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Abstract 
Building in precast concrete has multiple benefits over building with in situ concrete. The most 

important ones are a reduced construction time on site, a smaller minimally required 

construction site, better control of the concrete quality in the factory and, if applied well, a high 

repetition factor for building equipment. Despite all these advantages, tall stability structures 

are often still designed as a monolithic structure. The large amount of connections between all 

the separate elements reduces the overall stiffness of the stability structure. Since the 

dimensions of the stability structure of a tall building are often determined by the required 

building stiffness, a monolithic structure is preferred in most cases. 

Multiple types of connections can be applied in the joints between precast concrete wall 

elements. One of these for the vertical joints is the profiled mortar connection, which was 

developed and tested by D.C. van Keulen (Van Keulen, 2018). The profiled joint of this 

connection is filled with thixotropic mortar, whereby the use of formwork is unnecessary. 

Furthermore the reinforcement in this type of connection is concentrated in the horizontal joints 

between two superimposed wall elements, whereby the connections are constructed more 

easily and faster. So application of these connections will lead to an efficiently constructible 

shear wall. 

The aim of this research is to find a practical approach to model the vertical profiled mortar 

connection in a finite element model of a shear wall structure. For this purpose the linear shear 

stiffness of the connection and the structural effects, by which it is determined, were analysed 

first. The two investigated effects that determine the magnitude of the shear stiffness are the 

characteristics of the mortar joint and the lateral stiffness. The former comprises the properties 

of the mortar and the profile of the joint. The latter is the resistance to dilatation of the joint that 

is provided by the in plane stiffness of the surrounding precast concrete wall elements and the 

axial stiffness of the transverse reinforcement in the horizontal joints. Dilatation of the joint 

would be caused by the horizontal component of the diagonal compressive forces that develop 

in the mortar joint due to shear locking. 

The magnitude of this lateral stiffness is determined by design parameters following from the 

architectural and structural design. The size and location of openings in the shear wall, the 

stiffness of the applied precast concrete and the stiffness of the transverse reinforcement are the 

four design parameters of which their influence on the lateral and shear stiffness was analysed 

in a parameter study. Based on this analysis, the size and location of the window openings are 

designated as the two most relevant of these four design parameters. 

Furthermore, the influence of two characteristics of the mortar joint was also analysed in the 

parameter study. These properties are: the axial stiffness and angle of the compression 

diagonals in the joint. It appears that they have a larger influence on the shear stiffness of the 

connection than the design parameters related to the lateral stiffness have. So the characteristics 

of the joint are considered to be more important for the shear stiffness of the connection than 

the lateral stiffness and its related design parameters. 

Keeping the goal of the research in mind, with the information of previous analyses a method 

was developed that tries to calculate the shear stiffness that can be assigned to linear interface 

elements that model the vertical connections.  
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The developed calculation method makes use of values for the joint properties, which are 

determined by a calibration to the test results, and it uses an approximated value of the lateral 

stiffness. For this approximation, the concrete wall elements are schematised as Timoshenko 

beams. These are subjected to a perpendicular distributed load in order to define their stiffness, 

which is used as measure for the in plane stiffness of the concrete wall elements. Combined with 

the axial stiffness of the transverse reinforcement, it defines the approximated lateral stiffness. 

Based on the performed parameter study’s results, an analytical relation was found that 

calculates the linear shear stiffness of the vertical profiled mortar connection from the 

combination of the lateral stiffness and the axial stiffness and angle of the compression diagonals 

in the joint. This relation is subsequently used to calculate the shear stiffness based on the 

lateral stiffness defined by the Timoshenko beam approximation. This shear stiffness is assigned 

to vertical interface elements that model the vertical connection between two adjacent precast 

shear wall elements. 

Application of the calculation method leads to a significant error of the shear stiffness. This error 

is caused by the inaccuracy of the approximated lateral stiffness, whereby the largest error is 

found for the cases where the influence of the lateral stiffness is the largest. In the extreme case 

the real shear stiffness was 27% smaller than the value that was calculated.  

Nevertheless, this calculation error leads to only a small difference in top deflection of a shear 

wall with averagely sized window openings. In the extreme case for this shear wall, the 

difference in top deflection is 1.8% between the upper and lower limit of the calculation 

method’s band width. This error is so small that the calculation method can be applied to 

determine the shear stiffness that is the input for the interface elements. However, the difference 

in top deflection caused by the band width of the calculation is too large to be able to compare 

the performance of the vertical profiled mortar connections with that of other types of 

connections in a precast concrete shear wall. 

Since the error of the calculation is caused by the inaccuracy of the lateral stiffness and this error 

leads to relatively small variations of the shear wall’s top deflection, it is finally suggested to 

include the contribution of the lateral stiffness in a different way.  In that case the shear stiffness 

of the interface elements is simply calculated by a single formula that only considers the two 

joint properties that have been analysed: the axial stiffness and angle of the compression 

diagonals in the joint. A reduction factor can be applied to take into account the effect of the 

lateral stiffness, but if this isn’t done, the error of the top deflection is at most 3.2% for the shear 

wall analysed in this research. Nevertheless it is advised to include the correction factor to 

reduce the error of the modelling approach. The advantage of this method is that the lateral 

stiffness, of which the magnitude appeared to be hard to determine, is included by a simple 

factor instead of a complex Timoshenko approximation. Moreover further in depth research into 

the lateral stiffness is less necessary for application of this approach. For these reasons, it is seen 

as a very practical and easy approach to model the vertical profiled mortar connections. 
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1 Introduction 

The choice between precast or in situ concrete is always based on multiple aspects such as costs 

of materials and labour, design and construction time, technical requirements, experience of the 

contractor, the conditions on the building site, quality of the materials and the possibilities for 

transportation. 

The essential difference between building in precast or in situ concrete is that the former results 

in a construction process in which completed building components are assembled on site, 

whereas the latter results in a process where the building components are produced on site. 

Building in precast concrete can have benefits over building with in situ concrete. The most 

important ones are a reduced construction time on site, a smaller minimally required 

construction site, better control of the concrete quality in the factory and if applied well, a high 

repetition factor for building equipment. 

Despite all these advantages, tall stability structures are often still designed as a monolithic 

structure. The large amount of connections between all the separate elements reduces the 

overall stiffness of the stability structure. Since the dimensions of the stability structure of a tall 

building are often determined by the required building stiffness, a monolithic structure is 

preferred in most cases. 

Research has been done on the stiffness of precast stability structures with respect to monolithic 

concrete structures (van Keulen, 2010; van Keulen & Vamberský, 2012). Several parameters of 

the element layout used in precast concrete shear walls determine the global stiffness. The most 

influencing parameter is the configuration of the elements. Two options are possible: a masonry 

or a stacked configuration (Figure 1.1). Currently the masonry type is common practice. It is 

relatively stiff and a big advantage is the possibility to keep the vertical joints structurally open, 

which reduces the amount of work and costs. The main advantage of a stacked configuration is 

its regularity. This reduces the total amount of precast elements, the amount of different precast 

elements, the vertical transport on site and it increases the repetition factor of the moulds in the 

precast concrete factory. In this configuration however, the vertical joints must be able to 

transfer shear forces, whereas for the masonry configuration the joint overlapping elements 

transfer shear by dowel action. When shear force transfer over the vertical joints is guaranteed, 

the “columns” of wall elements work together as a coherent structure, enabling the stacked 

configuration to be as stiff as the masonry type (van Keulen & Vamberský, 2012). The 

mechanism is illustrated in Figure 1.2. 
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Figure 1.1 Element configurations 

 

 

Figure 1.2 Vertical shear stresses in the joints of a precast shear wall (Van Keulen, 2018) 

1.1 Vertical shear connections developed and tested by Van Keulen 
One of the current solutions for the vertical joints in a shear wall is to apply a “cast-in-place loop 

connection”. This connection is illustrated in Figure 2.4. In this case the joints are filled on site 

with cast-in-place reinforced concrete. However, this method contradicts the benefits of precast 

concrete with respect to construction speed, since it requires significantly more labour on site. 

For the PhD-research of ir. D.C. van Keulen several profiled mortar connections that could be 

used for the vertical interfaces between precast wall elements, were developed and tested (van 

Keulen, 2015). These connections are shown in Figure 4.1. A principle sketch of these 

connections is provided in Figure 1.3. The connections have two important properties, leading to 

three major advantages: the joint is filled by thixotropic mortar and the required transverse 

reinforcement is not distributed over the entire length of the joint, but concentrated in the 

horizontal joints at floor level (see Figure 1.3). Due to the use of thixotropic mortar, application 

of formwork is unnecessary. By avoiding the use of distributed reinforcement, there aren’t any 

steel bars piercing the moulds that are used for manufacturing of the wall elements. Therefore 

simpler moulds can be used, resulting in an easier fabrication process. Furthermore, elements 

without protruding steel are easier to handle during transport and construction. Lastly, the 

construction speed is increased by preventing the use of formwork and the application of 

reinforcement in the joint itself. These three benefits, an easier production process, easier 

handling and transportation of the elements and a reduced construction time on the building 

site, completely agree with the intended benefits of constructing in precast concrete.  
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So application of the new profiled mortar connections in combination with a stacked 

configuration can lead to a very efficient design for a prefabricated concrete stability structure, 

which competes with a monolithic structure.  

Figure 1.3 shows a principle sketch of one of the connections that Van Keulen developed. The 

main variables determining the shear stiffness and capacity of the developed connections are the 

properties of the joint (e.g. type of mortar, geometry of the profile and present surface 

roughening), present normal stress in the joint and the lateral stiffness of the adjacent elements. 

The last is the in-plane stiffness of the adjacent wall elements, giving resistance to any dilatation 

of the joint. This dilatation is caused by the horizontal components of the diagonal compression 

forces that transfer vertical shear forces over the joint. These forces are indicated by the 

diagonal arrows in Figure 1.3. The three main variables were varied among the different tests 

that were performed by Van Keulen. Therefore, the test results indicate the relation between 

these variables and the properties of the connection.  

 

Figure 1.3 Principle of the connection applied in a wall (side view) (Van Keulen, 2018) 

1.2 Problem statement 
So, the use of vertical profiled mortar connections in combination with a stacked element 

configuration can lead to an efficient precast concrete design that structurally competes with the 

walls having a masonry configuration. However, the current information on the behaviour of the 

developed connections is limited and mainly consists of Van Keulen’s test results. Before these 

connections can be applied in structural design, more research into their behaviour is needed. 

The translation of the results into an approach to model the connections in a precast concrete 

shear wall, requires more research into the effect of the main variables that were named in 

previous section. This research focusses on this translation from test results to modelling 

approach by analysing the influence of the main variables on the connection’s properties and by 

developing a way to model the connections in finite element models of precast concrete shear 

walls. The problem statement of the research can therefore be formulated as: 
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“How can the vertical profiled mortar connection be modelled in practical situations?” 

As the problem statement indicates, the focus of this research is on the application of the 

connections in structural design situations and choices on scope, modelling and research aspects 

are made accordingly. In chapter 5 an overview will be given of all research aspects that play a 

role in modelling the connection. After that, the scope of the research will be determined in more 

detail. 

1.3 Outline of the report 
This report starts with an overview of the knowledge obtained from literature. Chapter 2 

discusses literature on connections in precast concrete structures and vertical profiled shear 

connections in particular. Chapter 3 elaborates on the structural behaviour of a shear wall and 

chapter 4 concludes the literature study with an overview of Van Keulen’s test results. 

Using the information obtained from the literature study, an overview is made of all the aspects 

that should be investigated in order to describe the behaviour of the vertical profiled shear 

connection completely. This overview is provided in chapter 5. Subsequently, the scope of this 

research is set by selecting some of the relevant aspects to elaborate on. This scope definition is 

described in paragraph 5.2. Paragraph 5.3 continues with an overview of the specific research 

questions that are within the scope of this research and that are investigated in the remaining of 

the report. 

Chapter 6 forms the beginning of the model study. This chapter describes the transition from 

Van Keulen’s test setup to a finite element model that is suitable for research. The developed 

finite element model is used to analyse the test setup in the finite element package DIANA 10.2. 

This analysis is described in chapter 7. Subsequently, the test setup model is expanded to one of 

a complete shear wall. This model is used for a parameter study that has been performed to 

analyse the influence of different parameters on the connection’s properties. This parameter 

study is discussed in chapter 8.  

Based on the parameter study some conclusions could be drawn about the way different 

parameters influence the behaviour of the connection, but several questions remain 

unanswered. The further research that tries to gain more insight into these questions is 

described in chapter 9. Chapter 10 includes the analytical formulas that have been derived in 

order to describe the behaviour of the modelled connection. Using these formulas, the setup of 

the practical modelling approach, that the problem statement aims at, is developed and 

described in paragraph 10.4. The practical modelling approach is then evaluated on a shear wall 

model in chapter 11, which concludes with a final proposal for a practical modelling approach in 

paragraph 11.5 and a calculation example in paragraph 11.6. 

Chapter 12 summarizes the conclusions of this research and the recommendations for further 

research.  

Appendix A provides a list of all used symbols, where the reader can retrieve the meaning of 

symbols used in the diagrams and formulas presented in coming chapters.  
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2 Literature study: Connections in precast concrete 

In precast concrete structures, the connections between the elements determine the cooperation 

between the precast concrete elements. This thesis will focus on vertical connections between 

wall panels, but several other connections are present in a precast structure. Figure 2.1 shows 

the type of connections that are usually present in a precast concrete structure (Lagendijk & 

Hordijk, 2016): 

1. Floor to floor 

2. Floor to beam  

3. Beam to column 

4. Column to column or foundation 

5. Floor to wall 

6. Floor to wall shear connection 

7. Vertical wall connection 

8. Horizontal wall connection 

 

Figure 2.1 Location of connections in precast concrete structures (Lagendijk & Hordijk, 2016) 

Besides connection 7, also connections 5, 6, and 8 interact with the precast wall panels. These 

three connections will therefore influence the behaviour of the vertical connection. Figure 2.1 

and Figure 2.3 for example show options for the floor to wall connection. Whether the floor is 

supported by a corbel or integrated in the wall determines the location of the transversal tie 

reinforcement with respect to the wall panels. This reinforcement is used as tying reinforcement 

by the vertical profiled mortar connection, that is investigated in this thesis. This is indicated in 

Figure 1.3. The horizontal connections between two stacked wall panels are often executed as 

smooth mortar joints with or without starter bars.  

The vertical joints between two adjacent wall panels are in most cases structurally open when 

the shear wall is designed according to the masonry element configuration of Figure 1.1. If a 

vertical shear connection is applied, as is required for a stacked element configuration, several 

options are possible. So called wet joints can be used, of which the cast-in-place loop connection 

in Figure 2.4 is an example. This connection can be executed with a straight or a profiled joint. 

For the type that is shown in Figure 2.4, a big disadvantage is the need of formwork when the 

joint is filled with mortar or concrete. If the wall panels are executed with a recess on the side 
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where the loop reinforcement protrudes from the panel, formwork is unnecessary, as Figure 2.5 

shows. 

Welded connections are an example of a dry connection. In this case a steel plate is casted into 

the wall elements. Reinforcement bars that are attached to this plate are connected to the main 

reinforcement net of the wall element in order to facilitate force transfer from the plate to the 

wall panel. This steel plate is then welded to the plate that is casted in the wall element that is to 

be connected. An impression of this type of connection is given in Figure 2.6, with a view on the 

inside of the wall and a view from the outside of the wall. 

This chapter starts with a short explanation of the principles of connection design. The second 

paragraph discusses the mechanisms whereby forces are transferred in connections and the way 

these mechanisms interact. The third paragraph provides a more detailed description of what is 

known from literature about the behaviour of profiled shear connections. This knowledge is 

most applicable to the profiled mortar connections that are analysed in this thesis. The chapter 

ends with a short summery of conclusions based on the performed literature study. 

 

Figure 2.2 floor-wall connections a. floor integrated in the wall (FIB, 2008, p. 95 & 257) b. floor supported by 
corbel (TU Delft, 2016, p. 10.10) 

 

Figure 2.3 floor-wall shear connection (FIB, 2008, p. 21) 
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Figure 2.4 Sketch of the cast in place loop connection 

  

Figure 2.5 The cast in place loop connection with recesses 

 

Figure 2.6 Sketch of the welded plate connection 
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2.1 General guidelines for connections 
The main difference between a structure of in situ and precast concrete for a structural engineer 

is the presence of connections between all elements. The purpose of the connections is to create 

a coherent structure. In designing connections many aspects must be considered. For example 

the structural behaviour, the type of structure and the construction methods must be taken into 

account. This paragraph describes these general aspects of connection design. 

Two books written by the International Federation of Structural Concrete give an overview of 

the design guidelines for connections in precast concrete (FIB, 2014; FIB, 2008).  

The purpose of a connection is to “transfer forces between the precast concrete elements in order 

to obtain a structural interaction when the system is loaded. The connection should secure the 

intended structural behaviour of the superstructure and the precast subsystems” (FIB, 2008, p. 31). 

Two terms are often confused: joint and connection. A joint is solely the interface between 

elements, whereas the connection is the combination of all the elements that play a role in the  

transfer of forces from one element to the other. A connection even includes the parts of the 

adjacent concrete elements where the internal forces are disturbed due the force transfer, the so 

called disturbed regions or connection zones. When one connection is a chain of structural 

elements, it even contains multiple joints (FIB, 2008, pp. 2-3,31).  

2.1.1 Aspects concerning structural behaviour 

Several aspects in connection design related to structural behaviour must be taken into account 

(FIB, 2014, pp. 97-102; FIB, 2008, pp. 31-34).  

 Capacity to transfer forces due to regular loads 

 Capacity to transfer forces due to accidental loads 

 Movements and deformations of connected structural members as a result of time-

dependent or temperature effects, but also regular loads 

 Ductility 

 Durability 

It is obvious that a connection must be able to resist loads caused by gravity and wind or 

earthquake loads. In case of accidents like collision or explosions the connections must be able 

to facilitate an alternative load path if necessary. Therefore some additional capacity is required. 

Design of connections to transfer forces is not just about the connecting components. Also the 

connection zone in the adjacent concrete element must be designed for the large local forces. 

Strut and tie models provide a tool to design the reinforcement required for spreading the local 

forces over the elements. 

Imposed deformations as a result of creep, temperature differences, shrinkage or swelling must 

be considered as well. There are basically two options to deal with this: restraining all imposed 

deformations and design for the resulting extra loads or enable all movements of the structure 

to prevent extra loads. Proper design of joints can make these movements possible. For example 

dilatation joints could be used. A connection can also get damaged by regular deformations as 

the Figure 2.7 indicates.  
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Figure 2.7 Damage of a beam column connection caused by beam deformation (FIB, 2008, p. 41) 

An important safety requirement is to prevent brittle failure of a structure. This leads for 

example to a minimal reinforcement ratio of concrete beams. However, a ductile beam spanning 

between two brittle moment resisting connections with an ultimate capacity lower than the 

failure load of the beam will still fail in a brittle way. Therefore the connections must be 

designed with enough ductility. Two terms are often confused: ductility and deformability. The 

deformability of a structural element just indicates the deformation at failure. It doesn’t provide 

any information about the capacity of the structural element at failure. When an element is 

ductile, it is able to deform a lot while keeping (a large portion) of its ultimate strength (FIB, 

2014, p. 100). In order to make a connection ductile, a balanced design can be applied. The aim 

of this design is to let the connection deform maximally while keeping its strength. In order to do 

so, all the brittle elements of the connection must have an ultimate strength larger than the 

ultimate strength of the most ductile element (FIB, 2008, pp. 49-50).  

Another structural requirement is the minimal durability of the connections. Besides that 

corrosion of elements must be avoided, the maintenance of the connections must be considered. 

Quite often the connections are unreachable in the finalised structure, wherefore their life-time 

must be longer than that of the other parts of the building structure (FIB, 2014, p. 101). 

2.1.2 Aspects concerning construction processes 

When designing the connections, the construction aspects must be taken into account as well. 

The minimal requirement is to use constructible connections. Some aspects to consider in order 

to obtain constructible connections are (FIB, 2014, pp. 97-102; FIB, 2008, pp. 55-70): 

 Dimensional tolerances 

 Simple Connections 

 Governing strength and stability requirements during construction 

 Congestion of concrete 

 Accessibility of the connections 

Dimensional tolerances are required due to inaccuracies in construction. The dimensions of 

precast concrete elements for example are never exactly as intended, due to variations in the 

manufacturing process. Furthermore the placement of the elements on site can never be 

completely accurate. The connections must allow for small dimensional variations in the 

structure compared to the drawings. 

Simplicity of the connections will reduce the risk of incorrect production. Furthermore it will 

also reduce the building costs. A simple connection is preferably with the least amount of 

different components.  



 

 Literature study: Connections in precast concrete page 10 

When a lot of components are cast in the adjacent concrete elements, congestion of the concrete 

during pouring might occur. This should be avoided. Furthermore the whole connection must be 

reachable for construction workers during the erection phase. A classic example of an incorrect 

design is a bolted connection in a tubular section, where the bolt inside the tube is unreachable.  

While designing connections, the acting loads during the construction phase must be considered 

as well. The governing load situation that the connection must be designed for can take place in 

this phase or special stability requirements during this phase where the total structure is 

incomplete are governing for design.  

The way the connections have to be installed is preferably in line with the intended speed of 

precast construction. Furthermore the connections are preferably designed well for transport 

and storage of elements. Some aspects to consider in relation to these topics are given in 

literature (FIB, 2014, pp. 140-141; FIB, 2008, pp. 56-60): 

 Weather sensitivity 

 Fast hoisting operations 

 Use of standardized connections with standard element sizes 

 Repetition of connections 

 Damage during transport and storage 

Having a less weather sensitive construction process enlarges the period suitable for operations. 

This increases the construction speed.  

A critical activity on site is the hoisting of concrete elements to their final positions. Purely 

vertical hoisting results in the fastest erection. However, when the connections do not allow this 

and require horizontal placement or placement under an angle, the construction process is 

slowed down and gets more difficult. For example when horizontal loop reinforcement is 

applied in the connections between wall panels, vertical placement isn’t possible without 

adjustments. Figure 2.8 shows the procedure in this case: the loops are bent upwards to allow 

vertical placement and afterwards they are bent to their original position again. For this reason 

Sorensen, Huang, Olesen and Fischer designed a connection with vertical loop reinforcement 

(Sorensen, Hoang, Olesen, & Fischer, 2017).  

Although the vertical loop reinforcement is a better alternative, it still has another drawback. 

The loop reinforcement protrudes from the concrete elements. This is more difficult and 

expensive to produce, since the cast in reinforcement penetrates the formwork during pouring. 

Furthermore protruding elements might lead to less efficient transportation or difficulties 

during storage. The risk of damage to the connections or elements during these activities is also 

larger.  

Using standardized connections with a high repetition factor makes the process cheaper and 

easier to perform. When each connection is exactly the same, the manufacturers and 

construction workers will know exactly what to do, which reduces the risk of mistakes. Standard 

items are mostly readily available which reduces costs and the risk of delay.  
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Figure 2.8 Vertical hoisting of two different vertical shear connections (Sorensen, Hoang, Olesen, & Fischer, 
2017) 

2.2 Force transfer in connections 
This paragraph discusses the principles of load transfer in connections. Several mechanisms 

contribute to the transfer of compressive, tensile and shear forces. Understanding of these 

mechanisms is crucial for working on connections in precast concrete engineering.  

2.2.1 Transfer of compressive forces 

Compressive forces in a structure are mainly a result of dead loads and live loads on the 

structure. Two examples of connections transferring compressive forces are connections 

between column ends and supports of beams and floor slabs.  

Compression joints are usually executed with bearings between the ends of the connected 

elements. This can be a hard bearing, like a steel plate, a mortar bearing or a soft bearing, like a 

rubber pad. A bearing is considered to be hard if its modulus of elasticity is at least 70 percent of 

the elasticity of the adjacent elements (Bachmann & Steinle, 2011, p. 175). 

 

Figure 2.9 Bearing between two vertical concrete elements (FIB, 2008, p. 93) 
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The bearings between the elements are required because a direct contact faces some problems. 

If elements are directly connected, the irregularity of the contact surfaces can cause stress 

concentration, eccentric application of forces and torsional effects (FIB, 2014, p. 111). The 

bearings equalize the contact surface and mitigate these effects. Only under certain 

circumstances with small movements and forces a direct contact surface is allowed (FIB, 2014, p. 

111). Although other literature indicates that some regulations do always require a bearing 

layer (Bachmann & Steinle, 2011, p. 175).  

Steel bearings are often required when large compressive forces are transferred. Elastomeric 

bearings are often used in connections between horizontal and vertical elements. Floor slabs are 

often supported by bearing strips, when the horizontal force transfer is arranged in a different 

manner (FIB, 2008, p. 98). Mortar joints are often used in vertical elements with moderate 

compressive forces. The horizontal joints between precast wall elements are filled with mortar 

in most cases. 

Compression joints are often combined with other actions as well. For example a connection in a 

clamped column must also transfer bending moments. This will lead to extra demands on the 

detailing of the joints. Furthermore, the expected deformations in the joint lead to requirements 

on the dimensioning. As Figure 2.7 indicates for example, the bearings supporting a floor must 

have a sufficient height and offset from the corbel end to prevent damage (FIB, 2008, p. 41).  

Before the mechanisms, playing a role in compressive connections, are considered, the failure of 

concrete under compression is looked at. Two tests are available to determine the compressive 

strength: a cube and a cylinder compression test. The cylinder test gives 20 percent lower values 

for the strength, since it can be seen as a purely uniaxial test. In a cube test, the stress state is 

two dimensional. The cube wants to expand in the direction perpendicular to the load, but this 

expansion is prevented by the test setup. Frictional forces between the cube and the steel plates 

above and below induce a lateral compressive stress in the cube, which increases the capacity 

(Fennis & Walraven, 2013, p. 23). When the lateral deformations are not constrained, the 

ultimate compressive strength isn’t reached and the cube fails in a shear or tensile failure, 

whereby cracks parallel to the loading direction occur (FIB, 2008, p. 103). Figure 2.10 shows the 

behaviour of a tested cube. Understanding this effect is important while looking at compression 

connections. The lateral stresses play an important role in this case.  

 

Figure 2.10 Behaviour of concrete in a cube compressive test. a. without lateral restraints b. with lateral 
restraints (FIB, 2008, p. 103) 

Two mechanisms induce lateral tensile stresses in the adjacent concrete elements (FIB, 2014; 

FIB, 2008; Bachmann & Steinle, 2011):  

 Different lateral expansion of the connection layers 

 Divergence and convergence of stress 
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Consider a connection between two concrete column ends with a layer of a different material in 

between (Figure 2.11). Poisson’s ratio is different for both materials and so is their lateral strain 

as a consequence of the axial load. The difference in lateral strain leads to a difference in desired 

lateral expansion between each of the layers. However, if friction forces in the interface between 

the layers restrain lateral movements of the material layers, shear stresses will develop in the 

interfaces. These shear stresses will result in lateral tensile or compressive forces in the 

concrete elements and the bearing layer.  

Whether lateral tension or compression occurs in a material depends on the ratio of the 

Poisson’s ratio over the Young’s modulus for both materials. When this ratio is lower for the 

concrete elements than for the bearing material, as is the case for a steel bearing, the concrete 

would expand more in lateral direction. The frictional restraint causes lateral compressive 

stresses in the concrete, having a positive effect on its bearing capacity. In the steel bearing 

tensile stresses will occur (Figure 2.11a) (FIB, 2008, pp. 100-102). Exactly the opposite is the 

case for elastomeric bearings, having a larger ν/E ratio. In that case the prevented deformation 

will induce lateral tensile stresses in the concrete elements and compressive stresses in the 

bearing (Figure 2.11b). These tensile stresses will generally be larger than the splitting tensile 

strength, wherefore lateral reinforcement is required in the concrete elements (FIB, 2008, p. 

103).  

 

Figure 2.11 Lateral stresses due to expansion effect. A. bearing with smaller ν/E. B. bearing with larger ν/E  ( 
(FIB, 2008, p. 102) original from BLF (1995) and Basler and Witta (1966)) 

Especially for elastomeric bearings transferring a high compressive force or dealing with large 

movements, the use of reinforced bearings can be an option. In that case steel sheets are applied 

in the rubber bearing. These sheets take up the lateral tensile forces instead of the concrete 

(Bachmann & Steinle, 2011, pp. 187-188).  

The ν/E ratio of mortar is also smaller than that of concrete, resulting in compressive stresses in 

the mortar and tensile stresses in the concrete. While the compressive stresses are of major 

importance, since those provide the large axial compressive strength of the mortar, the tensile 

stresses in the concrete are normally smaller than other effects in this case (FIB, 2008, p. 102). 

The second effect causing lateral tensile stresses has to do with the flow of forces in the 

connection (FIB, 2008, pp. 108-109). At a certain distance from the connection the stress in the 

column is uniformly distributed. If the bearing area is smaller than the cross-sectional area of 

the column, the uniform stress must converge to the bearing area. After passing the joint, the 
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stress diverges again. Converging and diverging of stresses results in lateral stresses as well, 

since the stress trajectories change direction. Figure 2.12 illustrates this effect in a strut and tie 

model. The transversal tensile stresses must be taken up by splitting reinforcement.  

 

Figure 2.12 Strut and tie models for divergence and convergence 

Although the connection is likely to fail in a different manner, the check on sufficient bearing 

capacity must always be made. In order to check the compressive stress compared to the 

capacity, one must consider the effective loading area, which is dependent on the type of bearing 

pad used (FIB, 2008, p. 107). 

The compressive connection will in almost all cases fail due to secondary tensile stresses. 

Therefore the focus is on designing the required lateral reinforcement. The force taken by this 

reinforcement is the summation of the splitting force and the force due to restricted lateral 

expansion, possibly enlarged by a present horizontal force (FIB, 2008, p. 111).  

2.2.2 Transfer of tensile forces 

For the transfer of tensile forces, other types of connections are necessary. As commonly known, 

the tensile strength of concrete is limited. A tensile force could be transferred between elements 

by adhesion of the concrete elements and the grout or concrete in the connection. However, it 

should always be assumed that the joint section is cracked (FIB, 2008, p. 135). This holds 

because the possible adhesion between grout and the precast element is to a large extend 

dependent on insecure executional aspects, such as surface roughness and cleanliness of the 

element surfaces (FIB, 2014, p. 107). Furthermore restrained movements, shrinkage for 

example, can cause cracks, whereby the bond is gone.  

So when designing a tensile connection, steel elements must be used to transfer the force from 

one element to another. These elements must be linked to the main reinforcement of the precast 

concrete elements. The tensile connections can be realised by using bolts, welds, protruding 

overlapping loop reinforcement or continuous bars over the joint (FIB, 2008, p. 135). Bolted 

connections can be made with cast in threaded sockets, which prevents the use of projecting 

steel from the elements. However, smart solutions are required to design a bolted connection 

with sufficient dimensional tolerances. Welds can be used to connect protruding reinforcement 

bars or steel plates cast in the element’s faces (FIB, 2008, p. 138). Furthermore welds are 

sometimes used to connect anchor plates to the steel bars transferring the tensile forces. The 

way these welds are executed on anchor plates affects the characteristic behaviour of the 

connection (Bachmann & Steinle, 2011, p. 192).  
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An example of a connection with a continuous bar is the connection between two hollow core 

slabs that is illustrated in Figure 2.13. 

 

Figure 2.13 Connection between hollow core slabs (FIB, 2008, p. 135) 

In this case horizontal grooves, in which the reinforcement bars are placed during construction, 

are made at the end of both floor slabs. The grooves are later filled with grout. This is called 

indirect anchorage, the opposite of direct anchorage, whereby the bars are casted in during 

production (FIB, 2008, p. 136). When direct anchorage is applied, the bars projecting from both 

elements are usually connected by overlap in joint between the two concrete elements that is 

filled on site (FIB, 2014, p. 104). The overlap must be sufficiently long to transfer the tensile 

forces by bond between the steel bars or a weld can be applied.  

Different failure mechanisms determine the capacity of tensile connections (FIB, 2008, p. 139). 

 Splitting failure of the concrete 

 Pull out failure  

 Extensional failure of the bar 

 Failure of the welds (If applied) 

The reinforcement bars are anchored in the concrete elements either by bond or by the use of an 

anchor plate, bend or hook. In order to rely on bond of the ribbed reinforcement, the anchorage 

length must be sufficient. If there isn’t enough space to accommodate the required length, one of 

the anchors can be applied. In this way pull out of the reinforcement bar is prevented. The 

anchorage of the bars induces splitting tensile stresses in the concrete element. These stresses 

must be resisted by applying enough concrete cover or transverse splitting reinforcement. The 

two failure modes are illustrated in Figure 2.14. 

 

Figure 2.14 a. splitting failure b. pull out failure (FIB, 2008, p. 139) 
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In relation to splitting forces the use of end anchors is unfavourable since they introduce 

relatively large local forces into the concrete, whereas anchorage by bond distributes the forces 

over a certain transmission length. Two types of pull-out failure are specific for the application 

of anchors: Concrete cone pull-out and anchor slippage. The anchors must be placed sufficiently 

deep in the concrete element to prevent concrete cone pull out and the size of the anchor must 

be large enough to prevent anchor slippage (FIB, 2008, pp. 139-141).  

The transfer of tensile forces by bond between the reinforcement bar and the concrete takes 

place over a certain “transmission length”, which isn’t necessarily equal to the full anchorage 

length. The transferred tensile force is spread over the transmission length resulting in smaller 

splitting forces in the concrete element (FIB, 2008, pp. 141-143).  

The bond stresses are not equally distributed over the complete transmission length. The 

highest stresses occur at the end of the bar where the load is introduced (the active end), the 

lowest occur at the embedded end of the bar (the passive end). Since the bond stresses aren’t 

uniform, the slip of the bar relative to the concrete isn’t either. When a relatively small force is 

transferred, the bond stresses and slip at the passive end will be equal to zero, while this is 

definitely not true for the active end of the bar (Figure 2.15a). The difference in shear slip in 

both ends results in an elongation of the bar. The passive end of the bar doesn’t move, since the 

slip at this place is equal to zero (FIB, 2008, pp. 141-143). 

For a bar transferring a larger force, the anchorage and transmission length become equal, 

whereby the bond stresses and slip at the passive end aren’t equal to zero but still smaller than 

at the active end (Figure 2.15b). The bar partly moves as a rigid body and partly elongates. For 

even larger forces the distribution of the bond stress reaches the capacity at each location along 

the bar and therefore becomes more uniform. For this reason, the full bond capacity over the full 

anchorage length is taken into account in ULS design.  

Due to locally high bond stresses near the active end, the concrete starts cracking at this 

location. This reduces the bond stresses and might even eliminate force transfer along the first 

part of the bar (FIB, 2008, pp. 141-143). These reduced stresses are indicated by dashed lines in 

Figure 2.15. 

 

Figure 2.15 Anchorage of a tension bar. a. For a small tensile force. b. For a large tensile force. (FIB, 2008, p. 141) 

As commonly known a structure must be able to redistribute forces when at a certain location 

the capacity is reached and it must show significant deformation before failure in order to warn 

people. For this reason ductility design is applied which demands connections to behave in a 

ductile manner. As discussed, the properties of end anchors and bond between the 
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reinforcement and the concrete element determine the capacity for concrete splitting and pull-

out failure, two brittle failure modes. A properly designed tensile connection fails by extensional 

failure of the reinforcement. In this way the full ductility of the steel is used before failure occurs. 

The capacity governed by the two brittle failure modes must therefore be larger than the tensile 

capacity of the reinforcement. This sets strict requirements for the dimensions of end anchors 

and anchorage lengths.  

Another type of tensile connection is the loop connection (See Figure 2.4, Figure 2.8 and Figure 

2.38). The precast elements have protruding reinforcement loops which are connected in a joint 

that is casted in situ. This type of connection is also able to transfer shear forces and bending 

moments. It is often applied in continuous slabs (FIB, 2008, p. 191) and profiled shear joints.  

Figure 2.16 illustrates the force transfer in the loop connection. The tensile forces in the 

reinforcement introduce a radial compressive stress in the concrete between the overlapping 

loops. This compressive stress is transferred by a compression diagonal to the adjacent 

reinforcement loop protruding from the connected concrete element. Concrete splitting tensile 

stresses occur in plane of the loops by the radial distribution of the compressive stress and also 

in plane of the diagonal concrete strut due to the inclination of the compressive stress. The loop 

reinforcement itself deals with the tensile stresses in plane. In order to take up the tensile 

stresses in plane of the strut, transverse reinforcement bars are required (FIB, 2008, pp. 191-

192). In order to prevent concrete crushing of the diagonal strut, specific requirements are set 

for the dimensions of the connection (FIB, 2008, pp. 192-193). Application of the transverse 

reinforcement and the correct dimensions ensures the structural integrity and ductility of the 

connection, which fails by rupture of the steel. Maybe the transverse reinforcement can also 

contribute to the force transfer by dowel action (See section 2.2.3.3), but this isn’t explicitly 

mentioned in studied literature. 

 

Figure 2.16 force transfer in a loop connection (FIB, 2008, p. 192) 

Another way of transferring tensile forces is by using a dowel connection (Figure 2.19). Dowels 

are steel bars, connecting two or more elements, that are placed perpendicular to the direction 

of loading. In this way the dowels transfer the tensile forces by shearing. In the paragraph 2.2.3 

dowel action is discussed in detail since it is mainly used to transfer shear forces.  
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2.2.3 Transfer of shear forces 

In a structure shear forces are transferred between floor slabs and wall panels, two adjacent 

floor slabs and different wall panels of a stability wall. Different mechanisms can be used to 

transfer the shear forces from one element to another. These mechanisms are described in 

plenty of literature (Bachmann & Steinle, 2011; FIB, 2014; FIB, 2008; van Keulen, 2015; ten 

Hagen, 2012): 

 Adhesion 

 Friction due to external compression 

 Friction due to clamping forces induced by transverse reinforcement 

 Dowel Action 

 Shear locking or mechanical interlocking 

This paragraph describes the mechanisms for shear transfer and their possible interaction. 

Understanding of these mechanisms is essential for the investigation into shear connections. It 

must be noticed that shear can also be transferred by mechanical devices in the elements 

connected by welds. This type of connection does not specifically rely on any of the five 

mechanisms and is therefore not discussed any further. 

2.2.3.1 Adhesion 

Bond between the precast element and the joint grout or concrete is caused by adhesive forces 

between the two materials. Shear transfer by adhesion behaves very stiff, like a monolithic 

structure. However, as already mentioned, adhesion is very easily affected by executive 

circumstances and restrained deformations of the structure. In many cases the interface must be 

assumed as cracked, whereby force transfer by adhesion isn’t possible. 

2.2.3.2 Shear friction 

In structural engineering friction in a contact surface is often used to transfer shear forces. In a 

raft foundation for instance, the resultant horizontal force on the structure is transferred to the 

soil by friction between the concrete slab and the soil. This concept is for example regularly 

applied in the foundation of hydraulic structures. The capacity of this transfer mechanism in that 

case can be determined by the following formula: 𝐹 = 𝜇 ∗ 𝑁. Here μ is the friction coefficient of 

the specific contact surface and N the force acting normal to the contact surface. This formula 

indicates the importance of a constant normal pressure in the joint for the friction mechanism to 

take place. 

Figure 2.17 shows schematically the transfer of shear forces by friction between concrete 

elements and joint grout or concrete. The normal force Nc can originate from different effects. In 

a horizontal joint of a load bearing wall, a normal gravity force will always be present. In other 

connections the joint can be prestressed, which is a rather complicated and expensive option, or 

transverse reinforcement can be applied. This reinforcement is initially unloaded, but will be 

stretched as a result of dilatation of the joint. The horizontal shear load will cause a certain slip 

of the cracked interface. The crack will open as a result of the roughness of the contact surface, 

as illustrated in Figure 2.17c. The dilatation of the joint imposes an elongation of the steel 

reinforcement. The tensile force in the reinforcement is compensated by a compressive force in 

the concrete, facilitating friction to take place. 
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Figure 2.17 Shear friction a. compression by external load b & c. compression by lateral reinforcement (FIB, 
2008, p. 199) 

The process is clearly governed by two characteristics: The normal force and the roughness of 

the surface. Both determine the relations between shear slip and dilatation and shear resistance. 

The importance of the surface roughness leads to the desire of classifying interfaces according to 

their roughness. Different methods are developed for this purpose, among which the 

classification of the Eurocode (FIB, 2008, pp. 222-224).  

The relation between the slip and dilatation width is presented in Figure 2.18a. First the 

dilatation increases with increasing slip, but at a certain point the effect of the surface’s largest 

unevenness is fully included whereby the separation of the surfaces remains constant. The 

maximum dilatation is larger for a rougher surface. As the figure indicates as well, a large normal 

stress reduces the maximum dilatation. The normal stress crushes the irregularities in the joint 

surface, reducing the maximum dilatation. The most prominent irregularities will crush the first, 

whereby a more uniform roughness develops over the joint, improving the uniformity of the 

shear stress distribution over the joint (FIB, 2008, pp. 124-129). Just like the relation between 

the slip and dilatation, the relation between slip and shear resistance is also asymptotic, as 

shown in Figure 2.18b in the upper diagram. 

 

Figure 2.18 a. slip-dilatation relation b. shear-slip relation (FIB, 2008, pp. 225,229) 

According to the basic formula for shear friction: 𝐹 = 𝜇 ∗ 𝑁, the capacity can be increased by 

either improving the surface roughness or creating a larger normal stress. The latter can be 

obtained by applying a larger amount of transverse reinforcement bars, all elongated by the 

dilatation of the joint (FIB, 2014, p. 107). However, the capacity won’t rise to infinity. The upper 

limit is determined by the compressive strength of the concrete (FIB, 2008, p. 199). This upper 

limit is described by the study of Nielsen in 1984 (FIB, 2008, pp. 235-236). The combination of 

the vertical compressive stress and the horizontal shear stress leads to an inclined compressive 



 

 Literature study: Connections in precast concrete page 20 

force in the concrete relative to the face of the joint. Theory of plasticity is applied to evaluate 

the force equilibrium of the shear force, tensile force in the steel and concrete compressive force 

at the moment when the steel yields and the concrete crushes. This evaluation determines the 

amount of reinforcement leading to the maximum capacity. This depends on the angle between 

the compressive forces and the joint, which is determined by the friction coefficient. 

The transverse reinforcement must be anchored in the concrete elements. Just as for tensile 

connections, this can be done by bond or end anchors. The major difference between the two is 

the magnitude of the tensile force that develops. In a bar with end anchors without bond, the 

elongation of the bar is spread over its full length, whereas in a bonded bar the elongation is 

localized near the joint interface. The relation for the stress in the bar is given by:  

𝜎𝑏𝑎𝑟 = 𝐸 ∗
w𝑗𝑜𝑖𝑛𝑡

𝐿
 

The elongation of the bars in both cases is equal to the dilatation of the joint. However, since the 

stress is inversely proportional to the length over which the elongation occurs, the force in the 

bar anchored by bond is much larger. This results in a larger compressive stress over the joint 

and so a larger shear capacity. The maximum capacity is normally reached when the steel yields 

and the compressive stress in the concrete is equal to: 𝜎𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 𝜌 ∗ 𝑓𝑦 (FIB, 2008, pp. 230-

233). For reinforcement anchored by bond and a relatively rough interface surface, the friction 

mechanism will show the stiffest behaviour. This combination will lead to a large increase in 

normal compressive stress for relatively small shear slip (FIB, 2008, p. 234).  

Besides the factors discussed previously, the angle between the steel bars and the friction 

interface also influences the capacity of the joint. If the bars are not perpendicular to the 

interface, the component of the force in the bar along the interface directly contributes to the 

shear capacity and the perpendicular component contributes to the shear capacity by 

introducing a perpendicular compressive stress over the joint (FIB, 2008, p. 234). 

2.2.3.3 Dowel action 

Another way to transfer shear forces is by dowel action of steel bars. The bars are placed 

perpendicular to the direction of the force and therefore loaded by pure shear. Figure 2.19 

illustrates the loading conditions of the dowel. 

 

Figure 2.19 Schematic representation of dowel action 

The mechanism can fail in three different manners (FIB, 2008, p. 203): 

 Steel shear failure 

 Concrete splitting failure 

 Steel flexural failure with local concrete crushing 
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Occurrence of the first failure mode is prevented by applying a bar with a sufficiently large cross 

section. The second failure mode can occur as a result of the concentrated dowel force and is 

prevented by a large concrete cover or the use of splitting reinforcement designed by a strut and 

tie model. So in practical situations the third failure mode, which is the most ductile one, will 

govern the capacity. 

When evaluating the dowel capacity, the analogy with a beam on an elastic foundation is applied. 

As Figure 2.20 shows, the bearing stress in the concrete is not uniformly distributed over the 

length of the dowel, according to this analogy (FIB, 2014, p. 106; FIB, 2008, p. 203).  

 

Figure 2.20 Dowel action model, similar to beam with elastic foundation (FIB, 2008, p. 203) 

Large concrete bearing stresses occur near the joint surface leading to a maximum bending 

moment in the dowel at a small distance below the joint. In the plastic model created by 

Hojlund-Rasmussen in 1963, the equilibrium of the dowel is analysed when both the concrete 

and the steel are in the plastic state (FIB, 2008, pp. 205-207). This means a plastic hinge has 

developed at the location of maximum bending in the bar and the concrete bearing stress over 

the distance between the joint surface and this hinge is equal to the crushing capacity of the 

concrete in a tri-axial state (This is the part with the highest concrete bearing stresses according 

to Figure 2.20). The shear force in the steel bar at the location of the plastic hinge is equal to 

zero. So the load must be equal to the bearing reaction over the distance between the joint 

surface and the hinge. From this condition the distance between the hinge and the joint is 

determined. Thereafter the equilibrium of the induced bending moment and the plastic bending 

capacity of the dowel provide the definition of the maximum shear force that can be transferred 

by the dowel. The method is applied for dowels in different configurations, resulting in a specific 

capacity for each case.  

Although a dowel connection can have a large strength, its stiffness is relatively small, since large 

slippage is required to utilize the full capacity of the connection (FIB, 2008, p. 205). 

2.2.3.4 Combination of shear friction and dowel action 

The book by FIB describes the combination of the two discussed effects (FIB, 2008, pp. 220-

222). It can be understood by now, that the transverse reinforcement of a connection based on 

shear friction will also transfer part of the shear force by dowel action. The ratio between the 

two effects is not quantified, but analysed qualitatively and depends mainly on two parameters:  

 The anchorage of the transverse reinforcement 

 The roughness of the joint interface 
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The way the bars are anchored determines to a great extend their axial stress as a result of joint 

dilatation. When a bar isn’t anchored at all, the only mechanism contributing to the shear 

capacity is dowel action. On the opposite, when the bar is anchored by bond the tensile stress 

especially near the joint becomes too large to have any capacity of the bar left for dowel action.  

A joint with a rough surface will lead to a larger contribution of shear friction, whereas a 

perfectly smooth surface doesn’t rely on friction at all. The mechanism of shear friction with a 

rough surface will generally result in a smaller slip than required for full use of dowel action. So 

in a joint with a very rough interface, the dowel action cannot really develop and will therefore 

hardly contribute. 

Especially for bars with end anchors a combination of the two mechanisms transfers the shear 

force between the elements. The total capacity is the summation of the two contributions. In this 

case a reduced steel strength must be taken into account for the dowel action capacity, since part 

of the tensile strength is already used by the elongation due to the shear friction. The following 

formula can be applied for a combined action, with the first term the capacity for dowel action 

and the second term the capacity for shear friction (FIB, 2008, p. 221): 

𝐹𝑠ℎ𝑒𝑎𝑟,𝑅 = 𝛼0𝜙2 ∗ √𝑓𝑐𝑐,𝑚𝑎𝑥 ∗ (𝑓𝑦𝑑 − 𝜎𝑠) + 𝜇 ∗ 𝜎𝑠 ∗ 𝐴𝑠 

In general the dowel effect of the reinforcement is relatively small compared to the contribution 

to shear friction (Bachmann & Steinle, 2011, p. 204). The unity check for dowels loaded by a 

combination of pull-out resistance and dowel action is given by (FIB, 2008, p. 237): 

(
𝜎𝑠

𝑓𝑦
)

0,2

+ (
𝐹𝑣,𝑑𝑜𝑤𝑒𝑙

𝐹𝑣𝑅𝑑,𝑑𝑜𝑤𝑒𝑙
)

0,2

≤ 1,0 

2.2.3.5 Shear locking 

Another important shear transfer mechanism is shear lock, occurring in a profiled joint. The 

profiles are created in the precast concrete factory by the shape of the moulds. The indented 

surfaces of the profile enable shear transfer between precast concrete elements by a 

compressive force. The major advantage of the mechanism is the large strength it develops with 

a minimal shear slip, the reason for its name. Figure 2.21 shows the force transfer in the profiled 

interface. When the force cannot be perpendicular to the contact surface, some shear friction 

will develop in the interface as well. The combination of both mechanisms will in that case 

transfer the shear force. This is discussed in more detail in the next paragraph. 

 

Figure 2.21 Mechanical interlocking  
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2.3 Profiled shear connections 
This paragraph zooms in on profiled/keyed shear connections, which are illustrated in Figure 

2.28. This kind of connection is often applied for vertical joints between wall panels, organised 

in a stacked configuration. The connection consists of a joint filled with mortar or concrete 

between two profiled faces of precast concrete elements and transverse reinforcement resisting 

dilatation of the joint. This reinforcement can either be concentrated or distributed over the 

connection. The whole connection may use all five shear transfer mechanisms of previous 

paragraph to transfer shear forces from one element to the other. 

The mortar connections developed by Van Keulen, of which the behaviour is further analysed in 

this study, are profiled shear connections as well. Characteristic for these connections are the 

filling with mortar instead of concrete and the use of concentrated instead of distributed 

reinforcement. So understanding of the profiled shear connection’s behaviour is essential for the 

research performed in this thesis. This paragraph describes the knowledge obtained from 

previous research. Chapter 4 will discuss the conclusions of Van Keulen’s study. 

Most available literature only deals with aligned profiled joints, like the joint shown in Figure 

2.28, at which the profiled surfaces of both elements are mirrored in a vertical axis through the 

joint. Van Keulen also developed new profiles, which will be dealt with in this research project as 

well (van Keulen, 2015). These profiles are only discussed in Chapter 4, whereas all information 

in this paragraph is based on the aligned profile. 

The paragraph starts with describing the structural mechanism of a single shear key. Thereafter 

some characteristics of a complete keyed shear connection are discussed. These are the 

influence of transverse reinforcement and lateral stiffness, the strength and stiffness properties 

of a keyed shear joint and the effect of shrinkage. The paragraph concludes with an overview of 

results from previous parameter studies. 

2.3.1 Force transfer in a single shear key 

In each of the shear keys a diagonal compressive strut will develop, as illustrated in Figure 2.22. 

This shear locking contributes most to the shear transfer. While the vertical component of the 

compressive force in this strut transfers the vertical shear force V between the elements, the 

horizontal component pushes the two elements aside. In order to let the mechanism function, 

the horizontal motion of the elements must be prevented by a resistant transverse force H. This 

can be done by applying reinforcement in the joint, tying the elements together (FIB, 2014, pp. 

124-126). The advantage of shear lock is the possibility to transfer the shear force mainly by 

compression in the diagonal strut, resulting in a relatively small shear slip and therefore a 

relatively stiff behaviour. 
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Figure 2.22 Shear lock principle in one shear key 

In order to explain the process in a shear key in more detail, the angles beta and gamma are 

defined as indicated in Figure 2.23. 

 

Figure 2.23 Resulting forces on the joint-element interface for a diagonal force acting under an angle 

Research by Cholewicki describes the force transfer on the interface in more detail. He states 

that the vertical shear force V is transferred partly by shearlocking via the diagonal force and 

partly by shear friction via a frictional force developed in the interface. The frictional force is 

transferred as a shear force in the joint material to the interface at the other side, where it is 

again transferred to the adjacent element by friction in the interface surface (Cholewicki, 1971). 

The force transfer for beta equal to 90 degrees is illustrated in Figure 2.24. 

 

Figure 2.24 Force equilibrium in a shear key with sufficient friction in the interface 
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The equilibrium of forces deviates from that of Figure 2.24 in three cases: 

 The frictional capacity of the interface is too small 

 The angle beta is smaller than 90 degrees 

 The angle beta is larger than 90 degrees 

 

The research by Cholewicki states that if angle gamma (Figure 2.23) becomes smaller than 56 

degrees, the friction developed in the contact surface is no longer sufficient to take up the 

required part of the vertical shear force. In that case transverse horizontal reinforcement must 

be applied to provide equilibrium. The component of this horizontal force H dissolved along the 

friction surface compensates for the insufficient frictional force. The component of the force 

perpendicular to the interface is taken up by the diagonal compressive force (Cholewicki, 1971). 

This is illustrated in Figure 2.25, where Hs is the component of the horizontal force parallel to 

the friction plane and Hn the component normal to the plane. As can be seen in the force 

diagram, the force in the diagonal is Hn larger than it would be if the frictional force was 

sufficiently large. This would be if the friction capacity is at least equal to Ffriction plus Hs. 

 

Figure 2.25 Force equilibrium in a shear key with insufficient friction in the interface 

So far Cholewicki described a situation with a perpendicular diagonal, but if the diagonal force is 

not exactly perpendicular to the plane of the interface, the equilibrium of forces changes. When 

the diagonal force is steeper, a smaller friction force develops in the interface, since the diagonal 

force is more in line the vertical load. When the diagonal force is more horizontal, a larger 

frictional force is required, but the frictional capacity is limited. Therefore more reinforcement is 

in most cases required to take up the large horizontal component of the diagonal force in this 

situation. The equilibrium of both situations is illustrated in Figure 2.26. 
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Figure 2.26 Equilibrium situation for non-perpendicular diagonal forces 

The maximum capacity of a shear key is reached when it fails by one of the failure mechanisms 

(FIB, 2008, p. 248), which are illustrated in Figure 2.27. In failure by mechanism A, a crack 

parallel to the compression diagonal develops due to lateral tensile stresses. Failure mechanism 

B illustrates the failure by crushing and shearing of the compressive strut. In mechanism C a 

shear crack develops across the shear key and in D the joint slips over the indented surface (van 

Keulen, 2015, p. 13; FIB, 2014, p. 125). After failure of the shear key, friction in the crack still 

transfers a shear force between the elements. 

