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Summary

The Lunar Zebro is a small six-legged robot. It has the potential to be used in a swarm carrying out objectives
like exploring planetary surfaces. A new step towards autonomous navigation is made with the newly devel-
oped Obstacle Processing ALgorithm (OPAL) using primarily open-source libraries. This study showed that the
initial iteration of OPAL could detect rocks and determine their absolute position to the rover’s low-positioned
cameras using a stereo vision system. Obstacles and their relative distances are detected using the disparity
map—the amount of shift of pixels in the stereo image pair. When translating the disparity to V-disparity, a
histogram of the disparity per row, the ground and the obstacle could be isolated. It took six steps to realise
this thesis goal. After setting the requirements, a test model, called Bars, was developed and tested at a loca-
tion containing a Mars-like environment (Decos). This test model uses, along with Lunar Zebro’s hardware,
mostly Commercial Off-The-Shelf products. With the footage, all the different components of OPAL were in-
tegrated into one algorithm. Hereafter, a pipeline on a server was created, and multiple test cases were run
to establish results. The predetermined requirements of the algorithm were validated using measuring tape
measurements and ground-truth bounding boxes tracked by a CSRT-algorithm. Together, Bars and the initial
iteration of OPAL prove feasibility and expose opportunities and challenges, which could be a starting point
for optimisations or other approaches.
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1
Introduction

This chapter will provide the reader with background and a rationale for the Lunar Zebro project. It will form
the basis of this thesis about the design and integration of a stereo vision obstacle detection algorithm named
OPAL, which is an acronym for Obstacle Processing ALgorithm and its test system called Bars. At first, the
Moon exploration market and the need for the Lunar Zebro is explored. Following this, the need and the
research goals are stated. Finally, the research questions are elaborated on. At last, an introduction to the
report is provided.

1.1. The Moon Exploration Market and the Need for the Lunar Zebro
After a 40 years break, the landing of China’s Chang’e 3 mission of China has opened a new chapter in the his-
tory of exploring the Moon. More and more countries and companies are announcing missions to the surface
of the Moon. Even the government of the United States is pushing the National Aeronautics and Space Admin-
istration (NASA) to get astronauts back on the Moon by 2024 [13]. The reason motivating these countries and
companies is explained in the following section.

Figure 1.1: The Lunar Orbital Platform-Gateway (LOP-G) [36]

Recent research reveals that there is a presence of ice deposits in the shadowed parts of the craters on the
south pole of the Moon [99]. This frozen water is attractive because it can be split into two elements: hydro-
gen and oxygen. Oxygen could help to refill the oxygen tanks of the astronauts, and hydrogen is a possible
propellant for rockets. Therefore, this presence of ice makes the Moon an attractive gateway for exploring the
universe. NASA, together with many other space agencies, are aiming to realise such a gateway known as the
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Lunar Orbital Platform-Gateway (LOP-G). This LOP-G is shown in Figure 1.1. The LOP-G will be located in a
Near-Rectilinear Halo Orbit (NRHO). This orbit is located around the Lagrangian point L1 of the Earth-Moon
gravitational system and has as benefit that it requires not much travel energy to get to the surface of the Moon
as well as escaping the Earth-Moon gravitational system [36]. This gateway will make research on the Moon
and beyond much easier.

Furthermore, the Moon contains other interesting resources. Commodities such as helium-3 are stashed as
molecules within the lunar soil. The molecules separate out when the soil is heated to high temperatures
(above 600 degrees C) [100]. At the moment of writing this thesis, this harvest could be sold currently for
around €1250 per gram. The reason for this is that helium-3 is a potential fuel for nuclear fusion. The output
of nuclear fusion with helium-3 is likely to be less dangerous since it produces no radioactive waste, and it
will have almost no carbon footprint [97]. Economically it is still not profitable considering the current cost
of space travel. However, with the increasing amount of space travel and partners such as SpaceX, who are
excelling in the development of reusable vehicles, costs for space travel will most likely drop in the near future.

The Moon holds additional scientific interest for investors. The soil and ice which are harvested for refuelling
are coded with history of the universe. The temperature in the dark areas of craters on the poles of the Moon
has never been warmer than 33 Kelvin [41]. These low temperatures could have preserved this matter from
erosion or other degrading effects. Another promising scientific research area is the radio silent space on the
far side of the Moon. The lack of atmosphere, absence of strong moon-quakes, and the radio silence make the
Moon attractive for deep-space radio observations which cannot be conducted near Earth.

To conclude, there are much different science cases and other interest drivers, however, the costs for missions
to the lunar surface are high. An opportunity for robots to carry out more work during a mission is by mak-
ing use of swarming. Swarming rovers are small rovers that cooperate. This interaction of rovers could lead
to interesting and useful swarm behaviour. To reduce cost and complexity, a swarm consists mostly of small
robots. In planetary exploration, a small robot would be called a micro rover. Micro rovers have a required
size of around 3000 x 2000 x 2000mm [62]. The mass of a micro rover is around four kilograms. Compared
to other commonly used planetary rovers, these micro rovers are less expensive. Losing one does not have
much impact, and the functionality will be easily taken over by the swarm. Hence, more risk could be taken
during exploration of rough terrain or areas with extreme characteristics. This makes the swarm very reliable.
This reliable multi-rover platform is also interesting, for example, form a scientific perspective because of its
distributed sensor networks. A swarm can easily distribute itself into a fixed or dynamic network. One appli-
cation, for example, is LUnar low Frequency ARray (LUFAR) where each rover is bearing an antenna to form an
interferometric array of radio telescopes. This array, when deployed on the far side of the Moon, could mea-
sure cosmic noise. Scientists try to link these measurements to the history of the universe [5].

For these reasons, there is the need for micro rovers to be developed. This trend is also seen on the market,
with the announcement of the development of micro rovers, as presented in Appendix A. The TU Delft saw the
opportunity to take advantage of this new trend and redesigned one of their exploration and swarming robots
— the Zebro. The ZEsBenige RObot (Zebro), literally translated six-legged robot, is the TU Delft adaptation
of the bio-inspired six-legged rough-terrain robot RHex, that is developed by Boston Dynamics and Pen State
University [9]. The redesigned Zebro is called the Lunar Zebro and is being developed at the faculty of Elec-
trical Engineering, Mathematics and Computer Science at the Delft University of Technology. The goal of the
Lunar Zebro is to provide hands on experience for students on lunar missions.

1.2. Thesis Need and Research Goals
Initially, the Lunar Zebro team wants to send one rover to the surface of the Moon. This rover will be a stepping-
stone for swarming on the lunar surface and a chance to validate critical systems. For a successful mission, the
Zebro will have to survive Moon conditions, transmit data back to Earth, and demonstrate walking. To walk
on the Moon while surviving Moon conditions the rover will need to remain at operating temperature, and it
needs to stay safe, maintain power, and connected while operating. A stereo vision obstacle detection system
needs to be designed and tested in order to let the rover walk, while maintaining all the surviving requirements.

Nowadays, Most of the rover are using a mast to keep overview for navigation and obstacle avoidance, where
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this new system needs to rely solely on one stereo vision camera system, positioned on the front of the body.
This pilot study is to show that it is possible to develop such a detection system. The research objective of this
thesis project is therefore summarised by the following sentence:

The research objective of this study is to demonstrate an obstacle detection system for
the Lunar Zebro that will be able to detect rocks and their absolute distance from the
Zebro in the lunar environment by designing and building a test model, testing it on an
analogue surface, designing and implementing an algorithm consisting of existing algo-
rithms and techniques, and to verify whether this implementation meets the require-
ments to fulfil its purpose.

1.2.1. Research Questions
The thesis objective was further condensed into three research questions to direct this academic thesis. These
questions are stated and elaborated in this section.

R1 - How could obstacles and their absolute distance to the rover be detected, and how
accurately does this distance need to be?

The first question is targeting the possibility of developing an obstacle detection system. It needs to be taken
into account that the Lunar Zebro is designed to use a stereo vision system because a stereo vision system
requires the lowest mass and power of all ranging sensors.

R2 - How could the obstacle detection system be implemented to run on the Lunar Ze-
bro and detect obstacles and their absolute distance to the rover from a low perspective,
and how accurate can it determine distance?

The second question is about stitching multiple algorithm blocks together to create a result. The low perspec-
tive part and the limited hardware of the Lunar Zebro make the added scientific value since it makes detecting
rock challenging. Also needs to be calculated what can actually which accuracy can be achieved. The third
question below concerns the validation of the system. One of the problems here is the lack of test possibilities
due to the Covid-19 pandemic.

R3 - How to validate a low positioned stereo vision obstacle detection system in a lunar-
like environment for a planetary rover in the Netherlands ?

1.3. Introduction to the Report
The remainder of this thesis report is divided into eight chapters. At first, in Chapter 2, some background in-
formation about space missions, stereo vision obstacle detection and the Lunar Zebro is provided. Whereafter
in Chapter 3, the methodology used to conduct this research project is discussed. The requirements of the
stereo vision obstacle detection algorithm are generated in Chapter 4. What follows are two design chapters in
respectively Chapter 5 and Chapter 6. At first, the design of the new test model is described, after that, the de-
sign of the obstacle detection algorithm. Thereafter, the results are provided in Chapter 7, Finally, a conclusion
and discussion is condensed in Chapter 8.
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2
Space Rovers, Obstacle Detection and the

Lunar Zebro

This chapter is to provide the reader with background information about space rovers obstacle detection, and
the Lunar Zebro. Most of the content in this chapter has been adapted from the literature study that preceded
this thesis [89]. At first, details from previous robotic space missions are discussed, and, in addition, the Lunar
Zebro project. Following, a part where computer fundamentals is the main subject, and at last, the challenges
of the Lunar Zebro are detailed.

2.1. Previous Robotic Space Missions
In this section, similar projects to the Lunar Zebro are discussed. During each similar case, the main char-
acteristics of that mission or project and the solution employed for obstacle detection are discussed. In the
next section, various planetary missions are first discussed; following this, the methods of the Delfy (a flapping
wing project of the TU Delft) are elaborated on. A summary of this section is also provided to distil and sum
up what has been learned from these missions.

2.1.1. Moon Rovers
The previous rover missions to the Moon have some similar characteristics as the Lunar Zebro. However, in
comparison with the Lunar Zebro, the biggest difference found in this small market analysis, is the level of
autonomy and scale. All the Moon rovers are discussed in chronological order.

The Space Race Rovers
The Soviet and American space agencies competed in a race toward space and the Moon in the late 1960s and
early 1970s. In these missions, they gathered considerable data about the Moon. Together, they explored a
small portion of the whole celestial body[41]. During this timeframe, only three sorts of vehicles were devel-
oped and deployed on the surface of the Moon: the Lunar Roving Vehicle and the Lunokhod 1 and 2. These
rovers are illustrated in respectively Figure 2.1, Figure 2.2 and Figure 2.3. The Lunar Roving Vehicle was crewed
and manually controlled, whereas the two Lunokhod rovers were unmanned. Both Lunokhod rovers had been
equipped with huge cameras for navigation and scientific research purposes. This footage was sent to the So-
viet Union and the rover was controlled manually as well [39]. Accordingly, neither of the space-race rovers
contained an autonomous navigation system or any kind of on-board processing.

Chang’e Missions
After almost 40 years of waiting, a Chinese rover set foot on the Moon. The Yutu (Jade Rabbit), depicted in Fig-
ure 2.4, was part of the Chang’ e 3 mission. After landing on the "Bay of Rainbows" region, this 140-kilo rover
was able to drive two lunar days but faced a mechanical problem during the second lunar night. After this, the
Yutu rover operated for two more years on the same spot. The rover’s objective was to observe and prepare
for human exploration by creating a map of the lunar surface. Yutu has a navigation and mapping system that
uses a sophisticated stereo vision system [56]. The cameras of the Yutu’s navigation system are located about
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Figure 2.1: The Lunar Roving Vehicle [70] Figure 2.2: The Lunokhod 1 Rover [73] Figure 2.3: The Lunokhod 2 Rover [54]

1.5 m high for as much overview as possible. The viewpoint itself can yaw and pitch to compensate for the
camera’s limited field of view. To locate itself, the jade rabbit uses a visual odometry algorithm, the data of an
Inertial Measurement Unit (IMU) and a wheel odometer. Together they estimate the camera poses.

Figure 2.4: The Yutu (Jade Rabbit) Rover [15] Figure 2.5: The Yutu 2 (Jade Rabbit) Rover [15]

The system was able to plan a pathway autonomously, but it could be corrected by the ground-station opera-
tors. To create a map, for path planning and mapping purposes, the rover first takes four to seven shots with
the movable cameras in the two free dimensions. The position of the post, however, includes a little inaccu-
racy. An algorithm tries to match all these images to minimise the misalignment error [56]. Herafter, every
picture compensates for the extreme illumination conditions by using a Wallis filter such as the one Tan [103]
used. This algorithm seeks to adjust the mean and variance brightness values of areas in the picture so the
areas will be in the same range. Before a flight, calibrations, are used to calculate the estimated intrinsic and
extrinsic parameters of the camera system. After rectification with the estimated camera model parameters,
the stereo matching process will be executed to obtain a depth map of the scene. The used stereo matching
algorithm is a semi-global matching algorithm which is based on Hirschmuller[42]. Using the obtained esti-
mated misalignment-errors and taking the four to seven pictures with their depth maps, an overall depth map
is now the input of a big computational mapping model. All the depth maps are stitched together using a non-
linear minimisation which is based on the Levenberg–Marquardt nonlinear least-squares algorithm [34].

A considerable amount of testing in simulated environments is done prior to the mission for testing the ac-
curacy of the vision system. Moreover, much of the mission data is published online by Zuo et al.[113] and
can be used to develop new systems. Currently, there is an ongoing mission on the Moon with another rover,
the Chang’ e 4 mission. This mission is also deploying a rover that is based on the first Yutu rover. It landed
safely on the far side of the Moon on 3 January 2019, according to Jones [45]. The rover is operating, however,
not much has been publicised about it yet apart from the photograph (seen in Figure 2.5) and the fact that it is
alive.

2.1.2. Mars Rovers
Mars rover missions, which are similar mission types, are examined next. Conditions on Mars differ slightly
from conditions on the Moon. However, the rovers are still in unknown terrain. The level of autonomy is
important because the downlink to the earth is more and more sparse. NASA has accomplished a couple of
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Mars missions. In the next section, these rovers are discussed in chronological order.

Sojourner
On 4 July 1997, the Sojourner[75] became the first rover to ever set foot on Mars. The NASA rover explored
Mermaid Dune and was designed as a proof-of-concept mission of a low-cost rover exploration missions to
Mars. After it was deployed, the 11 kg rover started its seven-Martian-day mission exploring and conducting
scientific inquiry. The lander of the Mars Pathfinder mission was performing its own operations while it was
tracking the rover as well. Despite the seven-day goal, the mission continued to operate successfully for almost
three months.

Figure 2.6: The Sojourner Rover [69] Figure 2.7: Mars Path Finder navigation simulation software [75]

Communication with earth has about an 11-minute delay and can only be established for a few hours per day.
Therefore, the rover has a semi-autonomous control system for navigation purposes. From the ground station,
the waypoints are determined by software that uses data from the IMP stereo camera system. With this stereo
vision data, a 3D map of the surrounding of the lander is created. The operator uses virtual reality glasses to
operate a simulated sojourner rover in the software. The determined waypoints are translated to the rover’s
coordinate system, and transmitted to the rover. A visualisation made by the software is illustrated in Figure
2.7.

When moving, the system stops every 7 cm and senses if there are obstacles in its path. This hazard-avoiding
system consists of two camera and five infra-red lasers. These lasers are used for better depth estimation,
which is also called structured light stereo vision. With the image data of the patterned scene, a sparse map of
the terrain is created. The rover will then try to find the shortest path around the obstacle. After scanning, the
rover turns back towards its original heading if the path is still free from obstacles.

Figure 2.8: The Mars Exploration
Rover [69]

Figure 2.9: The Mars Science Lab-
oratory Rover [69]

Figure 2.10: GESTALT navigation system assessing the possible
paths [69]
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Mars Exploration Rovers
The Mars Exploration Rover (MER) mission contained two identical rovers named Spirit and Opportunity. Both
set foot on Mars in January 2004 with the main goal of finding the presence of water [64]. The solar-powered
MER rovers were not small: they both had a mass of about 174 kg and a size of about 1.5 m by 1.6 m. For nav-
igation purposes, a stereo camera system is installed on a post to provide more overview. Besides the camera
system on the mast, there are also some cameras mounted back and front to easily detect unseen hazards.
According to Goldberg et al.[37], calibration parameters of these cameras performed on earth will not change
significantly, despite all the temperature changes and vibration.

During obstacle detection, images will pass the following pre-processing steps: down-scaling, rectification,
and high-pass filtering. After this, disparity computation is done by a dense stereo matching algorithm using
7 x 7 so called Sum of Absolute Differences (SAD) scores. The matches are filtered, and the disparity is further
detailed to a sub-pixel level. Uncertain areas are filtered out by a blob filter. All the computations are done
in about 30 seconds. A local map is maintained by putting together the depth data, and the localisation data
gathered by visual odometry. The local map is divided into a grid. After this, the traversability of the grid is de-
termined using an algorithm which is called Grid-based Estimation of Surface Traversability Applied to Local
Terrain (GESTALT) [6]. This algorithm draws arcs on the grid-map and makes a trade-off between the drawn
pathways. The pathways of the GESTALT algorithm can be seen in Figure 2.10.

The Mars Science Laboratory mission landed on 6 August 2012. Its scientific goals were to investigate the
climate and habitability of Mars. The lander travelled together with a new rover, Curiosity, which is illustrated
in Figure 2.9 [53]. The hardware and software of this rover are more or less the same as the MER missions.

Figure 2.11: The DelFly Explorer [32]

2.1.3. Similar Autonomous Navigation Projects
In terms of their mission requirements, the rover missions appear similar to Lunar Zebro. The hardware re-
quirements however, and especially the scale, differ on some points. In order to gain perspective about the
navigation problem on a small scale, the DelFly is investigated in this section.

