value P ∗ and P can
be seen. The resulting polarization value is scaled by the value of CB as a fraction of
the sum of the two capacitances.
This model described in this section makes it possible to generate a current based on
the ferroelectric polarization, which in turn is based on the stored weight value.

3.4 Simulation Results

In this section, the simulation results of both models will be presented and discussed.

3.4.1 Simulation of the TiO2 memristor

In this section, the simulation results of the two types of memristor will be presented
and discussed. A number of different simulations have been carried out to test the
memristor model. The first simulations test the model directly by setting a voltage

23

signal over the terminals of the device.

3.4.2 Memristor Model Simulation Results

The first part that was simulated was the memristor model itself. A sinusoid voltage
signal was set at the input of the memristor. For the on and off resistance of the
memristor, typical values of 100 Ohm and 16k Ohm were chosen. The window function
depth is 1. The frequency of the input signal is set to 4 Hz to make visual inspection
of the output convenient as well as to generate enough data points with a reasonably
small simulation time step. The resistance of the memristor for this input can be
seen in figure 3.4. From the plot, it can be seen that at first the resistance rises
with every period and then settles and oscillates with the frequency of the input
signal. The resistance lags behind the input signal because the resistance isn’t directly
changed by the voltage, as indicated in the previous chapter. From this plot, it can be
observed that this component functions as a programmable resistor that saturates at
a given RON resistance value. Depending on the frequency of the input signal, the val-
ues that the output resistance oscillates between will be further apart or closer together.

Figure 3.4: Plot showing the resistance of the memristor for a sine wave voltage input. The
resistance of a memristor increases when a positive voltage is applied and decreases when a
negative voltage is applied.

In figure 3.5, the current is plotted against the input voltage. The plot starts with
the line in the top middle, this is the starting position of the memristor. Then, the
memristor starts oscillating between two points. As the changes between the curves
become smaller and smaller, at last the memristor settles around the dark curve in
the middle. The difference with an ordinary resistor is the hysteresis behavior, which

24

can be seen here clearly as the rising and falling of the current through the memristor
follows different curves. The space between the curves indicates the level of hysteresis
behavior that is present in the model. If the device is used as a binary storage device,
the space between the rising and falling curves indicates the difference between the two
states. The larger the space between the curves, the easier it is to determine the state
of the device. However, if the model is tuned in such a way that the curves are further
apart, the curves also become less linear, which may result in a less predictable device.
As mentioned before, the changing of the resistance for any input voltage is both a
blessing and a curse: the device ’sees’ no difference between a read signal and a write
signal, and thus a certain resistance error is always present. A way to minimize this
error is to use a read voltage that is orders of magnitude smaller than the write signal.
If the model is used as plotted in figure 3.5, it is linear enough to be used as a
multi-state device, given that noise is neglected. If used in combination with a
memristor controller, the controller block can set the input voltage over the memristor
in such a way that a certain resistance value can be ’programmed’ onto the device.
This way, the memristor can function as a multibit or even an analog memory, since
any value between the on and off resistance can be programmed. In the next section,
simulation results for this controller will be presented.

Figure 3.5: Plot showing the resistance of the memristor versus the voltage for a sine wave
voltage input. Wheras a memoryless device such as a resistor would show a diagonal line, a
memristor shows distinct curves for increasing and decreasing voltages.

25

3.4.3 Simulation of the FeFET

In this section the simulation results of the ferroelectric model will be presented and
discussed.
As stated before, the Landau-Khalatnikov model has to be tuned before it can be
used. Since no measurement data of a ferroelectric device is available, external data is
needed. It is important to note this because the degree of realism that the model can
provide is dependent on how well the model can be tuned, which in turn relies on the
quality of the available data.
In figure 3.6a the input-output relation of a real ferroelectric device can be seen [5].
The input voltage that is applied is a so-called ’saw’ wave, seen in the plot labeleled
(a). The output that is plotted below is the ferroelectric polarization as a function of
the voltage, labeled as (b) and (c). The plots on the bottom of the figure represent
different implementations of the device. It can be observed that device (b) would be
the most useful, since it has the most linear relation between voltage and polarization.
This linear relation is important, because it makes the switching behavior of the device
more predictable. In the plot next to it, the polarization decreases slightly and then
increases again. In this plot, the distance between the two curves is larger, which
means that it will be easier to read out the state of the device. However, the parabolic
sections at the top and bottom of the right curve are not desired, since it crosses
through the same polarity values twice for a single curve.
This specific data is chosen because it provides both the input signal used and two
possible output plots based on real devices. Using this data, the model can be tuned
to give a similar output.
In figure 3.6, the measured data and the tuned model can be seen side by side. To
tune the model, a saw wave with a peak-to-peak voltage of 3 V and a frequency of
40 Hz is used. This input signal is also used for the experimental data on the left. It
can be seen that the peak-to-peak values of the measured data and the tuned model
are very close. The largest difference that can be observed is the shape of the curve.
Although the shape is more linear than the ’leaky’ experimental data shown in red, it
is still not quite as linear as the ’conventional FeFET’ behavior shown in blue. This
is likely because the Landau-Khalatikov model is based on the weighted sum of three
polynomials (as shown in the earlier section). These polynomials can be weighted to a
certain extent, but they will not result in a completely linear curve. However, it can
be seen that for a limited voltage range the slope of both the rising and falling curves
are approximately linear. This means that by choosing a smaller maximum voltage
input, the non-linear behavior of the model can almost be neglected.
The next step is to simulate the tuned model for a series of input pulses, as proposed
earlier in the chapter. The result can be seen in figure 3.7. For this simulation,
a series of square pulses with a voltage of 10 mV and a frequency of 100 Hz was
used. In this plot, it can be seen that a pulsed input with a smaller voltage range
significantly reduces the non-linear effects of the ferroelectric model. The pulses divide
the slope of the polarization into 16 evenly spaced sections. The polarization value
for each horizontal section of the slope represents a state that the device can be put
in. Assuming that the non-polarized inital state of the device is state 0, then up to 15
pulses are needed to write a 4-bit weight value to the device.

26

(a) Ferroelectric measurement data taken
from [5] (b) Tuned model

Figure 3.6: 3.6a shows measured data, 3.6b shows the tuned Landau-Khalatnikov model. The
tuned model approximates the experimental data in the left figure, but the linear section in
the middle is smaller for the tuned model.

27

Figure 3.7: Polarization over time for a series of 15 square pulses. When short voltage pulses
are used to program the ferroelectric capacitor, the polarization behavior is quite linear.

In figure 3.8, a similar plot can be seen, but this time the drain current ID is
plotted. The drain current of the FeFET in the linear regime depends on the gate
voltage, which is offset by the threshold voltage and the ferroelectric polarization
in the capacitor. Therefore, the plotted drain current follows the polarization value
quite closely. For this simulation, normalised values for the dimensions, hole mobility
and capacitance of the FeFET have been used. As a result, a relatively large output
current can be seen. However, the magnitude of the drain current can be scaled by
using practical technology parameters.

28

Figure 3.8: FeFET drain current over time for a series of 15 square pulses. For the linear
regime of the FeFET, the ferroelectric polarization and the drain current are directly related.
As a result, the plot of the drain current is very similar to 3.7. Note that this plot shows the
relation between the current and the polarization. The order of magnitude of the current can
be decided by scaling the parameters of the FeFET device.

29

30

Implementation of Weight
Memory 4
This chapter focuses on the possible use of memristor technologies as a viable solution
for the SNN weight storage problem. The chapter begins with an introduction about
the concept of using memristors in combination with SNNs. Then there will be short
overview of related work. Then, the design of a memory cell for an SNN based on
memristor technology will be proposed and discussed. In the next section, this design
will then be simulated as part of an SNN. At the end of the chapter, the results will
be presented and discussed.

4.1 Introduction

As laid out in the first chapter, the goal is to implement an SNN in analog circuitry.
While this approach certainly has a number of advantages, it also introduces new
challenges. The routing of long interconnections to transmit the analog signals has
been mentioned already. Another major challenge is the implementation of the
necessary conversion steps between digital and analog signals. Depending on the
application, the output spikes of the SNN could be decoded and converted to digital
values. However, what happens to the output of the SNN is not the focus of this
thesis. Instead, the processing of the weight values will be considered.
Assuming the final SNN implementation lacks the necessary hardware for self-training,
the weights have to be programmed onto the weight memory of the SNN implemen-
tation. Since these weights are generated externally by software, they will have to
converted from digital to analog. Where this step happens, depends on the design of
the network.
If the weight memory is digital, the conversion will need to happen during operation.
In that scenario, the weight value is read from the memory, converted through a DAC
circuit and then applied to the synapse output current through a scaling circuit (e.g.
a current mirror). This method would be quite slow since the weights will have to be
read and converted each time they are needed, the operation of the SNN would likely
have to be halted for this. In addition, the repeated read convert operations of the
memory and the DACs would result in a higher power dissipation.
A more convenient approach would be to use an analog memory which can be
integrated into the scaling circuit of the synapse. In such a scenario, the digital
weights would have to be converted before they are programmed to the memory. This
would result in only a single conversion step. It can even be debated whether the DAC
needed for this conversion should be integrated into the SNN hardware, or whether a
separate ’weight programmer’ interface can be designed.

