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A B S T R A C T

History matching can play a key role in improving geological characterization and reducing the uncertainty of
reservoir model predictions. Application of reservoir history matching is restricted by the huge computational
cost by amongst others the many runs of the full model. Surrogate models with a reduced complexity are
therefore used to reduce the computational demands. This paper presents an efficient surrogate-assisted
deterministic inversion framework to primarily explore the possibility of applying deep neural network (DNN)
surrogate to approximate the gradient of large-scale history matching by using auto-differentiation (AD). In
combination with the deep neural network model, the AD enables us to evaluate the gradients efficiently in a
parallel manner. Furthermore, the benefits of using stochastic gradient optimizers in the deep learning practice,
instead of full gradient optimizers in conventional deterministic inversions, is investigated as well. Numerical
experiments are conducted on a 3D benchmark reservoir model in the context of a water-flooding production
scenario. The quantity of interest, e.g., dynamic saturation for an ensemble of test models, can be accurately
predicted. The proposed surrogate-assisted inversion with stochastic gradient optimizer obtains a very quick
convergence rate against the model and data noise for the high-dimensional history matching problem with a
large number of data and parameters. In addition, we also conduct several comparisons and evaluations with
our previously proposed projection-based subdomain POD-TPWL approach in terms of computational efficiency
and accuracy. The subdomain POD-TPWL constructs a local surrogate model, which is repeatedly reconstructed
a number of times for maintaining a satisfactory accuracy, while DNN constructs a global surrogate model
based on the entire training data and generally does not require additional reconstructions. The subdomain
POD-TPWL is very sensitive to how the domain is decomposed, increasing the training samples does not
infinitely improve the history matching results by a fixed decomposition. Overall, these two kinds of surrogate
models have demonstrated great potential in solving large-scale history matching problem. The DNN surrogate
is particularly useful to generate multiple posteriors for model uncertainty quantification.
. Introduction

We address the problem of computationally efficient estimation
f spatially varying parameters in large-scale simulation models in
etroleum engineering which is known as history matching (Aanonsen
t al., 2009). Measured data are typically obtained at wells, which
re normally sparsely distributed over large areas, leaving the gen-
rally heterogeneous reservoir rock in-between the wells unsampled.
lternative ways of gathering information are based on geophysical

echniques, such as time-lapse (4D) seismic data, which registers the

∗ Corresponding author at: Key Laboratory of Petroleum Engineering, Ministry of Education, China University of Petroleum, Beijing, 102249, China.
E-mail address: xclmjtud@yahoo.com (C. Xiao).

arrival time and amplitude of acoustic waves that are reflected at
contrasts in acoustic impedance, which in turn is affected by the density
and mechanical properties of the rock and fluids. The availability of
such geophysical information is often less frequent in time and of low
spatial resolution, but much denser compared to the well measure
points. In contrast to sparse well data, seismic data generally provides
sufficient spatial-information about the dynamic changes in the oil
reservoirs (Mannseth and Fossum, 2018).
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Incorporating 4D seismic data into the history matching workflow,
hereinafter referred to as seismic history matching (hereinafter referred
to as SHM), has been investigated for several decades. The optimization
algorithms for addressing SHM problem in the field of petroleum
engineering have been investigated for several decades, among them,
the gradient-based deterministic inversion is one of commonly used
approaches nowadays. We generally define a nonlinear objective func-
tion as the sum of squares of the difference between the recorded
data and simulated predictions through running a reservoir model.
Gradient-based optimization, using the adjoint model, is used to min-
imize the objective function through iteratively adjusting the model
parameters (Courant and Hilbert, 1962). The high dimensionality of
grid-based seismic measurements and strong non-linearity, however,
pose strong challenges, e.g., expensive model simulations and algorithm
convergence. Although many efforts have been taken to make the
implementation of the adjoint model feasible (Courtier et al., 1994),
a fast evaluation of the objective function and its gradient information
still remains a big computational challenge. In some cases it may not
be feasible to perform the history matching within an acceptable short
time frame, because it requires numerous simulations, e.g., simula-
tions of multiple models for the gradient approximation. The surrogate
modeling has recently gained more and more popularity in case many
forward simulations must be performed, like in history matching prob-
lems. The main focus of this paper is on investigating surrogate-assisted
optimization strategy for large-scale history matching, e.g., grid-based
seismic data.

Surrogate modeling aims at providing a faster emulation with a sim-
plified relation between the inputs and outputs of a complex model. It
has the potential of accelerating the gradient-based optimization prob-
lems. Existing surrogate modeling approaches can be roughly classi-
fied into three categories: hierarchical-based, projection-based reduced-
order model (ROM) and data-driven surrogate models. Reviews of
surrogate modeling can be found in Asher et al. (2015). In hierarchical-
based methods the surrogate is created by simplifying the representa-
tion of the physical system, such as by ignoring certain processes, or
reducing the numerical resolution or the complexity, e.g., upscaling
and grid coarsening (Zhang et al., 2008; Salazar et al., 2007), or
the complexity, e.g., nonlinearity. Reduced-order modeling approaches
have been always increasing popularity as one of the most effective
means to reduce the computational effort of model-based workflows
through reduction of the number of dimensions of the model. The main
idea behind projection-based ROM is to construct a (linear) low-order
surrogate model by projecting the dynamics of the system onto the
subspace of dominant variability of the model dynamics. Most ROM
strategies employ proper orthogonal decomposition (POD) (Vermeulen
and Heemink, 2006; Altaf et al., 2009) of time series of model state
‘snapshots’ to identify an orthogonal set of basis functions of the
subspace (Kaleta et al., 2011; Xiao et al., 2018). Such model-order
reduction strategies have been applied with success in speeding up
model simulations in computational fluid mechanics (Xiao et al., 2014,
2016) and subsurface flow simulations (Markovinović and Jansen,
2006; Cardoso et al., 2009).

The aforementioned ROM accurately represents the high-fidelity
forward model in the reduced subspaces spanned by the projection
basis which contains the hidden physics. By contrast, data-driven ap-
proaches purely depend on data (simulated or real data) to approximate
the relation between input and output as accurately as possible, such
as polynomial chaos expansion (Dai et al., 2016) and fully-connected
artificial neural networks (Ahmadi, 2015). These data-driven surrogate
models have demonstrated their feasible applicability to some degree,
however their use is restricted only to relatively small-dimensional
problems and therefore suffers from the curse of dimensionality and fail
to work for large-scale problems. The deep neural network (DNN) has
recently attracted attention because of successful applications in several
fields, including computer vision (Heo et al., 2018) and image process-
2

ing (Young et al., 2018). Recent advances in DNN and their promising
application results have prompted research on deep-learning-based
surrogate modeling for high-dimensional nonlinear systems (Mo et al.,
2018, 2019). The popularity of these methods is further enhanced by
the availability of open access machine learning frameworks, such as
TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019).

The projection-based ROM surrogate has been applied previously,
so the focus of the paper is to explore the possibility of DNN to
approximate the gradients for significantly increasing the efficiency
of the SHM problems, and to compare and evaluate with our pre-
viously proposed projection-based POD-TPWL approach (Xiao et al.,
2019a,b). The application of projection-based ROM to gradient-based
optimization problem has been extensively investigated. Cardoso et al.
were the first to integrate POD with trajectory-piecewise-linearization
(TPWL), i.e., referred to as POD-TPWL, for addressing oil production
optimization (Cardoso and Durlofsky, 2010). Subsequently, He et al.
(2014) also applied POD-TPWL to reservoir history matching problems.
The standard POD-TPWL enforces us to access to the source code,
which definitely hinders its applicability to more generic situations
where the source code is not available, especially for the commercial
simulators. To fill this gap, Vermeulen and Heemink (2006), Altaf
et al. (2009) and Kaleta et al. (2011) proposed a code non-intrusive
reduced-order linear model to approximate the high-dimensional non-
linear system. The adjoint of this reduced-order linear model can be
easily constructed for minimizing the objective function efficiently.
This method uses any simulator as black box without intruding the
simulation code, however, the derivatives for the model linearization
are approximated through a standard finite difference method, which
involves perturbing the parameters one by one and is therefore compu-
tationally less attractive for large scale problems with many uncertain
parameters. Xiao et al. have recently proposed a subdomain projection-
based ROM, hereinafter referred to as subdomain POD-TPWL, through
using domain decomposition and radial-basis function interpolation
method (Xiao et al., 2019a,b). The domain decomposition strategy
individually handles model dynamics for each spatial subdomains with
much smaller dimension, while the radial-basis function interpolation
method replaces the original model with a set of non-intrusive interpo-
lation functions. Subdomain POD-TPWL has demonstrated to be very
promising in speeding up gradient-based reservoir history matching.

The DNN models are generally trained by iteratively adjusting the
trainable variables that parameterize the neural network model, during
which the general auto-differentiation (or back-propagation in training
neural networks) is used to calculate the gradient of the loss function
with respect to neural network parameters, e.g., weights and biases.
There is a clear similarity in the way how DNN and SHM iteratively
update parameters, e.g., geological parameters in SHM. In this sense,
the training of DNN is not that far from the gradient-based SHM. Due
to the availability of auto-differentiation (AD) and high-performance
computing units, the evaluation of gradients for DNN is much more
efficient than that of conventional SHM procedure. An interesting
question remains how to take full use of the computational advantage
of DNN to address the SHM problem in a short time frame.

The preliminary results presented in our previous work have shown
great potential of applying DNN to efficiently assist gradient-based
reservoir history matching (Xiao et al., 2020). The contribution of
this paper to the large-scale reservoir history matching is investigating
two kinds of surrogate models and verifying their applicability to
speedup gradient-based SHM problems. Specifically, the first objective
of this work is to explore the possibility of using the DNN surrogate
to approximate the gradient for reservoir history matching, which has
not been fully investigated yet. Addressing gradient-based SHM with
the use of a DNN surrogate has the advantage of facilitating the use
of deep learning packages. It might benefit from powerful concepts
such as AD in the deep learning packages for obtaining gradients in
a very efficient manner. Since both DNN surrogate and our previously
proposed subdomain POD-TPWL are intentionally used for the gradient-
based history matching, a comparative study between them is identified

as the second research objective in this paper.
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The remainder of this paper is as follows: The gradient-based reser-
voir history matching framework is defined in Section 2. Section 3
describes the deep-learning surrogate model, in which a residual U-Net
and an explicit concatenation of time feature are integrated to capture
both spatial and temporal features. The gradient approximation for SGD
is described as well. Section 4 assesses the surrogate-assisted gradient-
based inversion framework on a 3D benchmark reservoir model. A com-
parative study between the DNN surrogate model and our previously
proposed projection-based subdomain POD-TPWL is also presented.
Finally, Section 5 summarizes our contribution and discusses future
work.

2. Definition of gradient-based reservoir history matching

History matching real time-lapse seismic data requires the capa-
bility to compute seismic data from a given reservoir model. The
entire workflow generally requires running two consecutive forward
models: the fluid flow simulation model and the rock–physics model,
e.g., Gassmann model (Gassmann, 1951). The former predicts the reser-
voir state variables (pressure and saturation), and then the latter sim-
ulate the seismic response from the reservoir state variables. In this
study, the main data used on the history matching procedure is a
saturation map observed in different times, which mimic the data
obtained from interpretation of the real 4D seismic survey.