DelFly
One research group at the TU Delft is studying Flapping-Wing Micro Air Vehicles (FWMAV). Low mass and
small scale are characteristics of FWMAV and these are, therefore, inherently safe. The research group called
MAVLAB developed the DelFly, which is illustrated in Figure 2.11. As the production of these flying and flap-
ping air vehicles has been successful, research could now focus on the autonomous competences. FWMAV are
only able to transport a small amount of load; therefore, there is a significant restriction on sensor weights. Be-
cause of these strict requirements, it is challenging to create a real-time autonomous navigation system. This
challenge resulted in a 4-gram onboard stereo vision system, developed by Thijmons [105] and implemented
in a 20-gram FWMAV—the DelFly Explorer.
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The DelFly Explorer has a wingspan of 28 cm, and with 3.5 V it can generate lift and fly around for 10 minutes.
Besides the cameras, the Delfly carries an IMU, a magnetometer, a barometer, a communication module, and
a motor driver. Computational power on such a low-mass system is limited. Therefore, a new algorithm has
been developed by de Wagter et al.[20] named LongSeq, which performs stereo matching on image line level.
This algorithm is based on the Semi-Global Matching algorithm of Hirschmuller [42]. To further decrease the
computation demands of the system, the designers skip basic processes like rectification and undistortion, and
they use sub-sampling to let the LongSeq algorithm skip lines in the picture. Their system is demonstrating
computational optimisation; it is not as fail safe as most navigation systems, but it still is showing remarkable
results, for example the Delfly achieved corridor traversal [106] a known challenging problem in this field of
expertise. The DelFly research group also implemented its developed stereo vision system on pocket drones.
With this implementation, they can investigate the navigation of a swarm of drones [65].

2.1.4. Previous Missions Conclusion
While looking at the previous missions, a few conclusions can be drawn. At first, most obstacle detection al-
gorithms use a passive stereo vision system, which follow the same flow, where first images from the scene
are pre-processed using filtering, scaling and rectification techniques. Next, pixels in the images are matched.
Most of the rovers use the Semi Global Matching algorithm of Hirschmuller for the matching process. Cali-
bration is done before launch and is considered to be consistent over the full lifetime of the rover. A unique
challenge for the Lunar Zebro will be the low perspective. All the rovers, including the Delfy, have an overview
perspective of the scene. During all the steps, optimisation is possible to make the detection system as light
and fast as possible. For example, despite there is a drop in certainty, the DelFly has shown outstanding effi-
ciency in their algorithms. A more detailed market review is shown in Appendix A, where all the currents rovers
are listed.

Figure 2.12: RHex-Boston Dynamics [9]

2.2. The Lunar Zebro Project
After looking at other rovers, in this section background information about the Lunar Zebro project is pro-
vided by discussing first its anchestor—the Zebro—following by the reason why the Lunar Zebro is created,
and its mission goals. After this, a team structure is provide, and finally, the concept and the architecture are
discussed.

2.2.1. Zebro
When Gabriel Lopes started working at the TU Delft, he brought the idea of a six-legged robot with him. This
bio-inspired six-legged robot called RHex (developed by Boston Dynamics and further developed by Penn
State University) is mainly constructed for rough terrain missions [9]. In Figure 2.12, the RHex of Boston Dy-
namics is visible. Gabriel saw the potential of this bio-inspired robot and designed one himself with the group
at the TU Delft. The Zebro (ZEsBenige RObot or in English six-legged robot) became a research project. At
first, this research group was housed at the mechanical engineering faculty within the control and simulation
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group for studying walking algorithms using Max-Plus algebra [48]. Today, the Zebro is redesigned into the
DeciZebro and is used as a platform for research in swarm robotics [81].

Swarm robotics is trying to let robots cooperate in such a way that a group of robots, or a swarm, can per-
form an overall task or bring about some desired behaviour. The desire to understand swarms arose from
observing insects. One individual insect may appear helpless and unintelligent; but a group of insects working
together is actually brilliant. A group of ants, for example, excels in searching and locating the optimal trail to a
food source, as Deneubourg et al. [21] have described. A swarm does not depend on individuals. According to
de Groot [19], if one individual in a swarm falters or dies, a swarm is still able to perform well due to its decen-
tralised organisation. Therefore, scaling up or down the swarm could be applied easily. The performance of
the overall swarm will depend on its application. Small robots, compared to large ones, are relatively inexpen-
sive to produce and less complicated. All these characteristics ensure that swarm robotics could be applied to
many applications.

Figure 2.13: A walking Zebro [81] Figure 2.14: A Zebro climbing obstacles [81]

The Zebro is an example of a ’simple’ robot that is not overly complex. The Zebro has c-shaped legs which
rotate around its axis. When walking, three of the six legs remain on the ground, resulting in a stable base po-
sition. The other three legs contribute the walking manoeuvre powered by a servomotor. A hall sensor returns
the position of the leg to the locomotion controller. This controller uses the Max-Plus algorithm developed by
Gabriels and his team to control the legs [48]. The locomotion system performs a walking gait as illustrated
in Figure 2.13. The two angles shown in the picture represent a full revolution. During the walking angle, the
Zebro is lifted and placed back on all six feet when the angle is the same as the other legs. Together with the
leg-slip, the covered distance can be calculated. In addition to walking, the Zebro can climb obstacles (see
Figure 2.14) that are roughly the same height as itself, allowing it to move over many different types of terrain
[88].

After several versions of the Zebro, the Deci-Zebro was created by Otten [81], as illustrated in Figure 2.15.
Otten aimed to make the design modular. A top-level controller is designed and implemented on a Raspberry
Pi, which is an inexpensive microprocessor. This controller handles each of the leg modules and the other
subsystems such as a power management system, a communication module and a localisation module. Ev-
ery system is developed, built and implemented by students. The localisation module includes two ultrasonic
sound sensors to avoid obstacles. However, this is still a trial-and-error system since they built some random-
ness into the design. In this way, the rover theoretically should never get stuck. An actual navigation system
has not yet been implemented.

Figure 2.15: Deci-Zebro [81]
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Figure 2.16: The Engineering Model of The Lunar Zebro

2.2.2. Lunar Zebro
The Zebro showed capabilities as a small rough terrain rover and has the potential to be a swarming robot.
Therefore, the faculty of Electrical Engineering, Mathematics and Computer Science, together with the Delft
Robotics Institute chose to adapt the design to a planetary exploration rover. In light of this new intention, an
adaption study has first been carried out, which shows that a rover of this scale might be capable of performing
a Moon mission. Sharma’s study showed that the c-shaped legs of the Zebro are able to walk on lunar soil [96].

The Lunar Zebro, when successful, would set records as, the lightest, smallest, and first walking rover on the
surface of the Moon. The Zebro would provide the TU Delft the unique opportunity to become one of the first
universities to visit the surface of the Moon. Nevertheless, why should companies or agencies allow this rover
to join their mission? The Simple answer is that this tiny rover could easily fit in. The ’piggybacked’ mission
would not have to change much of the mission requirements. The company will derive great benefit from in-
cluding taking the Lunar Zebro in its mission. With this addition, another moving vehicle will be present that
can take pictures from both the rover and lander for commercial and scientific purposes.

The team have already developed an engineering model for the hardware of the rover as pictured in Figure
2.16. However, the software for the Lunar Zebro is not yet fully developed. The engineered rover is intended to
walk 200 m on the Moon while surviving Moon conditions during one lunar day (which is 14 earth days. Dur-
ing the day, the rover will transmit gathered data and pictures back to earth). Navigation and other commands
will be sent back to the rover. The connection with earth will be somewhat discontinuous. Therefore, safe op-
eration requires some level for autonomy of the rover. The operation centre in Dwingeloo in the Netherlands,
which is equipped with a single-dish radio telescope, will have contact with the rover for only eight hours a
day. This connection will have a low data rate, due to power constraints. The current goal of the Lunar Zebro
project team is to develop a working qualification model before August 2021. After this, it could be handed
over to a launch partner.

2.2.3. Team Structure
The structure of the team is shown in Figure 2.17. This hierarchy is led by a management layer, where all the
professors connected with this project and the chosen department leads are involved; this forms the man-
agement team of the project. Management provides the needs and make decisions about the roadmap of the
Lunar Zebro. The system engineers transmit these decisions to the engineers, and the chief engineers break it
further down into work packages for all the sub-systems. Currently, the team consist of around 40 students.

2.2.4. Lunar Zebro Concept & Architecture
In Figure 2.18, the architecture of the Lunar Zebro is visualised. All the systems listed are the main electronic
components connected by a carrier board. The structural component, which also plays a significant role, is
not visualised here.

The locomotion system, designed by Rouwen [88] and Miog [67], is based on the Deci-Zebro and has been
successfully implemented in the engineering model. A space qualified brush-less motor replaces the servo
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Figure 2.17: The Structure of the Lunar Zebro Project

Figure 2.18: The Architecture of the Lunar Zebro
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motor, and the communication between the On-Board Computer (OBC) and the motor drivers goes through
an RS422 full-duplex bus instead of the I2C bus in Otten’s design. TID Radiation testing has been performed
up to 20 krad; each of the individual leg-drivers is protected against overvoltage, overcurrent and latch-up sit-
uations.

The CP400.85 onboard computer developed by Hyperion [68] is a processing unit with a CPU speed of 500
MHz and low energy consumption. The size of the CP400.85 is small—only 20 x 50 mm. The operating soft-
ware on this processing board is based on Linux, which makes it very flexible. It has 512 MB of allocated RAM,
and it can host up to two SD cards. The onboard computer or Zebro Processing Unit (ZPU) runs a master
control program called TRON. This control program makes the rover walk and navigate on the Moon by con-
trolling all sub-processes like obstacle detection system.

As seen in Figure 2.18, a stereo vision camera system is implemented on the Lunar Zebro. The used camera is
called SHRIMP. In Section 4, the SHRIMP camera is further detailed.

2.3. Computer Vision Fundamentals
As seen in the previous section, the used technique for acquiring 3D information from the scene in the Lunar
Zebro, and also in many other previous missions, is passive stereo computer vision. Humans can sense the
world around them very easily. With just one look, they can observe in great detail the scene in front of them.
With the help of shapes and lighting, the human mind can recognise objects and isolate them from the scene.
However, the mechanism behind such a ’simple’ process is actually quite complicated. Where cognitive psy-
chologists try to understand the inherent optical advantage of a human, computer vision researchers try to
imitate the natural process with mathematical calculations. In recent years, techniques to abstract data from a
picture—such that a computer perceive the three-dimensional surrounding—have been improved. The visual
variety is so great that it is almost impossible to create a perfect model. Geometry, surface microstructure, illu-
mination, colours, reflectance or light scattering are the problems a vision system has to deal with. Humans do
this instantly without any effort, whereas computers have to work hard to process all the information. How-
ever, computer scientists are gradually mastering this area with greater precision. More sophisticated com-
puter vision in many applications in real-life is already reflecting their efforts. A suitable algorithm has to be
efficient and robust to noise and deviation [102]. In this section, an overview of the theory behind computer
vision is given. First, the perception of the scene is discussed, followed by a description of the camera model.
This camera model is used to calibrate the stereo geometry. Because with this stereo setup, depth can be ob-
tained and finally, obstacles in the scene can be detected.

2.3.1. Perception
Acquiring perception is one of the critical capabilities of an obstacle detection system. Perception is basically
the sensor information about the environment. There are multiple ways to range or sense the scene around
the robot. Multiple options are discussed in the literature review that preceded this thesis [89]. Sensors use
normal reflected light, active lighting, sound, or even electromagnetic radiation. This thesis focus only on a
passive stereo vision system. This system is also installed on the Lunar Zebro and is widely used among the
other planetary rovers discussed in Section 2.1.4.

Passive light sensors catch reflected light from objects in the scene and storing it on an image plane. This
technique is already ancient: the first photograph was made almost 200 years ago by a Frenchman named
Nicéphore Niépce using the camera obscura technique. The camera obscura is a dark room with one small
open hole to the outside world. Niépce made a portable version which is called a pin-hole camera. In ad-
dition, Niépce used a light-sensitive film, a paper coated with silver chloride [80], to catch the light entering
the pin-hole camera. Today, the pin-hole camera is optimised with lenses, mirrors and shutters, and the pho-
tographic film is replaced with digital light-sensitive sensor arrays. The output of this data is processed by
mechanical elements, electrical elements, and computers. A typical architecture of a modern camera is shown
in Figure 2.20.

2.3.2. Camera model
The rays of reflected light from the scene enter the camera through a lens or multiple lenses, which will focus
the rays on a light-sensitive sensor as described in the previous section. Two physical parts of the camera—the
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Figure 2.19: The spectral range of a human, a CCD sen-
sor and a CMOS sensor [35]

Figure 2.20: A representation of a needed architecture to take a picture [102]

aperture and the shutter—influence the amount of light that is finally sensed. Together with the lens, these
components influence the image brightness, motion blur, field of view, and depth of field[35].

There are two versions of light sensors available: a Complementary Metal Oxide Semiconductor (CMOS) and
a Charge-Coupled Device (CCD) sensor. For obtaining a RGB picture, a colour filter with a Bayer pattern is
typically used to pass on one of the three colours on one pixel. Both sensors have a different spectral range,
which lets the sensors catch more than just visible light. Both spectral ranges are visible in Figure 2.19 where
the spectral range of the human eye is highlighted.

The most important component of a camera system is the lens. If the lens were perfect, the rays would go
straight through the lens and be perfectly deflected. However, in reality, seven aberrations can occur. They
are divided into two groups: monochromatic and chromatic aberrations. Chromatic aberrations follow from
the mechanical properties of the lens. Not all wavelengths have the same refractive index and therefore are
deflected differently, which could deviate in both axial and transversal directions. Monochromatic aberrations
are an umbrella word for multiple aberrations, namely defocusing aberration, spherical aberration, comatic
aberration, astigmatism, field curvature, and image distortion [79]. The biggest aberration for computer vi-
sion purposes is radial distortion. Wide-angle lenses make straight lines appear to be curved in the image.
Moreover, the reconstruction of the scene becomes more complicated. Fortunately, this distortion is easy to
compensate for in practice. An illustration of radial distortion is shown in Figure 2.21.

Figure 2.21: An example of radial distortion [47].

A camera model is needed to describe u, v coordinates, which are the image plane coordinates, to x, y co-
ordinates in the real world. This model includes extrinsic parameters and intrinsic parameters, also shown in
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Figure 2.22. The extrinsic parameters are the Euclidean transformations between the camera and the world co-
ordinate system. The intrinsic parameters, on the other hand, represent the transformation from the camera-
to-pixel coordinates. The intrinsic parameters include the focal length, projection of the optical centre, the
aspect ratio, and the skewness; it could also include the lens distortion parameters. In order to obtain these
parameters, a calibration algorithm could be used. For example, Zhang describes a calibration method[112]
which could estimate these extrinsic and intrinsic parameters.

Figure 2.22: A projection model from the world reference frame to the image plane and vice versa [51].

2.3.3. Stereo Vision
Stereo vision gives a system the ability to estimate depth with high resolution in the scene. One benefit of using
a stereo vision system rather than another range-sensing system is that it does not require actuation or any
additional external light source. This benefit results in a lower total mass. Stereo vision works in many different
lighting conditions and is therefore applicable in many environments. This technique is already applied in
many different fields, and considerable development is being achieved.

2.3.4. Stereo Setup
How does a stereo system work? As seen in Figure 2.24, two different perspectives are obtained through the
shift in one direction of the two cameras. This shift could be in any direction on the epipolar line. An epipolar
line results from the fact that every point in one image represents a line in the other image. This phenomenon
is illustrated in Figure 2.23. If one sees the XL in one image, the real point X could be in X , X1, X2, and so
on. All these points are forming a line, which is the epipolar line. When applying this to multiple points in the
left image, the epipolar lines will cross each other in one point called the Epipole er . This relation between the
two camera could be mathematically described using two matrices—the essential matrix and the fundamental
matrix.

The essential matrix describes the relationship between the two image planes of the two cameras and con-
tains a rotation and a translation matrix. The fundamental matrix uses this essential matrix together with the
two intrinsic parameters of both camera systems. A stereo calibration method could help to find the funda-
mental matrix of the stereo setup. With the fundamental matrix, the stereo setup could be rectified. This will
force the epipolar lines to be horizontal. A point in one image will now be on the same horizontal line as its
match in the other image. This will have a great computational benefit for stereo matching algorithms[35].

2.3.5. Stereo Matching
Stereo matching is crucial to determine the shift of objects within an image pair. The shift of an object in the
pictures gives information about the depth. The more it shifts, the closer the object is to the cameras. This shift
is called disparity. There are two methods for obtaining the stereo-corresponding image points to calculate the
disparities of a scene: dense and sparse stereo matching.
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Figure 2.23: A stereo setup with epipoles and epipolar lines illus-
trated [35]. Figure 2.24: Disparity through human eyes [16]

The first option is dense stereo matching. Dense stereo matching algorithms process all the pixels in an im-
age. Each pixel is matched to pixels in the scan line in the other image using a squared window around it,
called a kernel. The kernels of each pixel are matched using similarity measurement methods such as Nor-
malised Cross-Correlation (NCC), Sum of Squared Differences (SSD), Sum of Absolute Differences (SAD), or
Semi-Global Matching (SGM) or other similarity measurement methods [17]. The performance of all these
different algorithms is compared by multiple frameworks like the Middlebury website [18], and the Modular
Stereo Vision Framework [77]. Difficulties during stereo matching are occlusions, specular reflections, homo-
geneous regions and repetitive patterns. Occlusions are regions that are only kept by one camera instead of
two. Specular reflections are the mirror-like reflection. Homogeneous regions are regions with not enough
texture difference. Repetitive patterns are difficult to match because of their repetition.

All these algorithms contain numerous changeable parameters to influence the matching performance. The
most important parameter among them is the window size. Changing the window size of the kernel will re-
sult in more fluent disparity, but the accuracy will change. In Figure 2.25, this kernel change is visualised.
As depicted, a large window provides reliable matches; however, small window sizes provide more accurate
matches. So, an optimum between reliability and accuracy needs to be found, which is different in every case.