31

Before proposing an implementation, it is good to consider some of the requirements
of the memory solution. The memory of a spiking neural network is quite different
from a conventional digital memory. In a digital memory, a memory controller usually
allows for interfacing with other parts of the system, in particular by providing read
and write functionality. When a digital memory is written to, a read instruction
will return the stored value after a certain number of cycles. This is quite different
from a neural network. In a spiking neural network, weights are needed to emphasize
one input over the other. To accomplish this, the synapse current is multiplied by a
certain discrete value. The type of application that the network implements depends
on the set of weight values that is used. In a sense, the network can be ’programmed’
to do a certain task by setting the weights in the synapses. To make sure that the
network does not ’forget’ its weight set, the weights have to be stored. Writing
these weights to a network could be quite similar to writing any other memory.
Reading the stored value, however, is not a requirement for spiking neural network
memories. Instead of a read function, it would be much more practical if the the
memory implementation could directly implement the current scaling without hav-
ing to read the stored value first, since no analog/digital conversions would be necessary.

4.2 Related Work

The concept of using memristors or memristor-like devices in various parts of an SNN
implementation has been proposed in a number of publications. Examples of both
neuron and synapse circuit implementations based on ferroelectric devices can be
found in [31] and [6]. An extensive overview of the literature on various memristor
technologies and their usecases for either neuron or synapse design can be found in
[19].
For this thesis, the focus is on using memristors specifically for weight storage and
weight application. Since the application of the weights happens either in or after
the synapse, the interest in related work should go specifically to publications about
memristor-aided synapse designs.
Starting with the TiO2 memristor, only a small number of publications propose
synapse designs based on this technology. However, for resistive memristors (also
referred to generally as ’ReRAM’), many such solutions can be found [14][26][46]. The
reason for this difference is likely the wide variety of material combinations that can
be used to create such devices.
For FeFET-based proposals, a large number of publications can be found [39]
[32][29][31][27]. Most of these designs make use of the memristor’s properties to apply
the weight as well as generate a scaled current at the output of the synapse. In that
regard, the design proposed in this thesis is different, since the weight is applied to the
current at the output of the synapse.

32

4.3 Design of a memory cell

In this section, the design for a memory cell based on the TiO2 memristor and the
FeFET is discussed. The assumptions that are used in Chapter 3 will be used here as
well.

Figure 4.1: Diagram showing how a memristor-based weight application block could work.
The synapse current flowing through the (resistive) memristor results in a voltage scaled by
the weight stored in the memristor. An analog amplifier circuit takes the weighted voltage
and generates a current that has been scaled by the memristor.

4.3.1 Using a HP TiO2 memristor

After the model has been tuned, a testbench can be made to test the device’s memory
capabilities. This testbench should test very basic write and read operations. From
these tests, suitable write and read voltages can be selected.
Functions of this testbench can later be reused as a controller block that interfaces
between a synapse and the memristor. This controller block will take care of writing a
weight value tot the memristor and reading back the weight value when it is needed.
For now, this can be simulated by logic and math operations in the simulation
environment. Naturally, when this solution is implemented on a chip, the controller
block will have to be implemented using digital and analog circuits. However, since
this project focuses on investigating the capabilities of the memristor as a way of
storing the weights, the specifics of the controller’s electronic implementation are not
considered relevant at this point.

The simulation will be done in SystemC, which is an extensive (digital) hardware
simulation library for C++. In addition, an extension to SystemC called SystemC
AMS will be used to simulate the analog behavior of the memristor. From here on
the layout of the model setup will be described, starting with the model. Then, the
controller block and its specifications will be described. In the Memristor section of
the Results chapter, the simulation results will be shown and discussed.
It is an analog simulation block with only two terminals, a voltage input and a
resistance output. Inside the block, there is one function that runs continuously called
memr_processing(). This function runs the Biolek model and updates the resistance
output. In reality, a voltage input over the memristor would result in a current output,
and a circuit would need to be added that extracts the resistance. For this simulation,
however, the circuit is neglected and it is assumed that the resistance can be exactly
extracted.

33

The memristor block can be used in combination with a simple voltage source to do
the simple simulations described in the previous section.

Once the memristor simulations show satisfactory results, a controller block can be
implemented. The controller block functions as an interface between the digital and
the analog environment. This block is a ’regular’ SystemC block with four inputs and
outputs and two processes: one for writing and one for reading. The data_in input is
used to send an unsigned weight value. The i_in and i_out are the input and output
currents, respectively. ready_out is set whenever the interface has finished writing.
Since the block has no clock input, this means it needs to be triggered before either of
the processes will start.
The write process will trigger whenever the data_in input changes, under the condition
that the interface is not currently reading or writing a value. The write process will
read the weight value at the input of the interface and try to write it to the memristor.
The resistance value of the memristor lies between a certain range |RON − ROFF |, so
the weight value has to be normalised and scaled to the available range. If negative
weight values are used, the range of the memristor has to be divided in a positive and
negative range. Once the weight value is scaled, the voltage input of the memristor will
be set and the resistance value is read back on every time step. Once the memristor
has reached the desired resistance value within a certain error margin, the voltage
is set to 0 and the writing process will no longer trigger until the data_in input is
changed again. The error margin is set to 10 Ohm. This means that the writing
process will complete as soon as the resistance value is within 10 Ohm of its target
value. The value of 10 Ohm was chosen because the TiO2 memristor model will not
settle for a smaller value, resulting in an endless loop.
The read process is triggered whenever the i_in input current changes. The read
process will read back the resistance value from the memristor and decode the weight
value. The input current is then multiplied with the weight value and written to
i_out.
The block called ’Memristor Object’ represents an instance of the Memristor block
discussed earlier. It is connected with the SystemC block by the Vin_sig and
Rout_sig signals.

The weight value can be read back from the memristor by using the following equa-
tion:

weight = ((R−RMIN) ·
2

RMAX −RMIN

− 1) · 7 (4.1)

In this equation, R represents the current resistance value of the memristor, while
RMIN and RMAX represent the minimuma and maximum values, respectively. By
using the specified maximum resistance error, the maximum weight error can be
calculated. A plot of the weight error for a positive resistance error of 10 Ω can be
seen in figure 4.2.
From this plot, it can be seen that the maximum weight error for a range of 200 Ohm
to 6000 Ohm is ≈ 0.024 or about 0.002 percent of the full range of the weight. Figure

34

4.2 shows the absolute weight error over the range of the memristor resistance. The
weight error varies very slightly with the resistance, but this is not significant enough
to be visible on the plot.

Figure 4.2: Plot of the weight error over the resistance range of the TiO2 memristor for a
resistance tolerance of 10 Ohm. The weight error varies very slightly with the resistance, but
this variation is too small to have a detectable effect.

To test the functionality of the memristor interface block, a testbench is needed.
This testbench should provide the input signals and read and store the output signals.
The testbench should use a simple input generator block that creates the weight values
and sends them to the memristor interface. The changing input will then trigger the
memristor interface. The generator block should send the next weight value once the
ready_out signal of the interface is high. The testbench should also provide a current
input to the memristor interface. The current at the output of the memristor interface
should be the product of the input current and the weight.

35

4.3.2 Using a FeFET memristor

With the FeFET model described in the previous chapter, a basic ferroelectric
capacitor block can be created in SystemC AMS. By simulating the block for various
inputs and comparing its output to measurement data from existing devices, the
parameters can be tuned. Once a sufficiently accurate model has been obtained, the
next step is to create a memory cell out of it. For this, an additional block is needed
that can function as an interface between the model and the neural network. This
interface block represents the read and write circuitry that would be needed to create
a practical memory cell. Because the focus of this thesis is on the ferroelectric device,
the additional circuits that would be necessary in a real world application are not
designed nor simulated. It is assumed these circuits can be readily implemented once
the functionality of a ferroelectric memory cell can be confirmed.
The interface block takes care of the read and write operations of the memory cell.
The write interface should accept digital integers as data input, since the weight values
are presented as such. For the read interface, however, an analog value is needed, since
the SNN is fully analog as well. The analog nature of the ferroelectric model already
matches the SNN, so the only conversion that is needed is from the digital weight
value to an analog polarization value. After the weight value has been written, the
analog value can be read out, scaled if necessary, and used by the synapse.
Similar to the memristor implementation discussed earlier, the optimal weight storage
solution would be a multi-bit one. In other words, the 4 bits worth of data in the
weight value should be stored in a single ferroelectric memory cell. This can be
achieved by creating a total of 16 states in the device. Writing a certain value to the
cell can be done by setting it in the appropriate state. To do this, multiple strategies
can be employed.
The first is to set a continuous electric field over the ferroelectric material and then
reading out its polarization value frequently to see if it has reached the appropriate
state yet. In practice, this method would require some sort of fast feedback loop
between the input and output of the device. In addition, the device would have to
switch between read and write mode quickly, assuming reading and writing can not
happen simultaneously. The maximum accuracy of the written value in this case
would depend on the speed at which the value of the polarization increases as well as
the frequency of the feedback loop. Although this method can be easily simulated in
SystemC, a practical implementation would be difficult to realize without significant
additional circuitry (e.g. amplifiers or comparators, switching circuits, etc.). If the
ferroelectric device can be assumed to be reasonably predictable, a writing method
that requires no feedback is preferred.
The second method is to divide the electric field input into pulses. Variations of this
idea have been proposed in literature, such as [3][7][33]. The pulses should be designed
in such a way that a single pulse is both strong and long enough to set the device into
the next state. With each additional pulse, another state is reached. If there are 16
states (not counting the ’base’ state), a maximum of 16 pulses could be sent. If the
ferroelectric device is assumed to be perfectly predictable, the accuracy of this method
depends on the base frequency of the pulse generating circuit. However, unlike the
first method, the accuracy could be improved by subdividing a single pulse in groups

