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Abstract. The fluid dynamic preliminary design of unconventional turbomachinery is custom-
ary done with meanline design procedures coupled with gradient-free optimizers. This method
features various drawbacks, since it might become computationally expensive, and it does not
provide design insights or guidelines to the designer. This work proposes a strategy to abate
this disadvantages, namely, the construction of a reduced-order model by means of active sub-
spaces, and the use of the surrogate combined with a gradient-based optimizer. The case study
is the design optimization of a Organic Rankine Cycle radial inflow turbine. The results show
that active subspaces exist for this application, and that it is possible to construct a surrogate
with an approximate error of ±1% for the total-to-static efficiency. Additionally, the optimiza-
tion using the surrogate leads to accurate results and a computational cost at least four times
faster. Furthermore, the results reveal that the models for unconventional turbomachinery fea-
ture multiple regions containing constrained optima. Active subspace methods thus prove to be
a promising alternative for optimization of unconventional turbomachinery.
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1 Introduction

The realization of high-efficiency unconventional turbomachinery (e.g., supercritical CO2
compressors, or Organic Rankine Cycle (ORC) expanders) demands for sound optimization
strategies to tackle the preliminary design phase. Meanline methods based on empirical loss
correlations (e.g., see Ref. [1]) are typically adopted to execute this stage. The mathematical
nature of these correlations yields a highly non-linear system of equations, which is somehow
discontinuous and noisy. As a result, in order to solve this challenging design problem, the
meanline method is frequently coupled with a gradient-free optimizer (e.g., genetic algorithms,
see Ref. [2, 3]).

Although the combination of a meanline code and a gradient-free optimizer proved to be
succesful, it features several drawbacks: i) particularly for ORC machines, the computational
cost might become an issue, for the optimization must consider different working fluids, turbine
architectures, and a wide range of operating conditions [4]. ii) A genetic algorithm is a heuristic,
hence it likely yields sufficiently good solutions, though it does not guarantee an optimum.
iii) Valuable information regarding the physical response of the system is lost in gradient-free
methods (e.g., sensitivity of the objective to individual design inputs).

This work aims to to investigate the capability of a new technique to construct reduced-order
models to circumvent the aforementioned disadvantages. Active subspace methods (AS) reveal
the dominant directions of the gradient of a scalar function. By using these directions, it is
possible to transform a multidimensional input space to a lower-dimension version formed by
the so-called active variables [5]. If applicable to turbomachinery design problems, this method
holds great advantages: i) the computations with surrogates might require lower computational
time. ii) Reduced-order models can be used to build response surfaces, thus permitting the de-
signer to perform a visual inspection of the optimum solution and to switch to a gradient-based
optimizer. iii) Finally, the response surface can be used to derive relevant physical insights.

This work presents the results of the application of the active subspaces to the design of a
single-stage Organic Rankine Cycle (ORC) turbine. A meanline code for the fluid dynamic pre-
liminary design of turbomachinery is used to demonstrate the existence of active subspaces, and
to build surrogate models of the total-to-static efficiency and the machine geometry. Further-
more, a genetic algorithm optimization is compared against a gradient-based method using the
surrogates. Ultimately, the surrogate model is exploited to gain physical insight on the design
problem.

This document is structured as follows: Section 2 presents the methods used to construct
the surrogate models and to perform the constrained optimization. Section 3 discusses the
application of the methods to the design/optimization of a mini ORC radial inflow turbine. The
document ends with some concluding remarks in Section 4.