Figure 2.25: Two different disparity map results of the same matching algorithm using two different window sizes. [26].

The other method is called sparse matching, which only uses feature matching. Features contain bits of infor-
mation of useful image parts. Features could, for example, be edges, corners or structures. First, an algorithm
looks for a feature within an image. It creates a descriptor of the feature and matches the descriptors of the
two images. These features could be scale, rotation and viewpoint invariant. The algorithm could, for exam-
ple, skip the rectification process. Feature matching is a method which is robust for occlusions, noise, and
illumination differences. A widely used method for detecting and matching features is Scale-Invariant Feature
Transform (SIFT)[111]. Feature matching is used in many solutions such as image alignment, motion tracking,
object recognition, robot navigation and stereo reconstruction. The greatest downside for using sparse stereo
matching is the lack of performance in a monotone landscape, which has a lack of texture.

2.3.6. Rectification
Rectification can significantly reduce the computational intensity of dense stereo matching, since it can now
be assumed that every pixel in one image is in the same row as the other. In Figure 2.26, the rectification
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Figure 2.26: Epipolarlines and Epipoles before and after Rectification.

process is visualised. It is clearly seen that the epipoles are manipulated to be in infinity. This manipulation is
done by nothing more than the application of projective transformations to images with predetermined stereo
setup parameters as the essential matrix and the fundamental matrix. The fundamental matrix F for a stereo

setup with a predetermined epipole i = [
1 0 0

]T
will be represented as follows:

F = [i]x =
0 0 0

0 0 −1
0 1 0


The homographies HT

R and HL describe the image projection for the left and right image needed for rectifying.
Together with the basic formula for determining the fundamental matrix, both homographies together with
the [i]x should meet the Formula 2.1. The fundamental matrix F is now a function of both image transforma-
tion matrices. Loop et al. [58] describe a method for obtaining these homographies such that image distortion
due to image projections is reduced.

uR = HR uR & uL = HLuL

uT
R F uL = 0 → uT

R HT
R [i]x HL︸ ︷︷ ︸

F

uL = 0

F = HT
R [i]x HL (2.1)

Figure 2.27: A Stereo Camera Setup [35].

2.3.7. 3D Reconstruction
After defining disparity, depth could be defined. Calculating depth is done by a method called triangulation,
which basically means translating the shift in the images to real 3D coordinates. By knowing the disparity val-
ues from the stereo matching process and the camera’s parameters for the calibration process, the depth could
be calculated using the following Formula 2.2.

Pz = f
b

xL −xR
(2.2)
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Pz represents the depth in z-direction of point P , f the focal length, and b the baseline of the stereo setup.
This formula is derived from the triangle formed by the camera setup. The triangle is shown in Figure 2.27.
The disparity (xL −xR ) is, according to the formula, inversely proportional to the depth. In theory the formula

Figure 2.28: Uncertainty while calibrating

in Equation 2.2 should work perfectly. Nonetheless, due to discretisation, an error is occurring. The simple fact
that the camera is using pixels to capture the scene makes this perfect model not perfect anymore. Every point
has a certain width; when accumulating this over the distance the real depth suddenly becomes a little surface
instead of one point. The distance is therefore an estimation. Dubbeldam [23] derived an equation from using
Figure 2.28 and the triangulation Formula 2.2. This formula describes the relationship between the error in
the depth ∆Pz and the distance of point P in z direction, Pz . Furthermore, the focal length of the cameras f ,
the distance between the cameras b, and the pixel width ∆x is used.

∆Pz =
p

2∆xp2
z

f b
(2.3)

Besides discretisation of the camera’s image plane, more errors are sneaking in. The calibration process also
has a re-projection error, and the matching algorithm disparity estimation is also not perfect. A final error
needs to be calculated using the final used stereo setup parameters and the used algorithms. This calculation
will happen in Section 7.3 where this final error is elaborated on.

2.4. Lunar Zebro’s Challenges
In this section, specific challenges of using computer vision on the surface of the moon are summed up. Both
environmental challenges as well as the Lunar Zebro challenges are elaborated.

The surface of the Moon consist of many monotone landscapes and obstacles. This landscape is visualised
in Figures 2.29 and 2.30, where craters and rocks could be seen. While capturing images on the moon illu-
mination difficulties arise when the sun has a low inclination angle to the lunar surface. Those difficulties
will cause two effects, at first, it forms long and harsh shadows. These harsh shadows will also cause varying
temperatures, affecting the image quality. Furthermore, the sun also forms a thread when shined directly on
the lens causing solar flares or over-lightening. Additionally, dust could stick to the lens due to its electrostatic
charge [41].

For the Lunar Zebro, the limited hardware is based on the low mass requirements. Every bit of additional
required power will result in larger batteries and more solar panel area. Thus, the camera and On-Board Com-
puter will not be designed to produce high end quality photos, but optimised with mass and power restrictions.
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Finally, as previously discussed, the low perspective will make navigating the Moon’s surface very challenging,
because the stereo vision detection system is lacking overview.

Figure 2.29: Rocks on the surface of the Moon [60] Figure 2.30: Rocks and craters on the surface of the Moon [60]
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3
Methodology

This methodology chapter provides insight into the steps needed to conduct the research. In the first section,
the development plan of the thesis is discussed and its effect on the conducted steps. Following this is the
scope where all the conducted steps are framed, and how the requirements were set. In the third section, the
experimental set-up is discussed. After this the software development is elaborated on and the last section
discuss the validation method used to validate the compliance of some requirements.

Figure 3.1: V-model used as development method

3.1. Development Method
The method used for developing OPAL follows the V-model in Figure 3.1. The flow of this model from problem
to result is visualised by the colours red to green. The V-model represents a dynamic approach of a design cycle
by accepting changes if later stages reveal the need. The first block in the chain is the analysis block. The analy-
sis phase produces a clear picture of what is required to have a successful end product by setting requirements
and making a development plan. In the last block, this analysis is tested using this set of requirements. Next,
a high-level design is developed. This high-level design contains an architecture that outlines which modules
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are developed and how these modules will cooperate. This flow of modules is tested within the integration
test block on the V-model. The next step is the low-level design, that is containing the development of these
modules. Every module will be evolved so that every small unit will work on its own. After implementation, all
these separate units are tested in small chunks. Finally, when the end product is validated the development
is finished. The V-model is translated to steps which are conducted in this thesis. When looking at the steps
actually two little V-models could be spotted.

1. Define Requirements

2. Develop and Build a Test Model

3. Record Data in a Moon-like Environment

4. Develop an Algorithm

5. Process the Data

6. Validate Detection and Distances

3.2. Scope
These steps follow from the research objective, which is framing the scope of this thesis. This research ob-
jective is stated as: Develop an obstacle detection system for the Lunar Zebro that will detect rocks and their
relative distance in the lunar environment. The challenging characteristic of the rover is the perspective. From
Chapter 2, where it is known that all the previous rovers were equipped with a high placed camera system. The
data produced by these large rovers will not represent the problems the small Lunar Zebro will face. Therefore
the second goal of this thesis is set to: gather data in a lunar-like environment that will be a representative in-
put for OPAL. Furthermore, the resources of the Lunar Zebro project lead to additional restrictions. The project
depends on students and companies who have developed both the software and hardware of the Lunar Zebro.
When this thesis started, both the SHRIMP cameras and on-board computer were not available. A test model
to test the stereo vision obstacle-detection system needed to be developed. Hence, this became the third goal
of the thesis: Develop a test model that simulates the SHRIMP camera’s behaviour and characteristics, the on-
board computer, and the Lunar Zebro itself.

There are a couple more restrictions that need to be taken into account. First, this thesis is subject to lim-
ited time, which is a significant driver limiting the scope of activities. For example, the development of the
algorithm is primarily performed in Python. The reason for this is to reduce the learning curve needed to get
familiar with C++, which is the required programming languages for implementation with TRON.

OPAL is focused only on the working principles of the stereo vision detection algorithm. Risks like launch
vibrations, lunar radiation, communication issues, power issues, effects of extreme temperatures, shadow im-
pact, optic illusions and craters were not mitigated in this thesis.

Where the scope is bounding the conducted work, the requirements are, as discussed, specifying features and
functions with which the result must comply on. Since this is a pioneer study, the development is brought to
an end and is seen as the first iteration. Much tweaking, optimizing, and designing is required to make OPAL
ready for a lunar mission. In Chapter 4.2 the interface and the performance requirements are set to a point of
readiness that is considered to be satisfying this first iteration.

3.3. Experimental Set-up
The experimental setup consist of actual or close to actual hardware and a simulated environment. The design
of this test hardware is discussed in Chapter 5. With this test hardware, tests are conducted to gather stereo
vision data and position data.

These tests took place at Decos, a software company with its main office in Noordwijk. The CEO of Decos,
Paul Veger, is a space enthusiast whose office location looks as though a meteorite dropped on a Mars-like
surface. This building is depicted in Figure 3.2. The yard around the building resembles the surface of Mars.
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Figure 3.2: Office of Decos in Noordwijk

To evoke this resemblance, numerous rocks, a grainy surface, and crates have been used.

This Mars-like surface is unique in the Netherlands, since the number of analogue test locations is severe.
This Mars-like yard does have similarities with the lunar surface, like the types of rocks and the grainy surface.
Therefore, testing on this surface is a unique chance for the test rover to mature itself while gathering sufficient
data. Details of the test setup are enclosed in Appendix B.

During the development of the test platform in Chapter 5 everything was prepared, so the operations on the
test day itself were straightforward and easy to carry out. On the day itself multiple test cases where carried
out. Most of them were walking straight towards obstacles, but other test cases like passing rocks or walk in
between rocks were carried out as well. The calibration of the stereo setup was tested too. Before almost ev-
ery video, the system was calibrated first by shooting footage of a chequerboard, to test whether the setup is
changing over time. The results are stated in Chapter 7.

Table 3.1: Used software for the development of OPAL

Software Tool Version Purpose

OpenCV 4.1 Software library for image and video processing
Python 3.9.1 Programming language that OPAL is written in.
Matlab R2019b Mainly used for the Stereo Calibration Application integrated in Matlab
Visual Studio Code 1.53 Used IDE for code developing and debugging
Git 2.31.1 Software used for Version Control
GitLab CI/CD 13.0 Tool used for running code after code changes
Scikit-learn 0.24.2 Python library used for useful data processing algorithms.

3.4. Software Development
Since it is a single case study acting as a setup for more detailed research in optimising this system, signifi-
cant parts of the algorithm originate from open-source libraries. The literature will primarily form the basis on
which algorithms are selected from this extensive set of commonly used algorithms. Connecting or integrating
all the systems into one large algorithm required understanding of the used algorithms, and sometimes this
required additional adaptions.

In Table 3.1, the tools used while developing the code are listed. For example, as noted in this table, pro-
gramming languages, used libraries, and used coding tools are present. A GitLab Continuous Integration,
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Continuous Delivery and Continuous Deployment (CI/CD) method is used for running the algorithms. On
an Intel® NUC Board (NUC5i5MYBE), a GitLab runner (an application that runs CI/CD pipelines) is installed.
Every time a significant code change is pushed to Git (a version control system) a new pipeline is created and
run by the GitLab runner. The output is stored on this Inter NUC server.

3.5. Validation
The system requirements are validated using four different methods. First, there is the inspection method. In
this method, the end product is examined with only basic senses—as for example, when inspecting whether a
particular button is existing. The second method is the analysis method. A person could perform some calcu-
lations or predictions in the analysis method to validate whether the product complies with the requirements.
The third is the demonstration method to see if the product is complying with the requirement to perform as it
is intended. Finally, the test method is a little more refined than the demonstration method, as in this method,
for example, specific behaviour is desired.

The final results are ran using the development platform as discussed in the previous Section 3.4. The videos
of the test cases are stored locally on the server and processed by the developed algorithm. The results only
need to be validated. This validation process is based on a known performance parameter known as Average
Precision (AP). AP is, namely, a widely used parameter to identify the performance of an object detection sys-
tem [82] [38] [28]. To calculate this AP, additional clarity on more parameters needs to be provided. These
parameters are:

1. True Positive (TP), which indicate a ’True’ detection of the ground-truth obstacle.

2. False Positive (FP), which indicate a ’False’ detection of the ground-truth obstacle—the detection is mis-
placed, or it is detecting an absent obstacle.

3. False Negative (FN), which indicate a ’False’ non-detection, while there is an obstacle.

There is a fourth similar parameter which is called the True Negative (TN). The TN parameter is, however, not
traceable since the number of possible bounding boxes, that could be true negative in a single picture, is theo-
retically finite but practicality infinite. Scoring a positive detection is done with an overlap ratio, which is called
Intersection Over Union (IOU). The IOU defines the overlap between the detected obstacle bounding-box and
the true obstacle bounding-box over the area of union. This formula is visualised in Figure 3.3.

Figure 3.3: Visualisation of the Intersection Over Union (IOU) [82]

If the TP and FP are determined, then the Precision (P) and the Recall (R) could be established. The Precision
is the chance a detected box corresponds to a ground-truth bounding box, although the recall signifies the
chance that all bounding boxes are detected. Notice that, while aiming for high precision, the recall will auto-
matically drop and vice versa.
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P = TP

TP+FP
= TP

all detections
(3.1)

R = TP

TP+FN
= TP

all real obstacles
(3.2)

Most object detection systems use neural networks that output for multiple classes a certainty parameter. This
factor is referred to as called confidence. A confidence threshold blocks the object with low confidence and
only shows the bounding boxes with high confidence. When varying with this confidence threshold, a PR curve
could be made. The area beneath this area would be the average precision of the obstacle-detection system.
However, the designed algorithm does not use machine learning because of resource restrictions and it is not
outputting confidence levels. Therefore, the output of the model will consist entirely of the Precision and the
Recall. For now these parameters are used as an indication whether the algorithm is working sufficiently, in a
later stage these parameters could be used for tweaking an optimisation.

The data set, created during the Decos Test, contains only images. For performance evaluation of the algo-
rithm, ground-truth data is needed. Determining these could be done manually or by a computer, specifically
by a Region Of Interest (ROI) tracker. The CSRT tracker of Lukezic et al. [59] is considered a good choice for
tracking this manually defined ROIs. However, the CSRT experiences difficulty when the object is occluded,
for example, behind another object. Since the CSRT could achieve high framerates, the process can easily be
monitored. It results in a semi-automatic tracking system, with the human in the loop to minimize tracking
errors.

So with this ground-truth definition, for every result, it could be checked if it is either a true or a false posi-
tive. Furthermore, the algorithm is outputting for every detected obstacle a measured distance. With mea-
surements using a measuring tape, the ground-truth distance is known. Now, the test cases can be visualised
in one graph. The distance is estimated using a constant speed in between the measurement points since no
real-time distance was available. The reason for this is elaborated in Section B, which is also the reason why
only a few of the test cases were valid to use. The algorithm’s overall performance in these test cases is visu-
alised in the final result graph, where precision and recall are included. Hereafter, with this graph, a conclusion
can be drawn whether OPAL is meeting the requirements or not.
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4
Requirement Generation

Requirements are the pillars of every engineering project. Without knowing the requirements of the system,
there is a risk of building useless or inadequate products. In particular, when determining whether a product
is final or good enough, a clear definition of the end result helps one know what and how to test. Additionally,
a clear definition of requirements will help this thesis substantiate the choices made during to period.

The algorithm performing the stereo vision obstacle detection is also called OPAL, an acronym for Obstacle
Processing ALgorithm. To clearly define all the requirements for developing OPAL, the system’s interfaces are
first explained. Next, a functional analysis is conducted, and the origin of the key requirements are further
discussed. In the end, all these requirements will form a complete list of requirements. This list is a document
that will change over the course of the project and is, therefore, a dynamic document.

4.1. Interface Analysis
At first, an interface analysis is used to provide a clear picture of what could influence OPAL, which specifica-
tions OPAL should meet, and what the system’s inputs and outputs are. Other apps or hardware specs could
facilitate or complicate OPAL’s output at a later stage of the design cycle. With the N2 Chart, these influences
are monitored. In this section, the N2 Chart of Lunar Zebro’s navigation system is first illustrated. All these
interfaces are then elaborated on.

4.1.1. N2 Chart
One of the tools widely used during system engineering is the N2 Chart, which could help visualise the systems
inputs and outputs. This tool is also usefull in identifying natural clusters. One reads an N2 Chart clockwise.
All the sub-systems are on a diagonal line. The cells on the right and left side on the same row as OPAL in
the N2 Chart are OPAL outputs to other sub-systems. The cells in the same column as OPAL are the inputs
driven by the other sub-systems. The N2 Chart in Table 4.1 involves all the components of the navigation
system of the Lunar Zebro. Clearly, because of the Lunar Zebro and TRON’s modular architecture, OPAL is

SHRIMP
Pictures and state
data upon request

Requests for pictures
and state data

TRON
Pictures

and commands
Closest obstacle

and statedata
OPAL

Power to SHRIMP
Power to OBC,

TRON runs on OBC.
EPS

Connected to structure at
the front of the Zebro

Body

Table 4.1: N2 Chart of the Navigation System of the Lunar Zebro
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only interacting with TRON. TRON is the name of the software running on the On-Board Computer (OBC).
This OBC gets power of the Electrical Power Subsystem (EPS) and the body house it. Furthermore, TRON takes
care of the interaction with SHRIMP, which is the name of the camera module. Therefore, OPAL does not have
to handle timing and communication issues. OPAL is provided only with TRON’s pictures and commands, and
it will solely return the closest obstacle and status data. Together TRON and OPAL form their own ’circle’.