To simplify the notation without loss of generality, we give an
explicit formula for a single fluid flow simulation step as follows,

𝐱𝑛 = 𝐟𝑛(𝐱𝑛−1,𝐦), 𝑛 = 1,… , 𝑁𝑡 (1)

here, 𝐦 ∈ 𝑅𝑁𝐦 denotes the vector of spatial parameters for reservoir
odel. 𝑁𝐦 is the total number of gridblocks. 𝑛 denotes the simulation

tep. 𝐱𝑛∈𝑅2𝑁𝑚 represents the state vectors (e.g., including pressure
nd oil/water saturation in all gridblocks). The seismic data is directly
elated to fluid saturation and pressure changes and provides informa-
ion on the dynamic behavior of the reservoirs. For simplification, we
irectly measure fluid saturation in each grid-block without running
he rock–physics model for generating the real elastic properties. That
s to say, 𝐱𝑛 directly represents the simulated data.

We are concerned with parameter estimation in heterogeneous oil
eservoir models. Uncertain parameters can be estimated by mini-
izing an objective function, which can be formulated within the
ayesian framework (Evensen, 2009). The solution will represent the
osterior probability density function (PDF) of model parameters 𝐦
onditioned to measurements 𝐝𝑜𝑏𝑠 with an assumption that the prior
DF of parameters 𝐦 is Gaussian with a mean 𝐦𝑏 and covariance matrix

𝐑𝑚.
Gradient descent algorithms, or more specifically a full-gradient de-

scent (FGD), are generally used to minimize the objective function in an
iterative manner. The general gradient-based history matching can be
defined as a least squares optimization formula. The objective function,
denoted as 𝐽 here, is defined using full dataset with high-fidelity model
(HFM) as follows.

𝐽 (𝐱1,… , 𝐱𝑁𝑡 ,𝐦) = 1
2
(𝐦 −𝐦𝑏)𝑇𝐑−1

𝑚 (𝐦 −𝐦𝑏)

+ 1
2

𝑁𝑡
∑

𝑛=1
(𝐝𝑛𝑜𝑏𝑠 − 𝐱𝑛)𝑇 [𝐑𝑛

𝑜𝑏𝑠]
−1(𝐝𝑛𝑜𝑏𝑠 − 𝐱𝑛) (2)

here, the measurement errors for the data gathered at the timestep
are generally assumed to satisfy a Gaussian distribution 𝑁(𝟎,𝐑𝑛

𝑜𝑏𝑠),
here 𝐑𝑛

𝑜𝑏𝑠 represents the measurement error covariance matrix.
After defining the objective functions, the key step of a gradient-

ased minimization algorithm is to determine the gradient of the
bjective function with respect to the parameters. In this paper, both
rojection-based ROM and DNN surrogate are used to approximate the
radients in an efficient manner.
3

. Surrogate modeling using deep neural network

This section introduces the procedures of using a data-driven DNN
o approximate the relation between geological parameters and sat-
ration. The neural network architecture, model training procedure
nd gradient approximation for the stochastic gradient descent are
escribed. More details about the neural network architecture, training
ata preparation and procedure of model training can be found in the
rovided supplementary material.

.1. Neural network architecture

Eq. (1) describes the dependence of the state variables and param-
ters at two consecutive time steps, e.g., 𝐱𝑛, 𝐱𝑛−1 and 𝐦. The main task
f our proposed neural network model is to construct a simple mapping
irectly from permeability field 𝐦 to saturation field 𝐱𝑛 at the specific

time step 𝑛. The relationship between simulated saturation and spatial
parameter fields can be described by a nonlinear operator. To simplify
the notation without loss of generality, one such generic operator 𝐡𝑛
can be simply described as follows,

𝐱𝑛 = 𝐡𝑛(𝐦), 𝑛 = 1,… , 𝑁𝑡 (3)

and a deep-learning based surrogate model representing the time-
dependent process can be presented as follows:

�̂�𝑛 = �̂�𝑛(𝐦, 𝑡𝑛), 𝑛 = 1,… , 𝑁𝑡 (4)

where, �̂�𝑛 ∈ 𝑅𝑁𝑥×𝑁𝑦×𝑁𝑧 is the neural network prediction (an 3D image)
for the input 𝐦 ∈ 𝑅𝑁𝑥×𝑁𝑦×𝑁𝑧 at the time 𝐭𝑛. 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 represent
the image size. 𝜽 denotes all the network trainable parameters. In this
model, the current output �̂�𝑛 depends only on the time-independent
input permeability field 𝐦 and time 𝐭𝑛.

Recent applications of deep neural network to subsurface flow
simulations have been extensively reported. For example, Jin et al.
proposed a data-driven DNN surrogate model with autoregressive struc-
ture for approximating the time-varying process in reservoir simulation
problem (Jin et al., 2019). Tang et al. (2019) developed a deep
convolutional recurrent neural network architectures, specifically a
combination of auto-encoder and a convolutional long short term mem-
ory recurrent network (convLSTM) (Xingjian et al., 2015). Although au-
toregressive structure excels at temporal regression tasks, they will def-
initely encounter a time-dependent error accumulation problem. The
recurrent neural network might become computationally demanding
for the long time-serial models (Zhou and Tartakovsky, 2020), although
the time-dependent error accumulation problem hardly occurs.

To address the aforementioned drawbacks, we use a new deep
convolutional neural network, namely time-conditioning residual U-
Net (cR-U-Net), based on an integration of auto-encoder structure
and the well-known residual U-Net architecture, which was originally
proposed for bio-medical image segmentation (Ronneberger et al.,
2015). The residual U-Net architecture has demonstrated to be very
effective for the cross-domain regression problem (Zhong et al., 2019),
such as the mapping from the spatial parameter fields to simulated
saturation field studied in the paper. To learn the temporal features of
dynamic models, a time-conditioning feature, as an additional channel,
is concatenated to the low-dimensional representation features after
the encoder part (Mo et al., 2018). The time feature is represented as
a map of the same dimension as the low-dimensional representation
features. Each element of the time feature map is equal to a specific
time value. This is different from the above two approaches that
use either autoregressive or recurrent structures to capture the time-
serial dynamics and hence is capable of effectively mitigating the error
accumulation and computation issue for the long time-serial models.
In addition, embedding the time feature into the network architecture
enables to predict the model states at the times which are not used in
training the network model. This strategy increases the generality and

interpolation ability of the cR-U-Net surrogate model.
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Fig. 1. Schematic illustration of the cR-U-Net architecture for a 2D input image following the literature (Tang et al., 2019). The cR-U-Net is composed of encoding unit, transition
unit and decoding unit. The multi-scale features extracted in the encoding unit are concatenated with the upsampling features in the decoding unit to produce the final output.
The transition unit concatenates and forwards the extracted multi-scale features and time feature, and then feeds them to the decoding unit. The gray shape in the transition unit
represents the time feature map.
Fig. 2. Schematic illustration of transition unit. A stack of five residual blocks is used to propagate the output of the encoding unit. In addition, the time feature as an additional
channel is fed to this unit as well to capture the flow dynamic.
The configuration of cR-U-Net is guided by the literature (Tang
et al., 2019) where a similar R-U-Net architecture is designed. This
cR-U-Net architecture contains two symmetric units, an encoding path
and a decoding path, to capture the spatial features of the input and the
output images. In addition, we also design a transition unit, including a
stack of residual blocks, for connecting the encoding and the decoding
unit. Fig. 1 illustrates a schematic diagram of the proposed cR-U-Net
which synoptically displays the arrangement of encoding, transition
and decoding unit. In this network, each convolutional block consists
of three serial operations (𝐶𝑜𝑛𝑣3𝐷 − 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 − 𝑅𝑒𝐿𝑈), includ-
ing a 3D convolutional layer (𝐶𝑜𝑛𝑣3𝐷), a batch normalization layer
(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚) and a rectified linear activation unit (𝑅𝑒𝐿𝑈). The sym-
metric encoding and decoding units are to downsample and upsample
the feature maps using the 3D convolutional (𝐶𝑜𝑛𝑣3𝐷) and transposed
3D convolutional (𝑇𝐶𝑜𝑛𝑣3𝐷) operation, respectively. As illustrated in
Fig. 3(a), this transition unit is composed of five residual-blocks, which
intentionally construct connections between non-adjacent layers aimed
at propagating the features produced from the previous layers to more
deeper layers (Huang et al., 2016). The illustration of a residual block
can be found in Fig. 2(b). The residual blocks, specifically residual
convolutional (𝑟𝑒𝑠𝐶𝑜𝑛𝑣) blocks, also can help cope with the gradient
vanishing/explosion problem especially for very deep networks (He
et al., 2016). More details about the architecture of the encoding,
decoding and transition units can be found in the Supplementary
material.

After configuring the neural network architecture, we employ the
popular stochastic-gradient optimizer, i.e., 𝐴𝑑𝑎𝑚, to optimize the neu-
ral network parameters 𝜽 (Kingma and Ba, 2014). Details about the
4

iterative scheme of 𝐴𝑑𝑎𝑚 optimizer will be given in the next section.
Once the neural network is trained, the predictions corresponding to
new inputs are straightforward. Given an arbitrary input, repeated
implementation of Eq. (4) are used to evolve this time-varying states
for all 𝑁𝑡 timesteps. Specifically, the saturation �̂�𝑛 at the 𝑛th timestep
is sequentially predicted by providing the permeability input 𝐦 and the
time 𝑡𝑛. The computational cost for the new predictions almost can be
neglected as compared to additional high-fidelity model simulations.

3.2. Gradient approximation using auto-differentiation (AD)

The use of DNN surrogate model in SHM enables the entire SHM
procedure completely implemented using the deep learning packages.
It can benefit from the deep learning practice of using minibatches
of data with the stochastic-gradient descent (SGD) optimizers instead
of the more conventional approach of applying an optimizer such
as the FGD, e.g., as defined in Eq. (2). The robustness and faster
convergence of SGD optimizers have been extensively demonstrated in
the deep-learning community (Goodfellow et al., 2016). In this work,
we explore the potential of applying SGD to improve large-scale history
matching performance. The attractive benefits of using SGD stem from
its efficiency for problems with a large number of data and parameters
and its effectiveness for problems with noisy gradients.

Compared to FGD during which we have to run through all data
points at 𝑁𝑡 measured time steps for a single update of the parameters
in a particular iteration, SGD enables us to use the data points at only
one measured time step (e.g., 𝑛 ∈ [1, 𝑁𝑡]) or a subset 𝐛𝐳 of [1, 𝑁𝑡]
(e.g., a collection of several random selections of indices from [1, 𝑁 ]) to
𝑡
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update the parameters. If the size of dataset is huge, e.g., the spatially
dense seismic data frequently collected at some time steps, it may take
too long for FGD to minimize the objective function because we need
use the full dataset for updating the parameters in each iteration. In
contrast, SGD uses only one or a subset of data and it starts update the
parameters rapidly.

