
Enhancing Real-Time Twitter
Filtering and Classification using a

Semi-Automatic Dynamic Machine
Learning setup approach

Master’s Thesis

Nick de Jong

Enhancing Real-Time Twitter
Filtering and Classification using a
Semi-Automatic Dynamic Machine

Learning setup approach

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE
TRACK SOFTWARE TECHNOLOGY

by

Nick de Jong
born in Rotterdam, 1988

Web Information Systems
Department of Software Technology
Faculty EEMCS, Delft University of Technol-
ogy
Delft, the Netherlands
http://wis.ewi.tudelft.nl

CrowdSense
Wilhelmina van Pruisenweg 104

The Hague, the Netherlands
http://www.twitcident.com

c© 2015 Nick de Jong

Enhancing Real-Time Twitter
Filtering and Classification using a
Semi-Automatic Dynamic Machine

Learning setup approach

Author: Nick de Jong
Student id: 1308130
Email: ndjong2@gmail.com

Abstract

Twitter contains massive amounts of user generated content that also con-
tains a lot of valuable information for various interested parties. Twitcident has
been developed to process and filter this information in real-time for interested
parties by monitoring a set of predefined topics, exploiting humans as sensors.
An analysis of the relevant information by an operator can result in an estimation
of severity, and an operator can act accordingly. However, among all relevant
and useful content that is extracted, also a lot of irrelevant noise is present. Our
goal is to improve the filter in such a way that the majority of information pre-
sented by Twitcident is relevant. To this end we designed an artifact consisting
of several components, developed within a dynamic framework. Its major com-
ponents include a machine learning classifier operating on dynamic features, a
semi-automatic setup approach and a training approach. Our prototype oper-
ates on Dutch content, but it can be adapted to operate on any language. With
a partially implemented prototype of our designed artifact we achieve F2-scores
of 0.7 up to 0.9 for our Dutch test-sets using 10-fold cross validation, which
is on average a 30% improvement over the existing Twitcident filtering archi-
tecture. The artifact is robustly designed, allowing for many forms of future
improvements and extensions. We also make some side-contributions, like an
approximate matching algorithm for variable length strings.

Thesis Committee:

Chair: Prof. dr. ir. G.J.P.M. Houben, Faculty EEMCS (WIS), TU-Delft
University supervisor: Dr. C. Hauff, Faculty EEMCS (WIS), TU-Delft
Company supervisor: R.J.P. Stronkman MSc, CrowdSense
Committee Member: Dr. G.H. Wachsmuth, Faculty EEMCS (SERG), TU-Delft

ii

Acknowledgments

First of all, I would like to thank my parents and my girlfriend Fleur Houben for their
unlimited support, endurance, confidence, patience, financial support, feedback and
re-motivation during hard times. Without them, I might not have succeeded.

I’d like to thank Geert-Jan Houben, Claudia Hauff and Gytha Rijnbeek of Delft
University of Technology not only for their guidance and advice during the project,
but mainly for all their patience and flexibility.

I’d like to especially thank my company supervisor Richard Stronkman for his
invaluable brainstorming sessions and guidance, support, patience and maintaining a
relaxed comfortable atmosphere. I’d also like to thank the rest of the CrowdSense
team for their hours of annotating data. Noteworthy mentions are Rense Bakker, Niels
Bergsma and Arjan Assink for their swift first line assistance with CrowdSense sys-
tems and access.

Nick de Jong
Delft, the Netherlands

August 11, 2015

iii

Contents

Acknowledgments iii

Contents v

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Background . 1
1.2 Actors . 2
1.3 Subject matter . 2

1.3.1 Terminology . 3
1.3.2 Examples . 4

1.4 Research objective . 7
1.5 Research questions & Outline . 9
1.6 Appendices . 12

2 Problem analysis 13
2.1 Twitcident . 15

2.1.1 Web-App . 15
2.1.2 Pipe-App . 17

2.2 An introductory case analysis: Project X, Haren 18
2.2.1 Background . 18
2.2.2 The case . 19
2.2.3 Dataset properties . 20
2.2.4 Topic analysis: Bekogeling (Bombardment) 20
2.2.5 Topic analysis: Brand (Fires) 22

2.3 Observing a real world instance: Nationale Politie Limburg 26
2.4 General observations . 28
2.5 Challenges and difficulties . 28
2.6 Summary: List of observations . 30

3 Research 33

v

CONTENTS CONTENTS

3.1 Methodology: Design Science Research 33
3.2 Related work . 36

3.2.1 TwitterStand: News in Tweets 36
3.2.2 OMG Earthquake! Can Twitter Improve Earthquake Response? 37
3.2.3 Earthquake Shakes Twitter Users: Real-time Event Detection

by Social Sensors . 38
3.2.4 Weak Signal Detection on Twitter Datasets 38
3.2.5 CrisisLex: A Lexicon for Collecting and Filtering Microblogged