Figure 4.1: The SHRIMP module [1] Figure 4.2: The SHRIMP module exploded view [1]

4.1.2. SHRIMP
Besides SHRIMP not being a direct interface to OPAL, it will have a major influence on the performance of
OPAL. SHRIMP claims to be the smallest (15.5 mm x 12 mm x 5.6 mm) and lightest (< 3 g) space-graded cam-
era developed. The camera consists entirely of Commercial Off-The-Shelf (COTS) components with the CMOS
Omnivision CameraCubeChipTM as its camera chip. The camera chip is protected by a sapphire window and
takes pictures of 640x480 pixels in RGB. The structure of all the components is shown in the exploded view
in Figure 4.2. The frame rate is currently one frame per three seconds, and the Field of View (FOV) is 65 de-
grees. SHRIMP is designed to survive launch, transit, and the landing stage of the mission. However, it is still
uncertain if the image quality will be ensured when operating outside the temperature range provided by the
manufacturer (-30°C ∼ 70°C). The temperature can rise up to 197 °C on the Moon’s surface [41]. Power com-
putation of SHRIMP is very low while it only consumes one watt at maximum during operation. Besides the
integrated camera chip, a processor, voltage regulators, FRAM and an IMU, which includes six-axis accelerom-
eters, are also integrated on the chip. Software for operating the chip is developed by the Lunar Zebro team,
so TRON can communicate with the SHRIMP via the RS485 bus. Within TRON, a SHRIMP app is developed to
fulfil the modular design approach of TRON. The final SHRIMP module is presented in Figure 4.1.
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Figure 4.3: The Architecture of the ZPU of the Lunar Zebro [25]

4.1.3. TRON
TRON is the umbrella name for the controlling software on the OBC. This software is developed by Nick van
Enthoven [25]. Most processes are run in sub-processes, also called apps. The communication between these
apps goes through socket connections. TRON controls these sub-processes by restarting apps when they stop
working, are timed out, or when they output an unexpected result. The architecture of the Lunar Zebro on
software level is depicted in Figure 4.3. In this figure, the modularity of the system is clearly visible.

Figure 4.4: The Activity Flow between all the TRON components [25]

The inter-process communication, as described, is via direct TCP/IP, using POSIX sockets. A router is design
to manage the socket connections and to relay messages. A library is written to ease the use of this IPC router.
The activity flow of all the processes is shown in Figure 4.4. In this figure, all the activities between the MCP,
the API of the MCP, the router, the library of the router, and the sub-process are elaborated on.
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During the development of TRON, van Enthoven focused on meeting requirements to make the software space
graded. When deployed on the moon, it will be hard to fix a crash or a deadlock of the software. It is, however,
critical for the mission that these software modules will continue operating.

4.2. Functional Analysis
The purpose of the functional analysis is to determine the main and sub-functions of the system. The functions
are connected to performance requirements in a later phase. For OPAL, the main functions are detecting
hazards of the surface on the moon. It requires, therefore, some sub-functions to be executed in order to see
these hazards. These sub-functions are based on the computer vision theory stated in section 2.3. Initially, for
a computer vision system, calibration is required to make the robot aware of the camera’s position relative to
its surrounding. Next, the SHRIMP camera’s input can be pre-processed before translating these pictures into
a 3D point cloud. At this point, the obstacle must be identified and quantified. All the algorithms need to be
executed properly, and errors in these executions need to be caught. Finally, the output and its execution status
need to be communicated to TRON. All these functions working together will help OPAL detect obstacles.
These functions could form a tree with their own sub-functions. This tree is illustrated in Figure 4.5.

Figure 4.5: Functional Breakdown Tree

4.2.1. Key Requirements
Some of the key requirements that follow from the functional analysis are further substantiated in this section.
A rationale is given for the requirements theme selves and, most importantly, to the value attached to these
requirements.

One of the most important requirements is the height of the positive object in order for the obstacle-detection
system to be able to detect it. This height appeared to be 30 mm while testing at the Mars-yard of Decos (for
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more information see appendix B). The rover struggled over rocks larger than this 30 mm height. The problem
was that the rover could become planted itself on its ’belly’ on a rock while not being able to touch the ground
any longer. Climbable obstacles are quantified to be at least smaller than the height between the bottom of the
leg and the body’s bottom when standing, so as to prevent becoming stuck. The grooves on the legs are not to
be taken into account. This height is presented in Figure 4.6.

Figure 4.6: Indicating the height for the bottom of leg to the bottom of the zebro

Another key requirement is the closest allowable distance to a rock. This distance is determined using trigonom-
etry and logic rules. The Lunar Zebro is only able to turn on the spot or walk straight. If a rock is within the
turning circle, as visualised in Figure 4.7, the Zebro would crash. The field of view and straight tangent lines
in walking direction, defines a line. After this line a rock could be in the so called blind-spot of the camera
system. The Lunar Zebro could, in a worst case, make a step of 14 cm. This happens when the rover is laying
on its belly, and the motors make one full revolution while having a 100% grip on both sides. So, when a rock is
closer to the danger line than 14 cm a rock could be in this blind-spot if this worst case occur. The theoretical
depth error at the distance of 48.6 cm is around 4.8 cm. This theoretical error is calculated in Section 7.1. So
if the measured distance to the rock is closer than 53.4 cm (48.6 cm + 4.8 cm) the rover has to stop and start
manoeuvring.

Figure 4.7: Indicating of the minimum distance to an obstacle + dashed ’Danger Zone’

The mission objectives define the time reserved for obstacle processing. One of the main goals of Lunar Zebro
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is to walk for 200 m in one lunar day, which equals 14 earth days. Of those 14 days, the team estimated that
the Lunar Zebro could use 10 days for walking. The Lunar Zebro could operate around the six hours on one
battery charge with a capacity of 12800 mAh. Where the charging time with this amount of power is around
five hours and 15 minutes. This means that in 24 hours, the Lunar Zebro can perform two walking cycles. Two
cycles per 24 hours means that in every cycle 10 m of ground need to be covered. With the walking speed of the
Lunar Zebro, it takes around 100 minutes to finish this 10 meter distance. It is estimated a photo is taken every
5cm, which is equal to the error at the detection range, therefore, OPAL will produce 200 photos per cycles.
The time it takes to take a stereo photo and send it over the communication bus is a maximum of 6 seconds.
The available time left for OPAL processing one stereo pair is around 73 seconds.

4.3. Requirements List
Both the interfaces and the expected functionalities are translated into requirements. Both TRON and SHRIMP
define OPAL’s interface requirements. For proper implementation of OPAL on the Lunar Zebro these prereq-
uisites need to be met. All the interface requirements are listed in Table 4.2. The expected functionalities are
translated into performance requirements. The performance requirements are listed in Table 4.3. The execu-
tion and communication functions were already defined by the interface requirements and have been omitted
in this list. Both tables also provide a rationale for each requirement as well as a verification method. These
methods were discussed in Section 3.5. The verification methods of the first couple interface requirements are
left red, since they cannot be validated in the thesis because of resource restrictions.

Table 4.2: The Interface Requirements of OPAL

ID Requirement Rationale Validation
Method

OPAL-INT-
01

OPAL shall be run using the IPC
library of TRON

The Inter-Process Communication
(IPC) library for communication be-
tween the Master Control Program
named TRON and its sub-modules.
This library will ask TRON to set up a
socket connection between the sub-
module and TRON and forward and
receive messages.

OPAL-INT-
02

OPAL shall report its output, a
distance to the closest obstacle,
and error/status codes to TRON
using the IPC library of TRON.

See N2-Chart.

OPAL-INT-
03

OPAL shall report errors and sta-
tuses using codes defined by
TRON.

Predefined error and status codes helps
the team to easily identify problems
when in a more developed stage.

OPAL-INT-
04

OPAL shall have as input the im-
ages produced by two SHRIMP
cameras with a stereo base of 40
mm, a resolution of 640 x 480
pixels and a field of view of 65 de-
grees.

This is the current implemented stereo
vision system on the Engineering
Model of the Lunar Zebro.

I

OPAL-INT-
05

OPAL shall be able to be run
on the ZPU, which has 500 MHz
processor and is Linux based.

The ZPU is currently the CP400.8 of Hy-
perion Technology.

D

OPAL-INT-
06

OPAL shall not use more than the
400 MB of RAM.

The RAM capacity of the CP400.8 of Hy-
perion Technology minus some RAM
for other sub-processes.

D
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Table 4.3: The Performance Requirements of OPAL

ID Requirement Rational Validation
Method

OPAL-FUN-01
OPAL shall be calibrated with a
re-projection error lower than
0.2 pixels.

Performing multiple calibrations with
Matlab (see Appendix C) showed that
calibrations with a re-projection error
higher than 0.2 showed that there were
unclear pictures, and the results could
not be used for rectification and stereo
matching

D

OPAL-FUN-02

OPAL shall limit the contrast
with a maximum change in in-
tensity to limit the influence of
lighting on the algorithm.

Sun will have a negative influence of the
performance of an obstacle-detection
algorithm, because it will change the
lighting overtime. OPAL shall try to
minimize this influence.

D

OPAL-FUN-03
OPAL shall detect the presence
of rocks larger than 30 mm in
front of the Lunar Zebro.

Rocks larger than 30 cm are a risk (See
Section 4.2.1).

T

OPAL-FUN-04
OPAL shall detect hazards
within the detection area as
pointed out by Figure 4.7.

In this slot, the obstacles are becoming
hazards to the Zebro (See section 4.2.1).

T

OPAL-FUN-05

OPAL shall determine the dis-
tance to every hazard with an
error less than the theoretical
error curvature.

This worst-case theoretical error is ex-
plained in section 2.3.7.

T

OPAL-FUN-06
OPAL shall not exceed the time
limit of 73 seconds to process a
frame.

The time limit is framed by the mission
objectives and the day-to-day activities
of the Zebro (See section 4.2.1)

T
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5
Design of Bars, the Test Model

For the development of the stereo vision obstacle-detection system, collecting data is crucial. Since there was
no stereo vision data within the team, the need for a collection platform or test model was high. Furthermore,
test opportunities arose at the beginning of 2020. For example, the EuroMoonMars (EMM) team was planning
a mission to Iceland and Italy for some analogue field testing, where they planned to simulate live science
conducting on the lunar surface [87]. At these analogue testing fields, the Lunar Zebro could walk on some
rough, close-to-reality terrain while collecting interesting data. With this in mind, the option to redesign the
Lunar Zebro for these test missions became more and more attractive. Hence, the development of this new
test model was started. Due to the Covid-19 pandemic, unfortunately, these missions were postponed and
eventually cancelled. The development of the test model was already in an advanced stage and was therefore
continued.

In this chapter, the development of this new test model is reported. At first, previous test models are dis-
cussed and, after this, the goals of the new test model are explained. Design and adaption choices are noted
next, and then the final result is discussed.

Figure 5.1: DeciZebro with external stereo camera Figure 5.2: DeciZebro equipped with a StereoPi and two RPi Cam-
eras

5.1. DeciZebro Test Models
At first the DeciZebro seemed to be the perfect candidate to function as a testing platform, since it was in an
already advanced development stage and only required some small adaptions. Multiple attempts were made
to adapt the DeciZebro into a trustworthy working platform. On the first try, a stereo camera owned by the
team was connected to the DeciZebro. Unfortunately, this camera could not be controlled by the Raspberry Pi
since it required a 100% CPU-load. While using this high CPU demand, the Zebro processed only 0.3 frames
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per second. This would mean that the Zebro could not record while walking. Connecting the camera to an-
other computer while walking was a solution that worked; but this required a long usb-cable which suppresses
the flexibility of the system. This solution, nevertheless, produced some initial footage. The stereo camera and
the mount are shown in Figure 5.1.

A Stereo Pi [95] was introduced to enable on-board parallel recording and walking. This Pi is replacing the
Raspberry Pi 4. In section 5.3.1, the choice of this option is substantiated. With the new Pi, a new front was
designed and printed, and new cameras were added. The result of all this work is shown in Figure 5.2. How-
ever, due to the aggressive walking behaviour and the completely different master control program (ROS), the
DeciZebro was eventually considered unsuitable for the opportunities discussed in the introduction. It was
decided that a completely new test model of the Lunar Zebro would be designed.

5.2. Test Model Goals
In 2017, the electronic engineers of the Lunar Zebro started working on a functional electronic design. The
focus lay entirely on the hardware, seeking to make sure it would fulfil all the technical requirements. When
the design was finished, the team produced and assembled their first model. Besides an excellent electronic
design, the flexibility and ease of assembly were two elements that were missing. This problem was already
experienced in previous designs of the terrestrial Zebro. Otten’s DeciZebro [81] had taken into account the
Design for Assembly (DfA) principle described by Boothroyd & Alting [8]. When scaling up in a swarm, it is
better to have a quickly assembled sequence as this would also reduce the risk of breaking things when disas-
sembling and re-assembling. This principle revealed itself when the current design of the motherboard (Figure
5.4) broke after some assembly cycles. Connectors became loose, and chips were not protected with Electro
Static Discharge (ESD) protection. There was also not much room inside the Zebro, which caused problems
when including external on-board computers, batteries, and DC/DC converters.

Therefore, the goal has been to develop a reliable, robust, and easily assembled test model that could host
vital flight hardware like the motor drivers, the BMS, and the SHRIMP cameras; this test model will be a plat-
form for testing and optimising all these systems in practice. To achieve this, a new carrier board needs to be
designed and manufactured, and the body and legs need to be adapted. Furthermore, the test model needs to
be equipped with software similar to the expected flight software. Thus, the overall end goal is a controllable
walking test Lunar Zebro called Bars.1

Figure 5.3: A Stereo Pi[95] Figure 5.4: The old motherboard of the lunar zebro

1All models of the Lunar Zebro are named after Russian space dogs (Belka, Strelka, and Leika). Bars was their pioneer. Bars died together
with another dog in the launch before Belka and Strelka were launched. The Russian translation of Bars is Snow Leopard, which fits the
body that was finally developed.
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5.3. Design Choices and Adaptions
In this section the design choices that were made during the development of Bars are clarified. The on-board
computer has been upgraded to a Stereo Pi [95], and the reason for this is elaborated on in Section 5.3.1. In
Section 5.3.2, the camera design is highlighted. Extensive improvements have been made to the PCB as well,
and the most important design decisions are presented in Section 5.3.3. Furthermore, the body and legs of
the Zebro have been slightly altered, as described in Section 5.3.4. Finally, in Section 5.3.5, the changes in the
software design are discussed.

5.3.1. On-Board Computer
There are a couple of reasons why the CP400.85 on-board computer of Hyperion [68] is not used in the devel-
opment of the test model. Since this will be flight hardware, this would have been the most convenient option.
However, the team lacks experience with this board. The reason for this is that there is no development board
to test some crucial software and hardware interfaces. Each interface requires development, which makes it
less attractive for fast prototyping. Interface flexibility is attractive, especially when using Commercial Off-
The-Shelf (COTS) products.

Among the available computing platform alternatives, Raspberry Pi was selected as the replacement on-board
computer for the development phase. The Raspberry Pi foundation has developed single board computers
since 2012 [33]. They produce inexpensive boards based on ARM processors, and there are already multiple
versions on the market. Most Raspberry Pis are equipped with a Camera Serial Interface (CSI) and use a small
GPU to process the camera footage, making sure that the CPU is not overloaded. These features make it per-
fect for on-board recording and processing. However, there is only one CSI port on a standard Raspberry Pi.
The Raspberry Pi Foundation has also developed a Compute Module with all the breakouts, like a standard
Raspberry PI, but broken out to a DDR2 SO-DIMM connector. Besides all the standard connections, there is
a second CSI interface. A company called virt2real [95] made a board that transferred this DDR2 SO-DIMM
back to all the standard Raspberry Pi board connections but added a second CSI camera interface. Both the
Raspberry Pi Compute Module 3 and the CP400.85 use ARMv7 processors and use a Linux-based operating
system. Thus, the Stereo Pi, which is what the board of virt2real is called, is perfect for the new test model
since it is easy to implement and close to the flight-ware.

Figure 5.5: Architecture of the new carrier PCB of the Test Model
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5.3.2. Camera
For the camera, a PiCam is used. This PiCam is specially developed for the Raspberry Pi. It is one of the least
expensive cameras on the market with the required CSI interface, and it is already taking pictures with more
megapixels than the SHRIMP camera. The PiCam has a 5 megapixels OmniVision OV5647 camera module,
whereas the SHRIMP camera only has a 0.3 megapixels OmniVision OV7690 camera module [1]. The PiCam
output is, however, downscaled to match the output size of the SHRIMP pictures.

The full camera interfacing setup is shown in Figure 5.3, where the Stereo Pi board computer is shown. This
picture clearly shows how both cameras are connected via the CSI interfaces.

Figure 5.6: DC/DC conversion on the new carrier board

5.3.3. PCB design
A new PCB is designed in KiCAD, which is a PCB-designing software. As stated before, the focus of the design
was on the ease of assembly. Clearly, in Figure 5.4, it is visible that the old motherboard is blocking access
inwards. Inside the rovers it seems chaotic because the cables and motor drivers are not structured. A new
structure should tackle both problems. This new structure or architecture is shown in Figure 5.5. It can be
seen that the motherboard’s primary function is providing power and communication to all its components.

Figure 5.7: RS485/RS422 implementation on the new carrier board

The power comes from the BMS which will act as a 12V regulated power supply. This voltage is directly dis-
tributed to the motor drivers. However, the Stereo Pi requires a 5V supply voltage. So, an on-board non-isolated
DC/DC conversion is used to reduce this voltage. The circuit performing this conversion is shown in Figure
5.6. The DC/DC conversion chip is chosen, using the characteristics of a Raspberry Pi, which requires a power
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supply of 5V and 2.5A. But the Stereo Pi is not the only element using the 5V power source. The additional 5A
is intended for powering the rest of the components. The power circuit is drawn using the spec-sheet of the
power chip. The carrier board also has some protection if the Raspberry Pi is powered externally, based on
examples integrated into KiCAD.

Communication between the motor drivers and on-board computer passes through an RS422 bus, where the
camera uses a RS485 bus. The benefits of these communication protocols are that they are very reliable, due to
the use of differential pairs which makes it less sensitive to noise and electromagnetic interference. The RS422
bus is a master–slave configuration which supports multiple devices, whereas the RS485 is a point-to-point
connection. The data rate of both busses is up to 10 MB per second. On the PCB, these communication busses
are implemented as shown in Figure 5.7. The circuit used is the same as that used on the motor-driver devel-
oped by Jeffrey Miog [67]. All the busses are connected and controlled by the UART busses on the Stereo Pi.