2 Methods

This section describes the standard procedure conceived to provide the preliminary fluid dy-
namic design of non-conventional turbomachinery, i.e., a meanline code coupled with a genetic
algorithm. It also reports the description of the process to construct the surrogate via AS, and
the corresponding definition of the gradient-based optimization. The method has been imple-
mented in a engineering programming environment [6], which is coupled with a computational
library for the calculation of the fluid thermophysical properties [7].
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2.1 Software for the turbine preliminary design

zTurbo is a meanline code for the fluid dynamic preliminary design of turbomachinery. It
uses empirical loss correlations for the estimation of the turbine performance (see Ref. [1]), and
it has been implemented in Fortran. More details about this tool can be found in the paper of
Pini et al. [8]

Mathematically, zTurbo can be expressed as a vector function,

Ψ = Ψ(x), x ∈ [−1, 1]m, (1)

where x is a normalized and centered input space of size m. The input space might include
variables like (per stage) rotational speed, inlet diameter, blade height, etc. Function Ψ yields
an array output, so that

Ψ = [ηts, φi], i ∈ {1, ..., N}, (2)

where ηts is the turbine total-to-static efficiency, and φi are outputs that will be compared against
N number of constraints. zTurbo is imported to the programming environment as a function.

2.1.1 Turbine design optimization by means of genetic algorithms

As a design tool, zTurbo delivers the full geometry of the turbine after the calculation is
done, which precludes the possibility of constraining the optimization from the input space.
As a consequence, the function is defined such that the solutions violating the constraints are
discarded, i.e.,

ηts(x) =


−∞, if φi(x) < ψmin,i, i ∈ {1, ..., N},
or,
−∞, if φi(x) > ψmax,i,
else,
ηts,

(3)

where ψi is the ith constraint defined by a minimum and a maximum value. Due to the definition
of the objective function from Eq. 3, the optimization problem reads

Maximize ηts(x). (4)

The built-in genetic algorithm provided by the host software is then used to solve the optimiza-
tion problem [9].

2.2 Surrogate modeling by means of Active Subspace methods

This section discusses briefly the construction of the surrogate model based on the Active
Subspace method. For an extense description, the reader is directed the work of Constantine [5].

Consider the scalar function

f = f(x), x ∈ [−1, 1]m, (5)

where x is an array withm number of continuous, centered and normalized inputs. Additionally,
f has has to be smooth and differentiable. The objective of the active subspace method is to
approximate f to a new function f̂ , which features a lower dimensional input space, i.e.,

f(x) ≈ f̂(xac), xac ∈ Rn, n < m. (6)
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Note the hat accent, which indicates f̂ is an approximation of the exact function. The new input
space (xac) is constituted by the so-called “active variables”, which are a linear combination of
the original inputs. For instance, assuming that the input space is reduced to a single dimension
(n = 1):

f(x) ≈ f̂(xac), xac = a1x1 + a2x2 + a3x3 + ...+ amxm. (7)

Infinite number of linear combinations are available. The active subspace method provides
a strategy to discard the trivial linear combinations, and select the important ones. A short
explanation on this procedure follows.

The gradient of f is defined here as the column vector of partial derivatives,

Ofx =

[
∂f

∂x1

,
∂f

∂xi

, ...,
∂f

∂xm

]T
. (8)

This method relies on the analysis of matrix C,

C = E
[
(Ofx)(Ofx)T

]
, (9)

where E is the expectancy of the function inside the square brackets. C might be considered as
the uncentered covariance of the gradient vector. Therefore, it contains the information of the
directions on which f changes the most (in average).

The exact evaluation of C requires multidimensional integration. Nonetheless, it is possible
to approximate C by sampling throughout the input space, namely

Ĉ =
1

M

M∑
j=1

(Ofx)(Ofx)T , (10)

where M is the number of samples. Note again the hat accent, which indicates that Ĉ is an
approximation of the exact covariance matrix. It is important to mention that much of the active
subspaces research aims to estimate the accuracy of Ĉ, and to study the corresponding strategies
to improve this approximation [5].