This paper introduces the stochastic gradient as an approximation of
the full gradient that can be used to speed up calculations and algorithm
convergence. After training the cR-U-Net surrogate model, the approx-
imated stochastic objective function, denoted as 𝐽𝑁 , can be defined
using a subset 𝐛𝐳 with trained neural network model correspondingly

𝐽𝑁 = 1
2
(𝐦 −𝐦𝑏)𝑇𝐑𝑚

−1(𝐦 −𝐦𝑏)

+ 1
2
∑

𝑛∈𝐛𝐳
[𝐝𝑛𝑜𝑏𝑠 − �̂�𝑛(𝐦, 𝑡𝑛)]𝑇 [𝐑𝑛

𝑜𝑏𝑠]
−1[𝐝𝑛𝑜𝑏𝑠 − �̂�𝑛(𝐦, 𝑡𝑛)] (5)

and its corresponding stochastic gradient with respect to the parameters
𝐦 using the sensitivity or Jacobian matrix

𝐠𝑁,1 = 𝐑𝑚
−1(𝐦 −𝐦𝑏) −

∑

𝑛∈𝐛𝐳
[ 𝜕�̂�

𝑛

𝜕𝐦
]𝑇 [𝐑𝑛

𝑜𝑏𝑠]
−1[𝐝𝑛𝑜𝑏𝑠 − �̂�𝑛(𝐦, 𝑡𝑛)] (6)

The computation of objective function gradient can be realized
based on two methods. (1) The first method uses the model sensitivities
𝜕�̂�𝑛
𝜕𝐦 , to compute the gradient 𝐠𝑁,1, e.g., Eq. (6). Each element of this

atrix is the derivative of the surrogate model outputs, �̂�𝑛(𝐦), with
espect to the parameters 𝐦. e.g., grid-based geological permeability in
his paper. (2) The second method directly calculates the gradient of
he objective function, 𝐽𝑁 with respect to 𝐦, denoted to be 𝐠𝑁 . Deep-
earning packages provide sufficient built-in modules to efficiently
ompute the function with a least-square formula, e.g., Eq. (5), and
ts gradient using AD. That is, the second method does not explic-
tly involve the computation of sensitivities. In general, 𝐠𝑁 is often
heaper to calculate than that of model sensitivities 𝜕�̂�𝑛

𝜕𝐦 in terms of the
computational complexity.

Once the SHM algorithm is implemented in the deep learning
packages, some sophisticated evaluations, e.g., objective function eval-
uation (Eq. (5)) and gradient approximation (Eq. (6)) involving high-
dimensional matrix–matrix/vector multiplications, can be quickly com-
puted. For example, they can be executed on multi-CPUs and GPUs,
and run in parallel across a distributed memory computer cluster. All
these features form the main motivation for investigating the use of
DNN surrogate model for the SHM problem.

3.3. Stochastic gradient descent optimization

To minimize surrogate objective function 𝐽𝑁 , a standard stochas-
tic gradient descent (SGD) algorithm updates the parameters at 𝑘th
optimization step

𝐦𝑘+1 ← 𝐦𝑘 − 𝜀𝑘𝐠𝑘𝑁 (7)

The aforementioned 𝐴𝑑𝑎𝑚 optimization algorithm has recently seen
broader applications in the community of deep learning. 𝐴𝑑𝑎𝑚 lever-
ages past gradient information to retard the descent along large gradi-
ents. This information is stored in the momentum vector 𝐮 and squared
element-wise gradient vector 𝐯 as

𝐮𝑘 = 𝑏𝑢𝐮𝑘−1 + (1 − 𝑏𝑢)𝐠𝑘𝑁 ; 𝐮𝑘 = 𝐮𝑘
1 − 𝐮𝑘

𝐯𝑘 = 𝑏𝑣𝐯𝑘−1 + (1 − 𝑏𝑣)[𝐠𝑘𝑁 ]2; 𝐯𝑘 = 𝐯𝑘
1 − 𝐯𝑘

(8)

where, 𝐮𝑘 and 𝐯𝑘 are the unbiased momentum and squared gradient
vectors, respectively. The gradient descent step proceeds as follows

𝐦𝑘+1 = 𝐦𝑘 − 𝜁𝑘 𝐮𝑘
√

𝐯𝑘 + 𝜖
(9)

The above update is performed element-wise and 𝜖 is a small number
(e.g. 10−8) to avoid any division by zero in the implementation. Here
5

we use commonly recommended default parameters values of 𝜀𝑘 =
0.001, 𝑏𝑢 = 0.9, 𝑏𝑣 = 0.999 and 𝜖 = 10−8 in this paper.

For the implementation of the SHM procedure with the deep neural
etwork surrogate, we have used the open source deep learning pack-
ge PyTorch to build a hybrid CPU/GPU computing framework, where
he training data are generated using the open-source simulator OPM-
𝑙𝑜𝑤 (Rasmussen et al., 2019) running on CPUs while both surrogate
odel training and seismic history matching are implemented on GPUs.
ll these features prompt the application of our proposed methodology

o practical cases.

. Experiments and discussion

.1. Description of model settings

In the numerical experiment, a 3D benchmark model used in the
AIGUP project (Matthews et al., 2008) is used to test our proposed
urrogate-assisted history matching approach. The model consists of
0 layers containing a total of 78720 active grid cells. The reservoir
odel describes a water-flooding system with nine producers and nine

njectors, which are labeled from 𝑃1 to 𝑃9, and 𝐼1 to 𝐼9, see Fig. 3.
Details about reservoir geometry, rock properties, fluid properties, and
well controls are shown in Table 1.

In this case-study, the logarithmic permeability field is heteroge-
neous and assumed to be log-Gaussian random fields. We generate
Gaussian-distributed realizations of logarithmic permeability using the
Stanford Geostatistical Modeling Software (SGeMS) (Anon., 1995). One
of the realizations is chosen to be the reference model as illustrated
in Fig. 3. Separate random Gaussian distributions are used to model
the top nine layers (zone 1) and the bottom 10 layers (zone 2), which
are separated from each other by layer 10. Fig. 3(b) also shows the
logarithmic permeability fields of the 1st, 10th and 11th horizontal
layer. In this 3D model, the vertical permeability of the 10th layer
is much smaller than that of other layers. This layer has ultra-low
permeability, and therefore acts as a barrier to vertical flow.

Another strategy to decrease the number of model simulations is
the reduction of parameter dimensionality, such as principle compo-
nent analysis (PCA) (Chen et al., 2014), discrete cosine transforma-
tion (DCT) (Jafarpour and McLaughlin, 2008) and discrete wavelet
transformation (DWT) (Chen and Oliver, 2012). In addition, several
approaches, e.g., Pluri-PCA (Chen et al., 2015), optimization-based PCA
(O-PCA) procedure (Vo and Durlofsky, 2015, 2016) and convolutional
neural network based PCA (CNN-PCA) (Liu et al., 2018), were proposed
to adapt the standard PCA to address non-Gaussian models. For the
Gaussian model defined in this study, the conventional PCA reduction
of the parameter space using a 95% energy cutoff criterion results
in N𝑝𝑐𝑎 = 303 (e.g., 155 and 148 patterns for zone 1 and zone 2,
respectively.) global PCA patterns. These are used to fully represent
the original logarithmic permeability fields, and then generate the
training and testing samples. Both samples are generated from the same
distribution.

In order to quantify the history matching results, we define an error
measure based on parameter misfits 𝑒𝐦 as follows,

𝑒𝐦 =

√

√

√

√

∑𝑁𝑚
𝑖=1(𝐦

𝑖
𝑡𝑟𝑢𝑒 −𝐦𝑖

𝑢𝑝𝑡)2

𝑁𝑚
(10)

where, 𝐦𝑖
𝑡𝑟𝑢𝑒 and 𝐦𝑖

𝑢𝑝𝑡 denote the logarithmic permeability value of the
gridblock 𝑖 from the reference model and updated model, respectively.

Oliver discussed the expected range of the optimal objective func-
tion (Oliver et al., 2008). Since we employ an approximate surrogate
model, we apply a less strict criterion (Liu et al., 2019). The objective
function 𝐽 corresponding to the satisfactory history matching result
should satisfy the inequality as follows

𝐽 ⩽ 3𝑁 (11)
𝑜𝑏𝑠
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Fig. 3. Illustrations of the spatial logarithmic permeability for the 1st, 10th and 11th horizontal layer. The upper nine layers and lower ten layers are isolated by a vertically
ultra-low or almost impermeable layer, i.e, the 10th layer. The triangles and circles denote the injectors and producers, respectively.
Table 1
Reservoir settings using OPM for 3D benchmark SAIGUP model and the hyper
parameter settings for training cR-U-Net model.

Reservoir model settings

Dimension 40 × 120 × 20
Number of wells 9 producers, 9 injectors
Constant porosity 0.2
Fluid density 1014 kg/m3, 859 kg/m3

Fluid viscosity 0.4 mP⋅s, 2 mP⋅s
Bottom-hole pressure for producers 15 MPa
Bottom-hole pressure for injectors 30 MPa
Historical production time 5400 days

Hyper parameter settings

Number of realizations for training (𝑁𝑠) 100, 300, 500, 800, 1000
Number of training samples (𝑁𝑠 ×𝑁𝑡) 1000, 3000, 5000, 8000, 10000
Number of realizations for testing (𝑁𝑡𝑒𝑠𝑡) 200
Learning rate 0.001
Optimizer 𝐴𝑑𝑎𝑚
Batch size 10
Number of epochs 100

where, 𝑁𝑜𝑏𝑠 is the total number of measurements. We use the history
matched permeability field, run the HFM and use the output saturation
to calculate the objective function 𝐽 . This criterion or tolerance can be
used to quantify the accuracy of history matching results.

To evaluate the quality of the parameter estimation results, we will
compare the value of the final objective function with both the criterion
(Eq. (11)) and the reference objective function values calculated from
the true model. Reconstructed parameter maps will provide a visual
indication of quality of the solution. For all approaches we will list
the computational cost expressed in terms of the number of HFM
simulations.
6

4.2. Configuration of cR-U-Net architecture

The details about the cR-U-Net architecture are described in Table 2.
The input is a three-dimensional image of logarithmic permeability 𝐦.
In our proposed workflow, since we use a PCA parameterization to
generate the geological permeability fields, which are vectors, we need
to reshape the geological permeability fields into three-dimensional
images with the size of 𝑁𝑥 = 40, 𝑁𝑦 = 120 and 𝑁𝑧 = 20 before feeding
them into the cR-U-Net.

As illustrated in Fig. 4, the encoding part extracts a set of feature
maps 𝐅𝑘(𝐦) (𝑘 = 1, 2, 3, 4) from four consecutive convolutional blocks.
The final output of the encoding part consists of 128 compressed feature
maps with size 2 × 7 × 1, which are then concatenated with an
additional time feature map of the same size 2 × 7 × 1. The time should
be normalized to the range [0, 1] to improve the training performance.
There are in total 𝑁𝑡 = 10 timesteps for this case-study, and the
normalized times are therefore [0.1, 0.2, 0.3,… , 0.9, 1.0]. For one specific
timestep, all elements of the 2 × 7 × 1 time feature map are filled by the
normalized time, e.g., 0.1 corresponding to the 1st timestep. These 129
feature maps are fed into the transition unit for producing 128 feature
maps with constant size 2 × 7 × 1. Finally, these 128 feature maps are
provided to the decoding unit for the output, e.g., saturation, with size
of 40 × 120 × 20.

Five different number of realizations for training, i.e., 𝑁𝑠 = 100,
300, 500, 800, and 1000 samples, and totally different 𝑁𝑡𝑒𝑠𝑡 = 200 test-
ing sample are used to assess the performance of cR-U-Net. The model
is run for 5400 days, and training data are collected at 𝑁𝑡 = 10 intervals
of 540 days each. After reorganizing the dataset, there are in total 1000,
3000, 5000, 8000 and 10000 training samples correspondingly.