 

Figure 2.27 Failure mechanisms of a shear key (van Keulen, 2015, p. 14) 

2.3.2 The effect of reinforcement and lateral stiffness in profiled shear connections 

The layout of a profiled shear connection is illustrated in Figure 2.28. The joint between the wall 

panels contains several shear keys, where diagonal struts can develop. The compression 

diagonals in the joint exert a horizontal force on the adjacent concrete elements. The integrity of 

the connection is provided by transverse reinforcement keeping the elements and the 

connecting joint material together. This reinforcement can be distributed over the full height of 

the joint or concentrated at the upper and lower horizontal joints as illustrated in Figure 2.28. 

This section describes the differences between the two options. 
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Figure 2.28 Profiled shear joint reinforced in two ways a. distributed reinforcement b. concentrated 
reinforcement 

In case distributed reinforcement is applied, usually horizontal reinforcement loops with a 

transverse bar are used (FIB, 2014, p. 125). The connection with this type of reinforcement is 

illustrated in Figure 2.28a and in more detail in Figure 2.38. The way this reinforcement 

transfers the tensile force is described in section 2.2.2. Although the distributed reinforcement is 

beneficial for the transfer of forces, the use of this type of reinforcement is rather inconvenient 

with respect to fabrication and construction, as discussed in paragraph 2.1. An alternative with 

vertical loops (Figure 2.8) is developed by Sørensen et al. resulting in more manoeuvrability, 

while keeping the complications in fabrication (Sorensen, Hoang, Olesen, & Fischer, 2017). 

With reinforcement concentrated in the horizontal joints at floor level, the in plane bending 

stiffness of the precast elements must be sufficient to keep contact between the elements and 

the joint material (van Keulen, 2015). The principle is illustrated in Figure 2.29. If openings in 

the wall elements are present, the in plane stiffness is relatively low, which affects the behaviour 

of the joint. In this case the “columns” between the openings and the joint can be seen as beams 

simply supported by the tension ties. The lateral stiffness of the connection is therefore partly 

determined by the bending stiffness of these columns. Applying concentrated reinforcement is 

discommended for joints between perpendicular walls, for which the required stiffness cannot 

be provided (Bachmann & Steinle, 2011, p. 71). At one side of the joint the stiffness must be 

provided by the out of plane bending stiffness of the wall panel, which is generally rather low. 

The effect is illustrated in Figure 2.30. 

The shear stiffness of the connections with concentrated reinforcement depends among others 

on the lateral stiffness provided by the adjacent elements. The exact relation between the lateral 

stiffness and the shear stiffness is yet unknown, but based on the results of Van Keulen a lower 

lateral stiffness is expected to lead to a lower shear stiffness (van Keulen, 2015). Van Keulen also 

concludes, based on his test results, that the shear capacity of a profiled joint is increased by 

increasing the lateral stiffness (van Keulen, 2015, p. 47). 
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Figure 2.29 Principle of unreinforced mortar joint with concentrated tension ties (van Keulen, 2015) 

 

Figure 2.30 Recommended reinforcement for perpendicular walls (Bachmann & Steinle, 2011, p. 71) 

The amount of required transverse reinforcement can for instance be determined by the formula 

proposed by H. Schwing ( (Bachmann & Steinle, 2011, pp. 206-207) as published by H. Schwing 

1980). According to this method the amount of required reinforcement depends on the shear 

key geometry, the material properties of concrete and steel and the present perpendicular 

compressive stress. For concentrated reinforcement Schwing proposes an extra increase of the 

amount of steel by a factor of 1/0.85.  

Schwing distinguishes connections with concentrated or distributed reinforcement by this 

factor, which indicates their capacity is not the same. The difference in capacity is important to 

know. Previous studies mainly focused on the difference in obtained capacity, when considering 

concentrated reinforcement, but the difference in shear stiffness is also of importance. 

Distributed reinforcement is more common and therefore investigated more thoroughly in past 

research. 
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In the SBI97 report on keyed shear joints (Hansen, et al., 1976) two tests are compared, one with 

concentrated and one with distributed reinforcement. Here it was concluded that the efficiency 

of the concentrated reinforcement is just ten to twenty percent smaller than for the connection 

with the best reinforcement distribution along the joint, but this difference is of the same order 

as the scatter of the test results (Hansen, et al., 1976). Tests performed by Cholewicki indicate 

that the effect of the location of reinforcement on the capacity of the joint is not significant 

(Cholewicki, 1971). It seems reasonable to expect a reduction in capacity when the 

reinforcement is applied externally. 

Applying concentrated reinforcement also influences the shear stress distribution over the joint. 

As discussed, distributed reinforcement provides a relatively large uniform lateral stiffness 

along the joint. Therefore all the shear keys will have the same stiffness and capacity. For a joint 

with concentrated reinforcement the lateral stiffness is largely dependent on the adjacent 

precast elements. Especially when these elements contain openings, the lateral stiffness deviates 

over the height of the joint. It will be the largest close to the reinforcement at the upper and 

lower boundary and the smallest at the location next to an opening in the adjacent wall 

elements. This will lead to a less uniform force distribution over the shear keys, for which the 

largest shear forces will be transferred by the upper and lower shear key.  

The force transfer within a shear key is also different when distributed reinforcement is applied. 

First of all the reinforcement crossing each shear key doesn’t only contribute indirectly by 

providing horizontal equilibrium, it will also directly transfer shear forces by dowel action 

(Cholewicki, 1971). However, the mechanism of dowel action is less stiff than shear lock, 

whereby its effect is neglected by Cholewicki. Secondly, the reinforcement will provide an extra 

shear key (Hansen, et al., 1976). Hansen et al. are not explaining this statement any further, but 

Van Keulen mentions a changed force transfer as a result of pushing of the diagonals against the 

reinforcement (Van Keulen, Vertical mortar connections for shear transfer between precast 

concrete large panel elements, 2018). Combining the two statements it can be concluded that the 

reinforcement loops that are crossing the shear key enable two compression diagonals to 

develop, while just one diagonal is present in an unreinforced key. This will enlarge the shear 

capacity. 

2.3.3 Strength and stiffness behaviour of a profiled shear joint 

The profiled shear connection transfers shear forces mainly by shear lock in the created shear 

keys. However, the other transfer mechanisms discussed in the previous paragraph play a role 

as well. The stiffness relation between shear slip and shear stress for the joint has been 

described by many (FIB, 2008; Hansen, et al., 1976; Olesen, 1975; van Keulen, 2015; Sorensen, 

Hoang, Olesen, & Fischer, 2017; Abdul-Wahab, 1986; Cholewicki, 1971)  

As is stated in the book by FIB on structural connections, the shear transfer in a profiled joint 

appears as a combination of adhesion, friction, dowel action and shear lock. However, adhesion 

will only contribute when the shear slip is rather small, since a larger shear slip causes the 

interface to crack. Mobilised by the shear slip, the other three mechanisms start transferring the 

shear force. In this stage the resistance of the joint can be determined by summation of the 

effects. The contribution of each effect depends on its stiffness. Dowel action for example takes 

place for relatively large displacements, whereby its contribution will be rather small (FIB, 2008, 

pp. 246-248).  
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Many tests have been performed on profiled shear connections. All papers describing these tests 

and their results also provide empirical formulas for the shear capacity and often the cracking 

load as well. All these formulas are created to agree with the specific test results and are 

therefore only applicable in specific cases. Currently the Eurocode provides a formula for the 

shear capacity of a concrete to concrete joint. Although this formula is originally used for 

interfaces between concrete elements casted on different times, it is also applied for profiled 

mortar joints. Together with this formula a couple of dimensional requirements are set for the 

profiling and transverse reinforcement, which are indicated in Figure 2.31.  

 

 

Figure 2.31 Profiled joint dimensions (NEN, 2011) 

The formula is given as (NEN, 2011): 

𝑣Rdi =  𝑐 ∗ 𝑓ctd +  𝜇 ∗ 𝜎n +  𝜌 𝑓yd (𝜇 sin 𝛼 +  cos 𝛼)  ≤  0,5 ν𝑓cd 

The first term is the contribution of cohesion, the second term the contribution of friction as a 

result of transverse compressive stress. The third term is partly the contribution to the shear 

capacity of friction due to transverse compressive stress induced by the reinforcement and 

partly the direct contribution of axial forces in the inclined reinforcement. The advantage of 

having a profiled surface is taken into account by applying a larger value for c and μ, equal to 0.5 

and 0.9 respectively. So the shear lock effect is not included by a separate term. The effect of 

dowel action of the reinforcement is neglected completely. 

In the SBI 97 report on keyed shear joints (Hansen, et al., 1976) a summary is given of several 

tests performed on profiled shear connections in the years before 1976. The results of these 

tests show a large correspondence in the shear stress-slip behaviour of the joints, despite the 

different test conditions. Figure 2.32 shows the observed relation in a schematic way.  

Initially the shear stresses are completely transferred by adhesion in the interfaces of the 

precast elements and the joint mortar or concrete. The connection acts very stiff in this stage, 

since it basically behaves monolithic. However, this transfer mechanism’s capacity is rather low, 

because adhesion failure occurs for relatively small values of the shear stress by cracking of the 

interface between the elements and the joint material. Force transfer is mainly taken over by 

developed compressive struts in the shear keys, whereby the stiffness of the joint is somewhat 

reduced compared to the first stage. The transfer of forces by diagonal struts is schematically 
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illustrated in Figure 2.22. When the joint material eventually starts cracking at the cracking load, 

a noticeable gradual reduction in stiffness takes place. The shear slip increases faster than the 

shear resistance until the point where the ultimate capacity is reached. At this point the 

compression diagonals fail as a result of one of the failure modes shown in Figure 2.27. The 

occurring type of failure depends among others on the geometry of the shear key. The post 

critical behaviour depends largely on the type of failure that has occurred. Some results show a 

large ductility, while others do not (Hansen, et al., 1976). The residual strength of the joint is 

provided by the possible amount of shear friction acting in the crack surface. This can only take 

place with sufficient lateral stiffness to keep the friction surface under compression. 

 

Figure 2.32 Global Stress-Slip relation for profiled shear connections (Hansen, et al., 1976) 

When the keyed shear joint is compared to a joint with a smooth surface, the difference is clearly 

visible. Figure 2.33 shows the relatively large initial stiffness and capacity for a joint with shear 

keys. The residual strength based on friction is equal to that of the smooth joint, since the force 

transfer is similar (FIB, 2008, p. 249). The increased capacity of a keyed surface compared to a 

smooth surface can be 40 percent larger according to the test on drypack grout joints described 

by Rizkalla et al. (Rizkalla, Foerster, & Scott Heuvel, 1989). However, tests on other unreinforced 

grouted shear key joints state the increase of capacity is around 60 percent and even the 

residual strength increases by 25 percent (Rizkalla, Serrette, Scott Heuvel, & Attiogbe, 1989). 

 

Figure 2.33 Comparison between joint with and without shear keys ( (FIB, 2008, p. 249) originally from SBI 
(1979)) 
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Several sources describe a phenomenon that only occurs in aligned profiled shear joints (Abdul-

Wahab, 1986; Cholewicki, 1971; FIB, 2008). For this type of joint compression diagonals aren’t 

just formed in each shear key, as in Figure 2.28, but also between two successive keys, as in 

Figure 2.34. These larger diagonals are steeper, whereby their reaction to vertical shear is stiffer. 

Therefore the force transfer is mainly provided by these diagonals. After certain crack 

development in the joint, the diagonals within one key are cancelled out. The large diagonals 

take over the full force transfer. The effect of this property of aligned profiles on the shear slip 

relation is for example clearly observed in the tests by Van Keulen, which are discussed in 

section 4.1.2 (van Keulen, 2015). 

 

Figure 2.34 Compression diagonal over two shear keys in aligned profile (Cholewicki, 1971) 

2.3.4 The effect of shrinkage of the joint material 

The shear slip behaviour of the joints as discussed in the previous section assumes an initial 

adhesive force in the interface between precast element and joint material. This bond will enable 

a monolithic response of the joint for loads smaller than the interface capacity. When the 

interface is loaded beyond its capacity, an interface crack is formed resulting in transfer by 

friction in the interface. The behaviour is schematically shown in Figure 2.35.   

 

Figure 2.35 Schematic representation of joint behaviour 

However, this behaviour is obtained in test situations where shrinkage of the joint material is 

compensated for or hasn’t occurred yet. In practice the joint material will shrink after it is 

applied at the construction site. This causes an initial crack along the interface between the 

precast concrete elements and the joint material. This crack will obstruct the adhesive forces 

that do develop in a test (Hansen, et al., 1976). Consequently the theoretical shear-slip relation 

of Figure 2.35 won’t be valid for a practical application. The practical shear-slip relation isn’t 

known from literature, but can be estimated. Since the crack will create a gap between the joint 

material and the precast elements, the joint will firstly deform until a contact surface is restored, 
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thereafter force transfer takes place by friction and shear lock. The first peak in Figure 2.35 isn’t 

observed, since the initial stiffness is considerably lowered by lack of adhesion and debonding 

doesn’t take place. The hypothetical shear slip relation with shrinkage is shown by the dashed 

line in Figure 2.35. 

This shrinkage behaviour holds for shear connections where old types of mortar are applied. 

Nowadays special types of mortar are developed that hardly shrink. It should be investigated if a 

joint with such a modern mortar can transfer shear forces by adhesion. If so, the stiff behaviour 

of this shear transfer mechanism may be taken into account, which is very beneficial for the 

design of stability wall structures.  

It should be noted that the precast elements will shrink as well. However, since the elements are 

casted earlier, the major part of the shrinkage has already taken place by the time of installation.  

Some studies did consider the effect of shrinkage cracks on the characteristic properties of the 

profiled joint. One of these tests was performed by Hansen and Olesen on joints with 

concentrated reinforcement, as described in the SBI97 report on keyed shear joints (Hansen, et 

al., 1976). Based on these tests some conclusions were made: 

 The influence of shrinkage on the cracking and ultimate load was minimal 

 The stiffness seems to be reduced by shrinkage, there is spoken of “some correlation” 

The tests were performed on relatively small specimens. The effect of shrinkage might be more 

significant for larger elements. Furthermore other tests performed by Hansen also indicate that 

the capacity of the joint is not affected by initial shrinkage cracks (Hansen H. , 1967). 

The question arises what the effect over the complete shear wall would be. The behaviour in a 

complete wall is described in the SBI97 report and in an article by one of co-authors of this 

report, S.Ø. Olesen (Hansen, et al., 1976; Olesen, 1975). Figure 2.36 shows an aligned reinforced 

mortar joint where a shrinkage crack, creating a gap, is present at the right joint-element 

interface. Due to this gap any shear force is in first instance transferred by dowel action of the 

concentrated reinforcement in the horizontal joint, as seen in Figure 2.36a. However, the shear 

capacity of the dowels is limited whereby cracks develop in the horizontal joint when the 

loading shear force reached a certain value. This cracking process induces larger displacements 

of the wall panels, leading to a closure of the shrinkage crack. Consequently the vertical joint 

takes over the shear force transfer by friction and shear lock, as seen in Figure 2.36b.  

 

Figure 2.36 Shear transfer in a joint subject to shrinkage (Olesen, 1975) 
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When the load is increased, eventually cracks will develop in the joint material and for a certain 

value of the load the vertical joint fails as well. Since the shear stresses aren’t uniformly 

distributed over the shear wall, the redistribution of forces from the horizontal to the vertical 

joint develops gradually over the wall while the load increases. For this reason a vertical joint in 

the lower part of the wall might already reach its capacity, while at another place the shear force 

is still transferred by dowel action. That is why the ductility of the vertical joints is of large 

importance for the way the complete wall fails. If the joints fail in a brittle manner, this might 

lead to a chain reaction, resulting in brittle failure of the wall. If the joints do have a certain 

ductility, the shear stresses redistribute over the wall, whereby the total load can still be 

increased until many other joints have reached their capacity as well (Olesen, 1975). 

A more detailed study into the aspects that play a role in the shrinkage behaviour of the profiled 

mortar connections is necessary. Some aspects can have such a significant influence on the 

behaviour that the process explained above isn’t applicable anymore. Examples of these aspects 

are the application of mortar with an expansion component and the lateral expansion of the 

adjacent wall elements due to the vertical load acting on them. However, in first instance this 

study will consider a situation where the interface is cracked as a result of shrinkage. 

2.3.5 Parameters influencing the behaviour 

Factors as geometry, concrete strength, joint material strength and reinforcement influence the 

behaviour of the shear connection. This section describes these relations according to the 

information found in literature. 

2.3.5.1 Angle of the shear key surface 

The angle of the shear key surface partly determines the strength and ductility of the keyed 

shear connection, as was investigated by Eriksson et al. for unreinforced keyed shear 

connections. The influence of a varying angle is indicated by the results of the study presented in 

Figure 2.37.  

 

Figure 2.37 Effect of shear key angle ( (FIB, 2008) original from (Eriksson, Karrholm, & Petersson, 1978)) 

As the results show, a smaller angle results in a larger capacity of the shear key. However, the 

ductility of this joint is drastically lower than for the other angles. This is a very unfavourable 

property since it increases the chance of progressive failure in the wall where this joint is 

applied. A sufficient ductility is achieved for angles larger than 45 degrees, wherefore the initial 

capacity and stiffness are lower and the residual strength is larger (Eriksson, Karrholm, & 

Petersson, 1978). The differences in stress slip relation are significant, indicating a remarkable 
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difference in behaviour for the keys with different angles. The results show a different cracking 

behaviour of the joints. A joint with a large angle cracks at the interface of joint concrete and 

precast elements, indicating slipping failure. For a joint with small angled keys, cracks occur in 

the joint concrete, showing similarities with key shear off. 

2.3.5.2 Depth and height of the keys 

Various papers discuss the dependency of the failure mode on the depth-height ratio of the 

shear keys (Hansen, et al., 1976; Sorensen, Hoang, Olesen, & Fischer, 2017; Olesen, 1975). The 

height and depth of a key are indicated in Figure 2.38. Although all of them base their 

conclusions on tests with distributed transverse reinforcement and concrete as filling material, 

the information is still useful since the conclusion might be applicable to unreinforced keyed 

joints as well. It is stated that a shear key with a large depth relative to the height fails by 

complete shear off, whereas a relatively shallow or high shear key fails in the corners (See 

Figure 2.27 for failure modes). The capacity of the joint seems to be reduced in case of higher 

shear keys (Hansen, et al., 1976), suggesting that failure by complete shear off requires a larger 

load.  

However, by increasing the height of the shear keys the total key area in the joint is larger. This 

results in a larger capacity and cracking load. This holds until the element keys (projecting tooth 

of the precast element) are too small and start to fail prior to the shear key itself (Hansen, et al., 

1976). 

 

Figure 2.38 Key dimensions (Hansen, et al., 1976) 

2.3.5.3 Amount of keys in the joint 

The amount of shear keys in the joint has an effect on its capacity. However, a joint with six keys 

is not necessarily twice as strong as a joint with three keys. The shear force is not necessarily 

equally distributed over the shear keys either. The papers by Hansen and Cholewicki describe 

the parabolic stress distribution over the length of the joint (Cholewicki, 1971; Hansen H. , 

1967). According to this distribution the shear stress is greatest at the top and bottom of the 

joint for relatively long joints. So the relation between capacity and amount of keys isn’t trivial.  

The research by Rizkalla et al. is especially relevant since it covers tests on unreinforced mortar 

joints, like those developed by Van Keulen. Two joints with a different shear key geometry were 

tested. The results of these tests are shown in Figure 2.39. The smaller key is applied four times 

and the large key is applied 2 times. So the joint with the smaller key has a larger key density, 
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leading to more compression diagonals per length of the joint. It was concluded that the joint’s 

behaviour was insignificantly affected by the change in shear key design. The variation in shear 

capacity between the two designs was for each loading condition less than 15 percent (Rizkalla, 

Serrette, Scott Heuvel, & Attiogbe, 1989). However, another research by Chakrabarti et al. 

investigated the effect of key density as well, this time on reinforced joints. In this research the 

shape of the keys is the same for all specimens, but for some six keys are applied and for others 

just three. A relevant increase in capacity was found in these test series (Chakrabarti, Nayak, & 

Paul, 1988). 

 

Figure 2.39 Effect of key size and normal pressure on shear slip relation (Rizkalla, Serrette, Scott Heuvel, & 
Attiogbe, 1989) 

A second research by Abdul-Wahab investigated the effect of the number of shear keys on the 

capacity of the joint by just elongating the joint. Thereby the density of the shear keys is equal 

for all specimens. The joint area is enlarged. The test results show that the capacity is largely 

influenced by the number of shear keys. An increase in number of keys directly leads to an 

increase in capacity. The capacity of a joint with 4 keys is even more than two times larger than 

the capacity of a joint with 2 keys (Abdul-Wahab, 1986).  

However, this research was performed on reinforced profiled concrete joints and attention was 

paid on the dowel action of the transverse reinforcement specifically. So for the results of 

coming research on a joint with concentrated reinforcement can differ from those of the tests by 

Abdul-Wahab. His conclusions should therefore only be seen as background information to get 

some idea of the possible scale effect and cannot be used form a base for conclusions.  

The SBI97 report does also mention the increase of the ultimate and cracking load for a larger 

relative key area (key density) in the joint (Hansen, et al., 1976).  

2.3.5.4 Normal pressure in the joint 

The capacity of the joint is increased when a compressive stress normal to the joint is present. 

This effect is also investigated during the tests performed by Rizkalla et al. During these tests, 

some specimens were loaded with a normal stress of 2 MPa and others with 4 MPa. The 

comparison is made with the results of Figure 2.39. The capacity and residual strength of the 

large key joints are increased by 60 and 80 percent respectively, when the normal stress is 4 

MPa instead of 2 MPa. For the joint with small keys the residual strength is around 50 percent 

larger when a higher normal stress is applied. The larger capacity is a result of “increase in 
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confinement and consequently the tensile resistance of the drypack, provided by the higher stress 

normal to the connection” (Rizkalla, Serrette, Scott Heuvel, & Attiogbe, 1989).  

The results show that an increase of the normal pressure by 100 percent leads to a much smaller 

increase in capacity. If the behaviour could be described by shear friction theory only, the 

increase in the capacity would be the same as the increase in stress, as the paper suggests 

(Rizkalla, Serrette, Scott Heuvel, & Attiogbe, 1989). So besides shear friction, another mechanism 

is contributing as well.  

2.3.5.5 Properties of the reinforcement, joint and element material 

It is rather obvious that an increase in strength of the reinforcement, joint and element material 

increases the shear capacity of the joint. Especially the properties of the joint material have a 

large influence on the connection’s behaviour (Hansen, et al., 1976; Cholewicki, 1971). A higher 

reinforcement ratio and yield strength increase the capacity of the joint. The effect of the yield 

strength on the capacity is larger for joints with a high reinforcement ratio. A larger residual 

strength and therefore ductility is obtained for joints with a higher reinforcement ratio 

according to tests by Pommeret on joints with distributed reinforcement (Hansen, et al., 1976). 
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2.4 Conclusion 
The literature study on connections in precast concrete first of all provided general principles of 

connection design. Besides structural aspects, aspects concerning the construction process are 

very important to consider while developing connections. Evaluating these construction aspects 

reveals that the developed profiled mortar connections correspond well to the design principles. 

This supports the relevance of Van Keulen’s research and this thesis. 

Connections make use of several mechanisms in order to transfer forces between precast 

elements. These mechanisms were discussed in paragraph 2.2. The principles of compression 

force transfer are in the context of this research probably just useful as background information, 

to have some understanding about the way the horizontal connections between precast wall 

elements and the support of floor slabs on the wall elements work. 

For the profiled mortar connections that are analysed in this master research transfer of tensile 

and shear forces is more important. The principles of tensile force transfer are applied in the 

way the concentrated transverse tying reinforcement behaves. This reinforcement avoids 

separation of the two connected wall elements. Adhesion, shear friction, dowel action and shear 

lock are the mechanisms that transfer the shear force over the mortar joint. While adhesion is 

used for small shear forces only, the other three mechanisms act simultaneously in the phase 

where the transferred shear force is larger than the debonding limit. The contribution of 

adhesion may only be taken into account if the contact surface between precast concrete and 

joint material is intact. Shrinkage of the joint material is the main reason why this contact is 

disturbed.  

Based on what is known about shear lock, dowel action and shear friction, the interaction 

between these mechanisms is described. It is expected that most of the shear force is transferred 

over the vertical profiled mortar connection by shear locking, since this mechanism behaves 

stiffer than the other two. Shear friction would take place between the two precast wall 

elements and the joint material, but this would require a sufficient lateral compression. Dowel 

action of the transverse reinforcement in the horizontal wall joints might also contribute to the 

transfer of shear forces over the vertical joint. However, the activation of dowel action requires a 

large shear displacement over the joint compared to shear friction and shear locking.  

Other characteristics of the profiled shear connection in general have been described as well. 

Such as the effect of shrinkage, profile geometry and the application of concentrated 

reinforcement on the connection’s behaviour. These results of previous research are useful to 

formulate expectations of coming research results.  
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3 Literature study: Precast concrete shear walls 

The precast concrete stability structure of a high-rise building consists of several shear walls 

oriented in different directions that carry the weight of the structure and transfer the horizontal 

loads to the foundation. The structure can be analysed by Finite Element calculations that define 

the flow of forces and deformations of the wall in detail. However, a simple hand calculation is 

very useful as well.  

The easiest way of modelling a high-rise structure is by using the model of a clamped cantilever 

beam (See Figure 3.1). This beam schematizes the whole stability structure with a certain given 

bending stiffness EI, shear stiffness GA and axial stiffness EA. The model is useful to define a first 

estimate of the reaction forces, deformations and required structural dimensions. This simple 

analysis is also used to validate the outcome of more detailed analyses performed in later 

phases. 

 

Figure 3.1 Schematisation of a stability structure into a cantilever beam 

This chapter discusses the behaviour of a shear wall. The first paragraph explains the two most 

important beam theories that are used to analyse shear walls. In the second paragraph the 

general behaviour of shear walls is described and that of precast concrete shear walls in 

particular. The third paragraph addresses some of the research that has been done on the 

performance of precast concrete shear walls compared to monolithic walls. 

3.1 Beam theories 
In the past several beam theories to analyse mechanical problems were developed. When a 

simple calculation on the clamped beam model, but also when a more complicated finite element 

analysis is performed a decision must be made on the beam theory the calculation is based on. 

For the finite element method different elements are produced, some according to one theory 

and some according to the other. The structural engineer should decide which element to use 

according to the goal of the analysis keeping in mind the limitations of each theory. The most 

common beam theories are those developed by Euler-Bernoulli and Timoshenko. The main 

difference between the theories is whether they take into account only bending or shear 

deformations or both. The total deformation of a structural element is always a combination of 
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both types of deformations. However, their relative contribution depends on the geometry of the 

structural element that is analysed. The two theories are explained in this paragraph 

3.1.1 The Euler-Bernoulli Beam Theory 

The following section is based on the lecture notes "An introduction to the analysis of slender 

structures" by A. Simone (Simone, 2011). 

The beam theory developed by Euler and Bernoulli only takes into account bending 

deformations. Any shear strain and deformation is neglected and set to zero. This is a direct 

consequence of applying Bernoulli’s hypothesis to the beam model. The hypothesis states: 

“Plane cross-sections remain planar and normal to the beam axis in a beam subjected 
to bending” (Simone, 2011) 

The same hypothesis is mentioned in the book by Hartsuijker, when explaining the “Fibre 

model” (Hartsuijker, 2001). This model assumes a beam to consist of an infinite number of 

parallel fibres in longitudinal direction of the beam and perpendicular to these fibres an infinite 

number of cross-sections. According to Bernoulli’s hypothesis the angle between the cross-

sections and the fibres remains 90 degrees after deformation of the beam. This principle is 

illustrated in Figure 3.2.  

 

Figure 3.2 Fibres and cross sections remain under an angle of 90 degrees during deformation 

For slender elements the deformations caused by shear are small compared to bending 

deformations and can therefore be set to zero. So in this case Bernoulli’s hypothesis is applicable 

and therefore the equations derived by the Euler-Bernoulli beam theory can be used. 

Furthermore the theory assumes that the deformations of the structural elements are small 

compared to their dimensions. Both assumptions result in specific kinematic relations that hold 

for this beam theory.  

The derivation of the differential equation describing the behaviour of a beam according to Euler 

and Bernoulli can be found in many books on structural mechanics, since it is one of the most 

important principles used in the working field. For example Simone and Hartsuijker provide this 

derivation (Hartsuijker, 2001; Simone, 2011). It seems sufficient to refer to these sources 

instead of repeating the whole derivation in this report. The finally resulting differential 

equation for the Euler-Bernoulli beam theory relates the load q with the deflection of the beam 

v, as depicted below. Together with four boundary conditions, two on each end of the beam, the 

equation can be solved for any problem specifically, whereby the whole displacement-field is 

known. Consequently, the bending moment and shear force distribution can be found, using the 

kinematic and constitutive relations.  

𝑞 = 𝐸𝐼 ∗
𝑑4𝑣

𝑑𝑥4
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3.1.2 Timoshenko’s beam theory 

Timoshenko developed a beam theory that also takes into account the deformations caused by a 

shear force. Before this theory is discussed, the relations for a beam with only shear 

deformations are considered. The following section is also based on the lecture notes "An 

introduction to the analysis of slender structures" by A. Simone (Simone, 2011). 

3.1.2.1 Pure shear beam 

The deformations caused by a shear force V are indicated in Figure 3.3. The shear deformation 

gamma is the angle between the contours of the original and the distorted shape of the beam. 

The deformation is schematised as a vertical deflection of one end of a beam part, parallel to the 

face of the other end. As a result the centre line of the beam is inclined with angle gamma, but 

the cross-sections remain vertical.  

 

Figure 3.3 Shear deformations (Simone, 2011, p. 17) 

Using Figure 3.3, the following kinematic, constitutive and equilibrium relations are found: 

𝛾 =
𝑑𝑣

𝑑𝑥
 ;  𝜏 = 𝐺 ∗ 𝛾 ; 𝜏 =

𝑉

𝐴𝑠
 ;  𝛾 =

𝑉

𝐺𝐴𝑠
 ; 𝑞 = −

𝑑𝑉

𝑑𝑥
 ;

𝑑𝑀

𝑑𝑥
= 𝑉 

Whereby the differential equation for the shear beam is formulated as: 

𝑞 = −𝐺𝐴𝑠

𝑑2𝑣

𝑑𝑥2
 

Hereby Hook’s law is used with so called shear-modulus G relating the shear stress τ and shear 

deformations γ. Furthermore it is assumed that the shear stresses are uniform over the shear 

effective part of the cross section As. The resulting differential equation can be used to determine 

the shear deflections of a beam as a consequence of distributed load q. Consequently the shear 

forces and bending moments can be determined using the other derived relations. 

3.1.2.2 Timoshenko’s beam theory 

The beam theory developed by Timoshenko combines the bending and shear deformations of 

the two theories above. Timoshenko introduces two degrees of freedom: a vertical displacement 

v and a cross section rotation φ. These degrees of freedom are illustrated in Figure 3.4. 
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Figure 3.4 Degrees of freedom in Timoshenko's beam theory (Simone, 2011, p. 26) 

The deflection v contains a part caused by shear and a part caused by bending. 

𝑣𝑡𝑜𝑡 = 𝑣𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝑣𝑠ℎ𝑒𝑎𝑟 

Since in Timoshenko’s theory the shear deformation is included as well, the angle phi is not 
equal to the derivative of the deflection. The total rotation of the cross-section consists of a part 
caused by bending and a part caused by shear. The following relation holds: 
 

𝑑𝑣

𝑑𝑥
= 𝛾 + 𝜙 

 
Using kinematic and constitutive relations the shear force and bending moment in the beam can 
be expressed in the degrees of freedom: 

𝑉 = 𝐺𝐴𝑠𝛾 = 𝐺𝐴𝑠(
𝑑𝑣

𝑑𝑥
− 𝜙) 

𝑀 = ∫ 𝐸 ∗ 𝜖 ∗ 𝑦 𝑑𝐴 = ∫ −𝐸 ∗ 𝑦2 ∗
𝑑𝜙

𝑑𝑥
 𝑑𝐴 = −𝐸𝐼 ∗

𝑑𝜙

𝑑𝑥
        ≠ −𝐸𝐼 ∗

𝑑2𝑣

𝑑𝑥2
 

 
The use of two degrees of freedom leads to a system of two differential equations describing the 
distribution of mechanical quantities over the length of the beam. Both differential equations are 
obtained by using the equilibrium equations for a small part of the beam. The first equation 
simply states that the shear force determined by the equation given above is equal to the shear 
force obtained by taking the derivative of the bending moment. The second equation is 
composed under the condition that the derivative of the shear force is equal to the negative 
value of the line load. 
 

𝐸𝐼
𝑑2𝜙

𝑑𝑥2
+ 𝐺𝐴𝑠 (

𝑑𝑣

𝑑𝑥
− 𝜙) = 0 

𝐺𝐴𝑠 (
𝑑2𝑣

𝑑𝑥2
−

𝑑𝜙

𝑑𝑥
) = −𝑞 

Solving the system of equations results in an expression for the beam deflection that is exactly 

equal to the summation of the results of the Euler-Bernoulli and shear beam theory. The 

relations found for the bending moment and shear force distribution over the beam length are 

the same for all three theories. This is makes sense, since their distribution is a direct 

consequence of equilibrium conditions, which are the same for all three theories.  
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3.2 Shear wall behaviour 
The behaviour of a shear wall can be described using the beam theories of paragraph 3.1. This 

paragraph starts with an explanation of the general behaviour of a shear wall. The second part of 

this paragraph discusses the typical behaviour of the precast concrete shear wall. 

3.2.1 General shear wall behaviour 

When the beam theories are applied to the basic model of a shear wall, the distribution of the 

lateral deformation over the height of the wall is as indicated in Figure 3.5.  

 

Figure 3.5 Deformations of a shear wall 

The total deformation of the wall is the summation of both types of deformation. The relative 

contribution of each depends on the slenderness of the structure. For a very slender wall, the 

contribution of shear deformations is minimal and can be neglected. Therefore the Euler-

Bernoulli beam theory could be applied for these walls. For a slenderness ratio (height/width) 

larger than 4, the contribution of shear deformation is less than 5 percent (Straman, 1988, p. 35). 

The bending deformations are insignificant, for a compact wall with a small slenderness ratio.  

So in that case a shear beam model is applicable. However, the absolute value of the horizontal 

deflection is always small for compact walls. The Timoshenko theory gives the most accurate 

result in any case since it includes both types of deformation. In most cases, the slenderness 

ratio of a wall is large enough to justify the use of the Euler-Bernoulli beam theory.  

The theoretical stress distribution over the shear wall calculated with the Euler-Bernoulli 

method is equal to that found for a beam. The stress distribution of normal stress and horizontal 

shear stress is illustrated in Figure 3.6, theory about these distributions can be found in the book 

by C. Hartsuijker (Hartsuijker, 2001). However, the effect of shear lag on the stress distribution 

in the wall can be rather significant for slender structures. Much research has been performed 

on this phenomenon. 

 

Figure 3.6 Stress distribution in a monolithic shear wall according to Euler-Bernoulli beam model 
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Shear lag is the deviation of the actual stress distribution in a structural element consisting of 

webs and flanges from the distribution obtained from the Euler-Bernoulli Beam Theory and is 

caused by the effect of shear deformations. This theory disregards shear deformations. However, 

a structural element will never have an infinite shear stiffness. As Kwan states, when the shear 

stiffness is finite and shear deformations occur, the longitudinal deformations close to the 

intersection of webs and flanges become larger and those more remote from these intersections 

become smaller than the Euler-Bernoulli beam theory predicts. This may increase the 

longitudinal stresses and lateral deflections of the structural element (Kwan, 1996). It is shown 

in Figure 3.7. Since the longitudinal stress distribution isn’t linear anymore, shear lag also 

results in warping of the floor slabs (Coull and Bose, 1971 cited by (Singh & Nagpal, 1994)). The 

effect of shear lag occurs in core and tube structures, but also in box girders or T-beams. It is the 

reason why for these sections an effective flange width is taken into account for the bending 

stiffness instead of the whole width of the flange. 

 

Figure 3.7 Positive shear lag in a core structure (Kwan, 1996) 

According to Kwan, the shear lag is larger for structures with a smaller shear stiffness, such as 

framed tubes. Furthermore, the slenderness of the structure plays a role. A structure with 

relatively wide webs and/or flanges experiences a larger shear lag effect (Kwan, 1996). This 

seems logical since shear deformations and shear stiffness are relatively more important for less 

slender structures. The same relation with slenderness was obtained in Hummelen’s research 

(Hummelen, 2015, p. 41). Kwan states that for a non-slender structure with a uniformly 

distributed horizontal load, the maximum normal stress can be 2 times larger than calculated 

with an Euler-Bernoulli beam approximation and that the effect of shear lag becomes 

insignificant for a slenderness ratio above 20 (Kwan, 1996). 

Tube structures have a load bearing facade consisting of rigidly connected columns and beams. 

The effect of some specific parameters for example the beam and column dimensions on shear 

lag has been investigated by Lee et al. (Guan, Loo, & Lee, 2000). The conclusion of this analysis 

corresponds with Kwan’s findings. When the shear stiffness is increased, the shear lag effect 

reduces. 

Kwan observed that the effect of shear lag on the bending stresses is larger near the base of a 

core structure. The effect on the lateral displacement is considerably smaller than the effect on 

the stresses (Kwan, 1996). The effect of shear lag over the height of the structure is also 

investigated in later research, for example in a research on shear lag in Tube(s)-in-Tube 

structures (Guan, Loo, & Lee, 2000; Lee, Loo, & Guan, 2001). This paper also mentions the effect 

of negative shear lag. The shear lag distribution over the height according to this research is as 

indicated in Figure 3.8. Above a height of approximately a quarter of the building height, the 

shear lag effect is negative. This results in a reduction of stresses in corner columns and an 

increase in centre columns of the tube as illustrated in Figure 3.9.  
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Figure 3.8 Distribution over the height of the building of extra axial bending stress in the columns of the tubes 
(Lee, Loo, & Guan, 2001) 

 

Figure 3.9 Positive and negative shear lag (modification of figure (Singh & Nagpal, 1994)) 

The effect of negative shear lag and its cause are explained in the paper by Singh and Nagpal 

(1994) using Figure 3.10. The explanation also clarifies the varying shear lag effect over the 

height of the structure. In order to explain the phenomenon, a framed tube structure is split into 

two modes above the jth floor. One mode describes the behaviour of the structure under the 

applied horizontal load with fixed supports at the jth floor. Due to this load, the structure 

deforms. Since the shear rigidity is not infinite, the normal stresses in the corner columns will be 

larger than in the centre columns. This is the positive shear lag as described before. The second 

mode describes the behaviour of the structure due to the deformations at the jth floor. These 

deformations due to positive shear lag are larger than at the (j+1)th floor. This results in a stress 

distribution over the columns, which has the shape of the negative shear lag effect. As Singh and 

Nagpal state, the negative shear lag effect is a consequence of positive shear lag. When there isn’t 

any positive shear lag, the negative shear lag is absent as well (Singh & Nagpal, 1994). The final 

stress distribution over the columns is the sum of the two resulting distributions. Beyond a 

height of approximately one quarter of the total height of the building the negative shear lag is 

greater. However, when the shear lag effect is larger due to for example a lower shear stiffness, 

this so called point of shear lag reversal is shifted upwards (Singh & Nagpal, 1994). 
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Figure 3.10 The negative shear lag effect explained (Singh & Nagpal, 1994) 

J.C. Hummelen analysed the shear lag effect for a TU Delft Master Thesis. The most important 

conclusions were (Hummelen, 2015): 

 The shear lag effect is affected by a changing aspect ratio (the ratio between the depth 

and width of the core). The best aspect ratio is 1.0, but the difference in shear lag effect 

with other ratios is minimal. 

 A structure approaching the shape of a circle experiences a smaller shear lag effect than 

a rectangular structure. 

 The effect of sharp corners in a structure on shear lag is negligible. 

 Making structural vertical joints in a masonry configuration doesn’t have any influence 

on the present shear lag effect in a core structure. 

 The shear lag effect in slender structures is smaller. 

It can be concluded that the schematisation of a stability structure into a clamped bending beam 

provides a sufficient first estimate for the structural behaviour. However, if the shear 

deformations are ignored, the predicted deformations and stress distributions deviate from 

reality. In any case a larger shear stiffness or a higher slenderness of the structure makes the 

Euler-Bernoulli approximation more valid and reduces the shear lag effect and the relative 

contribution of shear deformations. 

3.2.2 Behaviour of precast concrete shear walls 

For a precast shear wall with a stacked element configuration, the beam model must take the 

shear stiffness of the longitudinal joints into account in order to describe the full behaviour of 

the wall. This shear stiffness determines the coherence of the wall. Shear forces cannot be 
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transferred over a joint without any stiffness. In that case the wall can basically be modelled as 

two separate beams, resulting in large deflections and stresses in the cross section. If the shear 

stiffness of the longitudinal joint is infinitely large, the wall is monolithic. A precast wall will 

behave between these two limits, since the vertical shear connections will have a limited shear 

stiffness and are therefore able to transfer some longitudinal shear forces from one column of 

elements to the other. The effect is illustrated in Figure 3.11. Possible vertical wall to wall 

connections are discussed in chapter 2. 

 

Figure 3.11 Effect of longitudinal joints 

In order to have a better understanding of the behaviour of a precast shear wall, the longitudinal 

shear stresses are analysed in more detail. Sticking to the introduced beam model, a theoretical 

distribution of the longitudinal shear stress is found in beam theory as well. The book by C. 

Hartsuijker describes how to derive an expression for the magnitude of the shear stresses in a 

longitudinal section of a prismatic beam (Hartsuijker, 2001).  

As described before, the longitudinal shear stresses in the joints of the wall create a coherent 

structure of the vertically stacked precast elements. The same holds for a beam consisting of two 

elements placed on top of each other.  

 

Figure 3.12 Slip between two beam sections without shear transfer in the longitudinal joint 

When a part at the bottom of the beam is taken out in order to analyse the state of equilibrium, it 

can be seen that a longitudinal shear force along the cutting surface sax makes equilibrium with 

the inconstant normal force (See Figure 3.13). 

Σ𝐹𝑥 = −𝑁𝑎 + (𝑁𝑎 + Δ𝑁𝑎) + 𝑠𝑥
𝑎 ∗ Δ𝑥 = 0 →  𝑠𝑥

𝑎 ∗ Δ𝑥 = Δ𝑁𝑎   [3.1] 
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Figure 3.13 Forces on the lowest part of a beam (based on (Hartsuijker, 2001)) 

The normal force at one end is not equal to the force at the other end since the normal stress 

caused by bending varies over the length of the beam. The change in normal stress is described 

in the following way for a prismatic beam: 

𝑑𝜎(𝑦)

𝑑𝑥
=

1

𝐴
∗

𝑑𝑁

𝑑𝑥
+

𝑦

𝐼𝑧
∗

𝑑𝑀𝑧

𝑑𝑥
   [3.2] 

For the case of the beam, the normal force is constant, whereby the change in normal stress can 

be described as: 

𝑑𝜎(𝑦)

𝑑𝑥
=

𝑦

𝐼𝑧
∗

𝑑𝑀𝑧

𝑑𝑥
=

𝑉𝑦 ∗ 𝑦

𝐼𝑧
 [3.3] 

This relation is only valid for structural elements that can be considered as a slender beam and 

are therefore modelled with the Euler-Bernoulli beam theory.   

The normal force in the plane is equal to: 

𝑁𝑎 = ∫ 𝜎(𝑦)𝑑𝐴 [3.4] 

This combined with the equilibrium equation [3.1] gives: 

𝑠𝑥
𝑎 =

Δ𝑁𝑎

Δ𝑥
= ∫

𝑑𝜎(𝑦)

𝑑𝑥
𝑑𝐴 =

𝑉𝑦

𝐼𝑧
∗ ∫ 𝑦 𝑑𝐴 =

𝑉𝑦 ∗ 𝑆𝑧
𝑎

𝐼𝑧
 [3.5] 

Looking at this equation, it appears that the longitudinal shear stress is dependent on the 

transversal shear force acting in a cross section. For a clamped beam under a uniform q load, the 

shear force diagram is linear and so is the theoretical longitudinal shear stress diagram.  

The total shear force in the longitudinal joints is the integral of the shear force per length sxa over 

the length of the joint.  

𝑅𝑥𝑠
𝑎 = ∫𝑠𝑥

𝑎𝑑𝑥 =
𝑙

𝑀𝑧 ∗ 𝑆𝑧
𝑎

𝐼𝑧
  [3.6] 

For calculating the shear force over a certain part of the joint, the difference in bending moment 

ΔMy must be inserted in above relation. 

Using the derived formulas for calculating the distribution of shear stresses in a longitudinal 

joint over the height of a shear wall, results in a sufficient indication of the real stresses that 

develop. However, especially for the lowest and highest part of the joint the result will deviate 

from the actual behaviour.  
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Several sources mention the effect of shear deformations of wall panels and vertical joints on the 

longitudinal shear stress distribution in the vertical joints (Hansen, et al., 1976; Straman, 1988). 

As Straman explains, the shear stresses in the finitely stiff joints induce a shear deformation. 

This shear deformation results in a relative displacement between the two sides of the joint and 

consequently the two adjacent elements. The distribution of displacements is indicated in the 

lower image of Figure 3.14. As a result of this relative displacement, a horizontal cross-section of 

the wall isn’t plane anymore, whereby Bernoulli’s Hypothesis isn’t valid anymore. The 

distribution of longitudinal shear stress over the height of the wall deviates from the linear 

distribution calculated with the relations derived before, as shown in Figure 3.14. The most 

important difference is in the magnitude and location of the maximum shear stress. As the figure 

indicates, this maximum occurs somewhat above the base line of the wall and is generally 

smaller than the maximum value calculated with the Euler-Bernoulli beam theory. 

 

Figure 3.14 Longitudinal shear stress distribution in vertical joint over the height of the wall (Straman, 1988) 

Hansen et al. do not only describe the effect of shear deformations of the joints on the vertical 

shear stress distribution, but also describe the effect of shear deformations of the wall elements 

separately (Hansen, et al., 1976). The effects on normal, horizontal and longitudinal shear stress 

are illustrated in Figure 3.15.  

The figure shows for the normal stresses the theoretical linear distribution of an Euler-Bernoulli 

beam when shear deformations are not included at all. When shear deformations of the wall 

panels is included, the shear lag effect is clearly visible by the peak stresses at the outer fibres. 

When shear deformations of the joint are included as well, the finite joint stiffness introduces 

the jump that has been described before. Note that tensile stresses do not necessarily occur, 

because the vertical load is included in the analysis. 

The longitudinal shear stress distribution shows that the deviation of the shear stress at the top 

is caused by the limited shear stiffness of the joints and the reduction of the maximum is a 

consequence of both types of shear deformations.  
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Figure 3.15 Effect of shear deformations on stress distributions 1. No shear deformations 2. Shear deformations 
in panels only 3. Shear deformations in panels and vertical joints (Hansen, et al., 1976) 

Straman investigated the effect of vertical joints on the behaviour of the shear walls. In this 

research he focused among other things on the deflection of the wall, the normal stresses that 

develop due to bending and the vertical shear stress distribution in the joints. He concluded that 

the effect of vertical joints in shear walls on the deflection and bending stresses is the smallest if 

the joints are located close to the outer fibres of the wall. A joint exactly in the neutral axis 

results in the largest increase of bending stresses and deformations compared to a monolithic 

wall. Furthermore, the magnitude of the influence of vertical joints doesn’t depend on their 

stiffness exclusively, but on the ratio between their stiffness and the stiffness of the wall material 

(Straman, 1988). A joint with a certain stiffness applied in a very stiff wall affects the wall 

deflection and bending stresses to a larger extend, than when the wall and joint stiffness are 

comparable. A wall containing joints with a stiffness almost equal to the element stiffness is after 

all almost monolithic, even if the stiffness of both is considerably small.  
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3.3 Performance of precast concrete shear wall structures 
The wall elements in a precast shear wall are usually rather stiff and are therefore not inferior to 

cast in place elements. The joints however, reduce the stiffness of the wall compared to 

monolithic walls. This has been the major disadvantage of using precast concrete shear walls as 

stability structure for high rise buildings. This paragraph describes the results of previously 

performed studies on the parameters affecting the behaviour of precast concrete shear walls. 

These studies quantify the difference in behaviour, mainly stiffness, between the monolithic and 

the precast shear wall.  

3.3.1 Effect of joints on the stiffness of shear walls  

In the past research has been done on the parameters affecting the stiffness of precast stability 

walls (Migayrou, 2016; ten Hagen, 2012; Falger, 2003; van Keulen & Vamberský, 2012; van 

Keulen, 2010). These researches indicate the sensibility of the stiffness of the wall to different 

design parameters. Furthermore it compares the horizontal deflection of the precast shear wall 

to the deflection of a monolithic wall for a certain applied load, a very important comparison, 

since for high-rise structures the stiffness requirements determine the structural dimensions in 

most cases. 

First of all, the relation between the type of connection between the precast elements and the 

behaviour of the stability wall was analysed by Falger (Falger, 2003). This research focused on 

the relative performance of walls with a masonry configuration and open joints compared to 

that of monolithic walls and walls with common connection types. Falger’s goal was to illustrate 

the possibilities of the masonry configuration with open joints, whereas the goal of this study 

will be to illustrate the possibilities of the stacked configuration with the newly developed 

profiled mortar connections.  

Falger analysed the wall’s deformations and force and stress distributions for four different 

types of stability walls all with the same outer dimensions (slenderness ratio of 6): a fully closed 

wall, a wall with on each floor one opening on the central axis, a wall with six openings per floor 

and a wall with eight openings per floor. So the wall’s in-plane stiffness varies over the types of 

structure. With six different types of connections and four types of walls, in total 24 analyses 

were performed. The results show that the stiffest designs besides a monolithic wall are the 

open joint with masonry configuration and the reinforced profiled shear joint with a stacked 

configuration.  

Joint/Type of wall No openings 1 opening per 

floor 

6 openings per 

floor 

8 openings per 

floor 

Monolithic 100 100 100 100 

Open joint masonry 105.3 108 106.1 106  

Reinforced profiled 

joint 

107 110.3 106.8 105.7 

Table 3.1 Resulting top deflection of stability walls (Falger, 2003, pp. 75-76) 

Two conclusions Falger made from these results are: the deflection of both connection types are 

always of the same order of magnitude and for the open joints the increase in deflection 

compared to a monolithic wall seems independent of the structural stiffness, since for all wall 

types the index is around the same value (Falger, 2003, p. 79). Combining these two conclusions 

would suggest that also for the reinforced profiled shear joint the increase in deflection 
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compared to a monolithic wall is independent of the structural stiffness. The results in the table 

above do not exclude this statement. In line with these results, the same behaviour for an 

unreinforced profiled mortar shear joint might be expected.  

The larger relative deflection of the reinforced profiled joint for the structure with one opening 

is due to the location of the connection. The element division is such that on each floor a joint is 

present in the lintel above the opening. The shear stresses in these joints are larger due to the 

shorter length and in some the shear capacity is even reached, whereby plastic deformation in 

these joints and redistribution to other joints occur, all resulting in a larger deflection of the 

structure (Falger, 2003, p. 80). This indicates that the element division should be such that no 

joints are present at a section with an opening. 

Falger also concludes that the deflection of the wall is more sensible to a variation in lower 

values for the connection stiffness than a variation in high stiffness values. This means that it is 

very effective to improve the stiffness of connections with a relatively small stiffness, but the 

effect on the lateral displacement of the wall of making stiff connections even stiffer is rather 

small. From this it can be concluded that an extensive optimisation of the connection stiffness 

isn’t useful.  

Continuing on Falger's study, Van Keulen investigated the separate contributions of horizontal 

and vertical joints to the decreased wall stiffness. He tested only the fully closed wall and the 

wall with one centre opening, both executed with different masonry element configurations. In 

the first step the walls were modelled with open vertical joints and horizontal joints with a 

monolithic stiffness. The resulting deflections were larger than for a monolithic wall purely due 

to the open vertical joints. In case of a closed wall, the increase of deflection caused by the open 

vertical joints has a maximum of 3.8 percent compared to a monolithic wall. In case of a wall 

with centre openings, the increase is 4.1 percent at most. In the second step the stiffness of the 

horizontal joints was changed into a value related to a common connection type (horizontal 

mortar joints with pin reinforcement). The resulting deflections were larger than for a 

monolithic wall and for a wall with only open vertical joints. The increase compared to a 

monolithic wall was at most 8.3 percent for a closed wall and 10.2 percent for the wall with 

centre openings. According to these results, the deflection increase of a precast wall with a 

masonry configuration compared to a monolithic wall is for a larger part caused by the presence 

of horizontal joints between the elements (van Keulen, 2010). The results of Van Keulen’s study 

are not one-to-one applicable to the intended design with a stacked configuration and vertical 

profiled mortar joints. However, if they indicate the significance of the contribution of the 

horizontal joints for the designed shear wall, it must be kept in mind that even when an 

optimally stiff vertical connection is used, the deformation of the wall is still considerably larger 

than for a monolithic wall due to the horizontal connections. 

