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Exploring spatial visual characteristics of
scenic archetypes through AI multimodal
mapping methods in Hangzhou Westlake

Check for updates

Junkai Lan1, Mei Liu2 , Eric Luiten1, Gregory Bracken1 & Qian Zhang3

Traditional Chinese gardens embody sophisticated spatial design principles often described through
abstract terms like “scenic archetypes,” yet systematic methods for analyzing their visual spatial
characteristics remain underdeveloped. This study establishes an analytical framework integrating
phenomenological theory with AI-enabled multimodal mapping to quantify spatial visual
characteristics of four scenic archetypes, including framed, obstructive, porous, and sandwiched
scenery, at Hangzhou West Lake. By decomposing scenic compositions and configurations into
foreground-middle-background hierarchies characterized through shape, size, position, and texture
variables, the framework achieves 94.12% classification accuracy via random forest modeling while
revealing each archetype. Statistical analysis identifies archetype-specific spatial strategies: framed
scenery employs regular foreground geometry with smooth depth transitions; obstructive scenery
utilizes systematic positioning with texture contrasts; porous scenery balances visual permeability
with textural variation; sandwiched scenery creates bilateral symmetry with channeling effects. This
approach provides replicable methodology for heritage conservation and contemporary landscape
design informed by traditional spatial wisdom.

From a design perspective, landscapes are three-dimensional constructions
that evolve over time, involving the articulation of abstract notions into
physical structures1. These structures warrant analysis through visual
appreciation, particularly examining the inherent attributes and qualities
manifest in the composition and configuration of spatial elements, collec-
tively termed “spatial visual characteristics”2,3. These characteristics
encompass two fundamental dimensions:first, “what exists” referring to the
presence, quantity, distribution, and proportion of spatial elements; and
second, “how they are arranged” encompassing the complexity of
arrangement, position, orientation, and form4,5.

Viewed through this lens, traditional Chinese gardens, a type of
landscape architecture, are not as random and loose as they seem; rather,
their spatial visual characteristics are carefully orchestrated to create phy-
sical structures with highly complex spatial hierarchies from multiple
perspectives6–8. Building on these characteristics, prominent landscape
architects and scholars such as Peng Yigang, ZhouWeiquan and Pan Guxi
have identified recurring patterns of spatial composition and configuration,
which they termed “scenic archetypes” in traditional Chinese vocabulary
and concepts9–11. Scenic archetypes translate specific combinations of spatial
visual characteristics into culturally embedded organizational principles

that guide the arrangement of space to produce distinctive aesthetic
experiences12. The influence of these archetypes extends far beyond regional
boundaries. Historical evidence demonstrates that the spatial logic they
embodyhas profoundly shapedgardendesign across cultural contexts, from
East Asia to Europe, with particularly notable impacts in Japan, South
Korea, and the United Kingdom13. This transregional significance is further
reflected in the international recognition of several representative gardens,
including the Humble Administrator’s Garden, the Lingering Garden, and
HangzhouWestlake, all inscribed on the UNESCOWorld Heritage List in
acknowledgment of their enduring design wisdom and innovation13–15. In
parallel with this international visibility, recent research on landscapes and
historic gardens has increasingly emphasized amore precise understanding
of spatial organization, particularly as represented by the spatial visual
characteristics of scenic archetypes, whose underlying principles have
influenced landscape design at broader scales16.

However, previous studies on scenic archetypes remains pre-
dominantly grounded in experiential descriptions, which limits their
potential for systematic knowledge transfer and methodological develop-
ment in heritage conservation. Early scholars often characterized these
archetypes through poetic metaphors such as “scenes changing as steps
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move (步移景异)”, “perceiving the vast in the small (小中见大)” and
“winding paths leading to secluded spots (曲径通幽)”9,17. While such
expressions convey the phenomenological essence, they represent personal
interpretation rather than spatial attributes that can be objectively described
and consistently verified by different observers. More recent studies have
sought todocument the spatial visual characteristics of scenic archetypeswith
greater precision: Wang18 investigated the specific “size” and “scale” of win-
dows anddoors in framed scenery; Tong19 utilized binary oppositions such as
“sparse-dense” and “tortuous-straight” to analyze the spatial configurations
of obstructive and framed scenery at the Lingering Garden’s entrance.
Nevertheless, as Liu3 observes, even these refined vocabularies suffer from
terminological inconsistencies and a lack standardization, with identical
terms interpreted variably across studies, thus hindering systematic analysis.

To overcome the limitations of purely descriptive approaches, recent
studies have introduced quantitative and computational methods, essen-
tially mapping techniques, to measure spatial visual characteristics with
greater precision1,3,20. As the fundamental means of capturing, analyzing,
and communicating such characteristics,mappingvisualizes abstract spatial
knowledge and integrates the spatial organization of landscape spaces in
both qualitative and quantitative terms21, embodying what Corner22

describes as “ways of seeing” that construct new realities rather thanmerely
recording existing ones. For example, Zhou et al.23 used angle segment and
visibility graph analyses to quantify Daming Temple’s mean depth, con-
nectivity and intelligibility. Chen and Yang24 linked narratology with VGA
and isovist analysis to calculate integration and connectivity in the Humble
Administrator’s Garden. Zhang et al.25 employed DepthmapX for convex,
axial and visibility analyses, deriving depth, connectivity, isovist area and
integration at West Shu Garden. Chen et al.26 combined space‑syntax
indicators (connectivity, step depth, integration) with DBSCAN clustering
to extract five indicators: permeability, curvature, visibility, accessibility and
differentiation. While these methods offer rigorous tools for measuring
individual spatial visual characteristics, they lack the capacity to capturehow
such characteristics integrate into the coherent spatial gestalts that define
scenic archetypes. Addressing this gap calls for approaches capable of
linking detailed element-level detection with the holistic perception of
design patterns, and one promising direction lies in the use of advanced
computer vision mapping. Today’s computer vision technologies represent
a transformative expansion of these capabilities: semantic segmentation
precisely identify spatial elements across thousands of images27,28, depth
estimation reveals three-dimensional relationships from photographs29,30,
and cutting-edge methods like scale-invariant segmentation31, super-
resolution mapping32, and hyperspectral detection33 push analytical
boundaries even further. Yet a critical limitation still persists: though these
technologies excel at elementdetection, they cannot recognizehowelements
combine to form scenic archetypes. A wall, for example, may be identified
simply as a wall, without understanding its role as the defining “frame” in
framed scenery. This disconnect between physical detection and design
pattern recognition necessitates developing systematicmethods that encode
the compositional and configurational logic of scenic archetypes in tradi-
tional Chinese gardens.

Above all, understanding the spatial visual characteristics of scenic
archetypes is essential for explaining how culturally specific design princi-
ples arematerialized in physical space and for supporting their conservation
and contemporary application. However, existing studies remain largely
descriptive or focus on isolated attributes, lacking a systematic framework
that can both depict these characteristics holistically and interpret them in a
replicable way. This study addresses this gap through two research objec-
tives. First, it establishes an analytical framework that systematically
transforms the spatial visual characteristics of scenic archetypes from cul-
tural concepts into measurable attributes enabling holistic representation
and verifiable interpretation. Second, it develops an AI-based multimodal
mapping methodology that integrates semantic precision with quantitative
rigor, ensuring that experiential understanding is preservedwhile producing
measurable, comparable outputs. Using the HangzhouWestlake (HWL) as
a representative case that embodies the full complexity of scenic archetypes,

the study applies the proposed framework to translate tacit design knowl-
edge into explicit, measurable guidelines. The resulting outputs provide a
basis for evidence-based conservation strategies and inform contemporary
design practices, thereby advancing both the theoretical understanding and
the practical implementation of scenic archetype analysis.

Methods
Theoretical foundation and framework overview
To transform scenic archetypes into their constituent spatial visual char-
acteristics, this study first integrates semiotic and phenomenological the-
ories to structure the decomposition process. In semiotics, Peirce’s34 triadic
relationship among sign, object, and interpretant provides a conceptual
structure for explaining how meaning is generated and interpreted in
relation to physical form35. The phenomenological perspective comple-
ments this by explaining the cognitive universality of spatial perception.
According toKant, space constitutes “the subjective condition of sensibility”
through which “outer intuition is possible for us”36. This conceptualization
suggests that spatial perception represents an a priori form of human cog-
nition, implying fundamental universality in how individuals perceive and
comprehend spatial configurations. Such universality provides crucial jus-
tification: if spatial perception follows common cognitive patterns, these
patterns can be systematically identified and interpreted. Merleau-Ponty37

extends this understanding by emphasizing the dialectical relationship
between individual exploration and sensorial responses. His work indicates
that spatial experience, while transcending pure subjectivity, emerges from
observable interactions between humans and their physical environment.
Furthermore, several established analytical frameworks have demonstrated
the feasibility of translating broad conceptual categories into detailed
spatial-visualmeasures, includingTveit’s38 landscapevisual characterization
scheme, Bell’s2 framework for aesthetic structure, and Liu’s3 landscape
design syntax. These approaches showhowabstract designprinciples can be
systematically translated into concrete spatial attributes through multiple
interpretive levels, creating a foundation for developing measurable
indicators.