Besides power and communication, the carrier board was given additional tasks. The motor driver connectors
have been changed to stacking connectors to ensure they are placed closer to motors and sensors, better or-
ganising the cabling inside the rover. For the Stereo Pi, there is a stacking connector as well. Moreover, the new
carrier board hosts a 433MHz receiver, some switches, button, and some LEDs to ease operations and support
remote control. During development, 3D modelling was used to ensure the components’ configuration is fit-
ting into Bars. The 3D model is shown in Figure 5.9. The final product without all the connectors is depicted
in Figure 5.8.

Figure 5.8: The new carrier board without connectors Figure 5.9: The 3d model of the new carrier board

5.3.4. Body and Leg design
The body of Bars is 3D printed; this was done to reduce cost and to speed up the prototyping process, making
it easier to adapt for project changes. The final design was not ready for 3D printing, but it required some
adaptations to make it printable. These improvements increased the printing process speed by 300%. Besides
speeding up the printing process, the adaptions increased the quality. For example, the Frangibolt release sys-
tem’s structural reinforcements, which will not be tested with Bars, could easily be removed. Another adaption
is separating the ‘head’ of Bars from its body. The head is shown in Figure 5.10, with the rest of the body in
Figure 5.11. This separation will reduce the amount of needed supporting material. After the first iteration, it
turned out that the thickness that causes the body’s strength was not sufficient. Thereafter, the thickness of
the body was increased by 1 mm to 3 mm.

Besides the body, a new holder for the Raspberry Pi cameras was needed to meet the SHRIMP camera’s in-
terface requirements. After measuring both mounting interfaces, the camera holder was designed in such a
way that it was printable. The holder went through several iterations because a 3D printer requires weak tol-
erances. The end result is shown in Figure 5.12.

In the end, the leg design faced some structural problems. The interface with the motor shaft was not suf-
ficient, and the leg came loose while walking. After printing multiple legs with different tolerances using single
or multiple screws on the side for clamping, a simple extra bolt clamping perpendicular on the shaft turned
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Figure 5.10: "Head" of the test model Figure 5.11: Body of the test model

out to be the best solution. However, since the d-shaft was small and the torque was not neglectable, the shaft
started to wring into the 3D printed material, which caused the leg to come loose again. Finally, the same
solution was applied to the old aluminium legs, as shown in Figure 5.13. Later, a new interface will need to be
designed to minimise the forces on the 3D plastic material. For example, a hub from the motor shaft to the leg
could fix this. Thereafter, the legs could be produced from 3D printed material once again.

Figure 5.12: The Cam Holder Figure 5.13: The Leg Fix

5.3.5. Software Integration
The main controlling program implemented on Bars is TRON. A new state for TRON is written primarily for
the test mission. This state will control some added emulators. A SHRIMP emulator emulates the functionality
of the SHRIMP camera while using the Raspberry Pi cameras. The emulator is able to start the Raspberry Pi
camera; it can start and stop a recording, and it is able to take pictures. Furthermore, there is a communication
module emulator, which translates the commands received from the 433MHz remote controller.

A new locomotion algorithm has been created to have a stable gait. The software developed by Rouwen con-
tained unexpected behaviour since it was based on Max-Plus algebra [88]. The DeciZebro team looked for
more reliable gait-switching methods and brought back the original RHex gait-switching algorithm of Saranli
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et al. [90]. The DeciZebro has walked many metres with this algorithm and has shown promising results.
Therefore, this algorithm is translated to C++ and adapted for operation on the Lunar Zebro motor driver’s
communication protocols.

Figure 5.14: Look inside the new test model

5.4. Testing Bars
In order to use Bars as a test model for the subsystems, Bars needs testing first. The electronics were tested in
small chunks during soldering. For example, the DC/DC converter has been tested first before connecting it
to the Pi. The same was done with the communications receiver; a command was sent and decoded manually
using an oscilloscope before the system could be integrated.

After the electronics were successfully tested, the legs were mounted, and its first steps were made. The first
demonstration was on a plastic box with Bars’ legs spinning in the air; later some steps were set on the ground
after some parameter and code refinements. Before the stereo vision test at the Decos test facility, the locomo-
tion was first given a field test at the same facility to make sure every was working on site. The tests which were
conducted are listed in Table 6.1. The tests contained real basic operations, like walking in a forward motion,
as well as more complicated tests like climbing obstacles. Ahmed Abakay, who helped rewrite the locomotion
software, mainly operated these tests.
The field tests showed out that Bars was able to walk in a forward direction at all the different speeds as well
as turn on the spot. The rover’s body was hitting the ground during one of its first steps only at 100% walk-
ing speed. Minimal deviations were detected when forward walking on a flat surface. When walking instead
on small rocks, these deviations became greater. On a slope, the rover was performing sufficiently. The rover
could walk up to slopes of 25 degrees. When walking obstacles of 30 mm or higher, the locomotion started
having problems and could get stuck on top of the rock. The other problem when facing the rock obstacles
was that the leg produced an over-current when it got stuck and stopped working. During operation, one out
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Table 5.1: Locomotion Test List

Nr. Test Description

1 10-100 % Forward
2 10-100 % Left
3 10-100 % Right
4 Multiple inclination angle measured with the phone
5 Multiple ’walkable’ obstacles

of 10 times, one or multiple legs stopped working for some reason. The reason for this is still unknown, but
this problem’s origin will probably be in the safety protocol of the motor drivers.

The other new functions, such as the camera system and the remote control, were also functioning as planned.
During the walking, TRON could record the camera feed and still be controlled using the remote.

Figure 5.15: The new test model assembled

5.5. Result
After several months of work, a fully working test Lunar Zebro called Bars has been realised. Bars performs test
missions and behaves like the final Lunar Zebro model. The test model is shown in Figure 5.15, standing on a
rock at the Decos Mars yard. The inside is visible in Figure 5.14, containing the newly developed carrier-board
with all the components stacked. Because cables are nicely organised on the side of the PCB, the internal space
has increased considerably compared to the previous model. Bars is performing sufficiently for gathering
usable stereo vision data from the rover perspective for the development of OPAL.
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6
Obstacle Detection Algorithm Design

In this chapter, an obstacle detection algorithm is designed. As Matthies, a computer scientist who worked
for NASA, defined it: ’Obstacle detection is the process of using sensors, data structures, and algorithms to
detect objects or terrain types that impede motion.’ [63]. From the requirements in section 4.2, the sensors
are the stereo cameras of the Lunar Zebro and the obstacles that impede motion showed mainly as rocks that
are greater than 3 cm. Section 2.3 elaborated on the basic computer vision theory needed to substantiate
the obstacle detection system’s design process. The main goal of this design chapter is to elaborate on the
chosen algorithms and design choices for Obstacle Processing ALgorithm (OPAL). First, Section 6.1 provides
an algorithm overview. Following this, every discussed block in this overview is clarified.

Figure 6.1: The Architecture of OPAL
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6.1. System Overview
Section 2.3 discusses some basic steps that could help a computer determine objects or obstacles in the
scenery. At first, a camera model needs to be gathered, which is done in this calibration step. After that,
rectification using the camera model can speed up the stereo matching processing, making sure depth can be
measured. A structure or a strategy is set out to create a flow of these steps and algorithms. This flow will guide
the system to subtract obstacles from the scene. The architecture or flow is shown in Figure 6.1 and is based on
flowcharts used by Wang et al. [108], and Di et al. [22]. Both flow charts are used in rock detection algorithms
for planetary navigation.

Stereo camera pictures are taken as input, together with camera parameters, to perform a first calibration,
as discussed in the rectification section 6.3. The first block is a pre-processing step containing, for example,
an illumination filter that filters the harsh illumination condition on the Moon’s surface. Second, a region of
interest selection is continued so as to remove irrelevant parts of the image such as the sky. In the end, this
step will reduce the computational cost. Furthermore, the disparity values are filtered by fitting and deduct-
ing the ground plane. Moreover, the resulting rock segments and other segments are now clustered so that
multiple rocks can be distinguished. Finally, logic is applied in obstacle classification to detect objects higher
than 3 cm from the ground. The distances to the obstacles are determined in this last block. According to the
requirements in section 4.2, the only output of OPAL will be the distance to the closest obstacle. At this point,
the closest obstacle is communicated to TRON. All the blocks of the architecture are individually elaborated
on in the upcoming sections in sequential order.

The majority of the algorithms used in this thesis is implemented in the Open Source Computer Vision (OpenCV)
library. As the name explains the library is mainly for image and video processing. Twenty years ago the source
code was released by Intel®. Eventually, more programmers contributed to further develop the library. The
library already includes over 2500 optimised algorithms and is still growing. This work is paying off, because
the library itself is downloaded over 2.5 million times, and is extensively used. The main advantage is that the
library is cross platform; not only it can be used on multiple operating systems, but it can also be used with
different program languages [10].
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Figure 6.2: Convolution/filtering example [102]

6.2. Pre-Processing
Before any processing method is applied, the pictures are pre-processed with two image filters. Noise is a very
common phenomenon while processing signals, and is the term used for unknown perturbations of a signal.
A commonly used process to remove noise from signals is filtering. Typically for an image, one pixel is likely
to be related to its neighbours. Therefore, most linear filters use a kernel, which are weighted as to how much
the neighbouring pixels will influence the filtered result. In Figure 6.2, the convolution process using a kernel
is visualised. This process can be summarised in the following formula:

g (i , j ) =∑
k,l

f (i +k, j + l )h(k, l )
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In which it can be noted that g is the result of the convolution of f and h, simply:

g = f ∗h

There are a couple of effects that filtering can achieve. A low-pass filter can smooth the image. It is a basic
noise removal technique also used in signal processing. It removes all the high frequencies by averaging them
out using kernel weights, also called weighted averaging. A high-pass filter sharpens a picture. It is the same
technique but uses a different kernel. For example, a kernel containing the Gaussian derivative, typically used
for defining the normal distribution curve, is sensitive to rapid changes in the pictures, such as edges.

Figure 6.3: Bilateral Filtering Visualisation [101]

The bilateral filter showed that it could improve the stereo match quality [3]. This filter is an extension of a nor-
mal Gaussian filter, a weighted average that conserves the edges in the picture. How this is done is visualised
in Figure 6.3.

Figure 6.4: Histogram Clipping [57]

After the bilateral filter, an illumination filter is applied. This filter helps reduce the influence of low inclination
angles of the sun, limiting long and harsh shadows, and helps also limiting lens flares or over-lightning. The
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Contrast Limited Adaptive Histogram Equalization (CLAHE) method [109] [86] [12] is a widely used filter. This
method uses an N x N square kernel around every pixel and constructs a histogram of this kernel. The peaks
in the histograms are clipped and distributed over the kernel [104]. In Figure 6.4 this clipping process can be
seen. In this way, it increases the local contrast without amplifying the noise. The CLAHE method is selected
because it showed good performance with high illuminated scenes. It was originally designed to enhance per-
formance while having foggy conditions.

The result of both filtering processes could be seen by comparing Figure 6.5 and 6.6. The first figure shows
the original captured frame with some added lines, while the second figure shows the result after the filtering
process. When looking at the cloud, for example, it can be seen that the contrast is enhanced in this over-
lighted region, and more cloud details could be spotted. The reason why the picture is turned into gray-scale
to reduce the memory size of the picture and to make it possible to implement different stereo-matching algo-
rithms.

Figure 6.5: Frame captured by the stereo camera with horizontal lines

Figure 6.6: Frame rectified and filtered by the stereo camera with horizontal lines

6.3. Rectification
Rectification could help obtain 3D information of the scene. The main reason is to ease the stereo matching
process. The rectification process will carry out two operations—distortion correction and the collinear align-
ment of both image plane’s epipolar lines. The theory behind this process is described in Chapter 2. First, to
perform rectification, the current stereo setup needs to be calibrated. The calibration process determines the
intrinsic and extrinsic parameters of the stereo camera setup. This process involves making many pictures of
a chequerboard or another calibration pattern in multiple positions. In Figure 6.7, the author gathers together
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this calibration footage.

There are multiple tools around one can find the intrinsic and extrinsic parameters of the stereo camera setup.
Popular tools are the Matlab calibration toolbox, and the algorithms implemented in the OpenCV library. Kli-
mentjew et al. [49] tested both methods for obtaining calibration results, and the research showed that both
methods demonstrated the same performance. For the reasons of ease and simplicity, the Matlab Toolbox has
been selected. The calibration results are shown in Appendix C.

At this point, the pictures can be rectified using the stereo rectify function of the OpenCV library. The re-
sult can, besides the applied filters, also be seen when comparing in Figure 6.5 and Figure 6.6. The first figure
is the original frame with horizontal lines added to visualise that the pixels in both pictures are not collinearly
aligned. Where in the second picture, the image are rectified and the pixels in both picture does align. The
visualised lines are a useful tool for seeing this phenomenon. For example, the line touches both the crater
tops, while both ridges were not aligned in the original picture.

Figure 6.7: Performing Chequerboard Calibration

6.4. Region of Interest Selection
There are regions in the picture that contain barely any helpful information—for example, the sky. Therefore,
it is not essential to use these in all the following computationally heavy steps. Hence, a Region Of Interest
(ROI) selection is made to deduct these regions. Furthermore, some regions in the pictures, specifically at the
sides, produces uncertain results. These uncertainties are the result of calibration and rectification steps. This
process was not flawlessly performed at the sides for a reason—the lens aberrations. These side differences
were discovered during development, where they caused some discontinuity in the disparity maps. In addi-
tion, the left camera has some objects in its field of view that are not in the field of view of the right camera.
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Figure 6.8: Canny Edge-Detection output and ROI selection lines Figure 6.9: ROI output

This phenomenon is called an occlusion. Hence, both sides are deducted. The bottom only contains informa-
tion of parts very close to the rover and therefore also seen as not important. The horizon is the only moving
factor in the picture because the roll and pitch of the Lunar Zebro change while walking. So, in order to deduct
the sky, this top boundary of the ROI is determined by an edge-detection algorithm. This algorithm tries to
find the edge between the sky and the rest of the picture. At a later stage, the solar panel will be in the field of
view as well. Fortunately, this algorithm can easily remove the lid as well.

The edge-detection algorithm used was initially developed by Canny [11]. The process of a Canny edge-
detection algorithm is as follows. First, a Gaussian filter smoothed the image. Second, the intensity gradients
in the image are determined. After this, a non-maximum suppression algorithm thins the edges. Following
this, a hysteresis threshold method is used to determine the final edges in the picture. The Canny algorithm is
outperforming the most commonly used edge-detection algorithms, according to Katiyar et al. [46].

In Figure 6.8, the Canny edge-detection output is shown. The bright horizontal line represents the first row
where an edge is present. The picture represents the determined region of interest, which is 30 pixels higher
than the detected top boundary. In Figure 6.9, the final output of the ROI Detection algorithm is shown. Next,
all the black edges will be removed. At this point, a smaller picture is pushed to the next blocks.

A small performance test is conducted to measure the influence of this ROI selection; this performance test
immediately showed a perfect positive linear correlation between the total computational time and the image
size. In Table 6.1, four test results are presented: one in which nothing is changed, one in which only the bot-
tom part is removed, one in which the bottom and the sides are removed, and one in which all four sides are
removed. At this point, only 50% of the picture is left. These four points are plotted in Figure 6.10 with the area
reduction numbers used as the x-axis and the time reduction as the y-axis. Both reductions are expressed in
percentages. In this picture, the calculated formula of the line is also stated. Reducing the ROI picture to 100%
is theoretically impossible since most of the other algorithms will not work anymore.

6.5. Stereo Matching
The next block in line is stereo matching, this process was already discussed in section 2.3.5. In this section, a
choice between the dense or sparse method and the working principles of the chosen algorithm are explained
and implemented.

The choice for dense stereo matching was relatively straightforward. The most obvious reason to choose a
sparse method is less computational power and less time. The cost is the loss of information, since it only uses
features of edges and uses logic to calculate the depth in between. Combining that with the lack of features
in the monotone landscape of the lunar surface will make this less than ideal. It is logical to choose a dense
method since time is not constrained as the obstacle detection is far from being near to real-time.
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Figure 6.10: ROI Time Reduction

Description
Percentage
removed

Time one
revolution

Percentage
Gained-Time

Full Picture 0 31 0
Removing bottom 12.5 27.8 10.32258
Removing sides 23.4 24.9 19.67742
Removing top
using Canny

50 18 41.93548

Table 6.1: Small ROI Selection Influence Test

The dense stereo matching method scans both images line by line. Each pixel is matched using a similarity
measurement method, there are multiple different methods developed such as Normalised Cross-Correlation
(NCC), Sum of Squared Differences (SSD), Sum of Absolute Differences (SAD) and Semi-Global Matching
(SGM) [17]. All these similarity measurement methods can be classed as local or global. Local methods focus
purely on cost computation. The output is simple: the pixels with the lowest cost will be matched, resulting in
a winner-take-all principle. However, in some cases, repetitive patterns or low-structured images make mul-
tiple match-winners [93]. For this reason, global methods are used to minimise the overall cost, also called
energy.

E(d) = Ed at a(d)+λEsmooth(d) (6.1)

Where Ed at a is the energy function of all the stored disparity cost arrays, d . Esmooth is a smoothness term
added, with all the stored smoothness assumptions of the algorithm.

The Semi-Global Block Matching (SGBM) method differentiates itself by not optimising the global cost of the
whole image but by using blocks. The cost is minimised and smoothed in multiple directions (Top-Bottom,
Top_Right-Bottom_Left, Left-Right etc.) while using these blocks. SGBM is a fast and accurate method proven
during multiple studies [85] [107] [2]. One benefit is that it is implemented in OpenCV and proven to be ap-
plicable on the Moon’s surface during the Chang’e 3 mission [56]. Hence, SGBM is considered to be a suitable
choice.