36

that better approximate the exact required pulse length to go to the next state. The
downside of this method is the requirement of a digital clock to generate the pulses,
which could disturb the SNN’s analog circuits. However, the pulse generating circuit
could be designed such that the pulse clock is only active when the weight values are
being written. Once the writing process is complete and the SNN becomes operational,
the pulse clock is no longer necessary and can be turned off.

4.3.3 Weight Error

Since the FeFET-based weight memory uses discrete states, the error can be computed
by comparing the expected polarization value with the polarization value given by the
model. This error is based on the fact that the used region of the FeFET model is not
completely linear. The polarization error can be expressed as a part of the weight. A
plot of the absolute weight error for each weight can be seen in figure 4.3. In the plot,
it can be seen that the absolute weight error (in blue) is dependent on the weight. In
orange, the average weight error is plotted. On average, the weight error is lower than
that of the TiO2 implementation.

Figure 4.3: Absolute weight error for the FeFET weight storage implementation. In blue, the
weight error per weight is plotted. In orange, the average weight error is plotted.

37

4.4 Simulation Results

In this section, the simulation results are presented. First, the memory cell based on
the TiO2 memristor is simulated. Then, the cell is simulated in combination with
several configurations of SNNs. In the second part, the FeFET-based memory cell is
simulated. First on its own, then as part of an SNN.

4.4.1 TiO2 Cell

4.4.1.1 Memory Cell Testbench Simulation

To be able to control the read and write process and provide an interface to the outside,
an interface block was created in SystemC. Using a testbench, the interface can be
instructed to write and then read a 4-bit value to the memristor. The simulation result
can be seen in figure 4.4.

Figure 4.4: Simulation of memristor interface, From top to bottom, the input current Iin,
the output current Iout, the resistance value Rout, the weight value Weight, the ready signal
Ready and the test data input can be seen.

In the figure, a number of signal outputs are shown. On the top, it can be seen
that the input current to the memristor is equal to a constant value of 1. This is not
a realistic value, but it makes analyzing the output current more convenient. The
output current measured at the cursor is equal to approximately -3. This is correct
since the weight currently written to the memristor interface is -3. The output current
is not precisely -3 because the memristor interface writes the resistance value with a
tolerance of 10 Ohm. At the point in time marked by the cursor, the Ready signal is
1, which means the memristor interface has finished the writing process and is ready
to accept a current input. The current resistance value of the memristor can also be
seen. This resistance value is equivalent to a weight value of 5, as described in the
Methodology chapter. The data on the bottom called test_data is the raw 4-bit input
to the memristor interface. From this plot, it can be seen that the memristor interface
works correctly, as the weight value is written to the memristor and subsequently

38

applied to the input current.

4.4.1.2 Single SNN Simulation

Next, the memristor cell is simulated as part of a simple SNN network. In this case,
the simulation consists of 1 synapse, 1 memristor cell and 1 output neuron. A voltage
pulse is presented at the input of the synapse. The synapse generates an output current
that flows into the input of the memristor cell. The memristor cell applies the stored
weight to the current, which is then presented to the input of the neuron. The current
is then integrated by the neuron until a certain voltage is reached, after which the
neuron discharges and a quick voltage pulse is generated at the output. The simulation
results of this setup can be seen 4.5. The first (uppermost) trace is the input voltage
of the synapse, which are pulses generated at around 500 Hz. The second trace is the
synapse current, which rises, saturates and then decays with the input voltage. The
third trace is the output current of the memristor cell, which is the synapse current
multiplied with the stored weight and a normalisation factor. The normalisation factor
is needed to scale the current to the input of the neuron. In this setup it has been
tuned to a value of 0.001. The fourth trace is the output voltage of the neuron, which
is visible as a series of voltage spikes. The second trace from the bottom is the value
of the weight stored in the memristor cell. It can be seen that if the weight value is
increased, the number of spikes at the output of the neuron also increases. Naturally,
this is because a higher input current will result in the neuron charging and decharging
faster, which will result in a faster spike rate. The memristor cell can be programmed
and act as a throttle for the spike activity of the neuron. In a network consisting of a
single synapse and a single neuron, this is not particularly useful. However, in a larger
network, the memristor cells can be used to apply weights to the synapse currents
and thus to certain inputs of the neuron. In the next section, this will be demonstrated.

Figure 4.5: Small SNN simulation with a memristor cell as weight storage. The right of the
plot has been truncated for visibility. From top to bottom, the voltage input Vin, the synapse
current Isyn, the output current Iout, the output voltage Vout, the weight value Weight and
the ready signal Ready can be seen.

39

4.4.1.3 MNIST Dataset Simulation

In addition to testbench simulations, the memristor interface has also been simulated
in combination with an existing spiking neural network (SNN) simulation framework
in SystemC. The SNN reads an image of 14 by 14 pixels and outputs spikes if the
image is recognized. The network has a total of 196 inputs and 10 outputs, so only
10 different characters can be interpreted. If the input image is recognized by the
network as one of the ten characters, the respective output neuron will start spiking.
If the input image resembles more than one character, multiple output neurons may
start spiking.
This simulation has been adapted so that blocks of memristors can serve as 4-bit
memory cells to hold the weight data and apply the weights to the synapse outputs.
The SNN simulation has been tested before in combination with the MNIST dataset.
In order to get a reasonable comparison of performance with or without the memristor
cells, the same dataset is used.

Figure 4.6: Sample from the MNIST database, showing the digits 0 to 9 in various handwriting
styles. Each digit is an image of 28 by 28 pixels. From [21]

In figure 4.8, the simulation result can be seen. The inputs of the SNN are the first
10 digits of the MNIST data in order. The output neurons, of which the output can
be seen in the plot, should generate spikes in the same order.
To compare the performance, in figure 4.7 the same simulation can be seen. For this
simulation, no weight storage hardware was simulated. It can be seen that in both
plots, several of the output neurons misfire. In the original simulation (figure 4.7, this

40

can be the result of correlation between digits (e.g. ”8” and ”9”) or weight inaccuracy.
In the memristor simulation (figure 4.8, some degradation of performance is observed
when compared to the original simulation result. Notably, for digit ”2” no spikes can
be seen, whereas in the original simulation both neuron 0 and 2 showed spikes. Overall,
fewer spikes are present at the output, compared to the original simulation. This is
the result of the imperfect conversion from weight value to resistance value and vice
versa. As seen in the previous section, the resulting weight application of the weight
to the input current is no longer the exact value of the weight. This error introduces
noise to the simulation, which can result in additional output spikes. In addition to a
degradation in of accuracy and the number of spikes, in figure 4.8 a large empty space
can be seen on the right. This is the delay caused by writing the memristor cells.
Once the cells are all written, the actual MNIST simulation can start. This delay is
not present in figure 4.7 because here, the weights are readily available in digital arrays.

Figure 4.7: Simulation of the SNN with the MNIST dataset of 10 digits in SystemC. From
top to bottom, output neurons 0 to 9 can be seen.

Figure 4.8: Simulation of the SNN with the MNIST dataset of 10 digits with memristor cells
as the weight storage. From top to bottom, the output neurons 0 to 9 can be seen.

To test the memristor cell, an SNN using 49 inputs and 10 outputs was simulated
with 5000 images from the MNIST dataset. 10 simulations were executed, one for every
digit.

In figure 4.9, the output spikes of a single simulation dataset can be seen. The top
plot shows the simulation result for the baseline software-based weight memory, the
bottom plot shows the rseult for a TiO2 weight memory.

Based on the simulation results, the accuracy of the SNN simulation can be
calculated. The MNIST digits are presented at the input in frames of 1 millisecond.
To compute the accuracy, the spike decoder function is activated every 1 millisecond.
Since the SNN implementation in SystemC generates a datapoint every 1 microsecond,
the spike decoder samples the previous 1000 samples of each output neuron. It sums
up the samples and checks if the accumulated samples exceed the threshold. If this

41

(a) Simulation of the SNN with the MNIST dataset with the weight storage im-
plemented in software. 5000 images of digit ’0’ are used as input. From top to
bottom, the output neurons 0 to 9 can be seen.