Ĉ is real and symmetric, and therefore a real eigenvalue decomposition is feasible, as in

Ĉ = Ŵ Λ̂Ŵ T . (11)

Large gaps between the eigenvalues indicate that there are directions where the function changes
the most. Λ̂ and Ŵ can be accordingly split in two families, so that

Ŵ =
[
Ŵac Ŵic

]
, Λ̂ =

[
Λ̂ac Λ̂ic

]
. (12)

The subscripts ac and ic correspond to active and inactive, hence the “ac” matrices contain the
largest eigenvalues (separated by a gap) and the corresponding eigenvectors. The input space is
then rotated according the Ŵac, in order to “hide” the directions where the function variability
is lower, namely

xac = Ŵ T
ac

x1

...
xm

 , (13)

Notice that the number of dimensions of xac equals the number of selected active eigenvectors.
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Due to the sampling required to construct Ĉ, there areM sets of transformations in the active
subspace (f̂ : xac → f). Ultimately, f is approximated to a reduced-order function, i.e.,

f(x) ≈ f̂
(
Ŵ T

ac xT
)
, (14)

The reduced order model can take any algebraic structure, e.g.,

f̂(xac) = a1x
2
ac + a2xac + a3. (15)

Note that in this example that the original f has been transformed to a new function with a one
dimensional input or active variable.

2.2.1 Surrogate model of zTurbo

The nature of the turbomachinery loss correlations makes zTurbo inherently unstable, namely,
the function outputs might present discontinuities or non-smooth intervals. As a consequence,
the design space for the test case (see Fig.1) is selected such that it guarantees a well-behaved f .

The objective of this work is performing a constrained optimization, hence surrogate models
of additional quantities of interest are also created. Ultimately, zTurbo is transformed in a
system of equations, as in,

Surrogate model
{
η̂ts = η̂ts(xη),
φ̂i = φ̂i(xφ,i), i ∈ {1, ..., N}, (16)

where η̂ts(xη) is the surrogate model of the objective function, and φ̂i(xφ,i) is the ith surrogate
model corresponding to a zTurbo output to be compared against a constraint.

2.2.2 Optimization based on gradient-search methods

Once the surrogates are constructed, it is possible to formulate a constrained optimization
problem using gradient-based search methods, i.e.,

Maximize η̂ts(xη),

subject to ψmin,i ≤ φ̂i(xφ,i) ≤ ψmax,i, i ∈ {1, ..., N}.

Since the active variables are a result of a matrix multiplication, it is possible to set the opti-
mization using the original variables, so that the problem reads

Maximize η̂ts

(
Ŵ T

η xT
)
,

subject to ψmin,i ≤ φ̂i

(
Ŵ T

φ,i xT
)
≤ ψmax,i, i ∈ {1, ..., N},

where Ŵ T
η and Ŵ T

φ,i are matrices containing the approximated active eigenvectors for the ob-
jective function and the ith constraint, respectively. As in the genetic algorithm case, the built-in
optimization toolbox provided by the host software is used [9].
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3 Application and results

The test case consists on the optimization of a single-stage mini (m)ORC expander. Figure 1
shows the specifications of the selected machine, namely, a radial inflow turbine with its cor-
responding constant parameters, design space, and constraints. This test case has been adapted
from the work of Lang et.al. [10].

Notice that Figure 1 shows a non-normalized design space with m = 7. Moreover, as
discussed in Section 2.2.1, this input space has been selected such that a continuous, smooth
solution, is mostly guaranteed. The computations were run on a quad-core 3.60GHz processors
machine. No parallelization is used in this study.

Constant parameters

P3 1.0 bar r1/r2 1.02 -
b0 2.4 mm Fluid D4 -
r0/r1 1.3 -

Design space (model inputs, m = 7)

min max min max

r2/r3 1.9 2.3 - β3 50.1 61.3 ◦

D0 181.4 221.7 mm Ω 23.0 28.1 krpm
P0 3.5 4.3 bar R 0.3 0.4 -
ṁ 0.24 0.30 kg/s

Constraints (N = 4)

min max min max

M2,rl - 0.8 - γ2 - 75.0 ◦

r3,s/r2 - 0.7 - r3,h/r3,s 0.4 - -

Optimization objective

ηts

Figure 1: Constant parameters, design variables and constraints used for the optimization of the
radial inflow turbine. This test case has been adapted from to the work of Lang et.al. [10].