Communications in Crises 39
3.2.6 Other related work . 40

3.3 Technologies . 41

4 Design and Implementation of our artifact 47
4.1 Choices made towards a solution . 48
4.2 Artifact decomposition . 49
4.3 Part 1: Classification . 52

4.3.1 List of features . 53
4.3.2 Feature discussions and implementations 55
4.3.3 Classifier . 59
4.3.4 Implementation specifics . 60

4.4 Part 2: Setup Approach . 62
4.4.1 Manual setup approach . 63
4.4.2 Required inputs . 65
4.4.3 Three levels of wordlists . 65
4.4.4 Word expansion . 66
4.4.5 Setup approach . 68

4.5 Part 3: Training Approach . 72
4.6 Summary . 74

5 Experiments and Evaluation 77
5.1 Datasets . 77

5.1.1 Data Collection . 77
5.1.2 Resulting datasets . 78
5.1.3 Dataset post-processing . 78

5.2 Experiments . 79
5.2.1 Suitable classifiers . 79
5.2.2 Output format . 81
5.2.3 Amount of features . 82
5.2.4 Classifier performance . 84

5.3 Results comparison . 84

6 Conclusions and Future Work 87
6.1 Summary . 87
6.2 Future work . 91
6.3 Contributions . 92

Bibliography 95

vi

CONTENTS CONTENTS

A Features 101
A.1 Feature list . 101
A.2 Feature discussions and implementations 103

A.2.1 Keyword matches . 103
A.2.2 Hypernyms and hyponyms 105
A.2.3 Username matches . 106
A.2.4 Ignore features . 106
A.2.5 News and media . 106
A.2.6 Tweet and stream rates . 106
A.2.7 Sentiment . 107
A.2.8 Subjectivity . 107
A.2.9 Tense . 107
A.2.10 Retweet(s) . 107
A.2.11 Reply . 108
A.2.12 Mentions . 108
A.2.13 Tweet length . 108
A.2.14 Images . 108
A.2.15 Links . 108
A.2.16 Hashtags . 109
A.2.17 Prior similar tweets . 109
A.2.18 Contains popular term . 109
A.2.19 Distance from hotspot . 109
A.2.20 Seems observation . 110
A.2.21 Street language and slang . 110
A.2.22 Part of Speech attributes . 110
A.2.23 Future or past days mentioned 110
A.2.24 Contains special keywords 110
A.2.25 Language . 111
A.2.26 Interpunction . 111

B Approximate String Matching algorithms 113
B.1 Related work . 113
B.2 Problem definition . 114
B.3 Our solution . 114
B.4 Demonstration . 115
B.5 Performance considerations . 116

C Reproducibility information 117
C.1 SQL statements . 117

C.1.1 Database structure, schema: Classification 117
C.1.2 Database structure, schema: DataAnnotator 118
C.1.3 Database structure, schema: TwitterBase 119
C.1.4 Initial Project X analysis . 121

C.2 Implementation specifics . 121
C.3 Word Expansion Algorithm . 125

D Potential data sources 127

vii

CONTENTS CONTENTS

E Example word expansions 131
E.1 Aardbeving . 131
E.2 Auto . 131
E.3 Bank . 133
E.4 Brand . 136
E.5 Bureau . 137
E.6 Regen . 139
E.7 Trillen . 140
E.8 Veeg . 140

F Data Collection 143
F.1 Strategy Considerations . 143

F.1.1 What? . 143
F.1.2 Who? . 143
F.1.3 How much? . 144

F.2 Data Annotation Application . 144
F.3 Data Collection Algorithm . 146
F.4 Output Processing Algorithm . 148

G Analysis of Prinsjesdag 2013 149

H Setup for Event Detection 173

viii

List of Figures

1.1 Twitcident logo (2014) . 2
1.2 Actor relationships . 3
1.3 Thesis outline . 11

2.1 Twitcident Application: Dashboard . 14
2.2 Twitcident Application: Map . 15
2.3 Twitcident Application: Tweets View 16
2.4 Twitcident Application: Keywords . 17
2.5 Twitcident Application: Ignore terms . 17
2.6 Twitcident Application: Ignore users . 17
2.7 Twitcident Pipeline . 18
2.8 Project X . 19
2.9 Project X: General dataset properties . 21
2.10 Topic keywords for Project X: Brand (Fires) 24
2.11 A joke about ‘Haren’ (also: ‘Hair’) on ‘Fire’ 25
2.12 Twitcident Instance: National Police Limburg 26