Although the shear stiffness of horizontal joints appears to play a significant role for the total top 

deflection of the shear wall, Migayrou showed that the normal stiffness of these joints has a 

minor influence on the deformations. This is due to the small thickness of the horizontal joints 

compared to the height of the wall elements (Migayrou, 2016, p. 30).  

According to Vamberský and van Keulen, the increase of the horizontal deflection of the precast 

wall compared to a monolithic wall is larger for smaller slenderness ratios. Since the shear 

deformation is the largest for less slender walls, it is shown that the joints in a precast wall 
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mainly affect the shear deformations and hardly increase the bending deformations (van Keulen 

& Vamberský, 2012). As a result all the relations between the horizontal deflection and a design 

parameter show a larger deflection increase for lower slenderness values. So when the 

slenderness of the structure is known, the consequence of a precast design can already be 

estimated. Test results in the Bachelor Thesis of Migayrou showed the same relation between 

the deflection increase and the slenderness ratio (Migayrou, 2016, pp. 24-38). 

Test results show that the size and configuration of the concrete elements have an effect on the 

wall’s stiffness (van Keulen & Vamberský, 2012). These effects are always the largest for less 

slender walls, as explained above. Van Keulen and Vamberský concluded that the use of larger 

elements reduces the amount of joints and will therefore increase the wall’s stiffness. 

The effect of the element configuration for a couple of options is shown in Figure 3.16. The 

vertical joints in a masonry configuration were kept open for this analysis. The vertical joints in 

the stacked configuration were modelled as unreinforced profiled mortar joints with a shear 

stiffness of 5.0 · 105 kN/m/m. This stiffness is said to be rather low. The results show the 

relatively high performance of the masonry configuration with open vertical joints (a) and the 

stacked configuration with profiled joints (e). Falger observed small deviations between the 

results for an open vertical joint and a reinforced profiled joint (Falger, 2003, p. 75). This 

illustrates the potential of the idea to create stability walls with the stacked configuration and 

the proposed mortar joints. Another observation in this test is the relatively better performance 

of structures with a horizontal element configuration compared to a vertical one. Based on this 

observation, Van Keulen and Vamberský conclude that a horizontal configuration is always 

preferred.  

 

Figure 3.16 Relation between element configuration and increase in top deflection of the stability wall (van 
Keulen & Vamberský, Vervormingen prefab wandconstructies, 2012) 

The shear stiffness of joints depends on the normal stress in the joint. The variation in normal 

stress over the different vertical joints in the building is not that large, but for the horizontal 

joints this is not the case. A horizontal joint on the lower stories is subject to a far larger normal 

stress than a joint at one of the highest stories. The normal stress even varies over the width, 

due to bending deformations of the wall. Falger investigated the need of doing an iterative 

analysis, whereby first the normal stress in the horizontal joints is calculated and then the shear 

stiffness is updated accordingly. According to this study, a shear stiffness based on a first 

estimate of the normal stress in the joint is sufficient (Falger, 2003, p. 69). For a feasibility study 

of a high-rise structure in precast concrete Ten Hagen evaluated this outcome and concluded 

that even a model with the same shear stiffness for all the horizontal joints in a shear wall gave 

sufficient results (ten Hagen, 2012, p. 88).  
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3.3.2 Effect of joints on the force distribution in shear walls 

Falger and Ten Hagen also evaluated the force distribution in the shear walls. Although Ten 

Hagen only focused on the masonry configuration with open joints, Falger considered other 

types of connections as well.  

Some important conclusions on the force distribution according to Falger’s research (Falger, 

2003, pp. 80-100): 

 The maximum compression stress in the wall elements increases when a connection 

type with a lower shear stiffness is used. This is a result of a decreasing uniformity of the 

wall with a decreasing shear stiffness of the vertical joints. The effect is in accordance 

with the theory of section 3.2.2. 

 The distribution of the normal stress over the width of the structure (a horizontal 

section) shows “jumps” at the locations of the vertical shear joints. This jump is larger for 

a smaller shear stiffness of the vertical joints. This is in accordance with the theory 

explained in paragraph 3.2.2. 

 The horizontal shear stress in the elements drops at the location of a vertical shear joint. 

 In a wall with openings the shear forces and bending moments in wall sections between 

the openings with a vertical shear joint are smaller than those for wall sections without a 

vertical shear joint. Since wall sections without a vertical joint are stiffer than sections 

with a vertical joint, they will take up a larger part of the loads.  

 A wall with open vertical joints has a specific shear stress distribution. The shear forces 

flow through the elements around the gaps created by the open joints. This results in 

considerably higher shear stresses compared to a monolithic wall. Furthermore the 

increase of moments and shear forces in the wall may be up to 45 percent. So although 

the profiled and open joint designs show quite similar deformation results, this is not the 

case for the force distribution. 

 The overlap between wall elements in a masonry configuration must be at least 25 

percent of the element width in order to obtain the desired behaviour. 

Ten Hagen studied the effect of making structural vertical joints instead of open joints in a 

masonry configuration. The effect on the top deflection of the wall appeared to be minimal. 

However, the shear stress distribution changed due to the improved continuity of the wall. It 

approached the distribution of a monolithic wall (ten Hagen, 2012, pp. 89-91). 
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3.4 Conclusion 
Different types of connections can be compared on the scale of the connection itself. In that 

sense the properties as stiffness, capacity and ductility of the connection are discussed in a 

qualitative or quantitative way. However, as mentioned multiple times in this report, the 

influence of the connections on the behaviour of the complete structure is of major importance. 

In that sense the context must be considered as well. 

In this case this context is given by the shear wall in which the vertical profiled mortar 

connections will be applied. This wall can be slender or compact, with many openings or closed. 

The influence of the connections on the shear walls behaviour varies along all these type of 

shear walls. 

In order to gain insight in the effect of connections on the displacement and stress distribution in 

a shear wall, the theoretical methods that can be applied were discussed in paragraph 3.1. These 

theories were subsequently translated to the case of a shear wall in paragraph 3.2. In this 

paragraph the difference between a monolithic and precast shear wall was discussed. The 

connections in a precast wall cause an increase in lateral deflection and an altered normal and 

shear stress distribution.  

Previous research on the behaviour of precast compared to monolithic shear walls indicated the 

differences in stiffness and stress distribution. This was discussed in paragraph 3.3. The relative 

difference in stiffness between these two kinds of walls is promising for the purpose of this 

master research. The difference depends on the slenderness ratio of the wall and the type of 

connection that is used. The stiffness reduction caused by joints is smaller for more slender 

walls. In case of reinforced profiled connections this is quite soon less than ten percent. So this 

result is positive for the application of vertical profiled mortar connections in high rise buildings, 

where the slenderness is generally quite large. 

The influence of the vertical profiled mortar connections in a shear wall with stacked element 

configuration will be analysed in this research. This will be analysed by comparing the wall’s 

stiffness and stress distribution with that of a monolithic wall. The obtained behaviour of this 

shear wall can also be compared to what is theoretically expected and expected by former 

research, based on the information presented in this chapter.  
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4 Literature study: Tests on the vertical profiled mortar 

connections 

This chapter summarizes the relevant results of the tests on profiled mortar connections 

performed by Van Keulen. The whole chapter is based on Van Keulen’s report that describes the 

most important test results (van Keulen, 2015). Van Keulen developed the four types of profiled 

mortar joints that are shown in Figure 4.1. From left to right: the staggered shear key joint, the 

aligned shear key joint, the roughened serrated joint and the joint with aligned small keys. A 

roughened plain joint was considered as well, but this project will only focus on profiled joints. 

 

Figure 4.1 Profiled joints developed by Van Keulen (van Keulen, 2015) 

The figure indicates the intended compressive diagonals that develop in the joints. The test 

results should reveal whether the diagonals will indeed be oriented in this way or set according 

to a different configuration. The geometry of the joints is designed in such a way that failure by 

type B or D doesn’t occur (See Figure 2.27). As will be clear, the joints will fail according to 

failure mode C. 

Figure 4.2 shows the test setup that is used by Van Keulen in order to test the profiled mortar 

connections. The length over which the joint was applied is 600 mm. The thickness of the 

concrete elements is 200 mm. Above and below the joint steel bars are used that function as 

concentrated reinforcement. The steel bars are slightly prestressed to keep all the elements 

together. Some test specimens were prestressed by a larger initial force. The connection is 

loaded by a displacement controlled shear force that is applied with a speed of 0.2 mm/min. 
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Figure 4.2 Classical shear test used by Van Keulen (van Keulen, 2015) 

This chapter describes the results for all four developed joint geometries of Figure 4.1. The first 

paragraph describes the shear-slip relations, the second discusses the relation between shear 

and lateral force and in the third paragraph a comparison between the four joints is made. 

Paragraph 4.4 contains some concluding remarks.  

4.1 Shear-slip behaviour of the joints 
Different aspects of the joints’ behaviour are of importance. The most important aspect is their 

shear-slip behaviour, from which the shear stiffness and capacity can be determined. 

4.1.1 Shear-slip relation for the staggered key joint 

Figure 4.3 shows the shear-slip behaviour of this type of joint that is obtained during the tests. It 

is concluded that the behaviour corresponds to the one discussed in section 2.3.3. In stage A 

bond in the interface enables an infinite amount of compression diagonals to develop until 

debonding of the interface takes place at point B, where after the main diagonals predefined by 

the geometry take over the force transfer. After point C the first cracks develop parallel to the 

compression diagonal as a result of exceedance of the mortar’s tensile strength. This failure by 

type A isn’t fatal. The capacity is reached just before failure by type C occurs. The shear keys 

shear off by the formation of a vertical crack. A residual capacity which is equal to the frictional 

capacity of the crack surface is left. In stage A shear is transferred by adhesion, whereas in stage 

B till D shear lock is the major transfer mechanism. The results presented in Figure 4.3 are 

obtained for a joint executed with regular K70 mortar and prestressed in the direction normal to 

the joint with a compressive stress equal to 2 MPa. 
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Figure 4.3 Shear-slip behaviour of the staggered shear key joint (van Keulen, 2015) 

4.1.2 Shear-slip relation for the aligned shear key joint 

The joint profile with aligned shear keys shows a behaviour corresponding for a large part with 

the staggered joint. However, these joints show some more ductility after reaching their 

capacity. This is caused by the formation of extra kinked diagonals that reach from one key to 

the other. After the capacity is reached in point C, cracks develop in each shear key. Thereby the 

small diagonals disappear, but the kinked diagonals are still able to transfer a shear force until in 

point D a vertical crack occurs shearing of all the shear keys. The capacity in point D is 

somewhat lower than in point C, but the kinked diagonals prevent a sudden decrease to the 

residual strength. It must be noted that the results in Figure 4.4 belong to a joint which is 

executed with fibre reinforced mortar and a normal compressive prestress of 2 MPa.  

 

Figure 4.4 Shear-slip behaviour of the aligned shear key joint (van Keulen, 2015) 

4.1.3 Shear-slip relation for the roughened serrated joint 

The shear-behaviour of the serrated joint with a roughened surface, fibre reinforced mortar and 

prestressed with 2 MPa is shown in Figure 4.5. The major difference with the two other joints is 

its large initial stiffness and debonding capacity. This makes the joint very compatible with a 
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monolithic design if the adhesion in the interface can be guaranteed and the load is smaller than 

the debonding capacity. 

 

Figure 4.5 Shear-slip behaviour of the roughened serrated joint (van Keulen, 2015) 

4.1.4 Shear-slip relation for the joint with aligned small shear keys 

Figure 4.6 shows the shear-slip behaviour of the fourth type of joint. The results are obtained for 

a joint that is executed without any lateral prestress and with regular K70 mortar. This joint 

shows a large ductility after the capacity is reached in point D. The joint shows behaviour similar 

to that obtained for other joints. 

 

Figure 4.6 Shear-slip behaviour of the joint with aligned small shear keys (van Keulen, 2015) 

4.2 The relation between the shear and lateral force 
Another important aspect of the behaviour of the shear joints is the development of horizontal 

forces during loading. As explained in section 2.3.1, a horizontal force appears as a consequence 

of the transfer of the vertical shear force by an inclined compressive strut in the shear keys. This 

horizontal force must be resisted by either a lateral compressive prestress or a sufficient lateral 

stiffness provided by the in-plane stiffness of the adjacent precast elements. A combination of 

both is also possible, as will be supported by the following results. The important observations 

are discussed with use of the results for a staggered shear joint.  
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Figure 4.7 shows the test results for the staggered shear joints. The left diagram shows the shear 

stress-slip relation and the right shows the relation between shear force and horizontal reaction. 

The initial lateral prestress of 2 MPa in specimen P1-8 is deduced from the starting point of the 

V-H relation for specimen P1-8, which is at a force H of significant magnitude. 

The different phases in the development of the horizontal force coincide with those of the 

developing shear force. In the first stage the shear forces are still transferred by adhesion 

instead of shear lock, whereby the horizontal reaction isn’t increasing yet. The lateral force even 

appears to reduce slightly. This effect is best visible for specimen P1-8. The cause of this 

reduction is found in the deformation of the joint in this stage, which is shown for a small part of 

the joint in Figure 4.8. Both the shear deformation and a possible extensional deformation as a 

result of lateral prestress cause the small element to shorten in lateral direction. This results in a 

reduction of strain in the lateral steel bars and therefore a reduction in lateral force.  

In the stage after debonding, the shear force is mainly transferred by the compression diagonals 

in the shear keys. This will increase the lateral force. The slope of the V-H relation reveals that 

the shear force that is transferred increases faster than the horizontal force that is required. 

When the first cracks start to develop, certain ratios for Vs/Hs are found. These are given in 

Table 4.1. For the moment of failure the ratios are determined as well. For most specimens it 

appears that, based on a comparison of these ratios, the lateral force increases more than the 

shear force in the stage after cracking of the mortar.  

After the capacity is reached, the shear lock mechanism fails. Therefore the horizontal force 

decreases to a certain value it keeps having in the residual strength stage of the connection. 

The relation of specimen P1-8 shows that the horizontal force doesn’t increase significantly up 

to a relatively large value of the shear force. In order to understand this effect, a closer look on 

the composition of the lateral force H must be taken. This force is formed by the summation of 

two contributions: the prestress force and the lateral stiffness force Fk. For the first three 

specimens, a small prestress is applied, whereby the lateral force H is almost completely 

provided by the force induced by the resistance of the surrounding elements to lateral 

displacements Fk. Specimen P1-8 is significantly prestressed and this force is for a long time 

sufficient to provide resistance to the horizontal component of the diagonal compressive force. 

Only when the full prestress force is “used”, the lateral stiffness starts to play a role. The table 

results show that the lateral force caused by lateral stiffness at the moment of cracking is just 3 

kN. When failure finally occurs, the lateral stiffness has a significant contribution to the lateral 

force, since Fk,u is 90 kN and Hu is 334 kN. 

Type Prestress 
MPa 

Lateral 
stiffness 

Type 
of 
mortar 

Vs Hs Fk,s Vs/Hs Vu Hu Fk,u Vu/Hu 

P1-5 0.1 M24 K70 427 85 46 4.2 597 141 120 4.2 
P1-6 0.1 M24 Fibre 504 106 86 4.8 608 141 121 4.3 
P1-7 0.1 M38 K70 401 76 56 5.3 673 162 142 4.2 
P1-8 2 M38 K70 700 247 3 2.8 851 334 90 2.5 

Table 4.1 Results for the staggered shear joint at moment of cracking s and ultimate capacity u (van Keulen, 
2015) 
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Figure 4.7 Shear-slip and V-H relation for the staggered shear joint (van Keulen, 2015) 

The ratio between V and H is closely related to the angle alpha between the compression 

diagonal and the vertical axis. According to the equilibrium diagrams presented in section 2.3.1, 

the angle alpha is not exactly defined by V/H. However, since the contribution of the frictional 

force is likely to be very small, the ratio is a good approximation for the angle of the diagonal 

force.  

The geometry of the profiled joint tries to predefine the direction of the compression diagonals. 

However, the angle of the diagonal won’t be exactly as the geometry defines and will change 

during the loading process. In the first stage of the loading process the deformation of the joint 

material (Figure 4.8) contributes to a decrease of the angle between the diagonal and the 

vertical axis, alpha. Purely based on the joint’s geometry, this ratio should be 4:1. The results in 

Table 4.1 show that the diagonal is steeper.  

 

Figure 4.8 Deformation of the joint in initial stage 

After cracks occur in the joint material, the angle increases. In this stage the increase of the 

horizontal force H becomes larger than the increase in vertical shear force V. The stiffness of the 

joint is reduced, whereby its deformations increase. The result is a rotation of the compression 

diagonal to a flatter orientation, resulting in a relatively larger horizontal component of the 

diagonal force, indicated by a smaller ratio for V/H. 
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Based on the comparison between the four tested joints, two important conclusions can be made 

with respect to the lateral stiffness and prestress. 

 A connection with a larger lateral stiffness will have a larger shear capacity 

 A connection prestressed in lateral direction will have a larger shear capacity 

Although the report doesn’t explicitly mention an increase in shear stiffness as a result of a 

larger prestress or lateral stiffness, the diagrams in Figure 4.7 indicate this dependency. 

Another conclusion drawn in the report, based on results not presented here, is that the capacity 

of a connection with a narrow joint is larger than with a wide joint. The predefined angle of the 

diagonal is smaller for a narrow joint, resulting in a smaller diagonal force and horizontal 

component for the same transferred shear force. This increases the ultimate capacity of the 

connection. 

Furthermore the effect of applying fibre reinforced mortar in some of the joints is investigated, 

but the small amount of tests with this mortar cannot provide confidential results. It is expected 

that the fibres will increase the joint’s capacity, since they will increase the tensile strength of 

the mortar. Furthermore the residual capacity can be improved by the fibres, since they prevent 

one major crack to occur.  

4.3 Comparison between the four types of joints 
Figure 4.9 shows the shear-slip and V-H relation for the four types of vertical mortar joints. 

Based on these results, a comparison between the four options can be made. 

 

Figure 4.9 Comparison of vertical mortar joints (van Keulen, 2015) 

From the left graph the shear capacity can be read. The roughened serrated joint has the largest 

capacity. The joint with small keys has the second largest capacity and the capacity of the joint 
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with staggered profile is slightly smaller. The joint with aligned profile has a considerable 

smaller capacity. The amount and angle of the compression diagonals determine the capacity of 

the joint. Joint P2-16 has steep diagonals and P2-17 has many diagonals, whereby their 

capacities are the largest.  

The angle of the diagonals also determines the V-H relation. The steepest diagonals develop in 

joint P2-4, whereby for the same shear force transfer a smaller horizontal appears. Therefore 

this joint requires the smallest lateral stiffness of the adjacent elements. This is especially an 

advantage for application in wall sections with large openings. 

Considering the shear stiffness of the joints, the largest differences are found in the phase before 

debonding of the interface. By roughening the surface of joint P2-16 cracking of the interface is 

postponed, resulting in a large initial stiffness with considerable debonding capacity. Joint P2-17 

also appears to be rather stiff in the first phase. In the other two joints the interface cracks 

rather soon, whereby the shear lock mechanism is called upon earlier, resulting in larger shear 

deformations. However, the stiffness of all joints after debonding doesn’t differ much. This is 

observed by considering the four shear-slip relations which are approximately parallel in this 

phase.  

In each case another joint type can be the best option. The roughened serrated joint has the 

largest capacity. But roughening the surface is a laborious process sensible to deviations and 

mistakes. Furthermore the provided capacity can in many cases be way larger than required. 

Therefore the small keyed joint or the joint with staggered profile might be a better option. The 

joint with staggered profile sets lower requirements on the lateral stiffness, whereas the joint 

with small keys has a larger initial shear stiffness. These are two aspects to weigh. Based on the 

comparison a joint with aligned profile is in many cases not preferred. 

4.4 Conclusion 
The study on the previous research on profiled connections in paragraph 2.3 provided 

information on the shear-slip behaviour with its different characteristic stages, and parameters 

that influence this behaviour. The behaviour that is obtained by Van Keulen shows a lot of 

similarities with the information of paragraph 2.3. Van Keulen already considered the effects of 

joint geometry presented in section 2.3.5 while developing the four types of profiled joints. The 

results of this chapter showed that besides the parameters known from literature, the lateral 

stiffness and prestress have a large influence on the connection properties as well. A larger 

laterals stiffness and/or lateral prestress increases the shear capacity and stiffness of the 

connection.   
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5 Overview of the research topic 

An overview of aspects that play a role in the behaviour of the vertical profiled mortar 

connections can be produced, based on the information presented in previous chapters. The first 

paragraph of this chapter describes this overview, that provides insight in all the aspects that 

could or should be investigated in order to be able to model the vertical profiled mortar 

connections in a shear wall. Since this research aims on developing a modelling approach for 

practical situations, not all identified effects that determine the connection’s behaviour are 

included. So in the second paragraph the scope of this research is set by excluding some of the 

effects from this research. The third paragraph concludes with an enumeration of the specific 

research questions that are discussed in the remaining part of this report. 

5.1 An overview of possible research aspects 
The problem statement of this thesis has been formulated in chapter 1. This problem statement 

can be rephrased in a more general way: 

“How can the vertical profiled mortar connection be modelled?” 

In order to answer this question completely, many aspects that are involved in modelling the 

connection must be investigated. This paragraph attempts to identify these research aspects in a 

structured way, in order to gain insight in the complexity of modelling the vertical profiled 

mortar connection. The overview in this paragraph is composed with the current knowledge. It 

is therefore not necessarily complete.  

5.1.1 Required knowledge to model the vertical profiled mortar connections 

Modelling the shear connection comprises two main aspects:  

 choosing the way of modelling that is applied;  

 determining the connection properties that are required as input for this model.  

The chosen modelling technique determines the connection properties that are required as an 

input. On the other hand, the importance of certain connection properties, for example a non-

linear shear slip relation, determines the chosen modelling technique as well. So these two 

aspects need to be aligned.  

So research must be done on the different modelling techniques that are feasible for the 

developed vertical profiled mortar connections. Questions to answer here concern for example 

the working of different finite elements and the possibilities within different software packages. 

Connection properties are for example: 

 The shear stiffness; 

 The shear capacity; 

 The residual capacity; 

 The nonlinear behaviour after cracking; 

 The adhesive capacity; 

 The adhesive stiffness. 
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These properties all concern the shear slip behaviour of the connection. Another property can 

also be the relation between the transferred shear force and the induced horizontal force by 

shear locking in the joint. 

Research on the way the connection properties are determined contains more aspects to 

analyse. So this research is subdivided further in the remaining of this paragraph. 

5.1.2 Determination of the connection properties 

The connection properties are determined by a combination of different structural effects. 

According to the current knowledge, these effects are: 

 Shrinkage of the joint mortar; 

 Nonlinear behaviour of the materials; 

 Dowel action of the transverse reinforcement in horizontal joints; 

 The influence of normal stress in the joint; 

 The influence of lateral stiffness obtained from the surrounding structure; 

 The influence of joint properties on the behaviour of the mortar. 

First of all, the behaviour of each effect should be analysed. What this analysis into the effects 

entails, is briefly discussed in the next section.  

Secondly, when this knowledge is provided and each effect can be fully described and quantified, 

it is not yet known in which manner these effects influence the connection’s properties. For 

example, when the magnitude of the lateral stiffness is known, it is not yet known to which shear 

stiffness this will lead. Or when the effect of dowel action of the reinforcement is described, it is 

not yet known how the dowel action cooperates with the shear transfer in the mortar joints. So 

the relations between each structural effect and the connection properties they influence must 

be investigated.  

Lastly, multiple effects will have influence on the same connection property. For example, the 

lateral stiffness influences the shear stiffness of the mortar joint, but the joint properties, such as 

the type of profile that is used, will also partly determine this shear stiffness. So it should be 

known in which way all these effects combined determine one single connection property. 

Based on the analysed combined relations, the influence of each effect relative to the others can 

be obtained. In this way the relevance of each effect is indicated. For the development of a 

practical way of modelling this is very important, since certain effects may be neglected in the 

modelling approach based on their relevance. Furthermore, knowing the relevance of each effect 

can be very useful for the structural designer in early phases of the design process. It gives 

insight into which effects to focus on while making important decisions when detailed analyses 

have not yet been performed. 

5.1.3 Description of structural effects 

If all the enumerated structural effects are quantified and their combined influence on the 

connection’s properties is known, the connections can be modelled in a shear wall model 

according to the intended modelling approach. However, the magnitude of the structural effect is 

in most cases determined by many parameters, which are mostly dependent on design decisions. 

So in order to quantify each structural effect, research is required into these effects and the way 
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their magnitude is influenced by design parameters. This section contains a short explanation of 

these researches. 

Since the magnitude of each structural effect may depend on multiple parameters, the relative 

influence of each parameter in determining the magnitude of each effect and especially the 

relevant effects is of interest. This indicates the relevance of each parameter. Irrelevant 

parameters may be ignored in the quantification of certain structural effects. Furthermore the 

structural designer can base decisions in early phases of the design process on the known 

relevance of all parameters. If for example the structural designer is aware of the fact that the 

lateral stiffness is a relevant structural effect that is largely determined by the distance between 

the mortar joint and the location of wall openings, he or she will emphasise this in the façade 

design.  

5.1.3.1 Shrinkage of the joint mortar 

As discussed in paragraph 2.3.4, the shrinkage of the applied joint material may lead to loss of 

adhesion in the concrete joint interface. However, the provided information was based on older 

types of mortar. Nowadays mortars are developed that hardly shrink. So is it still valid to state 

that adhesion may not be relied upon? 

Furthermore, the effect of lateral expansion of the wall elements might also mitigate the effect of 

shrinkage. Figure 5.1 illustrates this effect. The precast wall elements are vertically loaded by 

dead load of the stories above the observed level. This vertical load will lead to a lateral 

expansion of the elements, what narrows the vertical joints between the elements. This effect 

may mitigate the effect of shrinkage, whereby the adhesive capacity of the concrete mortar 

interface is still present.   

 

Figure 5.1 Lateral expansion of the wall elements 

The effect is similar to what has been described in section 2.2.1 for compressive connections. 

The influence of the horizontal joints between the wall panels will be significant, according to 

what has been presented in that section. The properties of the horizontal joint filling and the 

possible application of starter bars in these joints determine to what extend the illustrated 

deformations are prevented.  

If the effect of shrinkage is significant, this will result in a shear slip-shear stress relation for the 

vertical connections that differ from the ones found by Van Keulen. As has been discussed in 

section 2.3.4, shrinkage leads to a successive development of shear force transfer due to the gap 
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in the interface that has occurred. Dowel action of the transverse reinforcement is the first 

mechanism that transfers shear forces over the vertical joint, until contact between the precast 

wall elements and the joint mortar is restored and shear locking and shear friction take over the 

force transfer.  

5.1.3.2 Nonlinear behaviour of the materials 

The different stages of the shear slip-shear stress relation were described in paragraphs 2.3.3 

and 4.1. What is seen is a non-linear relation between the shear slip and shear stress. The 

relation might be approached by a linear relation until the point of ultimate capacity. However, 

after first cracks occur in the mortar or the precast elements, the stiffness reduces gradually and 

after reaching the ultimate capacity, the capacity drops to a residual value. 

As discussed in paragraph 2.1 ductility and deformation capacity are important properties for 

connections applied in precast concrete. Insight into which parameters determine the post 

cracking behaviour of the connection and therefore properties as ductility and deformation 

capacity, but also residual capacity and moment of cracking is important to be able to ensure 

proper connection behaviour.   

5.1.3.3 Dowel action of the transverse reinforcement 

The vertical profiled mortar connections make use of transverse reinforcement that is applied 

only in the horizontal joints between precast wall elements that are regularly present at the 

height of each floor slab in the building. The main purposes of the reinforcement are to provide 

lateral resistance against dilatation of the vertical profiled mortar joint, to take up tensile forces 

as a result of diaphragm action in the floor slabs and to provide structural integrity by 

transferring forces to an alternative load path. 

The application of these horizontal reinforcement bars basically creates reinforced mortar 

beams at each floor. A possible side effect of these beams is that they are transferring vertical 

shear forces in the wall by dowel action. The transfer mechanism of dowel action is discussed in 

section 2.2.3. The contribution of dowel action of these beams is explicitly discussed in section 

2.3.4. 

Figure 5.2 gives a schematic illustration of the dowel action that takes place. The stiffness and 

capacity of this structural effect depend among others on the material properties of the 

reinforcement steel and the mortar in the horizontal joints, the dimensions of the horizontal 

mortar joints, the amount of reinforcement that is applied and the bending stiffness and capacity 

that is obtained with this combination. Furthermore, the way the horizontal joints are executed 

will be of influence as well. Figure 2.2 showed two possible variants for the horizontal 

connection between the wall elements and the floor that is also supported at the location of the 

horizontal joints. Whether the floor is supported by a corbel or integrated in the wall determines 

the location of the transverse reinforcement with respect to the wall elements and will therefore 

also influence the contribution of dowel action of this reinforcement to the transfer of vertical 

shear forces in the wall. 
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Figure 5.2 Dowel action of transverse reinforcement 

All the parameters that are mentioned are known from design. So if the relation between the 

dowel action and these parameters is known, the magnitude of the effect of dowel action can be 

identified in early design stages. The relative contribution of dowel action to the properties of 

the vertical profiled mortar connection determines whether this effect is really relevant to take 

into account while designing a precast shear wall with this type of connections. 

5.1.3.4 Normal stress in the joint 

The test results of Van Keulen indicated the influence of a compressive stress perpendicular to 

the joint interface (paragraph 4.2). The presence of normal stress increased the shear capacity 

and stiffness of the joints. Especially for horizontal joints this normal stress is important, since 

these joints are compressed by dead loads. This doesn’t hold for vertical joints between the wall 

elements. So the importance of this effect for the specific case of vertical profiled mortar joints 

may be rather insignificant. However, if it does occur it can be of major influence, as the test 

results indicated. Therefore this effect cannot be missing from this list. 

5.1.3.5 Lateral stiffness 

Van Keulen’s tests also indicated the effect of lateral stiffness. The lateral stiffness is a measure 

for the resistance to dilatation of the joint provided by the surrounding precast elements in 

combination with the transverse reinforcement. This dilatation is caused by the horizontal force 

component of the compressive force that develops in the joint mortar as a result of shear 

locking. The effect is discussed in section 2.3.2 and illustrated in Figure 2.29.  

The lateral stiffness is determined by many parameters, among which the axial stiffness of the 

transverse tying reinforcement, the Young’s modulus of the precast concrete and the presence, 

size and location of wall openings. 

The results discussed in chapter 4 demonstrated that the lateral stiffness increases the shear 

stiffness and capacity of the connection. The exact relation between the lateral stiffness and 

these two connection properties must be investigated, as explained in section 5.1.2. This relation 

compared to those between the other effects and the connection properties determines the 

relevance of the lateral stiffness. 
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5.1.3.6 Joint properties 

The behaviour of the vertical joint also depends on the material properties of the mortar, the 

profile geometry and the treatment of the concrete-mortar interface, such as roughening or use 

of a bonding agent. Furthermore executional aspects, such as the filling ratio of the joint play a 

role as well. 

The joint properties determine for example the stiffness of the compression diagonal that 

develops, the adhesive capacity, the cracking pattern that develops in the mortar and the failure 

mechanism that determines the ultimate shear capacity of the joint. So besides the linear 

properties of the connection, they are also linked to nonlinear properties. The distinction 

between the nonlinear effects and the joint properties won’t therefore not always be clearly 

defined. 

After debonding of the interface, shear transfer in the joint is partly provided by shear locking 

and partly by shear friction in the interfaces between concrete and mortar. The joint properties 

will also influence the relative contribution to the force transfer of these two mechanisms.  

5.1.4 Summary of the possible research aspects 

This paragraph discussed the overview of the research topic. All aspects that could be 

investigated were enumerated. The following list gives a simple overview of these research 

aspects: 

 Research on modelling the vertical profiled mortar connection 

o Research on modelling techniques in FEM software 

o Research on the influence of different structural effects on the connection 

properties that are part of the model input 

 Research on the working principles of all structural effects 

 Shrinkage of the joint mortar 

o Research on the combination of parameters influencing 

this effect 

 Nonlinear behaviour of the materials 

o Research on the combination of parameters influencing 

this effect 

 Dowel action of the transverse reinforcement in horizontal joints 

o Research on the combination of parameters influencing 

this effect 

 The influence of normal stress in the joint 

o Research on the combination of parameters influencing 

this effect 

 The influence of lateral stiffness obtained from the surrounding 

structure 

o Research on the combination of parameters influencing 

this effect 

 The influence of joint properties on the behaviour of the mortar 

o Research on the combination of parameters influencing 

this effect 

 Research on the influence of each structural effect on the connection 

properties 
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 Research on the way a the combination of all effects influences the 

connection properties 

 Indicating the relevance of each effect. What can be ignored in 

modelling the connection’s behaviour? 

If all this research is performed a modelling approach that includes all connection properties 

and relevant effects can be constructed. Figure 5.3 shows schematically in a flow-diagram the 

setup of this modelling approach.  

 

Figure 5.3 Schematic representation of the process of modelling the vertical profiled mortar connections 

It all starts with determining the magnitude of all relevant design parameters that are involved 

in defining the connection properties. With use of the known design parameters the relevant 

structural effects are quantified. In Figure 5.3 there are N relevant structural effects, since all 

effects are included in this general scheme. When the magnitude of all the relevant structural 

effects is known, the discovered relations between the combination of these effects and the 

connection properties are used to determine the connection properties. These properties are 

input for the chosen modelling technique. This can for example be a linear or nonlinear interface 

element, discrete springs or a volumetric element. The choice for a certain modelling technique 

depends on the goal of the analysis that is performed with the complete structural model. As 

mentioned previously, the chosen modelling technique determines the required property input, 

but the important properties on the other hand set requirements and constraints to the 

modelling techniques that could be applied. The defined connection properties in combination 

with the chosen modelling technique form the way of modelling that is used for the vertical 

profiled mortar connection in a precast shear wall with stacked element configuration. 
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5.2 Scope and Simplifications 
Previous paragraph gave a broad overview of the parameters and effects that influence the 

behaviour of the connection. Not all the addressed research topics can be considered in this 

thesis. So some topics must be analysed in further research. This paragraph defends the scope 

defined for this thesis. This inevitably leads to multiple simplifications to the connection’s 

behaviour, which are discussed as well.  

5.2.1 Excluded structural effects 

At the beginning of paragraph 5.1 the problem statement of chapter 1 was rephrased in a more 

general way and the overview of previous paragraph was based on this general problem 

statement. The original problem statement of this thesis defined in chapter 1 is: 

“How can the vertical profiled mortar connection be modelled in practical situations?” 

Keeping this in mind, the relevance of some structural effects for these practical design 

situations is reassessed. Nonlinear behaviour of structural elements or materials is for example 

often not relied upon in design. Furthermore, in practical situations a conservative 

approximation is often desired. These considerations led to the exclusion of several structural 

effects from this master research. 

5.2.1.1 Exclusion of nonlinear effects  

The real behaviour observed during previous tests on profiled shear connections is described in 

section 2.3.3. The shear slip relation is characterised by its different phases: force transfer by 

adhesion, force transfer by compression diagonals, crack development in the mortar and the 

post cracking phase where the residual capacity is provided by shear friction in the main crack.  

The effects of adhesion, crack development and residual capacity are not taken into account. In 

most design calculations it will probably be required that the connections will remain 

uncracked. So the post-cracking behaviour is not directly important for the purpose of a 

practical way of modelling. The effect of adhesion is in most cases obstructed by shrinkage of the 

mortar, based on tests on older types of mortar. Although adhesion might occur with modern 

mortar types, the effect is neglected in the parameter study, since it is likely to be neglected in 

practical situations. If this isn’t the case because of shrinkage, then it will be because of 

executional aspects, such as the cleanliness of the interface. Excluding the relatively stiff 

adhesive force transfer is a conservative approximation.  

Figure 5.4 shows schematically the simplification of the shear slip- shear stress relation that is 

obtained by applying the proposed exclusion of nonlinear effects. A linear relation is obtained 

where the only unknown is the shear stiffness that is given by the angle of the relation. Since a 

linear modelling is applied, even a capacity is lacking. Thereby the relation continues till 

infinitely large values of the shear slip and shear stress in the joint. For this reason the resulting 

shear stress that is obtained from the model should always be compared to the capacity that was 

found in the test results presented in chapter 4. 



 

 Overview of the research topic page 72 

 

Figure 5.4 Model simplification of the connection's shear slip- shear stress relation 

5.2.1.2 Exclusion of shrinkage 

As described in section 2.3.4, shrinkage will result in a gap between the precast concrete 

elements and the joint mortar. As a result, the shear forces are initially transferred by dowel 

action of the floors and transverse reinforcement. The mortar joint is only activated when 

contact with the precast elements is restored due to shear deformations.  

This successive behaviour is not considered in this thesis. Here it is assumed that the 

compression diagonals take up shear forces from the start, when the shear displacements are 

still equal to zero.  

The modelled situation in total with respect to shrinkage can be described as a situation where a 

modern shrinkage poor mortar is applied, that shrinks just enough to loose contact in the 

interface, whereby adhesive forces are cancelled out but the mortar can still transfer shear 

forces directly. 

5.2.1.3 Exclusion of dowel action of the tying reinforcement 

Since the consecutive behaviour as a result of shrinkage is not taken into account, any dowel 

action of the transverse reinforcement only takes place simultaneously to the shear transfer by 

shear locking and shear friction in the mortar joint. In chapter 2 it has been explained that the 

shear stiffness obtained from dowel action is considerably lower than the stiffness obtained by 

the other mechanisms, because dowel action is activated only with a relatively large shear slip 

over the joint.  

For this reason the contribution of dowel action to the  shear stiffness of the connection is 

assumed to be relatively small. If this contribution is small, it is reasonable to model the 

transverse reinforcement by truss elements that can only transfer axial forces. Hereby the shear 

transfer is fully taken by the mortar joint, which enables investigation of the behaviour of the 

joint exclusively. 

5.2.1.4 Exclusion of the effect of normal stress 

Since the research is focused on the application of the profiled shear connection in vertical joints 

between precast concrete wall elements, the influence of stress normal to the connection is not 

considered. The application of profiled shear connections in horizontal joints is not part of this 

research. 
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5.2.2 Included effects 

The effects that are included in this research are the effect of lateral stiffness and the joint 

properties. Since the nonlinear properties of the connection are not included, only the relation 

between these two effects and the shear stiffness of the connection is investigated.  

Since shear locking is seen as the most contributing shear transfer mechanism and this induces 

lateral forces on the joint’s environment, the effect of the lateral stiffness is important to 

investigate. 

Furthermore, the joint properties such as the mortar properties and the profile geometry are 

expected to have a significant contribution to the linear shear stiffness of the connection.  

5.3 Content of the master research 
The schematic model workflow that was presented in paragraph 5.1 can be adjusted to the scope 

that is defined in previous paragraph. Figure 5.5 shows the adjusted model scheme. 

 

Figure 5.5 Schematic representation of the modelling method according to this research 

Due to the exclusion of several effects and the restriction to linear behaviour, the only unknown 

connection property is its shear stiffness that is related to shear transfer in the mortar joint. The 

scheme illustrates in which way this property is defined. 

Several design parameters influence the two effects that are considered: The influence of lateral 

stiffness and joint properties. In sections 5.1.3.5 and 5.1.3.6 some of these design parameters 

were mentioned. The relation between the combination of these design parameters and the 

magnitude of the two effects will be analysed. For the step “quantification of effects” three 

important questions arise: 

 In which manner does each single design parameter influence the magnitude of the 

lateral stiffness and/or the joint properties? 

 Which design parameters contribute insignificantly and may be ignored in defining the 

magnitude of the lateral stiffness and the joint properties? 

 In which manner does the combination of multiple design parameters determine the 

magnitude of the lateral stiffness and/or the joint properties? 
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The next step is defining the connection property with the known lateral stiffness and joint 

properties. This step of quantification of the shear stiffness comprises the following questions in 

this master research: 

 In what way does a combination of lateral stiffness and joint properties determine the 

shear stiffness of the connection? 

 What is the relative contribution of both effects to the shear stiffness of the connection? 

By answering these five questions, it must be possible to develop a linear modelling approach 

for the vertical profiled mortar connections, that takes into account the effect of lateral stiffness 

and varying joint properties. This approach is then applicable for practical situations where the 

conservative assumption is made that adhesion doesn’t occur and none of the mortar joints is 

loaded beyond their ultimate capacity in order to be able to disregard nonlinear behaviour.  

The remaining of this report describes the research that is performed in order to answer these 

five questions. The first step in this research is to develop a model that can be used to analyse 

the relations between the defined parameters, effects and properties. In chapter 6 the 

translation from Van Keulen’s test setup to a finite element modelling approach is described. 

Chapter 7 describes the analysis that has been performed on a finite element model of the test 

setup, using the modelling approach developed in chapter 6. 

Subsequently the model is expanded to a larger scale in order to perform a parameter study, in 

which several design parameters are varied over a certain range, while recording the resulting 

lateral and shear stiffness. This study is executed in order to find answers to the first and second 

formulated question. The parameter study of chapter 8 is not sufficient to describe in which 

manner the combination of parameters determines the connection’s shear stiffness. So in order 

to formulate a more complete answer to the third question, more research is required. This is 

described in chapter 9, where also a start is made in answering the last two questions.  

In chapter 10 analytical relations between the structural effects and the shear stiffness are 

derived, based on the results presented in chapter 8 and 9. These relations will provide a 

complete answer to the last two questions. Thereafter it is tried to develop a practical way of 

modelling, which is based on the derived relations, that can be used in a structural model of a 

complete building. This way of modelling is subsequently evaluated on a shear wall model, 

which is described in chapter 11. 
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6 Principles of the applied bar model 

In chapter 5 an overview of research aspects was given and the scope of this thesis was set. The 

focus of this thesis is on the effect of lateral stiffness and varying joint properties on the linear 

behaviour of the vertical profiled mortar connection. Since a linear analysis is performed, the 

shear stiffness is the only unknown connection property. A model setup must be developed that 

can be used to analyse the influence of different design parameters on the lateral stiffness, 

relevant joint properties and the linear shear stiffness of the connection. In this chapter a 

description of the model setup is provided. This model setup is feasible for the indicated 

research goals but is not necessarily feasible for practical situations. In the first paragraph the 

translation of the test setup to the finite element model is discussed. The second paragraph 

focusses on the way the output of the model is processed.  

Using the model setup that is explained in this chapter, a finite element model with the same 

layout as the test setup is analysed in chapter 7, in order to be able to compare the finite element 

results to Van Keulen’s test results. For the parameter study in chapter 8 the finite element 

model is further expanded to a larger scale of a complete shear wall. Taking this step 

immediately would be too fast, wherefore the intermediate analysis of chapter 7 is necessary. 

6.1 Translation of test setup to FE model 
This paragraph discusses the translation of Van Keulen’s test setup to the finite element model 

that is used for this research.  

6.1.1 Description of the test setup 

The test setup is shown in Figure 6.1. The connections are tested by means of a shear test. For 

this purpose two L-shaped concrete elements are produced. In between these elements the joint 

is applied over a length of 600 mm, resulting in three compression diagonals that develop. The 

thickness of the concrete elements is 200 mm. Above and below the joint external steel bars are 

used that function as concentrated reinforcement. The steel bars are slightly prestressed to keep 

all the elements together. Some test specimens were prestressed by a larger initial force, in 

order to simulate lateral compression of the joints. 

A displacement load is applied on top of the upper L-shaped element. The support is placed on 

the lowest L-element exactly underneath the point of load application in order to avoid moments 

in the test specimens. The induced load on the specimen is transferred via the mortar joint from 

the upper concrete element to the other. The right picture of Figure 6.1 shows the sensors that 

are used to measure the horizontal and vertical displacement differences over the mortar joint 

that occur as a result of the shear force. 
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Figure 6.1 Van Keulen's test setup (van Keulen, 2015) 

6.1.2 The combination of shear friction and shear locking in Van Keulen’s joints 

The whole of the connection consists of a profiled mortar joint and concentrated transverse 

reinforcement at the height of each floor level. The transfer of the vertical shear forces that 

develop in the shear wall is provided by a combination of adhesion, shear friction, dowel action 

and shear lock. However, as already explained in paragraph 5.2, the contribution of adhesion 

and dowel action are excluded. Remaining are shear friction and shear locking. 

The combination of these two effects in a profiled mortar joint is described in section 2.3.1. If 

enough shear friction can take place in the concrete mortar interface, it will provide force 

equilibrium without the need for an extra horizontal force provided by transverse tying 

reinforcement, as Figure 2.24 illustrates. In this situation the contribution of the shear friction to 

the direct transfer of the vertical shear force is limited, since its vertical force component is 

rather small.  

However, the test results in chapter 4 (Figure 4.7 and Table 4.1) clearly show the need for an 

extra horizontal force that makes equilibrium with the horizontal force component of the 

compression diagonal force that develops due to shear locking. The contribution of shear friction 

seems limited, especially for the developed profiles with a smooth concrete-mortar interface. 

The force equilibrium of the joint is therefore more similar to the principle sketches of Figure 

2.25. 

The ratio V/H that is calculated by Van Keulen for the point of initial cracking and ultimate 

capacity, will approach the angle of the compression diagonal that developed in the mortar 

(Table 4.1). The error between this calculated and real value of the angle depends on the relative 

contribution of shear friction. This can be seen from Figure 2.25. If the force Ffriction is very small, 

the force diagram approach a normal triangle, where Fdiagonal is only defined by the forces V an H. 

It is possible to estimate the separate influence of shear friction and shear locking based on the 

assumption that the compression diagonal in the mortar will develop with an angle equal to that 

of the line that connects the midpoints of two opposite inclined surfaces. This principle is 

illustrated for the staggered joint in Figure 6.2.  
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Figure 6.2 Profile geometry of the staggered joint 

According to this geometry, the angles of the diagonal and the inclined surface are given by the 

following ratios: 

𝛼 =
193.5

50
= 3.87        𝛾 =

6.5

25
= 0.26 (

1

𝛾
= 3.84) 

The diagonal and the inclined surface are almost perpendicular. For now it is assumed they are 

exactly perpendicular. Therefore the equilibrium of forces must be according to Figure 6.3. 

According to Table 4.1, the ultimate capacity of for example specimen P1-5 is 597 kN and the 

accompanying H is 141 kN. The diagonal force has a slope of 3.87 and therefore the total 

horizontal force (H plus the horizontal component of Ffriction) must be equal to: 

𝐹ℎ,𝑡𝑜𝑡𝑎𝑙 =
597

3.87
= 154 𝑘𝑁 → 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛,ℎ = 154 − 141 = 13 𝑘𝑁 

The vertical force component of the friction force in the inclined concrete mortar interface is: 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛,𝑣 = 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛,ℎ ∗ 𝛾 = 13 ∗ 0.26 = 3.4 𝑘𝑁 

 

Figure 6.3 Force equilibrium in case of a perpendicular diagonal force and shear friction 
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The found vertical component of the shear friction must be subtracted from vertical shear force 

V to find the part of the shear force that is transferred by shear lock. Then an iteration is 

required to find a new estimation of Fh,total, Ffriction,h and Ffriction,v  

𝑉𝑠ℎ𝑒𝑎𝑟𝑙𝑜𝑐𝑘 = 𝑉 − 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛,𝑣 = 597 − 3.4 = 593.6 𝑘𝑁 

𝐹ℎ,𝑡𝑜𝑡𝑎𝑙 =
593.6

3.87
= 153.4 𝑘𝑁 → 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛,ℎ = 153.4 − 141 = 12.4 𝑘𝑁 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛,𝑣 = 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛,ℎ ∗ 𝛾 = 12.4 ∗ 0.26 = 3.22 𝑘𝑁 

After some iterations the following stable value is found: Ffriction,v= 3.24 kN. This means that the 

direct contribution of shear friction in the inclined interface to the transfer of the shear force V 

is: 

3.24

597
= 0.54% 

The estimated contribution of shear friction in the transfer of the shear force is very low. It is 

unfortunately not possible to accurately distinguish the contributions of shear locking and shear 

friction from the provided test results. This estimation is done under the assumption of a 

diagonal force perpendicular to the inclined surface and shear friction that only takes place 

along the inclined interface and not along the vertical concrete-mortar interface of the profiled 

joint. 

For this research especially the role of the lateral stiffness that must provide the force H is of 

interest. For this reason it is decided to simply ignore the contribution of shear friction. This 

results in simple relations between the shear force V, the horizontal force H and the compressive 

diagonal force Fd. The angle of the diagonal is then simply found by the ratio V/H. The whole is 

illustrated in the force diagram of Figure 6.4. 

 

Figure 6.4 Force equilibrium without shear friction 

6.1.3 Compression diagonals modelled as bar elements 

Since the contribution of shear friction is ignored, only shear locking transfers the vertical shear 

force. This takes place by axial compression in the mortar that occurs in a compression diagonal 

between the two opposite inclined surfaces of the joint profile.  

This behaviour is simply modelled by diagonal bar elements that represent the compressive 

struts that develop when the connection is loaded in shear. Figure 6.5 presents the applied 
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schematisation. The left image shows schematically the presence of the mortar and the direction 

of the principle stresses that develop. The model simplifies this behaviour by a diagonal bar with 

a Young’s modulus equal to that of the mortar and a cross-sectional area that represents the 

dimensions of the compression diagonal in the mortar. This bar is executed as truss element that 

can only transfer axial forces. 

 

Figure 6.5 Schematisation of the compression diagonal 

The bars require a certain cross-sectional area, E-modulus and slope as input. The E-modulus is 

based on provided information about the type of mortar used during the tests (Van Keulen, 

2013). The cross sectional area and slope are not known exactly, but they are bounded by the 

chosen profile geometry. Values for both are chosen based on an educated guess. Both 

parameters are investigated during the study, whereby their influence on the connection’s 

behaviour is indicated by a resulting upper and lower limit. 

Figure 6.6 presents the schematisation of the bar model. Each single diagonal is modelled by a 

bar element. This element is on one side loaded with a shear force V and on the other side 

“supported” by the concrete element where the force is transferred to. This force V induces a 

horizontal force H that is solely defined by V and diagonal angle alpha, as a result of ignoring the 

contribution of shear friction. The bar element is on both sides horizontally supported by a 

spring. This set of support springs illustrates the lateral stiffness that is provided by the two 

surrounding concrete elements in combination with the applied transverse tying reinforcement. 

 

Figure 6.6 Schematisation of the bar model 
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The rotation of the compression diagonals during loading, that is described in paragraph 4.2, is 

not taken into account. Since the analysis is geometrically linear, the angle under which the bars 

are modelled remains constant. Doing a geometrical nonlinear calculation may be a way to 

include the effect of a rotating diagonal. However, since there are more factors influencing the 

angle of the diagonal that cannot be modelled, it is not sure whether a nonlinear analysis is able 

to describe the effect in a correct way. The slope of the diagonal is one of the parameters that is 

varied during the study. Therefore it is possible to draw conclusions on the relevance of this 

effect and the need of taking it into account. 

By modelling diagonal bars, there are only two joint properties included in the model: 

 The diagonal stiffness; 

o This is determined by the E-modulus of the mortar, the cross section of the 

diagonal bar that is used and the length of the bar elements. 

 The angle of the diagonal bars; 

o This is determined by the profile geometry. 

The relation between these joint properties and design parameters they are influenced by (such 

as profile geometry) cannot be investigated with the bar model. This is because the orientation 

of the bars and their properties are manually inserted input of the model. So only the relation 

between these two joint properties and the connection’s shear stiffness is analysed. This means 

that the modelling scheme of Figure 5.5 is not analysed thoroughly. Figure 6.7 indicates the 

relation that isn’t taken into account by using the bar model. If the outcome of the parameter 

study will show that the joint properties are relevant, it can be very useful to perform a more in 

depth research on the relation between the design parameters and the joint behaviour.  

 

Figure 6.7 Due to the application of the bar model, the relation between design parameters and joint properties 
is not analysed. 

The developed bar model is a way to model the vertical profiled mortar connections, however it 

is not feasible for practical situations. Application of the bar model requires a discrete bar 

element for each compression diagonal that develops in the mortar joint. That means that for a 

single floor high joint approximately fifteen diagonal bars must be modelled. If a complete 

building consisting of multiple shear walls is analysed, the model would contain thousands of 

bar elements that are inserted manually. So the bar model is useful for the purpose of this 
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research, but not for practical situations and is therefore not a proper answer to the problem 

statement of this research.  

6.1.4 Analysed profile type 

As addressed in chapter 4, Van Keulen developed and tested four profiled mortar joints. 

However, this research only considers connections with a staggered profile.  

The profiles with aligned shear keys are harder to model, because of the consecutive interaction 

between the compression diagonals within one key and the kinked compression struts between 

two keys. This interaction cannot be modelled in a linear analysis with bar elements 

representing the diagonals. The proposed linear bar model is also not capable of taking the effect 

of a roughened surface of the serrated waterjetted profile into account. Furthermore it was 

concluded by Van Keulen that the profile with small keys performs less favourable compared to 

the staggered profile. For these reasons the staggered profile was chosen to analyse first. In later 

research the a model for the other profiles can be developed.  

6.1.5 The finite element model of the test setup 

In order to develop the finite element bar model of the staggered joint, the geometry of the 

mortar joint is translated to the corresponding bar model geometry. This is illustrated in Figure 

6.8. 

 

Figure 6.8 Translation of joint geometry to bar model 

The orientation of the bars is defined by the orientation of the line between the midpoints of two 

opposite inclined surfaces. According to the geometry of the staggered joint, the vertical and 

horizontal distance between the bar’s begin- and endpoint is 193.5 and 50 mm respectively. 

Hereby the diagonal angle alpha is determined. 