Some results related to the selection of hyperparameters, e.g., learn-
ing rate and batch size, are shown in Fig. 5. When minimizing the loss
function, the learning rate determines the updating step of parameters.
In order to choose a reasonable learning rate, we investigate a wide
range of learning rates from 0.001 to 0.00001. Fig. 5(a) shows the
evolution of losses over the training and testing samples. In this case
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Table 2
Illustration of cR-U-Net architecture. The size of a 3D image is 𝑁𝑥 = 40, 𝑁𝑦 = 120 and 𝑁𝑧 = 20 in this
case-study.

Unit Layer Output size

Encoder unit

Input (geological permeability images) (40, 120, 20, 1)
𝐶𝑜𝑛𝑣3𝐷-𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚-𝑅𝑒𝐿𝑈 , 16 kernels of size (3, 3, 3, 2) (20, 60, 10, 16)
𝐶𝑜𝑛𝑣3𝐷-𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚-𝑅𝑒𝐿𝑈 , 32 kernels of size (3, 3, 3, 16) (20, 60, 10, 32)
𝐶𝑜𝑛𝑣3𝐷-𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚-𝑅𝑒𝐿𝑈 , 64 kernels of size (3, 3, 3, 32) (10, 30, 5, 64)
𝐶𝑜𝑛𝑣3𝐷-𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚-𝑅𝑒𝐿𝑈 , 128 kernels of size (3, 3, 3, 64) (10, 30, 5, 128)

Transition unit

Input (outputs of encoder unit + an additional time feature) (10, 30, 5, 129)
𝑟𝑒𝑠𝐶𝑜𝑛𝑣, 128 kernels (10, 30, 5, 128)
𝑟𝑒𝑠𝐶𝑜𝑛𝑣, 128 kernels (10, 30, 5, 128)
𝑟𝑒𝑠𝐶𝑜𝑛𝑣, 128 kernels (10, 30, 5, 128)
𝑟𝑒𝑠𝐶𝑜𝑛𝑣, 128 kernels (10, 30, 5, 128)
𝑟𝑒𝑠𝐶𝑜𝑛𝑣, 128 kernels (10, 30, 5, 128)

Decoder unit

Input (outputs of transition unit) (10, 30, 5, 128)
𝑇𝐶𝑜𝑛𝑣3𝐷-𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚-𝑅𝑒𝐿𝑈 , 128 kernels of size (3, 3, 3, 128), (10, 30, 5, 128)
𝑇𝐶𝑜𝑛𝑣3𝐷-𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚-𝑅𝑒𝐿𝑈 , 64 kernels of size (3, 3, 3, 128), (20, 60, 10, 64)
𝑇𝐶𝑜𝑛𝑣3𝐷-𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚-𝑅𝑒𝐿𝑈 , 32 kernels of size (3, 3, 3, 64), (20, 60, 10, 32)
𝑇𝐶𝑜𝑛𝑣3𝐷-𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚-𝑅𝑒𝐿𝑈 , 16 kernels of size (3, 3, 3, 32), (40, 120, 20, 16)
𝐶𝑜𝑛𝑣3𝐷, 1 kernels of size (3, 3, 3, 16), stride 1 (40, 120, 20, 1)
Fig. 4. Schematic illustration of the cR-U-Net architecture using the 3D SAIGUP geological models as inputs.
tudy, using a smaller learning rate will result in a slower convergence.
ere we choose 0.001 as the best learning rate for this problem.
he batch size determines the number of training examples used in
omputing a gradient in each iteration step. Fig. 5(b) displays the
volution of losses with respect to the batch sizes of 5, 10, and 20,
espectively. It can be clearly seen that the batch size hardly affects the
raining performance. As a result, we have chosen 10 as the batch size
7

to avoid possible memory issue. The other hyperparameters settings for
training the cR-U-Net model are listed in Table 2.

4.3. Assessment of surrogate model quality

It is useful to analyze the relative error of predicted grid-based
saturation between HFM and the cR-U-Net surrogate model. The field-
average relative error in saturation over all 𝑁 time intervals, denoted
𝑡
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Fig. 5. Evolution of loss functions with respect to the number of epochs. (a) learning rate (lr) selection; (b) batch size (bs) selection. These models are trained with 100 training
samples.
as 𝛾𝑛𝑠 , for all 𝑁𝑡𝑒𝑠𝑡 samples, is given by

𝛾𝑠 =
1

𝑁𝑡𝑒𝑠𝑡𝑁𝐦𝑁𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=1

𝑁𝑡
∑

𝑛=1

𝑁𝐦
∑

𝑗=1

‖�̂�𝑖,𝑛,𝑗 − 𝐱𝑖,𝑛,𝑗‖
𝐱𝑖,𝑛,𝑗

(12)

where, �̂�𝑖,𝑛,𝑗 and 𝐱𝑖,𝑛,𝑗 separately denote the saturation predicted from
HFM and surrogate models for the testing sample 𝑖, in gridblock 𝑗 at
the timestep 𝑛.

In order to analyze the overfitting issue during the training of the
DNN model, we show the evolution of loss functions with respect to
the epochs, see Fig. 6. It can be observed that the overfitting problem
hardly occurs even when using only 100 training samples. The accuracy
of the DNN surrogate model improves with the number of training
samples.

The performance of the cR-U-Net model can be investigated by
comparing the predefined metrics, e.g., 𝛾𝑠, relative to the number of
training samples 𝑁𝑠 for the quantities of interest, i.e., saturation values.
Fig. 7 shows the 𝛾𝑠 value obtained on the training ensemble of 𝑁𝑡𝑒𝑠𝑡
= 200 realizations for the predicted saturation. The 𝛾𝑠 metrics will
gradually increase as the time propagation, which reflects the degraded
quality of network models. It has been demonstrated that training cR-U-
Net model using 𝑁𝑠 = 1000 samples significantly improve the network
quality through achieving relatively low 𝛾𝑠 values. Through observing
the evaluated relative errors in saturation maps over the 200 random
test samples, we find the overall field-average relative errors 𝛾𝑠 are
2.83% and 5.37% for 1000 and 100 training samples, respectively. The
small 𝛾𝑠 values significantly indicate a high degree of accuracy in the
saturation maps predicted from the cR-U-Net model.

In addition, the plots of the time-varying saturation predictions
from the two approaches are used to visually assess the accuracy of
the trained network. Fig. 8 shows the predicted saturation distribution
at two time-instances, i.e., day 2700 and day 5400, corresponding
to the cR-U-Net models trained using 𝑁𝑠 = 100 and 1000 samples,
respectively. It clearly can be seen that the cR-U-Net surrogate model is
capable of predicting the water saturation profile with a high accuracy.
In addition, the corresponding relative saturation error 𝛾𝑠 at these two
time instances are 3.92% and 2.87%, respectively. Thus, the results
in Fig. 8 can be considered to be representative in terms of surrogate
model accuracy.

In terms of computational effort, the runtime for a single HFM
simulation for this case is about 250 s on a machine with i5-4690 Intel
CPUs (4 cores, 3.5 GHz) and 24 GB memory. The cR-U-Net is trained
using an NVIDIA Tesla P100 GPU card. The simulation of a trained
8

Fig. 6. Evolution of loss functions with respect to the number of epochs. (a) for
different sizes of training set; (b) Loss function values on test set.

neural network requires about 0.1 s. However, the training stage of this
network is computationally intensive, which includes the generation
of training samples and additional overhead. It would be not useful
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Fig. 7. Comparison of the field-average relative error in saturation at all 𝑁𝑡 = 10
timesteps over the full 𝑁𝑡𝑒𝑠𝑡 = 200 test samples. The cR-U-Net surrogate models are
trained using 𝑁𝑠 = 100, 300, 500, 800, and 1000 samples, respectively.

Fig. 8. Illustration of time-varying phase saturation predicted with cR-U-Net and HFM,
and the absolute errors between the two models at day 2700 and day 5400. The
cR-U-Net models are trained using 𝑁𝑠 = 1000 and 100 training samples, respectively.

to construct the cR-U-Net surrogate model unless it is to be used in
the situation where numerous simulations are required. Because many
simulations are required in large-scale history matching applications,
the cR-U-Net surrogate models is applicable in this context. Although
the training time can vary by case, it is just a small fraction of the
time required with conventional history matching where numerous
HFM simulations must be performed. The use of surrogate model in
conjunction with the gradient-based history matching is presented in
the following section.

4.4. History matching results using the cR-U-Net surrogate

The data used (saturation measured on all active grids at different
times) mimics observations obtained from interpretation of a 4D seis-
mic survey. The saturation values are simulated from the ‘true’ model
simulation for every 540 days, mimicking the collection of a large
amount of data, i.e., a total of 787200 measurements, from ten time
instances. Normal distributed independent measurement noise with a
standard deviation equal to 5% of the ‘true’ data value was added to
all measurements. We will demonstrate the feasible applicability of our
proposed DNN-assisted history matching approach to assimilate a large
number of measurements.

4.4.1. Study of the base-case
After training the cR-U-Net surrogate model, the gradients of the

objective function with respect to the logarithmic permeability are
computed analytically using AD, and then the 𝐴𝑑𝑎𝑚 optimizer is im-
plemented to update the geological parameters efficiently. Batch size
9

Fig. 9. The evolution of surrogate objective functions 𝐽𝑁 as a function of iterations.
The cR-U-Net surrogates are trained using 𝑁𝑠 = 100, 300, 500, 800 and 1000 training
samples, respectively. The tolerance (defined by Eq. (11)) and the reference objective
function values (reflecting the impact of the data noise) are shown in red dash and
solid lines, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

of one (i.e. we randomly select data from one measured timestep) is
used in this base-case study. In addition to the default parameters for
the 𝐴𝑑𝑎𝑚 optimizer, the learning rate 𝜀 is set to be 0.05. We do not
fix the maximum number of iterations since the cost of running the
cR-U-Net models is almost negligible. The minimization algorithm is
considered to have sufficiently converged when either the criterion for
minimum change of objective function or the logarithmic permeability
at two consecutive iterations is satisfied. These two stopping criteria
are set to be 0.0001 and 0.001, respectively.

Table 3 and Fig. 9 display the history matching results, including the
final objective functions, parameter misfits 𝑒𝐦 and the required number
of HFM simulations. The cR-U-Net models are trained using 𝑁𝑠 = 100,
300, 500, 800 and 1000 samples, respectively. The surrogate objective
functions 𝐽𝑁 are iteratively minimized as shown in Fig. 9. Since the cR-
U-Net cannot exactly represent the original HFM using a finite training
set, we also calculate the high-fidelity objective functions 𝐽 using the
original HFM. It can be seen that the values of 𝐽 are slightly larger than
that of 𝐽𝑁 due to the fact that the cR-U-Net surrogate model introduces
additional approximation errors. In order to verify the history matching
results, we also display the tolerance (defined by Eq. (11)) and the
reference objective function values, which are indicated by the red dash
and solid lines in Fig. 9, respectively. It can be observed that the final
objective functions are very close to the reference value. After assimi-
lating a large amount of measurements, the parameter misfits 𝑒𝐦 have
been significantly decreased, e.g., from 1.1141 to 0.4123 corresponding
for the case with 𝑁𝑠 = 1000 training samples. The accuracy of history
matching results gradually improves with increasing number of training
samples as indicated by the reductions of 𝑒𝐦 values.

Fig. 10 shows the 2D horizontal cross sections of the updated
logarithmic permeability fields for the 1st and 11th vertical layer,
which can be used to assess the accuracy of the history matching
results. The reference model is almost reconstructed by assimilating
a large number of measurements. Surprisingly, the cR-U-Net model
trained with only 𝑁𝑠 = 100 samples is already capable of achieving
a posterior realization which is visually close to the reference model.
These results demonstrate the effectiveness of the proposed cR-U-Net
surrogate model for addressing the history matching problems, since
it can provide a useful direction to update the uncertain parameters
correctly.

