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Abstract. In the Nature article ‘A safe operating space for humanity’, Rockström et 
al. (2009) introduce the concept of a safe operating space for humanity. A safe 
operating space is the space for human activities that will not push the planet out of 
the ‘Holocene state’ that has seen human civilizations arise, develop, and thrive. 
Rockström et al. have identified nine earth-system processes and associated 
thresholds which, if crossed, are expected to generate unacceptable environmental 
change. These include among others climate change, rate of biodiversity loss, 
interference with the nitrogen and phosphorus cycles, and global freshwater use.  
Rockström et al. provide only a best guess for the limits to global freshwater use. 
Molden (2009) concurs with Rockström et al. that there are physical limits to human 
interventions in natural processes. However, these limits are critically depended on 
local conditions, the role of management, and financial and institutional capacity in 
magnifying or ameliorating problems, and estimates of these limits are plagued by 
uncertainty.  In case of the limits to the world water system, these uncertainties arise 
out of conflicting models, regional variations, limitation of expansion of water use 
through financial and institutional capacity, and uncertainty about  the realization 
and efficiency of trans-boundary water transfers. This paper aims at investigating 
more thoroughly the limits to global freshwater use. To this end, the behavior of a 
dynamic model of the world water balance is explored across a wide variety of 
uncertainties. We find that the dynamics at a global level are not substantially 
affected by this. This is explained in light of the order of magnitude difference 
between annual human water use and annual runoff. 

Keywords. Exploratory modeling and analysis, global change, safe operating space, 
global limits, ANEMI, world water models, uncertainty 

1 Introduction 

In the Nature article ‘A safe operating space for humanity’, Rockström et al. 
(2009) introduce the concept of a safe operating space for humanity. A safe operating 
space is the space for human activities that will not push the planet out of the 
‘Holocene state’ that has seen human civilizations arise, develop, and thrive. The 
concept is inherently anthropocentric and excludes non-human events and processes 
that could push the planet out of the Holocene state. Rockström et al. have identified 
nine earth-system processes and associated thresholds which, if crossed, are expected 
to generate unacceptable environmental change. These include climate change, rate of 
biodiversity loss, interference with the nitrogen and phosphorus cycles, stratospheric 
ozone depletion, ocean acidification, global freshwater use, change in land use, 



chemical pollution, and atmospheric aerosol loading. For all nine earth-system 
processes identified associated preliminary boundaries are given by Rockström et al. 
(2009). However, for only three of them, notably, climate change, rate of biodiversity 
loss, and the nitrogen cycle, are these boundaries substantiated theoretically and 
methodologically. The thresholds for the other six, including the global fresh water 
cycle, are tentative ‘best guesses’ (Rockström et al. 2009). For water, Rockström et al 
maintain that the boundary must be set to safely sustain enough green water for 
moisture feedback while allowing for terrestrial and aquatic ecosystem functioning 
and as a first attempt propose runoff depletion in the form of consumptive blue water 
use as a proxy. Based on global fresh water cycle assessment studies, Rockström et al 
set the threshold for global fresh water use at a range of 4000 to 6000 cubic 
kilometers per year. 

Although we do subscribe to Rockström et al.’s ambition and concepts, there are 
nevertheless several problems associated with the approach they advance. A first 
problem is the ambiguous treatment of reductionism versus holism. While the authors 
clearly recognize thresholds and threshold behavior as a systemic and emergent 
property, Rockström at al. embark on a reductionist approach by reducing the earth 
system to nine biophysical processes and define planetary boundaries internal to these 
subsystems. Such an approach is bound to overlook the impacts of the dynamic 
interactions between the subsystems. To this, Molden (2009) add that the concept of a 
global limit overlooks the importance of local conditions, regional variations, the role 
of management, and financial and institutional capacity in magnifying or ameliorating 
problems. Moreover, the estimate of  the global limit for blue water use is based on a 
limited number of studies extrapolated beyond their original intentions (Molden 
2009). Furthermore, structural uncertainties exist in the relation between climate 
change and renewable fresh water resources (RFWR) (Oki and Kanae 2006).  

From the foregoing, we conclude that the hypothesis of Rockström et al. that 
humanity may soon be approaching the boundaries for global freshwater use is 
disputed. Much of this dispute relates to uncertainties in the interaction between 
socio-economic and physical factors in the approach used for establishing the safe 
operation space with respect to water use and the consequences of climate change. 
That is, the limits on fresh water use cannot be established without considering related 
subsystems and the wide variety of uncertainties. The reductionist and complex 
dynamics issues are tackled by utilizing an integrated dynamic models of the 
planetary fresh water cycle that takes into consideration the non-linear and dynamic 
feedback relationships between physical characteristics of water balance and 
population growth; development of agriculture and industry; technological 
development and use of other resources. The issue of uncertainty is addressed by 
applying Exploratory Modeling and Analysis (EMA), a research methodology that 
uses computational experiments to analyse complex and uncertain systems 
(Agusdinata 2008, Bankes 1993). The remainder of this paper is structured as follow. 
Section 2 outlines the method in more detail. Section 3 contains the application and 
results. Section 4 contains an extended discussion of the results. 