3.1 Related work: TwitterStand system architecture 36

4.1 Two-fold problem decomposition . 48
4.2 Architectural overview and context of our artifact 50
4.3 Artifact decomposition . 51
4.4 Artifact decomposition: Classifier System & Features highlighted 52
4.5 Classifier System: Actually a set of parallel classifiers 52
4.6 Artifact decomposition: Classifier System highlighted 60
4.7 Database table: a random subset of a feature configuration 61
4.8 Database table: a random subset of some feature inputs 62
4.9 Artifact decomposition: Setup Approach highlighted 62
4.10 Our working strategy to devise the Setup Approach 63
4.11 A truncated example word expansion of the word ‘brand’ (‘fire’) 67
4.12 Artifact decomposition: Training Approach highlighted 72
4.13 Artifact decomposition . 75
4.14 Artifact overview: context . 76

ix

5.1 Classifier comparison for numerical output 80
5.2 Classifier comparison for nominal output 80
5.3 Classifier comparison between top three 80
5.4 Comparison of nominal class output format 81
5.5 Comparison of amount of enabled features for numerical classification . . 83
5.6 Comparison of amount of enabled features for nominal classification . . . 83
5.7 Final performance measures for our artifact 84
5.8 Comparison of existing Twitcident performance for various boundary values 85
5.9 Comparison of performance between our designed artifact and existing

Twitcident application . 86

6.1 Artifact decomposition . 88
6.2 Comparison of performance between our designed artifact and existing

Twitcident application . 90

B.1 Approximate substring matching: Test cases 115
B.2 Approximate substring matching: Results on test cases 116

C.1 Database table: a random subset of a feature configuration 123
C.2 Database table: a random subset of some feature inputs 123
C.3 Extended ARFF format . 124

F.1 Data Annotation Application: first annotation phase 144
F.2 Data Annotation Application: second annotation phase 145

List of Tables

1.1 Example Nationale Spoorwegen: Twitcident Streams 4
1.2 Example Nationale Spoorwegen: Twitcident Topics 5
1.3 Example ProRail (1): Twitcident Streams 5
1.4 Example ProRail (1): Twitcident Topics 5
1.5 Example ProRail (2): Twitcident Topics 6
1.6 Example Gaswinning Groningen: Twitcident Topics 7
1.7 Examples of relevant and irrelevant tweets related to ‘Earthquake’-topic

in Gaswinning Groningen instance . 8
1.8 Examples of relevant and irrelevant tweets related to ‘Seats’ in instance

Nationale Spoorwegen . 8

x

List of Tables List of Tables

2.1 Project X: General dataset properties . 21
2.2 Topic keywords for Project X: Bekogeling (Bombardment) 22
2.3 Examples of two relevant tweets relating to Bombardment with bikes . . . 23
2.4 Topic keywords for Project X: Brand (Fires) 24
2.5 Examples of interesting tweets matched by the keyword ’brand’ (fire) . . 25
2.6 Twitcident Instance: National Police Limburg 26
2.7 Examples of noteworthy tweets classified as ‘Burglary’ 27
2.8 Examples of noteworthy tweets classified as ‘Shooting’ 27

3.1 Design Science Research guidelines . 35

4.1 List of features, part 1 . 53
4.2 List of features, part 2 . 54
4.3 List of features, part 3 . 55
4.4 Illustration match value for different matching schemes 57
4.5 List of required instance-dependent feature inputs 65
4.6 Example WordEntry weight calculation for base term ‘aardbeving’ and

combo terms ‘trillen’ and ‘lawaai’ using α = 1.0 and β = 10 69

5.1 Annotated datasets . 78
5.2 Nominal classes . 79
5.3 Subsets of enabled features . 82

A.1 List of features, part 1 . 101
A.2 List of features, part 2 . 102
A.3 List of features, part 3 . 103
A.4 Illustration match value for different matching schemes 105

D.1 Setup sources: dictionaries . 127
D.2 Setup sources: semantic sources . 127
D.3 Setup sources: synonyms . 128
D.4 Setup sources: encyclopedia . 128
D.5 Setup sources: proverbs . 128
D.6 Setup sources: miscellaneous . 129

xi

Chapter 1

Introduction

In this chapter we will introduce the context of Twitcident in relation to this thesis:
What is Twitcident? What is it used for? By whom? Who else is involved? After
these questions are answered, we will discuss the problem: What is the research ob-
jective? How will we approach the problem? Finally, we will relate this approach to
the structure of this thesis.

1.1 Background

Since the commencement of Web 2.0, people are able to contribute to the Web through
social services like Twitter1 and Facebook2. Nowadays more than 215 million active
users post more than 500 million tweets a day3. These numbers have significantly
been growing over the past few years: in 2010, 190 million active users only posted 65
million tweets a day [56].

Such massive amounts of user generated content contain a lot of valuable informa-
tion for various interested parties. During crisis situations such as large fires, storms
or other types of incidents, people nowadays quickly report and discuss about their ob-
servations, experiences, and opinions in various Social Web streams. This enormous
flow of information contains vital information which cannot be processed adequately
by default means. These very fast notifications with text and often media (images,
links, videos) compose a huge pile of up-to-date but unstructured data.