The stiffness of the diagonal bars depends on the mortar’s Young’s modulus, the diagonal cross 

section and the length of the bar element. The last is fixed by the definition of alpha. The Young’s 

modulus is based on material properties provided by Van Keulen (Van Keulen, 2013). The cross-

sectional area is defined as: 
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𝐴𝑑,𝑖 = 𝑊𝑑 ∗ 𝑡 

Ad is the bar’s cross section. Wd is the width of the compression diagonal that is assumed to be 

equal to the length of the inclined surface (See Figure 6.8) and t is the thickness of the concrete 

elements. The stiffness of a single diagonal bar, the diagonal stiffness is defined by: 

𝑘𝑑,𝑖 =
𝐴𝑑,𝑖𝐸𝑑

𝐿𝑑
 𝑤ℎ𝑒𝑟𝑒 𝐿𝑑 = √ℎ𝑥

2 + ℎ𝑦
2       [6.1] 

As indicated in Figure 6.8, the profiled surface is not included in the finite element model. The 

effect of the profile is already taken into account in defining the bar’s properties. Modelling the 

profile is not contributing to better results and is also very laborious.  

Figure 6.9 shows the developed finite element model that is used to simulate the test setup. As 

can be seen, the bar model is applied for the three diagonals that develop in the joint, the input 

of this model is according to Figure 6.8, Resulting in a gap between the two L-elements of 50 

mm, instead of 25 for the test setup.  

 

Figure 6.9 Translation from test setup to finite element model (van Keulen, 2015) 

Just like for the test specimen, a displacement load is placed on top. The vertical support is 

placed on the bottom under the point of loading. The horizontal supports are required to keep 

the model stable. Since a point load or support results in the occurrence of a singularity, both are 

applied over a certain small length.  

The dimensions of the L-shaped elements are equal to those of the test setup. Therefore the 

modelled transverse bars have equal length as well, resulting in the same axial stiffness. 

6.2 Processing of model output 
During the performed tests, the applied force and the displacements over the mortar joint were 

measured continuously. Figure 6.10 shows the measuring equipment that was used to measure 

the displacements over the joint. Together with the measured applied shear force, the diagram 

of Figure 6.10 is created. This diagram is discussed in paragraph 4.1. The test results showed a 

correlation between the shear stiffness of the connection and the lateral stiffness that was 

provided. The relation between the specimen’s shear stiffness and the properties of the mortar 

has not been quantified by Van Keulen’s tests. 
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Figure 6.10 Test results with indication of the secant shear stiffness Kv  that must be modelled by the bar model. 
(van Keulen, 2015) 

The finite element model of the connection is developed in DIANA 10.2. The applied linear bar 

model should approximate the shear stiffness, that is obtained from the tests, by a secant shear 

stiffness Kv. This stiffness is indicated for test specimen P1-7. The secant shear stiffness depends 

on the lateral stiffness Kh and the diagonal stiffness Kd, which is defined by equation 6.1.  

The magnitude of the shear and lateral stiffness must follow from the model results. The 

processing of model output into these stiffness quantities is illustrated in Figure 6.11. 

 

Figure 6.11 Processing of model output 
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The displacements Dx and Dy in the end points 1 and 2 of each diagonal 1 till n and the axial force 

Fd in each diagonal bar 1 till n is taken as output from the analysis. These values are stored in a 

table and subsequently the quantities Ux, Uy and Fx and Fy are calculated. 

Fx and Fy are respectively the summation of all horizontal and vertical components of each axial 

diagonal force. So Fy is equal to the shear total shear force that is transferred by the connection 

and Fx is the total lateral force that is induced to the surrounding concrete elements. As indicated 

in Figure 6.11, these quantities are a function of each individual axial diagonal force and the 

angle of the diagonals α. This is in correspondence with the force equilibrium of Figure 6.4. 

Subtracting Dx1,1 from Dx1,2 results in the dilatation Ux,1, which is the horizontal dilatation of the 

joint at the location of diagonal number 1. Similarly, subtracting Dy1,1 from Dy1,2 gives the shear 

slip over the joint at the location of diagonal number 1, Uy,1. These two values are often referred 

to as the local horizontal and vertical displacement difference. Ux and Uy are the average of all 

the local displacement differences. Figure 6.12 illustrates the quantities Ux an Uy, where Ux is the 

summation of par 1 on the left side and part 2 on the right side of the joint. 

 

Figure 6.12 Indication of Ux and Uy 

The shear and lateral stiffness are then defined as: 

𝐾𝑣 =
𝐹𝑦

𝑈𝑦
        𝐾ℎ =

𝐹ℎ

𝑈𝑥
   [6.2] 

So the shear stiffness is the total transferred shear force divided by the average slip over the 

joint. This stiffness is a secant stiffness that should approximate the secant stiffness of the test 

results as indicated in Figure 6.10. The lateral stiffness is the total horizontal force induced on 

the surrounding divided by the average dilatation of the joint.  

The stiffness quantities can also be defined for an individual diagonal: 

𝑘𝑣,𝑖 =
𝐹𝑦,𝑖

𝑈𝑦,𝑖
        𝑘ℎ,𝑖 =

𝐹ℎ,𝑖

𝑈𝑥,𝑖
    [6.3] 

Another quantity that is used is the shear and lateral stiffness per diagonal, the average shear 

and lateral stiffness, which is simply the total stiffness value divided by the amount of diagonal 

bars in the connection: 

𝑘𝑣 =
𝐾𝑣

#𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑠
   𝑘ℎ =

𝐾ℎ

#𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑠
    [6.4] 
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This quantity is used to compare models with an unequal amount of diagonals. For example to 

compare the model of the test setup that is created with the model that is used for the parameter 

study. 

6.3 Conclusion 
This chapter discussed the development of the bar model that is used to do research on the 

vertical profiled mortar connections. The bar model can be applied by neglecting the effects  that 

were discussed in paragraph 5.2 together with the assumption of a small shear friction 

contribution. 

The model is useful to investigate the influence of a varying lateral stiffness, due to varying 

design parameters, on the shear stiffness of the connection and the influence of the size and 

angle of the compression struts that develop in the mortar joint. As explained, the model doesn’t 

take into account the way in which these two properties of the diagonal struts are determined by 

design parameters. The reason for this is the fact that the properties of the diagonal struts must 

manually be given as model input. The consequence for the developed modelling scheme has 

been indicated in Figure 6.7.  Further research on this relation might be necessary.  

The developed bar model is a way to model the vertical profiled mortar connections, however it 

is not feasible for practical situations and is therefore not a proper answer to the problem 

statement of this research. 
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7 Analysis of a small vertical profiled mortar connection 

In the previous chapter the bar model is discussed. This bar model is developed to create a finite 

element model of the test specimens that were tested by Van Keulen (Figure 6.9). Before further 

research on the connection can take place on a large scale, it is wise and interesting to analyse 

this model of the test specimen. This chapter describes this analysis. 

The goal of doing an analysis on a finite element model of the test setup is to validate the use of 

the bar model for the vertical profiled mortar connection. This is done by analysing the model’s 

behaviour compared to the test specimens. Besides a qualitative comparison, also a quantitative 

evaluation is done. This quantitative evaluation is based on the resulting values for the shear 

stiffness of the connection. The qualitative and quantitative comparison form the link between 

the test results and the results of the model research of this thesis.  

Besides an analysis of a model with the same geometry as the test specimens, also an enlarged 

model is analysed in order to investigate the effect of creating a larger connection. This step is 

important for the switch from a model with the size of the test specimen to a model as large as a 

shear wall. 

The first paragraph provides an overview of the input of the finite element model. The second 

paragraph discusses the results of the analysis on the small model with the geometry equal to 

the test setup. The results obtained from the larger model and an evaluation of the difference 

between the two models are part of the third paragraph of this chapter. As the results will show, 

the magnitude of the shear stiffness in the FE model is larger than the test results indicate. In the 

fourth paragraph this quantitative difference is examined and possible causes are addressed. 

7.1 Model input 
The test setup is modelled in DIANA 10.2. The small model, as shown in Figure 7.1, contains two 

L-shaped concrete elements. The dimensions of these elements are equal to those of the test 

specimens (Van Keulen, 2018). These elements are connected by three diagonal bars, 

corresponding to the applied joint profile during the tests with three compression diagonals. 

The two concrete elements are kept together by two transverse steel bars that are connected to 

the outer edges of both concrete elements. The model is loaded by a prescribed downward 

displacement of 1mm at the top, located right above the center line of the joint. The supports at 

the bottom are also located on this center line in order to avoid eccentricities. In order to 

prevent peak stresses, forces and displacements, the prescribed displacement and the support 

are applied along a small stiff line segment.  

In a second analysis the model is enlarged by a factor 1.5 along the diagonal, making all outer 

dimensions of the L-shaped elements 1.5 times larger. This model contains six diagonal bars, as 

can be seen in Figure 7.2. Applying six bars resulted in approximately the same distance 

between the end points of the outer bars and the edges of the vertical joint. 
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Figure 7.1 Dimensions of the small test setup model 

 

Figure 7.2 Dimensions of the enlarged test setup model 

The dimensioning of the diagonal bars is discussed in section 6.1.5 and illustrated in Figure 6.8. 

The assumed width of the compression diagonal that is illustrated in this figure and the 

thickness of the elements and joint of 200 mm result in a cross sectional area of 5166 mm2. 

During the tests, Van Keulen applied M16, M24 or M38 bars. These were applied above and 

below the connection in pairs of two. In order to test the dependency of Kv in the finite element 

model, the same variation is performed by varying AR. Table 7.1 shows the properties that are 

used in the model. 

The mesh is built up of rectangular quadratic elements with a size of 50 mm. A mesh sensitivity 

analysis was performed on the small model in order to define an adequate mesh size and to test 

if the model is free of singularities that disturb the generated output. Furthermore some sanity 

checks were performed to validate the model. Appendix B contains the mesh sensitivity analysis 

and the sanity checks.  
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L-shaped Elements 
Plane stress elements  CQ16M 

Thickness t 200 mm 
E-modulus Ec 35000 N/mm2 

Poisson’s ratio ν 0.2 
Diagonal bars 

Regular truss elements L2TRU 
Length 199.86 mm 
hx 50 mm 
hy 193.5 mm 
α 3.87 
Cross-sectional area Ad 5166 mm2 
E-modulus Ed 25000 N/mm2 
Diagonal stiffness kd 646.202 
Poisson’s ratio ν 0.2 

Reinforcement bars 
Regular truss elements L2TRU 

Cross-sectional area AR 402/905/ 2268 mm2 
E-modulus Es 210000 N/mm2 
Poisson’s ratio ν 0.3 

Table 7.1 Model input 

7.2 Results of the small test setup model 
This paragraph gives an overview of the results from the analysis on the small test setup model. 

Besides analysing the behaviour of the model, a small parameter study is done by varying the 

cross-sectional area of the transverse reinforcement bars, as explained in previous paragraph. 

Most of the results concern the consequences of this variation of quantity AR. Each section shows 

some of the results and provides a short discussion.  

7.2.1 The displacement field 

Figure 7.3 shows the deformations of the model under a vertical displacement applied at the top. 

Due to the vertical translation, the diagonals are compressed, which results in a horizontal force 

component that pushes the concrete elements apart. The curved load path through the L-shaped 

elements, that can be seen in Figure B.2 causes bending of the concrete elements. The way the 

elements bend corresponds to the applied combination of loads and supports. The results are 

exactly point symmetric in the centre point of the model, which is must hold, since the geometry 

is symmetric in the centre point as well. 

 

Figure 7.3 Deformation of the model (M24) 
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7.2.2 Kv – AR relation 

Figure 7.4 shows the outcome of the variation study of AR. The cross-sectional area of the 

transverse reinforcement, AR, is the area of reinforcement that is given to each of the two 

transverse bars. It is clear that the shear stiffness is dependent on the type of bars that is 

applied. A connection with M16 bars behaves less stiff in shear than a connection with M38 bars. 

It must be noted that the Kv – AR relation is only valid when values given in previous paragraph 

for the input properties, Ed, Ad, Ec, Es and α, are used. This is because the relation will be different 

when another value for the diagonal bar stiffness, Kd, is applied or when the lateral stiffness is 

varied by changing other design parameters such as the Young’s modulus of the steel 

reinforcement bars or concrete L-elements. 

 

Figure 7.4 Kv-AR relation 

The difference in shear stiffness that occurs due to the variation in AR is also visible in the 

obtained relation between the shear force and the shear slip, where the slope of the relation is 

equal to the found shear stiffness.  

 

Figure 7.5 Fv-Uy relation 
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The question is whether the calculated stiffness, Kv, is comparable to the stiffness resulting from 

the tests. The shear stiffness of test specimens P1-5 (M24) and P1-7 (M38) is estimated from the 

resulting shear slip- shear stress relation. The tangent stiffness is determined in the phase where 

compression diagonals take most of the load, as shown in Figure 7.6. Note that the estimated 

tangent stiffness of the test specimens is even larger than their secant stiffness that the model 

should approximate. The resulting test specimen stiffness values were also indicated in Figure 

7.4, where it is clearly seen that the finite element model acts stiffer. The cross-sectional area of 

the joint is 200 by 600 mm. 

𝐾𝑣,𝑀24 =
(3.6 − 0.35) ∗ 200 ∗ 600

0.9 − 0.2
= 557143

𝑁

𝑚𝑚
≈ 550

𝑘𝑁

𝑚𝑚
 

𝐾𝑣,𝑀38 =
(3.9 − 1.1) ∗ 200 ∗ 600

0.8 − 0.45
= 960000

𝑁

𝑚𝑚
≈ 950

𝑘𝑁

𝑚𝑚
 

 
Figure 7.6 Shear slip-shear stress relation obtained from tests (van Keulen, 2015) 

The stiffness with M24 bars is 2.1 times larger for the FE model and the stiffness with M38 bars 

is 1.4 times larger. The way the stiffness varies between the two specimens is also different. The 

stiffness of a test specimen increases by 70 percent when M38 is applied instead of M24, for the 

models this increase is just 15 percent. Paragraph 7.4 discusses the numerical difference in more 

detail. 

7.2.3 Kh – AR relation 

Figure 7.7 shows the relation between the cross-sectional area of the reinforcement, AR, and the 

lateral stiffness Kh. As one would expect, the lateral stiffness increases with a larger cross-

sectional area of the reinforcement. However, due to the limited stiffness of the concrete L-

elements, the lateral stiffness will never get infinitely large by using a lot of reinforcement. The 

whole can be thought of as a series of springs, containing one spring simulating the stiffness of 

the transverse bars and one simulating the stiffness of the concrete elements. When one spring 

is infinitely stiff, while the other spring has a finite stiffness, the series as a whole will always 

have a finite stiffness. Due to this effect the relation between AR and Kh is asymptotic. If AR is in 

this case larger than approximately 5000 mm2, the lateral stiffness hardly increases for an 

increased AR.  
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With the same springs in series analogy it can also be reasoned that the influence of AR depends 

on the magnitude of other parameters that define the lateral stiffness, such as the stiffness of the 

concrete elements. Therefore it must be noted that the relation of Figure 7.7 is only valid when 

the input geometry and properties for, Ed, Ad, Ec, Es and α, given in previous paragraph are used. 

 

Figure 7.7 Kh-Ar relation 

7.2.4 kv – kh relation 

The previous results can be combined to form the relation between the lateral stiffness and the 

corresponding shear stiffness of the connection. Table 7.2 gives an overview of the 

corresponding stiffness values for the three different types of reinforcement bars. The results 

show that the shear stiffness increases for larger values of the lateral stiffness. 

 M16 M24 M38 

Kv [kN/mm] 934 1174 1343 
Kh [kN/mm] 128 222 343 

Table 7.2 Corresponding shear- and lateral stiffness for each type of reinforcement 

These are just three points of the relation between the two quantities. If more points are 

generated, a more detailed relation between the shear and lateral stiffness can be defined.  

Figure 7.8 shows the relation between the average shear and lateral stiffness (the total values 

divided by three diagonals). The average stiffness values are plotted in order to be able to easily 

compare this result with the coming result of the larger model. The relation contains one unique 

value for the shear stiffness for each value of the lateral stiffness. 

When the lateral stiffness is equal to zero, the shear stiffness must be zero as well. In this case 

the modelled diagonal bars in the joint can freely rotate, because they aren’t constrained in 

horizontal direction. The model has become a mechanism that cannot take any load. Therefore 

the shear stiffness must be zero in this case. 

The relation is also asymptotic. This means that even for an infinitely large lateral stiffness the 

shear stiffness is still limited. The shear stiffness will never exceed a certain limit value. In this 

case the limit is around 600 kN/mm. This behaviour appears reasonable, since the shear 

stiffness is also partly determined by the joint properties. These are the diagonal stiffness Kd and 
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the diagonal angle α. In case the lateral stiffness is infinitely large, the shear stiffness is 

completely determined by these two joint properties, which therefore define the limit value of 

the asymptote.   

So the diagram shows that the shear stiffness is indeed defined by a combination of the lateral 

stiffness and the applied joint properties, as is discussed in chapter 5. For this reason the 

relation of Figure 7.8 is only valid for the specific input properties of Ad, Ed, hx and hy that are 

indicated in Table 7.1. The limit of the relation and the way the relation converges to this limit 

alter, when other values for the joint properties are used. 

 

Figure 7.8 Relation between the average shear stiffness and the average lateral stiffness 

The relation between the shear and lateral stiffness indicates the relevancy of the lateral 

stiffness in this model. The range in which the average lateral stiffness is varied by the use of 

different reinforcement (43-115 kN/mm) is in the range where the influence of the lateral 

stiffness on the shear stiffness is very large. Due to the asymptotic behaviour the influence of the 

lateral stiffness gradually decreases as its absolute value increases. 

7.2.5 K-U and K-F relations 

According to the definitions presented in paragraph 6.2, an increase of the shear or lateral 

stiffness can either be caused by a decrease of the displacement difference U, an increase of the 

transferred force F or a combination of both. Table 7.3 presents an overview of the values for the 

stiffness quantities, the deformation differences and the force components for each of the three 

analysed models. The results indicate that an increase in lateral stiffness caused by application 

of larger reinforcement bars leads both to an increase of the transferred forces and a decrease of 

the displacement difference over the joint. 

 M16 M24 M38 

Kv [kN/mm] 934 1174 1343 
Kh [kN/mm] 128 222 343 
Ux [mm] 0.68 0.43 0.29 
Uy [mm] -0.36 -0.31 -0.28 
Fx [kN] -87 -95 -99 
Fy [kN] -336 -364 -376 

Table 7.3 Stiffness, forces and displacement difference values 
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A positive value for Ux indicates a dilatation of the joint and a negative value of Uy indicates that 

the loaded L-element displaces downwards relative to the supported L-element. Force 

components are negative since a compressive force occurs in the diagonal bars. The lateral 

stiffness is given as absolute value. 

The asymptotic behaviour that has been described is also obtained in the relation between the 

two stiffness values and the displacement differences. Figure 7.9 shows the relation between the 

two stiffness values and the horizontal displacement difference over the joint, the dilatation. In 

order to let Ux be zero, an infinitely large lateral stiffness is required. In that case, the shear 

stiffness has the limited value of approximately 600 kN/mm that was found before. From Figure 

7.10 it is also observed that the shear slip Uy cannot be smaller than approximately -0.24 mm. 

The limit is defined by the specific input that is given for Kd and α. 

 

Figure 7.9 Relation between the two stiffness values and the horizontal displacement difference 

 

Figure 7.10 Relation between the two stiffness values and the vertical displacement difference 
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7.2.6 Ux-Uy relation 

The behaviour of the bar model that is used to model the compression diagonals in the mortar 

joint can better be understood by studying the Ux-Uy diagram. Figure 7.11 shows this diagram 

that can be used as a graphical tool to illustrate the behaviour of the diagonal bars. 

 

Figure 7.11 The Ux-Uy diagram 

The origin of this diagram forms the initial location of the endpoint of the diagonal. The other 

endpoint is illustrated as a hinge support (Note that the length of the diagonal in Figure 7.11 is 

not to scale with the displayed results). The original orientation of the diagonal is illustrated by a 

line between the two endpoints.  

The diagram shows multiple lines starting from the origin that illustrate a certain relation 

between Ux on the horizontal axis and Uy on the vertical axis. The dashed line illustrates the 

behaviour of a model where the lateral stiffness is equal to zero. In that case the diagonal only 

rotates around the hinge support, which results in a displacement of the free endpoint along this 

dashed line perpendicular to the original diagonal orientation. Small displacements are 

assumed, whereby the dashed line can be drawn straight instead of circular.  

In the other limit case, the lateral stiffness is infinitely large. In that situation the free endpoint of 

the diagonal can only move downwards, whereby the dilatation Ux remains zero. This limit is 

illustrated by the dashed line along the y-axis of the diagram. 

Application of M16, M24 or M38 reinforcement bars results in a lateral stiffness between zero 

and infinity. In case M16 is applied for example, the free endpoint of the diagonal translates over 

the M16 line. The magnitude of the load in the performed analysis results in a new location of 

the diagonal’s free end point, which is indicated by the triangle. If a smaller load was applied, the 

resulting endpoint would still be on the M16 line, but closer to the origin. The thin dashed lines 

between the support and the resulting endpoints for different values of Kh illustrate the 

deformed orientation of the diagonal. 

The line for Kh=550 kN/mm is the maximum value of the lateral stiffness that is obtained by 

using a lot of reinforcement. If the lateral stiffness must be greater than this value, other design 

parameters, such as the E-modulus of the concrete, must be given stiffer values. 
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It appears that for each value of the lateral stiffness a unique line, like the M16 line, can be 

drawn in this diagram. So for each value of the lateral stiffness, a unique ratio Ux/Uy is found. 

The shear force that is transferred depends on the shortening of the diagonal bar that occurs, 

since the following relation holds for the diagonal bar: 𝐹𝑑 = 𝐸𝑑𝐴𝑑 ∗
Δ𝐿

𝐿
. If Kh is zero the bar only 

rotates, which doesn’t result in any strain in the bar and therefore leads to a transferred force 

equal to zero. In any case where the found combination of Ux and Uy doesn’t lead to a point on 

the Kh=0 line, the diagonal shortens and therefore transfers a shear force. The perpendicular 

distance between the found point and the Kh=0 line indicates the magnitude of the shortening of 

the diagonal bar. A larger distance means a larger shortening which results in a larger 

transferred force. As can be seen in Figure 7.11, the point of M16 lies closer to the Kh=0 line than 

the points of M24 and M38, therefore a smaller force is transferred in case M16 bars are used. 

The results in Table 7.3 show that this is indeed true. 

The analysis of the Ux-Uy diagram shows that the behaviour of the diagonal bars can be 

visualised according the model of Figure 6.6. In the diagram of Figure 7.11 the separate 

horizontal displacements of the lower and upper end point of the bar are lumped into the value 

Ux.  

7.2.7 Evaluation of the results 

The presented results indicated that the finite element model that is constructed acts similar to 

the test specimens in the sense that the dependency of the shear stiffness on the lateral stiffness 

show similar behaviour. However, the resulting stiffness values of the FE model differ 

numerically from the stiffness values found for the test specimens. This numerical difference is 

further analysed in paragraph 7.4.  

The relation between the applied reinforcement cross section and the lateral stiffness provides 

insight in the influence of the design parameter AR. The relations between the shear and lateral 

stiffness and the dilatation Ux and shear slip Uy provide insight in the way the quantities Kd and 

Kh influence the shear stiffness of the connection, Kv. 

7.3 Results of the large test setup model 
This paragraph discusses the results of the analysis on a model that is 1.5 times larger than the 

test specimen model and has 2 times more diagonals. The cross-sectional area of the transverse 

steel bars is given the same values as for the small model. Each section shows some of the results 

and provides a short discussion. Especially the difference with the previous model is of 

importance. 

7.3.1 The displacement field 

Figure 7.12 shows the displacements in x- and y-direction for the large model. The same 

symmetric behaviour as for the small model is observed. The elements move away from each 

other and are bending a bit due to the eccentricity of the load with respect to the shear centre of 

the elements. The two bars keep the whole together, functioning as a kind of supports for the 

bending elements.  

 



 

 Analysis of a small vertical profiled mortar connection page 96 

 

Figure 7.12 Displacement in x and y-direction for the large model (M24). 

7.3.2 K – AR relation 

Figure 7.13 shows the relation between the shear stiffness and the cross-sectional area of the 

transverse reinforcement per side of the connection. When the relation is compared to the one 

obtained from the small model, it is concluded the behaviour is similar. The difference between 

the largest and smallest value is a factor 2. This indicates that the influence of a variation of AR 

on the shear stiffness of the connection is greater than in the small model. 

 

Figure 7.13 Relation between the shear stiffness and the amount of transverse reinforcement (large model) 

Figure 7.14 shows the relation between the lateral stiffness and the cross-sectional area, AR. This 

relation shows that the large model also behaves similarly to the small model concerning this 

aspect. 

 

Figure 7.14 Relation between the lateral stiffness and the amount of lateral reinforcement (large model) 
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7.3.3 Comparison of the two models 

Table 7.4 shows for the small and the large models the values for the shear and lateral stiffness 

and the average displacement differences in both directions. So far it is concluded that the global 

behaviour of both models is similar. Looking at the numerical values, some interesting facts can 

be seen.  

  M16 M24 M38 Same K-bars (M24 small) 

D [mm] 16 24 38 - 

AR [mm2] 402 905 2268 1339 

K-bars large [kN/mm] 46 104 262 155 

K-bars small [kN/mm] 68 155 388 - 

Kh-large [kN/mm] 86 160 275 206 

Kh-small [kN/mm] 128 222 343 - 

Kh Ratio - 0.67 0.72 0.80 - 

Kv-large [kN/mm] 949 1442 1930 1670 

Kv-small [kN/mm] 934 1174 1343 - 

Kv Ratio - 1.02 1.23 1.44 - 

Ux large [mm] 1.02 0.63 0.40 0.51 

Ux small [mm] 0.68 0.43 0.29 - 

Uy large [mm] -0.36 -0.27 -0.22 -0.24 

Uy small [mm] -0.36 -0.31 -0.28 - 

Table 7.4 Comparison between the large and small model 

First of all, the lateral stiffness of the large connection with the same type of bars appears to be 

smaller than that of a small connection. There are two reasons for this. The first and most 

important reason is that with the same cross sectional area of the bars, the bar stiffness is lower 

in the large model. According to the definition K-bar is EA/L, the longer bar length in the large 

model reduces the bar stiffness. The difference is clearly seen by comparing the values for K-

bars large and small in the columns for M16, M24 and M38 bars. In order to exclude this effect, a 

large model with a bar stiffness equal to that of the M24 bars in the small model is analysed. The 

results of this analysis are shown in the last column of Table 7.4. It can be seen that the lateral 

stiffness of this model (206 kN/mm) is still smaller than the lateral stiffness of the small model 

with M24 bars (222 kN/mm). So there is a second reason for the difference in lateral stiffness, 

namely the smaller relative in-plane bending stiffness of the concrete L-shaped elements. 

Increasing both the length and width by a factor 2 for example, results in larger deformations of 

the L-shaped elements. This is illustrated by comparing the elements with simply supported 

beams (see calculation below). In this case the horizontal components of the diagonal forces are 

represented by the line load q. The transverse bars are represented by the supports.  

 

Figure 7.15 Simply supported beam model 
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=> 𝑊2 = 2 ∗ 𝑊1  

From these observations it must be concluded that a model with larger dimensions requires 

more transverse reinforcement in order to limit the lateral stiffness reduction compared to a 

small model. Applying a large enough value of AR results in a lateral stiffness reduction that is 

only caused by the difference in in-plane bending stiffness of the concrete elements. 

Secondly, although the lateral stiffness of the large connection is smaller, its shear stiffness is 

larger. Since the large model contains 2 times more diagonal bars, with unchanged Ed, Ad, Ld and 

α with respect to the small connection, the total shear stiffness is larger. However, since the total 

shear stiffness is not increased by a factor 2, the shear stiffness per diagonal appears to be 

smaller in the larger connection. Since the average vertical deformation difference is smaller for 

the larger connection according to the results in Table 7.4, it must be that the force taken per 

diagonal is smaller in the large connection. Section 7.3.5 discusses the force per diagonal in more 

detail. 

Finally, in cases where small reinforcement bars are applied, it can be that the total shear 

stiffness of the large model is smaller than that of the small model. In that case it holds that the 

lateral stiffness of the large model is relatively so low, that the shear stiffness per diagonal is 

more than two times smaller than occurs in the small model. The results for M16 in Table 7.4 

show that for this cross section the total shear stiffness of the large model is still slightly larger 

than for the small model (2 percent). Table 7.5 presents the stiffness values of a large and small 

model where bars with a diameter of 10 mm are applied. In this case it appears that the total 

shear stiffness of the large model is just 81 percent compared to what is found for the small 

model. Figure 7.16 shows the normalised total shear stiffness as a function of the cross-sectional 

area of the transverse reinforcement. A normalised shear stiffness of for example 1.6 indicates 

that the total shear stiffness of the large connection with given AR is 1.6 times larger than that of 

the small connection with the same AR. It appears that if AR is smaller than approximately 400 

mm2, the total shear stiffness of the large model is smaller than that of the small model with the 

same AR, resulting in a normalised shear stiffness smaller than 1. 

 Large connection Small connection Ratio 

D 10 10 - 

Kh [kN/mm] 38 60 0.63 

Kv [kN/mm] 490 602 0.81 

Table 7.5 Comparison of a large and small connection with small amount of reinforcement 
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Figure 7.16 Relative shear stiffness of the large connection 

7.3.4 kv-kh relation 

The kv-kh relation indicates an important characteristic of the scale effect that occurs between 

the two models. The diagram is shown in Figure 7.17. It appears that this relation is exactly the 

same as the relation found for the small model in section 7.2.4. This means that a certain lateral 

stiffness per diagonal will in both cases lead to the same shear stiffness per diagonal. In this case 

this would mean that, compared to the small model, the large connection with a two times more 

diagonal bars and a two times larger total lateral stiffness has the same lateral stiffness per 

diagonal and therefore the same shear stiffness per diagonal, which leads to a two times larger 

total shear stiffness of the connection. 

 

Figure 7.17 Relation between the vertical and lateral stiffness per diagonal for a large connection 

7.3.5 Diagonal force distribution 

Figure 7.18 shows the diagonal force distribution of the large and small model. This distribution 

illustrates the shear force distribution. Two conclusions can be drawn. First, the force 

distribution is in both cases symmetric with respect to the centre of the joint. The upper 

diagonals take the largest force, the middle diagonals the smallest. Second, the force per diagonal 

in the large model is significantly smaller than in the small model. In previous section it was 

already concluded this should be the case, since the average vertical displacement difference of 

the large model is smaller, while the total shear stiffness is smaller as well.  
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Figure 7.18 Diagonal force distribution of large and small model compared 

7.3.6 Evaluation of the results 

The most important conclusions that can be drawn from the comparison between the large and 

the small test setup model are: 

 The lateral stiffness of a larger model may be smaller. This is partly caused by the lower 

axial stiffness of the longer transverse reinforcement bars and partly by a possible 

reduced in-plane bending stiffness of the surrounding concrete elements. 

 The kv-kh relation is for both models the same, which means that if the obtained lateral 

stiffness per diagonal in two cases is equal, the corresponding shear stiffness per 

diagonal is equal. The amount of diagonals in the connection determines which 

connection has a larger shear stiffness. 

 The force distribution over the diagonals and thereby the shear force distribution over 

the joint is similar in both cases. The middle diagonals transfer the smallest force and the 

distribution is symmetric. 

7.4  The numerical difference between test results and FE model 
In section 7.2.2 the resulting shear stiffness for the small model corresponding to the different 

values of AR has been discussed. A comparison with the shear stiffness resulting from the tests 

showed that the finite element model reacts a lot stiffer than the test specimens. In this 

paragraph possible causes of the numerical difference are addressed and a calibration of the 

model is executed. In the parameter study the calibration is ignored again, since the calibrated 

properties are varied to investigate their influence. However, in chapter 11 when a shear wall 

with vertical profiled mortar connections is compared to a monolithic wall, the calibrated values 

are used as input in order to obtain realistic results. 

7.4.1 Possible causes of the numerical difference 

The numerical difference in results of the finite element analysis and the tests can have multiple 

causes. Some of these causes are mentioned in this section. 

First of all, the test specimens are manually produced whereas the finite element model 

represents a perfect representation. Executional aspects such as the filling ratio of the mortar 

joint or imperfections of the concrete elements or mortar joint have influence on the test results. 

Van Keulen made notes of the test specimens that were damaged or where complications 

occurred during the tests. Although the specimens that are used to evaluate the finite element 
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model do not contain such remarks, they still aren’t perfect. The finite element model would 

therefore have a greater shear stiffness than the test specimen. 

Secondly, the lateral stiffness of the test specimen is not only provided by the concrete elements 

and the transverse bars, but also by the steel plates connecting the bars to the concrete 

elements. This last aspect is not taken into account in the finite element model. Therefore the 

lateral stiffness of the finite element model with for example M24 bars is larger than that of the 

test specimen with M24 bars, resulting in a larger shear stiffness as well. 

Another reason for the deviation is the assumed value for the stiffness of the diagonal bars that 

model the mortar. For these bars an E-modulus of 25000 N/mm2 and a cross-sectional area of 

5166 mm2 are used. The E-modulus is based on tests on the applied mortar, the area is based on 

an assumption (See Figure 6.8). The mortar may, although not yet visible, be cracked, whereby 

the E-modulus could be considerably smaller than assumed. Furthermore the width of the 

diagonal for example could be a lot smaller than assumed, resulting in a lower diagonal stiffness 

as well. The angle of the compression diagonal is also roughly estimated.  

Other reasons for the numerical deviation of the results can be small deviations in the loading 

and support conditions of the finite element model. For example the infinitely stiff horizontal 

supports that are applied in the finite element are required to obtain a stable model. In the test 

setup the specimens are not infinitely stiff supported at these locations. 

7.4.2 Calibration of the joint properties 

Based on the mentioned causes of deviation, the finite element model will be calibrated to better 

correspond to the test results. This calibration considers the deviating lateral stiffness and the 

assumptions on the variables that determine Kd. The method that is applied is as follows: 

1. The secant stiffness of the test result is determined 

2. The band width of the lateral stiffness of the test specimen is determined 

3. The lateral stiffness of the model is adjusted to this bandwidth by adjusting the 

transverse bar cross section AR: 

a. One model is created with minimum lateral stiffness 

b. One model is created with average lateral stiffness 

c. One model is created with maximum lateral stiffness 

4. The Kd value’s for which each model has a total shear stiffness, equal to the secant 

stiffness, is searched. 

5. The found Kd values are subdivided into an estimation of the E-modulus and cross-

sectional area of the diagonal bars. 

The calibration method considers the diagonal stiffness as the unsure variable that needs 

calibration. The angle of the diagonal is not calibrated. In order to do the calibration properly, 

the lateral stiffness of the test setup model should correspond to that of the test specimen that is 

compared. The described method is applied for the calibration of the finite element results for 

the connection with M38 reinforcement bars.  

7.4.2.1 Determination of the test specimen’s secant stiffness 

The secant shear stiffness of the test specimen is determined from the relation between the 

shear displacements and the shear force. The secant shear stiffness is the slope of the straight 
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line between the origin of the diagram and the point of the ultimate shear force with 

corresponding shear displacement. Figure 7.19 illustrates the way this stiffness is determined. 

 

Figure 7.19 Determination of the secant shear stiffness (van Keulen, 2015) 

𝐾𝑣,𝑡𝑒𝑠𝑡 =
𝐹𝑣,𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒

𝑈𝑦,𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒
≈

670 𝑘𝑁

1.3 𝑚𝑚
= 515

𝑘𝑁

𝑚𝑚
 

7.4.2.2 Determination of the test specimen’s lateral stiffness 

The lateral stiffness of the test specimens is determined from the relations between the summed 

normal force and the normal displacements over the joint. Since these relations show a 

nonlinear lateral stiffness, it is hard to give a good estimation of the linear lateral stiffness that 

should be inserted in the finite element model. For this reason an minimum, average and 

maximum value of the lateral stiffness are determined. This will result in a bandwidth of the 

diagonal stiffness that must be applied in the finite element model. The largest lateral stiffness 

will give the smallest required diagonal stiffness Kd in order to let the model correspond with 

the determined secant shear stiffness. 

 

Figure 7.20 Determination of the lateral stiffness (Van Keulen, 2018) 
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𝐾ℎ,𝑡𝑒𝑠𝑡,𝑚𝑖𝑛 =
𝐹ℎ

𝑈𝑥
≈

(70 − 9)𝑘𝑁

1.15 𝑚𝑚
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𝑘𝑁

𝑚𝑚
 

𝐾ℎ,𝑡𝑒𝑠𝑡,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐹ℎ,𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒

𝑈𝑥,𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒
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127.9 𝑘𝑁

1.4 𝑚𝑚
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𝑘𝑁

𝑚𝑚
 

𝐾ℎ,𝑡𝑒𝑠𝑡,𝑚𝑎𝑥 =
𝐹ℎ

𝑈𝑥
≈

113 𝑘𝑁

(1.32 − 0.28) 𝑚𝑚
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𝑘𝑁

𝑚𝑚
 

7.4.2.3 Adjustment of the lateral stiffness in the finite element model 

The estimated values of the lateral stiffness must be inserted in the finite element model. The 

easiest way to do this, is to adjust the axial stiffness of the transverse bars into a fictitious value 

that results in a total lateral stiffness corresponding with one of the three determined values. In 

this way three models are considered: one for the minimum, one for the average and one for the 

maximum lateral stiffness. In order to obtain a lateral stiffness close to 91 kN/mm for example, 

the inserted value for AR must be approximately 265 mm2. This leads to a lateral stiffness of the 

finite element model of 92.7 kN/mm. 

7.4.2.4 Calibrated values for the diagonal stiffness 

The three models with the correct lateral stiffness are now ready to use for calibration of the 

diagonal stiffness to the test result. The shear stiffness of the model must be 515 kN/mm. The 

resulting calibrated values of the diagonal stiffness are found in Table 7.6. The largest diagonal 

stiffness is required in the model with a minimal lateral stiffness and vice versa. The found 

values are valid for a joint thickness of 200 mm. If this thickness is changed, the diagonal 

stiffness values must be changed accordingly, since another thickness will lead to a changed 

cross-sectional area of the diagonal bars and thus a changed diagonal stiffness.  

Model Kh [kN/mm] Kv [kN/mm] Kd [kN/mm] kd [kN/mm] 

Minimum 53 515 1560 520 
Average 91 515 880 293 
Maximum 109 515 800 267 

Table 7.6 Calibrated diagonal stiffness values (for t=200 mm) 

7.4.2.5 Bandwidth of the diagonal properties 

The calibrated values of the diagonal stiffness can be subdivided in an applicable E-modulus and 

cross section of the bar elements. Previously an E-modulus of 25000 N/mm2 was used, since this 

corresponds to the mortar that is modelled by the bar elements. However, the mortar may be 

cracked, whereby it’s stiffness could be reduced with 50 percent for example.  

The assumption was made that the width of the compression diagonal, Wd, is equal to the width 

of the inclined surface of the profile (Figure 6.8). It is interesting to compare the diagonal width 

resulting from the calibration with this assumption. In this case it is still assumed that the 

thickness of the compression diagonal is equal to the thickness of the concrete elements and the 

joint (t=200 mm). When a cracked and uncracked value for the E-modulus are considered, 

together with three estimated Kd values, this results in six values for the width of the 

compression diagonal. Note that the value Kd is the total diagonal stiffness (for three diagonals) 

and the values for Ad and Wd are given per diagonal. 
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Model Kd [kN/mm] Ad (cracked) 
[mm2] 

Wd (cracked) 
[mm] 

Ad (uncracked) 
[mm2] 

Wd (uncracked) 
[mm] 

Minimum 1560 8325 41.6 4160 20.8 
Average 880 4695 23.5 2350 11.7 
Maximum 800 4285 21.4 2140 10.7 

Table 7.7 Calibrated values of Ad and Wd 

The width of the inclined surface is 25.8 mm. So a compression diagonal width of 41.6 mm is not 

very realistic. However, the other values for Wd are reasonable with respect to the width of the 

inclined surface.  

7.4.2.6 Conclusion of the calibration 

The most important conclusion that can be drawn from the resulting values for Wd is that the 

bar model can give realistic values for the shear stiffness of the connection when realistic values 

for the diagonal stiffness are given as an input. This conclusion substantiates the feasibility of 

the bar model as a way of modelling to approximate the behaviour of the vertical profiled mortar 

connection.  

The maximum and minimum value that are found for the diagonal stiffness provide the limits 

within which a value can be chosen in order to let the model results be realistic, compared to the 

test results. These limits hold for the case where the thickness of the joint is 200 mm. The found 

limit values for Wd are independent of the joint thickness, t.  

7.5 Overview of the results 
This chapter discussed the analysis that was performed on a model that approximates the test 

setup and its behaviour as observed during Van Keulen’s tests. The first model had equal 

dimensions, whereas the second model was enlarged by a factor 2 in order to observe the effect 

of scaling the connection. The following general conclusions can be drawn based on the results 

presented in this chapter: 

 The finite element model behaves similar to test specimens of this shape, with respect to 

force flow and displacement field. 

 An increase in lateral reinforcement leads to an increase in lateral and shear stiffness 

subsequently. This was also observed in Van Keulen’s test results.  

 The relation between the cross-sectional area of the transverse reinforcement and the 

lateral stiffness is asymptotic, since an infinitely large AR does not lead to an infinitely 

large lateral stiffness, since the last is also determined by the in-plane bending stiffness 

of the concrete elements. 

 The relation between the lateral stiffness and shear stiffness is also asymptotic. Due to 

the limited diagonal stiffness, an infinitely large lateral stiffness won’t lead to an 

infinitely large shear stiffness.  

 The influence of AR on the lateral and shear stiffness of the connection is dependent on 

the chosen values of other design parameters. This holds, because the lateral stiffness is 

defined by other properties besides AR, such as the E-modulus of the concrete.  

 The influence of the lateral stiffness on the shear stiffness of the connection depends on 

the magnitude of the diagonal stiffness and the angle of the diagonals. Since these two 

joint properties together with the lateral stiffness determine the magnitude of the shear 

stiffness. This was already indicated in chapter 5. 
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 The resulting relations from the finite element model are thus only valid in this specific 

case, with this specific combination of input properties. 

 Evaluation of the results, especially the Ux-Uy diagram, indicated the applicability of the 

model schematization for the bar model that was presented in Figure 6.6. 

 The values for the shear stiffness resulting from the finite element model are greater 

than those resulting from the tests. Calibration of the assumed variables that determine 

the diagonal stiffness, such as the mortar E-modulus and diagonal cross section, showed 

that comparable stiffness values can be obtained within realistic limit values of the 

analysed variables. These calibrated design parameters are used in Chapter 11. 

The following specific conclusions can be drawn from the comparison between the small and 

large model of the test setup: 

 The large connection shows similar behaviour compared to the small connection and the 

test specimens with respect to the force flow and displacement field. 

 The lateral stiffness that is obtained for a large connection is generally lower for the 

same value of AR, due to the smaller in-plane bending stiffness of the larger L-shaped 

elements and the smaller axial stiffness of the reinforcement bars with equal cross-

section but greater length. 

 So if a larger connection is used attention must be paid to the provided lateral stiffness 

that tends to decrease as a result of larger structural dimensions. A larger connection 

will therefore require a larger amount of transverse reinforcement. 

 Despite a possible lower lateral stiffness, the shear stiffness of the large connection is in 

most cases larger than for the small one. This is the result of the larger amount of 

compression diagonals that are present. These diagonals all contribute to the shear 

stiffness as parallel springs. 

 The influence of a variation of the cross-sectional area of the transverse reinforcement 

on the shear stiffness of the connection is larger in case of a large connection. 

 The relation between the average lateral and shear stiffness for the large connection is 

equal to that relation for the small connection.  

 So if it is managed to keep the average lateral stiffness of the large connection equal to 

that of the small connection, the average shear stiffness of the large connection will also 

be equal to that of the small connection. Therefore the total shear stiffness of the large 

connection will be for example two times larger if the larger connection contains two 

times more diagonals than the small one. 

The analysis of the finite element model of the test setup showed that if the bar model is used to 

model the vertical profiled mortar connections, the resulting behaviour is realistic and provides 

insight in the influence of the lateral stiffness and diagonal stiffness on the shear stiffness of the 

connection.  

The bar model will therefore be used in the next phase where a parameter study is performed in 

order to analyse the influence of design parameters that determine the magnitude of the lateral 

stiffness and the influence of the joint properties Kd and α on the shear stiffness. 
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8 The parameter study 

The previous chapters discussed the development and analysis of the bar model that is used to 

investigate the behaviour of the vertical profiled mortar connections in terms of its linear shear 

stiffness. This stiffness is dependent on the lateral stiffness, that is provided by the surroundings 

of the connection, and the properties of the compression diagonals that develop in the mortar in 

the joint.  

The magnitude of the lateral stiffness is determined by multiple design parameters. The design 

parameters that are considered in this study are: 

 The stiffness of the transverse reinforcement: Ks 

 The Young’s modulus of the precast concrete elements: Ec 

 The height of window openings close to the joint: h 

 The width of the column between the joint and these window openings: a 

The parameter study that is reported in this chapter tries to quantify the influence of each 

individual parameter on the lateral stiffness. Furthermore the influence of the two diagonal 

properties, Kd and α, on the shear stiffness is investigated as well.  

Based on the results of the parameter study, the goal is to gain insight into the following aspects, 

related to the questions formulated in paragraph 5.3: 

 The relevance of each design parameter that partly determines the lateral stiffness, 

based on their influence on the lateral and shear stiffness of the connection. 

 The relevance of the two investigated diagonal properties, based on their influence on 

the shear stiffness of the connection. 

 The relevance of the lateral stiffness, based on its influence on the connection’s shear 

stiffness 

 The relation between the design parameters and the lateral stiffness 

 The relation between the lateral stiffness, diagonal stiffness, diagonal angle and the 

connection’s shear stiffness.  

The relevance of design parameters and diagonal properties indicates which of them must be 

included in a practical modelling approach that is developed and if some may be ignored. 

Furthermore the relevance indicates for which factors further research is useful and which 

factors must be taken into account from the beginning of the design process. If for example the 

joint properties appear to be very relevant, it may be valuable to develop another model that can 

investigate the relation between design parameters and joint properties. As explained in 

paragraph 6.1, the bar model cannot be used for this purpose. If the location of the openings 

appears to be very relevant, it is a good idea to take this into account from the beginning of the 

design process.  

Insight in the relations between the considered factors is used to develop the modelling 

approach for practical situations that is aimed at in this thesis. 
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The first paragraph of this chapter discusses the development of the model that is applied for the 

parameter study. The input properties and methodology are discussed in the second paragraph. 

The third paragraph provides an overview of the results. Paragraph four enumerates and 

discusses the most important conclusions. 

8.1 Development of the model 
Three different models were developed that could be used for the parameter study. One model 

consists of a complete shear wall, the other two contain just a part of a shear wall. This 

paragraph describes the setup of the three models and the comparison between them, which 

gives insight in the feasibility of the models. Each model can have different advantages and 

disadvantages or might even be invalid. The comparison is part of the process to find a model 

that is suitable for the parameter study and it’s also functioning as a validation of the structural 

behaviour of the three models.  

8.1.1 Setup of the three models 

The input properties of the model, like material properties and element cross sections, are 

discussed in the next paragraph. The three models discussed here differ only in terms of 

geometry and boundary conditions, as is explained in this section. 

8.1.1.1 A full wall model 

First of all, the parameter study can be performed on a model that contains a complete shear 

wall. The model is shown in Figure 8.1. This shear wall is loaded by a distributed horizontal 

force at each floor level, since in real situations the floor slabs distribute the wind loads in the 

same manner. At the bottom the wall is supported in horizontal and vertical direction. The wall 

is 10.05 metre wide (joint width is 0.05 metre) and  contains 5 stories with a height of 3.2 

metres. Therefore the wall is rather compact, whereby the bending deformations and horizontal 

deformations in general are small. In this manner the deformations resulting from the joint 

behaviour are more clearly visible. Results of previous research presented in section 3.3.1 

showed that the influence of vertical joints with finite stiffness is larger in compact walls. So this 

wall model should be feasible for analysing the behaviour of the vertical joint. 

 

Figure 8.1 Model of a complete shear wall (Model 1) 
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According to the information provided in section 3.2.2, the load will lead to a vertical shear force 

that is transferred by the vertical joint between the two columns of wall elements. This joint 

contains 15 diagonal bars per floor and at each floor level a horizontal bar element, which 

models the transverse reinforcement. 

8.1.1.2 A model loaded in shear 

If the parameter study is performed on a smaller model, some advantages with respect to the full 

wall model may be obtained: 

 Varying the geometry of the windows is less laborious. 

 The model provides a more detailed view on the deformations and stress distribution 

that occur around the joint. 

 The connection is tested on a typical form of loading; behaviour of the shear wall that 

influences the joint is excluded from the analysis. 

The first argument is an executional benefit that fastens the process. The second argument 

means that the effect of for example a change of the distance ‘a’ (See Figure 8.1) is more clearly 

visible. A change of this width will lead to a different bending deformation of the column 

between the joint and the window. In a model of a complete shear wall this larger bending 

deformation is less visible due to the global horizontal deflection of the wall. 

The third argument means that the joint can be tested on pure shear, whereas in a complete 

shear wall the joint is indirectly loaded by vertical shear. The shear behaviour is schematically 

illustrated in Figure 8.2. The load should directly lead to the slip that occurs over the vertical 

joint. In case a complete shear wall is modelled according model 1, also other structural 

behaviour may affect the results. 

 

Figure 8.2 Vertical shear in the joint (schematic illustration) 

The constructed model is shown in Figure 8.3. The modal contains three stories with a height of 

3.2 metres. The standard dimensions of the window openings are the same as in the shear wall 

model. The same joint is modelled, containing a width of 50 mm, 15 diagonals per floor and 1 

transverse bar at each floor level. On the left side, a vertical and horizontal support is applied. On 

the right side the model is loaded by a vertical shear force and horizontally supported. This 

horizontal support is required to prevent bending moments in the model. If this support was 

removed, the model would basically be a clamped beam and a 90 degrees rotation of the 

previous model. In that situation the joint would be tested as horizontal shear wall joint and the 

bending moment would result in tensile forces in the joint, which is not in accordance with the 

conditions that occur in a vertical joint.  
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A disadvantage of this model is that the horizontal support on the right side will make the 

contribution of the transverse reinforcement less significant, since the wall elements cannot 

rigidly translate in horizontal direction. 

 

Figure 8.3 Model loaded by a vertical shear force (Model 2) 

8.1.1.3 A model of a wall detail 

The third model zooms in even further. Its geometry is shown in Figure 8.4. This model includes 

only the part between the dashed square in Figure 8.2. The behaviour of the surroundings of the 

joint can very well be analysed in this case. However, the boundary conditions are more 

complex.  

The model is loaded by a vertical deflection of 1 mm at the top right edge and vertically 

supported along the bottom left edge, resulting in a vertical shear force that is transferred by the 

vertical joint. The horizontal supports are applied on the left side only. Since the vertical edges 

on the right side are cuts of the wall element, they must remain straight. Tyings are used for this 

purpose. The same holds for the upper left and lower right horizontal edges, where the wall 

elements above and below obstruct non-uniform vertical deformations. Appendix C contains a 

more detailed description of this model, including its particular behaviour. 

 

Figure 8.4 Single floor model (Model 3) 
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8.1.2 Comparison of the three models 

The comparison of the three models is based on multiple aspects. First of all the occurring 

deformations are analysed. Secondly, the stress distribution is considered and finally the 

distribution of shear force over the joint is compared. The comparison of the behaviour of the 

models is used to select the model that is used for the parameter study. It must be noted that the 

load in each model has a different magnitude, whereby the results should not be compared on 

the exact numerical values of the deformations, stresses and forces.  

8.1.2.1 Comparison of the deformations 

The following figures give an overview of the deformation fields in X- and Y-direction of the 

three models. The figures also contain the contours of the undeformed models. The models are 

from now on referred to as models 1,2 and 3. 

 

Figure 8.5 Deformation of the shear wall model (Model 1) 

 

Figure 8.6 Detail of the deformation of the shear wall model (Model 1) 

 

Figure 8.7 Deformation of the shear model (Model 2) 
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Figure 8.8 Detail of the deformation of the shear model (Model 2) 

 

Figure 8.9 Deformation of the wall detail model (Model 3) 

The deformation of model 2 shows a shear deformation of the lintels and columns over the 

entire model. The detail also shows that the joint itself deforms into a sinusoidal shape . This 

same shape can also be seen in the detail of the joint in model 1. The overview of the 

deformation of model 1 shows that the shear deformation makes a significant contribution to 

the total deformation of this wall. This follows from the course of the horizontal displacements 

over the height of the wall, which is characteristic for a compact wall. In both models, the joint 

widens over the entire height of the floor, with the largest dilatation occurring halfway the 

height. In model 3 the joint deforms differently. Although the left element shows a sinusoidal 

horizontal deformation, the right element deforms in a different way. As a result, the joint 

between the elements widens most at the top of the floor. 

In the vertical direction, it is most clear for model 3 that the elements shift with respect to each 

other. However, in all three cases the right side of the joint moves downwards relative to the left 

side. This shows vertical shear occurs over the width of connection. This shear ensures that the 

diagonal bars of the joint can remain under pressure despite the fact that the ends of the bars 

move apart in horizontal direction. 
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8.1.2.2 Comparison of the stress distribution 

The following figures show the stress distributions of shear stress Sxy and principle stresses S1 

and S2 over the model. 