3.1 Construction of the surrogate model

In order to test the feasibility of the method, a primary attempt to reveal active subspaces is
done with the current test case and an oversampling factor of α = 12, so that

M = αm. (17)

Several sampling methods are available, and they are compared later in Section 3.2. For the
moment, a sparse grid combined with a latin hypercube strategy suffices. Note also that the
zTurbo gradients are obtained by forward finite differences.

Figure 2 presents the results of the eigenvalue decomposition of matrix Ĉ computed for
the turbine total-to-static efficiency. Figure 2a displays the eigenvalues in a logarithmic scale,
in order to ease the detection of active subspaces. The dashed lines correspond to a boostrap
confidence interval of 95% (see Ref. [5] for information on bootstrapping). Notice that, in-
dependently of the boostrap interval, the largest gap is located between eigenvalues 2 and 3,
thus suggesting the presence of two active variables. The smallest eigenvalue is not reported in
Figure 2, for its value is insignificant (compared to the finite difference ∆x) to draw any valid
conclusion from it [5].
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Figure 2: a) Eigenvalues corresponding to the decomposition of Ĉ. b) Eigenvector correspond-
ing to the first eigenvalue. c) Eigenvector corresponding to the second eigenvalue. The dashed
lines correspond to a bootstrap confidence interval of 95%.

Figures 2b and 2c present the coordinates of the eigenvectors corresponding to the 2 largest
eigenvalues from Figure 2a. Differently from the eigenvalue computation, the boostrap intervals
are large for various coordinates. Nonetheless, the mean value is always close to a confidence
bound, thus suggesting that only few samples feature considerable deviation from the mean.

Following the analysis done on Ĉ, it is possible to build a surface response for the turbine
efficiency as a function of two active variables. No information exists regarding the potential
structure of the surface response, yet polynomial functions lead to satisfactory results in this
work. It is well-known that, due to Runge’s phenomenon, high-order polynomials (third or
higher) might lead to incorrect predictions at the edges of the input space. It is then important
to inspect the surrogates, and even visualize them if possible.

Figure 3a presents the results of this process, namely, the surrogate-based surface and the
samples for the turbine efficiency. Although being a third order polynomial, the figure presents
a smooth, well-behaved, response. Additionally, Figure 3b presents the percentage distribution

70
1.4

80

1
0.1

90

-0.1
-1.2 -1.2

xη,1 [−]
xη,2[−]

η
ts
[%

]

(a)

q
[%

]

ǫη,rel [%]

−1.2 -0.1 1
0

35

70

(b)

Figure 3: Results of the surrogate construction with an oversampling factor of 12 for the turbine
total-to-static efficiency. a) Surface response based on the surrogate, and zTurbo samples ( ).
b) Percentage distribution of the relative error between the polynomial fit and the samples.

of the related relative error between the polynomial fit and the samples. Note that the error
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prominently surrounds −0.1%, thus confirming a satisfactory approximation for the scope of
this work.

A similar analysis for the other quantities of interest is performed, also leading to satisfactory
results. It is possible now to perform a gradient-based optimization, by means of the procedure
exposed in Section 2.2.2. Moreover, it is of interest to evaluate the optimization results as
a function of several sampling techniques and number of samples. This is the matter of the
following section.

3.2 Sensitivity analysis of the optimization

In order to analyze the robustness of the optimization problem described in Section 2.2.2,
several sampling strategies are tested: i) random sampling with replacement, ii) random sam-
pling with replacement in a sparse grid, iii) latin hypercube in a sparse grid. Various oversam-
pling factors are also used. The sensitivity analysis follows the next steps:

a. for a specific sampling strategy, and oversampling factor, an optimization using the reduce-
order model is performed following the procedure discussed in Section 2.2.2.

b. The solution drawn by the optimizer is recalculated with the original model (zTurbo).

c. The relative error of the objective and the constraints are calculated.