A lot of extraction and filtering tools have been developed over the past years
with various aims. Among them is Twitcident4, initially developed by Stronkman in
2011 [1, 2, 56, 57]. This technology is able to monitor a specific set of topics, events
or areas in real-time, providing the monitoring client with potentially valuable infor-
mation. Twitcident sifts through and analyzes social big data in real time for local
authorities, police, emergency services and vital infrastructure operators. It basically
exploits humans as sensors, filters the signal coming from all those sensors and at-
tempts to extract the relevant meaningful information. An analysis of the relevant

1http://www.twitter.com/
2http://facebook.com/
3http://www.sec.gov/Archives/edgar/data/1418091/000119312513390321/d564001ds1.

htm
4http://www.twitcident.com/

1

1.2 Actors Introduction

Figure 1.1: Twitcident logo (2014)

information by an operator can result in an estimation of severity, and an operator can
act accordingly.

However, among all relevant and useful content that is extracted, also a lot of
irrelevant noise is present. We will thoroughly address this issue and attempt to solve
it.

1.2 Actors

This thesis work is relevant to multiple actors:

CrowdSense CrowdSense is the company that develops and maintains Twitcident,
and has a partnership regarding Twitcident with Delft University of Technology
and TNO. Their primary interest regarding this thesis is a contribution to Twit-
cident that significantly improves the data output quality, and optimizing the
configuration process (explained in Chapter 2). However, as a significant part
of their clients comprise of public services and (governmental) authorities, this
also serves as a societal contribution.

Delft University of Technology Delft University of Technology is the university fa-
cilitating this thesis work. They will support the scientific process and contribu-
tion.

Twitcident Client(s) Twitcident Client(s) are companies and/or authorities that pur-
chased a Twitcident license from CrowdSense, using Twitcident to monitor their
target areas, vital infrastructures or events. With the output quality of Twitcident
improving, they can optimize their (business) processes with less effort.

Twitcident Operator(s) Twitcident Operator(s) are those people within a Twitcident
Client that actively operate the Twitcident application, monitor its output and
respond appropriately to it. With the output quality of Twitcident improving,
their tasks become easier, more accessible and more efficient.

1.3 Subject matter

Within this work, it is assumed the reader is familiar with Social Media and espe-
cially Twitter, understanding the concepts of Tweets, Re-Tweets, Replies, Mentions
and Hash-tags5. Especially for chapter 4, we also assume a background in Computer

5If not, an introduction to Twitter can be found at http://mashable.com/guidebook/twitter/

2

Introduction 1.3 Subject matter

Figure 1.2: Actor relationships

Science. We will be making use of technologies like Machine Learning and Classifiers,
of which familiarity is advised.

This work will be building upon earlier thesis work by Stronkman [56]. However,
between his work and this work, the current state and setup of Twitcident has evolved
remarkably. Stronkman describes the system layout as consisting of three chained
black boxes, respectively Incident Detection, Tracking and Location. As the applica-
tion has been put into commercial use for Twitcident Clients, and as a consequence
focus shifted away from regular public users, this structure has been replaced by a
more selective data collection approach based on individual clients needs. Emergency
broadcast services are no longer the main detection source, as individual clients al-
ready possess this information and often have published it themselves. Rather, they are
more interested in information that they have not obtained yet through default means,
and employ Twitcident as an additional detection channel using twittering people as
sensors. In section 2.1 the current architecture of the current Twitcident 1.0 will be
explained thoroughly.

1.3.1 Terminology

In this thesis we will be making extensive use of three Twitcident specific terms:

Twitcident Instance A Twitcident Instance is a specific preconfigured instance of the
Twitcident application for a client. Sometimes also called a monitor; these terms
are interchangeable. Most Twitcident clients possess a single Twitcident In-
stance.

Twitcident Stream A Twitcident Stream is a set of keywords, usernames or geo-
locations on the basis of which tweets are requested from the Twitter API, and
are used for diverging Data Collection. A Twitcident Instance can have one or

3

1.3 Subject matter Introduction

more Twitcident Streams. Multiple streams indicate a categorization of incom-
ing data, for example, by catchment subarea.

Twitcident Topic A Twitcident Topic is a specific topic a client is interested in, and
are used for converging Data Filtering and Classification. Each incoming tweet
from a Twitcident Stream can be classified as being relevant to a Twitcident
Topic or not. A Twitcident Instance usually has four to ten topics. Note that
theoretically a single tweet is allowed to be classified as belonging to multiple
topics.

1.3.2 Examples

To illustrate the terminology defined above, we consider a few random real-world Twit-
cident Instances.

1.3.2.1 Nationale Spoorwegen

Nationale Spoorwegen (NS) is the primary Dutch railway operator for public transport
by train. Although they have systems to identify whether trains are having trouble,
and actively measure the occupancy rate of their trains, they only measure what they
should measure and thus can miss things.

In table 1.1 the Twitcident Streams are listed that have been configured for their
Twitcident Instance. As we can see this is a geographical partitioning by the Dutch
provinces, with the major metropolitan provinces split into subareas by main tracks.
These streams are collected by railway station keywords as well as geographical GPS
bounding boxes. In table 1.2 the Twitcident Topics are listed.