Building upon these theoretical and methodological precedents, the
proposed framework establishes four hierarchical tiers: the abstract concept
level (scenic archetypes) corresponds to the intentional level ofmeaning; the
dimensional level (spatial layers) reflects phenomenological modes of per-
ception; the attribute level (variables) represents concrete spatial manifes-
tations; and the measurable indicator level (metrics) corresponds to
identifiable and quantifiable physical attributes (Fig. 1). The first tier
establishes scenic archetypes as umbrella concepts that extract recurring
design patterns from Jiangnan garden-making techniques, as documented
in foundational studies9,17,39–42. These archetypes represent the highest level
of abstraction, encapsulating centuries of accumulated design wisdom. The
second tier introduces spatial layers, which deconstruct each archetype into
foreground, middle ground, and background components from the
observer’s horizontal perspective1,3,43. This tripartite division reveals a critical
mechanism: the foreground functions as a mediating element that trans-
forms middle ground and background components from isolated objects
into integrated scenic compositions. Significantly, each archetypemanifests
a distinctive spatial organization pattern that becomes most apparent
through foreground characteristics, establishing these as primary indicators
for archetype identification. The third tier operationalizes visual char-
acteristics through variables, categorizing perceptual qualities within each
spatial layer into fourmeasurable physical attributes. These variables, shape,
position, size, and texture were strategically selected from Bell’s2 compre-
hensive inventory of eleven variables based on their capacity to capture
essential distinguishing characteristicswhileminimizing subjective observer
bias. Each variable serves a specific analytical function: shape delineates
archetypal boundaries and defines spatial enclosure; position reveals hier-
archical spatial relationships and compositional strategies; size indicates
visual prominence and establishes perceptual hierarchy; and texture dif-
ferentiates surface treatments and material qualities. The fourth and final
tier implements metrics through three complementary quantification
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methods: distribution trend analysis, absolute value measurement, and
relative relationship assessment. These methods collectively transform
traditionally experiential interpretations of spatial visual characteristics into
verifiable, reproducible data analyses applicable across all spatial layers. This
quantitative approach maintains analytical rigor while preserving the phe-
nomenological richness inherent in scenic archetype appreciation.

Four-tier analytical framework components
The first tier of the proposed framework encompasses scenic archetypes,
which represent fundamental spatial organizational principles in traditional
Chinese gardens. Since this study aims to quantitatively assess the spatial
visual characteristics of scenic archetypes rather than measuring observers’
subjective responses, we focus on archetypes whose inherent spatial prop-
erties enable systematic analysis. Based on the nine scenic archetypes
identified by Lu and Liu44, scenic archetypes can be fundamentally dis-
tinguished by their operational mechanisms: static archetypes that create
stable spatial configurations versus dynamic archetypes that unfold through
temporal and kinesthetic experiences. This distinction reflects different
modes of spatial engagement and perceptual activation. Static archetypes,
comprising framed scenery, obstructive scenery, porous scenery, and
sandwiched scenery, operate through fixed spatial relationships that
maintain consistent visual qualities across viewing positions. These arche-
types manifest as stable compositional structures:
• Framed scenery is composed of four-sided spatial elements, including

door frames, window frames, trees, or rocks, which “frame” a specific
field of view, producing a “picture frame” effect that highlights the
selected scene9,40,41.

• Obstructed scenery refers to thepartial blockage or interruptionof lines
of sight through specific spatial elements such as buildings, trees, rocks,
or walls, creating a visual effect where the field of view is partially
hidden, evoking a sense of mystery9,17,41,42.

• Porous scenery refers to the use of spatial elements such as latticed
windows, perforated walls, doorways, railings, or bamboo fences that
offer partial glimpses of the field of view through openings, resulting in
the visual interplay of concealment and exposure9,17,40.

• Sandwiched scenery is formed by the placement of spatial elements,
such as buildings, trees, rocks,walls, or corridors, onboth sides of afield
of view. This guides the observer’s sight toward a focal point within the
framed scenery, often creating a strong sense of composition and visual
direction9,39,40,42.

In contrast, dynamic archetypes, including borrowed scenery, hidden
scenery, informed scenery, opposite scenery, and segmented scenery, fun-
damentally rely on temporal unfolding, bodily movement, or cognitive
associations that transcend static spatial configurations9,39,40,44,45. Du and Ji46

illuminate this distinction through their analysis of “farness” experience in
Chinese gardens, where perceived depth fluctuates dramatically with
movement: spaces appearing shallow from one position reveal unexpected
depth fromanother. This spatial instability characterizes hidden scenery (藏
景) and segmented scenery (隔景), which require kinesthetic exploration to
fully manifest. Borrowed scenery (借景) exemplifies a different form of
dynamism through its dependence on temporal conditions and intentional
cognitive processes. As Lu and Liu14 demonstrate, this archetype requires
distinguishing deliberate visual connections to distant elements from inci-
dental views. This distinction relies on cultural knowledge and atmospheric
variability rather than stable spatial relationships. Similarly, opposite scen-
ery (对景) creates reciprocal viewing relationships requiring physical
movement between two points to experience the complete spatial dialogue,
while informed scenery (点景) operates throughmetaphorical associations
linking physical forms to literary and philosophical concepts40.

The selection of the four static archetypes for this study emerges from
their inherent potential for systematic analysis. Their stable spatial config-
urations enable the development of reproducible analytical methods, while
contemporary computer vision technologies offer unprecedented cap-
abilities to capture and quantify their compositional logic. This technolo-
gical potential, combined with the archetypes’ fundamental reliance on
measurable spatial relationships, creates opportunities to transform tradi-
tionally experiential knowledge into explicit analytical frameworks. Despite
these advances, a critical gap persists: no systematic framework currently
exists to translate the spatial organizational logic of these static archetypes
into quantifiable, reproducible analytical standards.

The second tier of our framework comprises spatial layers, which
represent the horizontal stratification of scenic archetypes from the obser-
ver’s perspective. Each archetype embodies a distinct spatial strategy for
directing and modulating visual appreciation through systematic organi-
zation of perceptual depth. Spatial layers constitute the visual layout of
scenic archetypes as perceived from a horizontal vantage point, specifically
from the observer’s eye level during spatial exploration3,9. Within this
conceptual framework, the observer’s perception of distance and spatial
orientation assumes critical importance and conventionally divides into
three components: foreground, middle ground, and background1,43. Sig-
nificantly, spatial elements occupying the foreground exert dominant
influence in shaping visual perception and mediating the presentation of
middle ground and background elements19,47. Through this meditative
function, the foreground facilitates the transformation of spatial elements in
subsequent layers from mere physical objects into integral components of
coherent scenery, thereby enabling observers to comprehendand appreciate
the compositions and configurations of spatial elements through culturally
specific modalities19. Consequently, when identifying and differentiating
scenic archetypes, their unique spatial visual characteristics derive primarily

Fig. 1 | Framework of scenic archetype-spatial
layer-characteristic-metric. This diagram illus-
trates the four-tier hierarchy that transforms
abstract scenic archetypes into measurable metrics
by decomposing them into spatial layers (fore-
ground,middle ground, and background) and visual
variables (shape, size, position, and texture).
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from foreground rather than middle ground and background. The latter
function principally as contextual elements that enrich the overall scenic
archetypes. Building upon this understanding, this study proposes semantic
mappings for each scenic archetype based on the “foreground, and middle
ground and background” spatial layers as well as the analysis of framed,
obstructive, porous, and sandwiched scenery.

• For framed scenery, the foreground functions as a visual window,
directing the observers’ line of sight through defined boundaries
(Fig. 2). Beyond this frame, themiddle ground forms the primary visual
focus through elements such as pavilions or bridges, while the back-
ground provides contextual support to complete the scenery.

• For obstructed scenery, the foreground creates visual barriers that limit
direct viewingusing elements suchas trees orwalls (Fig. 3). Bothmiddle
ground and background remain concealed behind these obstacles.

• For porous scenery, the foreground offers selective views through gaps,
creating focused visual corridors (Fig. 4). Themiddle ground becomes
the focal point through these apertures, while the background typically
includes natural elements like mountains or the sky.

• For sandwiched scenery, the foreground uses two major elements to
channel views in specific directions (Fig. 5). The middle ground
becomes the dominant focus through the visual entrance created by
these distinct spatial elements, while the open background extends the
perspective.
The third tier of our framework comprises variables that categorize and

measure spatial visual characteristics across the foreground, and middle
ground and background of scenic archetypes. Following the establishment of
spatial layers for each archetype, the selection of appropriate variables
becomes essential for systematic measurement. From Bell’s2 comprehensive
inventory of eleven visual variables, this study strategically selects four vari-
ables: shape, position, size, and texture (Fig. 6). This selection is grounded in
three interconnected rationales that ensure both theoretical rigor and
methodological feasibility. First, these four variables demonstrate objectivity
andperceptual stability essential for reliableanalysis.Visualperception theory
establishes shape as the primary characteristic enabling object recognition,
with research demonstrating that silhouettes alone suffice for accurate
identification48,49. Position functions as the foundation of spatial relationships
and represents themost accurately perceived dimension according toGestalt
psychology50. Size and texture correspond respectively to scaleperceptionand
surface characteristic recognition, both fundamental to spatial comprehen-
sion. In contrast, other variables proposed by2, including color, visual force,
anddirection, exhibit excessive variability due to lighting conditions, seasonal
changes, and viewing angles in garden contexts, thereby lacking the requisite
stability for systematic analysis.

Second, these variables align precisely with the spatial organizational
principles inherent in traditional Chinese gardens. These gardens achieve
specific modes of spatial appreciation through deliberate manipulation of
element configuration (shape), dimensional control (size), compositional
arrangement (position), and material differentiation (texture)9. This align-
ment manifests distinctly across archetypes: framed scenery delineates
visual fields through shape definition; obstructive scenery modulates sight
lines through strategic positioning; porous scenery generates perceptual
contrast through textural variation; and sandwiched scenery constructs
spatial sequences through size relationships. Such correspondence between
analytical variables and design principles ensures that the framework cap-
tures authentic spatial logic rather than imposing external categories. Third,
computer vision technology has achieved sophisticated capabilities in
recognizing andquantifying these specific variables. Semantic segmentation
accurately extracts element shapes and boundary conditions27, while depth
estimation reliably determines relative spatial positions51. This technological
maturity enables systematic data analysis at scales previously unattainable
through manual methods. The convergence of theoretical validity and
computational feasibility positions these four variables as optimal choices
for bridging experiential knowledge and quantitative analysis. Building
upon these conceptual foundations, the study operationalizes each variable
through specific definitions and measurement protocols.