 

Figure 8.10 Stress distribution in Model 1 (Shear stress Sxy, Principle stresses S1 and S2) 

 

Figure 8.11 Stress distribution in Model 2 (Shear stress Sxy, Principle stresses S1 and S2) 

 

Figure 8.12 Stress distribution in Model 3 (Shear stress Sxy, Principle stresses S1 and S2) 

In general, it could be argued that a model that "cuts" a part of the stability wall in a correct way 

should show a similar stress distribution as what occurs at that location in the entire stability 

wall. So the stress distribution around the joint in models 2 and 3 should be comparable to that 

of model 1. The above figures show that in each model a pressure diagonal develops that runs 

globally from top right to bottom left. For models 1 and 2 it can clearly be seen that there are 

traction diagonals from the upper left to the lower right. This cannot be seen in model 3. 
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Appendix D contains an overview of the distribution of the shear stresses Sxy along the contours 

of the part that is cut out by model 3. The results show that the stress distributions of the first 

and second model are similar. From this it may be concluded that the cut of the second model 

resembles the stress state that occurs in a complete shear wall.   

8.1.2.3 Comparison of the longitudinal shear force distribution in the joint 

Another important aspect regarding the force and stress distribution is the manner in which the 

shear force is divided over the diagonal bars of the connection. This will have an important effect 

on the behaviour of the connection. Figure 8.13 shows the distribution of the diagonal forces 

over the floor height for the three different models. For models 2 and 3 the middle floor has been 

analysed. Since the magnitude of the load in each model is different, the exact numerical values 

of the resulting distributions shouldn’t be compared. The difference between models 1 and 2 can 

very well be the result of this unequal load. Two things stand out: 

• In model 3, the greatest compressive forces are transmitted through the diagonals at the 

top and bottom of the floor, in models 1 and 2 this occurs halfway the floor height. 

• In models 1 and 2, even tensile forces arise in the upper and lower diagonal / diagonals 

in the standard situation that is studied. (It should be noted that the profiled mortar 

connection used cannot transfer any tensile force through the mortar. So in reality the 

mortar will be detached here and the tensile forces will probably be transferred by the 

transverse reinforcement.) 

In model 3, the distribution of the shear force across the diagonals seems purely determined by 

the lateral stiffness provided by the surrounding elements. The lateral stiffness must be lower 

for the part of the joint that is next to the window openings, compared to the part next to the 

lintels. So for the upper and lower diagonals, which are located at the height of the lintels, the 

lateral stiffness is locally larger, whereby these diagonals transfer the largest shear force. The 

found lateral stiffness distribution corresponds to the sketch of Figure 1.3 at the beginning of 

this thesis. The found force distribution corresponds to the distribution found by H. Hansen 

(Hansen H. , 1967) and the distribution found for the test setup model. 

However, in models 1 and 2 the greatest shear force is transferred half way the floor height. 

Apparently another effect compensates for the locally lower lateral stiffness, whereby the 

diagonals halfway carry the largest force. Figure 8.10 and Figure 8.11 show that pressure 

diagonals develop in the model, as a result of the window recesses. These diagonals cross the 

joint halfway each floor, leading to a large transferred shear force at this location. Apparently, 

the pressure diagonal that develops in model 3 doesn’t behave in the same manner as those that 

develop in models 1 and 2.  
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Figure 8.13 Diagonal force distribution over the height of the middle floor 

8.1.3 Evaluation of the models 

It must be concluded that it appeared to be hard to create a model containing a part of a shear 

wall. For both models 2 and 3 the boundary conditions cause deviations in the behaviour of the 

model with respect to model 1. 

All three models have advantages and disadvantages. The third model behaves in a completely 

different manner as the other two. The diagonal force distribution of this model clearly shows 

the influence of the lateral stiffness, which is positive for a study into this effect. However, the 

modelled behaviour deviates too much from what happens in a shear wall as the results in this 

paragraph and appendix D and the model evaluation in appendix C show. The behaviour shows 

more similarities to a compression instead of a shear test. This deviating behaviour results in 

essentially different relations for the influence of different parameters, as can be seen by 

comparing the results in appendix E with the results of paragraph 8.3. For this reason the model 

is considered not to be applicable for this study.  

The second model behaves more like the situation in a shear wall. However, the wall elements 

cannot translate in horizontal direction, whereby the model is not suitable for a study into the 

influence of the transverse reinforcement. Based on the comparison with model 1, the second 

model is assumed to be suitable for analysing the local behaviour of the connection.  

The first model is based on the largest scale since it contains a complete shear wall. Therefore 

full insight in the way the connection is loaded and the structural behaviour of the shear wall 

that affects the joints behaviour is lacking. So for a more detailed analysis of the connection’s 

behaviour, the model is probably less suitable than model 2. However, it appears to be the best 

solution for the purpose of this parameter study. The applied boundary conditions are 

undisputedly corresponding to a real shear wall. Furthermore, the results of the parameter 

study will show the parameter influence as it occurs in reality, taking into account the shear 

wall’s structural behaviour that might play a role. The results of model 2 would be more 

theoretical, since the way of loading is more idealised. 

The results of the first model are therefore presented in paragraph 8.3. Appendix E also contains 

the parameter study results obtained with the other models. The similarities in the three results 

can be seen as a verification of the results of the performed parameter study. The deviations of 
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the results in appendix E can be assigned to the drawbacks of models 2 and 3. In most cases the 

influence of parameters in model 2 is similar to that in model 1. 

8.2 Input and methodology 
This paragraph discusses the input properties and the methodology that is applied in the 

parameter study. This methodology concerns the way the parameters are varied, the boundaries 

within this is done and the way the output is processed into comprehensible diagrams. 

8.2.1 Overview of parameters and standard input 

Figure 8.14 provides an overview of the parameters that are considered in the analysis. These 

parameters are: 

 The stiffness of the transverse reinforcement, Ks 

 The Young’s modulus of the precast concrete elements, Ec 

 The height of window openings close to the joint, h 

 The width of the column between the joint and these window openings, a 

 The axial stiffness of de diagonal bars, Kd 

 The angle of the diagonal bars, α 

Three of these parameters need more explanation.  

 

Figure 8.14 Overview of parameters 

8.2.1.1 The diagonal angle and stiffness 

As Figure 8.14 illustrates, the standard value of the diagonal angle is defined by the line that 

connects the two midpoints of opposite inclined surfaces. The limits of the variation are 

determined by the profile geometry as well. They are obtained by creating the lines that connect 

the endpoints of the inclined surfaces.  

The diagonal stiffness is determined by the length of the diagonal, the E-modulus and the cross-

sectional area. For the standard value of the cross-sectional area the same assumption is applied 

as for the test setup model, where the area was equal to the element thickness times the width of 

the inclined surface. The variation of the stiffness is based on a variation of the width of the 

diagonal Wd, keeping the length, E-modulus and thickness constant.  
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8.2.1.2 The transverse spring stiffness 

In reality the transverse reinforcement continues over the full length of the shear wall. However, 

as described in section 2.2.2, an embedded bar in tension transfers most of the tensile forces 

along the first part of the embedded length. So most of the reinforcement’s elongation occurs 

over this active part. For this reason the reinforcement is modelled along a short distance. The 

length that is given to the transverse bars is illustrated in Figure 8.15.  

 

Figure 8.15 Length of the transverse reinforcement bars 

The stiffness of the transverse bars in the model contains only the contribution of the axial 

stiffness. This is fully determined by the bar length, the E-modulus of steel and the applied cross 

section. This is not in accordance with the real situation. 

In reality the transverse reinforcement is applied in the horizontal mortar joints between the 

wall elements. The figures on page 6 show examples of possible locations of the transverse 

reinforcement. A transferred horizontal tensile force crosses two interfaces. The force transfer 

in these interfaces influences the stiffness of the load path.  

Figure 8.16 shows this load path. At locations 1, the horizontal force is transferred by friction 

between the precast concrete elements and the mortar in the joint. At locations 2, the force is 

transferred by friction between the mortar and the reinforcement. At location 3 the force is 

transferred by axial tension of the reinforcement bar. 

 

Figure 8.16 Force transfer via the reinforcement. 1. Shear friction between concrete and joint mortar 2. Bond 
stresses between reinforcement and joint mortar 3. Transfer of axial tensile force in the reinforcement. 

All three force transfer mechanisms must be lumped into the stiffness Ks that is assigned to the 

transverse bars in the finite element model. However, this stiffness is solely determined by the 

axial stiffness of the bars. If the stiffness of the modelled springs appears to be very important, a 

more detailed investigation can be done to determine the combined stiffness more precisely. 
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8.2.1.3 Standard values 

Table 8.1 shows the standard values that are used as model input. The total diagonal stiffness 

that is given is the summed axial stiffness of all fifteen parallel diagonal bars. The transverse 

spring stiffness is the axial stiffness of a single transverse bar. Both quantities are assigned by a 

capital “K”, which indicates that it is the total stiffness. The total stiffness is always the total 

value per floor.  

Some standard values of parameters are arbitrary. For example the chosen values for h and a. In 

all cases the window openings are applied around the horizontal centre lines of the floors, 

resulting in two equally sized concrete lintels above and below the openings. The standard value 

for the concrete stiffness, Ec, of 35000 N/mm2 followed from regular material properties for 

uncracked concrete. The standard value of Ks was hard to determine, since the stiffness of the 

bars includes more than only the axial stiffness of the reinforcement, as explained in the 

previous section. Therefore the standard value is determined based on the resulting horizontal 

displacement difference, which shouldn’t be too large compared to other deformations. The 

standard values of Ad and alpha followed from the profile geometry. 

The shear wall model is loaded by a horizontally distributed load of 40 N/mm  on each floor 

level. A quadratic mesh is used with a mesh size of 100 mm. This mesh size has been determined 

based on a mesh size dependency study that was performed on Model 3. The results of this study 

are provided in appendix C. 

Concrete Elements 
Plane stress elements  CQ16M 

Thickness t 200 mm 
E-modulus Ec 35000 N/mm2 
Poisson’s ratio ν 0.2 
Window height h 1500 mm 
Column width a 500 mm 

Diagonal bars 
Regular truss elements L2TRU 

Length Ld 199.86 mm 
Slope [hy/hx] α 3.87 
Cross-sectional area Ad 5166 mm2 
E-modulus Ed 25000 N/mm2 
Total diagonal stiffness Kd 9693 kN/mm 
Poisson’s ratio ν 0.2 
Amount of diagonals per floor 15 

Reinforcement bars 
Regular truss elements L2TRU 

Cross-sectional area AR 5620 mm2 
E-modulus Es 210000 N/mm2 
Length Ls 200 mm 
Transverse spring stiffness Ks 5901 kN/mm 
Poisson’s ratio ν 0.3 

Table 8.1 Overview of standard input values 

8.2.2 Variation of parameters 

The standard model is the starting point of the variations. Each time only a single parameter is 

varied, while keeping the other parameters equal to their standard value. In this way the pure 

influence of a single parameter is investigated.  
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Table 8.2 gives an overview of all parameter’s standard values and variation values. The 

standard values are highlighted.   

Parameter Unit Min       Max 

EC N/mm2 10000 25000 30000 35000 40000 45000 50000  
Kd kN/mm 1876 3753 5629 7505 9693 11258 13134  
Ks kN/mm 525 2534 4222 5901 6756 8444 13511  
α [hy/hx] 2.49 3.87 5.25 6.35 7.99    
a mm 200 300 500 600 700 800 1200  
h  mm 700 1000 1200 1500 1600 1800 2000 2500 

Table 8.2 Variation of the parameters (standard values in bold and underlined) 

The limits of alpha are determined by the edges of the opposite inclined surfaces (See Figure 

8.14). The maximum theoretical value is 8, the minimum value is approximately 2.5. So a huge 

variation of alpha is possible within the staggered profile geometry.  

The variation of alpha within the profile coincides with a shortening or elongation of the 

diagonal. This directly influences the diagonal’s stiffness. In order to get a pure image of the 

effect of a variation of alpha, any length variation should be avoided. However, in this parameter 

study it is decided to investigate the insecurity of the diagonal’s orientation as whole. Therefore 

the angle is varied within the limits indicated in Figure 8.14 and the diagonal length is changed 

according to the profile edges. For example, in the steepest orientation alpha is 
200

25
= 8.00 and 

the length is set to: √252 + 2002 = 201.56 𝑚𝑚, and in the flattest orientation alpha is 
187

75
= 2.49 

and the length is set to: √752 + 1872 = 201.48 𝑚𝑚. As can be seen, also in comparison with the 

length given in Table 8.1, the length variation is not very large, but does influence the results. In 

the model, the width of the gap between the wall elements is varied between 25 and 75 mm 

corresponding to the chosen value of alpha and the orientation of the diagonal. 

The parameters Ks and Kd are varied by changing the cross sections Ad and AR. The values for Ad 

were determined based on the profile geometry. Because the stiffness Ks contains multiple 

aspects, as explained in section 8.2.1.2, practical limits are uncertain. Therefore a wide variation 

of AR is applied in order to create a wide range of  the transverse spring stiffness. 

8.2.3 Processing of results 

The way the results are processed is in general equal to the approach used for the test setup 

model. An analysis is performed on the model with for a single parameter X variation value y 

and for all other parameters the standard value as input. Only the middle floor of the shear wall 

model is considered while processing the output of the analysis. So the displacements of the 

fifteen diagonal endpoints and the forces in each diagonal on this floor are exported and stored 

in a table. From the average displacements and summed forces, the lateral and shear stiffness 

are calculated. This results in one data point in the relation between parameter X and shear 

stiffness Kv and one data point in the relation between parameter X and lateral stiffness Kh. 

Subsequently, the analysis is repeated for another value of parameter X.  
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Figure 8.17 Processing of model output 
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8.3 Results 
This paragraph contains the results of the parameter study. As illustrated in Figure 8.17, two 

diagrams are constructed for each parameter. One diagram indicates the influence of the 

parameter on the total shear stiffness, the other indicates the influence on the total lateral 

stiffness. Furthermore, for each parameter variation the influence on the force distribution over 

the diagonals is indicated. This diagram indicates whether a change of the parameter results in a 

change in local structural behaviour. 

The diagrams that show the relation between the parameter value and the stiffness values, are 

normalised. Index value 1.0 is always assigned to the largest parameter value and the 

corresponding stiffness value. The results corresponding to the other parameter values have 

indices related to this reference.  

Appendix E contains more results of the parameter study, including those obtained from models 

2 and 3. The relations obtained for model 2 are in most cases similar to those of model 1, 

presented in this paragraph. 

In the next paragraph it is explained, that the influence of a parameter depends on the applied 

standard values for the other parameters. So the presented results will change when other 

standard values than those of Table 8.2 are applied. It is important to keep this in mind while 

evaluating the parameter study results. 

8.3.1 The influence of the transverse spring stiffness 

The influence of the variation of the transverse spring stiffness Ks, is illustrated by the diagrams 

in Figure 8.18. The results obtained for Ks = 13511 kN/mm are given index 1.0.  

 

Figure 8.18 The influence of the transverse spring stiffness on Kv (left) and Kh (right) 

The diagrams show that a reduction of the transverse spring stiffness leads to a reduction in 

both the shear and lateral stiffness. This is behaviour is expected based on the results presented 

in chapter 7 for a variation of the cross section of the transverse bars in the test setup model. 

Both relations are asymptotic, whereby the influence of increasing the value for Ks reduces when 

the initial value of Ks is larger.  

The left diagram shows that the influence of Ks on the shear stiffness is limited. If the value of Ks 

is reduced to a value that is just 20 percent of the largest value, the shear stiffness is still more 

than 85 percent of the largest value. Only a reduction of the transverse spring stiffness to an 
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even smaller value results in a significant decrease of the connection’s shear stiffness to a value 

of 55 percent. The right diagram shows that the lateral stiffness decreases gradually for 

decreasing values of the transverse stiffness. The influence of a variation of Ks on the lateral 

stiffness is larger than its influence on the shear stiffness. 

The diagrams in appendix E for model 2 show that in this model the influence of the transverse 

spring stiffness on the shear and lateral stiffness is minimal. This is a result of the applied 

boundary conditions that contain horizontal supports on both sides of the joint.  

Figure 8.19 shows the distribution of the diagonal forces over the height of the floor for three 

different values of Ks. From this graph it can be concluded that a change of Ks doesn’t lead to a 

significant change in the shear force distribution over the connection. 

 

Figure 8.19 Diagonal force distribution over the floor height for different values of Ks 

8.3.2 The influence of the concrete stiffness 

Figure 8.20 shows the influence of the concrete stiffness Ec on the total shear and lateral stiffness 

of the connection. The left relation between the indices for Kv and Ec shows an asymptotic 

behaviour. So the increase of shear stiffness that can be obtained by increasing the concrete 

stiffness is limited. The right diagram shows also a relation with decreasing slope, indicating 

asymptotic behaviour. However, the large slope of the relation still has at point (1.0;1.0) 

indicates that the maximum lateral stiffness is not yet approached.  

Also for this parameter’s influence on the lateral stiffness is larger than its influence on the shear 

stiffness, as can be concluded from the slope of the diagrams. 
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Figure 8.20 The influence of the concrete stiffness on Kv (left) and Kh (right) 

Figure 8.21 shows the diagonal force distribution over the height of the considered floor. Based 

on the diagram it is concluded that a variation of the concrete stiffness leads to a redistribution 

of the shear force over the height of the connection. A smaller concrete stiffness leads to a larger 

difference between the smallest and largest diagonal force. In case the concrete stiffness is very 

large only compression forces occur in the diagonals. 

 

Figure 8.21 Diagonal force distribution over the floor height for different values of Ec 

8.3.3 The influence of the column width  

Figure 8.22 shows the diagrams that indicate the influence of the column width on the shear and 

lateral stiffness. The left relation is clearly asymptotic. Apparently, an increase of the column 

with to a value larger than 600 mm won’t significantly increase the shear stiffness, for the 

applied combination of standard values. When the column width is reduced to 200 mm (17 

percent of the maximum value), the shear stiffness is slightly larger than 60 percent. 

Also for this parameter it holds that its influence on the lateral stiffness is greater. The lateral 

stiffness is reduced by approximately 80 percent if the column width is 200 mm. 
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Figure 8.22 The influence of the column width on Kv (left) and Kh (right) 

So the influence on the lateral stiffness is rather large. The diagram shows a strange behaviour 

for larger values of the column width, since the maximum shear stiffness is found for a=800 

instead of 1200 mm. The cause of this behaviour isn’t known. However, the global trend of a 

decreasing lateral stiffness by a reduction of the column width is clear and of major importance. 

As can be seen in appendix E, the found influence of a variation of the column width in model 3, 

is completely different. This is caused by its particular behaviour that deviates from the 

behaviour of models 1 and 2. This behaviour is explained in appendix C. The influence of the 

column width in model 2 globally shows the same behaviour as indicated in Figure 8.22, the 

influence on both stiffness quantities is just slightly larger. 

Figure 8.23 shows the diagonal force distribution over the height of the floor. A reduction of the 

column width leads to a concentration of the transferred shear force to the centre of the floor. 

Although the width of the surrounding concrete columns is reduced, the transferred shear force 

at centre height is increased. The effect of the compression diagonals that develop in the shear 

wall appears to overrule the reduced lateral stiffness halfway the floor height. 

 

Figure 8.23 Diagonal force distribution over the floor height for different values of a 
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8.3.4 The influence of the window opening height 

Figure 8.24 shows the normalised relations between the opening height h and the shear and 

lateral stiffness. The left relation shows that the shear stiffness of the connection is reduced 

when the opening height is larger. The relation is again asymptotic. For the applied combination 

of standard values, the influence on the shear stiffness is rather small, compared to the previous 

results. A reduction of the window height from 2500 to 700 mm (70 percent) results in a shear 

stiffness that is just 28 percent larger. 

The influence of the opening height on the lateral stiffness is larger, just like for the previous 

parameters. The results in appendix E show the trend of the relation is similar in all models, but 

the magnitude of the influence differs a lot. 

 

Figure 8.24 The influence of the opening height  on Kv (left) and Kh (right) 

Figure 8.25 shows the diagonal force distribution over the height of the floor. It can be 

concluded that the reduction of h results in a concentration of the shear force around the centre 

of the floor. So it concentrates at the part of the connection that is next to the window opening. 

This must again be attributed to the compression diagonals that develop in the shear wall, which 

effect seems to be very important, since it overrules the locally lower lateral stiffness. 

 

Figure 8.25 Diagonal force distribution over the floor height for different values of h 
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8.3.5 The influence of the diagonal stiffness 

Figure 8.26 shows the influence of the diagonal stiffness on the shear and lateral stiffness of the 

connection. Unlike the previous parameters, the diagonal stiffness has a larger influence on the 

shear stiffness. Over the range of variation the minimum shear stiffness is 5 times smaller than 

the maximum value that is found. The minimum lateral stiffness is 3.5 times smaller than the 

maximum value that is found. A reduction of the diagonal stiffness leads to a decrease of the 

shear stiffness. This could be expected from the results of paragraph 7.4, where the shear 

stiffness of the test setup model was decreased by reducing the value of Kd. Since the slope of the 

relation decreases slightly, an asymptotic relation is expected between Kd and Kv. However, with 

the applied standard values the limit of this relation isn’t achieved by far, as the slope at the 

upper end of the relation indicates. 

A reduction of the diagonal stiffness appears to result in an increase of the lateral stiffness. This 

seems a bit contradictory and will further be discussed in chapter 10.  

 

Figure 8.26 The influence of the diagonal stiffness  on Kv (left) and Kh (right) 

Figure 8.27 shows the diagonal force distribution over the height of the considered floor. It is 

seen that a reduction of Kd leads to a larger spread of the shear force, whereby the extreme 

values of the diagonal force are reduced. The largest shear force is always transferred halfway 

the floor height.  

 

Figure 8.27 Diagonal force distribution over the floor height for different values of Kd 
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8.3.6 The influence of the diagonal angle 

Figure 8.28 shows the influence of a variation of the diagonal angle on the shear and lateral 

stiffness of the connection. The influence on the shear stiffness is rather large. The relation is 

asymptotic, which is logical. If the diagonal bars are vertical, their axial stiffness is fully used for 

the transfer of the vertical shear force. This configuration of bars results in the largest possible 

shear stiffness. The steeper the diagonals are, the closer the stiffness gets to this limit. As the 

stiffness approaches the limit, the influence of a change of diagonal angle becomes lower.  

 

Figure 8.28 The influence of the diagonal angle on Kv (left) and Kh (right) 

The relation indicating the influence of alpha on the lateral stiffness is rather odd. Unlike all 

previous relations, where the absolute value of the lateral stiffness was considered, this relation 

takes the real value into account. The negative values corresponding to the two smallest values 

of alpha have the same sign as the results of the previous parameters. 

If steep diagonals are applied, the joint is on average not dilated, but compressed as a result of 

the horizontal load. This horizontal load is probably induced by the horizontal force component 

of the compression diagonals that develop in the shear wall. For more horizontally oriented 

diagonals, the joint will dilate as a result of the horizontal component of the force in the diagonal 

bars. For a certain value of alpha, these two effects will be in balance, whereby the horizontal 

displacement difference Ux approaches zero, resulting in an infinitely large lateral stiffness. The 

whole is illustrated in Figure 8.29, where also the complete relation between Kh and alpha is 

sketched. 

Since the joint between the two precast concrete elements is fully filled with mortar, it is not 

compressible. Therefore the obtained behaviour is considered to be physically impossible. It is a 

consequence of the applied modelling approach. Appendix J describes this effect in more detail.  
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Figure 8.29 The relation between Kh and α caused by the relation between α and Ux 

The results presented in appendix E show that in models 2 and 3 the lateral stiffness simply 

reduces for smaller values of alpha. The relations for the influence on the shear stiffness are very 

similar. 

Figure 8.30 shows that the distribution of the diagonal forces over the height of the floor is not 

very much influenced by a variation of the diagonal angle.  

 

Figure 8.30 Diagonal force distribution over the floor height for different values of Kd 



 

 The parameter study page 128 

8.4 Overview of the results 
In this paragraph the most important conclusions of the parameter study are enumerated. These 

conclusions are related to the goals that were formulated in the introduction of this chapter. This 

paragraph also discusses the validity of the presented results and conclusions. 

8.4.1 The relevance of the six parameters 

One of the goals of the parameter study was to indicate the relevance of each parameter based 

on its influence on the shear stiffness of the connection. The influence of each parameter is 

indicated by the ratio between the size of the range over which the parameter is varied and the 

corresponding range of the shear stiffness. So the following order of relevance can be made: 

 The diagonal stiffness Kd is most relevant. A reduction of Kd by 86 percent leads to a 

reduction in shear stiffness Kv of 82 percent (Ratio: 82/86=0.95). 

 The diagonal angle α. A reduction of the angle by 69 percent leads to a reduction of the 

shear stiffness of 61 percent (Ratio: 61/69=0.88). 

 The transverse spring stiffness Ks. A reduction of Ks by 96 percent leads to a reduction of 

the shear stiffness of 45 percent (Ratio: 45/96=0.47). 

 The column width ‘a’. A reduction of a by 83 percent leads to a reduction of the shear 

stiffness of 37 percent (Ratio: 37/83=0.45). 

 The concrete stiffness Ec. A reduction of Ec by 80 percent leads to a reduction of the shear 

stiffness of 34 percent (Ratio: 34/80=0.43). 

 The window height ‘h’ is least relevant. A reduction of the window height by 72 percent 

leads to an increase of the shear stiffness by 28 percent (Ratio: 28/72=0.39). 

So this order of relevance is obtained by dividing the relative difference in shear stiffness by the 

relative difference in parameter value. In this way the influence is seen as the average slope of 

the parameter relations presented in previous paragraph.  

From the results it is concluded that the influence of the parameters Ks, Ec, a and h on the lateral 

stiffness is larger than their influence on the shear stiffness of the connection. In section 5.1.3 

these four parameters were defined as design parameters that influence the lateral stiffness. So 

this result substantiates this definition. The influence of Ec, a and h on the lateral stiffness is 

approximately equal, the influence of Ks is slightly lower. The relevance for Kh of each parameter 

is therefore equal, based on these specific results. 

Some important comments must be made about the determined order of relevance of the six 

parameters. 

First of all, the range over which the parameters are varied is rather large. By considering a large 

range of variation, more insight is gained in the influence of each variable. The transverse spring 

stiffness is for example reduced by 96 percent, whereby it is possible to see that its influence is 

significant for a change in small values of Ks. If these values weren’t included in the range of 

variation, the influence of Ks was thought to be insignificant. Because it is yet unknown which 

values are practical and realistic, for Ks and Kd in particular, it is important to use a wide range of 

variation to see the potential influence. However, especially for the parameter Ks, the large 

relevance is a direct result of the range of variation. If it appears that practical values for Ks are 

never lower than approximately 3000 kN/mm, the influence of this parameter is the smallest 
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and therefore the least relevant. So although it is possible to arrange the parameters in order of 

their influence, this order is dependent on the practical range over which each parameter varies.  

Furthermore, all analysed parameters influence the lateral and shear stiffness. Therefore, the 

magnitude of the lateral and shear stiffness is determined by the combination of all the 

parameters. Since this is the case, the influence of the variation of a single parameter depends on 

the magnitude the other parameters have. So all the relations that are found in this parameter 

study are specifically valid for the applied standard values for each parameter. If for example the 

standard value of parameter Ks would be smaller, the influence of all other parameters will 

deviate from what is found in paragraph 8.3. 

For these two reasons it is impossible to conclude from the results presented in this chapter 

which parameters are most relevant and which parameters the least. This conclusion can only 

be drawn when for each parameter the range of realistic values is defined and when more 

insight is gained on the influence of parameters on the other parameters. The latter is discussed 

in chapter 9. 

8.4.2 The relevance of the lateral stiffness and the joint properties. 

Another goal of the parameter study was to gain insight in the relevance of the lateral stiffness 

and the two joint properties, based on their influence on the connection’s shear stiffness. The 

two parameters related to joint properties have a larger influence on the shear stiffness than the 

four parameters related to the lateral stiffness, as concluded in previous section. The variation of 

the four lateral stiffness parameters led to a variation of the lateral stiffness itself. The obtained 

difference between the maximum and minimum value of the lateral stiffness is approximately 90 

percent. The ranges of variation of Kd and α were 86 and 69 percent respectively. So despite the 

lateral stiffness has been varied over a wider range, its influence of on the shear stiffness is 

smaller than the influence of changing Kd or α. From this it is concluded that for the chosen 

combination of standard values, the joint properties are more relevant than the lateral stiffness. 

This aspect is elaborated on in chapter 9. 

8.4.3 The relation between the design parameters and the lateral stiffness 

Insight into the relations between design parameters and the lateral stiffness was also aimed at. 

These relations indicate that in general: 

 A reduction of Ks leads to a reduction of Kh. 

If the stiffness of the transverse reinforcement is reduced, the two precast concrete 

elements can move apart more easily, resulting in a smaller lateral stiffness. 

 A reduction of Ec leads to a reduction of Kh. 

When the precast concrete elements are less stiff, they bend more easily, resulting in a 

larger dilatation of the joint and thus a smaller lateral stiffness. 

 A reduction of ‘a’ leads to a reduction of Kh 

A smaller distance between the joint and the openings in the wall leads to more bending 

deformations of the precast concrete elements, resulting in a smaller lateral stiffness. 

 A reduction of h leads to an increase of Kh 

A smaller opening height reduces the bending deformations of the precast concrete 

elements, resulting in a larger lateral stiffness. 
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The first statement is an observation and therefore really a conclusion of the parameter study. 

Each second statement is an explanation of a probable cause of the observed behaviour, which is 

not based on specific results and should be analysed in more detail. 

Furthermore it is concluded that the parameters Kd and α influence the lateral stiffness as well. 

The lateral stiffness was thought of as the resistance to dilatation provided by the surroundings 

of the joint. So any influence of the diagonal properties was not really expected and needs 

further investigation. The relation between design parameters, diagonal properties and the 

lateral stiffness is further discussed in chapter 10. 

8.4.4 The relation between lateral stiffness, diagonal stiffness, diagonal angle and the 

connection’s shear stiffness 

In general it could be said that an increase of the lateral stiffness by adjusting parameters Ks, Ec, 

a or h, an increase in the diagonal stiffness or an increase of the diagonal angle leads to an 

increase of the connection’s shear stiffness. The relation is further analysed in chapter 9 and 10. 

8.4.5 Force distribution over the joint 

For each parameter variation, the effect on the diagonal force distribution was presented as well. 

These diagrams showed some interesting facts: 

 Although the lateral stiffness must be smaller halfway the floor height, because of the 

location of the window openings, the shear force concentrates here. 

 A reduction of the column width or the opening height concentrates the transferred 

shear force even more to the centre of the floor height. 

These two effects must indicate that the spread of the shear force over the connection is 

determined by more effects than the lateral stiffness and the joint properties. The stress 

distribution over the model, presented in Figure 8.10, shows the development of compression 

diagonals in the shear wall. These compressive forces cross the joint exactly halfway the height 

of each floor. The force flow is apparently more determined by the configuration of the openings 

in the wall than the distribution of the lateral stiffness over the joint. This behaviour is analysed 

in more detail in chapter 10. 
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9 Relations between parameters 

The results of the performed parameter study were discussed in chapter 8. These results are 

useful to gain some insight into the relevance of the six parameters that were analysed. 

However, it appeared hard to formulate general conclusions about the relevance of each 

parameter based on its influence on either the lateral stiffness or the shear stiffness of the 

connection. As stated in paragraph 8.4, two difficulties are faced: the uncertainty of the practical 

range of variation for each parameter and the interdependency between parameters. The latter 

means that the influence of each parameter on the connection’s stiffness is dependent on the 

magnitude of all other parameters.  

Furthermore, the parameter study results showed that the influence of the lateral stiffness on 

the shear stiffness of the connection was smaller than the influence of the diagonal properties. 

The relation between these two structural effects isn’t known yet, neither the influence the two 

effects have on each other. 

This chapter describes two analyses. The first investigates the combined contribution of the 

diagonal stiffness Kd and angle α and lateral stiffness Kh to the magnitude of the shear stiffness 

Kv. This analysis is related to the last two questions formulated in paragraph 5.3. The second is 

performed to describe the interdependency between the four considered parameters that define 

the lateral stiffness: Ks, Ec, a and h. The relevance of the parameters can be determined more 

precisely on the basis of this analysis, which is related to the first three questions of paragraph 

5.3. 

9.1  The relation between Kh, Kd, α and Kv 
In order to analyse the relevance of the lateral stiffness, the diagonal stiffness and the diagonal 

angle, a the kv-kh diagram is constructed (Figure 9.1) by using all the data points that are 

collected during the parameter study. After all, each parameter variation led to a new shear 

stiffness with corresponding lateral stiffness.  

9.1.1 Combined parameter study results 

Figure 9.1 shows the kv-kh relation, the relation between the average shear and average lateral 

stiffness. From this diagram it can be concluded that a variation of one of the design parameters 

Ks, Ec, a or h always leads to a point on the same asymptotic relation (relation 1). However, when 

the diagonal stiffness is varied, the resulting combination of lateral and shear stiffness is not a 

point on the same line, but on relation 2.  

So relation 1 is valid when a diagonal stiffness of 9693 kN/mm (the standard value) is applied in 

combination with any combination of values for the four design parameters. When the diagonal 

stiffness is equal to 5629 kN/mm for example and the design parameters are varied resulting in 

different values for kh, then all the data points appear to lie on relation 3. 

It is clear that varying all the design parameters in relation 1 leads to a greater variation of the 

lateral stiffness than what is obtained by varying the diagonal stiffness, since the range over the 

horizontal axis of relation 1 is way larger than that of relation 2. So a variation of the diagonal 

stiffness primarily leads to a change of the shear stiffness, whereas a variation of the design 
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parameters primarily leads to a change in lateral stiffness. This conclusion corresponds to the 

conclusion drawn in previous chapter, that states that the influence of the four design 

parameters on the lateral stiffness is greater than their influence on the shear stiffness. 

 

Figure 9.1 The Kv-Kh relation for the variation of the design parameters and a variation of the diagonal stiffness 

Furthermore another important conclusion can be drawn based on this diagram. The slope of 

relation 3 is smaller than the slope of relation 1. So a variation of the lateral stiffness and thus 

the design parameters has a larger influence on the magnitude of the shear stiffness for a large 

value of Kd. Consequently, the relevance of the lateral stiffness and the design parameters is 

dependent on the obtained diagonal stiffness. Vice versa, the influence of a change in diagonal 

stiffness is greater for larger values of Kh, since the distance between relations 1 and 3 increases 

for larger values of Kh. 

The parameter study results that were obtained for a variation of the diagonal angle alpha were 

a bit odd, since the lateral stiffness changed sign. This fact proves that the resulting 

combinations of kh and kv for this variation don’t lie on relation 1. So its influence is similar to 

that of the other diagonal property, Kd, in that sense that a variation doesn’t lead to a point on 

relation 1. Unfortunately, the applied shear wall model is not suitable for investigating the effect 

of a variation of alpha in the context of this diagram. 

9.1.2 The relation with the test setup model and other models 

In section 7.3.4 the scale effect between the small and large test setup model was analysed. It 

appeared that the relation between the average shear and lateral stiffness of both models was 

equal.  

Because the applied standard values for Kd and α are equal to the uncalibrated values applied in 

the test setup model, the found kv-kh relation for the shear wall model (model 1) is easily 

compared with the one obtained from the test setup model. Moreover, the found relations for 

models 2 and 3 using the results of appendix E, can be compared as well. 

Figure 9.2 contains a plot of all found kv-kh relations in one diagram. It is concluded that all 

relations are equal. All the data points with varied a, h, Ec or Ks obtained from the parameter 

study on the three models lie on the relation found for the two test setup models.   
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Figure 9.2 The kv-kh relations for all different models 

This result means that the relation between the average shear and lateral stiffness is 

independent of the shape of the structural elements surrounding the joint. Either with the L-

elements used in the test setup, with parts of wall elements in model 3 or with complete wall 

elements in models 1 and 2 the same relation is found. 

According to this conclusion, the model shown in Figure 9.3 is constructed. The bar model in the 

left image contains a single diagonal bar with stiffness kd and a support stiffness ksup1. This 

support stiffness can be seen as the lateral stiffness that is provided by the precast concrete 

elements, which are not part of this model. The total diagonal, lateral and shear stiffness is equal 

to the average values, since there is just a single diagonal. If the connection is enlarged to a 

double amount of diagonals, these diagonals act as parallel springs. This is shown in the right 

image. The total diagonal stiffness is enlarged to 2kd. If it is possible to enlarge the support 

stiffness to a value of 2ksup1, the total lateral stiffness is doubled as well. It that case, it is easy to 

see that the whole model is two times stiffer, whereby the shear stiffness Kv is two times larger. 

The type of elements that provide the support stiffness doesn’t affect this analogy, as is 

concluded previously. 

 

Figure 9.3 Parallel bar model 
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In the next chapter the relation between the joint properties, lateral stiffness and the shear 

stiffness is analysed in an analytical way. The outcome of this analysis will provide even more 

insight in the effect of a varying diagonal stiffness or angle.  

9.2  Influence between the design parameters Ks, Ec, a and h 
In paragraph 8.4 it was concluded that the influence of the four design parameters that 

determine the lateral stiffness depends on the magnitude of the other parameters. Partly 

because of this, it is hard to determine the relevance of each design parameter based on the 

parameter study results only. Therefore this paragraph contains the results of double parameter 

variations. These illustrate in which way the influence of a certain parameter is affected by the 

magnitude of another parameter. 

The analysis is performed in the following way. One parameter is given another value than its 

standard value defined in Table 8.1. Then the other three parameters are varied one by one over 

the same range as indicated in Table 8.2, while two of them are given the standard value. 

Thereby normalised relations are obtained between the three parameter values and the shear 

and lateral stiffness. These can be compared with those found in chapter 8, whereby it is seen 

whether the influence of the parameter variation on the shear and lateral stiffness is smaller or 

larger due to the changed magnitude of the first parameter. This analysis is repeated four times, 

whereby each of the four parameters is once considered as the constant parameter with a 

deviated standard value. The output of the DIANA models is processed in the same manner as 

indicated in Figure 8.17. 

9.2.1 The influence of Ks  

Figure 9.4 shows the influence of the transverse spring stiffness that is affected by the 

magnitude of the other parameters. The blue relation is equal to the result of the parameter 

study that was performed with standard values of Ec, h and a. The other relations are obtained 

with a deviating value of Ec, a or h and the standard value assigned to the other two parameters. 

These relations only contain three data points, since more points are unnecessary for the goal of 

the analysis. 

 

Figure 9.4 The influence of Ks affected by the magnitude of the other parameter values 
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The following conclusions can be drawn from these diagrams: 

 Due to a reduction of the magnitude of Ec, the influence of a variation of Ks on the lateral 

and shear stiffness is smaller. This holds since the resulting relation corresponding to a 

changed Ec lies above the blue relation corresponding to the standard value.  

 Based on the same observation, it can be concluded that a reduction of the column width 

‘a’ also decreases the influence of a variation of Ks. 

 A reduction of the window height leads to an increase of the influence of Ks, since the 

relation lies under the relation corresponding to the standard value.  

In general it can be stated that the relation between Ks and Kh is more affected by the different 

magnitude of other parameters than that between Ks and Kv.  

9.2.2 The influence of Ec 

Figure 9.5 shows the different relations between the normalised value of Ec and the lateral or 

shear stiffness for a different value of Ks, h and a compared to their standard values. 

 

Figure 9.5 The influence of Ec affected by the magnitude of the other parameter values 

The following conclusions can be drawn from these diagrams: 

 A reduction of Ks reduces the influence of a variation of Ec on both the shear and lateral 

stiffness. 

 A reduction of h reduces the influence of a variation of Ec on both the shear and lateral 

stiffness. 

 A reduction of ‘a’ increases the influence of a variation of Ec on both the shear and lateral 

stiffness. 

In this case it holds in general that the different magnitude of Ks has a larger effect on the 

relation between Ec and Kh, whereas the variation of h or ‘a’ has a larger effect on the relation 

between Ec and Kv. 
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9.2.3 The influence of ‘a’ 

Figure 9.6 shows the different relations between the normalised value of ‘a’ and the lateral and 

shear stiffness for a different value of Ks, Ec and h compared to their standard values.  

 

Figure 9.6 The influence of ‘a’ affected by the magnitude of the other parameter values 

The following conclusions can be drawn from these diagrams: 

 A reduction of Ks decreases the influence of a variation of ‘a’ on both the shear and lateral 

stiffness. 

 A reduction of Ec increases the influence of a variation of ‘a’ on both the shear and lateral 

stiffness. 

 An increase of h increases the influence of a variation of ‘a’ on both the shear and lateral 

stiffness. 

A different magnitude of Ks or h has a larger effect on the relation between the parameter value 

and the lateral stiffness. The different magnitude of Ec has a larger consequence for the relation 

with the shear stiffness.  

9.2.4 The influence of h 

Figure 9.7 shows the different relations between the normalised value of ‘h’ and the lateral and 

shear stiffness for a different value of Ks, Ec and a compared to their standard values.  

 

Figure 9.7 The influence of ‘a’ affected by the magnitude of the other parameter values 
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The following conclusions can be drawn from these diagrams: 

 A reduction of Ks decreases the influence of a variation of ‘h’ on both the shear and 

lateral stiffness. 

 A reduction of Ec increases the influence of a variation of ‘h’ on both the shear and lateral 

stiffness. 

 A reduction of ‘a’ increases the influence of a variation of ‘h’ on both the shear and lateral 

stiffness. 

The different magnitude of Ks and Ec has a small influence on the relations compared to the 

influence of the column width, a. Apparently, the combination of a smaller value of ‘a’ and a 

larger value of ‘h’ leads to a large reduction of the lateral stiffness and therefore the shear 

stiffness. So for a smaller value of ‘a’ the magnitude of the window height is far more important. 

Based on the results of Figure 9.6, it is also true that the magnitude of the column width is far 

more important if the window height is larger. 

9.2.5 General behaviour 

Based on the presented results it is concluded that the relation between the four parameters is 

well described by the spring theory. According to this theory, the equivalent stiffness of a set of 

springs in parallel or series is calculated by the following formulas. 

𝑆𝑒𝑟𝑖𝑒𝑠: 𝐾𝑒 =
1

1
𝐾1

+
1

𝐾2

            𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙: 𝐾𝑒 = 𝐾1 + 𝐾2 

Since a stiffer value of Ks leads to a larger influence of the other three parameters and vice versa, 

this relation is described by the formula for springs in series. In this formula the influence of K1 

is larger for larger values of K2 and vice versa. Physically this makes sense as well, since the 

induced lateral forces are first transferred by the precast concrete elements, of which the 

stiffness is determined by Ec, a and h and then by the transverse reinforcement.  

Furthermore the results show that the parameters Ec, a and h are related as parallel springs. If a 

stiffer value is assigned to one of them, the influence of the others is smaller.  

9.2.6 Practical consequences of the result 

Based on the results of chapter 8, the influence of each parameter was of the same order of 

magnitude, whereby the relevance of each was hard to compare. The results of this paragraph 

gave more insight into the influence of the four design parameters. 

The influence of the transverse spring stiffness Ks on the shear stiffness Kv is hardly affected by 

the magnitude of the other parameters. So the influence of this parameter is more certain now 

and is accurately described by the relation of Figure 8.18. Moreover, the deviating value of Ks 

hardly affects the influence that the other parameters have on the shear stiffness, as the 

diagrams presented in this paragraph show. Therefore Ks is also of limited relevance for the 

influence of the other parameters. If a smaller value of Ks would have been applied, this effect 

could be slightly larger than indicated in the diagrams. Based on these two observations and the 

influence of Ks found in Figure 8.18, it can be concluded that Ks is only relevant for the resulting 

Kv when it is relatively low. A more detailed investigation of the practical range of Ks must point 

out whether the low values are realistic. If not, this parameter is the least relevant of them all. 
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The influence of Ks is the largest in the hypothetical situation where the in-plane stiffness of the 

precast concrete wall elements is infinitely large. In practice this means that in cases where no 

openings are present the transverse spring stiffness is significant for the resulting shear 

stiffness. 

The influence of the other three design parameters is significantly affected by the magnitude of 

each parameter. However, the interdependency between the window height ‘h’ and the column 

width ‘a’ is by far the largest. So in practice this means that most attention must be paid to the 

design of the window openings. If a relatively high window opening is desired, it is known by 

now that in this case the distance of this opening to the joint is of major importance of the 

connection’s shear stiffness. If a window is placed closed to the joint, it is best to keep its height 

limited, since a large opening height leads to a large reduction of the shear stiffness in this case.  

The results show that a very inconvenient design combines large window openings with a small 

distance to the joint, whereby the stiffness of the connection is  tremendously reduced. This will 

not be fully compensated by a realistically large Young’s modulus of the precast concrete.  

9.3 Overview of the results and translation to a regular shear wall 
This paragraph contains a short overview of the results of the two performed analyses. It also 

discusses the results in the context of the behaviour of a shear wall that is part of a stability 

structure. 

9.3.1 The relation between Kd, Kh and Kv. 

The first paragraph of this chapter analysed the relation between Kh, Kd, and Kv. From this 

relation it is concluded that the connection’s shear stiffness is generally more dependent on the 

magnitude of the diagonal stiffness than the magnitude of the lateral stiffness. Furthermore the 

influence of the diagonal and lateral stiffness are interdependent. A larger Kd increases the 

influence of a change in lateral stiffness. A smaller Kd reduces this influence. A larger Kh 

increases the influence of the diagonal stiffness on the shear stiffness and vice versa. 

The parameter study was performed with a standard value for Kd of 9693 kN/mm, resulting in a 

certain influence of the four design parameters Ks,Ec, a and h. However, in paragraph 7.4 the 

diagonal stiffness was calibrated to the test results. According to the average calibrated value, 

the total diagonal stiffness must be 880 kN/mm for a connection with three diagonals. In the 

shear wall model the connection contains fifteen diagonals per floor, whereby the calibrated 

total diagonal stiffness should be 4400 kN/mm. This will significantly reduce the influence of the 

lateral stiffness and therefore the influence of the four design parameters compared to the 

results of chapters 8 and 9. 

Shear walls used in a stability structure are generally thicker than 200 mm. However, all the 

presented parameter study results and the resulting calibrated values for Kd hold for a wall with 

a thickness of 200 mm, equal to the thickness of the test specimens. One consequence of a 

thicker wall is that the mortar joint will be thicker as well, resulting in a larger compression 

diagonal area and therefore a larger value for Kd. This will increase the influence of the lateral 

stiffness, whereby the influence of the four design parameters is enlarged as well. For a wall 

thickness of 450 mm, the value of Kd is approximately equal to that applied in the parameter 

study. So although the value of Kd applied in the parameter study was overestimated for t=200, it 

is a realistic value for shear walls of regular thickness. 
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It can be stated that a well-known magnitude of Kd is of major importance, since it doesn’t just 

have a large influence on the shear stiffness, but also defines the contribution of the lateral 

stiffness.  

The influence of the diagonal angle couldn’t be analysed by the results of the applied shear wall 

model and will be analysed in more detail in the next chapter. However, based on the parameter 

study results obtained for a variation of alpha it is concluded that its influence resembles the 

way the diagonal stiffness influences the connection’s behaviour. 

9.3.2 The interdependency of the design parameters Ks, Ec, a and h. 

Based on the results presented in paragraph 9.2 it can be concluded that the interdependency of 

the four design parameters is well described by the spring theory. The parameters ‘a’ and ‘h’ are 

related most strongly. Therefore the design of the openings in the wall appears to be the most 

relevant for the magnitude of the lateral and shear stiffness. A combination of a large window 

height and a small distance between the window and the joint leads to a large reduction of the 

connection’s shear stiffness. 

Again the effect of a varying thickness must be considered as well. If the thickness of the 

concrete elements is enlarged, the bending stiffness of the concrete elements is enlarged. This 

will also affect the influence of the design parameters. The thickness is a parameter related to 

the stiffness of the concrete elements and is therefore likely to be related to the other 

parameters in a way similar to Ec, a and h. Based on the results of paragraph 10.2, a greater 

thickness would therefore lead to a decreased influence of Ec, a and h and an increased influence 

of Ks. 

The question is which of the two consequences of a variation of the thickness is dominant. On 

one hand the influence of the lateral stiffness is increased, on the other hand the influence of Ec, a 

and h is decreased. What is certain, is the increase of the influence of Ks as a result of a greater 

thickness t and corresponding Kd. Since the influence of Ks hardly varies for deviating values of 

Ec, a and h, it is expected that the thickness t also has a limited effect on the influence of Ks. So the 

increased influence of Ks is mostly a result of the larger diagonal stiffness that also increases the 

influence of the other design parameters. Therefore it is not expected that the influence of Ks has 

increased much compared to that of Ec, a and h. So also in case of a greater thickness the height 

and distance of the openings will be the most important design parameters for the magnitude of 

the shear and lateral stiffness. 
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10 Development of an analytical modelling approach 

So far, the parameter study provided insight in the way each of the analysed parameters 

influences the shear stiffness of the connection. An increase of the transverse spring stiffness Ks, 

the concrete stiffness Ec or the column width ‘a’ and a reduction of the opening height ‘h’ results 

in an increase of the lateral and shear stiffness, Kh and Kv. A variation of the diagonal stiffness Kd 

and angle α affects the shear stiffness more than an equally large variation of the lateral stiffness, 

whereby an increase of Kd, α or Kh always results in an increase of the shear stiffness. 

Despite the simplifications and neglected effects in this study, the amount of parameters is too 

much to obtain an unambiguous relation for each parameter’s influence, since the influence of 

each parameter is dependent on the magnitude of all other parameters, as described in chapter 

9. So in order to obtain complete insight in the contribution of each design parameter to the 

shear and lateral stiffness, a large amount of analyses must be performed.  

If the whole behaviour of the connection based on the contributing design parameters can be 

described by analytical relations, all these analyses are unnecessary. In this chapter analytical 

relations are derived that describe the behaviour of the connection. The first paragraph contains 

the derivation of the relation between the lateral stiffness, diagonal properties and the shear 

stiffness and analyses the influence of Kd, α and Kh on shear stiffness Kv. The second and third 

paragraph zoom in on the composition of the lateral stiffness. Figure 10.1 indicates to which part 

of the modelling approach the content of each paragraph corresponds. 

Subsequently, these derived relations are used to develop a practical modelling technique that 

could be applied in 3D models of complete building structures. This technique and the 

calculation method for Kv it comprises, are described in the fourth paragraph and may form the 

answer to the main question of this research. The feasibility of this modelling approach is 

evaluated in chapter 11 

 
Figure 10.1 Overview of the content of chapter 10  in relation with the modelling approach 
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10.1 The analytical relation between Kh, Kd, α and Kv 
The previous chapter already discussed the relation between the quantities Kh, Kd, α, related to 

the structural effects of lateral stiffness and joint properties, and the shear stiffness Kv. This 

relation was constructed with results. In order to develop an analytical relation between the 

four quantities, the model of Figure 9.3 is reviewed for a single bar. This paragraph starts with 

the derivation of the analytical relation and continues with an analysis of the influence of Kd, α 

and Kh on the shear stiffness Kv, based on the derived relation. 

10.1.1 Derivation of the relations 

Figure 10.2 shows this bar which has a certain diagonal stiffness Kd under angle α, indicated by 

the ratio between distances hy and hx,. The bar is supported by a hinge on one endpoint and by a 

hinge with finite horizontal support stiffness Ksup at the other endpoint. When the bar is loaded 

by vertical force Fv, it will deform according to the dashed line. The bar rotates around the 

lowest endpoint, whereby the upper endpoint translates in vertical direction by distance Uy and 

in horizontal direction by distance Ux. 

 

Figure 10.2 Model of a single bar 

The horizontal translation is a consequence of the finite support stiffness that enables rigid 

rotation of the bar element. The vertical translation consists of two parts, as Figure 10.3 

illustrates. Part 1 is a consequence of the axial shortening of the diagonal Ud under load Fv. If the 

support stiffness was infinitely large, this shortening would result in a small diagonal ration by 

angle theta, whereby the horizontal endpoint translation with respect to the initial orientation 

remains equal to zero. However, the support stiffness is finite, whereby an extra rotation of the 

bar by angle phi occurs. This rotation results in an endpoint displacement perpendicular to the 

bars initial orientation, which can be decomposed in a horizontal displacement Ux and a vertical 

displacement Uy,part2. So the second part of the vertical translation is a consequence of the finite 

support stiffness. 

The illustration of Figure 10.3 is only valid for small deformations, since it is assumed that a 

rigid rotation of the bar results in an endpoint translation perpendicular to the initial 

orientation. The described deformation behaviour corresponds to the behaviour that was 

observed for the test setup model, as explained in section 7.2.6. 
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Figure 10.3 Composition of the bar deformation 

The following definitions hold for the diagonal, support and shear stiffness: 
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These definitions are equal to those of paragraph 6.2. The equilibrium of forces is given by the 

diagram of Figure 6.4. The definitions for the three stiffness values already contain the 

contribution of the diagonal angle, since this angle determines the ratio between the vertical and 

horizontal force component.  

It is important to note that the support stiffness in this model is by definition equal to the lateral 

stiffness Kh, since in this model the horizontal displacement at the lowest endpoint is zero. 

Thereby the horizontal displacement difference is equal to the displacement of the top endpoint, 

which is equal to the displacement of the support spring. 

𝐾ℎ =
𝐹ℎ

𝑈𝑥
=

𝐹ℎ

𝐷𝑥,2 − 𝐷𝑥,1
=

𝐹ℎ

𝐷𝑥,2 − 0
=

𝐹ℎ

𝐷𝑠𝑢𝑝
=

𝐹ℎ

𝐹ℎ
𝐾𝑠𝑢𝑝

= 𝐾𝑠𝑢𝑝 

10.1.1.1 Relations in terms of stiffness 

With the provided definitions, the equation that relates α, Ksup and Kd with the shear stiffness Kv 

can be derived. 

According to the definition of the shear stiffness, the following holds. 

𝐾𝑣 =
𝐹𝑣

𝑈𝑦
=

𝐹𝑣

𝑈𝑦𝑝𝑎𝑟𝑡1 + 𝑈𝑦𝑝𝑎𝑟𝑡2
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The first part of the vertical translation is a consequence of the shortening of the diagonal. This 

translation is given by the diagonal shortening multiplied by a factor taking into account the 

angle alpha. 