Figure 4a and Figure 4b present the results of these computations: the relative error of the
optimization goal (εη,rel) and the constraints (averaged of absolute values, |ε̄|φ,rel), as a function
of the sampling technique and the oversampling factor (α). Although εη,rel is small for the
optimizations done with α = 4, |ε̄|φ,rel is comparatively large, thus invalidating any conclusions
drawn from these cases. On the other hand, independently of the sampling technique, εη,rel

somehow stabilizes for α ≥ 8, and it seems to reach convergence as the sampling population
increases. However, notice that the estimation of the constraints is poor when using random and
sparse grid-random sampling strategies. Conversely, the sue of a sparse grid-latin hypercube
guarantees accurate estimation of the constraints, hence making this sampling strategy the most
reliable.

ǫ
η
,
re
l
[%

]

α [−]

 

 

4 12 20
−0.8

0

0.8
latin h.
grid
random

(a)

4 12 20
0

8

16

α [−]

|ǭ
| φ
,
re
l
[%

]

latin h.
grid
random

(b)

Figure 4: Sensitivity analysis of the optimization. a) Objective relative error as a function of
the sampling strategy and the oversampling factor. b) Constraints average relative error as a
function of the sampling strategy and the oversampling factor.

As previously discussed, the analysis on the eigendecomposition of Ĉ indicated that the
original model might be reduced to a surrogate function of two independent variables. This
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means that, in average, perturbations in the selected two active variables change ηts more than
perturbations in the five residuary (inactive) variables [5]. It follows that the surrogate model
inherently features an error, for not all the directions where the function is varying are taken in
account. Such characteristic manifests in Figures 4a and 4b, which illustrate that, independently
of the number of samples, the surrogate will always present an offset respect to the original
model value.

Worthy highlights can be extracted from Section 3.1 and the last paragraphs: i) this design
problem can be transformed into a surrogate with two active variables, ii) sampling by means
of a sparse grid-latin hypercube strategy yields the best results. These conclusions are used
now to perform a comparison between a genetic algorithm optimization and a gradient based
optimization using the active subspace models.

3.3 Comparison between optimization strategies

This section contains the results of the comparison between two optimization strategies: i)
the original procedure conceived to perform the preliminary fluid dynamic design of turbo-
machinery, i.e., zTurbo combined with a genetic algorithm (see Sec. 2.1.1); ii) the new ap-
proach, which relies the surrogate model combined with a gradient-based search method (see
Sec. 2.2.2). In order to make a fair comparison, the population number and sample size of both
methods are expressed as a function of the oversampling factor, so that

P = M = αm, (18)

where P is the genetic algorithm population size, m is the number of design inputs, and M is
the number of samples used to build the active subspace model. Figure 5a presents the optimum
as a function of the oversampling factor, and obtained by the two optimization methods.

4 12 20
82

84

86

α [−]

η
ts
[%

]

G.A.
L.H. + A.S. + grad.

(a)

4 12 20
0

30

60

α [−]

t
[m

in
]

G.A.
L.H. + A.S. + grad.

(b)

Figure 5: Comparison between optimization strategies: i) genetic algorithm (G.A.), and ii) latin
hypercube combined with an active subspace transformation and a gradient based optimization
(L.H. + A.S. + grad.) a) Objective (ηts) as a function of the oversampling factor. b) Optimization
time (including the construction of the surrogate) as a function of the oversampling factor.

In genetic algorithms, larger P increases the likelihood of finding a global optimum at a cost
of increasing the computational time. This response features an asymptotic response, hence,
at a certain point, increasing P will not improve the solution considerably, yet it will consume
more resources. This is the response observed in Figure 5a, where it seems that α = 12 is a
compromise between solution optimality and population size. On the other hand, the optimum
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obtained by the gradient base method combined with the surrogate converges after α = 8, since,
as presented in Figure 4a, εη,rel stabilizes for α ≥ 8. Note that eventually both solution methods
coincide, for the difference between their optima lays within the expected error of approxi-
mately ±1% (see Fig. 3b). Finally, although the surrogate corresponding to α = 4 apparently
yields a better optimum, recall that this solution presents a comparatively large deviation in the
constraints (see Fig. 4b), hence disqualifying these results.