To further illustrate the accuracy of the updated reservoir mod-
els, the predictions of saturation at both two specific time instances
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Fig. 10. 2D horizontal cross sections of the updated logarithmic permeability under different sample sizes 𝑁𝑠 = 100, 300, 500, 800 and 1000 from the cR-U-Net. The 1st and
11th vertical layer are shown.
Table 3
Summary of the history matching results using cR-U-Net surrogate model trained with
different numbers of samples. These are the results for SGD with batch size one. The
tolerance (Eq. (11)) and the reference objective function values for the true model are
also listed.
𝑁𝑠 𝑒m 𝐽𝑁 × 106 𝐽 × 106 Number of HFM simulations

100 0.7130 0.9262 1.0224 100
300 0.6075 0.8425 0.8754 300
500 0.5087 0.8376 0.8577 500
800 0.4368 0.7083 0.7235 800
1000 0.4123 0.6720 0.7011 1000

Reference 0.4027
Tolerance 2.362

(e.g., day 2700 and day 5400) before and after history matching are
depicted in Fig. 11. Compared to the initial models, the saturation
predictions of the updated models are visually close to the predictions
of the true model. The correlation coefficients 𝑅2 have been increased
from the initial 70% to the final 98%.

The scalability and generalization of the whole workflow has been
demonstrated by estimating a totally different reference model. Fig. 12
shows the 2D horizontal cross sections of the updated logarithmic
permeability fields, which further confirms the effectiveness of the pro-
posed workflow for addressing large-scale history matching problem.

4.4.2. Effect of the initial models
The gradient-based optimization methods inevitably get stuck in

local minima for any non-convex optimization problems, such as the
history matching in this study. Fortunately, without running additional
HFM simulations at the history matching stage, the proposed cR-U-Net
surrogate model enables us to efficiently generate multiple posterior
solutions through starting from different initial models. Fig. 13 depicts
10
Fig. 11. Predictions of water saturation before and after history matching and their
absolute errors at 2700 days and 5400 days of production. The cR-U-Net models are
trained using 𝑁𝑠 = 100 and 1000 training samples, respectively.

the parameter misfits 𝑒𝐦 after the history matching corresponding

to three different initial models. The differences among these three
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Fig. 12. 2D horizontal cross sections of the updated logarithmic permeability for a totally different reference model. The 1st and 11th vertical layers are shown here.
parameter misfits 𝑒𝐦 indicate that several local minimas have been
found for different initial models. It can be further visually revealed in
Fig. 14 that the updated logarithmic permeability fields corresponding
to these three initial models are significantly different.

During the history matching process, overfitting occurs when a
model perfectly matches the data but makes poor predictions. In this
section, both parameter misfits and predictions of well response are
used to diagnose this issue. Fig. 15 displays a boxplot of the parameter
misfits 𝑒𝐦 of logarithmic permeability corresponding to 100 different
initial models. Comparing with the initial models, the parameter misfits
are gradually reduced as the number of training samples increases. We
also compare in Fig. 16 the predictions of the well water injection rate
and well water-cut at all nine injectors and nine producers before and
after history matching. Clearly, it can be observed that the spread of
these predictions is significantly reduced toward the predictions of the
reference model. All these results reveal that overfitting almost does
not occur during the history matching process.

In this study, the total number of HFM simulations is taken as
an indicator of the computational cost, since the GPU time for run-
ning cR-U-Net is negligible compared to that for running HFM model.
In order to assess the model uncertainty, we can generate multiple
posterior models through repeatedly implementing the gradient-based
optimization. We only need to run HFM simulations in the training
stage and SHM process does not involve additional HFM simulations.
Our proposed surrogate-assisted history matching method is highly
efficient since the training of the cR-U-Net requires only a small number
of HFM simulations. For example, the cR-U-Net model trained with
only 𝑁𝑠 = 100 samples is already capable of achieving good history
matching results.

4.4.3. FGD versus SGD optimizers
Since our proposed cR-U-Net model is not an exact representation

of the high-fidelity model, incorporating the cR-U-Net into the SHM
procedure inevitably introduces an additional source of uncertainty due
to the approximation errors. In this section, the 𝐴𝑑𝑎𝑚 optimizer is
used to demonstrate the effectiveness of SGD optimization in reducing
the approximation errors. The entire dataset measured at 10 time
11
Fig. 13. Illustration of the parameter misfits 𝑒𝐦 with respective to the number of
training samples 𝑁𝑠 corresponding to three random initial models.

instances is divided using five different batch size, e.g., 1, 2, 3, 4 and 5,
respectively. Taking the batch size 2 as an example, two random time
index are selected from the 10 time steps, and then the corresponding
data at these two time instances are used to update the parameters in
one iteration. That is to say, the entire data will be fully used to update
the parameters in 5 iterations.

Fig. 17 shows the evolution of the surrogate objective function 𝐽𝑁
with respect to the iterations and batch size for the 𝐴𝑑𝑎𝑚 optimizer.
It clearly can be seen that using a smaller batch size can achieve a
faster convergence rate. For example, about 35 and 118 iterations are
required for a batch size 1 and 5, respectively. By contrast, the FGD
optimizer requires much more iterations, e.g., after 220 iterations it
still has a larger objective function value.

Fig. 18 displays an ensemble of parameter misfits 𝑒𝐦 corresponding
to different batch sizes and the FGD optimize. It is noticeable that the
SGD optimization achieves larger reductions of the parameter misfits
than that of the FGD optimization. SGD is more effective to address
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Fig. 14. 2D horizontal cross sections of the updated logarithmic permeability corresponding to three random initial models. The cR-U-Net models are trained using 𝑁𝑠 = 100 and
1000 samples, respectively.
Fig. 15. Boxplot of the parameter misfits 𝑒𝐦 of logarithmic permeability for a different
reference model corresponding to 100 different initial models.

surrogate-assisted history matching with approximation errors. As a
hyper parameter for the 𝐴𝑑𝑎𝑚 optimizer, we should chose the batch
size with much care. The evolution of the parameter misfits 𝑒𝐦 corre-
sponding to three initial models are highlighted as well in Fig. 23. It can
be concluded that the optimal batch size depends on the initial model
and the quality of the cR-U-Net model. For example, for the cR-U-Net
trained with 𝑁𝑠 = 1000 samples, batch size 3, 2 and 5 generate the best
history matching results for these three initial models, respectively.

Fig. 19 depicts the updated logarithmic permeability fields corre-
sponding to one random initial model using SGD and FGD optimization.
The SGD optimization obtains similar parameter fields corresponding
to different batch sizes, which are very consistent with the reference
12
model, while the FGD optimizer generates a different parameter field.
SGD has proven highly successful in the process of training DNN. There
is a clear similarity in the way how DNN and SHM iteratively update
parameters, e.g., geological parameters in the history matching. The
stochastic optimization methods might easily move away from saddle
points, while the FGD methods tend to get stuck in them. That is to say,
our adopted stochastic optimization method might be more possible
to escape from local minima. By contrast, the approximated gradients
by FGD are inevitably fraught with approximation errors of cR-U-Net
surrogate model.

4.5. cR-U-Net versus Subdomain POD-TPWL surrogate

Since both the DNN surrogate and our previously proposed
projection-based reduced-order modeling, e.g., subdomain POD-TPWL,
are intended for the gradient-based history matching, a comparative
study between them is conducted in this section. More details about
the derivation of subdomain POD-TPWL and model-reduced adjoint
approach for gradient approximation can be found in the provided
supplementary material. The saturation data are measured correspond-
ing to the saturation values from the ‘true’ model simulation after
2700 days and 5400 days of production, which results in total 157440
measurements. The noisy measurements for these two time instances
are shown in Fig. 20.

4.5.1. Construction of the subdomain POD-TPWL
Our proposed subdomain POD-TPWL is previously tested on syn-

thetic or simplified version of 2D models (Xiao et al., 2019a,b), and
an extension of subdomain POD-TPWL to 3D cases is straightforward.
It can be observed from Fig. 20 that the water-flooded area in the
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Fig. 16. Forecast of the well water injection rate and well water-cut of all nine injectors and nine producers. Dark-gray lines: initial models, blue lines: the reference model, red
lines: updated models using the cR-U-Net trained with 𝑁𝑠 = 1000 samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 17. Evolution of surrogate objective function 𝐽𝑁 as a function of the number
iterations and batch size. The cR-U-Net surrogate models are trained with 1000 samples
and the 𝐴𝑑𝑎𝑚 optimizer is applied.

upper layers is smaller than that of lower layers, that is, the saturation
and geological parameters have shorter-distance correlations in the
upper layers than that of the lower layers. It should be reasonable that
the zone 1 is decomposed into small subdomains, while the zone 2
is decomposed into relatively large subdomains. We use a quasi-3D
decomposition consisting of two independent 2D decompositions for
zone 1 and zone 2, respectively. In this case-study, we choose a fixed
domain decomposition scheme, e.g., (3 × 4, 2 × 3) decomposition. That
is, 3 × 4 and 2 × 3 2D decompositions are for zone 1 and zone 2,
respectively.

We follow the procedure described in Xiao et al. (2019a,b) to
determine the number of HFM simulations for the collection of pressure
and saturation snapshots. 42 HFM simulations are run for collecting
a total number of 7560 (42 simulation models by 180 time steps)
snapshots of both pressure and saturation. Instead of taking global basis
functions to define the subspace, the snapshots are first partitioned
into each subdomain and then local basis functions are obtained from
these partitioned snapshots. That is, these 7560 global saturation and
pressure snapshots are decomposed into each subdomains. As a result,
the implementation of POD for a large number of snapshots will not
pose severe computational problems in this 3D model application.

In terms of computational effort, the subdomain POD-TPWL models
require less than 1.5 s. However, the construction of the subdomain
POD-TPWL requires 147 HFM simulation runs, among them, 42 HFM
simulations are used to collect the snapshots for implementing POD,
13
and 105 HFM simulations are used to construct the RBF function
(Eq. (9) in the provided supplementary material.).

4.5.2. Comparison of surrogate model quality
Fig. 21 displays the dependence of the field-average relative error

𝛾𝑠 with respect to domain decomposition strategy, testing interval
and number of training samples. The testing interval represents the
maximum discrepancy between the testing model and the reduced-
order linear model. It can be seen from Fig. 21(a) that increasing the
testing interval deteriorates the accuracy of the subdomain POD-TPWL
surrogate model, e.g., from 1.52% to 5.04%, for the (3 × 4, 2 × 3)
domain decomposition scheme. The comparisons of the time-varying
saturation between subdomain POD-TPWL, HFM and their difference
are also used to visually assess the accuracy of the subdomain POD-
TPWL surrogate model. Fig. 22(a)–(b) show the predictions of spatial
saturation distribution at the day 2700 and day 5400 corresponding to
the testing interval [−0.1, 0.1] and [−0.3, 0.3], respectively. It clearly
can be seen that the cR-U-Net surrogate model achieves more accurate
saturation profile than that of subdomain POD-TPWL for the testing
model sampled from a relatively large testing interval [−0.3, 0.3] in
this case-study.