Shape constitutes the categoryof spatial visual characteristics generated
by element configuration, encompassing the visual appearance of outlines

Fig. 2 | Semanticmapping of framed scenery.The visualization depicts the framing
mechanismwhere the foreground acts as a visual window or boundary, directing the
observer's line of sight toward the middle ground focal point.

Fig. 3 | Semantic mapping of obstructive scenery. The diagram demonstrates the
blockingmechanismwhere foreground elements (such as trees orwalls) create visual
barriers that partially conceal the middle and background layers to limit direct
viewing.

Fig. 4 | Semantic mapping of porous scenery. The visualization illustrates the
leakingmechanismwhere the foreground offers selective views through apertures or
gaps, creating focused visual corridors toward the middle ground.

Fig. 5 | Semantic mapping of sandwiched scenery. The diagram shows the sand-
wiching mechanism where bilateral foreground elements channel views in specific
directions, making the middle ground the dominant focus through a created visual
entrance.
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or boundaries that define geometric properties in two-dimensional or three-
dimensional space through lines, edges, or surfaces48,49,52. Within scenic
archetypes, shape specifically denotes the primary contours and boundaries
formed by foreground elements, which assume decisive importance in
archetype classification and identification47. The critical nature of fore-
ground shape reflects the fundamental principle that object identity can be
conveyed through basic outline alone2.

Size, functioning as a complementary variable to shape, refers to the
magnitude, dimension, or scale of spatial elements53. Larger forms generate
stronger visual impressions and historically convey power or dominance
through physical and psychological presence, while smaller elements create
subtler visual impacts, particularly when dispersed2. In scenic archetypes,
the foreground employs size variations to enhance stylistic expression and
reinforce spatial hierarchies.

Position represents spatial visual characteristics arising from element
configuration, specifically denoting coordinates, orientations, and relational
arrangements within three-dimensional space54. For scenic archetypes,
position describes both the specific locations where elements are composed
from particular viewpoints and their relative placements2,26,42,55,56. This
variable assumes particular significance in Jiangnan gardens, where spatial
penetration and hierarchical variation emerge through careful calibration of
element separation and connection.

Texture, serving as a complementary variable to position, encompasses
spatial visual characteristics generated by element composition, particularly
the effects created by the interplay of obstructed and unobstructed visual
elements forming recognizable patterns at finer scales2. This dual func-
tionality proves crucial for archetype differentiation, as texture influences
both the quantitative aspects (presence, quantity, distribution, proportion)
and qualitative dimensions of spatial complexity.

The fourth tier operationalizes variables through three com-
plementary metrics that transform experiential interpretations into ana-
lyzable data across all spatial layers. Distribution trend metrics employ
statistical methods to reveal patterns of spatial variation and composi-
tional dynamics. Absolute value metrics quantify fundamental char-
acteristics including element dimensions, areas, and distances,
establishing objective baselines for cross-archetype comparison. Relative
relationshipmetrics utilize ratios and percentages to express proportional
analyses, revealing hierarchical relationships and how foreground ele-
ments mediate perception of subsequent layers. This tripartite system
captures both quantitative measurements and relational logic inherent in
scenic archetypes, enabling systematic analysis while preserving the
nuanced spatial organizations of traditional garden making. Table 1

presents detailed specifications and mathematical formulations for each
metric type.

Case study site and data collection
With the systematically analytical framework established, we now turn to
examine this framework through empirical application. HWL was selected
as a case study for the application and examination of the proposed fra-
mework for the following reasons: (1) HWL constantly interacts with the
contemporary environment, representing the harmonious evolution of
human activity and nature15. This dynamic interaction provides evidence
and insights into the applicability of scenic archetypes in contemporary
landscape spaces. (2) HWL includes several traditional Chinese gardens17,
offering a rich data-set of photographic images for scenic archetypes from
multiple dimensions, including type, scale, location, and function. (3) As a
UNESCO World Heritage Site, information on HWL is publicly available
and easily accessible, facilitating data collection and analysis.

To collect data for examination and given the absence of Google Street
View coverage on HWL pedestrian paths, we conducted systematic on-site
photography using an iPhone 12 Pro, which has a 0.5× zoom that matches
human visual perception (120° horizontal field of view) as well as GPS
functionality. We capture images at 20-m intervals perpendicular to the
path at a height of 1.7m; three images were taken per location, each facing a
different direction (left, front, and right). All photographs were captured
during late September under clear daylight conditions, ensuring consistent
image quality and optimal visibility. While seasonal variations might affect
vegetation density, our semantic segmentationmodel (trained on ADE20K
with diverse seasonal imagery) maintains robust performance across dif-
ferent vegetation states. More importantly, the spatial visual characteristics
of the four sceinc archetypes are determined by geometric forms (shape),
spatial arrangements (position), and proportional relationships (size)
remain constant across environmental variations. While texture, particu-
larly of deciduous vegetation, exhibits seasonal variations, these changes
occur within predictable ranges that do not alter the archetype’s essential
spatial structure. The framework captures the underlying organizational
principles rather than ephemeral surface qualities.

From the comprehensive data-set of 1045 photographs, this study
selected 168 images representing four scenic archetypes: 54 framed scenery,
20 obstructive scenery, 41 porous scenery, and 53 sandwiched scenery. The
remainingphotographswere excludeddue to their ambiguous classification,
as they typically represented transitional views lacking the distinctive spatial
configurations that characterize traditional design patterns. The selected
images ensure comprehensive coverage of all identifiable scenic archetypes

Fig. 6 | Pattern mapping of four variables. The figure details the operationalization of shape, size, position, and texture variables, showing how they are extracted from the
foreground, middle ground, and background layers for analysis.
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alongWest Lakepathswhile demonstrating clear spatial stratification across
foreground, middle ground, and background (Fig. 7). The uneven sample
distribution reflects the actual prevalence of scenic archetypes at HWL
rather than sampling bias. This distribution, articulately the lower frequency
of obstructive scenery, reflects both historical design preferences and con-
temporary landscape modifications. Each scenic archetype was analyzed
independently to reveal its specific spatial visual characteristics. This
approach not only aligns with our research goal of characterizing distinct
design patterns but also mitigates potential biases arising from the uneven
sample distribution, as each archetype’s characteristics are identified with-
out reference to the prevalence of other types.

Image processing and mapping
Following data collection, image processing operationalizes the analytical
framework through computational measurement. The four-tier framework
(Fig. 1) establishes what spatial visual characteristics require measurement,
specifically thedecompositionof scenic archetypes into foreground-middle-
background layers characterized by shape, size, position, and texture vari-
ables, while computational tools execute these specifications through sys-
tematic mapping protocols. This distinction between characteristic
specification (framework-determined) and characteristic extraction (tool-
executed) positions the study’s contribution in analytical logic transferable
across multiple computational implementations, thereby prioritizing
replicability over algorithm-specific reproducibility. This methodological
stance addresses the distinction between reproducibility (exact numerical
replication with identical tools) and replicability (comparable pattern
identification with transferable logic), prioritizing the latter as appropriate
for design pattern research. Each image underwent processing according to
the framework’s hierarchical structure to generate three types of spatial
visual characteristic units (Fig. 8): element mapping, openness mapping,
and depthmapping. All images were standardized to 600 × 800 pixels at 72
dpi prior to processing.

Element mapping employed PSPNet with ResNet-101 backbone for
initial semantic segmentation, pre-trained on ADE20K57. This architecture
was selected for its demonstrated robustness in complex scene under-
standing, achieving 41.96% mIoU and 80.64% pixel accuracy on ADE20K
validation, representing 4.73% absolute mIoU improvement over ResNet-
50 baseline27. The pyramid pooling module’s multi-scale context aggrega-
tion proves particularly effective for traditional gardens, where elements
spanmultiple scales. However, automated segmentation exhibits systematic
limitations: vegetation overlap produces boundary ambiguity, shadow
variation reduces contrast discrimination, and irregular organic surfaces
challenge recognition algorithms. We therefore implemented interactive
boundary refinement using SAM ViT-H variant58, selected for its excep-
tional zero-shot generalization across 16 of 23 evaluation datasets and
superior mask quality (7–9/10 ratings in human assessments)58. This
human-in-the-loop mechanism positions artificial intelligence as super-
vised augmentation: when PSPNet generated indeterminate boundaries,
particularly at vegetation-architecture interfaces or shadow-obscured
regions, manual point-click intervention through SAM overrode auto-
mated outputs. This refinement additionally incorporated six culturally-
specific categories absent fromADE20K’s universal taxonomy (herbaceous
plants, aquatic plants, lawn, embankment, architectural inscriptions),
yielding 34 semantic classes balancing automated efficiencywith supervised
accuracy.

Openness mapping incorporated cross-modal validation to ensure
data quality. Element maps received binary occlusion labels indicating each
component’s contribution to visual permeability, directly supporting tex-
ture variable calculation. We implemented cross-modal validation that
systematically exploits redundancy across independent data sources to
detect processing errors. Element maps, openness maps, and depth maps
must maintain logical consistency; violations signal errors undetectable
through single-modality analysis. For instance, an element labeled ‘tree’ in
semantic segmentation yet appearing transparent in openness mapping
indicates classification error. Similarly, depth orderings contradictingT
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element positions reveal spatial inconsistencies. When such contradictions
emerged, manual inspection and correction were triggered. This validation
mechanism transforms multiple mapping outputs from parallel data
streams into mutually reinforcing error-detection architecture.