Figure 5b presents the computational time required by both optimization procedures as a
function of the oversampling factor. The chart includes the time required to build the surrogate,
in order to make a proper comparison. Note that the optimization by means of active subspaces
presents a lower computational burden, almost independently from the population size (at least
four times faster). That is, even comparing a genetic algorithm with α = 4 with a surrogate
optimization with α = 20, it is observed that the latter is computationally lighter.

3.4 Physical insight given by the surrogate

Relevant knowledge is gained by comparing the optimum design solutions obtained by both
methods. The genetic algorithm presents the best results when using α = 12 (see Fig. 5a),
hence this solution is selected. Although the optimum and the constraints given by the surro-
gate converge for α ≥ 8 (see Fig. 4), a closer look reveals that the error slightly decreases as α
increases. For this reason, the comparison is done with the surrogate built with α = 20. Fig-
ure 6a presents the error in the constraints corresponding to this solution. The deviation does
not exceed ±1%, hence demonstrating again the robustness of the optimization.

1 2.5 4
0

0.5

1

i

|ǫ
| φ

i
,r
el
[%

]

(a)

1 4 7
-2.2

0

2.2

i

x
i
[−

]

G.A.
L.H. + A.S. + grad

(b)

Figure 6: a) Constraint relative error for the optimum drawn by the surrogate model (α = 20).
b) Optimal design inputs drawn by the genetic algorithm (G.A), and the surrogate model (L.H.
+ A.S. + grad.).

The optimum design inputs are presented in Figure 6b. Although the turbine efficiency prac-
tically coincides (see Fig. 5a), the values of the design variables are mostly different. This sug-
gests that, for turbomachinery design problems, there might be more than one (m-dimension)
region containing constrained optima. Nonetheless, by virtue of the active subspace transfor-
mation, it is possible to gather these optima in a single region in the reduced-order response
surface.

To prove this point, the seven dimension input of both optima are transformed according
to the active subspace computed with α = 20. The results of this procedure are presented in
Figure 7. To derive physical conclusions, it is necessary to recall some theory. The eigenvalue
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decomposition of Ĉ reveals the directions where the function variability is the largest. This
decomposition is sorted in order of influence, meaning that the first active variable (correspond-
ing to the largest eigenvalue) affects more ηts. Due to this fact, it is likely that both optimizers
converge to constrained solutions in the region surrounding the first gradient dominant direc-
tion, i.e., the first optimum active variable should concur. This is confirmed in Figure 7a, which
shows the optimum design inputs in the active subspace.

1 1.5 2
0.2

0.8

1.4

i

x
η
,i
[−

]

G.A.
L.H. + A.S. + grad

(a)

-1.5 0 1.5
-1.5

0

1.5

74

74 80

84

86

xη,1 [−]
x
η
,2
[−

]

(b)

Figure 7: Coordinates of the genetic algorithm optimum (G.A) and the surrogate model opti-
mum (L.H. + A.S. + grad.) in the active subspace. b) Contour plot of the surrogate response
surface (α = 20), and solutions drawn by the genetic algorithm ( ) and the surrogate model
( ).

Figure 7b depicts the contour plot of the ηts reduced-order surface response (α = 20). It
also presents the coordinates of the solutions drawn by both optimizers. Notice that there are a
small regions where the effect of xη,2 is negligible. As a matter of fact, the optima reside in one
of them, thus featuring different xη,2, and proving that this region contains multidimensional
solutions that respect the constraints.
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68

78

88

xη,1 [−]

η
ts
[%

]

xη,2 = 1.0
xη,2 = 0.2
xη,2 = −0.6

Figure 8: Reduced-order response surface (see Fig. 7b) for the turbine efficiency observed from
an orthogonal point of view.