𝑈𝑦,𝑝𝑎𝑟𝑡1 = 𝑈𝑑 ∗
𝐿𝑑

ℎ𝑦
=

𝐹𝑑

𝐾𝑑
∗

𝐿𝑑

ℎ𝑦
 

Using the equilibrium of forces, the diagonal force can be eliminated from this equation. The 

definition of the diagonal length is also used to eliminate this factor from the equation. 

𝑈𝑦,𝑝𝑎𝑟𝑡1 =
𝐹𝑣

𝐾𝑑
∗

𝐿𝑑
2

ℎ𝑦
2 =

𝐹𝑣(ℎ𝑥
2 + ℎ𝑦

2)

𝐾𝑑 ∗ ℎ𝑦
2  

The second part of the vertical displacement is the result of the rigid rotation that can take place 

due to the limited support stiffness. The translation is given by the horizontal displacement 

multiplied by a factor taking into account the diagonal angle. The minus sign is a result of the 

defined positive directions, indicated by the coordinate system in Figure 10.3. The bar rotation 

results in a negative displacement in y-direction and a positive displacement in x-direction. 

𝑈𝑦,𝑝𝑎𝑟𝑡2 = −𝑈𝑥 ∗
ℎ𝑥

ℎ𝑦
=

𝐹ℎ

𝐾𝑠𝑢𝑝
∗

ℎ𝑥

ℎ𝑦
 

Again, the equation can be simplified by using the force equilibrium. 

𝑈𝑦,𝑝𝑎𝑟𝑡2 = −
𝐹𝑣 ∗ ℎ𝑥

2

𝐾𝑠𝑢𝑝 ∗ ℎ𝑦
2  

When the equations for the two parts of Uy are substituted into equation for Kv, a relation is 

obtained that can be used to calculate the shear stiffness when Kd, Ksup and α are known. 

𝐾𝑣 =
𝐹𝑣

𝐹𝑣(ℎ𝑥
2 + ℎ𝑦

2)

𝐾𝑑 ∗ ℎ𝑦
2 −

𝐹𝑣
𝐾ℎ

∗
ℎ𝑥

2

ℎ𝑦
2

=
1

ℎ𝑥
2 + ℎ𝑦

2

𝐾𝑑 ∗ ℎ𝑦
2 −

ℎ𝑥
2

𝐾𝑠𝑢𝑝 ∗ ℎ𝑦
2

 

The equation can be generalised for cases where the support stiffness is not equal to the lateral 

stiffness. 

𝐾𝑣 =
1

ℎ𝑥
2 + ℎ𝑦

2

𝐾𝑑 ∗ ℎ𝑦
2 −

ℎ𝑥
2

𝐾ℎ ∗ ℎ𝑦
2

   [10.1] 

10.1.1.2 Relations in terms of displacement 

With the provided definitions, also relations in terms of displacement can be derived. These 

relations can be used to define a stiffness matrix with cross-terms that link the shear and lateral 

displacements over the joint. 

For this purpose the diagonal force is quantified first. This force is given by the axial deformation 

of the diagonal bar. 
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𝐹𝑑 = 𝐸𝑑𝐴𝑑 ∗ 𝜖 = 𝐸𝑑𝐴𝑑 ∗
Δ𝐿𝑑

𝐿𝑑
= 𝐸𝑑𝐴𝑑

𝑈𝑦 ∗
ℎ𝑦

𝐿𝑑
+ 𝑈𝑥 ∗

ℎ𝑥
𝐿𝑑

𝐿𝑑
= 𝐸𝑑𝐴𝑑  (𝑈𝑦 ∗

ℎ𝑦

𝐿𝑑
2 + 𝑈𝑥 ∗

ℎ𝑥

𝐿𝑑
2 ) 

This definition can be substituted in the relation for the lateral stiffness.  

𝐾ℎ =
𝐹ℎ

𝑈𝑥
=

𝐹𝑑 ∗
ℎ𝑥
𝐿

𝑈𝑥
=

𝐸𝑑𝐴𝑑 ∗ (𝑈𝑦 ∗
ℎ𝑦ℎ𝑥

𝐿𝑑
3 + 𝑈𝑥 ∗

ℎ𝑥
2

𝐿𝑑
3 )

𝑈𝑥
 

This relation can be simplified 

𝐾ℎ = 𝐸𝑑𝐴𝑑 ∗
ℎ𝑦ℎ𝑥

𝐿𝑑
3 ∗

𝑈𝑦

𝑈𝑥
+ 𝐸𝑑𝐴𝑑 ∗

ℎ𝑥
2

𝐿𝑑
3  

𝐹ℎ = 𝐾ℎ ∗ 𝑈𝑥 = 𝐸𝑑𝐴𝑑 ∗
ℎ𝑦ℎ𝑥

𝐿𝑑
3 ∗ 𝑈𝑦 + 𝐸𝑑𝐴𝑑 ∗

ℎ𝑥
2

𝐿𝑑
3 ∗ 𝑈𝑥 

In the same way a relation for the shear stiffness is derived 

𝐾𝑣 = 𝐸𝑑𝐴𝑑 ∗
ℎ𝑦ℎ𝑥

𝐿𝑑
3 ∗

𝑈𝑥

𝑈𝑦
+ 𝐸𝑑𝐴𝑑 ∗

ℎ𝑦
2

𝐿𝑑
3  

𝐹𝑣 = 𝐾𝑣 ∗ 𝑈𝑦 = 𝐸𝑑𝐴𝑑 ∗
ℎ𝑦ℎ𝑥

𝐿𝑑
3 ∗ 𝑈𝑥 + 𝐸𝑑𝐴𝑑 ∗

ℎ𝑦
2

𝐿𝑑
3 ∗ 𝑈𝑦  

Both relations can be combined to formulate a stiffness matrix 

[
𝐹ℎ

𝐹𝑣
] =

𝐸𝑑𝐴𝑑

𝐿𝑑
3 ∗  [

ℎ𝑥
2 ℎ𝑦ℎ𝑥  

ℎ𝑦ℎ𝑥 ℎ𝑦
2 ] [

𝑈𝑥

𝑈𝑦
]    [10.2] 

10.1.2 The analytical diagram of structural effects 

Figure 10.4 shows equation 10.1, using average stiffness values kv, kh and kd, plotted with the 

results of the model study in one graph. From this graph it can be concluded that the derived 

relation corresponds exactly to the relation that was found by the data points for all the analysed 

models according to Figure 9.2.  

 

Figure 10.4 Correspondence of the analytical equation and the parameter results 
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The derived relation is the mathematic function that fits to the data points and therefore 

describes the way the shear stiffness is determined by the combination of quantities related to 

the structural effects. Using this function, the influence of Kh and the two diagonal properties, Kd 

and α, can be indicated without the need to perform many model analyses. It must be noted that 

the absolute value of kh is plotted. The lateral stiffness is in fact negative since it is defined by a 

the horizontal component of a negative compressive force, divided by a positive displacement in 

x-direction. In the parameter study results the absolute value of kh was presented as well. 

10.1.2.1 The influence of Kd 

Figure 10.5 shows the plot of equation 10.1 for different values of kd. One relation shows the 

results obtained with the standard diagonal stiffness. This relation corresponds to the 

parameter study results. Three relations correspond to the calibrated values for kd of paragraph 

7.4.  

The relation obtained with the average calibrated value extrapolated to a thickness of 500 mm is 

also included in the graph. It is important to keep in mind that the calibrated values for kd hold 

for an element thickness of 200 mm. In case of a larger thickness, the cross-sectional area of the 

diagonal is larger and this would result in a larger value for kd. So in case of a thickness of 500 

mm instead of 200 mm, Kd is 500/200=2.5 times larger. 

 

Figure 10.5 The influence of a variation of kd on the relation between the shear- and lateral stiffness 

Two important conclusions can be drawn based on this diagram: 

 A smaller diagonal stiffness results in a reduced influence of the lateral stiffness.  

The relation flattens, whereby an increase of the lateral stiffness hardly increases the 

shear stiffness of the connection. 

 A smaller diagonal stiffness results in a reduced limit value of the shear stiffness. 

The asymptote of the relation is found for a lower value of kv. This value is never 

exceeded, not even with an infinitely large value of kh. 

The first conclusion is substantiated by a comparison of the relative increase of the shear 

stiffness for the different values of kd. The relative increase of the shear stiffness as a 
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consequence of an increase of the lateral stiffness from 200 to 500 kN/mm is given in Table 10.1. 

The results confirm the reduced influence of the lateral stiffness for lower values of kd. 

 kv 
(kh=200) 

[kN/mm] 

kv 
(kh=500) 

[kN/mm] 

relative 
increase 

kd max 419.2 457.7 9.2% 
kd average 251.9 265.2 5.3% 
kd min 230.7 241.9 4.8% 

Table 10.1 Comparison of the influence of a lateral stiffness increase with decreasing values of kd 

Secondly, the limit of the relation is dependent on the value of kd. The analytical relation of this 

limit value can be derived: 

lim
𝐾ℎ→ ∞

𝐾𝑣,𝑚𝑎𝑥 =
1

ℎ𝑥
2 + ℎ𝑦

2

𝐾𝑑 ∗ ℎ𝑦
2 +

ℎ𝑥
2

∞ ∗ ℎ𝑦
2

=
1

 
ℎ𝑥

2 + ℎ𝑦
2

𝐾𝑑 ∗ ℎ𝑦
2

=
𝐾𝑑 ∗ ℎ𝑦

2

ℎ𝑥
2 + ℎ𝑦

2 = 𝐾𝑑 ∗
ℎ𝑦

2

𝐿𝑑
2    [10.3]  

The limit value is directly proportional to the diagonal stiffness Kd. The proportionality constant 

is the ratio between the squared vertical distance and diagonal bar length. This ratio is 

dependent on the diagonal angle α. So this property will also influence the limit value. 

It is clear to see that with the used standard value for kd, the influence of the lateral stiffness and 

therefore the four design parameters has been overestimated compared to the calibrated 

situations. The same was concluded based on the analysis of paragraph 9.1. However, as also 

indicated in paragraph 9.3, the thickness matters as well. The analytical results confirm that for 

a shear wall with a larger thickness the influence of the lateral stiffness will be comparable to 

that found in with the parameter study results. 

10.1.2.2 The influence of α 

Figure 10.6 shows the plot of relation [10.1] for different values of α. The diagonal angle has 

been varied for the relation with kd equal to the average calibrated value. Two conclusions on 

the influence of α are drawn: 

 The diagonal angle affects the limit value of the shear stiffness 

The derived relation for the limit value already proved this correlation. It appears the 

limit value is increased for larger values of α. 

 The diagonal angle affects the influence of the lateral stiffness 

The relation converges faster to its limit value if α has a larger value, whereby the 

influence of a change in small values of the lateral stiffness is increased, but the influence 

of a change in larger values is reduced. 

In case α is equal to 8.0 and Kd is equal to its average value, a variation of kh values larger than 

approximately 50 kN/mm hardly affects the magnitude of the shear stiffness. In next section the 

practically lowest value of kh is defined as 13.2 kN/mm. So if the angle is large, the influence of 

the average lateral stiffness will only be significant if the lateral stiffness is almost equal to its 

lower limit.  
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Figure 10.6 The influence of a variation of α on the relation between the shear- and lateral stiffness 

10.1.3 The practically maximal influence of Kh 

With the knowledge obtained in this paragraph, the maximum reduction of the shear stiffness is 

analysed. This occurs for the lowest practically possible value for Kh in combination with the 

largest practical value of Kd, which is based on the largest calibrated value of paragraph 7.4. For 

the diagonal angle the value of 3.87 is still applied. Since this value seems more realistic in 

combination with a large diagonal cross section. Table 10.2 provides an overview of the input 

properties that lead to the smallest practical value of Kh. 

Ks 1050 kN/mm 
Kd  19514 kN/mm 
h 2500 mm 
a 300 mm 

Ec 20000 N/mm2 
t 500 mm 

α 3.87 [-] 
Table 10.2 Input properties corresponding to lowest Kh with largest influence on Kv 

The practically lowest value for Kh is found for a combination of the smallest transverse spring 

stiffness, concrete Young’s modulus and opening distance and largest window height. For these 

design parameters realistic lower limits are applied. It must be noted that this limit for the 

transverse spring stiffness is not yet certain and requires more research. For the concrete 

Young’s modulus an uncracked state is considered.  

Table 10.3 shows the resulting shear stiffness for two situations. The first is the maximum shear 

stiffness corresponding to the applied Kd and α, calculated by formula 10.3. The second is the 

minimum shear stiffness obtained with the parameter study model for the combination of input 

properties according to Table 10.2.  

 Kh [kN/mm] kh [kN/mm] Kv [kN/mm] Kv [kN/mm] Relative value 

Kv max ∞ ∞ 18293 1220 100% 
Kv min 199 13.2 2562 171 14% 

Table 10.3 The maximum shear stiffness reduction caused by a limited lateral stiffness 
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What can be concluded from these results is in that the practically most extreme case the shear 

stiffness of the connection can be reduced by 86% as a result of a limited lateral stiffness. 

Furthermore the value of kh of 13.2 kN/mm can be seen as practical lower limit. This value can 

be displayed in Figure 10.5 and Figure 10.6 to obtain the practical range of kh over which 

relation 10.1 is physically meaningful.  

10.2 The analytical relation for the lateral stiffness 
In previous paragraph the relation that determines the shear stiffness based on known 

structural effects is derived. This derivation was supported by the schematisation of the bar 

model according to Figure 10.2. For this model the support spring stiffness is equal to the lateral 

stiffness, since the horizontal displacement of the supported endpoint is equal to zero. This 

paragraph will consider the equation for the lateral stiffness in more detail. 

10.2.1 The difference between the support stiffness Ksup and lateral stiffness Kh 

The parameter study results show the lateral stiffness depends on the magnitude of kd and α 

(Figure 8.26 and Figure 8.28). The results in appendix E show this dependency is also obtained 

for the other parameter models. However, if the lateral stiffness is schematised by the support 

stiffness in the model of Figure 10.2, it cannot be influenced by the diagonal properties. So 

besides the support stiffness, another factor must also be involved in the definition of the lateral 

stiffness. Thereby the lateral stiffness that is processed from the parameter study results is 

generally not equal to the support stiffness. 

In the applied schematisation of Figure 10.2, there is only one way to obtain a value for the 

lateral stiffness different from the support stiffness. This is to apply a lateral force to the 

horizontal spring support, as illustrated in Figure 10.7. With the definition of the lateral stiffness 

as defined in paragraph 6.2, the value of the lateral stiffness for the left model is equal to the 

support stiffness. This has been addressed in previous paragraph. For the lateral stiffness 

resulting in the right model, the following holds: 

𝐾ℎ =
𝐹ℎ

𝑈𝑥
=

𝐹ℎ

𝐷𝑥,2 − 𝐷𝑥,1
=

𝐹ℎ

𝐷𝑥,2 − 0
=

𝐹ℎ

𝐷𝑠𝑢𝑝
=

𝐹ℎ

𝐹ℎ − 𝐹ℎ,𝑙𝑎𝑡𝑒𝑟𝑎𝑙

𝐾𝑠𝑢𝑝

=
𝐹ℎ

𝐹ℎ − 𝐹ℎ,𝑙𝑎𝑡𝑒𝑟𝑎𝑙
∗ 𝐾𝑠𝑢𝑝 

In the figure below, a lateral compressive force is added, which will increase the lateral stiffness. 

Thereby the translations Dx2,2 and Dy2,2 are smaller than Dx1,2 and Dy1,2. A lateral tensile force will 

reduce the obtained lateral stiffness. 
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Figure 10.7 The effect of a lateral compressive force 

Physically the presence of a lateral compressive force is explained by the compression diagonals 

that develop in a shear wall. These compression diagonals were visualised in Figure 8.10. Due to 

this wall behaviour, the force loading the bar elements in the joint act under an angle instead of 

perfectly vertical as drawn in previous figures.  

Apparently, a variation of the diagonal bar properties Kd and α leads to a change of this load 

angle relative to the orientation of the diagonal bar, whereby the lateral stiffness changes as 

well. Since Figure 8.27 and Figure 8.30 show that the force distribution over the joint changes 

for a variation of Kd or α, it is presumable the angle of the force relative to the bar changes as 

well. According to Figure 8.27, an increase of Kd leads to a concentration of the shear force 

around the centre line of the floor. This will result in steeper compression diagonals, whereby 

the lateral compressive forces reduce, resulting in a smaller value for Kh. This explains the found 

relation of Figure 8.26 between the normalised Kd and Kh. 

The variation of Ec, a and h also influence the force distribution over the height of the floor, as 

shown in the results of paragraph 8.3. So a variation of these parameter will also affect the 

amount of lateral compression. 

So according to this evaluation, the model of Figure 10.2 must be expanded to include any lateral 

compressive force, in order to derive the equation that determines the lateral stiffness in any 

case. 

10.2.2 Derivation of the equation for the lateral stiffness Kh 

Figure 10.8 shows the expanded schematisation of the bar model. This version differs from the 

previous one because it includes loading forces under an angle and a finite horizontal support 

stiffness on the lowest endpoint as well. The load is applied under an angle β with the vertical y-

axis. The load is transferred to the lower support under a different angle γ. The support stiffness 

at both endpoints has a different magnitude as well. In this way an equation will be derived that 

describes the most general case, where each load angle and support stiffness is different. 
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For this derivation the sign convention is important. A positive displacement is a displacement 

in the same direction as the defined axes. So Dx2 is positive, Dx1 is negative. The deformed shape 

drawn in the figure illustrates a dilatation of the joint, which is always positive and defined as 

Dx2-Dx1. A force is positive when it induces tension in the diagonal bar. All forces drawn in Figure 

10.8 are therefore negative. 

 

 

Figure 10.8 The expanded schematisation 

First of all, the equations that determine the horizontal endpoint displacements Dx1 and Dx2 are 

derived. The forces F1 and F2 can be decomposed in order to find Fv, the vertical component of 

the diagonal force. This force is related to the horizontal diagonal force component by angle α. 

 

Figure 10.9 Equilibrium of forces 

𝐹𝑣 = 𝐹2 ∗ 𝑐𝑜𝑠𝛽 = 𝐹1 ∗ 𝑐𝑜𝑠𝛾    

𝐹ℎ = 𝐹𝑣 ∗ 𝑡𝑎𝑛𝛼         𝑡𝑎𝑛𝛼 =
ℎ𝑥

ℎ𝑦
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The horizontal displacements are a result of the net horizontal force and the support stiffness. 

𝐷𝑥1 =
𝐹ℎ − 𝐹𝑁1

𝐾𝑠𝑢𝑝1
=

𝐹𝑣 ∗ 𝑡𝑎𝑛𝛼 − 𝐹1 ∗ 𝑠𝑖𝑛𝛾

𝐾𝑠𝑢𝑝1
=

𝐹1 ∗ 𝑐𝑜𝑠𝛾 ∗ 𝑡𝑎𝑛𝛼 − 𝐹1 ∗ 𝑠𝑖𝑛𝛾

𝐾𝑠𝑢𝑝1
 

𝐷𝑥2 =
𝐹𝑁2 − 𝐹ℎ

𝐾𝑠𝑢𝑝2
=

𝐹2 ∗ 𝑠𝑖𝑛𝛽 − 𝐹𝑣 ∗ 𝑡𝑎𝑛𝛼

𝐾𝑠𝑢𝑝2
=

𝐹2 ∗ 𝑠𝑖𝑛𝛽 − 𝐹2 ∗ 𝑐𝑜𝑠𝛽 ∗ 𝑡𝑎𝑛𝛼

𝐾𝑠𝑢𝑝2
 

Subsequently, these two relations are substituted into the definition of the lateral stiffness. 

𝐾ℎ =
𝐹ℎ

𝑈𝑥
=

𝐹ℎ

𝐷𝑥2 − 𝐷𝑥1
=

𝐹𝑣 ∗
ℎ𝑥
ℎ𝑦

𝐹2 ∗ 𝑠𝑖𝑛𝛽 − 𝐹2 ∗ 𝑐𝑜𝑠𝛽 ∗
ℎ𝑥
ℎ𝑦

𝐾𝑠𝑢𝑝2
+

𝐹1 ∗ sin 𝛾 − 𝐹1 ∗ 𝑐𝑜𝑠𝛾 ∗
ℎ𝑥
ℎ𝑦

𝐾𝑠𝑢𝑝1

 

This relation is simplified by dividing the numerator and denominator by the vertical 

component of the diagonal force Fv and the factor hx/hy. 

𝐹𝑣 = 𝐹2 ∗ 𝑐𝑜𝑠𝛽 = 𝐹1 ∗ 𝑐𝑜𝑠𝛾    

𝐾ℎ =
1

ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽 − 1

𝐾𝑠𝑢𝑝2
+

ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛾 − 1

𝐾𝑠𝑢𝑝1

 

This is further simplified by multiplying the whole equation by the factor Ksup1Ksup2/Ksup1Ksup2. 

𝐾ℎ =
𝐾𝑠𝑢𝑝1𝐾𝑠𝑢𝑝2

𝐾𝑠𝑢𝑝1 (
ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽 − 1) + 𝐾𝑠𝑢𝑝2 (

ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛾 − 1)

 [10.4] 

What is obtained is an equation that relates the support stiffness values and the loading angles 

with the lateral stiffness of the joint. Relation 10.4 is valid for the most general case, with two 

different horizontal supports and two different load angles. Appendix F contains simplified 

versions of this general formula for specific cases. 

According to this equation the lateral stiffness is the resistance to the dilatation of the joint. This 

resistance is partly obtained by the support stiffness provided by the surroundings of the joint 

and partly by the lateral compressive forces along the joint caused by a difference between the 

load angles β and γ and the diagonal angle α. 

The combination of these two factors results in a typical distribution of the lateral stiffness over 

the height of a floor. The support stiffness is smallest halfway the floor height, due to the present 

window opening and the largest distance to the tying reinforcement, but the lateral compressive 

force is the largest around half of the floor height since the compression diagonals that develop 

in the shear wall cross the joint at this location. Appendix F contains some plots of the lateral 

stiffness distributed over the floor height. Since the shear stiffness is related by equation 10.1 

and the diagonal stiffness is equal for all diagonals, the shear stiffness is distributed over the 

floor height in a similar way as the lateral stiffness. 
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The input of the found equation consists of values for the support stiffness and the load angles. 

The next paragraph discusses the determination of the support stiffness. A method to determine 

the load angles that occur has not yet been developed. It is complicated to determine the angle of 

the compression diagonals, since it depends among others on the width and height of the 

openings in the wall, their location with respect to the joint, the amount of openings per concrete 

wall element and the distance between them, the floor height and the location of the considered 

floor in the shear wall. Furthermore the boundary conditions of the model also determine the 

stress distribution over the model. So the effect would be different for models 1 and 2 as well.  

10.3 The approximated support stiffness 
In previous paragraph the analytical relation for the lateral stiffness was derived. This relation 

contains the variable Ksup: the support stiffness. This stiffness is provided by the structural 

elements surrounding the mortar joint and is therefore governed by the design parameters Ks, 

Ec, a and h. Furthermore the thickness of the concrete elements will also be involved. 

10.3.1 Composition of the support stiffness 

Figure 10.10 illustrates the composition of the support stiffness. First of all the transverse 

reinforcement provides the spring stiffness Ks1 and Ks2. These springs resist rigid translation of 

the wall elements on both sides of the joint. The rigid translation leads to a dilatation of the joint 

that is constant over its full length. Secondly, the bending stiffness of the precast concrete 

elements provides resistance to local extra dilatation of the joint. In Figure 10.10 the present 

windows induce bending deformations which are the largest halfway the height of the joint. 

Because of the finite bending stiffness, the support stiffness is not uniformly distributed over the 

height of the joint. In this case diagonal bars halfway the joint will have a smaller support 

stiffness than bars at the outer edges. 

 

Figure 10.10 Composition of the support stiffness 

Using the graphical representation of Figure 10.10, the support stiffness at the lower and upper 

endpoint of the diagonal can be schematised as a combination of springs. This is illustrated in 

Figure 10.11. The two bending springs are in series with a set of parallel transverse springs.  
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Figure 10.11 Schematisation of Ksup as combination of springs 

For the complete system the following support stiffness can be derived. 

𝐾𝑠𝑢𝑝,𝑡𝑜𝑡𝑎𝑙 =
1

1
𝐾𝑠1 + 𝐾𝑠2

+
1

𝐾𝑏1
+

1
𝐾𝑏2

 

However, the input of equation 10.4 requires the separate values for support stiffness 1 and 2. In 

Figure 10.11 it is indicated what part of the spring combination determines support stiffness 1 

and 2. For this division, the transverse springs are split in two parts. Since the centre of these 

springs is assumed to stay in the same position, half of the springs elongation is part of Ksup1 and 

the other half is part of Ksup2. The following relations are found for the separate values of the 

support stiffness. 

𝐾𝑠𝑢𝑝1 =
1

1
2𝐾𝑠1 + 2𝐾𝑠2

+
1

𝐾𝑏1

 

𝐾𝑠𝑢𝑝2 =
1

1
2𝐾𝑠1 + 2𝐾𝑠2

+
1

𝐾𝑏2

 

The value for Ks is considered as design parameter and its influence was studied in the 

parameter study. In this thesis its value is simply the axial stiffness of the applied transverse 

reinforcement. The bending stiffness is determined by the other three design parameters: Ec, a 

and h. Also the thickness of the concrete elements will partly determine this stiffness value. 

10.3.2 Determination of the bending stiffness 

In order to define the bending stiffness, the concrete elements are schematised as Timoshenko 

beams between to clamped supports. The Timoshenko beam theory takes into account shear 

deformations, as explained in chapter 3. These deformations cannot be neglected since the 

slenderness of the wall elements is small. Figure 10.12 illustrates the schematisation. The 

bending stiffness is determined by the deflection that occurs due to an applied distributed load 

q. 
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Figure 10.12 The Timoshenko beam approximation 

The model contains all the defined parameters. The E-modulus of the concrete Ec is part of the 

differential equation. The column width ‘a’ is in included in the area A2 and second moment of 

area I2 for part 2 of the beam. The element thickness ‘t’ is part of the A and I for all parts of the 

beam. The opening height ‘h’ determines the location of the two discontinuities in the beam and 

therefore the boundaries of the beam parts.  

The differential equation for the Timoshenko beam has been solved with Maple. Appendix G 

contains the Maple sheet with the solution. This solution is only valid for cases with the window 

opening placed centrically, since the solution makes use of the symmetry of the beam.  

Furthermore the solution that is shown in the appendix is only valid when the discontinuities 

are located at 25 and 75 percent of the beam’s span. But this condition can be changed in the 

Maple sheet by adjusting the location where the so called “matching conditions” are applied. 

10.4 The developed modelling approach 
With all the relations derived in this chapter, an analytical approach is developed to model the 

vertical profiled mortar connections in a shear wall. This paragraph describes the developed 

approach. Appendix H provides a more detailed description of the calculation method. 

10.4.1 Overview of the analytical relations 

The relations that were derived in previous paragraphs form a successive methodology to 

calculate the shear stiffness of the connection based on the parameters investigated in this 

research. With the Timoshenko approximation the support stiffness is determined and using this 

stiffness and the load angles the lateral stiffness can be calculated. Combining this lateral 

stiffness with the diagonal stiffness and angle results in a calculated shear stiffness. This 

successive method is illustrated in the scheme of Figure 10.13, which is used to calculate the 

shear stiffness Kv. 
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Figure 10.13 Modelling scheme including analytical relations 

10.4.2 Modelling elements 

The modelling approach replaces all the diagonal bars and transverse springs by one interface 

element per floor, to which the calculated shear stiffness is assigned. This way of modelling is 

only feasible for cases where the global deformation of a shear wall is of interest. The interface 

element doesn’t contain any information about the interaction between the vertical shear force 

and the lateral force it induces. Therefore the model won’t show any dilatation of the joint, 
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whereby the model isn’t useful to analyse local lateral deformations and stresses that occur due 

to the lateral forces.  

What can be done to deal with this inconvenience, is to analyse the resulting shear stress 

distribution over the interface. This stress distribution can be integrated over the area and 

subsequently multiplied by the angle α of the compression diagonals that develop in the mortar. 

In this way the horizontal forces that are loading the surrounding concrete elements are 

determined in an indirect way. Afterwards, it can be evaluated if the resistance of the concrete 

elements to this lateral load is sufficient. An example of this indirect approach will be provided 

in paragraph 11.6. 

Since the relation between the lateral and shear stiffness cannot be inserted into the properties 

of the interface elements, it is required to include this effect in the way depicted in Figure 10.13. 

It would be convenient if a stiffness matrix with cross-terms, as in formula 10.2, could be 

assigned to the interface elements. By doing so, the interface naturally takes into account the 

influence of the lateral stiffness on the shear stiffness and the dilatation of the joint would occur 

as well. However, unfortunately this cannot be done for a linear analysis in DIANA or AxisVM, 

the two FE packages available for this research. 

10.4.3 Determination of the lateral stiffness 

As indicated in Figure 10.13, the lateral stiffness is calculated in three steps. 

 Determination of the bending stiffness 

 Determination of the support stiffness 

 Determination of the lateral stiffness including the lateral prestress effect 

As explained in paragraph 10.2 and illustrated in appendix F the lateral stiffness is not uniformly 

distributed over the height of the floor. Therefore the shear stiffness isn’t uniform either. One 

way to model the shear stiffness over the complete floor height is to calculate the lateral and 

shear stiffness for each diagonal bar individually and to use an interface with a varying shear 

stiffness over the height of the floor according to the analysis of each single bar. 

However, so far the lateral stiffness was always defined as the total horizontal force divided by 

the average horizontal dilatation over the height, resulting in an assumed uniform distribution 

over the floor height. Subsequently, the shear stiffness is also uniform and defined by the total 

shear force divided by the average shear slip. Holding on to a uniform average lateral stiffness is 

consistent with previous results but also more practical to model according to the developed 

scheme. There are three reasons for this: 

Firstly, the average uniform bending stiffness can be determined by the following formula: 

𝐾𝑏 =
𝑞 ∗ 𝑙

𝑈𝑎𝑣𝑒𝑟𝑎𝑔𝑒
  

Where q is the fictive distributed load applied on the Timoshenko beam, l the length of the beam 

and Uaverage the average deflection of the beam. The stiffness is independent on the value of q, 

since a two times larger q will also lead to a two times larger Uaverage. If the bending stiffness 

should be determined for each diagonal bar specifically, the model must be altered. In that case 

the beam is not subjected to a distributed load but could be loaded by a concentrated force at the 

location of a specific diagonal. This results in a deflection at the location of the load. The specific 
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bending stiffness at this location is then the force divided by the obtained deflection. This 

analysis must be done for each diagonal location separately. This is a more laborious method 

that is harder to analyse. It is only useful to apply if it appears in chapter 11 that the influence of 

the lateral stiffness on the behaviour of the shear wall is significant.  

Secondly, the load angle and therefore the effect of a lateral compressive force varies over the 

height of the connection. As already explained in paragraph 10.2, the magnitude of the load 

angle is not easily determined. It depends on many factors and is therefore very uncertain. So 

defining a varying load angle over the floor height would be even more uncertain. For this 

reason the load angle is kept constant over the floor height and is set equal to zero. Gaining more 

insight in the effect of the load angle and its distribution over the floor height is only relevant if 

the lateral stiffness appears to have a significant contribution to the behaviour of a shear wall. If 

a load angle varying over the floor height would be included in the calculation method, it is best 

to combine this with a varying bending stiffness as well. 

Finally, only a single constant value for the shear stiffness can be assigned to a single interface. 

So if it was desired to model an interface with a non-uniform shear stiffness, the edge between 

two wall elements must be manually subdivided into multiple parts with each a different shear 

stiffness. This is not a very practical way of modelling and it may lead to an irregular mesh 

around the interfaces. 

The consequences of the chosen approach to consider global quantities only, are that all the 

equations are applied to relate the global stiffness quantities Kh, Kd and Kv instead of the specific 

quantities kh,i kd,i and kv,i and results can be visualised in the global quantities or the average 

values kh,kd and kv. Moreover the uniform stiffness distribution over the interface will lead to a 

shear stress distribution that differs from the one that would occur in the mortar joint. In reality 

the shear stiffness of the joint is greater halfway the floor height, as seen in appendix F. So in 

reality the transferred shear force at this location is even greater than that resulting from the 

model with an interface element. 

10.4.4 Error of the calculation method for Kv 

As explained in previous section, the applied methodology to calculate the shear stiffness of the 

connection is rough and global. This unavoidably leads to an error between the shear stiffness 

calculated and the one resulting from the bar model.  

Appendix H contains an evaluation of the error of the calculation method, which searches for the 

largest error within the possible and practical limits of the input properties. The largest error is 

found for the properties of Table 10.4, where for Ks, Ec and a the practical lower limit and for Kd 

and t the practical upper limit was used. In this case the transverse spring stiffness is based on at 

least 1000 mm2 of reinforcement.  

As can be seen, the input properties are the same as in Table 10.2, except for the opening height 

‘h’. This property is set to 1600 mm since the differential equation is solved for this opening 

height only. In appendix H it is observed that the error of the calculation increases for smaller 

values of Kh. So if the opening height would be increased to its maximum practical value of Table 

10.2, the error of the calculation method is also larger than indicated in Table 10.5. This is taken 

into account for the evaluation of chapter 11. 
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Ks 1050 kN/mm 
Kd  19514 kN/mm 
h 1600 mm 
a 300 mm 

Ec 20000 N/mm2 
t 500 mm 

α 3.87 [-] 
Table 10.4 Input properties for leading to the largest found error 

Using the properties of Table 10.4, the lateral and shear stiffness are calculated according to the 

developed methodology of Figure 10.13, where the value zero is assigned to load angles β and γ. 

The outcome is compared to the stiffness resulting from the middle floor of a shear wall with 

equal dimensions as model 1 of the parameter study. This shear wall either has one or two 

windows per precast concrete element, as indicated in Figure 10.14. The resulting values for the 

shear and lateral stiffness are provided in Table 10.5. 

 Kv [kN/mm] Kh [kN/mm] 

Calculation method 8951 100% 1170 100% 

Shear wall 1 6547 73% 680 58% 

Shear wall 2 6596 74% 689 59% 

Table 10.5 Largest found error of the calculation method 

 

Figure 10.14 Analysed shear walls 

So in this extreme case, the lateral stiffness resulting from the FE model is just 58 percent of the 

calculated value, whereby the shear stiffness is overestimated by almost 30 percent. It is clear 

that the difference of the calculated lateral stiffness and that resulting from the models is large, 

which indicates that the calculation method that should approximate this property is inaccurate. 

Since the calculated value provides an overestimation even without considering the beneficial 

effect of lateral compressive forces (by setting β and γ equal to zero), the determination of Ksup 

seems too positive. A less global and rough method could reduce the error. However, the 

determination of the lateral stiffness is very complex, since so many factors are involved. So a 

relatively large error is probably present for any calculation method that tries to approximate 

Kh. 

The deviation of the shear stiffness is considerably smaller, since it is not only determined by the 

uncertain Kh but also partly by the certain Kd. A larger diagonal stiffness increases the influence 

of the lateral stiffness and therefore the error of the calculated shear stiffness. This is the reason 

why the largest error was found for the large calibrated value of Kd in combination with a large 

thickness. 
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The evaluation provided in appendix H shows that the error of the calculation method is smaller 

in more ordinary cases, where the lateral stiffness is larger due to less extreme values of Ks, Ec 

and a. 

10.4.5 The maximum influence of the lateral stiffness on the shear stiffness 

What is shown in Table 10.6, is the maximum value of the shear stiffness corresponding to the 

applied values for Kd and α. Since analytical formulas have been derived, this maximum value 

can now be calculated using formula 10.3, which assumes an infinitely large lateral stiffness. The 

maximum shear stiffness is 204.4 percent of the stiffness calculated by the developed method. 

 Kv [kN/mm]  Kh [kN/mm]  

Maximum Kv 18293 204.4% ∞ - 
Table 10.6 The maximum value of Kv 

What is subsequently seen from the results is the maximum influence of the lateral stiffness on 

the shear stiffness for the case h=1600 mm, since to all other variables the lower limit value is 

assigned. So for this situation the finitely large lateral stiffness leads to a maximum shear 

stiffness reduction of: 

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  
6547

𝑘𝑁
𝑚𝑚 − 18293

𝑘𝑁
𝑚𝑚

18293
𝑘𝑁
𝑚𝑚

∗ 100% =  −64.2 % 

According to the calculation method this maximum reduction is just: 

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 =  
8951

𝑘𝑁
𝑚𝑚 − 18293

𝑘𝑁
𝑚𝑚

18293
𝑘𝑁
𝑚𝑚

∗ 100% =  −51.1 % 

If the first of these results is compared to that of section 10.1.3, it can be concluded that 

increasing the opening height from 1600 mm to 2500 mm leads to an extra shear stiffness 

reduction of 86-64=22%.  

Whether the error of the calculation is acceptable and the maximal stiffness reduction of the 

interface is significant or not, depends on their effect on the shear wall’s behaviour. In the next 

chapter the effect on the top deflection of the shear wall is evaluated. This evaluation will 

indicate the need to refine the methodology. 
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11 Evaluation of the modelling approach in a practical 

situation. 

Previous chapter discussed the analytical relations that describe the behaviour of the vertical 

profiled mortar connection as schematised by the bar model of chapter 6. With these analytical 

relations a modelling approach is developed that models the connections by a vertical linear 

interface element with a given shear stiffness Kv. This modelling approach is described in 

paragraph 10.4.  

The next step is to evaluate the applicability of this modelling approach. This evaluation will 

indicate if the developed approach is useful to model the vertical profiled mortar connections in 

practical situations and will therefore be an answer to the main research question. For this 

purpose, several wall types with different layouts are developed. Each wall type is analysed as a 

monolithic wall, a precast wall with diagonals in the vertical joint and a precast wall with 

interface elements representing the joint. The comparison of the resulting horizontal deflections 

at the top of the wall, indicates whether the interface elements provide an acceptable 

approximation of the vertical profiled mortar connection’s stiffness.  

The first paragraph of this chapter addresses the input properties applied in the wall models and 

the shear stiffness of the interface elements in particular. The second contains the results of the 

wall analysis, which are evaluated in the third paragraph of this chapter. The fourth paragraph 

continues with an evaluation of the limit situation where the design parameters are such that for 

Kh the smallest practical value is obtained. Analysing this situation gives insight into the largest 

top deflection of the shear wall that can occur as a result of the influence of the lateral stiffness. 

Then in the fifth paragraph, the feasibility of the modelling approach with the calculation 

method for Kv is evaluated and a final proposal for the practical modelling approach is made. The 

sixth paragraph ends this chapter with a short example of a design calculation that uses the 

modelling approach as proposed in paragraph 11.5. 

11.1 General input properties 
In this paragraph an overview of the input of the wall models that are analysed in paragraph 

11.2 is provided. The general input values are addressed in the first section of this paragraph. 

The second section discusses the applied values for Kv as input for the interface elements.  

11.1.1 General input of the compact shear wall model 

The dimensions of the compact shear wall are equal to those of the model that has been applied 

in the parameter study of chapter 8. So the wall contains five floors with a height of 3200 mm 

and two five metre wide precast concrete elements per floor with a 50 mm wide joint in-

between. The corresponding slenderness ratio of the wall is 1.59. The wall is loaded by a 

distributed horizontal force on each floor, having a value of 40 N/mm. This load is equal to that 

of Figure 8.1 and applied in the same way. 

Figure 11.1 shows the analysed compact walls. Wall 1 is closed, wall 2 contains one opening per 

precast element, wall 3 contains two openings per element. The three evaluated slender wall 
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models are illustrated in Figure 11.2. The slenderness ratio of the walls is 4.78. The geometry of 

the joint, the precast elements and the window openings is the same as for the compact walls. 

 

Figure 11.1 Evaluated compact walls 

 

Figure 11.2 Evaluated slender walls 

All wall types are analysed as a monolithic wall, a precast wall with diagonals in the vertical joint 

and a precast wall with interface elements representing the joint. The input properties applied 

in the evaluation of the wall models, are summarized in Table 11.1. Most values are equal to the 

standard values of the parameter study, but to some of them another value is assigned.  

First of all the value for the diagonal stiffness is adapted in order to correspond with the largest 

calibrated value of paragraph 7.4. Using the calibrated diagonal stiffness provides results that 

are related to Van Keulen’s tests. This leads to three important advantages. 

 A comparison between the top deflection of the wall with joint and the monolithic model 

indicates the real stiffness reduction of the precast concrete wall and therefore the 

performance of the precast concrete shear wall with stacked element configuration and 

vertical profiled mortar connections. Thereby the performance can be related to the 

results of other design solutions for precast concrete shear walls that were discussed in 

paragraph 3.3. 

 The difference between the top deflections resulting from the model with diagonals and 

the model with interface elements must be related to the top deflection increase 

compared to the monolithic wall. For this purpose a realistic deflection increase is 

necessary, whereby the use of the calibrated value of Kd is required. 
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 The influence of the lateral stiffness on the shear stiffness of the connection is not 

overestimated, since a realistic value of Kd is applied. It was shown in paragraph 10.1 

that a larger diagonal stiffness increases the influence of the lateral stiffness.  

The largest calibrated value is applied because in appendix H it was shown that a larger value of 

Kd leads to a larger error of Kh and Kv and the largest reduction of Kv with respect to its 

maximum for infinite Kh.  

The second parameter, deviating from its standard value, is the transverse spring stiffness, 

which is given a lower value compared to the parameter study. As explained in section 8.2.1, this 

transverse stiffness comprises more aspects than just the axial stiffness of the reinforcement. 

For this reason the standard value of Ks is probably overestimated. In order to obtain more 

realistic results, its value has been reduced in this evaluation. However, since the exact 

composition of Ks was not investigated for this thesis, the value applied here is still uncertain. 

Finally, the height of the openings is adjusted to a value of 1600 mm. This is exactly half of the 

floor height. The length of the domains over which the Timoshenko beam equation must be 

solved are therefore equal to 0.25, 0.5 and 0.25 times the floor height, from bottom to top 

(Figure 10.12). For these domain lengths, the solution of the equation is found more easily. The 

solution of the differential equation is found in appendix G. 

About the stiffness of the interfaces, two important notifications must be made. First, the 

horizontal connections between the precast wall elements are not taken into account and are 

thus infinitely stiff. In this way the influence of the vertical connection is evaluated exclusively. 

Second, the magnitude of the normal stiffness of the vertical joints has no effect on the results of 

the analysis, because of the specific loading condition. Therefore the next section only discusses 

the shear stiffness of the interface elements. The applied normal stiffness is mentioned in 

appendix K. 

Concrete Elements 
Plane stress elements  CQ16M 

Thickness t 500 mm 
E-modulus Ec 35000 N/mm2 
Poisson’s ratio ν 0.2 
Window height 1600 mm 
Column width 500 mm 

Diagonal bars 
Regular truss elements L2TRU 

Length 199.86 mm 
Slope [hy/hx] 3.87 
Cross-sectional area Ad 2340 mm2 
E-modulus Ed 25000 N/mm2 
Total diagonal stiffness Kd 
(Minimum calibration of paragraph 7.4) 

19514 kN/mm 

Poisson’s ratio ν 0.2 
Amount of diagonals per floor 15 

Reinforcement bars 
Regular truss elements L2TRU 

Cross-sectional area AR 3000 mm2 
E-modulus Es 210000 N/mm2 
Length 200 mm 
Transverse spring stiffness Ks 3150 kN/mm 
Poisson’s ratio ν 0.3 

Table 11.1 General input properties 
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11.1.2 Applied values for the shear stiffness Kv  

As explained in paragraph 10.4 the way the lateral stiffness is calculated isn’t very precise. It is 

averaged over the complete floor height and doesn’t take into account the lateral compressive 

forces that can occur. The error made in determining the lateral stiffness, Kh, has been analysed 

and was rather large. Therefore the error of the determined Kv was also significant (Table 10.5). 

In order to indicate the influence of this error on the shear wall behaviour, different values of Kv, 

based on the variation of Kh, are assigned to the interface of the wall models. Four cases are 

distinguished: 

 The calculated value of Kv, based on the lateral stiffness calculated with the developed 

method of paragraph 10.4. 

 The maximum value for Kv, based on an infinitely large lateral stiffness. This value is 

calculated using formula 10.3. 

 The upper limit value of Kv, based on the maximum underestimation of Kh in appendix H: 

1.28 times the lateral stiffness corresponding to the calculated value. 

 The lower limit value of Kv, based on the maximum overestimation of Kh in section 10.4.5 

and appendix H: 0.5 times the lateral stiffness corresponding to the calculated value. 

In section 10.4.5 it is concluded that for the maximum error the real Kh is 58% of the calculated 

value. Nevertheless, the lower limit reduces the calculated value by 50 percent to be a bit more 

conservative. This is required since the error analysis was only performed for an opening height 

of 1600 mm. The results indicated that the calculation error becomes greater for a lower lateral 

stiffness. Since the openings can be higher, leading to a lower lateral stiffness, the error included 

in this analysis is slightly larger than observed.  

The maximum value for Kv is the same for all the walls, since this value simply assumes an 

infinitely large lateral stiffness and is therefore only dependent on the applied value of α and Kd. 

The calculated and limit values for Kv differ among the three wall types. For wall type 1 a larger 

value of Kv is calculated than for wall types 2 and 3. The larger value applied to the closed wall is 

caused by a larger lateral stiffness due to the lack of window openings. For the two walls with 

window openings the same value for the shear stiffness is calculated, since the developed 

method only takes into account window openings next to the vertical joint.  

However, the lateral stiffness and consequently the shear stiffness are in fact different in both 

cases with openings. The configuration and amount of openings directly influence the 

development of stress diagonals in the shear wall. These diagonals act under an angle, which 

causes lateral compressive forces along the joint, as described in paragraph 10.2. These forces 

increase the obtained lateral stiffness, which is therefore different for walls 2 and 3. The effect 

can be incorporated in the calculation method for Kv by adjusting the values of β and γ, but in 

this evaluation these angles are set equal to zero. Any value for these angles would be based on a 

guess. The comparison between the results obtained from walls 2 and 3 will indicate the need 

for deeper research on these load angles and the need to include their effect in the calculated 

value for Kv. 

So the lateral stiffness is varied and this leads to four different values of the interface shear 

stiffness Kv. This is illustrated in Figure 11.3, where the found values are indicated in the Kv-Kh 

diagram corresponding to the applied largest Kd value (Calibrated minimum). The chosen 

variation of the lateral stiffness leads to a significant change of the determined shear stiffness for 
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both wall 1 and walls 2 and 3. Since walls 2 and 3 contain openings, the lateral stiffness in these 

cases is generally lower than in wall 1. Thereby a variation of the lateral stiffness leads to a 

larger variation of the shear stiffness, as the indicated points are located in the steeper part of 

the diagram. The exact numerical values for Kv are also summarised in Table 11.2. Here it is seen 

that for example the lateral stiffness of the lower limit is indeed half of the calculated value, 

corresponding to the explanation above. Appendix H contains more explanation about the way 

the shear stiffness corresponding to a specific situation is calculated. 

 

Figure 11.3 The found values for Kv and their position on the Kv-Kh curve 

 Wall 1 Walls 2&3 
 Kh 

[kN/mm] 
Kv 

[kN/mm] 
Kv 

[N/mm3] 
Kh 

[kN/mm] 
Kv 

[kN/mm] 
Kv 

[N/mm3] 

Kv Calculated 5924 15166 9.48 3292 13342 8.34 
Kv Maximum ∞ 18293 11.4 ∞ 18293 11.4 
Kv Upper limit 7603 15761 9.85 4220 14187 8.87 
Kv Lower limit 2965 12956 8.10 1646 10500 6.56 

Table 11.2 Applied values for the interface shear stiffness 

The different values of Kv are applied to analyse two main aspects: 

 The band width of the calculation: This band width is indicated by the difference in the 

results corresponding to the upper and lower limit of Kv. 

 The maximum influence of Kh: This influence is indicated by the difference in the results 

corresponding to the maximum value and lower limit of Kv. 

Both aspects provide information about the contribution of the inaccurately defined lateral 

stiffness on the wall behaviour. The next paragraph contains an overview of the resulting top 

deflections of all wall models. Paragraph 11.3 evaluates the two main aspects in order to assess 

the feasibility of the applied method of paragraph 10.4. 

11.2 Results of the analysis of a compact and slender shear wall 
This paragraph contains an overview of the resulting top deflection of all the different shear 

walls that were analysed. The first section discusses the compact shear walls, the second the 

slender shear walls. Appendix K contains an overview of the resulting shear stresses in the 
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different models. Most of the evaluation of the results is presented in paragraph 11.3. However, 

two aspects are elaborated on in this paragraph:  

 The performance of the precast shear wall compared to the results found in the 

literature study  

 The comparison between the result of the shear wall with diagonal bars and the wall 

with interface elements with “Kv Calculated”.  

The first comparison may give an indication of the performance of the vertical profiled mortar 

connection relative to other types of connections. The second comparison provides insight in the 

difference in behaviour of a wall where the bar model of Chapter 6 is applied and a wall where 

interface elements are used. Furthermore it indicates the accuracy of the modelling approach. 

11.2.1 Results of the compact shear wall analysis 

Table 11.3 shows the resulting horizontal top deflections of the three compact wall models for 

the three evaluated cases. The results are compared to those of appendix I that are obtained 

with a lower value of Kd (Calibrated average). According to the results of Table 11.3, the 

application of a vertical joint reduces the wall’s stiffness by approximately 7-10 percent. This 

holds for all three walls. So the results show that the influence of the connection on the top 

deflection is independent of the stiffness of the shear wall, where wall 1 is the stiffest and wall 3 

the weakest due to the openings. This was also found in results of previous research as 

addressed in paragraph 3.3 (Falger, 2003). The reduction of the stiffness by 7-10 percent is 

slightly smaller than found in appendix I, because of the larger applied value of Kd.  

Because of different input properties and model dimensions, it is not easy to compare the 

performance of the vertical profiled mortar connection with that of other connection types that 

were analysed in previous studies. What can be seen from the results of the study by Van Keulen 

and Vamberský presented in Figure 3.16, is that even the best performing wall models (type a 

and e) showed a deflection increase of approximately 25 percent for a slenderness ratio of 1.6 

(van Keulen & Vamberský, 2012).  

However, this result was found for a closed wall with three vertical joints and horizontal joints 

with a finite stiffness. If the same horizontal joint stiffness is applied in wall model 1, the 

increase of the top deflection compared to a monolithic wall is 18.3 percent (For Kv Lower limit). 

If three vertical joints were applied, the performance is probably not much better than that 

found by Van Keulen and Vamberský. 

  Wall 1  Wall 2  Wall 3 
 Kv 

[N/mm3] 
Utop 
abs. 

Utop 
rel. 

Kv 
[N/mm3] 

Utop 
abs. 

Utop 
rel. 

Kv 
[N/mm3] 

Utop 
abs. 

Utop 
rel. 

Monolithic - 1.20 100% - 1.98 100% - 3.76 100% 

Diagonal bars - 1.32 110.0% - 2.16 109.1% - 4.06 108.0% 

Kv Calculated 9.48 1.29 107.5% 8.34 2.16 109.1% 8.34 4.09 108.8% 

Kv Maximum 11.4 1.28 106.7% 11.4 2.13 107.6% 11.4 4.05 107.7% 

Kv Upper limit 9.85 1.28 106.7% 8.87 2.15 108.6% 8.87 4.08 108.5% 

Kv Lower limit 8.10 1.30 108.3% 6.56 2.18 110.1% 6.56 4.13 109.8% 

Table 11.3 Resulting top deflection of the compact walls [mm]  

The relative difference in top deflection of walls 2 and 3 between the model with diagonal bars 

and that with interface elements with “Kv Calculated” is equal compared to the case in appendix I 
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(0 and 0.8 percent point respectively). This difference is small, indicating a good accuracy of the 

developed calculation method for Kv. However, in wall 1 the difference between the two 

modelling approaches is significant. The value of Kv in this case is based though on an 

assumption for the bending stiffness Kb, as explained in section 11.1.2. So the difference in 

results for this wall mainly indicates the accuracy of this assumption than that of the calculation 

method in total. 

11.2.2 Results of the slender shear wall analysis 

Table 11.4 shows the resulting top deflection for each of the three slender wall models with 

different joint conditions.  

The results clearly show that in a slender wall, the influence of the vertical connection on the top 

deflection is smaller than in a compact wall. This observation is in accordance with the results of 

previous research that were addressed in paragraph 3.3. Furthermore the results show that the 

magnitude of the increase of the top deflection caused by the connections is independent of the 

stiffness of the wall. This was also addressed in paragraph 3.3. 

Again it is not easy to compare the resulting top deflection with results obtained in previous 

research. The resulting relations of Figure 3.16 show that for a slenderness ratio of 5.0 the top 

deflection increase is approximately 5 percent for the best performing wall models (a and e) 

(van Keulen & Vamberský, 2012). This includes the contribution of horizontal joints and three 

vertical joints in case e, where an unreinforced profiled mortar connection is applied. If for the 

closed wall in this analysis the same horizontal joint stiffness is applied, the deflection increase 

is 4.3 percent. If three vertical joints were present, the deflection increase is probably almost 

equal to the result found by Van Keulen and Vamberský.  

Falger analysed wall models with a slenderness ratio of 6.0, three vertical joints and horizontal 

joints with finite stiffness. The top deflection of this wall with a reinforced profiled mortar joint 

was 7 percent larger than that of a monolithic wall, as seen in Table 3.1 (Falger, 2003). 

Comparing this result with the found 4.3 percent indicates that the developed vertical profiled 

mortar connection might perform better than the connection analysed by Falger. The 

comparison of the found results with results from previous research must be interpreted with 

care, since too many factors are different. Fact is that the difference between the results is small, 

whereby it is not yet possible to conclude that the vertical profiled mortar connection performs 

better than other types of connections. So far, the results indicate a small performance difference 

between the different connection types (e.g. reinforced profiled joints and masonry walls) and 

the developed vertical profiled mortar connections. 