The cR-U-Net is almost not sensitive to the testing interval, which
however has a significant influence on the subdomain POD-TPWL
surrogate model. For the testing model sampled from a small testing
interval [−0.1, 0.1], these two surrogate models almost obtain compa-
rable accuracy, however, the accuracy of the subdomain POD-TPWL
decreases gradually as the testing interval increases. More deep in-
sights about these two types of surrogate models are worth explaining.
Subdomain POD-TPWL constructs reduced-order linear model around a
specific trajectory using the first-order Taylor expansion. If the testing
model is far away from this trajectory, the accuracy inevitably will
deteriorate. This leads to the necessity in frequently reconstructing
subdomain POD-TPWL once the new testing models have large dis-
crepancies from the current reduced-order linear model. By contrast,
the cR-U-Net actually constructs a global surrogate model based on the
entire training data and hence retraining cR-U-Net surrogate model is
not strictly required. Definitely, filling the entire parameter space as
much as possible using a large number of training samples, e.g., 1000
in this study, substantially improves the accuracy.

4.5.3. Comparison of history matching results
Table 4 display the final objective functions, the number of HFM

simulations and the parameter misfits 𝑒𝐦 for the cR-U-Net and subdo-
main POD-TPWL, respectively. In this base-case study, the subdomain
POD-TPWL with (3×4, 2×3) 3D domain decomposition has been almost
convergence after 12 out-loop iterations. Although the subdomain POD-
TPWL obtains comparable and even smaller final objective functions
than that of cR-U-Net surrogate models, the parameter misfits 𝑒
𝐦
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Fig. 18. Boxplot of the parameter misfits 𝑒𝐦 of logarithmic permeability before and
after history matching corresponding to 100 different initial models. The batch size of
the 𝐴𝑑𝑎𝑚 optimizer is set to 1, 2, 3, 4 and 5, respectively.

are relatively larger. For example, the final objective functions are
0.1689 × 105 and 0.3890 × 105 for the subdomain POD-TPWL and cR-U-

et trained with 300 samples, respectively, the parameter misfits 𝑒𝐦,
owever, are 0.6534 and 0.6370 correspondingly. This result indicates
hat subdomain POD-TPWL is noticeably susceptible to the data noise
nd hence cannot prevent the model from overfitting to the noisy
easurements. By contrast, the proposed cR-U-Net with SGD optimizer

ields small parameter misfits 𝑒𝐦, which also gradually decrease as the
umber of training samples.
14

o

In terms of the computational cost, the (3×4, 2 × 3) domain de-
omposition requires 158 HFM simulations, among them, 42 HFM
imulations are used to collect the snapshots to construct the bases
or implementing POD, 105 HFM simulations are run to construct
he initial subdomain reduced-order linear model at the 1st out-loop,
nd additional 11 HFM simulations are required in the following 11
uter-loops. In order to achieve comparable parameter misfits 𝑒𝐦, the

cR-U-Net surrogate model should be trained with at least 𝑁𝑠 = 300
samples. We also present an alternative to compare these two surro-
gate models for almost the same computational cost. We increase the
sampling points for constructing the subdomain POD-TPWL surrogate
models, which generally improves the accuracy of the approximated
gradients. As illustrated in Fig. 23, the parameter misfits 𝑒𝐦 gradually
decreases but much slower than those for the cR-U-Net. Corresponding
to the specific domain decomposition scheme, such as (3 × 4, 2 × 3) in
his case-study, the accuracy does not infinitely improve as the number
f training samples. These results further indicate the importance of
esigning appropriate domain decompositions.

Fig. 24 shows the 2D horizontal cross sections of updated logarith-
ic permeability fields for a comparison of the history matching results
sing the cR-U-Net and subdomain POD-TPWL surrogate models. It
learly can be seen that the true logarithmic permeability fields almost
an be reconstructed. In summary, subdomain POD-TPWL is slightly
ore efficient than that of cR-U-Net surrogate model for generating

ne posterior realization for this example application. In addition, the
mplementation of subdomain POD-TPWL is also relatively flexible
ithout a strict requirement for the hardware, e.g., GPU cards.

In order to generate 𝑁𝑒 posterior realizations for quantifying the
odel uncertainty, the subdomain POD-TPWL has to be independently

mplemented for each ensemble member, which requires us to repeat-
dly update the reduced-order models with several additional HFM
imulations at the outer-iterations. 147 HFM simulations are required
o construct the initial reduced-order model at the 1st out-loop. If the
umber of outer-loops for the 𝑖th ensemble member is assumed to be
𝑖
𝑜𝑢𝑡𝑒𝑟−𝑙𝑜𝑜𝑝, the required total number of HFM simulations for obtaining

𝑒 posterior realizations should be (147 + ∑𝑁𝑒
𝑖=1 ×𝑁

𝑖
𝑜𝑢𝑡𝑒𝑟−𝑙𝑜𝑜𝑝). By con-

rast, the cR-U-Net surrogate model obtains 𝑁𝑒 posterior realizations
hrough starting from different initial models. As we have mentioned
efore, this process does not involves additional HFM simulations.
ig. 25 depicts the parameter misfits 𝑒𝐦 of 𝑁𝑒 = 100 posterior mod-
ls for the cR-U-Net and subdomain POD-TPWL. It is noticeable that
he cR-U-Net generates smaller parameter misfits 𝑒𝐦 than that of the
ubdomain POD-TPWL. In terms of computational cost, the subdomain
OD-TPWL requires about, for example an average 𝑁𝑜𝑢𝑡𝑒𝑟−𝑙𝑜𝑜𝑝 = 15
uter-loops, 1647 = 147 + 100 × 15 HFM simulations for generating
hese 100 posterior models, while the cR-U-Net only requires 100 HFM
imulations for achieving even better results. The computational saving
ill increase linearly with the ensemble size. Overall, the cR-U-Net
ill be much more efficient than that of the subdomain POD-TPWL for
enerating an ensemble of posterior realizations.

Both methods have their own advantages and disadvantages. On
he one hand, the physical interpretation of the subdomain POD-
PWL makes it easier to diagnose and comprehend. Our previous
esults in Xiao et al. (2019b) have indicated that the performance of
ubdomain POD-TPWL is very sensitive to the domain decomposition
chemes. How to choose the optimal domain decomposition scheme
s one of the most key steps for a successful implementation of the
ubdomain POD-TPWL. On the other hand, although the construction
f the cR-U-Net can be realized without being explicitly programmed
ith the hidden and highly complex governing physics, its perfor-
ance generally becomes difficult to explain. Also the choice of a
NN architecture is relatively subjective (although flexible), and its
utputs lack a clear understanding. The cR-U-Net takes advantage of
he high-performance computing units, such as the GPU cards, since
he exiting deep learning packages can efficiently use them. The ability

f a software program to fully utilize GPUs is a big advantage.
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Fig. 19. 2D horizontal cross sections of the updated logarithmic permeability for the 1st and 11th vertical layer under different batch size for SGD and FGD optimization methods.
The cR-U-Net surrogate models are trained using 𝑁𝑠 1000 training samples.
Table 4
The final objective function values, parameter misfits 𝑒m and required number of HFM simulations for the subdomain POD-TPWL and
cR-U-Net surrogate models.

Subdomain POD-TPWL cR-U-Net

𝑁𝑠 = 100 𝑁𝑠 = 300 𝑁𝑠 = 500 𝑁𝑠 = 800 𝑁𝑠 = 1000

𝐽 × 106 0.1689 0.4366 0.3890 0.2699 0.2083 0.2021

Reference × 106 0.0785
Tolerance × 106 0.4724

𝑒𝑚 0.6534 0.7190 0.6370 0.5371 0.4704 0.4374
Number of HFM simulations 158 100 300 500 800 1000
Fig. 20. Noise distribution of water saturation at the days 2700 and days 5400 used
in this comparative study. Normal distributed independent measurement noise with a
standard deviation equal to 5% of the ‘true’ data value, was added to all observations.
15
4.6. Additional remarks

One of the most prominent merit of the proposed surrogate-assisted
history matching method with deep neural network is that it can
perform massively parallel computations on GPUs. Although the avail-
ability of GPU’s must be a precondition for efficiently training the
cR-U-Net surrogate model, this should be not a big problem as GPUs
are relatively cheap and easy to install on existing computer systems.
Nevertheless, limitations of the proposed method do exist. First, the
choice of a neural network architecture is flexible, but it is still rel-
atively subjective. Second, although our proposed surrogate-assisted
history matching does not involve additional HFM simulations. the
intrinsic disadvantage of the DNN method appears to be that it may not
be clear beforehand how many training samples are needed to obtain
the desired accuracy. In order to obtain highly accurate DNN model,
we have to blindly increase the number of training samples as much
as possible in most cases. This inevitably leads to redundant model
simulations sometimes when satisfactory results can be obtained using
a small dataset. Some promising results have been obtained in this
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Fig. 21. Field-average relative error 𝛾𝑠 as a function of domain decomposition, testing
interval and number of training samples. (a) Subdomain POD-TPWL; (b) cR-U-Net
surrogate model.

paper, however, further research is needed to gain insights about how
the DNN surrogate works for the gradient-based inversion, when it will
work (weak- or strong non-linear model) and the trade-offs between
accuracy and computational complexity. The degree of model non-
linearity dominates the convergence performance of the gradient-based
optimizations. Nevertheless, whether the non-linearity of the high-
fidelity model is correctly represented by the DNN surrogate model has
not been fully understood yet.

Our proposed DNN surrogate method has demonstrated to be very
efficient in generating multiple posterior models. In the community of
data assimilation, the ensemble-based assimilation methods are par-
ticularly useful to quantify the models uncertainty for the realistic
cases and many successful applications have been reported in the
literature (Emerick and Reynolds, 2012). A direct application of the
proposed DNN surrogates to field-scale models with a large degree of
freedom definitely poses huge computational challenges and memory
requirements for training them. This drawback seemingly makes the
DNN approach less attractive than that of the ensemble-based assimila-
tion methods. However, assimilating a large number of measurements
easily causes severe rank deficiency and eventually ensemble collapse
problem. In general, increasing ensemble size or covariance localization
have always been a standard approach to resolve this issue (Emerick
and Reynolds, 2011; Yeo et al., 2014). It is, however, very challenging
to design localization regions and localization methods usually require
problem adaption before application. By contrast, the filter divergence
issue hardly occurs in our proposed DNN-assisted history matching
methodology.

In this study, the main data used in the history matching procedure
are the time-dependent grid-based saturation maps predicted from the
16
Fig. 22. Illustration of time-varying phase saturation for a random parameter field
predicted from subdomain POD-TPWL, HFM and their residual errors at 2700 days
and 5400 days of production . The cR-U-Net model is trained using 𝑁𝑠 = 1000 and
100 training samples. (a) Testing interval [−0.1, 0.1]; (b) Testing interval [−0.3, 0.3].