(b) Simulation of the SNN with the MNIST dataset with memristor cells as the
weight storage. 5000 images of digit ’0’ are used as input. From top to bottom,
the output neurons 0 to 9 can be seen.

Figure 4.9: Comparison of MNIST simulation for digit ’0’. The top plot shows the baseline
software-based approach, the bottom plot shows the TiO2 weight storage.

is the case, the decoded output frame is set high. The output frames of the spike
decoder can then be counted for every point in the dataset. The accuracy can then be
calculated as the number of correctly classified frames divided by the total number of
frames in the dataset.
The accuracy of the SNN output for each digit can be seen in figure 4.10. Note that
in this figure, simulation number 1 refers to digit ’0’ while simulation number 10 refers
to digit ’9’.
Immediately observable in this figure is the drop in accuracy for each MNIST digit
input compared to the baseline software-based weights. The largest decrease in
accuracy can be observed for digit 9, where the accuracy drops about 9% compared to
the baseline implementation of the weights.

The deterioration of accuracy can be explained largely by the fact that the TiO2

42

Figure 4.10: Bar plot showing the accuracy measurements for the TiO2 memristor-based
weight implementation. An SNN of 49 inputs and 10 outputs was simulated with an input
of 5000 images of MNIST digits 0 to 9. On the y-axis is the estimated accuracy and on the
x-axis the number of the simulation.

weight memory stores analog values as opposed to digital ones. The weight that is
used in the SNN is an approximation of the digital weight value that was written
to it. As described earlier, a certain weight error is inherent to the conversion from
digital weight value to an analog resistance value. As the weight is applied to the
synapse current, which in turn is collected at the output neurons, the weight errors are
propagated to the output. Another source of inaccuracies is the the simulation itself.
The 49 inputs of this simulation means that the input image is only 7 by 7 pixels. This
is a quarter of the 28 x 28 pixels of the original dataset. In addition, no hidden layers
were used in the simulated SNN. Adding one or more hidden layers and using a better
quality input image could help to offset the inaccuracies introduced by the memristor
memory. However, using a larger input image doubles the number of input neurons
for the half MNIST dataset and quadruples it for the full MNIST dataset. Increasing
the number input neurons also increases the number of synapses and memristor cells,
which will increase the simulation time.

43

4.4.2 FeFET Cell

In this section the memory capabilities of the ferroelectric capacitor will be tested
by simulating a single ferroelectric memory cell. To test this cell, an interface
SystemC block has been created that can receive the digital weight values and create
the necessary analog signals to write and read the ferroelectric capacitor. For this
simulation, no read out circuit has been designed. It is assumed that the interface
block can directly read out the polarization value of the ferroelectric capacitor and
translate it back into a digital weight value. In a real-world circuit, a specialized
read-out circuit would have to be designed for this.

4.4.2.1 Memory Cell Testbench Simulation

In figure 4.11, the simulation output of the ferroelectric memory cell interface can
be seen. Weight values up to 7 have been tested, but the image is truncated for
visibility. In the wave output the voltage pulse input can be seen at the top. The
input current into the interface and the output current can be seen next. Then the
polarization value can be read out, note that this value increases for each input pulse
that is transmitted, similar to figure 3.7. Then a digital ready signal is seen. This
signal indicates whether the memory cell has finished writing the weight value. After
the writing process is complete, the polarization value is translated back into a weight
value and multiplied with the input current. It can be seen that the output current
matches the written weight value. The most important result of this simulation is
that no mistakes were made during the writing and reading back of the weight values.
This means that the tuned model can be used in combination with the interface as a
simulatable functioning ferroelectric memory cell.

Figure 4.11: Simulation of the ferroelectric memory interface. The right part of the plot has
been truncated for visibility. From top to bottom, the input voltage Vin, the input current
Iin, the output current Iout, the polarization value Pout, the ready signal Ready, the weight
value Weight and the test data can be seen.

44

4.4.2.2 Single SNN Simulation

In this section, the ferroelectric memory cell is integrated into a simple SNN consisting
of a single synapse and neuron. The ferroelectric memory cell is placed between the
synapse and the neuron, it will take the output current of the synapse as input. It
will weight the current according to the stored weight and then output the current
to the input of the neuron. The neuron will then generate integrate the current and
generate voltage spikes at the output. In figure 4.12, the output of this simulation
can be seen. On the top, the tored weight value can be seen. The negative weight
values have been omitted since a negatively weighted synapse current will not result
in spikes at the output of the neuron. The figure only shows the weight values 2 and
3, but the behavior of the ferroelectric memory cell can be seen when looking at the
output current (Iout), which is the third wave from the bottom. The output current
increases with a larger weight value since it is the synapse output current multiplied
by the stored weight. The ’Vout’ signal (the second wave from the bottom) only shows
solid green bars because the individual spikes cannot be shown at this level. This is
because the input frequency of the synapse is much faster than the idle time of the
ferroelectric memory cell. If the idle time is made smaller, the simulation will go on to
the next weight value and there is no time to generate any spikes.
For this reason, two zoomed plots are provided in figures 4.13 and 4.14. In these
plots the difference in spike rates can clearly be seen. The synapse output current is
weighted by the ferroelectric memory cell and sent to the input of the neuron. The
neuron then generates spikes, the rate of which varies based on the input current. In
figure 4.13, a weight value of 2 is used, while in figure 4.14, a weight value of 7 is used,
which results in a much higher spike rate. Although the SNN used here is very simple,
it proves that the synapse weight storage implemented as ferroelectric memory cells
can work, as the current is correctly weighted.

Figure 4.12: Simulation of a simple SNN consisting of a single synapse and a single neuron.
The right part of the plot has been truncated for visibility. From top to bottom, the weight
value Weight, the polarization value Pout, the synapse current Isyn, the output current Iout,
the output voltage Vout and the ready signal Ready can be seen.

45

Figure 4.13: Close-up of a section of 4.12. In this plot, the output spikes of the neuron can
clearly be seen. Here, the weight value is 2. The synapse current Isyn is multiplied with 2,
which gives an output current Iout of 0.207 nA.

Figure 4.14: Another close-up of a section of 4.12. Here, the weight value is 7. The synapse
current Isyn is multiplied by 7, which gives an output current Iout of 0.266 nA.

46

4.4.2.3 MNIST Dataset Simulation

For the next simulation the ferroelectric memory cell is integrated into a large SNN
simulation and tested with the MNIST dataset. The SNN takes an image of 14
by 14 pixels and has 10 output neurons. The output neurons represent a set of 10
characters, they will spike according to how much the input image is found similar to
each character. The 10 input images are presented to the network in order. Therefore,
in the ideal case, the output neurons will fire one after the other in order as well. In
figures 4.15 and 4.16, two simulations of the SNN reading the MNIST dataset can
be seen. The first figure, 4.15, shows a simulation without a specific weight storage
solution. Here, the weights are simply stored in an array. The second figure, 4.16,
shows a simulation where the array has been replaced with ferroelectric memory cells.

Figure 4.15: SNN simulation of the MNIST dataset, with the baseline weight storage imple-
mented in software. From top to bottom, output neurons 0 to 9 are plotted.

Figure 4.16: SNN simulation of the MNIST dataset, with the ferroelectric memory cells as
the weight solution. From top to bottom, output neurons 0 to 9 are plotted.

By taking the first simulation as the starting position, any degradation specifically
caused by the new weight storage implementation can be observed. In the original
simulation (figure 4.15), erratic spikes can be seen for digits 1, 2, 4, 5 and 7 (note that
0 is the first character). For digit 5, the respective output neuron doesn’t fire, for the
other digits, crossover spikes can be seen.
In the new simulation (figure 4.16, the errors that can be seen are similar. The most
striking difference is the delay of the spiking behavior. This happens because the
weight values have to be written to the memory first. The writing process causes
some erratic spiking behavior in the network, the result of which can be seen to the
right of the center of the figure. When looking at the output spikes itself, erratic
spikes at output neuron 0, 3, 7, 8 and 9 can be seen. Of these, the erratic spikes at
output neurons 7 and 8 are new. These spikes are the likeliest to be caused by the

47

ferroelectric memory since they do not appear in the original MNIST simulation. This
means that the ferroelectric memory does introduce some degradation, although in
the simulation it only manifests itself as spike noise. When the accuracy is measured
as simply the number of correctly interpreted MNIST characters, the result is the same.

An SNN using 49 inputs and 10 outputs was simulated with 5000 images from the
MNIST dataset. 10 simulations were executed, one for every digit. The output spikes
of the SNN for the dataset of digit 0 can be seen in figure 4.17. In this figure, the
top plot shows the output spikes for the software weights implementation, which is
the baseline. The bottom plot shows the output spikes for the FeFET based weight
implementation.

(a) Simulation of the SNN with the MNIST dataset with the baseline weight
storage implementation. 5000 images of digit ’0’ are used as input. From top to
bottom, the output neurons 0 to 9 can be seen.