  Wall 1  Wall 2  Wall 3 
 Kv 

[N/mm3] 
Utop 
abs. 

Utop 
rel. 

Kv 
[N/mm3] 

Utop 
abs. 

Utop 
rel. 

Kv 
[N/mm3] 

Utop 
abs. 

Utop 
rel. 

Monolithic - 63.47 100% - 73.59 100% - 145.5 100% 

Diagonal bars - 64.38 101.4% - 75.13 102.1% - 147.7 101.5% 

Kv Calculated 9.48 65.07 102.5% 8.34 76.06 103.4% 8.34 149.8 103.0% 

Kv Maximum 11.4 64.96 102.3% 11.4 75.80 103.0% 11.4 149.5 102.7% 

Kv Upper limit 9.85 65.05 102.5% 8.87 76.01 103.3% 8.87 149.7 102.9% 

Kv Lower limit 8.10 65.18 102.7% 6.56 76.29 103.7% 6.56 150.1 103.2% 

Table 11.4 Resulting top deflection for the three slender walls [mm] 
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The relative difference in top deflection between the models with diagonal bars and the models 

with interface elements “Kv Calculated” is rather large. For wall 3 the difference is 1.5 percent 

point. This is absolutely larger than the maximum difference obtained for a compact wall and 

relative to the total deflection increase tremendously larger. This result may indicate that the 

calculation method for Kv is inaccurate. 

However, since the deflection of the model with bars is larger than the deflection of the model 

with Kv Maximum, the physical meaning of the diagonal bar result is questionable. The lateral 

stiffness cannot exceed infinity and therefore the shear stiffness cannot exceed the value of “Kv 

Maximum”. A more detailed analysis shows that in the model with diagonal bars, part of the joint 

is compressed instead of dilated. This leads to a shear stiffness larger than the limit value. 

However, this is physically impossible, since the joint is fully filled with mortar and therefore not 

that easily compressible. The effect is explained in more detail in appendix J. For this reason the 

error of the calculation method is expressed by the size of the band width, that is analysed in the 

next paragraph, instead of the difference with the result of the wall with diagonal bars.   

11.3 Evaluation of the results 
This paragraph evaluates the results of the previous analyses in more detail. The focus is on the 

two main aspects that were defined in section 11.1.2: 

 The band width of the calculation  

 The maximum influence of Kh  

11.3.1 The band width of the calculation 

The band width of the calculation method is evaluated in three different manners, which are 

discussed in this section. In all cases the band width is analysed by considering the results of Kv 

upper and lower limit. 

11.3.1.1 The band width in terms of top deflection difference 

Based on the results of previous paragraph, the difference in top deflection between the upper 

and lower limit of the calculation method can be expressed in the following way: 

𝐵𝑎𝑛𝑑 𝑤𝑖𝑑𝑡ℎ =
𝑈𝑡𝑜𝑝 𝐾𝑣 𝑙𝑜𝑤 − 𝑈𝑡𝑜𝑝 𝐾𝑣 𝑢𝑝

𝑈𝑡𝑜𝑝 𝐾𝑣 𝑢𝑝
∗ 100% 

The quantity indicates the relative increase of the top deflection when the value of Kv is 

decreased from its upper to its lower limit. Table 11.5 summarises the resulting band width 

sizes for all analysed walls. 

 Wall type 1 Wall type 2 Wall type 3 

Compact wall 1.6% 1.4% 1.2% 
Slender wall 0.2% 0.4% 0.3% 

Table 11.5 Band width for the different models 

It can be concluded that the band width is larger for a compact wall. In the extreme case the top 

deflection Utop obtained with “Kv Lower limit” is 1.6 percent larger than for “Kv Upper limit”. 

This means that in the worst of all analysed cases, the top deflection might be overestimated 

with 1.6 percent due to the inaccuracy of the applied calculation method for Kv. Based on this 

small maximum band width size, the method can be classified as accurate. 
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11.3.1.2 The band width in terms of relative top deflection difference 

Another way to express the error of the calculation is by the relative band width size. This is 

defined as the increase of the top deflection as a result of applying Kv lower limit instead of Kv 

upper limit, relative to the minimal increase of the top deflection compared to the monolithic 

wall. So this relative band width  is calculated in the following way: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑎𝑛𝑑 𝑤𝑖𝑑𝑡ℎ =
𝑈𝑡𝑜𝑝 𝐾𝑣 𝑙𝑜𝑤 − 𝑈𝑡𝑜𝑝 𝐾𝑣 𝑢𝑝

𝑈𝑡𝑜𝑝 𝐾𝑣 𝑚𝑎𝑥 − 𝑈𝑡𝑜𝑝 𝑚𝑜𝑛𝑜𝑙𝑖𝑡ℎ𝑖𝑐
∗ 100% 

The difference in top deflection between “Kv Lower limit” and “Kv Upper limit”, which is the error 

of the calculation, is divided by the difference between “Kv Maximum” and “Monolithic”, which is 

the minimal top deflection increase for the precast wall.  

The error is expressed by the relative band width size, since the difference in total top deflection 

for “Kv Lower limit” and “Kv Upper limit” is small and of minor importance. What is relevant, is 

the difference in top deflection between the monolithic and the precast wall. So the relative band 

width indicates whether the error of the calculation method is significant with respect to the top 

deflection difference between a monolithic and a precast shear wall.  

 Wall type 1 Wall type 2 Wall type 3 

Compact wall 25.0% 20.0% 17.2% 
Slender wall 8.7% 12.7% 10.0% 

Table 11.6 Relative band with for the different wall models 

For a slender wall the relative band width of the calculation method might be acceptable, but 

especially for a compact wall, it is probably too large. In the worst of all analysed cases the top 

deflection difference between the precast and monolithic wall may be over- or underestimated 

by 25 percent. With this uncertainty it is for example impossible to compare the performance of 

the vertical profiled mortar connections with that of other possible connections. For example in 

the study of Falger, the difference in top deflection increase between two different connection 

types was just a few percent points, as seen in Table 3.1 (Falger, 2003). The relative band width 

of Table 11.6 is larger. So if the performance of the vertical profiled mortar connection must be 

compared to other solutions, the band width of the applied calculation method is too large to do 

this properly. Based on the upper limit of Kv, the vertical profiled mortar connection could result 

in a stiffer shear wall than for example a masonry configuration with open joints, but based on 

the lower limit value the opposite could be true.  

11.3.1.3 The band width in terms of difference in shear stress 

In appendix K the difference in shear stress in the joint is analysed for all wall models. Based on 

these results the relative difference between the upper and lower limit of Kv is calculated. A 

lower value of Kv leads to a smaller shear stress. The results in Table 11.7 show that the largest 

obtained difference in shear stress is 12 percent. This difference may be rather large, but it must 

be noted that the absolute difference is just 0.13 N/mm2. So the importance of this relative 

difference is questionable, since the shear capacity of the joint is around 5 N/mm2 (Figure 4.7) 

and the applied horizontal load of 40 kN/m per floor is large.  

 Wall type 1 Wall type 2 Wall type 3 

Compact wall 2.3% 9.6% 12.0% 
Slender wall 1.6% 8.8% 9.6% 

Table 11.7 Band width of the shear stress in the joint 
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11.3.2 The maximum influence of Kh 

The maximum influence of a limited lateral stiffness Kh on the results is analysed as well. In case 

the shear stiffness of the vertical connections is equal to “Kv Maximum”, Kh is infinitely large. But 

Kh has a limited value, which is at least equal to the value corresponding to “Kv Lower limit”. So a 

comparison of the results corresponding to these two values for Kv indicates the maximum 

influence of a limited Kh. 

11.3.2.1 The influence of Kh in terms of top deflection difference 

Similar as in previous section, the influence of Kh can be expressed in terms of the top deflection 

difference. Therefore the influence is calculated in the following way: 

𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝐾ℎ =
𝑈𝑡𝑜𝑝 𝐾𝑣 𝑙𝑜𝑤 − 𝑈𝑡𝑜𝑝 𝐾𝑣 𝑚𝑎𝑥

𝑈𝑡𝑜𝑝 𝐾𝑣 𝑚𝑎𝑥
∗ 100% 

Table 11.8 contains an overview of these results, which shows that the influence is the largest 

for wall type 2 and larger for a compact than for a slender wall. 

 Wall type 1 Wall type 2 Wall type 3 

Compact wall 1.6% 2.3% 2.0% 
Slender wall 0.3% 0.6% 0.4% 

Table 11.8 Influence of Kh for the different models 

The influence of Kh on the total top deflection is relatively small. In the worst of all analysed 

cases the top deflection is 2.3 percent larger as a result of the limited lateral stiffness. The small 

influence seems to be a consequence of the small importance of Kv in general. In the worst 

analysed case “Kv Lower limit” is just 57% of “Kv Maximum” (Calculated from Table 11.2). So the 

reduced Kh significantly reduces Kv, but it simply doesn’t lead to a large difference in top 

deflection. 

11.3.2.2 The influence of Kh in terms of relative top deflection difference 

Also the influence of Kh can be expressed relative to the top deflection difference between a 

monolithic and a precast wall, which is calculated by the following formula:  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝐾ℎ =
𝑈𝑡𝑜𝑝 𝐾𝑣 𝑙𝑜𝑤 − 𝑈𝑡𝑜𝑝 𝐾𝑣 𝑚𝑎𝑥

𝑈𝑡𝑜𝑝 𝐾𝑣 𝑚𝑎𝑥 − 𝑈𝑡𝑜𝑝 𝑚𝑜𝑛𝑜𝑙𝑖𝑡ℎ𝑖𝑐
∗ 100% 

 Wall type 1 Wall type 2 Wall type 3 

Compact wall 25.0% 33.3% 27.6% 
Slender wall 14.8% 22.2% 15.0% 

Table 11.9 Relative influence of the lateral stiffness 

According to Table 11.9, the top deflection difference with respect to a monolithic wall increases 

by 33.3 percent for “Kv Lower limit” compared to “Kv Maximum”.  

Based on this evaluation, it can be argued that the contribution of the lateral stiffness is 

significant when the wall’s top deflection is compared with that of a monolithic wall or a wall 

with another type of vertical connection, whereas it is not important when the top deflection in 

absolute terms is of interest (2.3 percent difference). However, these two statements are based 

on the evaluation of wall models with the input properties of Table 11.1. The correctness of the 

last statement must therefore be checked for a case where the lateral stiffness is equal or close 
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to its practical lower limit. In that situation the influence will be the largest and therefore leads 

to the largest total top deflection increase. 

11.3.2.3 The influence of Kh in terms of shear stress 

In appendix K the difference in shear stress in the joint is analysed for all wall models. Based on 

these results the relative difference between the maximum and lower limit of Kv is calculated. 

Table 11.10 shows these results. Similar as for the band width of the method, the relative 

difference in shear stress is rather large, however the absolute difference is small: 0.23 N/mm2. 

 Wall type 1 Wall type 2 Wall type 3 

Compact wall 4.4% 15.4% 19.5% 
Slender wall 1.9% 15.0% 16.4% 

Table 11.10 Influence of Kh on the shear stress in the joint 

11.4 The extreme band width and influence of Kh 
In section 10.1.3, the largest influence of Kh on the value of Kv was found for the practically lower 

limit values of the design parameters Ks, Ec, a and h. Moreover, in paragraph 10.4 and appendix H 

it was concluded that the error of the calculation method was also the largest for these lower 

limit values. 

So, the band width and the contribution of Kh presented in previous paragraph is limited, since 

for all input parameters averagely stiff values were applied. Thereby the results of previous 

paragraph provide a moderate band width and lateral stiffness influence. 

In order to obtain the largest band width of the calculation method and corresponding largest  

influence of Kh the input properties of Table 11.1 are changed into the properties for which the 

largest error of the calculation method was found in section 10.4.4. These input properties are 

again summarized in Table 11.11. It must be noted that the opening height is kept equal to 1600 

mm because of the restriction of the solution for the differential equation that was derived. The 

results presented in this paragraph are therefore the limit when h=1600 mm.  

Ks 1050 kN/mm 
Kd  19514 kN/mm 
h 1600 mm 
a 300 mm 

Ec 20000 N/mm2 
t 500 mm 

α 3.87 [-] 
Table 11.11 Changed input properties 

Table 11.12 shows the resulting top deflections for the compact wall only, since the band width 

and Kh contribution appeared the largest for this wall (See paragraph 11.3). Only wall types 2 

and 3 are analysed, since for the closed wall the lateral stiffness will never be equal to its lower 

limit value due to the lack of window openings. Table 11.13 gives an overview of the band width 

and Kh influence for this extreme case. The resulting shear stresses are presented in appendix K. 
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  Wall 2  Wall 3 
 Kv 

[N/mm3] 
Utop 
abs. 

Utop 
rel. 

Kv 
[N/mm3] 

Utop 
abs. 

Utop 
rel. 

Monolithic - 4.07 100.0% - 7.68 100.0% 

Diagonal bars - 4.42 108.6% - 8.23 107.2% 

Kv Calculated 5.59 4.39 107.9% 5.59 8.28 107.8% 

Kv Maximum 11.4 4.31 105.9% 11.4 8.14 106.0% 

Kv Upper limit 6.30 4.37 107.4% 6.30 8.25 107.4% 

Kv Lower limit 3.70 4.45 109.3% 3.70 8.38 109.1% 

Table 11.12 Top deflection of a compact wall with a smaller Kh [mm] 

 Wall type 2 Wall type 3 

Band width 1.8% 1.6% 
Rel. Band width 33.3% 28.3% 
Kh Influence 3.2% 2.9% 
Rel. Kh Influence 58.3% 52.2% 

Table 11.13 Band width and maximum influence of Kh in the extreme case 

The band width of the calculation method and the influence of the lateral stiffness are both 

larger than in paragraph 11.3. Nevertheless, the maximum error of the top deflection is just 

1.8% and the maximum influence of Kh is just 3.2%, illustrating both aspects are still relatively 

unimportant for the magnitude of the total top deflection. So when only the total top deflection is 

of interest, the contribution of the lateral stiffness is not very important, neither is the possible 

error of the calculation indicated by the difference between the upper and lower limit. 

When the performance of the vertical profiled mortar connection is compared to that of other 

connection types or a monolithic wall, both the contribution of the lateral stiffness and the band 

width of the calculation method are important. This was already true for the situation of 

paragraph 11.4, but in this case the relative contribution is even larger, as the results of Table 

11.13 show. 

11.5 Assessment and the proposal for a practical modelling approach 
This paragraph starts with the assessment of the modelling approach that has been developed in 

paragraph 10.4 and evaluated in this chapter. Based on this assessment, a final proposal for  the 

practical modelling approach is made in the second part of this paragraph. The next paragraph 

ends this chapter with a practical example where this finally proposed approach is applied. 

11.5.1 Assessment of the modelling approach 

The modelling approach for the vertical profiled mortar connection that is developed makes use 

of linear interface elements to which a shear stiffness Kv is assigned that is calculated by the 

developed calculation method of paragraph 10.4 and appendix H. Based on the presented results 

and the values for the band width and the influence of Kh the following conclusions can be drawn 

about the developed modelling approach and its calculation method: 

 The band width in terms of top displacement difference is small enough to state that the 

approach provides an accurate approximation. 

 The relative band width is too large to be able to compare the performance of the 

vertical profiled mortar connection with that of other solutions for precast concrete 

shear walls. 
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 The influence of Kh on the top deflection of the shear wall is small. This is mainly a result 

of the unimportance of the shear stiffness of the vertical joint for this top deflection. 

 The relative influence of Kh is too large to be able to compare the performance of the 

vertical profiled mortar connection with that of other solutions for precast concrete 

shear walls.  

 The relative difference in results of the modelling approach and the wall with diagonal 

bars is small enough to state that the use of interface elements provides a good 

approximation of the top deflection. 

 The band width of the approach in terms of shear stress in the joint is large. 

 The influence of Kh on the shear stress in the joint is large (See appendix K). 

These conclusions indicate the feasibility of the developed modelling approach with linear 

interface elements and the developed calculation method for Kh and Kv. 

It can be stated that the modelling approach is useful when the magnitude of the top deflection 

of a shear wall is of interest, since the band width of Utop is small. However, it cannot be used to 

compare the performance of the vertical profiled mortar connections with that of other 

connections. For this purpose the calculation method for Kh and Kv should be refined, since the 

estimated value of Kh is too uncertain and too important for the top deflection difference. This 

refinement can include the effect of lateral prestress.  

Moreover, it can be stated that the influence of the lateral stiffness on the top deflection is small 

enough to exclude the whole effect. This wouldn’t lead to a large error of the approximated value 

of Utop. From this point of view, the suggested refinement of the calculation method for Kh is of 

minor importance. Again, this holds only if it is not desired to compare the performance with 

other solutions. 

Application of the modelling approach leads to an inaccurately defined shear stress in the joint. 

Besides the relatively large band width of the calculation method that is analysed in appendix K, 

another aspect may not be forgotten. The modelling approach assumes a uniform shear stiffness 

distribution over the height of each floor, whereby the resulting stress distribution deviates 

from the real situation. In reality the shear stiffness is locally larger. Therefore the peak value of 

the shear stress is underestimated by the modelling approach. However, the magnitude of the 

shear stress is small, whereby the importance of this inaccuracy may be subject to discussion. 

The goal of this thesis was to develop a practical way of modelling for the vertical profiled 

mortar connections. The modelling approach applied so far contains a method to estimate the 

lateral stiffness Kh and shear stiffness Kv that is not straight forward. It requires to derive the 

solution of the formulated Timoshenko Beam equation, which is different for any floor height 

and value of parameter h. A tool could be developed that performs this derivation and calculates 

Kv, based on the design parameters that are given as input by the structural engineer. Only with 

such a tool the method will become practical. Developing the tool won’t be too complicated, 

since it comprises only simple algebra. However, who will develop it and make it widely 

available? If all structural engineers must do this for themselves, the modelling approach is in 

general not practical. 
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11.5.2 Final proposal for the practical modelling approach 

The results of this chapter suggest another more practical modelling approach. The influence of 

the lateral stiffness on the top deflection of the shear wall appeared to be small. In the extreme 

case of paragraph 11.4 the top deflection was only increased by 3.2 percent due to the reduction 

of Kh from infinite to its minimum value for that situation. Moreover, it appears to be hard to 

give a good approximation of the magnitude of the lateral stiffness Kh, since many factors are 

involved. So refinement of the calculation method will be tough since this mainly comprises 

finding a better way to estimate the lateral stiffness.  

Estimating the magnitude of Kh even gets more complex since the effect of lateral compressive 

stresses must be included as well. This effect hasn’t been fully described in this research, but it is 

demonstrated that the magnitude of this stress also depends on many factors. However, lateral 

compressive stresses can never let the shear stiffness be greater than “Kv Maximum” in 

physically realistic situations. 

So, because the top deflection deviation is small and Kh is hard to define, it will be very practical 

to base the shear stiffness of the interface elements on the maximum value. This is not 

dependent on Kh or any lateral stress, but simply calculated by formula 10.3. If just the top 

deflection of the wall is of interest, the overestimation of the approach leads to an error of 

maximal 3.2 percent (if h=1600 mm). So the input given to the interface elements is calculated 

by: 

𝐾𝑣 = 𝐶 ∗ 𝐾𝑑 ∗
ℎ𝑦

2

𝐿𝑑
2       [11.1] 

In this case the factor C is a constant that can be inserted to take into account the influence of Kh 

including the effect of lateral stresses. The use of such a factor can reduce the error of the 

approximation. The largest advantage of this calculation method is the exclusion of the whole 

effect of Kh, whereby a refinement of the calculation method for Kh of paragraph 10.4 and more 

research into the effect of lateral stresses is unnecessary. What is very important, is more 

research into the properties of the compression diagonals in the mortar joint: Kd and α (hy/hx).  

In the most practical case, a table is composed, that contains different values for C corresponding 

to a range of different cases. Most importantly, the factor C must be dependent on the magnitude 

of Kd and α, since these determine the influence of the lateral stiffness that is expressed by factor 

C. It should also depend on the thickness t and the design parameters h, a, Ec and Ks. As 

concluded in chapter 9, especially the thickness and parameters a and h are important. The 

parameters are indicated in Figure 11.4.  
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Figure 11.4 Parameters that determine the value of factor C 

In further research the factor C must be determined for many combinations of the defined 

parameters by analysing the resulting shear stiffness Kv in the way this was done in the 

parameter study. By doing so, the table is composed in which the structural engineer can 

retrieve the value of C that must be used for the situation of interest. The value of C must be 

retrieved form this table in the way that is schematically visualised in Figure 11.5. 

 

Figure 11.5 Determination of factor C from a design table 

Based on the analyses that were performed in this chapter and in appendix I, for three different 

design situations the value of factor C is already determined. Table 11.14 contains these three 

values. They are based on the difference between Kv,max and Kv, lower limit, since this difference 

indicates the influence of Kh that the factor C takes into account. Using “Kv Lower limit” results in 

conservative values.  
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t [mm] Kd [kN/mm] h [mm] a [mm] Ec [N/mm2] Ks [kN/mm] C 

500 19514 1600 500 35000 3000 6.6/11.4=0.57 
500 19514 1600 300 20000 1000 3.7/11.4=0.32 
200 4390 1600 500 35000 3000 5.00/6.43=0.78 

Table 11.14 Values of reduction factor C corresponding to the analysed cases 

Since not all cases will be very distinctive, C can be equal for different combinations of 

parameters. For now this is left for further research. The three cases presented here are very 

different, as the variation of C illustrates. 

In section 10.1.3 it has been determined that in the most extreme case, the shear stiffness is 

reduced by 86% due to the practically lowest value of Kh. From this point of view the factor C 

will never be lower than 0.14. As long as the table for factor C is not complete, the structural 

engineer that applies this proposed practical method can estimate the factor C by the 

comparison of the specific design with the three results of Table 11.14 and the lower limit of 

0.14.  

11.6 Practical application of the proposed modelling technique 
So far, this chapter focused on the feasibility of applying interface elements in precast concrete 

shear wall models. To finalise this chapter and the research in total, an example of a practical 

design calculation of a precast concrete shear wall with vertical profiled mortar connections is 

provided. This example deals with the following aspects: 

 Development of a shear wall model 

 Determination of the connection stiffness 

 Evaluation of the top deflection and shear stress 

 Assessment of the precast concrete elements 

 Assessment of the transverse reinforcement 

11.6.1 Development of the shear wall model 

In this example the geometry of the shear wall model is equal to that of the previous analyses. 

Figure 11.6 shows a stability structure with indicated dimensions that is considered. The 

highlighted wall is analysed in this example.  

 

Figure 11.6 Example of a stability structure consisting of precast concrete shear walls 
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In DIANA 10.2 or any other FEM software the wall can be modelled using “plane stress 

elements”. To these elements the properties of the precast concrete must be assigned. The 

geometry is corresponding to the stability structure design. The horizontal loads are applied as 

distributed forces at the location of each floor slab.  

 

Figure 11.7 Developed wall model 

For a building in the Netherlands in wind area II in a coastal environment, the extreme wind 

pressure at 15 metre is 1.43 kN/m2. The Cpe factor is 1.3 for this building. This roughly leads to 

the following wind pressure per floor in the direction of the shear wall: 

𝑞𝑤𝑖𝑛𝑑 =
(𝑊 ∗ 𝐻𝑓𝑙𝑜𝑜𝑟 ∗ 𝑞𝑝 ∗ 𝐶𝑝𝑒)

#𝑤𝑎𝑙𝑙𝑠 ∗ 𝐷
=

12.5𝑚 ∗ 3.2𝑚 ∗ 1.43
𝑘𝑁
𝑚2 ∗ 1.3

2 ∗ 10𝑚
= 3.718

𝑘𝑁

𝑚
 

The following properties hold for the developed shear wall design: 

Concrete Elements 
Plane stress elements  CQ16M 

Thickness t 500 mm 
E-modulus Ec 35000 N/mm2 
Poisson’s ratio ν 0.2 
Window height 1600 mm 
Column width 500 mm 

Reinforcement bars 
Cross-sectional area AR 3000 mm2 
E-modulus Es 210000 N/mm2 
Length 200 mm 
Transverse spring stiffness Ks 3150 kN/mm 
Poisson’s ratio ν 0.3 

Table 11.15 Properties of the designed shear wall 

The shear wall model only contains the plane stress elements that model the precast concrete 

panels. The reinforcement is not modelled explicitly, since it is part of the vertical profiled 

mortar connection which is modelled by the use of interface elements. 
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Some specific joint properties corresponding to the vertical profiled mortar connection with 

staggered profile must be known to the structural engineer. These properties must be provided 

by literature about the connection type. For now these properties are provided in Table 11.16. 

The vertical profiled mortar connection 
Staggered joint profile 

Wd (See paragraph 7.4) 20.8 mm 
E-modulus Ed or Em 25000 N/mm2 
Ad Ad =t *Wd 
Ld 199.9 mm 
hy 193.5 mm 
hx 50 mm 
kd kd = EdAd/Ld 

Table 11.16 Known connection properties for a joint with a staggered profile 

11.6.2 Determination of the connection stiffness 

In this example only the vertical connections are modelled, just like in previous analyses. The 

connections are modelled by linear 2D line interface elements (CL12I- elements in DIANA 10.2). 

These are applied in the vertical joint between two adjacent plane stress elements. A normal and 

shear stiffness must be assigned to the interface elements. The normal stiffness follows from the 

mortar’s stiffness while loaded in compression.  

𝐾𝑛 =
𝐸𝑚𝐴

𝐴𝑊𝑗𝑜𝑖𝑛𝑡
=

𝐸𝑚

𝑊𝑗𝑜𝑖𝑛𝑡
=

25000

75
= 333

𝑁

𝑚𝑚3
 

The shear stiffness is calculated using the proposed practical calculation method of paragraph 

11.5. For this method the diagonal stiffness must be calculated first, according to the connection 

properties that were provided to the structural engineer. 

𝑘𝑑 =
𝐸𝑑𝐴𝑑

𝐿𝑑
=

25000 ∗ 20.8 ∗ 500

199.9
= 1300.9 𝑘𝑁/𝑚𝑚 

The structural engineer knows that over a floor height of 3.2 metres 15 compression diagonals 

develop in the joint according to the profile dimensions. Using formula 11.1, the shear stiffness 

can be determined. 

𝐾𝑣 = 15 ∗ 𝐶 ∗

𝐾𝑑 ∗
ℎ𝑦

2

𝐿𝑑
2

𝑡 ∗ 𝐻𝑓𝑙𝑜𝑜𝑟
= 15 ∗ 0.57 ∗

1300.9 ∗ 103 𝑁
𝑚𝑚  ∗

193.5 𝑚𝑚
199.9 𝑚𝑚

500 𝑚𝑚 ∗ 3200 𝑚𝑚
= 6.7

𝑁

𝑚𝑚3
 

For the reduction factor 0.57 is used, which is found in Table 11.14. This value was determined 

for input properties exactly equal to those of this design. As explained in paragraph 11.5, this 

factor is dependent on the shear wall design and the applied value of Kd and must be determined 

for different situations in further research. 

It is clear that this method to determine the shear stiffness is very practical, since it only 

requires some information about the type of joint that is applied, which is provided in Table 

11.16 and the reduction factor, which is read from a table.  
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11.6.3 Evaluation of the top deflection and shear stress 

Figure 11.8 shows the resulting top deflection of the shear wall. The top deflection is within the 

SLS limit.  

 

Figure 11.8 Resulting top deflection 

Figure 11.9 shows the shear stresses that develop in the joint. It can be seen that the maximum 

shear stress occurs on the first floor. This corresponds to the theory described in paragraph 3.2. 

 

Figure 11.9 Shear stresses in the joint 

The maximum shear stress is 0.0629 N/mm2. It must be checked if this stress is smaller than the 

shear capacity of the joint. According to Van Keulen’s test results presented in Figure 4.7, the 

shear capacity is at least 5 MPa, which is sufficient for the resulting shear stress. 

11.6.4 Assessment of the precast concrete elements  

Interface elements are applied that do not contain any information about the relation between 

the transferred vertical shear force and the horizontal force it induces on the surrounding 

concrete elements. For this reason the dilatation of the joint and local structural behaviour of the 

concrete elements around the joint cannot be evaluated in the developed shear wall model of 

Figure 11.7.  

Nevertheless, the resistance of the precast concrete elements and the transverse reinforcement 

to the induced lateral load must be assessed. For this purpose the shear stress is integrated over 

the thickness of the wall and subsequently multiplied by the angle of the diagonals, whereby the 

induced lateral force is obtained. This procedure is executed for the floor where the maximum 



 

Evaluation of the modelling approach in a practical situation. page 179 

shear stress develops. For simplicity a uniform shear stress distribution over the height of this 

floor is assumed. 

𝑞ℎ = 𝜏𝑚𝑎𝑥 ∗ 𝑡 ∗
ℎ𝑥

ℎ𝑦
= 0.0629

𝑁

𝑚𝑚2
∗ 500 𝑚𝑚 ∗

5

193.5
= 8.13

𝑁

𝑚𝑚
= 8.13

𝑘𝑁

𝑚
 

With a simple hand calculation the bending resistance of the concrete column between the joint 

and the window can be assessed. This calculation assumes a column width of 500 mm over the 

complete floor height (indicated in Figure 11.10) , whereby the occurring bending moment is 

simply calculated as: 

𝑀𝑏 =
1

8
∗ 𝑞ℎ ∗ 𝐻𝑓𝑙𝑜𝑜𝑟

2 =
1

8
∗ 8.13 ∗ 3.22 = 10.4 𝑘𝑁𝑚 

 

Figure 11.10 Column approximation 

The maximum tensile stress in the concrete column as a consequence of the lateral force is equal 

to: 

𝜎𝑏 = 𝑀𝑏 ∗
𝑧

𝐼
= 10.4 ∗ 106 ∗

500
2

1
12 ∗ 500 ∗ 5003

= 0.50
𝑁

𝑚𝑚2
    

This tensile stress is smaller than the regular concrete tensile strength. It must be taken into 

account that the concrete column is also loaded by the weight of the structure, leading to 

compressive stresses that will definitely compensate this small tensile stress. So in this specific 

example extra bending reinforcement in the concrete elements is not necessary. 

It must be noted that this calculation for the stress is not correct, since the concrete column is 

not slender and can therefore not be evaluated by formula’s corresponding to an Euler-Bernoulli 

beam. However, for this simple design calculation this is ignored. Given the outcome, this 

methodology is acceptable, since the tensile strength isn’t reached by far.  

11.6.5 Assessment of the transverse reinforcement 

The lateral force is transferred by the applied transverse reinforcement as tensile force. 

According to the shear wall design, 3000 mm2 of steel reinforcement is applied at the level of 

each floor slab. Based on this amount of reinforcement the reduction factor C and corresponding 
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shear stiffness Kv have been determined. In order to complete the design calculation it must be 

checked whether the amount of steel reinforcement is sufficient.  

The total tensile force that is transferred by the reinforcement bars at one specific floor level is 

equal to: 

𝐹𝑠 = 8.13
𝑘𝑁

𝑚
∗ 3.2𝑚 = 26 𝑘𝑁 

Thereby the required cross-section for B500 steel is: 

𝐴𝑠,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝐹𝑠

𝑓𝑦
=

26000𝑁

435
𝑁

𝑚𝑚2

= 60 𝑚𝑚2 

This is an insignificant amount of reinforcement, since the required tying reinforcement for 

robustness of the structure will be a lot more.  

This paragraph contained a very simple analysis of a wall with a vertical profiled mortar 

connection, that is of course insufficient for more detailed design calculations. However, it 

addressed important steps to take into account, when the vertical profiled mortar connection is 

modelled by linear interface elements. These steps are the indirect assessment of the bending 

capacity of the precast concrete elements and the tensile strength of the transverse 

reinforcement. 
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12 Conclusions and recommendations 

In chapter 1 of this report the vertical profiled mortar connections that were developed and 

tested by D.C. Van Keulen were introduced. This master research focussed on finding a way to 

model these connections in order to apply them in structural design. Therefore the main 

question of this research was formulated as: 

 “How can the vertical profiled mortar connection be modelled in practical situations?” 

12.1 Conclusions 
In order to answer this question, more insight was required into the main effects that determine 

the behaviour and properties of the vertical profiled mortar connections. Already in the 

introduction of this research three main effects were introduced: the lateral stiffness, the joint 

properties and the present normal stress perpendicular to the joint. 

A bar model was developed, based on the assumptions of paragraph 5.2, that is able to describe 

the most important shear force transfer mechanism for the developed connection: shear locking. 

This model was used to analyse the influence of the lateral stiffness and joint properties on the 

shear stiffness of the connection. Based on all processed results of the parameter study, it can be 

concluded that the interaction between the shear stiffness Kv, the lateral stiffness Kh, the axial 

diagonal stiffness Kd and the angle of the compression diagonals that develop in the mortar α, is 

described by the following relations: 

𝐾𝑣 =
1

ℎ𝑥
2 + ℎ𝑦

2

𝐾𝑑 ∗ ℎ𝑦
2 −

ℎ𝑥
2

𝐾ℎ ∗ ℎ𝑦
2

  [12.1]              lim
𝐾ℎ→ ∞

𝐾𝑣,𝑚𝑎𝑥 = 𝐾𝑑 ∗
ℎ𝑦

2

𝐿𝑑
2    [12.2]          𝛼 =

ℎ𝑦

ℎ𝑥
 [12.3] 

According to these relations, the joint properties Kd and α have the largest effect on the 

magnitude of Kv. Together they determine the physically possible maximum value of the 

connection’s shear stiffness, which corresponds to the case where the lateral stiffness is 

infinitely large [formula 12.2]. Furthermore, these two properties define the influence of the 

lateral stiffness on the magnitude of the shear stiffness, as indicated in paragraph 10.1. A larger 

axial stiffness or a more horizontal orientation of the compression diagonal leads to a larger 

influence of Kh. These two conclusions lead to the statement that the properties of the mortar 

joint are more relevant for the resulting shear stiffness of the connection than the lateral 

stiffness is.  

The axial stiffness Kd and angle α of the compression diagonal are dependent on the geometry of 

the joint’s profile, the properties of the mortar but also on executional aspects like the filling 

ratio of the joint. Based on Van Keulen’s test results it was investigated which stiffness can be 

assigned to the compression diagonals in the mortar joint. It is concluded that in a 200 mm thick 

joint with a staggered profile the compression diagonal’s axial stiffness lies within 267 and 520 

kN/mm. In case of uncracked mortar, this corresponds to a width between 10.7 and 20.8 mm 

that fits within the geometry of the profile. 
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The lateral stiffness Kh is determined by the combination of multiple design parameters that 

concern the architectural and structural design of the building. Those analysed in this research 

are the stiffness of the transverse tying reinforcement Ks, the Young’s modulus of the precast 

concrete elements Ec, the height of the adjacent window openings ‘h’ and their distance from the 

joint ‘a’. Based on the results of the performed parameter study, it is not possible to distinguish 

design parameters that have a significantly larger or lower influence on the lateral stiffness 

compared to the others (paragraph 8.4). The magnitude of the influence of a single design 

parameter is dependent on multiple factors, among which the magnitude of all other design 

parameters. In general, two conclusions can be drawn about this interdependency. First, if Ks is 

stiffer, the influence of the other parameters is greater, and vice versa. Second, if a stiffer value is 

assigned to the parameters h, a or Ec, the influence of the other two of these design parameters is 

less. The study into the interdependency also proved that the largest dependency exists between 

the parameters h and a, whereby it is concluded that these design parameters are most relevant 

for the magnitude of the lateral stiffness. The influence of parameter ‘h’ can be very large in 

combination with a low value of ‘a’ and vice versa (paragraph 9.2). 

The presence of a lateral compressive stress also influences the shear stiffness of a profiled 

mortar connection, as mentioned in chapter 1. This effect was assumed to be of no importance 

for vertical joints. However, an important observation done in this research is that the presence 

of openings in a shear wall introduces compressive stress diagonals that cross the vertical 

connections under an angle. The vertical component of this compression force is transferred as 

shear force. The horizontal component acts as a lateral compressive force that increases the 

joint’s resistance to dilatation and thereby the shear stiffness of the connection. The contribution 

of these stresses is affecting the lateral stiffness distribution over the height of the joint. So it can 

be concluded that the effect of lateral compressive stresses is not only relevant for horizontal 

connections, but for vertical connections as well.  

The influence of a limited lateral stiffness on the shear stiffness of the connection has yet only 

been described qualitatively. However, it was also quantified in chapters 10 and 11. The 

combination of the least stiff values of Ks, Ec, a and h within their practically realistic range leads 

to the smallest possible lateral stiffness Kh, for which the shear stiffness Kv is most reduced 

compared to its maximum value defined by formula 12.2. Combined with a large value of Kd 

obtained for a large wall thickness (500mm is applied), the influence of the small Kh is the 

largest. Thereby, the maximum shear stiffness reduction is the largest. According to this 

performed limit analysis, the shear stiffness is at most reduced by 86 percent compared to its 

maximum value Kv,max (section 10.1.3). So the influence of the lateral stiffness can be significant 

and can therefore not be neglected in all cases. Especially when the shear wall is thick, a large 

diagonal stiffness is expected and large window openings are present, the contribution of the 

lateral stiffness must be taken into account. 

An analytical calculation method is developed that tries to approximate the lateral stiffness and 

subsequently calculates the shear stiffness by formula 12.1. This methodology simulates the 

surrounding concrete elements as Timoshenko beams, whereby all analysed design parameters 

and the thickness of the wall elements are included. In some cases this method overestimates 

the magnitude of the lateral stiffness by more than 40 percent, leading to an overestimation of 

the shear stiffness by almost 30 percent (section 10.4.4). Based on these errors, it is concluded 

that the calculation method is not very accurate.  
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A modelling approach is developed and tested that uses linear interface elements to which a 

shear stiffness is assigned, to answer the main question of this research. This modelling 

technique is only suitable when the global deformation of the shear wall is of interest. Due to the 

use of interface elements, the finite element model of the shear wall structure won’t include the 

interaction between the transferred shear force and the induced lateral forces, whereby it 

cannot be used to analyse the local structural behaviour around the joint. However, integrating 

the resulting shear stress distribution over the joint’s area and multiplying this shear force by 

the known angle of the compression diagonals will provide the induced lateral forces on the 

surrounding concrete elements (paragraph 11.6). Subsequently, the structural engineer can 

assess the local resistance of the concrete elements to this lateral load, be it in an indirect way. 

When applying interface elements a significant error in resulting shear stress should be taken 

into account (appendix K). 

The application of linear interface elements, with the shear stiffness calculated by the developed 

calculation method as input property, was assessed in multiple shear wall models. This 

evaluation showed that the error of the calculation method of 30 percent leads to an error of the 

approximated top deflection of at most 1.8%. However, this error is 33.3% of the minimal 

difference in top deflection compared to a monolithic wall. Furthermore the evaluation of the 

wall model indicated that the practically minimal lateral stiffness in case of 1600 mm high 

openings increases the top deflection by 3.2% compared to the case where Kh would be infinitely 

large. This leads to an increase of the top deflection difference compared to a monolithic wall of 

58.3% (paragraph 11.4). Based on these four results it is concluded that the performance of a 

wall with vertical profiled mortar connections can be approximated by the developed modelling 

technique combined with the calculation method for Kv. However, the calculation method cannot 

be applied to accurately compare the performance of the vertical profiled mortar connection 

with that of a monolithic wall or a wall with another type of connection. For that purpose a more 

refined method is required. 

A final proposal for the practical modelling approach is made, based on the previous conclusion. 

It is an option to base the shear stiffness Kv applied for the interface elements on the maximum 

value according to formula 12.2, since this upper limit approximation leads in the analysed case 

to a maximum error of just 3.2% of the total top deflection. This is a more practical approach 

than using the developed calculation method, since it only takes into account the joint 

properties. Any effect of the lateral stiffness or the lateral compressive stress is ignored. In order 

to reduce the error of this method and to be able to apply it for a comparative analysis with a 

monolithic or other precast wall, a reduction factor must be used. This factor will consequently 

depend on the expected magnitude and influence of the lateral stiffness and the lateral 

compressive stress (paragraph 11.5). 

So, as answer to the main question, the vertical profiled mortar connections can be modelled as 

linear interface elements in practical situations. Their shear stiffness mainly depends on the 

properties of the mortar joint itself, but is also determined by the provided lateral stiffness and 

present lateral compressive stress. If an indication of the shear wall’s total deflection is required, 

the shear stiffness can be approximated by the developed calculation method in paragraph 10.4, 

but it is more practical to approximate it by its maximum value possibly corrected by a 

reduction factor, as finally suggested in paragraph 11.5. If the shear stiffness must be known 

with more certainty, a more refined and complete calculation method should be developed and 

applied.  
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12.2 Recommendations 
This thesis gives rise to the following follow-up research. 

 Further research in the behaviour of the mortar joints 

It is concluded that the properties of the compression diagonals that develop in the 

mortar are of major importance for the shear stiffness of the connection. Further 

research must validate the axial stiffness and the angle that can be assigned to these 

diagonals. It must also analyse the way these two properties are defined by parameters 

such as the profile geometry, enabling an early estimation of the joint properties. 

Thereby the magnitude of the connection’s shear stiffness and the possible influence of 

the lateral compressive stress and stiffness are also already indicated in an early phase 

of design. This research is also useful to generalise the results for the staggered joint 

profile, presented in this report, to the other developed joint profiles for which the 

diagonal properties are different. 

 Refinement of the developed calculation method or accurate determination of C-factors 

In this research it is concluded that the developed calculation method doesn’t provide 

accurate values for Kv. This can either be solved by refining this calculation method or by 

defining correction factors that can be applied in the proposed method of paragraph 

11.5. The latter is more practical since it doesn’t require more in depth research into the 

contribution of the lateral stiffness and stresses to the shear stiffness of the connection. 

 Further research in the stiffness of the force transfer by transverse tying reinforcement 

The minimum magnitude of the lateral stiffness depends on the realistic least stiff values 

of the design parameters. The transfer of forces by the reinforcement also includes 

friction between precast concrete and mortar and between mortar and steel. This 

research did not consider this effect explicitly. If the lower limit value of the combined 

stiffness of this load path is known with more certainty, the minimum value of the lateral 

stiffness is also more certain. Thereby the largest shear stiffness reduction can be 

calculated more precisely. 

 Further research in the influence of lateral compressive stress 

This research proved the presence of lateral compressive stresses in vertical joints, 

which are induced by stress diagonals in the shear wall. These diagonals develop as a 

result of openings in the wall. Further research that analyses the relation between the 

orientation of the stress diagonals and the design of the shear wall will show the 

relevance of this effect in different cases. 

 Further research in the possible shear force transfer by adhesion 

This research neglected adhesion in the mortar-concrete interface, since shrinkage of the 

mortar or executional aspects are likely to prevent shear transfer by adhesion. These 

executional aspects are for example the filling ratio of the joint and the cleanliness of the 

interface. Further research must point out whether the presence of adhesion is indeed 

uncertain or whether this assumption was too conservative. In the latter case, it must 

also analyse the contribution of adhesion to the shear force transfer. Mainly because the 

shear stresses in the vertical joints appear to be small, the contribution of adhesion can 

be very important. 

 Further research in the contribution of dowel action of the transverse reinforcement 

Especially when significant shrinkage occurs, it is necessary to analyse the contribution 

of dowel action of the transferred reinforcement to the shear force transfer.  
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 Further research into modelling techniques that include the relation between the 

transferred shear force and the induced horizontal forces 

If a modelling technique can be applied that includes this relation, the induced lateral 

load on the surrounding concrete elements is immediately included in the FE results, 

whereby the indirect method proposed in paragraph 11.6 is unnecessary. If the relation 

between the shear and lateral stiffness could be included in the model input, it isn’t even 

required anymore to manually calculate the shear stiffness based on an approximated 

lateral stiffness or correction factor. In this case the FE model will define the shear 

stiffness by itself, which would definitely be the most desirable modelling approach. 

Based on this research also recommendations for the application of the vertical profiled mortar 

connection can be provided: 

 Apply a joint in which a steep and wide compression diagonal develops.  

 Estimate the axial stiffness and angle of the compression diagonal in an early design 

phase in order to have insight in the relevance of the lateral stiffness, but also to estimate 

the minimal top deflection of the shear wall. 

 In case the lateral stiffness is relevant, be aware of the location and size of wall openings.  

 The required amount of transverse reinforcement is most important when no or small 

openings are present around the joint. 

 If the transverse reinforcement is not explicitly modelled, as was the case in this 

research, it must always be checked if the amount of reinforcement is sufficient to 

transfer the induced tensile force between the adjacent concrete elements and if the 

concrete elements have enough bending capacity for the lateral forces induced by the 

joint. 
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A Overview of definitions and symbols 
The following list provides the definitions and symbols that are used for different parameters 

and properties that are discussed in this thesis. Often a distinction is made between total, 

average and specific value.  

Parameter/Property Definition Symbol 

(Total) Shear stiffness The shear stiffness of the connection is defined by the total 
vertical force that is transferred by the diagonals divided by 
the average relative vertical displacement over the joint. 
This quantity is determined per floor. 

Kv 

Average shear stiffness The total shear stiffness per diagonal. It is defined by the 
total shear stiffness divided by the number of diagonals. 

kv 

Specific shear stiffness The specific shear stiffness of a single diagonal. Defined by 
the vertical component of the axial force in the diagonal 
divided by its vertical displacement difference. 

kv,i 

(Total) Lateral stiffness The lateral stiffness of the connection is defined by the 
total horizontal force that is a result of the inclined force in 
the diagonal bars divided by the average relative horizontal 
displacement between the elements. The quantity is 
determined per floor. 

Kh 

Average lateral stiffness  The lateral stiffness per diagonal. It is defined by the total 
lateral stiffness divided by the number of diagonals.  

kh 

Specific lateral stiffness The specific lateral stiffness of a single diagonal. Defined by 
the horizontal component of the axial force in the diagonal 
divided by its horizontal displacement difference. 

kh,i 

(Total) Diagonal stiffness The summation of all specific diagonal stiffness values. It 
can be calculated directly by dividing the summation of all 
axial forces by the average diagonal displacement.  

Kd 

Average diagonal stiffness The total diagonal stiffness per diagonal. It is defined by the 
total diagonal stiffness divided by the number of diagonals. 
If all diagonals have the same specific diagonal stiffness, the 
average diagonal stiffness is equal to the specific diagonal 
stiffness. 

kd 

Specific diagonal stiffness The axial stiffness of the diagonal bar that is defined by the 
young’s modulus of the mortar times the cross-sectional 
area of the bar divided by the length of the bar. 

kd,i 

Average vertical displacement 
difference 

The average of the difference in vertical displacement 
between the two end nodes of each diagonal.  

Uy 

Specific vertical displacement 
difference 

The difference in vertical displacement between two end 
points of a specific diagonal (Dyi,2-Dyi,1). 

Uy,i 

Average horizontal displacement 
difference 

The average of the difference in horizontal displacement 
between the two end nodes of each diagonal. 

Ux 

Specific horizontal displacement 
difference 

The difference in horizontal displacement of the two end 
points of a specific diagonal (Dxi,2-Dxi,1). 

Ux,i 

Average diagonal displacement 
difference 

The average of the difference of the displacement in axial 
direction between the end nodes of each diagonal. 

Ud 

Specific diagonal displacement 
difference 

The difference of the displacement between the two end 
points of a specific diagonal in axial direction. 

Ud,i 

Local vertical displacement The vertical displacement of diagonal i at endpoint j.  Dyi,j 

Local horizontal displacement The horizontal displacement of diagonal i at endpoint j.  Dxi,j 

Total diagonal force The summation of axial forces acting in each diagonal bar. Fd 
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Specific diagonal force The axial force acting in a single diagonal. fd,i 
Total horizontal force The summation of the horizontal components of all 

diagonal forces. 
Fh 

Specific horizontal force The horizontal component of the axial force of a single 
diagonal 

fh,i 

Total vertical force The summation of the vertical components of all diagonal 
forces. 

Fv 

Specific vertical force The vertical component of the axial force of a single 
diagonal. 

fv,i 

The support stiffness The stiffness that is assigned to the spring supports in the 
bar model. This stiffness is provided by the surrounding 
concrete elements and the transverse reinforcement 

Ksup 

The bending stiffness The bending stiffness of the Timoshenko beam that models 
the precast concrete elements. The bending stiffness is 
therefore a measure of the in-plane stiffness of the precast 
elements. 

Kb 

Total cross-section of the 
diagonals 

The summation of all cross-sectional areas of the diagonals. Ad 

Specific cross-sectional area The cross-sectional area of a single diagonal Ad,i 

Young’s modulus of the mortar The Young’s modulus that is given to the bar that models 
the compression diagonal in the mortar joint. 

Ed 

Length of the diagonal The length of the bar that models the compression 
diagonal. 

Ld 

Angle of the diagonal The angle between the bar and the vertical axis. α 
Height of the diagonal The difference in vertical y-coordinate between both end-

points of the diagonal 
hy 

Width of the diagonal The difference in horizontal x-coordinate between both 
end-points of the diagonal 

hx 

Young’s modulus of steel The Young’s modulus that is assigned to the bars that 
model the transverse reinforcement. 

Es 

Cross-section of the transverse 
reinforcement 

The cross-sectional area that is assigned to the bars that 
model the transverse reinforcement. 

AR 

Transverse spring stiffness The axial stiffness of the reinforcement that is defined by 
the cross-sectional area times the young’s modulus of steel 
divided by the length of the reinforcement that transfers an 
axial force. 

Ks 

Young’s modulus of the precast 
elements 

Young’s modulus assigned to the concrete wall elements. Ec 

Height of the openings Height given to the openings in the wall elements. h 
Column width Width of the precast concrete element between the joint 

and the openings. 
a  

Wall thickness The width of the precast concrete elements. t 
Load angle beta The angle under which the transferred load arrives at the 

upper end-point of the diagonal 
β 

Load angle gamma The angle of the transferred load at the lower end-point of 
the diagonal 

γ 
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B Validation of the small test setup model 

This appendix contains the results of the mesh size sensitivity study and the sanity checks that 

were performed on the small test setup model in DIANA 10.2. 

The mesh is built up of rectangular elements, of which the size is varied between 10 and 400 

mm. Figure B.1 shows the relation between the normalised shear stiffness and the element size 

for a model with M24 bars. The normalised shear stiffness is calculated by dividing the resulting 

shear stiffness of the model with a certain mesh size, by the resulting stiffness of the model with 

a mesh size of 400 mm. In this way the result corresponding to a mesh size of 400 mm is given 

index 1. When the analysis is performed with a size of 10 mm, the normalised shear stiffness still 

has index 0.96, as Figure B.1 shows. This shows the shear stiffness of the model is hardly 

influenced by the applied mesh size. The total shear stiffness is calculated by dividing the total 

vertical force that is transferred by the three diagonals by the average vertical displacement 

difference.  

Eventually an element size of 50 mm was chosen, since for this size the stresses in the elements 

around the diagonal bars were close to the stress in the bars and the stress distribution over the 

model in total shows a smooth behaviour. Figure B.2 shows the stress distribution of Syy for a 

mesh size of 50 and 100 mm. The smoother results of the smaller mesh are clearly visible.  

 

Figure B.1 Mesh size dependency for the small model (M24) 
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Figure B.2 Stress distribution by a mesh size of 50 and 100 mm for the small model (M24) 

Table B.1 Equilibrium checks (M24) shows the state of equilibrium in the model with an element 

size of 50 mm. It can be concluded that the vertical reaction force is equal to the vertical 

component of the diagonal forces. The horizontal force in the bars almost make equilibrium with 

the horizontal component of the diagonal forces. The horizontal supports that must be applied to 

create a stable model take some of the horizontal load. 

Since the model is exactly symmetric in the centre point, the results must also show this. The 

force in the upper and lower diagonal are equal to each other. The stress distributions in Figure 

B.2 are also symmetric. 

 Diagonal forces [N]  Reaction forces [N] Reinforcement 
[N] 

 Axial Horizontal Vertical Horizontal Vertical Horizontal 

 -12090 -3025 -11705 1770 12479 3987 

 -10821 -2707 -10477 -5101 17900 3987 

 -12090 -3025 -11705 4115 3508  

SUM -35001 -8756 -33887 783 33888 7973 

       

Horizontal equilibrium     

diagonal+reinforcement+reaction 0    

Vertical equilbrium      

diagonal+reaction  1    

(All forces in Newton)     

Table B.1 Equilibrium checks (M24) 
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C Development of the wall detail model 

This appendix contains the description of the wall detail model that was developed for the 

parameter study. However, the resulting behaviour of the model was concluded to resemble to a 

compression test instead of a shear test. Therefore it’s resulting parameter relations deviated 

from the other two models.  

Geometry 

Figure C.3 shows the geometry of the model that is used. The model consists of two mirrored 

surface elements that are connected by diagonal bars in the 50 mm wide gap between the 

elements. Furthermore at the top and bottom edge of the model a horizontal line element is 

spanning the gap, this element is modelling the transverse reinforcement.  

 

Figure C.3 Geometry of the single floor model 

The concrete surface elements contain a recess that represents a window opening in the wall 

element. The height of this window opening, h, is one of the parameters that is investigated. 

Even so is the column width, a, a parameter that is investigated. The presented geometry in 

Figure C.3 shows the standard values.  

The boundary conditions should simulate the loading state and support conditions that occur 

when the model is part of a complete shear wall. Figure C.4 shows a part of a shear wall with a 

stacked element configuration that is loaded horizontally. The dashed square marks the part of 

the wall that is modelled.  
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Figure C.4 The conditions in a shear wall 

The image on the right hand side illustrates the state of deformation of the same part of the 

shear wall. Due to the bending deformations, the precast elements will slightly rotate, whereby 

slip translations occur in the interface. In order to simulate this loading state, specific boundary 

conditions are set for the model, as can be seen in Figure C.3. 