Fig. 23. Parameter misfits 𝑒𝐦 with respective to the number of HFM simulations for
the cR-U-Net and subdomain POD-TPWL, respectively. We gradually increase the HFM
simulations for constructing the subdomain POD-TPWL surrogate models.

fluid flow simulation model. History matching real seismic data gener-
ally involves a coupled system (i.e., fluid flow simulation model and the
rock–physics model). On the one hand, there has been recent progress
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Fig. 24. 2D horizontal cross sections of the updated logarithmic permeability fields for assessing the accuracy of the history matching results using the cR-U-Net and subdomain
POD-TPWL surrogate models. The 1st and 11th vertical layer are shown here.
Fig. 25. Boxplot of the parameter misfits 𝑒𝐦 of logarithmic permeability after the
history matching using cR-U-Net and subdomain POD-TPWL surrogate models. The 3D
domain decomposition with adaptive strategy is implemented.

in reduced-order modeling for coupled flow and geomechanics. For
example, Jin et al. proposed a reduced-order-modeling framework
to simulate coupled flow-geomechanics problems (Jin et al., 2020).
The conventional POD-TPWL is constructed to efficiently simulate the
global pressure, saturation and stress fields. These results imply the
potential of applying our approach to address coupled flow and ge-
omechanics problems, since our proposed subdomain approach is very
similar to the POD-TPWL method. On the other hand, the potential
applications of deep-learning surrogate models to address time-lapse
17
seismic data recently also have been reported. For example, Zhong
et al. proposed a data-driven deep learning method to facilitate the
solution of both the forward and inverse problems in seismic inver-
sion (Zhong et al., 2020). Specifically, a cycle generative adversarial
neural network (CycleGAN) model is trained to learn the bidirectional
functional mappings between the reservoir dynamic property changes
and seismic attribute changes, such that both forward and inverse
solutions can be obtained efficiently from the trained model. Similarly,
Kaur et al. design a deep learning framework for carbon dioxide (CO2)
saturation monitoring to determine the geological controls on storage of
CO2 (Kaur et al., 2020). The network is trained with a few time-lapse
seismic images and their corresponding changes in saturation values.
The proposed algorithm provides a framework for direct estimation of
CO2 saturation values and plume migration in heterogeneous forma-
tions using the time-lapse seismic data. Thus, a hybrid workflow of
the above DNN models, e.g., CycleGAN and our proposed cR-U-Net
can be readily used for reservoir characterization and reservoir model
updates involving the use of time-lapse seismic data. Alternatively, we
also can train a unified DNN framework by directly learning a mapping
from geological parameters to real seismic data, which deserves to be
investigated in further research.

5. Conclusion

We have introduced an efficient deep-learning inversion framework
where the original high-fidelity model is fully replaced by a Conditional
Residual U-Net (cR-U-Net) surrogate model to speedup gradient-based
large-scale history matching. We use the proposed surrogate model
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to estimate the unknown permeability fields of a modified version of
benchmark reservoir model by assimilating a large number of synthetic
measurements. This work primarily explores the potential of employing
the DNN surrogate to approximate the objective function’s gradient us-
ing auto-differentiation. The inherent computational saving stems from
the use of GPU units, which is absolute essential but also a major benefit
derived from the deep learning packages. These preliminary numerical
experiments carried out in representative scenarios demonstrate that
the proposed methodology is highly efficient since the required number
of high-fidelity model runs for training the cR-U-Net surrogate model
is relatively small. In addition, the proposed deep-learning inversion
algorithm with stochastic gradient optimizer demonstrates an effective
convergence performance against the model and data noise for the
considered large-scale history matching problem with a large number
of measurements and parameters.

The comparative study between the cR-U-Net surrogate and
projection-based subdomain POD-TPWL reveals that although cR-U-
Net is much more efficient in generating an ensemble of posterior
realizations for uncertainty quantification, the implementation of sub-
domain POD-TPWL is relatively flexible and does not depend on
hardware requirements, e.g., GPU cards which may not be always
available at hand, and the physical interpretation of the projection-
based subdomain POD-TPWL also makes it easier to diagnose and
comprehend. The performance of the subdomain POD-TPWL is very
sensitive to the domain decomposition schemes, however, the choice
of domain decomposition is very subjective. For small sample sizes
the physics based subdomain POD-TPWL is more efficient and that
for larger sample sizes the error of subdomain POD-TPWL at some
point does not improve any more for a fixed domain decomposition
strategy. The DNN is less efficient for small sample sizes, but gets better
and better with larger samples sizes. Overall, both methods have their
own advantages and disadvantages. Based on the results in this study,
the DNN surrogate model is recommended for the purpose of model
uncertainty assessment.

There are some other aspects of the proposed methodology that
could possibly be improved. The complementary advantage of the
projection-based ROM and DNN opens up another avenue of research
and therefore deserves to be explored further. For example, the accu-
racy of ROM can be improved by quantifying the discrepancy between
the high-fidelity model and the ROM outputs using a DNN-based er-
ror correction procedure based on our preliminary results in Huang
(2019). Or we can project the high-dimensional model into the reduced-
subspace as commonly done in ROM and then construct DNN surrogate
in the subspace, which results in a large reduction of computational cost
and memory requirement simultaneously (Wang et al., 2020).

The training of the proposed DNN surrogate model is completely
independent of the history matching process. The history matching
actually has the potential of instructing the construction of a DNN
surrogate model along with an improved accuracy. The surrogate model
could be trained with a small number of initial training samples, and
then progressively enriched with more training data (i.e. re-sampled
simulation runs) close to the target distribution at the history match-
ing process. Ideally one would have an adaptive scheme to update
the model after convergence with additional training runs and test if
the objective function can be further decreased or not. Under these
circumstances, the DNN surrogate can perhaps be retrained relatively
quickly if we only add one or several new data points and just continue
from the previously trained model. In order to prevent the model from
overfitting to these new training points, fine-tuning or transfer learning
strategy could be useful (De et al., 2020).

CRediT authorship contribution statement

Cong Xiao: Conceptualization, Methodology, Software, Writing –
original draft. Hai-Xiang Lin: Investigation, Supervision. Writing –
original draft, Writing – reviewing and editing. Olwijn Leeuwen-
burgh: Geological model generation, Model design, Writing – original
draft, Writing – reviewing and editing. Arnold Heemink: Investigation,
Supervision. Writing – original draft, Writing – reviewing and editing.
18
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The first author would like to thank the China Scholarship Coun-
cil (CSC) and Science Foundation of China University of Petroleum,
Beijing, China (No. ZX20210069) for providing research funding. Ad-
ditional Computing resources were provided by Mathematics Physics
Group, Department of Applied Mathematics at Delft University of Tech-
nology. The use of open source codes OPM-𝑓𝑙𝑜𝑤 (https://opmproject.
rg/) is gratefully acknowledged.

ppendix A. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.petrol.2021.109287.

eferences

anonsen, S.I., Nævdal, G., Oliver, D.S., 2009. The ensemble Kalman filter in reservoir
engineering–A review. Spe J. 14 (03), 393–412.

badi, Martín, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng,
Citro, Craig, Corrado, Gregory S., Davis, Andy, Dean, Jeffrey, Devin, Matthieu,
Ghemawat, Sanjay, Goodfellow, Ian J., Harp, Andrew, Irving, Geoffrey, Is-
ard, Michael, Jia, Yangqing, Józefowicz, Rafal, Kaiser, Lukasz, Kudlur, Manjunath,
Levenberg, Josh, Mané, Dan, Monga, Rajat, Moore, Sherry, Murray, Derek Gordon,
Olah, Chris, Schuster, Mike, Shlens, Jonathon, Steiner, Benoit, Sutskever, Ilya,
Talwar, Kunal, Tucker, Paul A., Vanhoucke, Vincent, Vasudevan, Vijay, Vié-
gas, Fernanda B., Vinyals, Oriol, Warden, Pete, Wattenberg, Martin, Wicke, Martin,
Yu, Yuan, Zheng, Xiaoqiang, 2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. CoRR abs/1603.04467, arXiv:1603.04467.

hmadi, Mohammad Ali, 2015. Developing a robust surrogate model of chemical flood-
ing based on the artificial neural network for enhanced oil recovery implications.
Math. Probl. Eng. 2015.

ltaf, Muhammad Umer, Heemink, Arnold W., Verlaan, Martin, 2009. Inverse shallow-
water flow modeling using model reduction. Int. J. Multiscale Comput. Eng. 7
(6).

non., 1995. GSLIB: Geostatistical software library and user’s guide. Technometrics.
sher, Michael J., Croke, Barry F.W., Jakeman, Anthony J., Peeters, Luk J.M., 2015. A

review of surrogate models and their application to groundwater modeling. Water
Resour. Res. 51 (8), 5957–5973.

ardoso, M.A., Durlofsky, Louis J., 2010. Linearized reduced-order models for
subsurface flow simulation. J. Comput. Phys. 229 (3), 681–700.

ardoso, M.A., Durlofsky, L.J., Sarma, P., 2009. Development and application of
reduced-order modeling procedures for subsurface flow simulation. Internat. J.
Numer. Methods Engrg. 77 (9), 1322–1350.

hen, C., Gao, G., Honorio, J., Gelderblom, P., Jimenez, 2014. Integration of
principal-component-analysis and streamline information for the history matching
of channelized reservoirs. In: Spe Technical Conference and Exhibition.

hen, Chaohui, Gao, Guohua, Ramirez, Benjamin A., Vink, Jeroen C., Girardi, Ale-
jandro M., et al., 2015. Assisted history matching of channelized models using
pluri-principal component analysis. In: SPE Reservoir Simulation Symposium.
Society of Petroleum Engineers.

hen, Yan, Oliver, Dean S., 2012. Multiscale parameterization with adaptive regular-
ization for improved assimilation of nonlocal observation. Water Resour. Res. 48
(48), 4503.

ourant, R., Hilbert, D., 1962. Methods of Mathematical Physics. Wiley Interscience.
ourtier, Philippe, Thépaut, J.-N, Hollingsworth, Anthony, 1994. A strategy for opera-

tional implementation of 4D-var, using an incremental approach. Q. J. R. Meteorol.
Soc. 120 (519), 1367–1387.

ai, Cheng, Xue, Liang, Zhang, Dongxiao, Guadagnini, Alberto, 2016. Data-worth
analysis through probabilistic collocation-based ensemble Kalman filter. J. Hydrol.
540, 488–503.

e, Subhayan, Britton, Jolene, Reynolds, Matthew, Skinner, Ryan, Jansen, Kenneth,
Doostan, Alireza, 2020. On transfer learning of neural networks using bi-fidelity
data for uncertainty propagation. arXiv preprint arXiv:2002.04495.

merick, A., Reynolds, A., 2011. Combining sensitivities and prior information for
covariance localization in the ensemble Kalman filter for petroleum reservoir
applications. Comput. Geosci. 15 (2), 251–269.

merick, A.A., Reynolds, A.C., 2012. History matching time-lapse seismic data using
the ensemble Kalman filter with multiple data assimilations. Comput. Geosci. 16
(3), 639–659.

https://opmproject.org/
https://opmproject.org/
https://opmproject.org/
https://doi.org/10.1016/j.petrol.2021.109287
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb1
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb1
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb1
http://arxiv.org/abs/1603.04467
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb3
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb3
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb3
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb3
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb3
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb4
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb4
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb4
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb4
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb4
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb5
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb6
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb6
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb6
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb6
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb6
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb7
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb7
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb7
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb8
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb8
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb8
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb8
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb8
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb10
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb10
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb10
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb10
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb10
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb10
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb10
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb11
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb11
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb11
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb11
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb11
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb12
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb13
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb13
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb13
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb13
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb13
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb14
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb14
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb14
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb14
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb14
http://arxiv.org/abs/2002.04495
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb16
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb16
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb16
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb16
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb16
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb17
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb17
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb17
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb17
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb17


Journal of Petroleum Science and Engineering 208 (2022) 109287C. Xiao et al.
Evensen, G., 2009. Data Assimilation: The Ensemble Kalman Filter. Springer Science &
Business Media.

Gassmann, Fritz, 1951. Elastic waves through a packing of spheres. Geophysics 16 (4),
673–685.