Depth mapping employed ordinal validation to ensure perceptual
accuracy. MiDaS v3.1 DPT-Hybrid generated relative depthmaps, selected
for its robust zero-shot cross-dataset transfer capability (36% relative error
reduction versus v3.0 baseline)51. Critically, MiDaS performs relative depth
estimation, outputting ordinal depth relationships (0=nearest, 1=farthest)
appropriate for phenomenological requirements: foreground-middle-
background stratification emerges from perceptual depth experience
rather than absolute measurements, as demonstrated in visual landscape
analysis43. The model’s demonstrated generalization across diverse scene
types, from indoor spaces to outdoor scenarios to general web imagery,
which ensures reliability for varied spatial compositions in traditional
gardens51. We validated MiDaS outputs against visual inspection to ensure
generated depth orderings matched phenomenological perception, with
implausible stratification at occlusion boundaries receiving manual reso-
lution. These protocols embody a fundamental methodological principle:
artificial intelligence augments analytical efficiency while human oversight
ensures interpretive reliability, treating computationalmodels as supervised
assistants requiring critical evaluation rather than autonomous systems.

Upon completion of initial mapping procedures, these AI-generated
mappings underwent division into discrete mapping units to facilitate cal-
culation of spatial visual characteristics across foreground, middle ground,
and background layers. This critical segmentation ensures dedicated input
data for each metric while preventing overlaps or interactions between
different spatial visual characteristics, thereby maximizing measurement
precision. The specific procedural steps encompassed converting color
depth maps to grayscale using the standard Inferno color map and deli-
neating preliminary foreground, middle ground, and background masks
through the natural breaks classificationmethod inArcGIS, thus generating
areamappings. To refine these preliminary results, we implemented a two-
stage correction protocol designed to enhance areamapping accuracy. First,
we removed openness elements located in the foreground and enclosed
elements in the middle and background that properly belonged to the
foreground, based on opennessmapping data. Second, we adjusted element
boundaries between foreground, and middle ground and background
according to element mapping information. In the final processing phase,
element, openness, and depth mappings were intersected with area map-
pings to generate definitive mapping units. Through this systematic
approach, threemapping units were produced for both the foreground, and
the middle ground and background of each image: element mapping,
opennessmapping, and depthmapping, with eachmap corresponding to at
least one analytical metric.

Data measurement and statistical analysis
Following image processing andmapping, data analysis proceeded through
two distinct phases: measurement and assessment. During the measure-
ment phase, twelve proprietary mapping algorithms developed for this
studyprocessed the four variables of shape, size, depth, and texture.Notably,
only the texture variable applies to all spatial layers (foreground, middle
ground, and background), while the remaining variables were developed
exclusively for foreground analysis. The operational architecture of these
algorithms comprised four integrated components: mapping unit reading,
characteristic extraction, spatial calculation, and result output (Fig. 9). First,
the mapping unit reading module converts the pixel-based spatial visual
characteristic units into arrays, generating the raw data used for subsequent
calculations. Next, the characteristic extraction module extracts the specific
values required formetric calculations. Then, the spatial calculationmodule
analyzes the distribution, absolute values, and relative relationships of these
values to generate results. Finally, these results are converted into two pri-
mary outputs in the result outputmodule: (1) precise andunique values, and
(2) output mappings that explain the computational process.

To complete our analytical framework, during the assessment phase,
various statistical methods were used to conduct an in-depth analysis of the
measurement results, including descriptive statistical analysis, importance
analysis, correlation analysis, and element contribution analysis. For basic
characterization, descriptive statistics were used to summarize the basic
trends and patterns in the numerical representations of the four scenic
archetypes, focusing on measures of central tendency, dispersion, and dis-
tribution. For more advanced analysis, importance analysis was conducted
using a random forest algorithm that transformed the identification of the
target scenic archetypes into a binary classification problem59,60. This
method assessed the importance of each characteristic in improving model
performance, identifying the most important characteristics in terms of
classifying the different scenic archetypes. Additionally, Spearman’s corre-
lation coefficient, a non-parametric statisticalmethod suitable for analyzing
small samples, non-linear relationships, and datasets with outliers, was used
to evaluate correlations between composite items in the dataset61,62. To
complete our comprehensive analysis, element contribution analysis was
conducted by comparing the original measurement results with the results
obtained after removing the target element, which quantified the con-
tribution of the target element to a specific composite item.

Results
Examining the hierarchical structure of the framework
The hierarchical structure of the proposed framework, from scenic
archetypes to metrics, was examined using descriptive statistical analysis
and importance analysis via random forest classification. First, impor-
tance analysis was used to evaluate the conversion of scenic archetypes

Fig. 7 | Data collection for four scenic archetypes. The left panel displays the visiting route and sampling points mapped at Hangzhou Westlake; the right panel provides
representative photographic examples for each of the four collected scenic archetypes.
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into spatial layers; the results showed that the framework exhibited high
recognition accuracy for the different scenic archetypes, achieving an
overall accuracy of 94.12% and a weighted F1‑score of 0.94. This validates
the division of scenic archetypes into the foreground, and the middle
ground and background. Specifically, random forest models used in the
importance analysis exhibited recognition accuracy of 97.06% for framed
scenery, 91.18% for obstructed scenery, 97.06% for porous scenery, and
100% for sandwiched scenery, supporting the framework’s theoretical
premise that “the foreground plays a dominant role by shaping the
observer’s view andmediating the presentation ofmiddle andbackground

elements.” Second, upon conversion from spatial layers to variables, the
random forest models revealed that the most influential spatial visual
characteristics were concentrated in the foreground across all four vari-
ables: shape (e.g., S_I contributing ≈ 31.5%), size (e.g., S_ADI contribut-
ing ≈ 12.1% and S_VFR contributing ≈ 9.9%), position (e.g.,
P_LV ≈ 24.3% in obstructed scenery), and texture (e.g., T_IVI con-
tributing ≈ 9.3% and T_ISI ≈ 8.7%). These foreground spatial visual
characteristics collectively contributed over 70% of total importance,
validating the premise that “the foreground facilitates the transformation
of spatial elements in the middle ground and background from mere

Fig. 8 | Data pre-processing based on the framework. This flowchart outlines the image processing pipeline, including the generation of element, openness, and depth
mappings, followed by a two-stage correction process to refine foreground andbackground masks.
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“objects” into integral parts of the “scenery.”” Finally, when converting
from variables to metrics, descriptive statistical analysis with 95% con-
fidence intervals revealed that 55.36% of metrics displayed a near‑normal
distribution (absolute K-value < 10, absolute Sk < 3; see refs. 63,64), while
33.93% exhibited a positive skew, indicating that metrics developed based
on distribution trends, absolute values, and relative relationships can
reliably capture the spatial visual characteristics of each scenic archetype.
Additionally, significant differences in the mean values (with non-
overlapping confidence intervals) of identical metrics across scenic
archetypes highlighted the ability of metrics to effectively identify and
distinguish different scenic archetypes. Together, these findings demon-
strate that the framework’s hierarchical structure is capable of converting
abstract concepts into specific, quantifiable metrics.

Summarizing and characterizing four scenic archetypes
Descriptive statistical analysis was combined with correlation analysis and
element contribution analysis to characterize each scenic archetype based
on their position, size, shape, and texture (Figs. 10–11).

Framed scenery is characterized by three interconnected aspects:
foreground framing, focal point formation, and spatial hierarchy
enhancement. The results of the correlation analysis are detailed in Fig. 10a,
and the results of the descriptive statistical analysis are presented in Table 2.
The results show that the foreground effectively frames the view through its
carefully orchestrated physical attributes. The analysis shows that the
foregroundmaintains regular outlines (S_ERI)with smoothedge continuity
(P_ECI), creating a stable framing structure. This framing structure is
strategically positioned, starting near the observer’s viewpoint (P_LN) and
extending to sufficient depth (P_LV), with a significant positive correlation
between the starting position and depth transition (r = 0.656, p < 0.01). The
foreground occupies a substantial portion of the field of view (S_VFR) with
an optimal area distribution (S_ADI). This framing structure effectively
directs attention to create a clear visual focal point. This is achieved through
deliberate textural contrasts between the foreground and themiddle ground
and background. The foreground exhibits enclosed, simple characteristics
(T_ESI, T_ISI, T_ER), while the middle ground and background exhibit
greater openness and diversity (T_ESI, T_ISI, T_ER). The effectiveness of

Fig. 9 | Operational modules of the algorithms used to generate themetrics. The diagram visualizes the four integrated components of the mapping algorithms: mapping
unit reading, characteristic extraction, spatial calculation, and result output.
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focal point creation is further supported by significant correlations between
regular edge shapes and positioning (r = 0.331, p < 0.05) as well as between
texture intervals and area distribution (r =−0.326, p < 0.05), indicating
coordinated visual guidance. Finally, the spatial hierarchy is enhanced
through sophisticated layeringmechanisms. The analysis reveals consistent
texture variations (T_IVI autocorrelation = 0.287, p < 0.05) that strengthen
the hierarchical contrast in space (T_ESI and P_LN correlation: r = 0.594,
p < 0.01). The spatial structure maintains stability despite complex texture
variations (T_ISI and T_IVI correlation: r = 0.699, p < 0.01), while area
distribution and edge continuity complement each other in reinforcing
spatial depth (S_ADI and P_ECI correlation: r =−0.66, p < 0.01). This
hierarchical organization is materially supported by specific spatial ele-
ments, including trees and walls, which exhibit strong and centralized
contributions (mean r > 0.3) across multiple foreground metrics (Fig. 11a).

These measured correlations align with spatial organization principles
documented in traditional Chinese garden treatises and recent empirical
validations. The positive correlation between foreground shape regularity
(low S_ERI) and smooth depth transitions (high P_ECI, r = 0.656, p < 0.01)
observed at HWL can be interpreted through the lens of principles articu-
lated in Ji40, though not in these modern terms. Ji Cheng emphasized that
architectural openings such as door andwindow frames should “collect fine
views while excluding mundane sights” (佳境宜收,俗尘安到). The con-
ceptual foundation of framed scenery as a deliberate compositional device
was further developed by Li41, who described creating “frameless paintings”

(无心画) by positioning paper borders around window openings to
transform architectural apertures into pictorial frames (Fig. 12a). This his-
torical precedent demonstrates that designers understood framing not
merely as structural necessity but as a sophisticated tool for controlling
visual perception and spatial depth—principles that manifest in con-
temporary West Lake gardens through systematic foreground geometry
(Fig. 12b).