First of all, the model is loaded by a prescribed downward displacement of 1 mm along the 

upper right horizontal edge. Application of the load at this location corresponds to the situation 

with a horizontal wind load coming from the right side of the wall, as indicated in Figure C.4. The 

vertical support is applied at the lower left horizontal edge. Thereby the translation of the left 

element is set to zero. This means that all slip displacements that occur in the wall are lumped 

into the applied load on the right element.  

Secondly, horizontal supports are required to obtain a stable model. However, supporting the 

right concrete element horizontally will prevent the development of tying forces in the 

transverse bars. So in order to be able to investigate the effect of changing the cross-sectional 

area of the transverse reinforcement, horizontal supports may only be applied on the left 

concrete element.  

Furthermore, some boundary conditions must be set for the unsupported edges as well. The two 

horizontal edges in the upper left and lower right corner of the model cannot translate in 

vertical direction, since this deformation will be obstructed by the adjacent concrete elements 

that are present in a complete shear wall. In order to keep the two edges horizontal, so called 

tyings are applied. These dictate the vertical displacement on each point of the edge to be equal 

to the vertical displacement of the “master node” that is selected. The tyings are indicated by the 

blue lines in Figure C.3, the corresponding master nodes are indicated by the red dot. The lower 

part of the right element tends to rotate downwards, which will in reality also be resisted by 

shear forces in the concrete below the window opening in the concrete element itself. However, 

since not the whole element is modelled and the right vertical edges are unsupported, this 

resisting shear force doesn’t develop in the model. The applied tying at this location prevents the 

rotation. 

 

As can be seen in Figure C.3, tyings are also applied on the two vertical edges of the right 

element. These are present because the other part of the concrete element that is not included in 

the model will prevent large horizontal displacement differences along this edge. For this reason 

they are kept straight as well.  
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Mesh sensitivity 

In order to determine a proper mesh size to use, a sensitivity study is performed. This is done in 

the same way as for the test setup model. The mesh is going to be built up by mostly rectangular 

quadratic plane stress elements. Their size is varied between 15 and 400 mm.  

Figure C.5 shows the shear stiffness’ normalised dependency on the mesh size. The shear 

stiffness obtained by a mesh size of 400 mm is given index 1. As can be seen, also for this model 

the variation of the shear stiffness is rather limited. The range of the mesh size is quite large, but 

the variation of the stiffness is just slightly more than 10 percent. A model with a large mesh size 

dependency is very unfavourable. This can for example occur when point loads or displacements 

are applied, but in this case this is purposely avoided.  

 

Figure C.5 Kv-Mesh size dependency 

The laterals stiffness appears to be far more dependent on the mesh size, as Figure C.6 shows. 

With a mesh size of 15 mm the lateral stiffness is just 68 percent of the largest value. So for the 

lateral stiffness it is more important to choose a proper mesh size.  

In order to choose a mesh size, the occurring stress peaks in the elements around the end points 

of the diagonals are also considered. The stress in these elements should have the same order of 

magnitude as the stress that occurs in the adjacent diagonal bar itself. Table C.2 shows the stress 

in vertical direction in the diagonal bars and the minimal and maximal stress in the adjacent 

surface elements. As the table shows, large stresses occur in the elements with a small mesh size. 

For a mesh size of 400, 200 and 100 mm the minimum stress in the elements is not far from the 

stress in the diagonal. However, elements with a size of 400 or 200 mm are rather coarse. 

Therefore a mesh size of 100 mm is going to be applied. This might lead to a slightly 

underestimated lateral stiffness. 
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Figure C.6 Kh mesh size dependency 

Mesh size Syy dia Syy max Syy min 

400 -30.4 13.0 -28.5 

200 -30.4 9.6 -31.7 

100 -29.7 13.8 -36.9 

50 -28.7 24.8 -46.6 

25 -27.6 47.0 -74.9 

15 -26.8 75.0 -113.1 

Table C.2 Peak stresses in the elements 

Sanity checks 

In order to validate the model, some sanity checks were performed. The checks for horizontal 

and vertical equilibrium are summarised in Table C.3. As can be seen, the horizontal equilibrium 

of forces doesn’t count up to zero. The horizontal reaction force should be zero as well, since 

there is no horizontal load applied on the model. This is not the case. 

Reinforcement  Nx [N] Diagonal force 

component  

F [N] Reaction force R [N] 

Bottom 86206 Hor. -368767 Hor. -23 

Top 282563 Vert.  -1427127 Vert. 1427127 

Sum 368769     

  Checks    

  Fh-Nx-Rh=0 -20.83 N  

  Fv-Rv=0 0.00 N  

Table C.3 Horizontal and vertical equilibrium check 

However, the summed horizontal component of the diagonal forces is approximately 370 kilo 

newton. So a small deviation of 20 newton seems acceptable.  

The equilibrium of moments was also checked before the model was used for further analysis. 

Table C.4 shows the outcome of this sanity check. The load is not applied right above the vertical 

support. Due to this eccentricity a moment must be transferred by the connection as well. The 

load causes a moment of 543 kNm around the centre point of the joint. For external equilibrium, 
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the horizontal and vertical support reactions must create an equal moment in opposite direction. 

However, this appears not be the case. Furthermore, the internal equilibrium requires that the 

moment is transferred by the compression diagonals in the joint and the transverse 

reinforcement at the outer edges. This equilibrium isn’t obtained either.  

 Moment external 

[kNm] 

 Moment 

internal [kNm] 

Load -543 Load -543 

Vertical support -492 Reinforcement 314 

Horizontal support 644 Diagonals 12 

SUM -391 SUM -217 

Table C.4 Equilibrium of moments for a model with tyings 

It is clear the error cannot be neglected or assigned to inaccuracies of processing the output. So 

what causes the huge error in this equilibrium check? The answer lies in the use of tyings. The 

tyings dictate a constant displacement over a whole edge of the model. In order to comply with 

this requirement, forces are acting on the edge. However, these forces induced by the tyings 

cannot be generated as output and are therefore unknown. In order to check the statement, the 

rotational equilibrium of a model without tyings has been analysed as well. The results can be 

seen in Table C.5. Adding all tyings one by one to this model lets the error in the equilibrium 

increase to the values found in Table C.4. So each tying partly contributes to the found error. 

Having the lack of equilibrium assigned to this cause, it is okay to use the model with tyings. The 

equilibrium of the model could be proved if it was possible to obtain the tying forces. 

Unfortunately DIANA 10.1 doesn’t support this function.  

 Moment external 

[kNm] 

 Moment internal 

[kNm] 

Load -493 Load -493 

Vertical support -434 Reinforcement 498 

Horizontal support 927 Diagonals -5 

SUM 0 SUM 0 

Table C.5 Equilibrium of moments without tyings 

Evaluation of the model 

Based on the sanity checks the model is approved to use. This paragraph discusses the typical 

behaviour that is observed. In the first section the global behaviour is shown and explained. In 

the second section some specific aspects of the behaviour are addressed. In that context the 

applicability of the model will be discussed in more detail.  

Global behaviour of the model 

Figure C.7 shows the displacement field of the model loaded by a vertical displacement of 1mm 

along the horizontal edge in the upper right corner. The horizontal displacement field shows 

clearly that the left element moves a bit to the left and the right element to the right, widening 

the joint in-between. As can be seen as well, the horizontal displacement field is not symmetric. 

The horizontal supports that are only present on the left element are causing a difference in 

behaviour between the two elements. Figure C.8 namely shows the horizontal displacement field 

of the model when the horizontal supports are also applied on the right element. This 

displacement field is symmetric in the centre point of the model.  
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As the results of the real model show, the left element acts approximately as expected conform 

the behaviour shown in the literature study (Figure C.7). The largest horizontal displacement 

occurs due to bending in the column between the window opening and the joint. The right 

element deforms differently. Due to the lack of horizontal supports the two parts above and 

below the window opening can freely move in horizontal direction. It seems that the element 

rotates clockwise, due to the eccentricity of the load. The tyings keep most edges straight, but 

the horizontal displacement increases gradually from bottom to top along the edge connected to 

the diagonal bars. 

 

Figure C.7 The displacement field 

 

Figure C.8 Horizontal displacement field with supports on two sides 

The vertical displacement field is explained more easily. Where the load is applied, the deflection 

is exactly 1 mm. As the induced force is gradually transferred by the diagonal bars, the vertical 

translation of the nodes decreases from top to bottom over the right element. The left element 

can be compared to a bar that is loaded by an axial line load. At the vertical support the 

translation is equal to zero. At the unsupported side the translation is the largest and inbetween 

it gradually increases from zero to the maximum value, due to the increasing load coming from 

the diagonals. The behaviour is almost symmetric in the centre point of the model, with a 

displacement of 0.50 mm as central value.  

When the results for the vertical stress Syy are evaluated, a clear compression diagonal is 

obtained, as can be seen in Figure C.9. The load is transferred by this compression diagonal 

through the elements and the diagonal bars to the vertical support at opposite site.  
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The load is transferred by the diagonal bars, which are not all subjected to an equal axial load. 

The distribution of axial forces over the diagonals is provided in the graph of Figure C.10. It 

shows that the largest forces are transferred by the two outer diagonals, whereas the diagonals 

around half of the floor height transfer the smallest force. This is a result of the present window 

openings. The shear stress that develops in the mortar joint is distributed in the same way as the 

diagonal forces in Figure C.10. So producing a shear stress diagram from a model with a 

continuous joint should result in a similar image as is shown here.   

 

Figure C.9 Syy distribution in the concrete elements 

 

Figure C.10 Axial diagonal force distribution 

Specific aspects of the behaviour 

This section discusses  two important specific aspects of the behaviour.  The first aspect is the 

effect of the load eccentricity on the connection. The second aspect is the horizontal 

displacement of the elements that deviates from the expected pattern.  

The effect of the load eccentricity 

As mentioned previously, the load is applied eccentrically from the vertical support. Because the 

right element is loaded and the left is supported, the connecting diagonal bars need to transfer 
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the load, whereby the connection can be analysed. This shear force will also develop in a 

complete shear wall, but the accompanying moment will not.  

Figure C.11 shows the two wall elements and the vertical load and support in a schematic way. 

The two elements will move apart by a distance Ux average, as a result of the horizontal 

component of the diagonal force. Due to the applied load, the right element will rotate as well. 

This rotation will at the bottom edge decrease the widening of the joint by Ux rotation, whereas 

at the top edge the joint is widened by Ux rotation. The left element will stay in place, since the 

supports prevent any rotation.  

 

Figure C.11 Rotation of the loaded element 

The difference in horizontal displacement over the height of the joint that is caused by this 

rotational displacement, influences the force distribution in the diagonal bars. A pure widening 

of the joint will lead to a tensile force in the diagonal bars. However, the vertical displacements 

are relatively large, whereby all the diagonals are under compression and the widening of the 

joint only lowers the compressive axial force. Because of the rotational displacements, the joint 

widens more at the top side, resulting in smaller compressive forces here compared to the lower 

side. The axial force distribution in Figure C.10 is in accordance with this behaviour. The 

compressive forces are smaller at the top edge and the minimum occurs above half the height of 

the connection. Table C.3 also shows that a larger tensile force is present in the top 

reinforcement bar, which also corresponds with the behaviour that is described here.  

When the horizontal displacement of the end-points of the diagonal bars that are located on the 

edge of the loaded element are plotted against the y-coordinate of the end-points’ locations, the 

approximate linear displacement distribution is clearly seen. The deviating result of the upper 

node is caused by the tensile force in the reinforcement that is located nearby. 
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Figure C.12 Horizontal displacement distribution for the loaded element 

The rotation also influences the slope of the diagonal bars. The lower diagonals become steeper 

than the initial slope, the upper diagonals will become flatter. This also influences the force 

distribution over the diagonal bars, since a steeper diagonal acts stiffer, as described in chapter 

4. However, this effect is only taken into account when a geometric nonlinear analysis is 

performed. The linear analysis applied in this parameter will always calculate the structural 

response based on the initial slope of the diagonal bars.  

Does the whole effect have a significant influence on the resulting lateral and shear stiffness? 

This may be, but the two stiffness values are determined based on average displacement 

differences. If the rotational displacement is exactly linearly distributed, the average 

displacement difference is equal to the displacement caused by the horizontal respectively 

vertical component of the diagonal force only. So the rotation of the element may only have a 

significant contribution if it directly influences the stiffness of the whole model, resulting in a 

different force that develops by a displacement load of 1 mm. However, since the whole 

parameter study is performed on a single model and only the relative results are discussed, any 

rotational effect is not very important for this study. In earlier chapters it was already concluded 

that the resulting values for the lateral and shear stiffness cannot directly be assigned as “the 

connection stiffness”. 

Horizontal displacement along the connection edge 

It may have come to notice by studying Figure C.7, that the nodal horizontal displacement along 

the joint edge of the left element is not completely as the theoretical model, that has been 

described in the literature study, suggests. Figure C.13 shows the horizontal displacements of 

the left element in detail, with an illustration of the theoretical deformation next to it. 

Theoretically the whole left element should move in negative x-direction, whereby the column 

next to the window opening should displace more, as a result of a lower lateral stiffness. 

However, the results show two parts of the element that are moving in opposite direction. 
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Figure C.13 Left: Horizontal displacement field in the left element Right: Theoretical behaviour 

The nodes at the top move in opposite direction as a result of the locally applied tensile force in 

the transverse bars. This is a result of the chosen way to model this reinforcement. At the lower 

side of the window opening there is also a region that moves in positive x-direction. This is in 

conflict with the expected behaviour. 

When the diagonal forces are decomposed in a horizontal and vertical component, the concrete 

element is basically loaded by two line loads. A vertical load acts along the edge and a horizontal 

line load acts perpendicular to the edge. It is obvious that the horizontal line load will lead to 

horizontal displacements in negative x-direction, partly because the transverse reinforcement 

elongates, resulting in a widening of the joint and partly because the concrete element bends, 

especially along the small column part. The latter behaviour can be compared with a simply 

supported beam subject to a line load. The vertical line load will also have an effect on the 

horizontal displacement field that develops in the element. This influence appears to be the 

cause of the horizontal displacements in positive x-direction.  

Three tests were performed in order to confirm this statement. Figure C.14 shows the test 

setups that were used. In the first case, a simply supported beam loaded by a line load along its 

outer fibre is analysed. The second test comprises an element similar to the wall elements of the 

parameter study model subjected to a vertical line load along its edge. The third test simulates 

the loading state that occurs with the attached diagonal bars, whereby a vertical and horizontal 

line load are present along the edge. 

 

Figure C.14 Test models 
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The resulting deformations are found in Figure C.15. It is clearly visible from the first two tests 

that a vertical line load results in horizontal displacements in the positive x-direction. The 

behaviour of the third model is comparable to that of the element in the parameter study model.  

 

Figure C.15 Test results horizontal nodal displacements 

When the bending stiffness of the column is enlarged by making it wider, the horizontal 

displacements decrease in both directions. When the column width is smaller, the deformations 

in both directions increase. This leads to a particular relation between the parameter a and the 

lateral and shear stiffness of model 3. This relation is shown in next appendix. This results shows 

that for smaller values of parameter a the stiffness increases. This is a result of the increased 

deflection in positive x-direction, that reduces the average dilatation over the joint Ux. 

This particular behaviour doesn’t correspond to that found in literature. It resembles the 

behaviour of a compression test. It is one of the reasons why this model is considered to be 

infeasible for the performed research.  

  



 

 Stress distribution along model boundaries page 203 

D Stress distribution along model boundaries 

This appendix contains an overview of the shear stress distributions along different sections. 

The distributions are shown for model 1 and model 2. Since the sections are made along the 

outer contours of model 3, plotting the shear stresses for model 3 results in distributions where 

the stress is almost equal to zero along the free edges, but along the supported edges as well.  

Model 1 
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Model 2 

 

 

 



 

 Stress distribution along model boundaries page 205 

 

Model 3 
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E Parameter influence in different models 
This appendix contains the parameter study results for all three models that were developed. 

Results parameter study Model 1 
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Results parameter study Model 2 
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Results parameter study Model 3 
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F The complete relation for the lateral stiffness 
This appendix contains simplified versions of the general formula for the lateral stiffness that 

was derived in paragraph 10.2. Furthermore it contains plots of the distribution of Kh over the 

height of the floor obtained for model 2. These distributions clearly show the combined effect of 

the support stiffness and the lateral compressive forces. 

Simplifications of Kh for specific cases 

The general formula is given by: 

𝐾ℎ =
𝐾𝑠𝑢𝑝1𝐾𝑠𝑢𝑝2

𝐾𝑠𝑢𝑝1 (
ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽 − 1) + 𝐾𝑠𝑢𝑝2 (

ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛾 − 1)

  

Specific cases can be distinguished for which the formula can be simplified. 

1. Ksup2=Ksup2 Ksup1=∞ β=γ=0 (This case corresponds to Figure 10.2) 

𝐾ℎ =
∞ ∗ 𝐾𝑠𝑢𝑝2

∞ ∗ 𝐾𝑠𝑢𝑝2
= 𝐾𝑠𝑢𝑝2 

2. Ksup1=Ksup2 β=γ=0 

𝐾ℎ =
𝐾𝑠𝑢𝑝

2

−2𝐾𝑠𝑢𝑝
 

3. Ksup2=Ksup2 Ksup1= Ksup1 β=γ=0 

𝐾ℎ =
𝐾𝑠𝑢𝑝1𝐾𝑠𝑢𝑝2

−𝐾𝑠𝑢𝑝1 − 𝐾𝑠𝑢𝑝2
 

4. Ksup2=Ksup2 Ksup1=∞ γ=0 

𝐾ℎ =
𝐾𝑠𝑢𝑝2 ∗ ∞

∞ (−1 +
ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽) + 𝐾𝑠𝑢𝑝2

= 𝐾𝑠𝑢𝑝2 ∗
1

1 −
ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽

 

5. Ksup2=Ksup1 γ=0 

𝐾ℎ =
𝐾𝑠𝑢𝑝

2

𝐾𝑠𝑢𝑝 (
ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽 − 2)

= 𝐾𝑠𝑢𝑝 ∗
1

ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽 − 2

 

6. Ksup2=Ksup1 

𝐾ℎ =
𝐾𝑠𝑢𝑝

2

𝐾𝑠𝑢𝑝 (
ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽 +

ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛾 − 2)

= 𝐾𝑠𝑢𝑝 ∗
1

ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽 +

ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛾 − 2

 

7. Ksup1=Ksup2 β=γ 
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𝐾ℎ =
𝐾𝑠𝑢𝑝

2

𝐾𝑠𝑢𝑝 (
ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽 +

ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽 − 2)

= 𝐾𝑠𝑢𝑝 ∗
1

2 ∗
ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽 − 2

 

With the relation for the equivalent spring stiffness of a series spring some of the following 

relations can also be derived from the other. For example the last: With two equal lateral 

springs, the equivalent spring stiffness is halved with respect to the case with Kh2= infinite. The 

formula is indeed divided by two. 

The lateral stiffness distributed over the floor height 

According to the derived relation 10.4, the lateral stiffness that is processed from the model 

results is partly determined by the lateral compressive force. This force induces a prestress of 

the joint that increases the lateral stiffness. As the resulting behaviour of the parameter study 

models shows, the compression diagonals that develop in the model cross the joint halfway each 

floor. For this reason the lateral compressive stress must be the largest at this location. 

The lateral stiffness halfway the floor height is governed by the prestress, but also by the 

support stiffness. This support stiffness should have the lowest value halfway the floor height, 

according to the schematisation of paragraph 10.3. 

The figures below contain plots of the lateral stiffness distributed over the height of one floor. 

The plots are generated using model 2, instead of 3. As mentioned in chapter 8, the second 

model is more suitable for detailed evaluation of local structural behaviour. The results of model 

3 are more difficult to analyse since they appear to be influenced by more effects than those 

considered in this research. 

Figure F.16 shows the distribution of the lateral stiffness over the floor height for different 

values of h. This time not the absolute, but the real value of the lateral stiffness is displayed. So 

the negative values correspond to the regular case where the compressive diagonal force leads 

to a dilatation of the joint. A more negative value indicates a greater lateral stiffness. At the outer 

edges of the floor tensile forces occur in the diagonals, as was seen in paragraph 8.1 as well. 

Thereby at these locations a positive stiffness is found. 

The most important aspect to see is the distribution around half of the floor height. The stiffness 

in this region is significantly larger than closer to the floor edges, as a result of the effect of the 

lateral compressive force. However, the lateral stiffness exactly halfway is slightly lower, as a 

result of the smaller support stiffness at this location, compared to the location at the edges of 

the window opening. 

Figure F.17 shows the distribution for different values of a. As can be observed, the magnitude of 

a influences the effect of the support stiffness on the distribution. For a smaller value of a, the 

local minimum value halfway the floor height is smaller compared to the maximum value. For 

larger values of a, the effect disappears. The column width is too lead to a significant stiffness 

reduction. 

Both figures show distributions that correspond to the theoretical behaviour described by the 

derived formula. So these observations substantiate the validity of the analytical relations of 

paragraphs 10.1 10.2 and 10.3 for the modelled vertical profiled joint connection in a shear wall. 
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Figure F.16 distribution of the lateral stiffness over the floor height for different values of h 

 

Figure F.17 Distribution of the lateral stiffness over the floor height for different values of a 
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G The Timoshenko beam approximation 
This appendix contains the maple sheet that is produced to solve the Timoshenko beam 

equation for the case depicted in the figure below. The beam theory considers bending and shear 

deformations. The deflection caused by bending is indicated by “W”, deflection caused by shear 

by “v” and the combination of both by “u”. The solution makes use of symmetry in the axis y=0 

and therefore only holds for cases with window openings centred halfway the floor height. 

Furthermore the ratio between the lengths of domain 1 and 2 is equal to 1.  

 

Figure G.18 The analysed beam 

First of all, the applying differential equations for the bending deformations are defined for 

domains 1 and 2. Also the boundary and matching conditions are formulated. 
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The solution of these differential equations is determined for domains 1 and 2. The integration 

constants have been solved with the boundary and matching conditions that were defined 

above. 

 

Then the shear deformations are considered. The differential equations and corresponding 

boundary and matching conditions are defined. The solution for the shear deflection v is found 

subsequently. This solution is added to that found for the bending deflection W, resulting in the 

combined total deflection u.  
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For the input properties that are defined above, the following deflection is plotted over half the 

beam length. Location y=0 corresponds to the centre of the beam, where symmetry conditions 

hold. Since the slope of the curve is horizontal, the result is in line with condition. The found 

result is checked with a 1D beam analysis in AxisVM for the same properties.  
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H The calculation method for Kv 
This appendix provides extra insight in the calculation method that is developed in paragraph 

10.4. The first part gives a short explanation of the method, the second part contains an 

evaluation of the error of the calculation. 

The calculation method 

The table below gives an overview of the input data that is required. With this data the global 

lateral and shear stiffness Kh and Kv are calculated over the height of one floor. The values in the 

table correspond to the example that is worked out in this appendix, which corresponds to the 

case of appendix I. 

Input data   

β deg 0 

γ deg 0 

Ec N/mm^2 35000 

ν  0.2 

Lfloor mm 3200 

q N/mm 200 

Lintel width mm 1250 

h mm 1600 

a mm 500 

t mm 200 

AR mm^2 3000 

Lspring mm 200 

Esteel N/mm^2 210000 

Ed N/mm^2 25000 

Wd mm 11.7 

hx mm 50 

hy mm 193.5 

Diagonals per floor 15 

Table H.6 Input of the calculation method 

The load angles β and γ are set equal to zero. Their value is uncertain, since it has not been 

investigated in this research. The height of the floor is set equal to that used in all the phases of 

this research. The magnitude of distributed load q is unimportant, as explained in paragraph 

10.4. The lintel width denotes the width of the precast concrete elements that is included above 

and below the window opening. This width influences the value of Kb. In this case the chosen 

value is equal to the distance between the joint and the centre line of the window opening. This 

is depicted in the figure below. The spring length is the length over which the transverse 

reinforcement is modelled. This length is according to that illustrated in Figure 8.15 and 

determines together with AR and Ec the transverse spring stiffness. With the input quantity Wd 

the diagonal stiffness is regulated in order to let it correspond to the specific calibrated value of 

Kd according to paragraph 7.4. The value of the other properties must be corresponding to the 

design of the shear wall that is analysed, with the restriction that h must be equal to 1600mm 

since only the solution for this case is incorporated so far. 
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Figure H.19 Lintel width 

With the input properties the following quantities are calculated. Some of these quantities are 

required as input for the Timoshenko beam equation that determines the bending stiffness. The 

bending and transverse spring stiffness are required to calculate the support stiffness 

subsequently. The indices 1 and 2 refer to the domains of the Timoshenko beam as depicted in 

appendix G. 

Calculated input   

Ks N/mm 3150000 

L(beam 
theory) 

mm 800 

G N/mm^2 14583.33333 

A1 (shear) mm^2 83333.33333 

A2 (Shear) mm^2 208333.3333 

I2 mm^4 3.26E+10 

I1 mm^4 2.08E+09 

Ld mm 199.8555729 

Ad mm^2 2340 

Table H.7 Calculated input for further calculation 

Then the bending stiffness is determined. The deflection of a single concrete element under load 

q is calculated at each 100mm of the floor height. The deflection is symmetric in the centre line 

of the floor at 1600mm. The stiffness Kb is defined as 𝐾𝑏 = 𝑞 ∗
𝐿𝑓𝑙𝑜𝑜𝑟

𝑈𝑥,𝑎𝑣𝑒𝑟𝑎𝑔𝑒
. 

Ubending analytic     

y Ux [mm] y Ux [mm] 

0 0.0000 900 0.1288 

100 0.0112 1000 0.1528 

200 0.0234 1100 0.1760 

300 0.0364 1200 0.1971 

400 0.0500 1300 0.2148 

500 0.0639 1400 0.2282 

600 0.0780 1500 0.2364 

700 0.0921 1600 0.2392 

800 0.1060  Average 0.1160462 

Table H.8 Deflection of the concrete wall elements 
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Subsequently the support stiffness at either side of the joint is calculated with known Ks and Kb. 

Since the amount of transverse reinforcement at each floor level is the same and only symmetric 

cases with the same openings and concrete properties at both sides of the joint are analysed, the 

indicated simplifications may be made. 

Calculation of Ksup 1 and Ksup2  [N/mm] 

Ks 3150000 

Kb1 5515046 

Kb2 5515046 

Ksup1 3836015 

Ksup2 3836015 

  

Simplifications of this case  

Ks1=Ks2   

Kb1=Kb2   

Table H.9 Calculation of Ksup 

The last step is to calculate the diagonal, lateral and shear stiffness. The first is determined by 

the known diagonal area, length and mortar young’s modulus. The lateral stiffness is calculated 

using formula 10.4: 

𝐾ℎ =
𝐾𝑠𝑢𝑝1𝐾𝑠𝑢𝑝2

𝐾𝑠𝑢𝑝1 (
ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛽 − 1) + 𝐾𝑠𝑢𝑝2 (

ℎ𝑦

ℎ𝑥
∗ 𝑡𝑎𝑛𝛾 − 1)

 [10.4] 

The shear stiffness is calculated using formula 10.1.  

 

𝐾𝑣 =
1

ℎ𝑥
2 + ℎ𝑦

2

𝐾𝑑 ∗ ℎ𝑦
2 −

ℎ𝑥
2

𝐾ℎ ∗ ℎ𝑦
2

   [10.1] 

For the specific input of Table H.6, the following stiffness values result, where the smeared 

stiffness (The stiffness divided by t*Lfloor) is used as input for the interface element: 

Calculated output  N/mm N/mm3 

Kd 4390671  

Kh calculated -1918007  

Kv calculated 3600040 5.62 

Kv limit value 4115857 6.43 

Table H.10 Calculated stiffness values 

The limit value is the shear stiffness that corresponds to the specific diagonal stiffness combined 

with an infinitely large lateral stiffness, according to equation 10.3. The difference between this 

limit and the calculated shear stiffness indicates the contribution of the lateral stiffness. 
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The error of the calculation 

The applied methodology to calculate the shear stiffness of the connection is rough and global. 

This unavoidably leads to an error between the shear stiffness calculated and the one resulting 

from the bar model. In order to define the error of the calculation method, the outcome is 

compared to that of a model of a compact shear wall similar to model 1 of the parameter study. 

This model contains diagonal bars in its joint. Two variants of this shear wall are considered, one 

with a single opening per precast concrete element and one with two openings. The latter model 

is equal to model 1 of the parameter study. Figure J.23 shows these shear walls.  

  

Figure H.20 Analysed shear walls 

First of all, the error of the calculation method is determined for the input properties of Table 

H.6. In this case the average calibrated value for Kd is applied and this value is also assigned to 

the diagonal bars in the wall models. The transverse spring stiffness is based on at least 3000 

mm2 of reinforcement (4 bars Ø32), but due to the frictional force transfer this amount should 

be more in order to obtain the same transverse spring stiffness in reality. The lateral and shear 

stiffness are calculated according to the developed methodology, where the value zero is 

assigned to load angles β and γ. The outcome is compared to the stiffness resulting from the 

middle floor of the two shear wall models. Table H.11 provides the resulting values for the shear 

and lateral stiffness. 

 Kv [kN/mm] Kh [kN/mm] 

Calculation method 3600 100% 1918 100% 

Shear wall 1 3470 96% 1476 77% 

Shear wall 2 3702 103% 2456 128% 

Kv Maximum 4116 114.3% ∞ - 
Table H.11 Error of the calculation method for Kd average 

It is clear that the approximated lateral stiffness has a large variation, whereas the variation of 

the shear stiffness is much smaller. This difference is caused by the relatively small value of Kd, 

which reduces the influence of the lateral stiffness on the shear stiffness. So for a larger value of 

Kd the variation of the shear stiffness will be greater. 

The different results for the two walls are caused by many factors. At least, the configuration of 

the windows influences the orientation of the compression diagonals in the shear wall, which 

partly determines the lateral stiffness, as explained in paragraph 10.2. The calculation method 
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does not consider this effect by setting the load angles equal to zero. Apparently this leads to an 

overestimation of stiffness in case 1 and an underestimation of the stiffness in case 2.  

Setting the load angles to zero and subsequently neglecting the positive influence of a lateral 

compressive force, can be seen as calculating a lower limit value for the shear and lateral 

stiffness. Only the support stiffness Ksup determines the magnitude of the lateral stiffness in this 

situation. However, despite the contribution of some lateral compression, the stiffness in case 1 

is lower than the calculated value. This indicates that the calculated support stiffness is 

overestimated.  

Comparison of the resulting values for Kv with the maximum value indicates the influence of the 

lateral stiffness on the shear stiffness of the connection. In this case the finite lateral stiffness 

leads to a shear stiffness reduction of -15.7 percent.  

The calculation method provides a stiffness that lies between the two model results. In this case 

the deviation of the shear stiffness is acceptable, but this may not hold for larger values of Kd, for 

which the lateral stiffness has a larger influence. Therefore the error of the calculation method is 

also analysed for the largest calibrated value of Kd in combination with a larger thickness of 500 

mm. In this case the inaccuracy of the calculated Kh leads to a larger deviation between the 

values of Kv, as can be seen in Table H.12. 

 Kv [kN/mm] Kh [kN/mm] 

Calculation method 13342 100% 3292 100% 

Shear wall 1 11863 89% 2254 68% 

Shear wall 2 12546 94% 2666 81% 

Kv Maximum 18293 137.1% ∞ - 
Table H.12 Error of the calculation method for Kd large and t=500mm 

The resulting lateral stiffness is in all cases larger than before, because of the increased 

thickness. The parameter study results of Figure 8.26 show that an enlarged diagonal stiffness 

leads to a reduction of the lateral stiffness, since a variation of Kd alters the force distribution 

over the mortar joint and therefore the contribution of the lateral compressive forces. This effect 

is not taken into account by the calculation method, whereby the increase of the calculated Kh 

with respect to the results of Table H.11 is the largest. This leads to an overestimation of the 

lateral stiffness compared to both model results. Including the named effect in the calculation 

method can be done by taking into account the load angles and making them dependent on the 

diagonal stiffness. The overestimation of the lateral stiffness is rather big, indicating that the 

applied method to determine a magnitude for the support stiffness Ksup is inaccurate.  

In this case the maximum influence of the lateral stiffness on the shear stiffness is increased. The 

reduction caused is equal to -35.2 percent. 

Because of the larger influence of Kh, the deviation of the shear stiffness is larger than before. 

However, since the largest deviation is just over 10 percent, one could argue that it is still 

acceptable. The influence of Kh can be increased even more by reducing its value. In that way the 

corresponding point on the KvKh-diagram shifts towards the steeper part, where the influence of 

Kh on Kv is greater. In order to do this, the amount of transverse reinforcement is reduced to 

1000 mm2 (4 bars Ø18mm) and the concrete Young’s modulus is reduced to 20000 N/mm2. The 

resulting values for Kv and Kh are found in the table below. 



 

 The calculation method for Kv page 231 

 Kv [kN/mm] Kh [kN/mm] 

Calculation method 9670 100% 1370 100% 

Shear wall 1 7837 81% 916 67% 

Shear wall 2 7954 82% 938 68% 

Kv Maximum 18293 189.2% ∞ - 
Table H.13 Error of the calculation method for Kd large, t=500 and reduced Ks and Ec 

The results show that the error of the calculation method is indeed greater than for the case of 

Table H.12. The lateral stiffness has been reduced a lot compared to the previous case. The 

applied values for the variables Ec and Ks should almost reach their practical lower limit. For the 

value of Ks this limit is a bit uncertain, but for Ec it is more clear. In case the precast concrete next 

to the joint is cracked, the magnitude of Ec can get lower than the value applied here. Up to a 

value of approximately 10000 N/mm2 at minimum. 

The 20 percent error of the shear stiffness seems unacceptable. However, this depends on its 

effect on the behaviour of the shear wall. If for instance only the top deflection of the shear wall 

is of interest and the deviation of 20 percent hardly affects this deflection, the error could be 

acceptable. The contribution of the lateral stiffness is again larger, since its value has been 

reduced compared to previous case. Therefore the maximum shear stiffness is reduced by -57.2 

percent. 

With the restriction that h must remain 1600 mm and assuming uncracked concrete elements, 

only the distance between the joint and the opening can still be reduced. It is reasonable to state 

that the distance between the joint and the opening is at least 300 mm. So taking this as a 

minimum, the following calculation error is found, which is discussed in paragraph 10.4: 

 Kv [kN/mm] Kh [kN/mm] 

Calculation method 8951 100% 1170 100% 

Shear wall 1 6547 73% 680 58% 

Shear wall 2 6596 74% 689 59% 

Kv Maximum 18293 204.4% ∞ - 
Table H.14 Maximum error found for a large Kd and a small Kh 
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I Shear wall analysis for the average value of Kd 

This appendix contains extra results of the evaluation of different compact wall models for 

which the average calibrated value of Kd is applied. These results can be compared with those of 

paragraph 11.2 and 11.4. 

General input of the compact shear wall model 

The input properties applied in the evaluation are summarized in Table I.15. For the diagonal 

stiffness, the average calibrated value is applied. 

Concrete Elements 
Plane stress elements  CQ16M 

Thickness t 200 mm 
E-modulus Ec 35000 N/mm2 
Poisson’s ratio ν 0.2 
Window height 1600 mm 
Column width 500 mm 

Diagonal bars 
Regular truss elements L2TRU 

Length 199.86 mm 
Slope [hy/hx] 3.87 
Cross-sectional area Ad 2340 mm2 
E-modulus Ed 25000 N/mm2 
Total diagonal stiffness Kd 
(Average calibration of paragraph 7.4) 

4390 kN/mm 

Poisson’s ratio ν 0.2 
Amount of diagonals per floor 15 

Reinforcement bars 
Regular truss elements L2TRU 

Cross-sectional area AR 3000 mm2 
E-modulus Es 210000 N/mm2 
Length 200 mm 
Transverse spring stiffness Ks 3150 kN/mm 
Poisson’s ratio ν 0.3 

Table I.15 General input properties 

The dimensions of the compact shear wall are equal to those of the model that has been applied 

in the parameter study of chapter 8. So the wall contains five floors with a height of 3200 mm 

and two five metre wide precast concrete elements per floor with a 50 mm wide joint in-

between. The corresponding slenderness ratio of the wall is 1.59. The wall is loaded by a 

distributed horizontal force on each floor, having a value of 40 N/mm. Figure I.21 shows the 

walls that are analysed. 
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Figure I.21 Evaluated compact walls 

Table I.16 shows the resulting horizontal top deflections of the three wall models for the three 

evaluated cases. According to these results the application of a vertical joint reduces the wall’s 

stiffness by approximately 10-12 percent. This holds for all three walls. 

 Wall 1 Wall 2 Wall 3 
 Utop abs. Utop rel. Utop abs. Utop rel. Utop abs. Utop rel. 

Monolithic 2.99 100% 4.95 100% 9.40 100% 

Diagonal bars 3.36 112.4% 5.49 111% 10.30 109.6% 

Interface with 
calculated Kv 

3.31 110.7% 5.49 111% 10.38 110.4% 

Table I.16 Resulting top deflection of the compact walls [mm] (Wall 1: Kv= 6.12 N/mm3 Wall 2&3: 5.62 N/mm3) 

The difference between the approximated deflection of the model with interface elements and 

the deflection of the model with bar elements is rather small compared to the difference with the 

monolithic wall. This means that based on these results the diagonal bars may be replaced by the 

interfaces with calculated Kv, keeping an accurate approximation of the wall deflection. The 

difference in top deflection is even equal to zero for wall 2. For wall 3 the difference is still small, 

despite the fact that the load angle is not taken into account for the calculated value of Kv. This 

may indicate a limited need to consider this effect while calculating the magnitude of Kh. 

It is interesting to see that the interfaces underestimate the top deflection of the model with 

diagonal bars for the closed wall, whereas they give an overestimation in case of the wall with 

double openings. The underestimation may be due to an overestimation of the lateral stiffness in 

the closed wall, where Kb was assumed to be more than fifteen times larger than in the other two 

walls. Since the calculation method has yet only been developed for the case where a window 

opening is present, it is not very suitable to apply for a closed wall. Furthermore, another effect 

influences the resulting deflection of the wall with a joint with diagonal bars. The occurrence of 

this effect is explained using the results of next section of this appendix. 

The influence of the error of Kh  

Similar as in chapter 11, the lateral stiffness is varied according to the error obtained in 

appendix H. This leads to four different values of the interface shear stiffness Kv. This is 

illustrated in Figure I.22, where the found values are indicated in the Kv-Kh diagram 

corresponding to the applied Kd value (Calibrated average). The chosen variation of the lateral 

stiffness leads to a significant change of the determined shear stiffness for both wall 1 and walls 

2 and 3.  
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Since walls 2 and 3 contain openings, the lateral stiffness in these cases is generally lower than 

in wall 1. Thereby a variation of the lateral stiffness leads to a larger variation of the shear 

stiffness, as the indicated points are located in the steeper part of the diagram.  

 

Figure I.22 The found values for Kv and their position on the Kv-Kh curve 

Table I.17 provides the resulting top deflection of each wall for the different values of Kv and 

their relative value compared to the monolithic wall.  

  Wall 1  Wall 2  Wall 3 
 Kv 

[N/mm3] 
Utop 
abs. 

Utop 
rel. 

Kv 
[N/mm3] 

Utop 
abs. 

Utop 
rel. 

Kv 
[N/mm3] 

Utop 
abs. 

Utop 
rel. 

Kv Calculated 6.12 3.31 110.7% 5.62 5.49 110.9% 5.62 10.38 110.4% 

Kv Maximum 6.43 3.30 110.4% 6.43 5.45 110.1% 6.43 10.33 109.9% 

Kv Upper limit 6.19 3.31 110.7% 5.78 5.48 110.7% 5.78 10.37 110.3% 

Kv Lower limit 5.84 3.32 111.0% 5.00 5.53 111.7% 5.00 10.44 111.1% 

Table I.17 Resulting top deflections for different values of Kv, based on a variation of Kh [mm] 

The difference between the top deflection corresponding to the calculated shear stiffness and 

the maximum value in case of infinite lateral stiffness is relatively low. This indicates that the 

influence of the lateral stiffness on the top deflection is limited for the applied input properties. 

For wall 2, the difference between the maximum and the lower limit is with a value of 1.6 

percent point the largest. This is 1.6/10.1= 15.8 percent of the minimal top deflection increase. 

So the influence of the lateral stiffness on the top deflection increase is at most 15.8 percent. This 

holds only for the applied input properties of Table 11.1. For larger values of Kd and smaller 

values of α and Kh, the influence of Kh is greater, as explained in paragraph 10.1 and shown in 

chapter 11. 

The error of the calculation method is indicated by its band width (the difference between the 

lower and upper limit result). This is at most 1.0 percent point for wall 2. This is 1.0/10.1=9.9% 

of the minimal top deflection increase. The results of chapter 11 show that the band width 

increases for a larger value of Kd and a smaller value of Kh. 
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A final comment must be made about the results of Table 11.3 and Table I.17. It is observed that 

the top deflection of wall 3 with diagonal bars is smaller than the top deflection with the upper 

limit value of Kv. This shouldn’t be possible, since the lateral stiffness cannot exceed infinity and 

therefore the shear stiffness can’t exceed the limit value. A more detailed analysis shows that in 

the model of wall 3 with diagonal bars, part of the joint is compressed instead of dilated. This 

leads to a shear stiffness larger than the limit value. However, this is physically impossible, since 

the joint is fully filled with mortar and therefore incompressible. So a more realistic top 

deflection of the model with diagonal bars will be equal to the deflection obtained with the Kv 

upper limit. Appendix J provides a more detailed analysis of this theoretical effect. 
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J Theoretical evaluation of the derived KvKh-relation 

Figure J.23 shows the complete diagram that relates the shear and lateral stiffness for a certain 

value of Kd and α. In the main report only part 1 has been shown with the lateral stiffness 

displayed as absolute value. The analytical relation of the diagram is given by equation 10.1. The 

domain of this relation is [-∞,∞] and in this domain three characteristic parts are distinguished.  

 

Figure J.23 Complete KvKh-diagram 

The behaviour of a single diagonal bar that corresponds to part 1 is shown in the left image of 

Figure J.24. The angle of the load is such that the lateral stiffness is negative, which means that a 

dilatation occurs. This coincides with a negative shear displacement, where the top of the 

diagonal deflects more than its lower end. 

In part 2, the lateral stiffness is positive, which means that the joint narrows down. The positive 

lateral stiffness is caused by the angle of the load, which is larger than in part 1. The shear 

stiffness is negative, which means that the top end translates upwards relative to the lower end 

of the diagonal bar. This happens as a result of the negative horizontal displacement and the bar 

rotation it induces. 

In part 3, the lateral stiffness is positive, but the shear stiffness is negative. The upward rotation 

of the upper end of the bar due to the negative horizontal displacement results in a displacement 

in positive y-direction. However, the shortening of the diagonal bar causes a translation of the 

upper end of the bar in negative y-direction which is greater. This results in a net translation in 

negative y-direction.  
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Figure J.24 Physical behaviour corresponding to the different parts of the KvKh-diagram 

The results presented in chapter 11 show that the wall with diagonals in its joint is sometimes 

stiffer than the wall with interface elements to which the maximum shear stiffness is assigned. 

This maximum is equal to that corresponding to the horizontal asymptote in Figure J.23. In the 

wall with diagonals the situation corresponding to part 3 occurs in some cases for part of the 

diagonals in the joint. As the complete diagram shows, in this part the shear stiffness is greater 

than the asymptotic value, which explains the obtained results. 

The joint with diagonal bars is compressible in x-direction, since the bars are connected to the 

precast elements by hinges.  However, in reality the joint is completely filled with mortar and 

therefore not easily compressible. So the behaviour corresponding to parts 2 and 3 of the 

diagram is not realistic. 

The boundaries between the three different parts are dependent on the values for Kd and α. The 

value of the lateral stiffness corresponding to the vertical asymptote is given by: 

𝐾ℎ
∗ = ℎ𝑥

2 ∗
𝐾𝑑

𝐿𝑑
2  

This is obtained by setting relation 10.1 equal to infinity.  
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K Evaluation of stresses in the shear wall models 

In paragraph 10.4 the developed method to calculate the shear stiffness that must be assigned to 

linear interface elements that model the vertical profiled mortar connections was described. 

Subsequently, this method was evaluated in chapter 11 on multiple shear wall models. However, 

in this chapter only the resulting top deflections were compared. This appendix contains the 

comparison of the resulting shear stresses in the joint and in the precast wall elements. 

For this analysis two stiffness properties are assigned to the interface elements that model the 

vertical connection: a normal and a shear stiffness. The shear stiffness is determined according 

to section 11.1.2. The normal stiffness is found in the following way: 

𝐾𝑛 =
𝐸𝑚𝐴

𝐴𝑊𝑗𝑜𝑖𝑛𝑡
=

𝐸𝑚

𝑊𝑗𝑜𝑖𝑛𝑡
=

25000

75
= 333

𝑁

𝑚𝑚3
 

Shear stresses in the compact wall of paragraph 11.2 

First of all the compact walls are analysed. Figure K.25 shows the results that are exported for 

one of the different walls. The shear stress in the joint, τ, and the shear stress in the wall Sxy are 

reviewed. The left image shows that the shear stress distribution in the joint corresponds to the 

theoretical distribution that was described in paragraph 3.2, since the maximum stress occurs a 

couple of metres above the base of the wall. 

 

Figure K.25 Shear stresses in the vertical joint and the precast concrete wall elements in compact wall 2 

The maximum occurring stresses are stored in Table K.18 and Table K.19 and subsequently 

compared among the different walls with varying joint stiffness. The numbering of the walls is 

equal to that applied in chapter 11, as indicated in Figure 11.1.  

The purpose of this analysis is first of all to analyse the error of the calculation method for Kv of 

paragraph 10.4 in terms of resulting shear stress. To this purpose the results of “Kv Upper limit” 

and “Kv Lower limit” are compared, since these values of the shear stiffness correspond to the 

obtained band width of the calculation method for Kv.  

The second purpose is to indicate the maximum influence of the lateral stiffness, Kh, on the 

occurring stress distribution. For this purpose the resulting stress for “Kv maximum” is 

compared to that of “Kv Lower limit”, since the former is the shear stiffness corresponding to an 
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infinitely large lateral stiffness and the latter is corresponding to the smallest possible lateral 

stiffness for this specific wall. The following tables contain the resulting stresses, based on which 

the following is observed: 

  Wall 1  Wall 2  Wall 3 
 Kv 

[N/mm3] 
τmax  τmax rel. Kv 

[N/mm3] 
τmax  τmax rel. Kv 

[N/mm3] 
τmax  τmax rel. 

Kv Maximum 11.4 0.45 100.0% 11.4 0.78 100% 11.4 1.18 100.0% 

Kv Upper limit 9.85 0.44 97.8% 8.87 0.73 93.6% 8.87 1.08 91.5% 

Kv Lower limit 8.10 0.43 95.6% 6.56 0.66 84.6% 6.56 0.95 80.5% 

Table K.18 Maximum shear stresses in the joint (τmax) [N/mm2] for different values of Kv for a compact wall 

  Wall 1  Wall 2  Wall 3 
 Kv 

[N/mm3] 
Sxy 

max 
Sxy rel. Kv 

[N/mm3] 
Sxy 

max 
Sxy rel. Kv 

[N/mm3] 
Sxy 

max 
Sxy rel. 

Kv Maximum 11.4 0.19 100.0% 11.4 1.12 100.0% 11.4 2.43 100.0% 

Kv Upper limit 9.85 0.20 105.3% 8.87 1.13 100.9% 8.87 2.45 100.8% 

Kv Lower limit 8.10 0.20 105.3% 6.56 1.14 101.8% 6.56 2.47 101.6% 

Table K.19 Maximum shear stresses in the structure (Sxy) [N/mm2] for different values of Kv for a compact wall 

First of all, the results of Table K.19 show that the shear stress in the shear wall itself is hardly 

affected by the magnitude of Kv. A less stiff joint leads to a slight increase of this stress, but this is 

negligible. This conclusion holds for all three wall designs. 

Secondly, the maximum shear stress that occurs in the joint decreases for lower values of Kv. 

This is true for all three wall designs.  

Furthermore, the band width of the calculation method is the largest in wall type 3. For the 

upper limit a shear stress of 1.08 N/mm2 is observed, for the lower limit a shear stress of 0.95 

N/mm2. This is a difference of 13.7%. 

Moreover, the influence of the lateral stiffness, Kh, is also the largest for wall type 3. In this case 

the maximum shear stress is just 80.5% of the value that would occur in case the lateral stiffness 

was infinitely large, a stress reduction of almost 20 percent. 

Shear stresses in the slender wall of paragraph 11.2 

Then a slender wall is evaluated using the same procedure as before. Figure K.26 shows the 

stresses that develop in type 2 of this slender wall for “Kv maximum”. 

 

Figure K.26 Shear stresses in the vertical joint and the precast concrete wall elements in slender wall 2 
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Table K.20 and Table K.21 contain the resulting maximum values for the shear stress in the 

vertical joint and the shear wall itself. 

  Wall 1  Wall 2  Wall 3 
 Kv 

[N/mm3] 
τmax  τmax rel. Kv 

[N/mm3] 
τmax  τmax rel. Kv 

[N/mm3] 
τmax  τmax rel. 

Kv Maximum 11.4 1.60 100.0% 11.4 2.94 100.0% 11.4 3.73 100.0% 

Kv Upper limit 9.85 1.59 99.4% 8.87 2.74 93.2% 8.87 3.45 92.5% 

Kv Lower limit 8.10 1.57 98.1% 6.56 2.50 85.0% 6.56 3.12 83.6% 

Table K.20 Maximum shear stresses in the joint (τmax) [N/mm2] for different values of Kv for a slender wall 

  Wall 1  Wall 2  Wall 3 
 Kv 

[N/mm3] 
Sxy 

max 
Sxy rel. Kv 

[N/mm3] 
Sxy 

max 
Sxy rel. Kv 

[N/mm3] 
Sxy 

max 
Sxy rel. 

Kv Maximum 11.4 1.24 100.0% 11.4 3.99 100.0% 11.4 9.59 100.0% 

Kv Upper limit 9.85 1.24 100.0% 8.87 4.00 100.2% 8.87 9.62 100.3% 

Kv Lower limit 8.10 1.24 100.0% 6.56 4.00 100.2% 6.56 9.66 100.7% 

Table K.21 Maximum shear stresses in the structure (Sxy) [N/mm2] for different values of Kv for a slender wall 

First of all, the results of Table K.21 show that the shear stress in the shear wall itself is hardly 

affected by the magnitude of Kv. A less stiff joint leads to a slight increase of this stress, but this is 

negligible. This conclusion holds for all three wall designs. 

Secondly, the maximum shear stress that occurs in the joint decreases for lower values of Kv. 

This is true for all three wall designs.  

Furthermore, the band width of the calculation method is the largest in wall type 3. For the 

upper limit a shear stress of 3.45 N/mm2 is observed, for the lower limit a shear stress of 3.12 

N/mm2. This is a difference of 10.6%. 

Moreover, the influence of the lateral stiffness, Kh, is also the largest for wall type 3. In this case 

the maximum shear stress is just 83.6% of the value that would occur in case the lateral stiffness 

was infinitely large, a stress reduction of almost 20 percent. 

Finally, it can be observed that in a slender wall, the relative deviation of the shear stress in both 

the structure and the joint is smaller than in a compact wall. 

Shear stresses in the compact wall of paragraph 11.4 

In paragraph 11.4 the largest error in terms of top deflection was found for the case of a compact 

wall where the lateral stiffness was maximally reduced. Table K.22 and Table K.23 show the 

resulting maximum shear stresses corresponding this wall. 

  Wall 2  Wall 3 
 Kv 

[N/mm3] 
τmax  τmax rel. Kv 

[N/mm3] 
τmax  τmax rel. 

Kv Maximum 11.4 0.85 100.0% 11.4 1.22 100.0% 

Kv Upper limit 8.87 0.74 87.1% 8.87 1.04 85.2% 

Kv Lower limit 6.56 0.62 72.9% 6.56 0.87 71.3% 

Table K.22 Maximum shear stresses in the joint (τmax) [N/mm2] for different values of Kv for a compact wall with 
least stiff design parameters 
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  Wall 2  Wall 3 
 Kv 

[N/mm3] 
Sxy 

max 
Sxy rel. Kv 

[N/mm3] 
Sxy 

max 
Sxy rel. 

Kv Maximum 11.4 1.32 100.0% 11.4 2.67 100.0% 

Kv Upper limit 8.87 1.33 100.8% 8.87 2.68 100.4% 

Kv Lower limit 6.56 1.34 101.5% 6.56 2.70 101.1% 

Table K.23 Maximum shear stresses in the structure (Sxy) [N/mm2] for different values of Kv for a compact wall 
with least stiff design parameters 

Again the deviation of the shear stress in the wall elements is not significant. Also the same 

relation between the magnitude of Kv and the maximum shear stress is observed as before. 

The band width of the calculation method is the largest in wall type 3. For the upper limit a shear 

stress of 1.04 N/mm2 is observed, for the lower limit a shear stress of 0.87 N/mm2. This is a 

difference of 19.5%. 

Moreover, the influence of the lateral stiffness, Kh, is also the largest for wall type 3. In this case 

the maximum shear stress is just 71.3% of the value that would occur in case the lateral stiffness 

was infinitely large, a stress reduction of almost 30 percent. 

Concluding remarks 

The relative error of the calculation and the relative influence of a limited lateral stiffness are 

larger in terms of shear stress than in terms of top deflection. However, since their absolute 

difference of the shear stress is rather small, the importance of this difference may be 

questionable. If a more refined calculation method for the magnitude of Kv is developed, the 

band width is reduced and therefore the difference in resulting shear stress. 

 



 

 

 