Groningen
Friesland
. . .
Limburg
Zeeland
Utrecht: Richting West
Utrecht: Richting Oost
Noord Holland: Amsterdam-Den Helder
Noord Holland: Amsterdam-Haarlem
Noord Holland: Amsterdam-Schiphol
Zuid Holland: Rotterdam-Gouda
Zuid Holland: Rotterdam-Den Haag
Zuid Holland: Den Haag-Leiden

Table 1.1: Example Nationale Spoorwegen: Twitcident Streams

4

Introduction 1.3 Subject matter

Category Topic (NL) Topic (EN) Description

Impact

Zitplaatsen Seating Availibility of seats, usually indicates over-
crowding or trains that are too short.

Vervangend vervoer Alternate transport If trains are unavailable due to (track-
)maintenance, NS is responsible for alter-
nate transport.

Aansluiting gemist Missed connections Everything related to missed connections,
potentially indicates too tight scheduling or
usual delays.

Vertraging Delays General delays, an additional sensing
channel next to other means.

Calamiteiten
(Calamities)

Met persoon With person Everything related to collisions with peo-
ple (i.e. jumpers).

Met object With object Everything related to collisions with ob-
jects (i.e. vehicles).

Storing Failures General failures, an additional sensing
channel next to other means.

Table 1.2: Example Nationale Spoorwegen: Twitcident Topics

Amsterdam
Schiphol
Rotterdam
Utrecht
Schiphol
. . .
Leeuwarden
Nijmegen

Table 1.3: Example ProRail (1): Twitcident Streams

Category Topic (NL) Topic (EN) Description

Weer
(Weather)

Regen Rain
Sneeuw Snow
IJzel Frost
Hagel Hail
Mist Mist
Wind Wind
Onweer Thunderstorm

Reizigers
(Travelers)

Gestrand Stranded During heavy weather situations travelers
get stranded more often. ProRail has an in-
terest in this matter due to being responsi-
ble for evacuating them, and this being a
major political issue.

Table 1.4: Example ProRail (1): Twitcident Topics

5

1.3 Subject matter Introduction

1.3.2.2 ProRail (1)

ProRail is a government task organization that maintains and extends the Dutch railway
network.

The first of two Twitcident Instances of ProRail monitors observed weather. Al-
though there are weather forecasts, it remains to be seen whether these predictions are
correct. People are very keen on observing specific weather conditions and this infor-
mation can be invaluable to take preemptive action, for example if rail switches are
frozen due to snow.

In table 1.3 their Twitcident Streams are listed. This is a partiotoning by the major
train stations and adjacent trajectories. These streams are collected by city keywords
as well as geographical GPS bounding boxes. In table 1.4 the Twitcident Topics are
listed.

1.3.2.3 Prorail (2)

The other Twitcident Instance of ProRail is used for Asset Management. People are
able to notice defects and litter around train stations, for which ProRail is responsible.

As this concerns the railway infrastructure that is also relevant to NS, the streams
are roughly the same as those depicted in table 1.1: this is a partitioning by the major
train stations and adjacent trajectories. These streams are collected by city keywords
as well as geographical GPS bounding boxes. In table 1.5 the Twitcident Topics are
listed.

Category Topic (NL) Topic (EN) Description
Overwegen
(Railway
crossings)

Defect Defect
Gevaar Danger
Bellen Ringers For example: the bells that keep on ringing

at crossings
Geluid
(Noise)

Overlast Disturbance Everything related to noise disturbance
caused by trains

Bovenleiding
(Caternaries)

Defect Defect
Vonken Sparks

Overig
(Misc.)

Open hekken Open gates Open gates along tracks or around stations
Verdacht Suspicious For example, people walking along tracks

Stations
(Railway sta-
tions)

Borden Signs
Omroep Broadcast
Voorziening Facilities
Veiligheid Safety

Spoor
(Rail)

Beleving Sentiment Mainly focused on sentiment related to rail
maintenance

Vandalisme
(Vandalism)

Koperdief Copper thief
Rotzooi Garbage
Muntjes Coins

Table 1.5: Example ProRail (2): Twitcident Topics

6

Introduction 1.4 Research objective

Category Topic (NL) Topic (EN)

Sentiment Nieuws News
Sentiment Sentiment

Aardbevingen
(Earthquakes)

Aardbeving Earthquake
Slachtoffers Casualties
Schade woning Property damage
Schade omgeving Environmental damage
Uitval voorzieningen Public provision failures
Brand Fires

Table 1.6: Example Gaswinning Groningen: Twitcident Topics

1.3.2.4 Gaswinning Groningen

In Groningen, one of the Dutch provinces, shale gas is being extracted to the dismay
of many, mainly because it increases the probability earthquakes occur. Therefore, a
monitor has been setup to detect earthquakes, identify the resulting damage, and track
sentiment around earthquakes.