While Ji Cheng did not employ geometric or perceptual psychology
terminology, as his philosophy centered on “skillful borrowing and
appropriate adaptation” (巧于因借,精在体宜) and organic flexibility
rather than geometric regularity, contemporary research has validated that
framing elements do systematically structure visual depth perception.
Experimental studies demonstrate that framepositioning, rather than frame
geometry alone, determines depth perception in framing contexts65. The
significant relationship between foreground positioning, denoted as P_LN,
and depth extension, denoted as P_LV, reflects what traditional texts
described as systematic spatial layering40,41, where designers deliberately
positioned framing elements to create hierarchical views. Contemporary
computational analyses confirm that buildings function as primary
mechanisms for controlling views and creating framed scenery, with
Building Visual Index exerting the strongest influence on visual complexity
in garden spaces at β = 0.683, p < 0.0566. Thus, the statistical patterns
observed in framed scenery at HWL reflect not incidental geometric
arrangements but intentional compositional strategies encoded in

Fig. 10 | Correlation heatmap of metrics of four scenic archetypes. a Framed scenery, b obstructive scenery, c porous scenery, and d sandwiched scenery.
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traditional design knowledge, though expressed through cultural vocabul-
aries distinct from modern spatial analysis terminology, and validated
through both historical documentation and contemporary empirical
research.

Obstructive scenery is characterized by three interrelated aspects:
visual barrier creation, sight line guidance, and spatial hierarchy enhance-
ment. The results of the correlation analysis are detailed in Fig. 10b, and the
results of the descriptive statistical analysis are presented in Table 3. In
obstructive scenery, the foreground effectively establishes a visual barrier
through precise control of its physical attributes. Analysis reveals that the
foreground maintains distinct outlines (S_ECI) with smooth depth

transitions (P_ECI) to create a clear obstruction. This obstruction is stra-
tegically configured through optimal area distribution (S_ADI) while
maintainingmoderate visual field occupation (S_VFR). Furthermore, there
is a significant negative correlation between area and visual field ratio
(r =−0.642, p < 0.01) ensuring effective visual concentration. The
obstruction is positioned closer to the observer (P_LN) at a controlled depth
(P_LV), demonstrating a strong position–depth correlation (r = 0.912,
p < 0.01) for precise obstruction control. This visual barrier systematically
guides the observer’s line of sight through deliberate textural manipulation.
The foreground exhibits simplified texture characteristics (T_ISI, T_ER,
T_ESI); this is in contrast to the richer middle ground and background

Fig. 11 | Line chart of contribution with weight by category for metrics of four scenic archetypes. a Framed scenery, b obstructive scenery, c porous scenery, and
d sandwiched scenery.

Table 2 | Descriptive statistical analysis of each metric and their interpretations in the context of framed scenery

Metrics Statistical Values Interpretation Implication for Design

S_ERI Mean = 1.634; Mdn = 0.986; 95% CI [1.300, 1.968] Lower range Controls regularity in framing
outline

P_ECI Mean = 1.237; Mdn = 1.143; 95% CI [1.074, 1.400] Lower range concentration Ensures smooth depth
transitions

P_LN Mean = 50; Mdn = 255; 95% CI [119.441, 152.929] Near maximum value of 256 Optimal alignment with observer
position

P_LV Mean = 136.185; Mdn = 148.5; 95% CI [250.213, 254.343] Above median of 128 Extended depth reached in the
foreground

S_VFR Mean = 0.734; 95% CI [0.706, 0.762] Substantial proportion Dominant visual presence

S_ADI Mean = 0.957; 95% CI [0.926, 0.988]; Sk = -3.806; K = 16.2 Near maximum of 1, left-
skewed

Effective visual guidance

Foreground
T_ESI, T_ISI, T_ER

T_ESI = 2.101, 95% CI [1.727, 2.475]; T_ISI = 0.097, 95% CI [0.072,
0.122]; T_ER = 2.963, 95% CI [2.504, 3.422]

Lower values Controlled, enclosed textural
pattern

Middle ground and
background
T_ESI, T_ISI, T_ER

T_ESI = 2.963, 95% CI [3.590, 4.648]; T_ISI = 0.396, 95% CI [0.320,
0.472]; T_ER = 6.204, 95% CI [5.644, 6.764]

Higher values Open and diverse textures
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textures (T_ISI, T_ER, T_ESI), which exhibit distinct variation patterns
(T_IVI). This guidance is reinforced through coordinated relationships
between textural elements and spacing (r = 0.728, p < 0.01), textural varia-
tion and intervals (r = 0.566, p < 0.01), as well as depth transitions and
positioning (P_LV and P_LN with P_ECI: r = 0.55 and 0.531 respectively,
p < 0.05). Finally, spatial hierarchy is enhanced through sophisticated visual
and spatial mechanisms: The analysis reveals systematic relationships
between visual field proportion and spatial depth (r = 0.778, p < 0.01) and
positioning (r = 0.695, p < 0.01), which are indicative of coordinated spatial
progression. Texture intervals are found to significantly influence visual
guidance (T_ISI and S_ADI correlation: r =−0.655, p < 0.01), while precise
depth control ensures a smooth spatial transition. This hierarchical orga-
nization is materially supported by specific spatial elements, such as trees,
walls, and plants (primarily shrubs and tall herbaceous species), which all
have a strong and centralized contribution across multiple foreground
metrics (Fig. 11b).

These measured spatial patterns, particularly the deliberate textural
contrasts between simplified foreground elements and enriched middle-
ground/background compositions, correspond to traditional design prin-
ciples documented in traditional treatises such as Li41, which emphasizes the
strategic placement of screening elements such as trees, walls, and rockeries
to control visual sequences and create progressive spatial revelation. His-
torical visual evidence illuminates how these principles operated in practice:
Zhang67 systematically depicts rockeries as foreground obstructions, as
shown in Fig. 13a, where the monumental Taihu stone formation exem-
plifies the measured positioning control denoted as P_LN and depth
management indicated by P_LV identified in our statistical analysis. The
rockery’s textural complexity characterized by highT_ERagainst simplified
surrounding vegetation demonstrates the same foreground-background
contrast measured through T_ESI and T_ISI indices that our data reveal as
characteristic of obstructive scenery. This compositional strategy persists in
contemporary practice: atHWL,Taihu stone rockeries continue to function

Table 3 | Descriptive statistical analysis of each metric and their interpretations in the context of obstructive scenery

Metrics Statistical Values Interpretation Implication for Design

S_ECI Mean = 0.916; Mdn = 0.968; 95% CI [0.860, 0.972] Near maximum value of 1 Ensures clear distinction of
foreground outlines

P_ECI Mean = 0.649; Mdn = 0.576; 95% CI [0.451, 0.847] Moderate range Enables smooth depth transitions

S_ADI Mean = 0.864; Mdn = 0.985; 95% CI [0.765, 0.963] Near maximum value of 1 Strong visual guidance capability

S_VFR Mean = 0.39; Mdn = 0.359; 95% CI [0.302, 0.478] Lower proportion Moderate visual field occupation

P_LN Mean = 169.65; Mdn = 170; 95% CI [140.335, 198.965] Above median of 128 Closer positioning to the observer

P_LV Mean = 99.25; Mdn = 93.5; 95% CI [71.436, 127.064] Relatively low values Controlled depth extension

Foreground T_ESI, T_ISI, T_ER T_ISI = 0.025, 95% CI [0.009, 0.041]; T_ER = 2.05, 95% CI [1.560,
2.540]; T_ESI = 1.324, 95% CI [1.148, 1.500]

Lower values Simplified textural patterns

Middle and background T_ESI,
T_ISI, T_ER

T_ISI = 0.481, 95% CI [0.368, 0.594]; T_ER = 6.25, 95% CI [5.129,
7.371]; T_ESI = 3.543, 95% CI [2.729, 4.357]

Higher values Rich, complex textures

Fig. 12 | Framed scenery: historical precedent and
case manifestation. a Historical illustration from
Li41 depicting the conceptual origin of “frameless
painting” (无心画), where architectural apertures
transform scenery into composed views.
b Rectangular stone window frame at HWL
demonstrating systematic structuring of depth per-
ception through foreground geometry.

Fig. 13 | Obstructive scenery: historical precedent
and case manifestation. a Historical illustration
from Zhang [67] showing monumental Taihu stone
formation as foreground visual barrier in Zhiyuan
Garden Album (Ming Dynasty). b Taihu stone
rockery at HWL maintaining the traditional role of
foreground visual barrier.
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as carefully positioned visual barriers, as illustrated in Fig. 13b, their pla-
cement near the observer with controlled depth extension creating the
“conceal-then-reveal” effect termed (先藏后露) that defines obstructive
design.

The strong correlation between foreground positioning and depth
control (P_LN and P_LV, r = 0.912, p < 0.01) observed in our data quan-
titatively validates what traditional treatises describe qualitatively as “sys-
tematic obstruction” (障). HWL examples demonstrate that effective
obstructive scenery requires precise calibration: the obstruction must be
close enough, reflected in lowP_LN values, to command attention yet allow
sufficient depth variation through P_LV to guide visual exploration around
its edges. The textural hierarchy we measured, showing simplified fore-
ground through T_ISI, T_ER, and T_ESI against enriched backgrounds,
aligns with the visual strategy evident in both Zhang67 and WHL, where
screening elements heighten anticipation through deliberate contrast.
Recent computational analyses confirm that while excessive enclosure
reduces dwell duration with β =−0.789 and p < 0.001, strategic screening
creates offset-alternating synergies that enhance spatial experience67. These
convergences between our statistical findings from HWL, Ming Dynasty
garden albums and traditional design treatises, demonstrate that the spatial
patterns characterizing obstructive scenery reflect centuries-refined com-
positional strategies rather than incidental arrangements.