2 Method 

There are various modeling approaches that can be used to model the planetary 
fresh water cycle. One modeling approach that fits with the suggested holistic 
approach is system dynamics (Sterman 2000, Forrester 1968). At present, several 
integrated dynamic water cycle models exist at both global and regional scales. These 
models have been used to define global or regional limits to the use of blue water. On 
a global scale, AQUA (Hoekstra 1998) and WorldWater (Simonovic 2002) are the 
most relevant and best known models. ANEMI is a more recent model in this same 
tradition (Davies and Simonovic 2010, Davies and Simonovic 2011).  

The issue of uncertainty is addressed by applying EMA. EMA can be contrasted 
with the use of models to predict system behavior, where models are built by 
consolidating known facts into a single package (Hodges and Dewar 1992). When 
experimentally validated, this single model can be used for analysis as a surrogate for 
the actual system. Where applicable, this consolidative methodology is a powerful 
technique for understanding the behavior of complex systems. Unfortunately, for 
many systems of interest, the construction of a model that may be validly used as 
surrogate is simply not a possibility. This may be due to a variety of factors, including 
the infeasibility of critical experiments, impossibility of accurate measurements or 
observations, immaturity of theory, openness of the system to unpredictable outside 
perturbations, or nonlinearity of system behavior, but is fundamentally a matter of not 
knowing enough to make predictions (Cambell et al. 1985, Hodges and Dewar 1992). 
For such systems, a methodology based on consolidating all known information into a 
single model and using it to make best estimate predictions can be highly misleading.  

EMA can be useful when relevant information exists that can be exploited by 
building models, but where this information is insufficient to specify a single model 
that accurately describes system behavior. In this circumstance, models can be 
constructed that are consistent with the available information, but such models are not 
unique. Rather than specifying a single model and falsely treating it as a reliable 
image of the system of interest, the available information is consistent with a set of 
models, whose implications for potential decisions may be quite diverse. A single 
model run drawn from this potentially infinite set of plausible models is not a 
“prediction”; rather, it provides a computational experiment that reveals how the 
world would behave if the various guesses any particular model makes about the 
various unresolvable uncertainties were correct. By conducting many such 
computational experiments, one can explore the implications of the various guesses. 
EMA is the explicit representation of the set of plausible models, the process of 
exploiting the information contained in such a set through a large number of 
computational experiments, and the analysis of the results of these experiments. In 
this way, EMA aims at offering support to decision making, without falling into the 
pitfall of trying to predict the unpredictable. 

EMA is not focused narrowly on optimizing a (complex) system to accomplish a 
particular goal or answer a specific question, but can be used to address ‘beyond what 
if’ questions, such as “Under what circumstances would this policy do well? Under 
what circumstances would it likely fail?” It is exceptionally valuable in stimulating 
‘out of the box’ thinking and supporting the development of adaptive plans. EMA is 
first and foremost an alternative way of using models, knowledge, data, and 



information. Many well established techniques, such as Monte Carlo sampling, 
factorial methods, and optimization techniques, can be usefully and successfully 
employed in the context of EMA (Miller 1998, Agusdinata 2008, Kwakkel 2010). 

3 Case 

3.1 ANEMI 

ANEMI, an ancient Greek term for the four winds, heralds of the four seasons, 
links physical systems such as climate, the hydrological cycle and the carbon cycle 
with socio-economic systems, including economy, land use, population change and 
water use (Davies and Simonovic 2010). It was designed as an integrated assessment 
model that would permit the assessment both of socio-economic policies and 
uncertainties about the overall system (Davies and Simonovic 2010). ANEMI is a 
system dynamics model, focusing in particular on the importance of the feedback 
relations between the various physical and socio-economic subsystems, and the 
dynamics arising out of these feedbacks, rather than aiming at providing detailed 
predictions.  