(b) Simulation of the SNN with the MNIST dataset with FeFET memory cells
as the weight storage. 5000 images of digit ’0’ are used as input. From top to
bottom, the output neurons 0 to 9 can be seen.

Figure 4.17: Comparison of MNIST simulation for digit ’0’. The top plot shows the baseline
implementation the bottom plot shows the FeFET-based weight storage.

48

Figure 4.18: Plot showing the accuracy of the FeFET-based weight solution compared to the
baseline weight solution for 10 datasets of 5000 MNIST images of digits 0 to 9

At the end of each simulation, the accuracy was calculated. Based on the simulation
results, the accuracy of the SNN simulation can be calculated. The MNIST digits are
presented at the input in frames of 1 millisecond. To compute the accuracy, the spike
decoder function is activated every 1 millisecond. Since the SNN implementation in
SystemC generates a datapoint every 1 microsecond, the spike decoder samples the
previous 1000 samples of each output neuron. It sums up the samples and checks if
the accumulated samples exceed the threshold. If this is the case, the decoded output
frame is set high. The output frames of the spike decoder can then be counted for
every point in the dataset. The accuracy can then be calculated as the number of
correctly classified frames divided by the total number of frames in the dataset.
A summary of these results can be seen in figure 4.18. The blue bars represents
the baseline (software-based) implementation, while the orange bars represent the
FeFET-based weight implementation.

As can be seen in the figure, the FeFET-based implementation scores almost iden-
tical, with very small differences in accuracy compared to the baseline implementation.
The largest differences in accuracy can be seen for the less succesful digits, notably
digit ’1’, ’6’ and ’8’. It is interesting that the accuracy difference for these digits is the
largest, since the baseline accuracy score of these digits is already lower.
Any deterioration of accuracy for the large MNIST dataset can be explained by the

49

fact that the FeFET weight memory stores analog values as opposed to digital ones.
The weight that is used in the SNN is an approximation of the digital weight value
that was written to it. As the weight is applied to the synapse current, which in turn
is collected at the output neurons, the weight errors are propagated to the output.
However, this weight error is small enough to be neglectible when it comes to the
output of the SNN.
Another source of inaccuracies is the the simulation itself. The 49 inputs of this
simulation means that the input image is only 7 by 7 pixels. This is a quarter of the
28 x 28 pixels of the original dataset. In addition, no hidden layers were used in the
simulated SNN. Adding one or more hidden layers and using a better quality input
image could help to offset the inaccuracies introduced by the memristor memory.
However, using a larger input image doubles the number of input neurons for the half
MNIST dataset and quadruples it for the full MNIST dataset. Increasing the number
input neurons also increases the number of synapses and memristor cell, which will
increase the simulation time.

4.4.3 Overview of SNN accuracy results

In figure 4.19 and figure 4.20, an overview of the accuracy results for all weight storage
solutions can be seen. As expected, the baseline implementation sets the accuracy
’ceiling’ which the other implementations can only approach, but not exceed. From
the figure, it can be concluded that the baseline weights and the FeFET-based weights
score the best for all digits. As already stated, the TiO2 memristor-based weights
perform slightly worse in comparison to the baseline. The reason for the superior
accuracy of the FeFET implementation is most likely the lower average weight error,
which is about 0.025 for the TiO2 implementation and about 0.012 for the FeFET
implementation. The weight error for the FeFET implementation actually varies
slightly with the weight that is written, so in theory one could create a weight set that
will result in a higher weight error, but this is not likely.
In the case of figure 4.20 specifically, the difference in accuracy between the implemen-
tations is notably smaller, although the accuracy ranking is the same. Whereas for the
49x10 SNN size the accuracy difference was in the order of magnitude of 10%, for the
196x10 SNN size the order of magnitude is 1%. This can be explained by the additional
precision that the increased SNN size adds. Instead of using only a quarter of the
original size of the MNIST images (which is what the 49x10 SNN uses), the 196x10
SNN can use half of the original MNIST image size. The added SNN size reduces the
effect of errors on the output. From figure 4.20, it seems that all implementations
score very good with an accuracy of around 90%. For the SNN configurations with
a single hidden layer, the overall accuracy for all implementations increases slighty.
In addition, the difference in accuracy between the implementations is reduced as
well. The accuracy for the baseline implementation does not increase significantly
with the addition of a single hidden layer. For the implementation with two hidden
layers, things are a little different. As can be seen in the figure, the the accuracy of
the baseline implementation jumps about 7% when two hidden layers are used. In
addition, the accuracy of the TiO2 memristor increases, but not as significantly. The ac-

50

curacy of the FeFET implementation for two hidden layers is still missing in figure 4.20.

It is important to note that the 196x10 SNN size was only simulated for MNIST
digit ’0’, since no other data was available at the time of writing. Nevertheless, it
would be interesting to see this larger SNN will handle the other digits.
Finally, all the results seen so far were obtained under the assumptions made in
chapter 3. Therefore, the next logical step would be to see if and how the results
will change if any of the assumptions are changed. To be able to test this, several
models for temperature and process variations would have to be considered a range
of parameters. For this thesis, given the limited scope, this has not been done.
However, it can be observed from the design of the memory cells that they give
optimal results when the underlying memristor models are both (semi-)linear and
noiseless. As a result, any model that adds variability or takes away linearity will
influence the results. Based on this, it can be predicted that increasing the variability
or randomness in each instance of the memory cell will result in a new weight error
that is the sum of the constant weight error plus the weight error that results from
the added variability. It is hard to say if and how this new, more random weight
error would affect the accuracy of the SNN as a whole, since the added variability
may both increase and decrease the weight error for a certain memory cell. Adding
(more) non-linear behavior to the model will always result in an increased weight error.
This weight error would not be random, it would be the same for every instance of
the memory cell and would likely lead to a decrease in accuracy for the SNN as a whole.

51

Figure 4.19: Plot combining the accuracy data of all three weight storage solutions for an
SNN size of 49x10 and 5000 MNIST digits.

52

Figure 4.20: Plot combining the accuracy data of all three weight storage solutions for SNN
sizes of 196x10 and 196x50x10 for 5000 MNIST digits.

53

4.5 Overall Simulation metrics

Another important aspect of comparing the two solutions is the simulation runtime.
The degree of complexity of the designs translates into the number of parts that need
to be simulated. For both solutions, a physical model as well as a logic block needs
to be simulated. The logic layers are fairly efficient to simulate since they are only
actively simulated when one of their input signals is updated. On the other hand,
the physical model consists of a differential equation that needs to be updated every
time step. Naturally, this is the largest drag on the efficiency of the simulation. If we
make the timestep larger, the simulation will be faster since the model does not have
to be updated as often. The increased speed comes at the price of a longer simulation
runtime, however. If we double the timestep of the physical model, it will take twice
as long before the model reaches the desired value. In table 4.1, it can be observed
that a higher sampling rate can have a profound effect on the simulation runtime.
In practice, however, the ’true’ runtime of a simulation is difficult to measure, because
it is highly dependent on the simulation environment. Evidently, a difference in
computing power will result in a higher or lower simulation runtime. But even on the
same hardware, the runtime can vary based on the CPU load at a particular instance.
In table 4.1 the relative runtime of various simulations for the MNIST dataset can be
seen. On the horizontal axis, we have the type of simulation environment that was
used. On the vertical axis, a description is given of the particular simulation that was
done. The simulations are grouped in such a way so that their simulation time can be
compared.
From the runtimes in the table, a number of observations can be made. First, the
baseline configuration (without a weight storage implementation) simulates the fastest.
This is expected, since that configuration has fewer components to simulate. The
second fastest configuration is the TiO2 solution, followed by the FeFET configuration,
which is signficantly slower. This can be observed most clearly for the 5000 digits
simulation.
It is important to note that the simulation runtime of the configurations that include
a memristor-based weight solution cannot be exactly compared to the baseline SNN
configuration. Since the memristors start in a blank state at the beginning of every
simulation, the weights have to be written before the MNIST simulation starts. During
this time, only the memristor models are simulated. When the writing process is
finished, the MNIST simulation starts. The simulation of the writing process makes
the simulation more realistic, but naturally this adds to the total runtime of the
simulation. However, the effect of the writing process on the total runtime is less
significant for the 5000 digit MNIST simulation. Since that dataset is simulated for 10
seconds, or 10000 ms, the additional 100 ms needed for writing the weights is only 1%
of the total simulated time.

The simulations were carried out on a native Linux server with a AMD Ryzen
9 3950X 16-core CPU with 32 GB of usable memory. The results of the server
simulations can be seen in table 4.1 under ’Linux Server’.
The first column describes the type of simulation done. The first two numbers indicate

54

the size of the network that was simulated. For example, ’49x10’ means that the
network has 49 inputs and 10 outputs. ’MNIST’ stands for the dataset that was used.
Lastly, the number of digits that was simulated and the implementation used for the
weights is given. The second column indicates the sampling or refresh rate of the
memristor model. A refresh rate of ’1’ means that the model is updated at the same
rate as the rest of the network, which is once every microsecond. A refresh rate of
’1/2’ means that for every two times the rest of the network is updated, the memristor
model is only updated once. In the last column, the runtime of the simulation on the
server can be seen.