There are several parameters to select and optimise, but figuring out the parameters, their function, and their
used value is another. In Appendix E, a Graphical User Interface (GUI) is presented. With this GUI, parameters
are iteratively changed to get a close-to-ground-truth result. The parameters are listed in Table 6.2 together
with its determined preferred value.

Table 6.2: SGBM Used parameter list [78].

Name Parameter Used Value Description

minDisparity 0 Minimum disparity value, for if a picture after rectification is shifted a little.
numDisparities 96 Maximum disparity value (minus the minDisparity), maximum shift in pixels. Must be a modulus of 16.
blockSize 5 Size of the block used for energy minimisation. Normal Values are 3,5,7,9 or 11.
disp12MaxDiff 0 Maximum allowed amount of difference when comparing the left-right disparity. When zero it is disabled.
P1 8 ·blockSize2 First parameter of the smoothing penalty function.
P2 64 ·blockSize2 Second parameter of the smoothing penalty function.
uniquenessRatio 5 Percentage of whether second best or minimum option should be considered. Normally, this value is between 5-15.
speckleWindowSize 0 Speckle filtering window size value, disabled by setting to zero.
speckleRange 0 Speckle filtering range value, disabled by setting to zero.
preFilterCap 0 Truncation value of a pre-filtering function.

mode mode_HH
Default mode is a mode where only five directions are considered.
Mode_HH is a two-pass algorithm, considering eight directions.
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As seen in the table, the pre-filter is disabled since, as discussed, the bilateral filter and the CLAHE filter are
used for pre-filtering. Furthermore, the numDisparity together with the blockSize are found by using the GUI.
This blockSize parameter affects the result of the stereo matching process significantly. In Figures 6.11 to 6.15,
a couple of results of different block sizes are visible. The brighter the pixels the lager the shift or so called
disparity value. The large block size provides reliable matches, where small window sizes provide accurate
matches; but these are a little noisier. Because of time constraints, only one set of parameters was chosen, and
no trade-off has been made between ’accurate’ and ’reliable’. In the future, with proper precision and recall
monitoring, a more optimal set of parameters can be found.

Most other values are set to their default values determined by the OpenCV community—for expamle, the two
parameters of the smoothing penalty function. In a later stage, a changing penalty function based on imaging
conditions would be more optimal, such as noise and illumination conditions [4]. Speckle filtering and left-
right disparity checks are disabled as with the pre-filtering steps. Instead of this, a weighted least square filter
is applied for post-processing the disparity output. This filter uses the original photo to align the photo edges
with the disparity map contours, and therefore, it will develop the disparity values in low-confidence regions
[30] [66].

Figure 6.11: SGBM result
using a block size of 5 pix-
els

Figure 6.12: SGBM result
using a block size of 7 pix-
els

Figure 6.13: SGBM result
using a block size of 9 pix-
els

Figure 6.14: SGBM result
using a block size of 11
pixels

Figure 6.15: SGBM result
using a block size of 13
pixels

Figure 6.16: End result after stereo matching Figure 6.17: V-disparity result of figure 6.16

6.6. Ground-Plane Fitting and Deduction
The next block in line is ground-plane fitting and deduction. Most of the stereo vision research originates from
the automotive industry. Urban scenes are very structured and the majority of the roads are flat. A flat-world
assumption means that everything that sticks out is a possible obstacle, as mentioned by Manduchi [61]. With
a more chaotic scene, obstacle detection using this assumption seems not the ideal solution.

Ground-plane detection has, however, also been used on ’off road’ cases, and it could help an object detection
algorithm to filter data points. Yiruo et al.[110] demonstrated, for example, that it is possible to use ground
plane detection in such situations. An advanced v-disparity algorithm is applied to estimate the ground plane.
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V-disparity is an algorithm proposed by Labayrade[52]; it uses the disparity output of the stereo matching al-
gorithm and translates it to a v-disparity map, a histogram of the disparity in the horizontal rows. A histogram
is a representation of the distribution of a set of values. In this case, the brighter the pixel the more those dis-
parity values are presented in the row.

In Figure 6.17, the result is depicted and placed next to the previous result of the stereo matching algorithm.
Clearly, in the rows where the rock is present, there are low (’dark’) disparity values representing the sky and
disparity values around the 50 indicating the rock. The only sloping line left is the ground, and to detect this,
a line/curve fitting method is used. The two most popular methods in this research field are the Hough Trans-
form and RANSAC.

Figure 6.18: Polar Coordinates Represen-
tation [55]

Figure 6.19: Hough Space [55] Figure 6.20: Hough Space filled with si-
nusoidal profile of data points on a line
[91]

6.6.1. Hough
The Hough Transform [40] was invented to solve a repeatedly occurring computer vision problem; detecting
simple shapes in a stack of datapoints. This stack contains a significant number of outliers, primarily because
of noise or obscure parts. Hough introduced a voting structure, where each data point has a vote on the fit of a
model. The model uses no more than two parameters. Therefore, polar coordinates are used to express a line
with d—the shortest distance from a predetermined origin to the line—and θ—the angle between an axis and
the line. In Figure 6.18, the polar coordinate system is visualised, representing the input for the corresponding
equation for a line, stated in Equation 6.2. Finally, the Hough Transform algorithm is filling a so-called Hough
space, visualised in Figure 6.19.

xcos(θ)+ y si n(θ) = r (6.2)

Every point has a corresponding sinusoidal profile in the Hough space representing all the possible lines
through that point, also seen in Figure 6.20. The point in the Hough space where most lines intersect rep-
resents the best line for all the points. Adding some noise will cause the lines to not intersect at one point.
Therefore, a grid is used, so the most dominant grid cell is chosen as the best line fit. This ’voting’ system
makes the Hough Transform robust to noise. However, the Hough lines are not entirely excluding outliers,
which means the fit is not ideal.

6.6.2. Ransac
Very often, the RANdom SAmple Consensus (RANSAC) method is used to remove outliers to get a better posi-
tion estimation. RANSAC is also used in various other applications. This iterative method seeks to fit a model
through a set of data points. After its first fit, the algorithm labels some data points as inliers, and with these
inliers, it tries again to fit a model to find new inliers. The algorithm stops after k iterations. According to
Scaramuzza [92], k is calculated with Formula 6.3, where p is the chance of finding the suitable model. W is
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the probability of choosing an inlier, and n is the number of all the possible points.

k = log1−p

log1−wn (6.3)

The algorithm is very flexible and can be used in any case with any dataset while not being very computation-
ally heavy. The downside is that RANSAC requires knowledge about the data; and if there are too many outliers,
the number of iterations will increase with a logarithmic scale.

Both the RANSAC and the Hough Transform methods were tested but were experiencing some issues. The
Hough Transform provided multiple lines that could fit the ground. It was hard to come up with logic to de-
cide which line to select. The line with the most steady result showed to be the line with the lowest positive
derivative. The results are seen in Figures 6.21 and 6.22. Whereas in both figures, the Hough Transform output
is always slightly detecting the wrong slope, the RANSAC method had problems with the high number of out-
liers in the dataset. Sometimes it performs well and sometimes poorly, as seen in both figures. This particular
phenomenon was also mentioned by Li [55] and is entirely related to this high rate of outliers. A solution was
to combine the two methods. First, with the Hough line detection method, an estimate of the ground is made.
Then, the data is filtered with this estimate, reducing the rate of outliers. At this point, the RANSAC method is
used to come up with a perfect fit for the ground.

Figure 6.21: Ransac outperforming Hough Figure 6.22: Hough outperforming Ransac

Now points of the ground can be selected and deducted. As seen in 6.21, the result of the ground line is a good
fit for the bumpy and noisy ground. For selecting all the ground points, the area close to the line is used. The
downside of this technique is that some of the information about the rock is also removed. In Figure 6.23 the
selected ground points are visible. Here, the rock is partly selected as ground. The added logic to help detect
more of the rock is seen in Figure 6.24. The v-disparity result of deducting the ground in a normal fashion is
seen, after which the Hough Transform is used to detect vertical lines. These lines represent the obstacles in
the scene. At this point, in an extension of this obstacle line, all the v-disparity points are added again, result-
ing in the fact that almost the whole obstacle could now be detected, as seen in Figure 6.25.

6.7. Clustering
Clusters are condensed areas of points in a graph, and they could be formed by two types of points—border
points defining the border of the cluster and core points enclosed by the border points. Points that do not
belong to any clusters are outliers. Clusters do not have fixed sizes or shapes and when the ground plane is
deducted from the scene, multiple little clusters remain. For example, in Figure 6.26, where a rock cluster is
depicted after the disparity map was converted to a 3D point cloud. A couple of things need to happen now
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Figure 6.23: Subtracted Ground Result Figure 6.24: Extra Hough
Line Detection Step

Figure 6.25: Subtracted Ground Result with Extra
Hough Line Detection Step

before the closest rock can be sent to TRON. First, the different clusters need to be differentiated from each
other and labelled, and other little clusters or outliers need to be removed.

Figure 6.26: 3D Obstacle Point Cloud Figure 6.27: Comparison of Scikit-learn implementations of cluster algorithms [83]

Many algorithms are designed to perform detecting and labelling of clusters. Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) is such an algorithm and is proposed by Ester et al. [27]. The DBSCAN al-
gorithm uses a density-based approach: it looks for a group of points with a minimum density and a minimum
size. However, when two clusters overlap, the DBSCAN starts struggling. Another solution is a centroid-based
clustering algorithm like K-Mean, which was first proposed by Macqueen and further developed by others[31].
The algorithm looks for a pre-defined number (k) of clusters. Then it starts to attach points to the nearest clus-
ter centroid and minimises the distance between each point and its centroid. These two clustering algorithms
are the most widely used clustering methods, but there are more known clustering algorithms.

Scikit-learn is a library for Python which integrates many known machine learning algorithms while focus-
ing on ease of use, performance, state of documentation, and consistency in the API [83]. The developers of
Scikit-learn also compared all the clustering algorithms they implemented in their library, as can be seen in
Figure 6.27. The cluster algorithm DBSCAN is also implemented in this Scikit-learn library. DBSCAN’s perfor-
mance is impressive as comparatively seen in the figure. Only once in the third example did DBSCAN have
trouble differentiating a cluster. The time used for clustering is relatively low compared to the others. At the
same time, DBSCAN is one of the few algorithms where no pre-definition of the number of clusters is needed.

Clustering in the OPAL algorithm, as mentioned, is needed for labelling and outlier filtering. When there is only
one rock in the scene, this step seems unnecessary; but when multiple rocks exist, this step becomes useful.
To demonstrate this a case with two rocks is processed in Figures 6.28 to 6.32. In Figure 6.28, we start with the
ground being detected. In Figure 6.29 the ground together with the sky are deducted from the disparity matrix.
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Figure 6.28: Two Rock
Case - Ground Reduction
Result

Figure 6.29: Two Rock
Case - Filtered Disparity

Figure 6.30: Two Rock
Case - DBSCAN Result
Front-View

Figure 6.31: Two Rock
Case - DBSCAN Result
Top-View

Figure 6.32: Two Rock
Case - Obstacle Detection
Result

This disparity image is translated to a 3D point cloud. The top view of this point cloud, as seen in Figure 6.31,
is then used as input for the DBSCAN algorithm. DBSCAN labels the two rocks and the outliers shown in the
middle of the two rocks. How that is then translated to the result shown in Figure 6.32 is explained in the next
two sections.

Figure 6.33: The result of OPAL with the Ground-Truth

6.8. Obstacle Classification
As defined in the requirements, an obstacle has a minimum height of 3 cm. Height definition sounds easy
when the 3D points of the obstacle are known; however, it is not that simple. When a camera is in 3D space, as
the ground has a slope, obstacles will include this slope. Rotating all the point around the x-axis with a rotation
angle of the ground slope will make the height estimate more realistic. The peak of the cluster is now taken as
the height of the obstacle.

This simple rule ’everything that sticks out is a possible obstacle’, is the only rule applied for obstacle de-
tection. In a later phase, more sophisticated methods for obstacle classification could be used. For example,
the method described by Dunlop [24] used features to distinguish between rocks and the background. These
features are, for example, shape, colour and texture.

A box representation is used to indicate the obstacle in the image and for algorithm performance measure-
ment as discussed earlier in Section 3.5. However, sometimes, the obstacle is split into multiple parts by the
DBSCAN. This splitting happens because the boundaries of the rock are sometimes tagged as belonging to a
different cluster. This is because the disparity value is an integer value, and gaps could occur when translating
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it back into 3D values. Overlapping bounding boxes are filtered out using a non-maximum suppression algo-
rithm [7]. The final bounding box is seen in Figures 6.32 and 6.33.

Figure 6.34: The histogram of the Z-Coordinate of the Obstacle Points

6.9. Distance Determination
Now that obstacles are classified as obstacles, the distances need to be determined. The distances were al-
ready determined when the disparity image was translated to a 3D point cloud using the triangulation method
in Section 6.7. In Figure 6.34, the histogram of all the z coordinates of the obstacle points could be seen. This
histogram is now used to detect where the obstacle starts from the camera’s point of view.

If the number of obstacle points of a certain z-range is large enough, this point is taken as the distance from
the obstacle to the camera. For example, in 6.34, there are around 1200 pixels that are 170 mm away. The
threshold in the algorithm is set to 100 points. So, in this case the first distance value is taken as the final dis-
tance. At this point, all the distances are determined for each obstacle, and the obstacle that is closest could
be communicated to TRON. This distance is added to the resulting figure seen in Figure 6.33.
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7
Results

This chapter presents the results of the stereo vision obstacle detection system. At first, the measurement
error is discussed. Furthermore, OPAL’s performance is described over a case validation. At last, some general
remarks were elaborated on, and the compliance of the requirements set in Chapter 4 is reviewed.

7.1. Measurement Accuracy
During the stereo vision obstacle-detection system development, a slight error was detected while the cam-
eras were moving significantly. The hypothesis about this particular problem was based on the idea that the
cameras were moving. There are two main reasons why this hypothesis could be correct. The first reason is
an error in the design. During the design of the cam holder, it was decided that the camera module would
be clamped. The camera module of the Raspberry Pi camera is tiny and is stuck with some tape to the PCB
behind it. The camera mount of the test model clamps this tiny black box inside a frame which is more or less
the same size. However, due to vibrations, the camera module shifts up and down in a direction not blocked
by the casing. The other reason is the shear stress in the body because of the moving tripod principle or other
movements of the body. This shear stress influences the stereo base, which is likely because the test model is
just a piece of plastic and therefore not rigid.

Throughout testing, the system was calibrated multiple times with a chequerboard. The results of these cal-
ibrations are shown in Appendix C. Usually, these chequerboard calibrations also contain errors. After trian-
gulation, using the calculated camera parameters, the corners detected by a corner detection algorithm do
not perfectly fit each other. In other words, the projection of all the calibration patterns does not match. The
algorithm is specifically trying to minimise this, which is also called a re-projection error.

Figure 7.1: Visualisation of the Calibration Error - Detailed top view and isometric Overview

The results of the calibrations in Appendix C are put together in a graph in Figure 7.1 to visualise the influence
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Figure 7.2: Theoretical depth error over the distance, together with the static output of OPAL

of this re-projection error on the final camera model. As seen, the camera models vary in translation and ro-
tation. The standard deviation in the x-, y-, and z-axis direction is 0.17 mm, 0.24 mm, and 1.8423 mm. The x-
and y-axis standard deviations are negligible, while the standard deviation for the rotation around the z-axis is
0.26 degree. These fluctuations are also seen in the top-view plot. The rotation variation around the z-axis will
probably correlate to the variation in translation in x and y.

Besides this re-projection error and moving stereo-base, the discretisation, as explained in Section 2.3.7 and
the section above, will influence the depth estimation. The triangulation formula 7.1 mentioned (Section 2.3.7)
describes the relationship between the error in the depth ∆Pz and the distance Pz . Furthermore, the focal
length of the cameras f , the distance between the cameras b, and the pixel width ∆x are used.

∆Pz,tr i ang ul ati on =
p

2∆xp2
z

f b
(7.1)

Furthermore, the error created by the stereo matching process also affects the resulting accuracy of the depth
estimation. Every little error in ∆Pd , which represents the disparity error, will accumulate due to the stereo
geometry. For the disparity error, the resulting depth error is caught in Equation 7.2 [50]. According to the
Middlebury stereo evaluation database, the average Root Mean Squared Error (RMSE) of the disparity, which
is expressed in the number of pixels, is 41.7 pixels [18]. Therfore, the disparity error, ∆Pd , could also be ex-
pressed as 41.7∆x. The errors in camera calibration, including the lens distortions and camera alignment
errors discussed at the beginning of this section, affect the disparity error. An additional study will need to
be carried out in order to resolve this process. For now, it is assumed that this relationship is included in the
number extracted from the Middlebury dataset.

∆Pz,di spar i t y =
p2

z

f b
·∆Pd (7.2)

Adding these two errors together will result in Equation 7.3. This formula is plotted in Figure 7.2 using for ∆x,
f , and b the values 1.4 µm, 3.6 mm and, 40 mm respectively.

∆Pz =
(
41.7+p

2
)
∆xp2

z

f b
(7.3)
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Moreover, in this graph in Figure 7.2, data points are visualised. The data points visualise the output of OPAL.
During the test cases discussed in the following sections, the rover is stopped multiple times. Within these
stops, the distance to the rock is measured with a tape measure. Clips of the footage belonging to the mea-
surement are then processed using OPAL. The error of these data points are plotted in the graph in Figure 7.2.
As seen, all the data points measured are within the maximum expected error.

7.2. Case Validation
In this section three cases were used to validate OPAL. To reduce the amount of time needed to process all
three video’s, only every second frame of the footage of each case is used. During each case an overview is
provided first, afterwards the performances are elaborated on.