This Twitcident Instance is configured with only one Twitcident Stream: it is com-
posed of city keywords within Groningen as well as a geographical GPS bounding box
for this area. In table 1.6 the Twitcident Topics are listed.

1.4 Research objective

Our goal is to improve the filter in such a way that the majority of information pre-
sented by Twitcident is relevant. In order to achieve this, we must reduce the noise
among presented tweets, and detect whether tweets are relevant in the current situa-
tion. Let us consider an example from a topic Aardbeving (Earthquake) which serves
to detect earthquakes. In table 1.7 some examples from our database containing the
word ‘aardbeving’ are listed. Most of these are definitely irrelevant, and only a few
are relevant. To illustrate the difference, we have explicitly searched for a few relevant
tweets.

Another list of examples for a totally different instance would be the topic Zit-
plaatsen (Seats) in Nationale Spoorwegen, as shown in table 1.8. We narrowed the
examples within this topic down to one of the keywords: vol (full), in conjunction with
the streaming keywords (trains, stations, . . .). All of these items would be presented in
the current state of Twitcident. We can clearly observe that the context of the keyword
vol (full) is very relevant. To take this one step further: a word can also have mul-
tiple meanings. For example, an instance might be searching for the keyword dood
(death) with the intent of locating casualties and disturbances. Now if someone tweets
Ik verveel me dood (I’m bored to death) this item would be presented, while it clearly
is irrelevant.

Furthermore, the configuration of a Twitcident Instance is currently done com-
pletely manual: all input keywords, which can be a lot, are defined by hand by Crowd-

6An explanation of when tweets are irrelevant follows in Chapter 2, but in this (and most) cases,
tweets from news media are irrelevant.

7This one would be relevant to the sentiment topic, but not relevant to the earthquake detection topic.

7

1.4 Research objective Introduction

Tweet text Relevant?
Lichte aardbeving in Noord-Groningen | http://t.co/PtiJgQe2bI
Little earthquake in Groningen North | http://t.co/PtiJgQe2bI

No6

Leek wel even een hele kleine aardbeving ..
That seemed like a very small earthquake ..

Yes

Dus, kans op zware aardbeving in #groningen. Ook een manier om je los te maken van Nederland
So.. risk of severe earthquakes in #groningen. Another way to cut loose from Netherlands

No7

Pfieuw onweer vannacht leek wel een aardbeving elke keer als die donder en bliksem tegelijk kwamen.
Pfieuw thunderstorm tonight seemed like an earthquake every time that thunder and lightning came
together.

No

Wow. Leek net wel een aardbeving te zijn in Limmen. Hele huis trilde en bromde. Buren hoorden t
ook, maar voelden niets.
Wow. There just seemed to be an earthquake in Limmen. Whole house shook and rumbled. Neighbors
heard it too, but felt nothing.

Yes

Ik rammel van de honger
Literally: ‘I’m shaking of hunger’ meaning ‘I’m starving’

No

En daar was er weer een aardbeving in Appingedam. 00.55 uur. Stond even behoorlijk te schudden.
And there was an earthquake in Appingedam. 00:55 pm. Was shaking severely for a moment.

Yes

Binnenkort aardbeving verwacht in groningen wegens extreem gewicht maar we maken het wel weer
gezellig samen #familiediner
Soon an earthquake is expected in Groningen due to extreme weight but we will make it cozy together
#familydinner

No

Table 1.7: Examples of relevant and irrelevant tweets related to ‘Earthquake’-topic in
Gaswinning Groningen instance

Tweet text Relevant?
Overvolle afvalcontainers in Lunetten en Zuilen (pvda.nl) http://t.co/Oq0sNjWATj #Utrecht
Overflowing wastebins in Lunetten and Zuilen (pvda.nl) http://t.co/Oq0sNjWATj #Utrecht

No

Onderweg naar schiphol. Trein vol met Feyenoord supporters..
On my way to Schiphol. Train full of Feyenoord supporters..

No

Die intercity richting RDam CS is altijd vet vol, tot Utrecht. Daar stapt de halve kudde uit.
Intercity from RDam CS is always overly full, up to Utrecht. Then half the herd gets off.

Yes

Liefde voor t personeel etos station den bosch :) Toch nog een zegeltje gehad dus mn spaarkaart vol
#yeah
Love for the staff of etos station den bosch :) Still received a stamp so my savings card got filled #yeah

No

zo ziet intercity van Adam naar Hsum eruit. Het is iedere dag te vol, maar dit...?
http://t.co/6NAv8MZZsx
This is what the intercity Adam to Hsum looks like. Every day it is too full, but this...?
http://t.co/6NAv8MZZsx

Yes

Table 1.8: Examples of relevant and irrelevant tweets related to ‘Seats’ in instance
Nationale Spoorwegen

8

Introduction 1.5 Research questions & Outline

Sense employees, consuming a lot of time and inspiration. We will further discuss this
issue in section 2.1, but our goal is also to optimize and streamline this setup process.