Runtime Measurement of SystemC Simulations

Type of Simulation Model Re-
fresh Rate

Linux Server

49x10 MNIST 10 digits N/A 00h:00m:02s

196x10 MNIST 10 digits N/A 00h:00m:06s

49x10 MNIST 5000 digits N/A 00h:14m:58s

49x10 MNIST 10 digits TiO2 1 00h:00m:21s

49x10 MNIST 10 digits TiO2 1/2 00h:00m:17s

49x10 MNIST 10 digits TiO2 1/4 00h:00m:13s

49x10 MNIST 10 digits TiO2 1/8 00h:00m:11s

196x10 MNIST 10 digits TiO2 1 00h:03m:52s

196x10 MNIST 10 digits TiO2 1/2 00h:03m:22s

196x10 MNIST 10 digits TiO2 1/4 00h:02m:03s

196x10 MNIST 10 digits TiO2 1/8 00h:01m:25s

49x10 MNIST 5000 digits TiO2 1/8 00h:29m:00s

49x10 MNIST 10 digits FeFET 1 00h:01m:07s

49x10 MNIST 10 digits FeFET 1/2 00h:00m:58s

196x10 MNIST 10 digits FeFET 1 00h:15m:11s

196x10 MNIST 10 digits FeFET 1/2 00h:12m:04s

49x10 MNIST 5000 digits FeFET 1/2 02h:12m:02s

Table 4.1: Table comparing the runtime of various TiO2 and FeFET weight memory simula-
tions. The first three rows of the table show the baseline SNN configurations that have been
simulated. Then, the different configurations for the TiO2 solution are shown. The last rows
show the results for the different configurations for the FeFET solution. Identical MNIST
datasets were simulated so that the runtimes can be compared.

In figure 4.21, the simulation runtime for different SNN sizes and weight storage
solutions can be seen. Note that the y-axis shows the simulation runtime on a
logarithmic scale, this makes it possible to compare all the runtimes in a single plot.
As a result of this, a linear increase in the plot indicates a logarithmic increase.
In this figure, similar datasets of 5000 images of digit 0 are compared. The simulated
time is 10 seconds. Since these factors are all the same, the runtime for different
SNN sizes can be conveniently compared. As is to be expected, the baseline weight
solution has the lowest simulation runtime, represented in blue in the figure. In the

55

Figure 4.21: Plot comparing the runtimes for various SNN sizes.

baseline software-based weight implementation, the weights are read from a text file
and written to memory at the beginning of the simulation. This means that each
weight is readily available when needed and there is no write or read process that is
simulated.
The second fastest SNN configuration is the one with the TiO2 memristor-based
weight solution. This implementation has several additional components compared to
the baseline implementation. For each stored weight, it updates a memristor model
to simulate the behavior of the memristor during the writing process. It also has
a block that simulates the circuitry between the SNN and the memristor. These
components have to be run in addition to the baseline SNN simulation and as a result,
the simulation runtime increases. Altough all additional components add simulation
runtime, the largest contributor to the runtime is the memristor model. This is
because the memristor model is updated synchronously, while the other components
only update if their inputs change. As an optimization, however, the refresh rate of the
memristor model has been set 8x lower than the rest of the SNN components. On the
one hand, this makes the writing process slower, since it will take 8 times more update
cycles before the resistance of the memristor has the right value. After the writing
process has completed, however, the simulation runtime per simulated timestep will
be lower.
The slowest SNN configuration is the one with the FeFET-based weight solution.
Similar to the TiO2-based solution, this implementation features a model and an

56

Figure 4.22: Plot showing the simulation runtime versus the number of simulated neurons
and synapses. The circles indicate the datapoints, the lines show how the various weight
storage solutions scale for larger network complexity. Note: the final FeFET datapoint is a
projection of the final runtime.

interface block. Additionally, this implementation has a pulse-generating block that is
used for writing the weight to the FeFET. Again, the block that simulates the FeFET
adds most of the simulation runtime. In addition, because the additional complexity
of the FeFET model, the simulation runtime is much higher than for the SNN using
TiO2-based weight solution. Despite the vastly increased simulation time, there is still
an argument to be made for using the FeFET-based solution, since the accuracy of the
FeFET solution is higher than for the TiO2-based solution. If additional optimizations
are done for the FeFET solution, this tradeoff between accuracy and runtime could be
further improved.
Lastly, in figure 4.22, the runtime versus the total number of simulated neurons and
synapses is plotted. In this plot, the scaling of the various implementations for larger
numbers of synapses and neurons can be compared. The baseline implementation, in
blue, scales fairly linear for larger network sizes. The TiO2 memristor implementation
scales more steeply and the FeFET implementation scales much more steeply. As
explained for the previous figure, this is to be expected since the complexity increases
with each implementation.

57

58

Conclusions 5
After long periods of stagnation, research into memristor-based and ferroelectric-based
memories has seen a surge in popularity. Recent advancements in semiconductor
physics and chemistry have reinvigorated the idea of a fast, low-power and non-volatile
memory. In particular non-traditional computing systems can benefit from these devel-
opments. When it comes to the realisation of practical low-power neuromorphic-based
systems, new memristor-based memory technologies can play an important role.
In this thesis, two different solutions have been proposed to solve the problem of
weight storage in neuromorphic circuits.
First, the concept of memristors in general has been explored. A model of a resistance-
based TiO2 memristor, based on the linear ion drift model with a non-linear Joglekar
window, has been implemented and simulated. Using this model, a model for an
analog memory cell that can store SNN weights has been created. The memory cell
has been integrated into a simple SNN simulation to test the application of the weights
to the synapse current. The memory cell has also been tested with a large SNN
implementation in SystemC that can run variants of the MNIST dataset.
The results of the first simulations show that an analog TiO2 memristor-based
memory can be used to store the weights of a neuromorphic circuit, although a small
degradation in spikes can be perceived if the results are compared to the baseline
implementation.
Second, a memory solution based on ferroelectric memory has been explored. Ferroelec-
tric memory has a number of advantages over the other emerging memory technologies,
in particular for neuromorphic applications. To show this, the Landau-Khalatnikov
model for a ferroelectric capacitor has been implemented and simulated in SystemC
AMS. Next, a memory cell based on ferroelectric memory has been proposed that uses
short voltage pulses for writing the weight values. Using these pulses, a ferroelectric
device can be treated as having discrete states, instead of a purely analog device.
This concept has been demonstrated in standalone SystemC simulations as well as
integrated simulations that integrate the ferroelectric memory into a simple SNN.
The simulation results for the single-neuron-single-synapse SNN show that ferroelectric
capacitors can be used as part of a memory cell for neuromorphic circuits. However, a
degradation in the number of spikes was perceived as well.
Finally, both solutions have been simulated with a full SNN and a large MNIST
dataset of 5000 images. Both the accuracy and runtime of the implementations have
been measured. From these simulations results, it can be seen that the solution based
on ferroelectric memory performs the best when it comes to accuracy.
However, when it comes to simulation runtime, the FeFET-based memory cell model
is far slower than the TiO2-based memory cell model. This can be explained by the
additional complexity of the FeFET model compared to the TiO2 memristor model.
Although overall, the results of this thesis are promising, it is important to note that

59

the used models are based on generalized data collected from third parties. In addition,
the model does not take into account the decay of the programmed value in the device
over time or the effects of process variability and temperature variations. Furthermore,
in the case of the ferroelectric model, the model used is not suited to simulate
very small devices with < 100 ferroelectric domains, which might show much more
discrete switching behavior. It is recommended that in a future iteration of this re-
search, experimental data is used to confirm the behavior that is shown in these models.

5.1 Future Work

The results of this thesis can be built upon in numerous ways. First, either memristor
model should be verified by a detailed experimental dataset. This ensures that the
models show realistic behavior.
Second, the memristor models should be extended to include process variability and
temperature variations as well as retention and material breakdown as a result of
reading and writing. This will likely increase the models’ complexity and add to the
simulation runtime.
Third, the observed decrease in accuracy for simulating the quarter and half MNIST
dataset should be confirmed by simulating the full size MNIST dataset.
From a practical perspective, optimizations should be investigated to reduce the
simulation runtime for both implementations. This will allow for quicker iterations of
the models in the future. In addition, a faster model will make it possible to simulate
larger SNN sizes.

60

Bibliography

[1] F. Argall. “Switching phenomena in titanium oxide thin films”. In: Solid-State Electron-
ics 11.5 (1968), pp. 535–541. issn: 0038-1101. doi: https://doi.org/10.1016/0038-
1101(68)90092-0. url: https://www.sciencedirect.com/science/article/pii/
0038110168900920.

[2] Ahmedullah Aziz et al. “Physics-Based Circuit-Compatible SPICE Model for Ferro-
electric Transistors”. In: IEEE Electron Device Letters 37.6 (2016), pp. 805–808. doi:
10.1109/LED.2016.2558149.