Figure 7.3: Case 1: Scene Capture

7.2.1. Case 1
In this first case, Bars is walking towards one rock, obstacle two. This rock is specified as a flat and wide rock.
Behind the rock, there is a crater ridge. The walking path does not deviate much in this case. The rock is,
therefore, observable in the middle of the camera for almost the entire video. Sometimes during walking, the
rock sides disappear from the scene, but most of the rock stays visible. During the walking phase, the rover is
stopped four times to measure the distance to the rock. Together with the beginning, where the author is also
performing calibration and an initial measurement, these parts are clipped from the video and processed by
the algorithm. In Figure 7.3, a snapshot of the video feed to the algorithm is shown. Here the processed rock is
visible.

Algorithm Performance
Processing the cut video feed took on the Intel NUC server around 120 minutes to process 983 frames; on av-
erage this is around 7.3 seconds per frame, including overhead such as creating an output video, creating an
output log, and other operations. This output log contains, for example, the frame number, the distance to the
closest obstacle, and determined IOU.

In figure 7.4, these three values of every processed frame are visualised in a graph by dots. Each dot could
be green or red, representing if detection is a true or a false positive as determined by this IOU. In the graph, a
number of other items are presented. There is the expected path represented by the blue line. The striped lines
above and below the blue line are the minimum and maximum theoretical error, as explained in Section 2.3.7.
Furthermore, the three red lines represent the determined requirements as explained in Section 4.2.1. The first
striped line where is the line the rover should stop for the rock and start acting. Between the last two red lines,
the danger zone starts. If an obstacle passes one of these lines, there is a possibility the obstacle becomes an
untraceable hazard as explained in Section 4.2.1. Finally, the values of precision and recall are stated in the red
text box. These indicate the performance of the algorithm as explained in Section 3.5.
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Figure 7.4: Case 1: Result Graph

A couple of remarks can be made about the algorithm. Clearly, the obstacle in the scene is detected. How-
ever, the algorithm is not detecting the whole rock from the beginning. The distance detection, on the other
hand, is performing within the error margin and doing so fairly constantly. It is important to note is that the
estimated walking path is just an estimate and the horizontal lines are the actual measured distances. The rock
was correctly detected before the rocks hit the danger zone, which is the most crucial criterion.

Figure 7.5: Case 1: Problem Rock seen as Ground

The rock was as discussed false detected in the beginning. At this point, This is not really a problem since the
rock is still far from the Lunar Zebro. In Figure 7.5, the ground-plane deduction is shown in the v-disparity
graphs. The v-disparity was the histogram of the disparity per row, and explained in Section 6.6. First, the
full v-disparity graph together with the detected ground-plane line are shown. Afterwards, the ground-plane
disparity values are removed. What is left is a tiny line. This line was shown to be too small to be detected by
the Hough Transform algorithm. Therefore, the rest of the obstacle points are not recovered, and the obstacle
stays halved.

At the end of this case, once again some red dots appear in the last part of the graph in Figure 7.4. The reason
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Figure 7.6: Case 2: Problem Partial Detected Rock

for this is seen in Figure 7.6 where the output v-disparity is seen when detecting an obstacle in the v-disparity
domain. In this domain, the spread of the disparity increases when an obstacle gets closer to the camera. A
small area around the detected line is seen as part of the obstacle in the algorithm. The rest of the disparity
values are filtered. Therefore clearly, only a part of the obstacle is detected in the resulting figure located on
the right-side of Figure 7.6. This is not effecting the obstacle detection in the critical zone, since still a repre-
sentative distance is measured.

Figure 7.7: Case 2: Scene Capture

7.2.2. Case 2
In this second case, Bars is again walking towards one rock, obstacle one. The walking path deviates a little
in this case, which results in the rock almost leaving the field of view. Like the other case, the rover stops four
times during the walking phase for measuring the distance to the rock. These parts are clipped from the video,
together with the beginning, and the video is processed by the algorithm. In Figure 7.7, a snapshot of the video
feed to the algorithm is shown.

Algorithm Performance
Processing this case took 148.5 minutes, with 1015 frames processed for an average of 8.8 seconds per frame.
The precision here is higher than in the first case, mainly because the ground was not correctly deducted ini-
tially in the first case. In this case, the false positives are more spread out over the whole length of the test case.
This false detection has several reasons; instead of too much ground-plane deduction, there was rather too
little ground plane deduction. The other problem, in this case, was that the algorithm suffered when the rock
disappears from the field of view. Matching and detection were therefore difficult to be performed.
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Figure 7.8: Case 2: Result Graph

The first problem—the red dots around the 2000 frame count in the graph in Figure 7.8—lies in the ground-
truth box definite by the CSRT algorithm, which tracks the obstacle. The detail of this algorithm are discussed
in Section 3.5. Parts of the rock are in the field of view of the left camera but not in the field of view of the right
camera. Causing that part to be subtracted from the box. OPAL is only detecting a small part of the rock where
the tracked box is still using the upper and the lower limit of the old box, which results in a false positive since
the IOU is now no longer matching. The result is depicted in Figure 7.9.

Figure 7.9: Case 2: Problem Bounding Box at the Side

The second significant thing to note on the graph containing the result is the upper red dot. This red dot rep-
resents one of the few complete misses of the algorithm. There are two reasons for this. First, something is
happening in the clouds, which makes the sky ’light up’ in the disparity map. The scene and the resulting
disparity map could be seen in Figure 7.10. Secondly, the wrong obstacle was detected in the v-disparity and
wrongly filtered. This process is shown in Figure 7.11 on the left side. The left mask and the resulting bounding
boxes are seen on the right side in this figure. The problem can be fixed by optimising the code but also by
adding a filter which includes previous processed results. Since the surface of the Moon is static landscape,
this is a validate option.
The next issue is the bulge at the end of the third walking phase in the result graph. Figures 7.12 and 7.13 helps
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Figure 7.10: Case 2: Problem Detected Sky Part 1

Figure 7.11: Case 2: Problem Detected Sky Part 2

visualising this problem. There are three clusters detected, as seen on the left side of the first figure. This graph
is the top view on the 3D point cloud after ground-plane deduction. The red and green ones are little bumps
and not seen as obstacles. The light blue cluster is the represented rock in the scene. The rock contours can
be seen, but there is a little bulge and some ground points on the bottom of the cluster. In this same figure, on
the right side, it can be clearly seen that the ground deduction was not ideal, and less ground was deducted.
This same ground was causing points closer to the rover to be included in the cluster. These points were then
taken into account in the histogram and caused the algorithm to think the obstacle was closer than it was. This
histogram of the distances of the obstacle cluster is seen in the second figure on the left side. On the right side,
the result of this case is seen.

Figure 7.12: Case 2: Problem Ground in Obstacle Cluster Part 1

Figure 7.13: Case 2: Problem Ground in Obstacle Cluster Part 2
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Figure 7.14: Case 2: Problem Partial Detected Obstacle

In the end, the same problem occurred as in the first case. There is too much rock filtered in the disparity
domain because the disparity range increases when the obstacle gets closer to the camera. On the left side of
Figure 7.14, the v-disparity of the scene is apparent. Only the area around the green line is left after filtering
the obstacle from the disparity, which result in the green bounding box seen in the picture on the right side of
the figure.

Figure 7.15: Case 3: Scene Capture

7.2.3. Case 3
In this last case, Bars is walking towards two rocks now, obstacle one and obstacle four. These rocks are placed
behind each other with a distance of 64 cm between the two rocks. The walking path is relatively straight
without much deviation. Now, however, there are only two measurements performed: one at the beginning
and one at the end. So only the beginning and the end are clipped from the processed video. In Figure 7.15 a
snapshot of the video feed to the algorithm is shown.

Algorithm Performance
The time spent by the algorithm in the third case is around 73.5 minutes for 601 frames, which is an average
of 7.3 seconds per frame. Compared to the first two test cases, the precision and recall are far lower. The pre-
cision is lower because many false positives are detected. The recall becomes lower because there are fewer
true positives than the other test cases. Therefore, the influence of the detected false negatives increases. In
the graph in Figure 7.16, the reason for this amount of false positives can intuitively be concluded. As may be
inferred from the graph, the algorithm is switching between the two rocks. While it sometimes succeeds in
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Figure 7.16: Case 3: Result Graph

detecting the rock, it is also struggling and detecting the wrong one. As noticed, the rock is properly detected
when the rock is entering the crucial distance.

In the disparity domain, the spread disparity values make the Ransac line’s slope fit poorly, resulting in a rock
deducted so much that the only rock left is the second one. In Figure 7.17 on the left side the wide ground
disparity range is visible. In the middle of the figure, too much of the rock in front is highlighted as ground. As
a result, the resulting bounding box around the wrong rock is seen on the right side.

Figure 7.17: Case 3: Wrong Detected Obstacle

7.3. General Remarks
During all these test cases, there are moments where the ground is not correctly detected. When the Lunar
Zebro is operating normally (i.e., walking in a usual manner over the surface), the angle between the camera’s
optical axis and the ground is expected to be within a particular range. The extraordinary, detected ground
planes are marked as unprocessable for the remainder of the algorithm. The other false-negative possibility is
that a wrong ground-plane fitting could lead to too much ground-plane deduction. This could happen when
walking towards smaller rocks. The last case showed that this problem disappears when the obstacle becomes
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closer, and the rock is detected again. The high percentages of the recall parameter suggest that the number of
false negatives is acceptable.

The time spend by the algorithm was also considered acceptable. For example, case 2 was run using the Git-
Lab runner on Intel NUC with a 2.90 GHz processor inside; this took around 8.8 seconds per frame. The actual
processor is around 500 Mhz. The closest hardware available is a Raspberry Pi with a processor of 1500 Mhz.
The time the algorithm took on this platform was around 23.5 seconds on a single core. When interpolating
this to a 500 Mhz processor, the algorithm will take the estimated time of 34.2 seconds for processing pictures
in case 2, which is within the time-limit.

Figure 7.18: Memory Usage of OPAL

For checking the memory usage of the algorithm, a memory profiler is used [29]. This memory profiler can
monitor the memory consumption of Python scripts. (See the graph in Figure 7.18) The memory usage is plot-
ted over time. The algorithm runs five frames in case two. The initialisation phase can be identified. After this,
the video fast-forwards to the walking phase, and then finally the frames are processed. A maximum of around
the 310 MiB is reached, which is around 325 MB.

To conclude this section, the compliance of OPAL for each requirement is checked in Table 7.1. The colours
indicate compliance, where green is full compliance and yellow is almost compliant. The requirements which
were not compliant were already subtracted in Section 4.3. Furthermore, there is a rationale provided as to
why these requirements are compliant or not.
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Table 7.1: The compliance on the requirements of OPAL

ID Requirement Validation
Method

Compliance Rationale

OPAL-INT-04

OPAL shall have as input the im-
ages produced by two SHRIMP
cameras with a stereo base of 40
mm, a resolution of 640 x 480
pixels and a field of view of 65 de-
grees.

I

OPAL currently uses two Raspberry Pi
cameras, but the used resolution of the
camera is the same as the SHRIMP
camera.

OPAL-INT-05
OPAL shall be able to be run
on the ZPU, which has 500 MHz
processor and is Linux based.

D
In theory, it should be able to run on the
ZPU in the current state; however, this
is not tested.

OPAL-INT-06
OPAL shall not use more than the
400MB of RAM.

D

This is demonstrated; OPAL is not us-
ing more than 300 MB. This could, how-
ever, vary from the final implementa-
tion on the ZPU.

OPAL-FUN-
01

OPAL shall be calibrated with
a re-projection error lower than
0.2 pixels.

D
The re-projection error of the used cali-
bration is 0.15 pixels.

OPAL-FUN-
02

OPAL shall limit the contrast
with a maximum change in in-
tensity to limit the influence of
lighting on the algorithm.

D

This is implemented in the algorithm; it
still needs to be tested or demonstrated
if this also decreases the influence on
the lighting.

OPAL-FUN-
03

OPAL shall detect the presences
of rocks larger than 30 mm in
front of the Lunar Zebro.

T

The rocks presented in the testcases
were all larger than 30 mm and detected
by OPAL. However, more tests are re-
quired to gather data of more rocks with
different sizes.

OPAL-FUN-
04

OPAL shall detect hazards within
the detection area pointed out by
Figure 4.7.

T
In the three presented cases, the algo-
rithm detected the rocks in the critical
error range.

OPAL-FUN-
05

OPAL shall determine the dis-
tance to every hazard with an er-
ror less than the theoretical error
curvature.

T

Most of the times, the measure error
falls within the theoretical error range,
especially in the static test in the graph
in Figure 7.2. However, the algorithm
still measured outliers which were out-
side this error range.

OPAL-FUN-
06

OPAL shall not exceed the time
limit of 73 seconds to process a
frame.

T

The actual time per frame used is not
tested on the actual hardware; however,
it seems most likely this requirement
will pass when testing this (and defi-
nitely when OPAL is also translated to
C++).
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8
Conclusion, Discussion and

Recommendations

In this chapter, a conclusion, a discussion and some further recommendation are disclosed. Together, these
sections concentrate on the academic value of this thesis.

8.1. Conclusion
The Lunar Zebro is a small six-legged robot. It has the potential of becoming a swarming robot carrying out
objectives like exploring planetary surfaces or building space antennas. With OPAL, a new step towards an
autonomous navigation system, which is required when having a swarm of multiple entities, is made. This
study showed that this initial iteration of OPAL could detect rocks and determine their absolute distance to the
rover’s low perspective cameras. Furthermore, this study formed the basis for more research into OPAL and its
testing platform.

It took six steps to achieve this goal. At first, requirements were defined for the final OPAL algorithm, which is
the input for the verification process of OPAL. Hereafter, a test model called Bars was successfully design and
build. This test model is using, besides Lunar Zebro hardware, mostly Commercial Off-The-Shelf hardware,
which is related to the Lunar Zebro hardware. Furthermore, Bars is optimised for easy operation on testing
days. The tests of Bars were conducted at a location containing a Mars-like surface. The test facility had many
similarities with the lunar landscape, like the grainy surface and rocks. There is a lack of monotone rough
terrain test locations in the Netherlands and due to the Covid-19 period it was not possible to go to another
(bigger) test facility as, for example, at the European Space Agency (ESA) in Leiden. Therefore this test space
was considered sufficient for this pilot study. At this test facility, camera footage from Bars was captured.

With this footage, an algorithm was developed using primarily open-source libraries. A specified architec-
ture set the order of the used algorithms of these libraries. Some added logic was required to connect and
fulfil the implementation of these algorithms into OPAL. Hereafter, a pipeline on a server was created to run
multiple test cases on the created test data and this established the results. One early conclusion of the results
is that rocks are identified, and absolute distances were determined. In the cases where only one rock was
present in the scene, OPAL showed the capability to have high precision and high recall detection. Where the
Precision was the probability, a detected box is a real obstacle and the recall the probability that all obstacles
are detected. The performance dropped when an extra rock was present, but OPAL still could detect the clos-
est rock at the critical distance. These results were further validated using the set of requirements defined at
the start of this project. OPAL is compliant or partially compliant to most of the requirements. An overview is
provided in table 7.1. OPAL was not fully compliant with all of the requirements, which is further elaborated
on in the discussion and recommendation sections.

This research is a success if it could answer the research questions set at the start of this thesis. Each research
question is evaluated separately:
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R1 - How could obstacles and their absolute distance to the rover be detected and how accurate does this
distance need to be?
Obstacles and their relative distances could be detected using the so called disparity map. The disparity map
is obtained from performing stereo matching on footage of a stereo camera. When translating the disparity to
V-disparity which is a histogram of the disparity per row, a slanted line could be seen. This slanted line repre-
sents the ground, when assuming the ground is nearly flat. In this same V-disparity, obstacles are represented
by vertical lines. In this thesis, obstacles are mostly detected in the V-disparity domain. Furthermore, after
translating the remaining disparity map to a 3D map, a clustering algorithm is used for clustering and labeling
obstacles in the scene. From this labeled obstacle clusters the distance is determined. In Chapter 4 all the re-
quirements for the interfaces of OPAL and the performance requirements are stated. One of the performance
parameters is the stopping distance before a rock becomes an untraceable hazard. Along with the stopping
distance, the safety margin is discussed by using the worst case scenario. In this scenario the Zebro takes a
14cm leap. So actually this stopping distance is shifted 14cm backwards. At this distance the accuracy need to
be at least 7 cm to even make it possible to detect that it is in this "Danger Zone". The final stopping distance is
then evaluated as this shifted stopping distance plus the final determined theoretical error, given in equation
7.3.

R2 - How could the obstacle detection system be implemented to run on the Lunar Zebro and detect ob-
stacles and their absolute distance to the rover from a low perspective, and how accurate can it determine
distance?
An architecture helped structuring all the software blocks needed to gain a result. These software blocks con-
sist mainly of open-source libraries. After this structure was created, some extra logic was added to connect
all the different blocks. All the steps taken are described in Chapter 6 where the design and the integration
steps are elaborated on. For the integration step, it was very important to have the test data available that was
created by Bars. There is still room for more improvement, maturation and optimisation but the algorithm
showed, as described, some decent results. The low perspective remains a challenge, because when obstacles
disappear from the field of view, they become hard to detect and track. Another challenge is posed by large
rocks as they could block the whole field of view when nearby.

As explained, the accuracy on which the OPAL could operate is defined by adding the triangulation error to
all the digital errors condensed into the disparity error created by the stereo matching algorithm. The error
curve is shown in figure 7.2 and is near the "Danger Zone" around the 4.8 cm.

R3 - How to validate a low positioned stereo vision obstacle detection system for a planetary rover in the
Netherlands?
By design and building a test model, tests could be conducted at suitable test locations. Here, some actual
operations on the surface of the Moon could be simulated. The recording of this on-board footage will create
a helpful data set. If the rover’s position is recorded as well, the data will become helpful for validation. During
this thesis, a measuring tape is used to secure the location at some points. This method is not fully reliable
since the rover’s location is estimated during the walking phase. Another measurement method, where the
real-time position is measured, could have generated a more reliable data set. Unfortunately, OPAL is never
tested and run on the actual hardware of the Lunar Zebro because of resource restrictions. So for that part no
validation is conducted.