1.5 Research questions & Outline

Now that we have illustrated why we are actually in need of a better filtering mecha-
nism, we can state our main research question:

How can we improve the results of real-time social media filtering with
respect to Twitcident?

In order to do this, we first have to get a good grasp of the problem, explore
where the noise comes from and what constraints are imposed by our specific problem.
Therefore, in Chapter 2 we will specify the problem in detail and answer the following
questions:

What characterizes Twitcident and what implications does that have?
What properties or aspects of tweets (could) cause noise?
What are the specific problem properties and constraints imposed by the
needs that Twitcident tends to fulfill?

If we have these questions answered, we will have the problem defined and we
might conclude that the problem is non-trivial. We should perform rigorous research
and check for related work and solutions. We will also explore and state what method-
ologies are suitable to solve our problem. In Chapter 3 we will answer the following
questions:

What research methodology are we going to apply to solve our problem?
What related work has been performed? How does this work relate to our
problem? What are the relevant contributions that could be applicable to
our problem?
Which scientific methodologies and technologies are suitable to (partially)
solve our problem?

When we have done our research, we can design and compose our artifact. How-
ever, we will not be able to apply all suitable technologies and need to make some
choices. Furthermore, we may need to scope our problem and introduce some con-
straints or assumptions under which we will design our artifact. Therefore, in Chapter
4 we will answer the following questions:

What choices have been made towards a solution? What constraints or
which assumptions have we imposed while designing our artifact?
What artifact have we designed to solve our problem?
How does each of the components of this artifact work and why have we
designed it like that?

After our artifact is designed, we need to evaluate it. We first need to obtain and
collect datasets as ground truth. As our artifact undoubtedly will have variables to be
filled in, we need to experiment with it to find a good configuration. When we have

9

1.5 Research questions & Outline Introduction

found a suitable configuration, we need to compare the performance of our artifact to
the existing Twitcident application in order to validate if it indeed improves the results,
which then answers our main research question. Finally, we want to know what we
can learn from the output and performance of our artifact. Therefore, in Chapter 5 we
will answer the following questions:

How can we obtain good representative ground truth datasets?
What is a good performing configuration of our artifact? How well does
it perform?
Does our artifact actually improve the results with respect to the existing
Twitcident application?
What can we learn from the artifacts performance and output?

Note that the combination of Chapter 4 and a positive answer to third question also
answers our main research question.

We will conclude with Chapter 6. We will summarize our thesis work, and reflect
on each chapter with conclusions. We will continue with a thorough discussion of
future work to follow up this thesis work. Finally, we will list and discuss our contri-
butions: both scientific as well as societal. This final chapter will answer the following
questions:

What work have we performed and what can we conclude?
What future research and work could be done to continue or improve our
artifact?
What contributions did we make with this thesis work?

Although our artifact is designed to in the context of Twitcident, its application is
not limited to it but can be generalized to any real-time social media filtering system
under the same constraints extracted in Chapter 2.

Figure 1.3 depicts a graphical representation of this thesis outline and the research
questions with their corresponding chapters.

10

Introduction 1.5 Research questions & Outline

Figure 1.3: Thesis outline

11

1.6 Appendices Introduction

1.6 Appendices

This thesis also contains a few appendices, of which some are contributions on their
own. We we will briefly mention each appendix and its context. They are chronologi-
cally ordered by their first real reference within this thesis.

Appendix A The features are first introduced in Chapter 4, but are not all elaborated
upon. This appendix contains the full feature list, including more in-depth dis-
cussions of each feature. This can be regarded a separate contribution, and could
be used as a basis for further research on extending, optimizing and fine-tuning
the set of features.

Appendix B This appendix contains a variable length approximate string matching
algorithm we developed during our thesis work. Although this was not a re-
quirement of this thesis work, it is a separate additional contribution and con-
tains relevant implementation details that should not be ignored. It is referenced
as part of one of the features.

Appendix C This appendix contains reproducibility information and output listings
that were too large or detailed to put within the thesis content itself, in order to
be less distracting. It is referenced a few times within Chapter 4.

Appendix D This appendix contains an analysis of potential Dutch data sources we
could interact with as introduced in Section 4.4.2. They serve as more compre-
hensive listings for completeness.

Appendix E This appendix contains a few complete word expansions, as introduced
and explained in Section 4.4.4. They serve as more comprehensive listings for
completeness.

Appendix F This appendix elaborates on our method to obtain training and test data.
It is an essential part of our work, but is too comprehensive to present within the
main thesis flow and is therefore discussed separately.

Appendix G This appendix attaches an analysis of the Dutch “Prinsjesdag” tweets,
with some conclusions, that spinned of during this thesis work.

Appendix H This appendix follows up appendix G and present ideas about event de-
tection that arose during the Prinsjesdag analysis. Event detection is another
topic very relevant to Twitcident, and relates to feature 55 (Has popular term).
This can be regarded as a separate additional contribution.