Porous scenery is characterized by three interconnected aspects: partial
perspective exhibition, balanced spatial enclosure, and spatial hierarchy
enhancement (Fig. 10c).The results of the correlationanalysis aredetailed in
Fig. 10c, and the results of the descriptive statistical analysis are presented in
Table 4. In porous scenery, the foreground effectively creates partial per-
spective openings through sophisticated control of its physical attributes.
Analysis reveals that the foregroundmaintains complex anddiverse outlines
(S_PSI) with significant depth variations (P_ECI) that help establish a

sophisticated porous structure. The porous structure is strategically posi-
tioned close to the observer (P_LN) andoccupies a substantial portionof the
visual field (S_VFR) while maintaining a balanced influence on the middle
ground and background (S_ADI). This considerable depth extension
(P_LV) further supports the systematic revelation of external scenery
through these openings. This design achieves a delicate balance between
openness and enclosure through deliberate textural manipulation. The
foreground exhibits uniform textural characteristics (T_ESI) with varied
openness patterns (T_IVI) and relative enclosure (T_ISI), that contrasts
with themore fragmented (T_ESI), stable (T_IVI), andopen (T_ISI)middle
ground and background sections. This balance is reinforced through sig-
nificant correlations between foreground segmentation and texture varia-
tion (r = 0.492, p < 0.01), as well as negative relationships between the visual
field ratio and both textural similarity (r =−0.598, p < 0.01) and segmen-
tation (r =−0.384, p < 0.05), indicating a systematic regulation of visuals
through these perspective openings. Spatial hierarchy in this scenic arche-
type is enhanced through sophisticated layering mechanisms. The analysis
reveals continuous textural variations (T_IVI autocorrelation = 0.341,
p < 0.05) that are coordinated with depth transitions (T_IVI and P_ECI
correlation: r = 0.472, p < 0.01) to ensure smooth spatial progression. The
foreground elements remain relatively simple (T_ER) compared to the
richer middle ground and background sections (T_ER), creating a clear
visual distinction. This hierarchical organization is materially supported by
specific landscape elements, such as trees, grass, walls, buildings, and col-
umns, which all have a strong contribution across multiple foreground
metrics (Fig. 11c).

The balanced spatial configuration and textural variations character-
izing porous scenery correspond to the emptiness-substance (虚实) prin-
ciple systematically articulated in traditional garden theory. This principle
found systematic codification in Ji40, which documented canonical window

Fig. 14 | Porous scenery: historical precedent and
case manifestation. a Historical window lattice
designs from Ji [40] showing Two-Section Style (两
截式) and Ice-Crack Pattern (冰裂纹). b Floral
lattice window at HWL demonstrating con-
temporary implementation of the “half-transpar-
ent” filtering effect.

Table 4 | Descriptive statistical analysis of each metric and their interpretations in the context of porous scenery

Metrics Statistical Values Interpretation Implication for Design

S_PSI Mean = 0.523; Mdn = 0.6; 95% CI [0.464, 0.582]; Sk =−1.424 Moderate value with
negative skew

Complex and diverse foreground
outlines

P_ECI Mean = 1.615; 95% CI [1.449, 1.781]; Sk =−0.229 Relatively high with a slight
negative skew

Long and varied depth transitions

P_LN Mean = 252.073; 95% CI [249.750, 254.396]; Sk =−4.333 High value near maximum, strong
negative skew

Very close positioning to the
observer

S_VFR Mean = 0.734; Mdn = 0.793; 95% CI [0.675, 0.793] High proportion Significant occupation of the
visual field

S_ADI Mean = 0.559; Mdn = 0.61; 95% CI [0.473, 0.645] Moderate value Balanced influence on middle
ground and background

P_LV Mean = 168.707; 95% CI [157.056, 180.358]; Sk =−0.571 High value with moderate
negative skew

Extended depth reached in the
foreground

Foreground T_ESI,
T_IVI, T_ISI

T_ESI = 1.835, 95% CI [1.511, 2.159]; T_IVI = 183.349, 95% CI
[141.457, 225.241]; T_ISI = 0.02, 95% CI [-0.002, 0.042]

Lower T_ESI, higher T_IVI, very
low T_ISI

Uniform texture with varied
openness patterns

Middle and background
T_ESI, T_IVI, T_ISI

T_ESI = 2.963, 95% CI [9.418, 18.194]; T_IVI = 91.937, 95% CI
[80.204, 103.670]; T_ISI = 0.507, 95% CI [0.406, 0.608]

Higher values across metrics More fragmented and open
textures
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designs embodying “adjacency to emptiness everywhere, framed views in
every direction” (处处邻虚,方方侧景), specifically the strategic placement
of porous openings to create “seemingly separated yet not separated” (似隔

非隔) spatial relationships (Fig. 14a). For example, the floral lattice window
at HWL (Fig. 14b) demonstrates the enduring application of these design
principles, where ornamental geometry functions as both aesthetic object
and spatial filter to achieve the characteristic “half-transparent” effect. Song
et al.68 document how traditional designers employed “substance within
emptiness” and “emptiness within substance” to create complementary
pairings: architecture with trees and water bodies, rockeries with vegetation
and water, creating variations of density and sparseness that highlight
layered spatial structures. The significant negative correlations between
visual field ratio and both textural similarity (r =−0.598, p < 0.01) and
segmentation (r =−0.384, p < 0.05) observed in our data reflect this prin-
ciple’s practical implementation, whereby designers systematically regu-
lated visual access through openings to balance enclosure and revelation.
The complex foreground outlines (high S_PSI) combinedwith varied depth
transitions (high P_ECI) align with the documented design goal of creating
“limitless vision, endless recurrence” through strategic arrangement of
sightlines and pathways69. Space syntax analyses confirm that traditional
designers used doorways and windows to implicitly frame scenic moods,
creating clustering centers positioned to maintain attractive scenery while
requiring multiple turns for complete spatial perception70. The statistical
patterns in porous scenery observed at HWL thus validate the traditional
design strategy of achieving spatial richness through controlled permeability
rather than uniformopenness or complete enclosure; this principle has now
been empirically confirmed through contemporary computational heritage
studies.

Sandwiched scenery is characterized by three interconnected aspects:
structural clamping formation, bilateral visual guidance, and spatial hier-
archy enhancement. The results of the correlation analysis are detailed in
Fig. 10d, and the results of the descriptive statistical analysis are presented in
Table 5. In sandwiched scenery, the foreground effectively establishes
clamping structures through the precise control of its physical attributes.
The analysis reveals that the foreground maintains highly symmetrical
outlines (S_API) with dynamic depth transitions (P_ECI) to create a stable
sandwiching structure. This sandwiching structure is strategically posi-
tioned close to the observer (P_LN) and demonstrates optimal area dis-
tribution (S_ADI) while occupying a moderate visual field (S_VFR). The
systematic formation of sandwiching structures is further supported by its
considerable depth extension (P_LV). Bilateral elements in the scene
effectively guide visual attention through deliberate textural manipulation.
The foreground exhibits enclosed characteristics (T_ISI) with consistent

morphological variations (T_IVI), simple and uniform textures (T_ESI),
and fewer elements (T_ER); this is in contrast to the more open (T_ISI),
similarly varied (T_IVI), fragmented (T_ESI), and rich (T_ER) middle
ground and background regions. This guidance is reinforced through sig-
nificant correlations between symmetrical forms and depth variation
(r = 0.291, p < 0.05), element richness and spatial hierarchy (r = 0.434,
p < 0.01), and enclosure and visual concentration (r = 0.49, p < 0.01). Spatial
hierarchy is enhanced through sophisticated organizational mechanisms.
Specifically, the analysis reveals systematic relationships between visual field
proportion and several variables, including spatial depth (r = 0.549,
p < 0.05), element richness (r = 0.532, p < 0.01), and area distribution
(r =−0.588, p < 0.01), indicating coordinated spatial progression. Mor-
phological variations exhibit significant consistency (T_IVI correlation:
r = 0.764, p < 0.01), with element richness being positively correlated with
morphological variation (r = 0.532, p < 0.01) and negatively correlated with
area distribution (r =−0.71, p < 0.01). This hierarchical organization is
materially supported by specific spatial elements, including aquatic plants,
trees, plants (primarily shrubs and tall herbaceous species), and window-
panes; which all have a strong and centralized contribution across multiple
foreground metrics (Fig. 11d).

The bilateral symmetry and channeling characteristics defining sand-
wiched scenery reflect design principles embedded in traditional Chinese
garden-making practice. While Ming-dynasty treatises such as Wen71

emphasized aesthetic principles of spatial rhythm, specifically “positioning
with balance between density and sparseness” (位置疏密), and Ji40 sys-
tematically articulated spatial sequencing through borrowed scenery tech-
niques, the specific organizational logic of bilateral framing developed
through centuries of iterative practice rather than explicit theoretical for-
mulation. The measured high symmetry in foreground outlines (S_API
mean = 43.241) and its correlation with depth variation (r = 0.291, p < 0.05)
empirically validates this embedded design intention.