[3] Sven Beyer et al. “FeFET: A versatile CMOS compatible device with game-changing
potential”. In: 2020 IEEE International Memory Workshop (IMW). 2020, pp. 1–4. doi:
10.1109/IMW48823.2020.9108150.

[4] Zdenek Biolek, Dalibor Biolek, and Biolkova V. “SPICE Model of Memristor with Non-
linear Dopant Drift”. In: Radioengineering 18 (June 2009).

[5] C. Chen et al. “Bio-Inspired Neurons Based on Novel Leaky-FeFET with Ultra-Low
Hardware Cost and Advanced Functionality for All-Ferroelectric Neural Network”. In:
2019 Symposium on VLSI Technology. 2019, T136–T137. doi: 10.23919/VLSIT.2019.
8776495.

[6] C. Chen et al. “Bio-Inspired Neurons Based on Novel Leaky-FeFET with Ultra-Low
Hardware Cost and Advanced Functionality for All-Ferroelectric Neural Network”. In:
2019 Symposium on VLSI Technology. 2019, T136–T137. doi: 10.23919/VLSIT.2019.
8776495.

[7] Xiaoming Chen et al. “The Impact of Ferroelectric FETs on Digital and Analog Circuits
and Architectures”. In: IEEE Design Test 37.1 (2020), pp. 79–99. doi: 10.1109/MDAT.
2019.2944094.

[8] Yangyin Chen. “ReRAM: History, Status, and Future”. In: IEEE Transactions on Elec-
tron Devices 67.4 (2020), pp. 1420–1433. doi: 10.1109/TED.2019.2961505.

[9] L. Chua. “Memristor-The missing circuit element”. In: IEEE Transactions on Circuit
Theory 18.5 (1971), pp. 507–519. doi: 10.1109/TCT.1971.1083337.

[10] Leon Chua. “Resistance Switching Memories Are Memristors”. In: Applied Physics A
102 (Mar. 2011), pp. 765–783. doi: 10.1007/s00339-011-6264-9.

[11] Thomas Davenport et al. “How artificial intelligence will change the future of market-
ing”. In: Journal of the Academy of Marketing Science 48 (2020), pp. 24–42.

[12] Xuanyao Fong et al. “Spin-Transfer Torque Memories: Devices, Circuits, and Systems”.
In: Proceedings of the IEEE 104.7 (2016), pp. 1449–1488. doi: 10.1109/JPROC.2016.
2521712.

[13] Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Models: Single Neu-
rons, Populations, Plasticity. Cambridge University Press, 2002. doi: 10 . 1017 /

CBO9780511815706.
[14] Jun-Woo Jang et al. “ReRAM-based synaptic device for neuromorphic computing”. In:

2014 IEEE International Symposium on Circuits and Systems (ISCAS). 2014, pp. 1054–
1057. doi: 10.1109/ISCAS.2014.6865320.

[15] Yogesh N Joglekar and Stephen J Wolf. “The elusive memristor: properties of basic
electrical circuits”. In: European Journal of Physics 30.4 (May 2009), pp. 661–675.

61

https://doi.org/https://doi.org/10.1016/0038-1101(68)90092-0
https://doi.org/https://doi.org/10.1016/0038-1101(68)90092-0
https://www.sciencedirect.com/science/article/pii/0038110168900920
https://www.sciencedirect.com/science/article/pii/0038110168900920
https://doi.org/10.1109/LED.2016.2558149
https://doi.org/10.1109/IMW48823.2020.9108150
https://doi.org/10.23919/VLSIT.2019.8776495
https://doi.org/10.23919/VLSIT.2019.8776495
https://doi.org/10.23919/VLSIT.2019.8776495
https://doi.org/10.23919/VLSIT.2019.8776495
https://doi.org/10.1109/MDAT.2019.2944094
https://doi.org/10.1109/MDAT.2019.2944094
https://doi.org/10.1109/TED.2019.2961505
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1007/s00339-011-6264-9
https://doi.org/10.1109/JPROC.2016.2521712
https://doi.org/10.1109/JPROC.2016.2521712
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1109/ISCAS.2014.6865320

doi: 10.1088/0143- 0807/30/4/001. url: https://doi.org/10.1088/0143-
0807/30/4/001.

[16] M. Julliere. “Tunneling between ferromagnetic films”. In: Physics Letters A 54.3 (1975),
pp. 225–226. issn: 0375-9601. doi: https://doi.org/10.1016/0375- 9601(75)
90174 - 7. url: https : / / www . sciencedirect . com / science / article / pii /

0375960175901747.
[17] Ho-Gi Kim. “Research overview and application trend in ferroelectric thin films”. In:

Proceedings of 5th International Conference on Properties and Applications of Dielectric
Materials. Vol. 2. 1997, 990–994 vol.2. doi: 10.1109/ICPADM.1997.616611.

[18] Jinsun Kim et al. “An Experimental Proof that Resistance-Switching Memory Cells are
not Memristors”. In: Advanced Electronic Materials 6 (June 2020), p. 2000010. doi:
10.1002/aelm.202000010.

[19] Min-Kyu Kim et al. “Emerging Materials for Neuromorphic Devices and Systems”. In:
iScience 23.12 (2020), p. 101846. issn: 2589-0042. doi: https://doi.org/10.1016/j.
isci.2020.101846. url: https://www.sciencedirect.com/science/article/pii/
S2589004220310439.

[20] Shahar Kvatinsky et al. “Models of memristors for SPICE simulations”. In: 2012 IEEE
27th Convention of Electrical and Electronics Engineers in Israel. 2012, pp. 1–5. doi:
10.1109/EEEI.2012.6377081.

[21] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Pro-
ceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[22] Haoyan Liu and Takashi Ohsawa. “User- Friendly Compact Model of Magnetic Tunnel
Junctions for Circuit Simulation Based on Switching Probability”. In: 2019 Interna-
tional Symposium on VLSI Design, Automation and Test (VLSI-DAT). 2019, pp. 1–4.
doi: 10.1109/VLSI-DAT.2019.8741646.

[23] Shih-Chii Liu et al. Event-based neuromorphic systems. Dec. 2014, pp. 1–413. isbn:
978-0-470-01849-1. doi: 10.1002/9781118927601.

[24] Paolo Livi and Giacomo Indiveri. “A current-mode conductance-based silicon neuron
for address-event neuromorphic systems”. In: 2009 IEEE International Symposium on
Circuits and Systems. 2009, pp. 2898–2901. doi: 10.1109/ISCAS.2009.5118408.

[25] C. Mead. “Neuromorphic electronic systems”. In: Proceedings of the IEEE 78.10 (1990),
pp. 1629–1636. doi: 10.1109/5.58356.

[26] Kibong Moon et al. “ReRAM-based analog synapse and IMT neuron device for neuro-
morphic system”. In: 2016 International Symposium on VLSI Technology, Systems and
Application (VLSI-TSA). 2016, pp. 1–2. doi: 10.1109/VLSI-TSA.2016.7480499.

[27] H. Mulaosmanovic et al. “Novel ferroelectric FET based synapse for neuromorphic
systems”. In: 2017 Symposium on VLSI Technology. 2017, T176–T177. doi: 10.23919/
VLSIT.2017.7998165.

[28] Christopher Münch and Mehdi B. Tahoori. “Defect Characterization of Spintronic-based
Neuromorphic Circuits”. In: 2020 IEEE 26th International Symposium on On-Line
Testing and Robust System Design (IOLTS). 2020, pp. 1–4. doi: 10.1109/IOLTS50870.
2020.9159722.

[29] Kai Ni, Sourav Dutta, and Suman Datta. “Ferroelectrics: From Memory to Computing”.
In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). 2020,
pp. 401–406. doi: 10.1109/ASP-DAC47756.2020.9045150.

62

https://doi.org/10.1088/0143-0807/30/4/001
https://doi.org/10.1088/0143-0807/30/4/001
https://doi.org/10.1088/0143-0807/30/4/001
https://doi.org/https://doi.org/10.1016/0375-9601(75)90174-7
https://doi.org/https://doi.org/10.1016/0375-9601(75)90174-7
https://www.sciencedirect.com/science/article/pii/0375960175901747
https://www.sciencedirect.com/science/article/pii/0375960175901747
https://doi.org/10.1109/ICPADM.1997.616611
https://doi.org/10.1002/aelm.202000010
https://doi.org/https://doi.org/10.1016/j.isci.2020.101846
https://doi.org/https://doi.org/10.1016/j.isci.2020.101846
https://www.sciencedirect.com/science/article/pii/S2589004220310439
https://www.sciencedirect.com/science/article/pii/S2589004220310439
https://doi.org/10.1109/EEEI.2012.6377081
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/VLSI-DAT.2019.8741646
https://doi.org/10.1002/9781118927601
https://doi.org/10.1109/ISCAS.2009.5118408
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/VLSI-TSA.2016.7480499
https://doi.org/10.23919/VLSIT.2017.7998165
https://doi.org/10.23919/VLSIT.2017.7998165
https://doi.org/10.1109/IOLTS50870.2020.9159722
https://doi.org/10.1109/IOLTS50870.2020.9159722
https://doi.org/10.1109/ASP-DAC47756.2020.9045150

[30] Kai Ni et al. “A Circuit Compatible Accurate Compact Model for Ferroelectric-FETs”.
In: 2018 IEEE Symposium on VLSI Technology. 2018, pp. 131–132. doi: 10.1109/
VLSIT.2018.8510622.