ANEMI is a system dynamics model. Central to system dynamics models is the 
endogenous point of view (Richardson 2011). According to this view, the dynamic 
behavior of a system arises within the internal structure of a model. This view implies 
a closed system boundary, where the behavioral dynamics of the system arise out of 
interacting feedback loops. Thus, in system dynamics, a system is viewed as an 
ongoing interdepended, self-sustaining, dynamic process. That is, the observed 
behavior of a system is to be understood as arising out of the internal structure of the 
system. This internal structure of a system is conceptualized using stocks and flows, 
and relations between them. System dynamics is a modeling method for 
understanding the behaviors of nonlinear, dynamic and complex systems and for 
policy analysis and design (Sterman 2000). 

ANEMI is composed of nine subsystems: climate, carbon cycle, economy, land-
use, population, agricultural production, natural hydrological cycle, water use, and 
water quality (Davies 2007, Davies and Simonovic 2008, Davies and Simonovic 
2011). Fig. 1 shows the main feedback structure of the model. The positive or 
negative sign associated with each arrow indicates the direction of change one model 
component has on the other model component. The names next to each arrow indicate 
which aspect of the model component causes a change in the other model component. 
The closed loop structure of the model implies that model behavior emerges 
endogenous feedbacks (Davies and Simonovic 2010). The model has been validated 
through comparison with government statistics, scientific data, results from other 
models, and socio economic data (Davies 2007, Davies and Simonovic 2008, Davies 
and Simonovic 2010, Davies and Simonovic 2011). 



 

Fig. 1. Model components and their feedbacks (Davies and Simonovic 2011) 

The climate sector is an upwelling diffusion energy balance model based on the 
box advection diffusion model of Harvey and Schneider (1985). The carbon cycle is 
based on Goudriaan and Ketner (1984), where the oceanic sector is modified based on 
Fiddaman (1997). The land use system is based on Goudriaan and Ketner (1984). The 
population component is based on Nordhause and Boyer (2000) and Fiddaman 
(1997). However, the dynamics are endogenous by including water stress (Davies and 
Simonovic 2010). The economic components is inspired by the updated DICE model 
(Nordhaus 2008). The three water parts and the agricultural production are unique to 
ANEMI, but build on earlier work (e.g. Shiklomanov 2000, Simonovic 2002). The 
water use model is similar to WaterGAP 2 (Alcomo et al. 2003). Water quality is 
comparable to how it is handled in WorldWater (Simonovic 2002). Surface flow, and 
the hydrological cycle are influenced by Chanine (1992), Shiklomanov (2000), and 
Simonovic (2002). The agricultural component is the latest addition to ANEMI and  is 
based on Bouwman et al. (2005), Siebert and Döll (2010), and FAO data (Davies and 
Simonovic 2011). 

3.2 Experimental design 

Table 1 contains an overview of the parameters and their ranges that are to be 
explored. For this paper, we concentrated on parameters related directly to water use. 
The documentation of the model was reviewed and parameters that were either 
explicitly denoted as a guess or assumption, or for which divergent possible values 
were named were included in the analysis. The parameters include various time series 
that describe developments over the full runtime, such as the changing demand for 
food per person per year. These time series were replaced with sigmoid functions:  
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Here, α, β, γ, δ, are uncertain parameters that can be explored; α and β control the 
upper and lower limit of the sigmoid, γ controls when the sigmoid is half way 
between the two limits, and δ controls the slope.  
 

Table 1. The uncertainties and their ranges 

uncertainty description range 

Agricultural Blue Water 
Dilution Factor 

factor for dilution of polluted agricultural blue water 5-10 

Agricultural Polluted 
Fraction 

percentage of return flow of agricultural blue water 
that is polluted 

0.7-0.95 

Average Virtual Water 
Content of Crops 

virtual water in crops in m3/Gcal 400-500 

Average Virtual Water 
Content of Fodder 

virtual water in fodder in m3/Gcal 200-300 

Base Specific Water Intake base value for water intake in agriculture in 
m3/ha/year 

9000-
12000 

Base Returnable Water base value for water return flow from agriculture in 
m3/ha/year 

10-50 

Base Precipitation Multiplier increase of precipitation due to increasing global 
temperature in %/Celsius 

3-4 

Domestic Dilution Factor factor for dilution of polluted domestic water 5-10 
Domestic Polluted Fraction percentage of return flow of domestic water that is 

polluted 
90-100 

Fractional Usage of 
Desalination Capacity 

fraction of desalinization capacity that is being used 0.3-0.7 

Fcl simple area weighted cloud fraction 0.5-0.6 
Gamma d factor affecting increase in water demand per person 

due to gdp/capita increase 
2.2e-10-
2.2e-06 

Industrial Dilution Factor factor for dilution of polluted industrial water 5-10 

Industrial Polluted Fraction percentage of return flow of industrial water that is 
polluted 