Goodfellow, Ian, Bengio, Yoshua, Courville, Aaron, 2016. Deep Learning. MIT press.
He, Jincong, Durlofsky, Louis J., et al., 2014. Reduced-order modeling for compositional

simulation by use of trajectory piecewise linearization. SPE J. 19 (05), 858–872.
He, K., Zhang, X., Ren, S., Sun, J., 2016. Identity mappings in deep residual networks.

In: European Conference on Computer Vision.
Heo, Y.J., Kim, S.J., Kim, D., Lee, K., Chung, W.K., 2018. Super-high-purity seed sorter

using low-latency image-recognition based on deep learning. IEEE Robot. Autom.
Lett. 3 (4), 1.

Huang, Jie, 2019. Machine learning based error modeling for surrogate model in oil
reservoir problem.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2016. Densely connected
convolutional networks.

Jafarpour, Behnam, McLaughlin, Dennis B., 2008. History matching with an ensemble
Kalman filter and discrete cosine parameterization. Comput. Geosci. 12 (2),
227–244. http://dx.doi.org/10.1007/s10596-008-9080-3.

Jin, Zhaoyang Larry, Garipov, Timur, Volkov, Oleg, Durlofsky, Louis J., et al., 2020.
Reduced-order modeling of coupled flow and quasistatic geomechanics. SPE J. 25
(01), 326–346.

Jin, Z.L., Liu, Y., Durlofsky, L.J., 2019. Deep-learning-based reduced-order modeling
for subsurface flow simulation. arXiv preprint arXiv:1906.03729.

Kaleta, Małgorzata P., Hanea, Remus G., Heemink, Arnold W., Jansen, Jan-Dirk, 2011.
Model-reduced gradient-based history matching. Comput. Geosci. 15 (1), 135–153.

Kaur, Harpreet, Sun, Alexander, Zhong, Zhi, Fomel, Sergey, 2020. Time-lapse seismic
data inversion for estimating reservoir parameters using deep learning. In: SEG
Technical Program Expanded Abstracts 2020. Society of Exploration Geophysicists,
pp. 1720–1724.

Kingma, Diederik P., Ba, Jimmy, 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Liu, Yimin, Durlofsky, Louis J., et al., 2019. Multilevel strategies and geological
parameterizations for history matching complex reservoir models. SPE J..

Liu, Yimin, Sun, Wenyue, Durlofsky, Louis J., 2018. A deep-learning-based geological
parameterization for history matching complex models. Math. Geosci. 1–42.

Mannseth, T., Fossum, K., 2018. Assimilating spatially dense data for subsurface
applications—balancing information and degrees of freedom. Comput. Geosci. 22
(5), 1323–1349.

Markovinović, R., Jansen, J.D., 2006. Accelerating iterative solution methods using
reduced-order models as solution predictors. Internat. J. Numer. Methods Engrg.
68 (5), 525–541.

Matthews, J.D., Carter, J.N., Stephen, K.D., Zimmerman, R.W., Skorstad, A., Man-
zocchi, T., Howell, J.A., 2008. Assessing the effect of geological uncertainty
on recovery estimates in shallow-marine reservoirs: The application of reservoir
engineering to the SAIGUP project. Pet. Geosci. 14 (1), 35–44. http://dx.doi.org/
10.1144/1354-079307-791.

Mo, S., Zabaras, N., Shi, X., Wu, J., 2018. Deep autoregressive neural net-
works for high-dimensional inverse problems in groundwater contaminant source
identification.

Mo, S., Zhu, Y., Zabaras, N., Shi, X., Wu, J., 2019. Deep convolutional encoder-
decoder networks for uncertainty quantification of dynamic multiphase flow in
heterogeneous media. Water Resour. Res. 55 (1).

Oliver, D.S., Reynolds, A.C., Liu, N., 2008. Inverse Theory for Petroleum Reservoir
Characterization and History Matching. Cambridge University Press.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., 2019. Pytorch: An imperative style, high-
performance deep learning library. In: Advances in Neural Information Processing
Systems. pp. 8024–8035.
19
Rasmussen, A.F., Sandve, T.H., Bao, K., Lauser, A., Hove, J., Skaflestad, B., Klöfkorn, R.,
Blatt, M., Rustad, A.B., Sævareid, O., Lie, K.A., 2019. The open porous media flow
reservoir simulator. arXiv preprint arXiv:1910.06059.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for
biomedical image segmentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, pp. 234–241.

Salazar, Melvin Oswaldo, Villa Piamo, Jose Reinaldo, et al., 2007. Permeability
upscaling techniques for reservoir simulation. In: Latin American & Caribbean
Petroleum Engineering Conference. Society of Petroleum Engineers.

Tang, M., Liu, Y., Durlofsky, L.J., 2019. A deep-learning-based surrogate model for
data assimilation in dynamic subsurface flow problems. arXiv preprint arXiv:
1908.05823.

Vermeulen, P.T.M., Heemink, A.W., 2006. Model-reduced variational data assimilation.
Mon. Weather Rev. 134 (10), 2888–2899.

Vo, Hai X., Durlofsky, Louis J., 2015. Data assimilation and uncertainty assessment
for complex geological models using a new PCA-based parameterization. Comput.
Geosci. 19 (4), 747–767.

Vo, Hai X., Durlofsky, Louis J., 2016. Regularized kernel PCA for the efficient
parameterization of complex geological models. J. Comput. Phys. 322, 859–881.

Wang, Min, Cheung, Siu Wun, Leung, Wing Tat, Chung, Eric T., Efendiev, Yalchin,
Wheeler, Mary, 2020. Reduced-order deep learning for flow dynamics. the interplay
between deep learning and model reduction. J. Comput. Phys. 401, 108939.

Xiao, D., Fang, F., Buchan, A.G., Pain, C.C., Navon, I.M., Du, J., Hu, G., 2014.
Non-linear model reduction for the Navier–Stokes equations using residual DEIM
method. J. Comput. Phys. 263, 1–18.

Xiao, C., Heemink, A., Lin, H., Leeuwenburgh, O., 2020. Deep-learning inversion to
efficiently handle big-data assimilation: Application to seismic history matching.
In: ECMOR XVII, volume 2020. European Association of Geoscientists & Engineers,
pp. 1–16.

Xiao, Cong, Leeuwenburgh, Olwijn, Lin, Hai Xiang, Heemink, Arnold, 2018. Non-
intrusive subdomain POD-TPWL for reservoir history matching. Comput. Geosci.
1–29.

Xiao, Cong, Leeuwenburgh, Olwijn, Lin, Hai Xiang, Heemink, Arnold, 2019a. Non-
intrusive subdomain POD-TPWL for reservoir history matching. Comput. Geosci.
23 (3), 537–565.

Xiao, Cong, Leeuwenburgh, Olwijn, Lin, Hai Xiang, Heemink, Arnold, 2019b. Sub-
domain POD-TPWL with local parameterization for large-scale reservoir history
matching problems. arXiv preprint arXiv:1901.08059.

Xiao, D., Yang, P., Fang, F., Xiang, J., Pain, C.C., Navon, I.M., 2016. Non-intrusive
reduced order modelling of fluid–structure interactions. Comput. Methods Appl.
Mech. Engrg. 303, 35–54.

Xingjian, S.H.I., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C., 2015.
Convolutional LSTM network: A machine learning approach for precipitation
nowcasting. In: Advances in Neural Information Processing Systems. pp. 802–810.

Yeo, M.J., Jung, S.P., Choe, J., 2014. Covariance matrix localization using drainage
area in an ensemble Kalman filter. Energy Sources A 36 (19), 2154–2165.

Young, T., Hazarika, D., Poria, S., Cambria, E., 2018. Recent trends in deep learning
based natural language processing [review article]. IEEE Comput. Intell. Mag. 13
(3), 55–75.

Zhang, Pinggang, Pickup, Gillian E., Christie, Michael A., et al., 2008. A new practical
method for upscaling in highly heterogeneous reservoir models. SPE J. 13 (01),
68–76.

Zhong, Z., Sun, A.Y., Jeong, H., 2019. Predicting CO2 plume migration in heterogeneous
formations using conditional deep convolutional generative adversarial network.
Water Resour. Res..

Zhong, Zhi, Sun, Alexander Y., Wu, Xinming, 2020. Inversion of time-lapse seismic
reservoir monitoring data using CycleGAN: A deep learning-based approach for
estimating dynamic reservoir property changes. J. Geophys. Res. Solid Earth 125
(3), e2019JB018408.

Zhou, Zitong, Tartakovsky, Daniel M., 2020. Markov chain Monte Carlo with neural
network surrogates: Application to contaminant source identification. arXiv preprint
arXiv:2003.02322.

http://refhub.elsevier.com/S0920-4105(21)00940-2/sb18
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb18
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb18
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb19
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb19
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb19
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb20
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb21
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb21
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb21
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb23
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb23
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb23
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb23
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb23
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb24
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb24
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb24
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb25
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb25
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb25
http://dx.doi.org/10.1007/s10596-008-9080-3
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb27
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb27
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb27
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb27
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb27
http://arxiv.org/abs/1906.03729
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb29
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb29
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb29
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb30
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb30
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb30
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb30
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb30
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb30
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb30
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb32
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb32
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb32
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb33
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb33
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb33
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb34
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb34
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb34
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb34
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb34
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb35
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb35
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb35
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb35
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb35
http://dx.doi.org/10.1144/1354-079307-791
http://dx.doi.org/10.1144/1354-079307-791
http://dx.doi.org/10.1144/1354-079307-791
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb37
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb37
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb37
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb37
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb37
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb38
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb38
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb38
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb38
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb38
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb39
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb39
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb39
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb40
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb40
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb40
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb40
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb40
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb40
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb40
http://arxiv.org/abs/1910.06059
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb42
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb42
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb42
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb42
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb42
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb43
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb43
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb43
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb43
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb43
http://arxiv.org/abs/1908.05823
http://arxiv.org/abs/1908.05823
http://arxiv.org/abs/1908.05823
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb45
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb45
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb45
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb46
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb46
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb46
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb46
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb46
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb47
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb47
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb47
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb48
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb48
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb48
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb48
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb48
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb49
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb49
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb49
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb49
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb49
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb50
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb50
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb50
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb50
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb50
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb50
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb50
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb51
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb51
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb51
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb51
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb51
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb52
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb52
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb52
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb52
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb52
http://arxiv.org/abs/1901.08059
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb54
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb54
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb54
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb54
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb54
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb55
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb55
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb55
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb55
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb55
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb56
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb56
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb56
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb57
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb57
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb57
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb57
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb57
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb58
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb58
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb58
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb58
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb58
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb59
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb59
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb59
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb59
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb59
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb60
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb60
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb60
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb60
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb60
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb60
http://refhub.elsevier.com/S0920-4105(21)00940-2/sb60
http://arxiv.org/abs/2003.02322

	Surrogate-assisted inversion for large-scale history matching: Comparative study between projection-based reduced-order modeling and deep neural network
	Introduction
	Definition of gradient-based reservoir history matching
	Surrogate modeling using deep neural network
	Neural network architecture
	Gradient approximation using auto-differentiation (AD)
	Stochastic gradient descent optimization

	Experiments and discussion
	Description of model settings
	Configuration of cR-U-Net architecture
	Assessment of surrogate model quality
	History matching results using the cR-U-Net surrogate
	Study of the base-case
	Effect of the initial models
	FGD versus SGD optimizers

	cR-U-Net versus Subdomain POD-TPWL surrogate
	Construction of the subdomain POD-TPWL
	Comparison of surrogate model quality
	Comparison of history matching results

	Additional remarks

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