[31] Y. Nishitani, Y. Kaneko, and M. Ueda. “Artificial synapses using ferroelectric memris-
tors embedded with CMOS Circuit for image recognition”. In: 72nd Device Research
Conference. 2014, pp. 297–298. doi: 10.1109/DRC.2014.6872414.

[32] Seungyeol Oh et al. “HfZrOx-Based Ferroelectric Synapse Device With 32 Levels of
Conductance States for Neuromorphic Applications”. In: IEEE Electron Device Letters
38.6 (2017), pp. 732–735. doi: 10.1109/LED.2017.2698083.

[33] C. Paz de Araujo et al. “The future of ferroelectric memories”. In: 2000 IEEE
International Solid-State Circuits Conference. Digest of Technical Papers (Cat.
No.00CH37056). 2000, pp. 268–269. doi: 10.1109/ISSCC.2000.839779.

[34] M. Pešić et al. “Physical and circuit modeling of HfO2 based ferroelectric memories
and devices”. In: 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified
Conference (S3S). 2017, pp. 1–4. doi: 10.1109/S3S.2017.8308732.

[35] Milan Pešić et al. “A computational study of hafnia-based ferroelectric memories: from
ab initio via physical modeling to circuit models of ferroelectric device”. In: Journal of
Computational Electronics 16.4 (Dec. 2017), pp. 1236–1256. issn: 1569-8025, 1572-8137.
doi: 10.1007/s10825-017-1053-0. url: http://link.springer.com/10.1007/
s10825-017-1053-0 (visited on 11/30/2021).

[36] Themistoklis Prodromakis et al. “A Versatile Memristor Model With Nonlinear Dopant
Kinetics”. In: IEEE Transactions on Electron Devices 58.9 (2011), pp. 3099–3105. doi:
10.1109/TED.2011.2158004.

[37] Mukesh Reddy Rudra and Ron J. Pieper. “Memristor Drift Model based on conservation
of mobile vacancies”. In: 45th Southeastern Symposium on System Theory. 2013, pp. 12–
16. doi: 10.1109/SSST.2013.6524959.

[38] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 2003,
pp. 17–18.

[39] Myungsoo Seo et al. “First Demonstration of a Logic-Process Compatible Junction-
less Ferroelectric FinFET Synapse for Neuromorphic Applications”. In: IEEE Electron
Device Letters 39.9 (2018), pp. 1445–1448. doi: 10.1109/LED.2018.2852698.

[40] Tuo Shi et al. “A Review of Resistive Switching Devices: Performance Improvement,
Characterization, and Applications”. In: Small Structures 2.4 (), p. 2000109. doi:
https://doi.org/10.1002/sstr.202000109. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/sstr.202000109. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/sstr.202000109.

[41] Tanha Talaviya et al. “Implementation of artificial intelligence in agriculture for opti-
misation of irrigation and application of pesticides and herbicides”. In: Artificial Intel-
ligence in Agriculture 4 (2020), pp. 58–73.

[42] Elena Ioana Vatajelu and Lorena Anghel. “Fully-connected single-layer STT-MTJ-based
spiking neural network under process variability”. In: 2017 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH). 2017, pp. 21–26. doi: 10.1109/
NANOARCH.2017.8053727.

[43] Elena Ioana Vatajelu and Lorena Anghel. “Reliability analysis of MTJ-based functional
module for neuromorphic computing”. In: 2017 IEEE 23rd International Symposium on
On-Line Testing and Robust System Design (IOLTS). 2017, pp. 126–131. doi: 10.1109/
IOLTS.2017.8046207.

63

https://doi.org/10.1109/VLSIT.2018.8510622
https://doi.org/10.1109/VLSIT.2018.8510622
https://doi.org/10.1109/DRC.2014.6872414
https://doi.org/10.1109/LED.2017.2698083
https://doi.org/10.1109/ISSCC.2000.839779
https://doi.org/10.1109/S3S.2017.8308732
https://doi.org/10.1007/s10825-017-1053-0
http://link.springer.com/10.1007/s10825-017-1053-0
http://link.springer.com/10.1007/s10825-017-1053-0
https://doi.org/10.1109/TED.2011.2158004
https://doi.org/10.1109/SSST.2013.6524959
https://doi.org/10.1109/LED.2018.2852698
https://doi.org/https://doi.org/10.1002/sstr.202000109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sstr.202000109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sstr.202000109
https://onlinelibrary.wiley.com/doi/abs/10.1002/sstr.202000109
https://onlinelibrary.wiley.com/doi/abs/10.1002/sstr.202000109
https://doi.org/10.1109/NANOARCH.2017.8053727
https://doi.org/10.1109/NANOARCH.2017.8053727
https://doi.org/10.1109/IOLTS.2017.8046207
https://doi.org/10.1109/IOLTS.2017.8046207

[44] Adrien F. Vincent et al. “Spin-Transfer Torque Magnetic Memory as a Stochastic Mem-
ristive Synapse for Neuromorphic Systems”. In: IEEE Transactions on Biomedical Cir-
cuits and Systems 9.2 (2015), pp. 166–174. doi: 10.1109/TBCAS.2015.2414423.

[45] Ioannis Vourkas and Georgios Ch. Sirakoulis. “Emerging Memristor-Based Logic Circuit
Design Approaches: A Review”. In: IEEE Circuits and Systems Magazine 16.3 (2016),
pp. 15–30. doi: 10.1109/MCAS.2016.2583673.

[46] Zhongqiang Wang et al. “A 2-transistor/1-resistor artificial synapse capable of com-
munication and stochastic learning in neuromorphic systems”. In: Frontiers in Neuro-
science 8 (2015). issn: 1662-453X. doi: 10.3389/fnins.2014.00438. url: https:
//www.frontiersin.org/article/10.3389/fnins.2014.00438.

[47] Rainer Waser, ed. Nanoelectronics and information technology: advanced electronic ma-
terials and novel devices. Weinheim: Wiley-VCH, 2003. isbn: 9783527403639.

[48] R. Stanley Williams. “How We Found The Missing Memristor”. In: IEEE Spectrum
45.12 (2008), pp. 28–35. doi: 10.1109/MSPEC.2008.4687366.

[49] Y. Xiang et al. “Compact Modeling of Multidomain Ferroelectric FETs: Charge Trap-
ping, Channel Percolation, and Nucleation-Growth Domain Dynamics”. In: IEEE
Transactions on Electron Devices 68.4 (2021), pp. 2107–2115. doi: 10.1109/TED.
2021.3049761.

[50] Deming Zhang et al. “Stochastic spintronic device based synapses and spiking neu-
rons for neuromorphic computation”. In: 2016 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH). 2016, pp. 173–178. doi: 10.1145/2950067.
2950105.

[51] Yue Zhang et al. “Compact Modeling of Perpendicular-Anisotropy CoFeB/MgO Mag-
netic Tunnel Junctions”. In: IEEE Transactions on Electron Devices 59.3 (2012),
pp. 819–826. doi: 10.1109/TED.2011.2178416.

64

https://doi.org/10.1109/TBCAS.2015.2414423
https://doi.org/10.1109/MCAS.2016.2583673
https://doi.org/10.3389/fnins.2014.00438
https://www.frontiersin.org/article/10.3389/fnins.2014.00438
https://www.frontiersin.org/article/10.3389/fnins.2014.00438
https://doi.org/10.1109/MSPEC.2008.4687366
https://doi.org/10.1109/TED.2021.3049761
https://doi.org/10.1109/TED.2021.3049761
https://doi.org/10.1145/2950067.2950105
https://doi.org/10.1145/2950067.2950105
https://doi.org/10.1109/TED.2011.2178416

	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Approach
	Thesis Contributions
	Outline

	Artificial Neural Networks
	Overview
	Implementation
	Models
	Integrate-and-Fire Model
	Leaky Integrate-and-Fire Model

	Simulation
	Analyzing the output of the SNN simulation

	Memristors
	Introduction
	State of the art
	Resistive switching devices
	Polarization switching devices

	Modeling
	Modeling of a TiO2 memristor
	Modeling of the FeFET

	Simulation Results
	Simulation of the TiO2 memristor
	Memristor Model Simulation Results
	Simulation of the FeFET

	Implementation of Weight Memory
	Introduction
	Related Work
	Design of a memory cell
	Using a HP TiO2 memristor
	Using a FeFET memristor
	Weight Error

	Simulation Results
	TiO2 Cell
	FeFET Cell
	Overview of SNN accuracy results

	Overall Simulation metrics

	Conclusions
	Future Work