Historical precedents confirm this spatial logic as conscious design
knowledge. (Fig. 15a) The Humble Administrator’s Garden, created in the
1510 s, demonstrates the systematic application of sandwiched scenery:
curved corridors and elevated walkways lined with bilateral plantings of
bambooandflowering trees createmulti-tiered lateral framing that channels
sightlines toward the “borrowed”North Temple Pagoda beyond the garden
boundary, representing an integration of sandwiched scenery andborrowed
scenery documented in Wen’s album71 depicting the garden’s spatial
sequences. This Ming-dynasty built example substantiates that bilateral
framing was an intentional compositional strategy for creating “two-sided
obstruction, visual guidance, and endpoint emphasis.”HWL exhibits these
same organizational principles: trees positioned along both shores generate

Table 5 | Descriptive statistical analysis of each metric and their interpretations in the context of sandwiched scenery

Metrics Statistical Values Interpretation Implication for Design

S_API Mean = 43.241; Mdn = 39.368; 95% CI [37.480, 49.002]; Sk = 0.678 Moderate positive
skewness

Symmetrical arrangement of
foreground elements

P_ECI Mean = 1.332; 95% CI [1.213, 1.451]; Sk =−0.207 Slight negative skew Controlled depth transitions in
the sandwiching structure

P_LN Mean = 243.057; 95% CI [235.416, 250.698]; Sk =−2.243 High value with strong
negative skew

Very close positioning to the
observer

S_ADI Mean = 0.976; Mdn = 0.994; 95% CI [0.962, 0.990] Near maximum value Highly optimized spatial
distribution

S_VFR Mean = 0.451; Mdn = 0.44; 95% CI [0.398, 0.504] Moderate proportion Balanced visual field occupation

P_LV Mean = 165.189; 95% CI [149.898, 180.480]; Sk =−0.64 High value with moderate
negative skew

Extended depth reached in the
foreground

Foreground T_ISI, T_IVI,
T_ESI, T_ER

T_ISI = 0.068, 95% CI [0.053, 0.083]; T_IVI = 114.652, 95% CI
[107.875, 121.429]; T_ESI = 2.421, 95% CI [2.183, 2.659];
T_ER = 2.717, 95% CI [2.283, 3.151]

Low T_ISI, moderate T_IVI,
T_ESI, T_ER

Enclosed, uniform texture with
consistent variations

Middle ground andBackground
T_ISI, T_IVI, T_ESI, T_ER

T_ISI = 0.767, 95% CI [0.714, 0.820]; T_IVI = 113.588, 95% CI
[89.656, 99.028]; T_ESI = 3.005, 95% CI [2.699, 3.311];
T_ER = 5.868, 95% CI [5.425, 6.311]

Higher values across
metrics

Open, fragmented textures with
rich elements
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visual corridors across the water surface toward distant pagodas, demon-
strating the persistence of this spatial logic in contemporary landscape
experience (Fig. 15b). The systematic relationships observed between visual
field proportion and multiple variables (depth: r = 0.549, element richness:
r = 0.532, area distribution: r =−0.588, p < 0.01) reflect the intentional
orchestration of bilateral elements to channel visual attention and structure
spatial progression. Recent fractal analyses demonstrate that successful
Chinese gardens exhibit scale-dependent complexity ranges that corre-
spond to traditional design goals72; in these studies, designers did not scale
proportionally but applied different compositional strategies at different
scales, validating that measured patterns reflect systematic design knowl-
edge. The convergence of our statistical findings with space syntax valida-
tions, historical built evidence, and fractal geometry analyses establishes that
sandwiched scenery’s spatial patterns observed at HWL reflect conscious
compositional strategies developed through centuries of practice and
transmitted through both built examples and theoretical discourse.

In summary, the full implementation of the proposed framework is
capable of capturing, presenting, and measuring the spatial visual char-
acteristics of scenic archetypes. The results are consistent with our
hypotheses, demonstrating the applicability and effectiveness of the fra-
mework in quantifying scenic archetypes.

Discussion
This study advances the analysis of scenic archetypes by addressing per-
sistent limitations in both theory-driven and measurement-driven
approaches. Existing research on traditional Chinese gardens has evolved
along four loosely connected paradigms: (1) the inheritance of abstract
design vocabulary,which vividly describes spatial effects yet lacks systematic
procedures for extraction and comparison; (2) landscape representation
frameworks, which provide hierarchical categorization but do not capture
the multi-layered spatial configurations specific to scenic archetypes; (3)
quantitative visual indicators, which measure isolated spatial properties
without accounting for the configurational relationships that generate
overall spatial effect; and (4) computational vision systems, which deliver
high detection accuracy but cannot directly translate element recognition
into spatial-visual analysis. These paradigms, while valuable in isolation,
share amethodological gap: theyare unable to connect high-level theoretical
conceptswith verifiable spatialmetrics in a structuredand reproducibleway.
Our framework directly addresses this gap by structuring scenic archetypes
into spatial-visual components and linking them to measurable indicators,
enabling cross-paradigm integration and application in both research and
heritage practice.

From abstract vocabulary to operational spatial variables
Design traditions inChinese gardens have long relied on a rich lexicon, such
as borrowed scenery, framed scenery, and obstructed scenery, that has
transmitted spatial knowledge across generations9,17. These poetic descrip-
tions excel at capturing experiential richness and cultural resonance but
suffer from interpretive indeterminacy: practitioners interpret “appropriate
density” or “depth with layers” through personal experience, creating
inconsistencies that impede systematic application and cross-cultural

communication. As Bandarin and van Oers73 note in their analysis of
Historic Urban Landscape approaches, and as Smith74 argues regarding
intangible heritage, the challenge lies not in preserving terminology but in
maintaining operational knowledge. This study addresses the issue by
translating abstract vocabulary into operational spatial variables without
reducing it to technical jargon. For example, when we demonstrate that
framed scenery exhibits specific correlation coefficients (0.549 between
foreground and background), we reveal the mathematical relationships
underlying poetic experience, not replacing metaphor with measurement
but uncovering the quantitative structures that enable qualitative experi-
ence. This dual preservation of semantic richness and analytical precision
enables what recent heritage management discourse terms “value-based
indicators”75 and what contemporary Chinese heritage conservation iden-
tifies as urgently needed: transparent communication across different
knowledge systems without sacrificing cultural authenticity.

From static quantities to configurational spatial patterns
Building on the preceding discussion, most existing studies, whether
employing conventional landscape metrics or recent AI-based analyses of
high-quality imagery, have focused on measuring single spatial-visual
attributes in isolation. This tendency is reflected in the emphasis on quan-
titative measures such as the green view index76, sky view factor77, and other
visual landscape metrics78. While these approaches have advanced mea-
surement precision, they often conflate quantification with interpretation
when applied to heritage contexts. A 65% green view ratio or 0.75 sky view
factor quantifies a state, a static condition at a moment in time, but fails to
capture the pattern through which such states generate meaning. As Silva79

demonstrates in analyzing Historic Urban Landscapes in the Asia-Pacific,
and as Veldpaus and Pereira Roders80 argue in their assessment framework
for historic urban landscapes, the essence of designed space emerges from
relational configurations rather than aggregate indicators. This study
transforms this paradigm by distinguishing between percentage (how
much) and pattern (how configured).When identifying framed scenery, we
analyze not the quantity of framing elements but the spatial configuration
through which framing operates as a phenomenological experience. This
distinction proves crucial: two gardens with identical quantitative metrics
can produce entirely different spatial experiences because their configura-
tional patterns differ. The shift from state to pattern thus represents more
than methodological refinement; it constitutes an epistemological reor-
ientation that aligns measurement with the fundamental nature of spatial
experience.

From universal frameworks to culturally specific spatial logic
Many established landscape representation frameworks, such as Tveit
et al.’s38 nine key concepts for visual landscape character, Bell’s2 elements of
visual design, and Liu and Nijhuis’s3 spatial-visual vocabulary, provide
valuable hierarchical structures that inspired our approach. Yet these fra-
meworks encounter insurmountable limitations when applied to culturally
specific landscapes: they presuppose universal aesthetic principles that
transcend cultural boundaries, failing to recognize that scenic archetypes
embody not merely visual arrangements but culturally constituted ways of

Fig. 15 | Sandwiched scenery: historical precedent
and case manifestation. a Curved corridors and
bilateral plantings in the Humble Administrator’s
Garden, Suzhou (Ming dynasty, 1510 s). b Trees
positioned along both shores at HWL creating visual
corridors across the water surface.
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perceiving and inhabiting space. The Chinese concept of scenery, as Jin81

elucidates in his exploration of jing (scenery) in traditional Chinese garden
texts, fundamentally refuses the subject-object dichotomy inherent in
western analytical frameworks, the observer does not view the garden from
outside but participates in its continuous unfolding. As Lu and Liu14

demonstrate through spatial-experiential analysis of the Master of Nets
Garden, Chinese gardens operate through embodied experience rather than
detached observation. Building on this premise, the proposed four-tier
hierarchy does not simply append Chinese categories to existing frame-
works; it restructures the analytical process tomirrorwhat Sun82 identifies as
the unity of knowledge and practice fundamental to Chinese epistemology.
Each tier maintains this unity: scenic archetypes preserve experiential
wholeness, spatial layers translate experience into perceptual structures,
visual variables extract measurable qualities without fragmenting meaning,
and metrics quantify relationships while maintaining semantic integrity.
This structural alignmentwithChinese spatial thinking explains our 94.12%
recognition accuracy success, which derives not from superior algorithms
but from epistemological congruence with the phenomena being analyzed.

From element detection to functional spatial relationships
From a technical perspective, recent computational methods, such as
semantic segmentation models and computer vision systems, have achieve
remarkable technical precision. YOLOv8’s 93.9% element detection
accuracy83 and YOLOv4’s 90.20% damage identification rate84 demonstrate
the power of contemporaryAI. Yet these tools remain confined towhat Liu3

conceptualizes as “theworld of data,”unable to reach “theworld of concern”
where design meaning resides. A semantic segmentation model identifies
walls, trees, and rocks with near-perfect accuracy but cannot distinguish
whether a wall frames a view, obstructs a sightline, or merely defines a
boundary: distinctions fundamental to design practice and heritage value.
This study transforms computational capability into design understanding
by applying scenic archetype logic as an interpretive layer: element detection
provides raw data, but our four-tier structure analyzes spatial relationships
to determine design function. This represents not post-processing but
fundamental reorientation from asking “what exists?” to asking “what does
it mean?”.