38-46 

Max Groundwater 
Withdrawal 

maximum amount of ground water withdrawal in 
km3/Year 

7-10 

Maximum Establishment of 
Desalination Facilities 

maximum amount of desalinization capacity in 
km3/year 

25-40 

Percent Domestic 
Withdrawal 

percentage of domestic withdrawal that is consumed 80-90 

Stable and Useable Runoff 
Percentage 

fraction of runoff that can be used, taking pollution 
dilution into account 

30-40 

Yield Ratio for rainfed to 
irrigated agriculture 

yield fraction of rain fed agriculture as compared to 
irrigated agriculture 

0.4-0.8 

Wastewater Dilution 
Requirement 

multiplier for dilution of polluted water 6-10 

Technological Change for 
Consumption in Agricultural 
Sector lookup 

transient scenario for technological change in 
agriculture affecting water consumption 

sigmoid 
function 

Technological Change for 
Withdrawals in Agricultural 
Sector lookup 

transient scenario for technological change in 
agriculture affecting water withdrawal 

sigmoid 
function 

Crop Productivity Gains 
lookup 

transient scenario for gains in crop productivity sigmoid 
function 



Percentage increase in 
irrigated area lookup 

transient scenario for increase in irrigated area sigmoid 
function 

Global Per Capita Food 
Consumption lookup 

transient scenario for increase in food consumption sigmoid 
function 

 
In order to explore the behavior of the model over the listed uncertainties, a shell 

written in Python is utilized. This ‘EMA workbench’ controls Vensim through its 
Dynamic Link Library (DLL). The workbench is responsible for generating input 
values for the various uncertainties, setting these values on the models, executing the 
models, and storing its results. The workbench supports parallel processing to reduce 
computational time. We used a Latin hypercube to generate 10.000 experiments. 
These were run on an pc with an Intel Xeon processer with six cores. Computational 
time was roughly 12 hours with 6 parallel processes.  

3.3 Results 

Fig. 2Error! Reference source not found. shows a performance envelope for 
three key performance indicators and a Gaussian kernel density estimate of the 
terminal values. We observe that over the 5.000 experiments, the water stress first 
rises and then either stabilizes or comes back down again. With respect to population, 
we observe that the population in 2100 can be somewhere between 10.000 and 
16.0000 million. We also see that the blue water consumption in some of the runs 
exceeds the 4000 km3 per year threshold suggested by Röckstrom et al. (2009). This 
raises the question how and why, despite crossing the suggested threshold, the water 
stress does not rise much above 0.5.  

Water stress is affected by the amount of available surface water and the amount of 
water withdrawal, taking into account dilution of polluted water streams. Its main 
impact is on the growth rate of the world population. Fig. 3 shows the relative size 
and change of the flows in the world water cycle. It shows how miniscule human 
withdrawal is as compared to the other flows. Although human withdrawal increases 
somewhere between 100% and 700%, this growth still means that the human 
withdrawal, at a global scale, is quite small as compared to the flow from land to 
oceans and groundwater combined. The main driver for the change in the various 
flows is climate change. Climate change affects the evaporation of ocean water, in 
turn resulting in a change in precipitation. 



Fig. 3. 
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economic system etc. However, this integration comes at the price of being not 
geographically and temporally explicit. Thus, changes in geographic precipitation 
patterns or shifts in the seasonal rain patterns are not included in this model. Even 
though the results indicate that the magnitude of the global hydrological cycles is 
massive as compared to human water use and that  sufficient water is available at a 
global scale, this does not mean that there can be and are severe impacts on a river 
basin level due to spatiotemporal shifts in precipitation. That is, Molden’s (2009) 
contention that it is potentially misleading to look at global limits for fresh water is 
corroborated by our results. For, in some of our simulations, the blue water 
consumptions per year passed the suggested threshold without resulting in 
catastrophic shifts in global dynamics. Still, given that values for water stress beyond 
0.4 are seen as severe water stress (Alcomo, Flörke and Märker 2007), our results do 
indicate that water shortages are to be expected in the coming years.  

The results also have methodological implications. They highlight how it is 
possible to account for model related uncertainties and assessing their implications on 
the type of dynamic the model produces. Limits to the planetary fresh water are 
shrouded in a myriad of uncertainties. However, this does not preclude the potential to 
shed some light on where these limits are roughly located, what type of dynamic 
behavior results in passing these limits and how the estimated values for such limits 
are conditioned on the uncertainty. A further analysis of the results from the 
computational experiments can help in clarifying which combinations of uncertainties 
are responsible for high values for water stress or low terminal values for the world 
population. Thus, instead of focusing on one, or a few runs from a model, we can 
systematically explore which dynamics the model can produce and the conditions 
under which these dynamics manifest themselves.  
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