All in all, this thesis is fulfilling its objective and answering its research questions. Together Bars and the ini-
tial iteration of OPAL are opening more research and development opportunities in the near future. With the
development of Bars, more advanced testing can be conducted at Decos, or other exciting locations here on
Earth. Furthermore, Bars could be equipped with SHRIMP so this footage can be added to the data set. Both
can lead to better verification and validation of OPAL. On the other hand, the development of OPAL is, as men-
tioned, far from complete. This study exposes its opportunities and challenges, which could be a starting point
for optimisations or other approaches.

8.2. Discussion
As mentioned in the conclusion there is room for more improvement, maturation and optimisation on several
levels. In this chapter these levels are discussed.
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The interface and platform adaptions, because of time and resource restrictions, should be emphasised. First,
the final version of OPAL needs to be written in C++ so it can be integrated in the master controlling program
TRON, which is, unfortunately, one of its primary interfaces. Furthermore, OPAL is not run on any of Lunar
Zebro’s ultimate hardware. For example, OPAL is not running on the Hyperion OBC and is not using a stereo
vision system containing SHRIMP cameras.

Another possible improvement could be; the optimisation of OPAL components. One of those components
is the detection of obstacles in the V-disparity domain. In for example test case two, an outlier occurred; a
completely wrong obstacle was detected. This happened because that one obstacle was confused with the
ground, and helpful information was therefore filtered. In the other case, the obstacle had a large spread in
the V-disparity domain where the filtering area was too small. This resulted in the detection of only a part of
the obstacle. In the first issue, obstacles became detectable again in the range where detection was becoming
critical. The other issue did not, in practice, influence the distance-detection result, which is the most critical
function of OPAL.

Both previous issues could be solved by changing the method and the timing of the ground-plane deduction.
When fitting a line model through the ground points, the ground plane does not always have the right incli-
nation angle. Therefore, sometimes too much rock is seen as ground or too little ground is deducted. Besides
optimising by fitting a line through the ground points, a potential solution could be to detect all the vertical
lines before deducting the ground. The only problem here could be that some ground patches are detected
as obstacles. For example, in test case 3 (Figure 7.17), many vertical lines could be seen in the ground points.
If they are too close to the obstacle, these points could end up in the obstacle cluster. The other issues (such
as containing the large spread in the V-disparity domain) could be solved by a dynamic filtering range—the
closer to the obstacles, the larger the disparity range.

A lot of OPAL parameters are now either adopted from the literature or set to a fixed value. These parame-
ters could be reconsidered when developing an advanced version of OPAL. The calculated recall and precision
could help to optimise these values.

In addition, at the level of validation, the CSRT algorithm used for tracking the ground-truth of the obsta-
cle was not perfect. The obstacle is selected manually and is also manually corrected for the little drift. Hence,
the obtained ground truth of the CSRT algorithm is not the real ground truth. As discussed in the result sec-
tion, the bounding box is corrected, because sometimes the majority of rock is not visible by the stereo camera.
However, the height of the bounding box should also be adapted because the rock is on the side not as high.
This leads to erroneous false positives. Keeping the obstacle centred in the field of view could be a solution,
which could minimise this side problem. Forms of odometry, either visual or with sensors like an IMU, could
detect walking path fluctuations. A straight path towards obstacles could be obtained while having a locomo-
tion system that could correct for these slight deviations. When the rock is always straight in the field of view,
the risk of rocks becoming a hazard is minimised. On second thought, this is only necessary when the rock is
close, since rocks far away will not become hazards yet. Furthermore, the next conducted test should include
more test cases like craters or large inclined zones. OPAL should be redesigned to be able to detect these as
well. Also important for the validation is better position data. For example, a good solution for this could be to
use a Real-Time Kinematic positioning (RTK), which is a system designed to enhance GPS data.

The last level of improvement is the processing pipeline. Currently, the processing pipeline is memoryless
which means that every image is handled as an individual entity. However, since the lunar surface is a very
static environment, obstacles could easily be tracked over multiple frames. Outliers as shown in the results
could then easily be filtered when looking at a sequence of images.

To conclude, all these levels of improvement seem solvable and have definitely been taken into account during
some follow up study.
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8.3. Recommendations
Some further recommendations are stated in this section. These recommendations origin from the develop-
ment of OPAL and Bars and are including some remarks to pay attention to, or other techniques which could
be included in, for example, the follow up study.

The rover and its navigation system must be aware of the extreme lunar conditions. The radiation in the lunar
environment is harsh and dangerous. The OPAL software needs to be revised according to the standards that
the TRON engineer set. The difference between day and night temperatures are extreme, but also the differ-
ence between sun and shadow. Within the team, it must be decided if shadows are hazards. The temperature
drop in the shadow will be very high, which could harm the electronics. In addition to that, seeing in shad-
ows is expected to be very difficult due to the harshness of the shadows. This could lead to false-positives or
negatives in the obstacle-detection system. At last, the rover must be aware of the lunar dust. Due to the low
conductivity, the dust is charged with an electrostatic charge and wants to stick to other surfaces. The dust
could cover the lens of the camera. Again, the obstacle-detection system would not be able to observe possi-
ble danger.

Furthermore, the stereo base distance could be optimised. This thesis showed that the error becomes smaller
if the stereo bases are made wider. The disadvantage is that it is harder to detect rocks closer to the rover, since
the overlap of both cameras becomes smaller at closer points. This could be solved by making use of more
cameras. For example, three cameras could improve the detection range and increase the camera system’s
redundancy in case of a single camera failure. With three cameras, comes three possible stereo vision couples
could be used. With four cameras, this number increases to six. Now, the cameras are glued or clamped to their
casing. The team should make sure that the different thermal expansion coefficients of the different mounting
materials will not interfere with each other. Otherwise, a stereo setup that is calibrated on earth will not be
calibrated for the lunar surface. Also, the stereo base rigidity should be increased with making the stereo base
more rigid. Decoupling the camera system from the mechanical stress created by the body should reduce the
disturbances and the calibration differences.

A couple of times, the rover flipped when trying to walk over an obstacle. The original design of the R-Hex
robot of Boston Dynamics contained symmetry in the transverse plane of the body. This will allow the rover
to flip and continue walking. So if the rover could flip without losing its functionality, the need for the rover to
avoid obstacles decreases. This will increase the simplicity and flexibility of the rover. Hence, a flexible solar
panel and symmetric body will bring back this benefit.

If a more advanced communication module is installed on the rover during testing days, the team could sim-
ulate lunar operations. During the test mission in this thesis, many things were discovered that could be im-
proved. However, while deploying a rover on the moon, the teams need to be sure that the rover will operate
as expected and that communication is possible and efficient. The only way to make this happen is to apply
more testing phases.

Another interesting recommendation for OPAL is making use of more than just 3D information. Sometimes the
information in the picture could enhance the performance. The obstacle cluster sometimes still contains some
ground points. This resulted in incorrect bounding boxes and incorrect obstacle distances. There are multiple
ways to tackle this problem. The first and most obvious way is to fix the ground plane detection. The inclusion
of a method that could use other information present in the image like edges and pixel intensity could help.
A known approach in many computer vision algorithms uses so called superpixels, which segments groups of
pixels with the same image characteristics. Superpixel segmentation algorithms could improve this distinction
between the rocks and the ground. Another approach is to exclude the points close to the ground plane from
the distance determination. The lower points, especially the points lower than 30 mm, will not form a threat
since they are ’walkable’. It is likely that when these are deducted from the height determination, the ground
points will have less influence. Lastly, the current trend within the computer vision research field is to make
use of machine learning, which is also making more use of both 3D and image information.

Finally, it may be concluded that development of OPAL is far from finished and with new studies to this obsta-
cle detection system more discussion points and recommendations will arise.
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A
Rover Market

In this appendix an overview of the market of planetary rovers is provided. All the rovers are listed in Table A.1.

Rover Project Name Parent Mission Year Mass (kg) Dimensions (w x l x h)(m) Distance Traveled(km) Destination

Lunokhod 1 Luna 17 1970 756 2.2 x 2.2 x 1.5 10.5 Moon (Mare Imbrium)
Lunokhod 2 Luna 21 1973 840 1.7 x 1.6 x 1.35 39 Moon (Le Monnier crater)
Prop-M Mars 2/3 1971 4.5 0.25 x 0.22 x 0.04 0 Mars
Sojourner Mars Pathfinder 1997 11.5 0.65 x 0.48 x 0.3 0.1 Mars
Spirit/Opportunity MER 2003 174 1.5 x 2.3 x 1.6 45.16 + 7.7 Mars
Curiosity Mars Science Laboratory 2011 899 3 x 2.7 x 2.2 22.97 Mars
Yutu Chang’e 3 2013 140 1.5 x 1.0 x 1.0 0.115 Moon (Mare Imbrium)
Yutu 2 Chang’e 4 2018 140 1.5 × 1.0 × 1.0 0.5 Moon (Far Side)
Pragyan rover Chandrayaan-2 2019 27 0.9 x 0.75 x 0.85 0 Moon (South Pole)
Perseverance Mars 2020 2020 1025 3 x 2.7 x 2.2 - Mars
Asagumo mission one 2021 1.3 0.01 x 0.01 x 0.01 - Moon (Lacus Mortis)
Viper CLPS 2022 430 1.5 x 1.5 x 2.5 - Moon (South Pole)

Rover Project Name Navigation Sensors Autonomy Primary Mission Objectives References

Lunokhod 1 3 cameras Remote Collect data of the composition of the regolith [73] [76] [94]
Lunokhod 2 3 cameras Remote Examine ambient light levels and measure local magnetic fields [54] [76]
Prop-M 2 indicator rods Autonomous Measure rocks and soil [72] [94]
Sojourner stereo camera with structure light Semi-Autonomous Demonstrate that small rovers can actually operate on Mars [71] [44]
Spirit/Opportunity 2 stereo camera + multiple hazcams Autonomous Perform multiple studies of the mars surface [64] [6] [76] [94]
Curiosity 2 stereo camera + multiple hazcams Autonomous Search for possiblity of life on mars [53] [94]
Yutu stereo camera + multiple hazcams Autonomous Inspect the soil and the structure of the lunar crust [56] [76] [15]
Yutu 2 stereo camera + multiple hazcams Autonomous Measuring radiation, detect sub-surface water. [56] [15]
Pragyan rover stereo camera with structure light Autonomous Surviving one lunar day, perform on-site analyses [43]
Perseverance 2 stereo camera + multiple hazcams Autonomous Search for life and sample return [74]
Asagumo lidar Autonomous Demonstrate technology [98]
Viper cameras Remote Analyse water ice on the surface of the moon [14]

Table A.1: Planetary Rover Market Overview
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B
Test Details Decos

This appendix is describing more details about the conducted tests at the Decos Mars Yard. What is tested on
the 21st and 23rd of July is elaborated on in this appendix. First, a detailed list of the test equipment is listed.
Hereafter, the test-setup is explained and which rocks are used during testing. At last, the observations about
the used positioning system are stated.

All test equipment and the extra test tools are listed in Table B.1. Since the test location at Decos had no easily
accessible power source, a remote power source needs to be arranged so the test equipment can operate. The
rest of the equipment mainly consists of the test models, their accessories and the positioning system. The

Table B.1: Equipment List

Quatity Item

1 Test Lunar Zebro
1 Reserve Terrestial Zebro
2 433 MHz Remote Controls
3 3S/4S Lipo Batteries
2 12V Lead Acid Accu
1 12V Power Source + LiPo Battery Charger
1 12V to 220V DC-AC Converter
4 Foldable Stands
4 Pinxact Anchors
1 Pinxact Portable Tag
1 Laser Distance Measurement Unit
4 10m Power Cords
2 Power Plug Boxes
1 5V Portable Router
- Laptops
- Toolboxes
- Chairs/Table/Tent
- Measuring Tape/Tools
- Calibration Boards

position of the rover was recorded by the localisation system of PinXact. This localisation system uses four
anchors, which are sending an Ultra-WideBand (UWB) radio-frequency. With this UWB radiofrequency, the
system seeks to measure the difference in time of arrival. The difference in arrival time is proportional to the
tag’s distance concerning the anchors inside the grid. This test setup is shown in Figure B.7. The four anchors
were placed in a square of 10.7 m and at a height of 1.8 m. One tag was inside the rover, but a portable tag
measured the position of the rocks with the localisation system. The portable tag is depicted in Figure B.8

After setting up the testing grid, some rocks of the simulated Martian surface were moved inside the grid.
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The different rocks which were used during testing are depicted in Figures B.1 trough B.6. A list of the rocks,
their location and characteristics, is provided in Table B.2. The rocks are also shown in figure B.7.

Unfortunately, the accuracy of the localisation data produced by this PinXact Ultra Wide Band DecaWave

Table B.2: Rock Characteristic List (units in cm)

Nr. X Y Z Widht(x) Length(y) Height(z) Obstacle Description

1 281 501 25 28 35 31 Big brown gray rock
2 550 516 26 50 25 20 Long white rock
3 664 651 131 16 19 12 Small gray rock (right)
4 612 648 81 16 23 13 Small gray rock (left)
5 312 718 93 13 12 5 Group of tiny white/gray rocks
6 382 822 78 18 4 4 Walkable long rock
7 495 867 55 30 28 29 Group of small brown rocks

Figure B.1: Obstacle
One

Figure B.2: Obstacle
Two

Figure B.3: Obstacle
Three and Four

Figure B.4: Obstacle
Five

Figure B.5: Obstacle
Six

Figure B.6: Obstacle
Seven

Figure B.7: Test Setup with the Pinxact Anchors on every corner Figure B.8: Tag Connected
to a Raspberry Pi and
Powerbank

system turned out to be accurate to around 10 cm. The stereo vision system has an error of 4.8 cm at the
detection-distance. Nevertheless, having localisation data with a more significant error as the theoretical error
of the stereo camera system is unsuitable for verification.

Fortunately, during the test day at Decos tape measurements were conducted. This additional measurement
method is finally used in the upcoming case validation. In Figure B.9, the localisation data is visualised by the
red line. As seen, this data is very noisy. When smoothed by a simple smoothing filter, the localisation data
seems closer to reality, as visualised by the blue line. However, it can be seen that the location of the rock is
uncertain. In an ideal situation, the added circles need to cross each other at one point, such as where the
ellipse is drawn. The ellipse represents the rock in this case. Nevertheless, since there are many circles not
close to intersecting, this shows that the data is unreliable. Therefore, only the tape measurements are used.
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Figure B.9: Walking path estimated with the PinXact localisation system
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C
Matlab Calibration Results

In this appendix, all the fourteen Matlab calibration results of the Decos tests are listed. The calibrations
were spread over the length of a testing day. In the first graph, the spread of every chequerboard position is
shown. The second graph shows the re-projection error of these positions with the calculated camera model
parameters, the overall mean error of each calibration is also provided. This error does not exceed 0.16 pixels
or higher.

Figure C.1: Calibration 1: Extrinsic Parameters Visualization
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Figure C.2: Calibration 1: Mean Reprojection Error per Image
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Figure C.3: Calibration 2: Extrinsic Parameters Visualization
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Figure C.4: Calibration 2: Mean Reprojection Error per Image

Figure C.5: Calibration 3: Extrinsic Parameters Visualization
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Figure C.6: Calibration 3: Mean Reprojection Error per Image

Figure C.7: Calibration 4: Extrinsic Parameters Visualization
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Figure C.8: Calibration 4: Mean Reprojection Error per Image
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Figure C.9: Calibration 5: Extrinsic Parameters Visualization
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Figure C.10: Calibration 5: Mean Reprojection Error per Image

Figure C.11: Calibration 6: Extrinsic Parameters Visualization
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Figure C.12: Calibration 6: Mean Reprojection Error per Image

Figure C.13: Calibration 7: Extrinsic Parameters Visualization
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Figure C.14: Calibration 7: Mean Reprojection Error per Image
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Figure C.15: Calibration 8: Extrinsic Parameters Visualization
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Figure C.16: Calibration 8: Mean Reprojection Error per Image

Figure C.17: Calibration 9: Extrinsic Parameters Visualization
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Figure C.18: Calibration 9: Mean Reprojection Error per Image

Figure C.19: Calibration 10: Extrinsic Parameters Visualization
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Figure C.20: Calibration 10: Mean Reprojection Error per Image
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Figure C.21: Calibration 11: Extrinsic Parameters Visualization
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Figure C.22: Calibration 11: Mean Reprojection Error per Image

Figure C.23: Calibration 12: Extrinsic Parameters Visualization
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Figure C.24: Calibration 12: Mean Reprojection Error per Image

Figure C.25: Calibration 13: Extrinsic Parameters Visualization
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Figure C.26: Calibration 13: Mean Reprojection Error per Image
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Figure C.27: Calibration 14: Extrinsic Parameters Visualization
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Figure C.28: Calibration 14: Mean Reprojection Error per Image
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D
PCB Design

The new Carrier Board Design KiCAD drawings are shown in this Appendix. The 4 layer lay-up of the PCB is
also shown.

Figure D.1: KiCAD PCB Design Overview Sheet

Figure D.2: KiCAD PCB Design Power-converter Sheet
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Figure D.3: KiCAD PCB Design Raspberry Pi Header Components Sheet

Figure D.4: KiCAD PCB Design Communication Distribution Sheet
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Figure D.5: KiCAD PCB Design Connectors Sheet

Figure D.6: KiCAD PCB Design Motor-connectors Sheet
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Figure D.7: KiCAD PCB Design Top-Layer Layout

Figure D.8: KiCAD PCB Design First Middle-Layer Layout
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Figure D.9: KiCAD PCB Design Second Middle-Layer Layout

Figure D.10: KiCAD PCB Design Bottom-Layer Layout
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E
Stereo Matching Parameters Optimizing

GUI

In this appendix some screen shots are included of the working GUI for optimizing stereo matching parame-
ters. This GUI, running on Linux, was created using QT and is based on a existing matching parameters tuner
made for the Block Matching algorithm of OpenCV [84].

Figure E.1: GUI Block Matching Implementation
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Figure E.2: GUI Semi Global Block Matching Implementation
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