Building on these four lines of inquiry, a unifying insight emerges:
scenic archetypes resist reductive analysis precisely because they function as
holistic design patterns where meaning emerges from relational totality
rather than component aggregation. The apparent incompatibility between
data thinking (emphasizing decomposition and measurement) and design
thinking (prioritizing synthesis and experience) reveals not a methodolo-
gical problem to solve but an ontological reality to acknowledge. Scenic
archetypes encode what Ji40 termed the “living method” of garden creation,
principles that exist only through embodied practice, where knowledge is
inseparable from action, and patterns dissolve when reduced to isolated
elements. Our approach does not bridge this divide through compromise;
instead, it recognizes scenic archetypes as translationalmechanisms in their
own right, capable of converting abstract principles into spatial organiza-
tions and, in turn, transforming spatial organizations into visual
appreciation.

This recognition has direct implications for heritage conservation,
shifting practice from recording only discrete physical changes to mon-
itoring and safeguarding the spatial relationships that sustain scenic integ-
rity. While UNESCO’s Guidance and Toolkit for Impact Assessments calls
for evaluating impacts onOutstandingUniversal Value85, and threats to the
visual integrity of World Heritage properties are well documented35,86,
prevailing tools still mainly track building heights, vegetation coverage, and
new construction. Recent scholarship underscores the central role of spatial
organization in heritage value87,88; this research makes that organization
measurable and manageable, operationalizing the long-observed fact that
deterioration of spatial relationships often precedes physical
degradation89,90. In impact assessments, the method quantifies how pro-
posed changes affect scenic integrity, for example, reducing the correlation
between foreground and background in a framed-scenery view from 0.549

to 0.300 indicates not merely visual intrusion but the loss of the archetype
itself, even when structures remain. These analyses provide objective,
defensible criteria that go beyond subjective judgments and align with
UNESCO’s requirements for evidence-based assessment of OUV
attributes84. Establishing baseline measurements of scenic archetypes fur-
ther enables proactive management, including early-warning systems that
detect gradual erosion of spatial integrity before irreversible damage
occurs91,92. Operationally, the approach integrates scenic archetypes pre-
servation into conservation planning alongside traditional physical mon-
itoring, consistent with contemporary calls to protect both tangible and
spatial dimensions of heritage value while supplying the quantitative tools
needed for implementation.

From quantitative precision to integrated heritage assessment
While the preceding discussion establishes themethodological contribution
of quantitative spatial analysis to heritage conservation, responsible scho-
larship requires explicitly acknowledging the epistemological boundaries of
such approaches.What dimensions of heritage value lie beyond the reach of
quantification, and how should our framework be positioned relative to
these irreducible intangible dimensions? Heritage embody tangible and
intangible dimensions93, where spatial visual characteristics constitute only
one component of a broader constellation of values encompassing historical
memory, local identity, community narratives, and intangible cultural
practices that give designed spaces profound human meaning94,95. As Lian
et al.16 demonstrate in their systematic review of historic garden conserva-
tion approaches, effective heritage management necessarily integrates
multiple analytical frameworks: landscape mapping identifies physical and
spatial attributes; landscape planning addresses conservation strategies;
landscape design facilitates development and reuse. Critically, their frame-
work positions spatial analysis within broader landscape context through
conceptual “layers” connecting tangible architectonic elements with
intangible cultural processes, temporal evolution patterns, and community
value systems. This layered approach acknowledges that while spatial visual
characteristics can be quantified, the cultural significance they embody
requires complementary assessment through ethnographic methods, oral
history documentation, and participatory evaluation engaging core com-
munities whose lived experiences constitute irreplaceable dimensions of
heritage value96,97.

This recognition of heritage value’s multidimensional nature leads
directly to a critical methodological question: how should our quantitative
frameworkbepositioned relative to thesebroader assessment requirements?
Thepresent study’s analytical framework should therefore bepositionednot
as comprehensive heritage assessment methodology but as specialized
contribution addressing specific evidence gaps in conservationpractice.Our
quantitative approach excels at particular tasks: providing systematic evi-
dence for heritage inscription processes; detecting gradual spatial changes
that might escape qualitative monitoring; enabling comparative analysis
across multiple sites; translating design principles into implementable
guidelines for contemporary practice. However, these capabilities comple-
ment rather than replace methods capturing values our framework cannot
measure. A framed scenery opening, for instance, may be precisely char-
acterized through our metrics, yet these measurements cannot convey the
cultural associations viewers bring to the scene: literary references accu-
mulated through centuries of poetic tradition, historical events that trans-
formed physical space into commemorative place, personal recollections
that link individual memory to collective heritage, or spiritual significance
attributed through religious or philosophical practice98. These intangible
dimensions do not supplement spatial analysis; they constitute parallel and
equally valid forms of heritage value requiring distinct methodological
approaches98,99.

Having established this methodological positioning, we turn to the
theoretical frameworks emerging in heritage scholarship that provide
conceptual foundation for integrating quantitative and qualitative approa-
ches. Recent theoretical work establishes frameworks for this methodolo-
gical integration.Mason99 distinguishes heritage-centered values (historical,
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aesthetic, architectural) from societal values (social, economic, environ-
mental), arguing thatwhile heritage-centered valuesmay bemore amenable
to expert quantification, societal values require participatory assessment
engaging diverse stakeholders. Robson96 demonstrates through case study
analysis that different assessment methods—quantitative spatial analysis,
qualitative interviews, participatory mapping, photo-elicitation—surface
different types of knowledge, with findings sometimes converging but often
revealing dissonances requiring negotiation rather than resolution.
Waterton and Smith100 caution that privileging expert-defined quantifiable
attributes risks marginalizing community-defined values that resist mea-
surement, potentially creating what they term “authorized heritage dis-
course” that legitimizes certain forms of knowledge while delegitimizing
others. These critiques do not invalidate quantitative approaches but situate
them within broader epistemological landscape where multiple ways of
knowing heritage coexist, each revealing distinct dimensions of
significance101,102.

The preceding analysis of epistemological boundaries establishes the
theoretical foundation for understanding how quantitative spatial analysis
should function within comprehensive heritage assessment. This founda-
tion enables us to articulate the broader implications for heritage science as a
discipline, particularly regarding the relationship between advancing
computational capabilities and the enduring necessity of humanistic
methods. The broader implication for heritage science is that advancing
computational analysis capabilities, as this study does through AI-enabled
multimodal mapping, does not diminish the importance of qualitative
methods but rather increases the imperative for their integration. More
powerful quantification tools create greater risk of privileging measurable
attributes simply because they are measurable, potentially marginalizing
equally important values resisting quantification. The solution lies not in
rejecting computational approaches but in designing assessment frame-
works where quantitative precision serves rather than supplants qualitative
understanding. Our framework provides template for this integration: by
translating abstract scenic archetypes into measurable spatial variables, we
enable systematic comparison and pattern identification across multiple
sites and temporal periods; by situating these measurements within phe-
nomenological understanding of how spatial configurations generate
experiential qualities, we maintain connection between quantitative evi-
dence and qualitative meaning; by acknowledging that spatial visual char-
acteristics constitute only one dimension of heritage value, we position our
contribution within broader assessment frameworks requiring multiple
methodological approaches.

In conclusion, this study establishes an analytical framework that
explores the spatial visual characteristics of scenic archetypes with AI-
enabled multimodal mapping methods. By deconstructing abstract spatial
concepts intomeasurable variables such as shape, size, position, and texture
across foreground,middle ground, and background, the framework bridges
traditional design principles with computational analysis, enabling replic-
able and interpretablemapping of landscape visual logic.While it effectively
captures static visual configurations for defined archetypes, it does not yet
address the temporal and kinesthetic dimensions central to sequential
landscape perception or scene types requiring extended sightlines and
dynamic compositional shifts. These methodological boundaries point to
clear directions for advancement, including integrating eye-tracking and
immersive virtual environments for dynamic visual modeling, applying
advanced deep-learning architectures for element recognition in visually
complex settings, extending metrics to seasonal, diurnal, and weather-
induced variations, and validating the framework across diverse garden
traditions to assess transferability. Equally important, future researchshould
explore systematic integration of this spatial analysis framework with eth-
nographic documentation methods, oral history protocols, and participa-
tory assessment techniques, ensuring thatmeasurable spatial characteristics
are interpretedwithin full cultural context encompassing intangible heritage
values that our quantitative approach cannot directly capture16,103.

The broader significance of this work extends beyond disciplinary
boundaries. As heritage landscapes confront accelerating pressures from

urbanization, tourism, and climate change, analytical frameworks that
synthesize traditional wisdom with contemporary technology become not
merely useful but essential for cultural survival. By demonstrating that
quantification, when properly designed, can reveal rather than obscure
complexity, this study shows how computational approaches can illuminate
patterns and relationships that purely qualitative methods might overlook.
By rendering the implicit explicit, the tacit measurable, and the cultural
computational, we enable new modalities for preserving, transmitting, and
evolving landscape design traditions. Yet this enabling occurs not through
replacing humanistic understanding with technical measurement but
through creating complementary forms of evidence that together support
more robust conservation decisions. The scenic archetypes of Chinese
gardens, refined through centuries of iterative practice, encode spatial wis-
dom directly relevant to contemporary challenges of place-making in an
increasinglymediatedworld.This framework ensures suchwisdomremains
not preserved solely as static heritage but actively operational as living
knowledge, capable of informing and inspiring future practice while
maintaining continuity with its cultural origins. Achieving this aspiration
requires recognizing that quantitative spatial analysis and qualitative cul-
tural understanding are not competing paradigms but mutually necessary
components of comprehensive heritage stewardship, each revealing
dimensions of significance the other cannot access, together enabling con-
servation approaches that honor both the measurable and the ineffable
dimensions of heritage value.

Data availability
All data generated or analyzed during this study are available from the
corresponding author on reasonable request. The Hangzhou Westlake
image dataset and metric results have been archived and can be shared for
research purposes.

Code availability
The custom code and algorithms developed for computing spatial visual
metrics (shape, size, position, texture) andperforming statistical analyses are
available from the corresponding author upon reasonable request. This
includes scripts for image pre-processing and metric calculation.
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