Figure 7b exposes the existence of a parabolic shape for ηts, which converges to a peak as
both active variables approach 1.5. In an attempt to understand this response, Figure 8 presents
the ηts surface from an orthogonal point of view. It is clear how the efficiency lines present a
convex shape with an (non-constrained) optimum that is mainly a function of xη,1. The second
active variable xη,2 scales the effects of xη,1.
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In order to determine the origin of the efficiency convex shape, the contributions of the loss
mechanisms from various samples following the ηts line (xη,2 = 0.2) are presented in Figure 9.
Observe in Figure 9a that the kinetic energy, the rotor profile, and secondary losses shape the
efficiency curve, while the other contributions remain relatively constant. In particular, the
convex shape observed in Figure 8 is induced by the kinetic energy loss.

The reasons for the losses variation can be deducted from Figure 9b, which presents the rotor
profiles and the velocity triangles for the selected samples. Observe that, as xη,1 increases, the
flow deviation decreases, hence abating the rotor profile and secondary losses. Moreover, as
xη,1 increases, the component of the velocity normal to the outlet area decreases, thus requiring
larger blade heights. Likewise, notice that larger xη,1 decreases the absolute velocity at the
outlet of the machine, hence increasing the efficiency until a maximum is reached (xη,1 ≈ 0.7),
after which the outlet kinetic energy again increases.

∆
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Figure 9: a) Loss contributions relative to the eulerian work for selected samples along xη,2 =
0.2. b) Velocity triangles and rotor meridional channel for the selected samples. The solid lines
(-) in the velocity triangles correspond to the rotor inlet, the dashed lines to the rotor outlet (- -).

4 Concluding remarks

This work investigates the use of active subspaces to perform the fluid dynamic preliminary
design of turbomachinery. The case study consists on the design of an ORC single-stage radial
inflow turbine. Active subspaces are used to construct a reduced-order model of the machine
total-to-static efficiency and the meridional channel geometry. The surrogate is then tested
in a constrained optimization, and the results are compared against the original optimization
procedure (genetic algorithms combined with the original model). Ultimately, the response
surface is analyzed to gain physical knowledge on the design problem. The main results are
summarized as follows:

i) active subspaces exist in a (limited) design space. It is therefore possible to construct
reduced-order models for the turbine optimization objective, and the constraints. The
surrogates present an accuracy considered satisfactory for the objectives of this work
(±1%for the total-to-static efficency).

12



Sebastian Bahamonde, Matteo Pini and Piero Colonna

ii) By means of the surrogate models, it is possible to switch to gradient-based search meth-
ods. The optimization results show that, compared with the original method, using the
surrogates is computationally less demanding (at least four times faster) and compara-
tively accurate.

iii) The design optimization of ORC turbomachinery likely feature multiple regions contain-
ing constrained optima. The active subspace transformation gathers this optima in a single
region in the reduced-order response surface.

Although the work has been done in a limited design space, the active subspace methods have
proved to be a valuable tool for turbomachinery design. Future work will deal with other ex-
pander configurations and a larger design space.
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Nomenclature Subscripts
α oversampling factor 0, 1, 2, 3 stage position
β3 rotor outlet blade angle ac active
Ĉ uncentered covariance matrix ic inactive
D mean diameter min minimum
ηts turbine total-to-static efficiency max maximum
γ2 stator outlet blade angle h hub
Λ̂ eigenvalue matrix s shroud
λ̂ eigenvalue η related to efficiency
M number of samples φ related to zTurbo output
M2,rl relative Mach number at rotor inlet ls loss
m dimension of design inputs vector Abbreviations
ṁ mass flow rate A.S. active subspace methods
N number of constraints G.A. genetic algorithm
n dim. of reduced-order inputs vector L.H. latin hypercube
Ω rotational speed grad. gradient
P turbine inlet pressure
ψ constraint
φ zturbo output
R degree of reaction
r mean radius
Ŵ eigenvector
x design input vector
x design input value
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