12

Chapter 2

Problem analysis

In Chapter 1 we introduced the problem, the need for a solution and mildly explored
what the objective of this thesis is, without going into too much depth. To continue,
we first have to get a good grasp of the problem, explore where the noise comes from
and what constraints are imposed by our specific problem.

Because we will be aiming our research towards the needs defined by Twitcident
[56], the first question we need to answer to define our problem is:

What characterizes Twitcident and what implications does that have?

We will look into this question in Section 2.1, and discuss the present state of
Twitcident.

Our main goal is to reduce noise within tweets, so we will ask ourselves

What properties or aspects of tweets (could) cause noise?

We will perform an analysis and approach this using an observation-style approach
in Sections 2.2–2.4, making note of what we observe, so we can use them as a foun-
dation for our designed artifact in Chapter 4. These observations will later be referred
to. We will tend to consider something a (relevant) observation if it either seems to
be a property that may influence the relevancy of a tweet, or if it affects the design
of our artifact, for example, if it imposes a potential constraint on our solution. All
observations referenced are listed in Section 2.6 at the end of this Chapter.

Finally, based on what we have observed in previous sections and grasped the prob-
lem on a tweet level basis, we can determine broader additional aspects of the problem
that make it particularly different and which define the differentiating uniqueness of
our problem. Therefore, in Section 2.5 we will answer the following question:

What are the specific problem properties and constraints imposed by the
needs that Twitcident tends to fulfill?

13

Problem analysis

1 Twitcident Streams are represented by rows. The number indicates the amount
of (filtered) items.

2 Twitcident Topics are represented by columns. The number indicates the
amount of (filtered) items.

3 If we move the mouse over a stream, the first few search keywords for the
corresponding stream are shown.

4 If we move the mouse over a topic, the first few search keywords for the cor-
responding topic are shown. (For illustration purposes, this image has been
altered so that the mouse is on top of both a stream and a topic)

5 A cell value indicates the amount of tweets classified as relevant to the corre-
sponding topic, originating from the associated stream. In this example, eleven
tweets from the Twitcident Stream Kerkrade have been classified as relevant
to the Twitcident Topic Openbarde Orde.

6 If a cell value passes a certain setting specified fixed threshold, its color
changes to orange. If the value surpasses a secondary threshold, its color
changes to red (not applicable to this example screen).

7 Filters can be set to filter which items are shown. The item Tijd (Time) is
also considered a filter. Just below, in blue boxes, the current active filters
are shown. Other filters include, but not limited to: Unprocessed items only,
Marked items only, . . . , Without news items, Without retweets, . . .

8 These items can be used to navigate to other views and representations.

Figure 2.1: Twitcident Application: Dashboard

14

Problem analysis 2.1 Twitcident

2.1 Twitcident

In this section we will present a demonstration of the present state of Twitcident, to
feature a more concrete context to which we will develop our solution. We will be
walking through the Twitcident User Interface, discuss some features and also make
our first observations here. The Twitcident project is currently split up into two appli-
cations:

• Web-App. This web-application serves as the front-end application for the end-
user (Twitcident Operator), and is used to present the data in different ways.

• Pipe-App. This web-application serves as the back-end application for mainte-
nance, and also performs the retrieval and classification of data.

2.1.1 Web-App

For this demonstration we have selected Nationale Politie Limburg (National Police)
as our Twitcident Instance for practical reasons. When the user opens the Web-App
through a secure portal and provides his login credentials, the main screen is pre-
sented (Figure 2.1) which is called the dashboard. We can see that the interface is
primary composed of a matrix layout, where rows represent the Twitcident Streams,
and columns represent the Twitcident Topics.

If one clicks the Map tab, a heat map is shown where tweets are originating from
(Figure 2.2). This map automatically re-calibrates when the user zooms in, as to set the
desired level of granularity for locating hotspots. Note that only a fraction of tweets
have an attached geo-location, and only those tweets can be shown.

Figure 2.2: Twitcident Application: Map

When the user clicks on a stream name, topic name or matrix cell on the dashboard,
Twitcident navigates to the Tweet View (Figure 2.3). Here, we will also draw our first

15

2.1 Twitcident Problem analysis

1 All filtered tweets are shown to the left. Tweets can be selected and various
actions can be performed upon them.

2 All media contained within the filtered tweets is displayed on the Media tab.
3 Tweets can be marked. Marked tweets will receive a green background-color.

Interpretation of a tweet being marked is left open: it can indicate a relevant
item, or that it needs follow-up. This is left to the Twitcident Operator(s).

4 Tweets can be archived. Archived tweets are not shown by default.
5 Tweets can be flagged as noise. Noisy tweets are not shown by default.
6 Within the tweet text, the keywords that caused the tweet to be matched to

this topic are highlighted: red for regular keywords, yellow if the keyword was
encountered as a hashtag.

Figure 2.3: Twitcident Application: Tweets View

observations, that will be relevant to our solution presented in Chapter 4. Note that the
Observations referenced are located in Section 2.6. In the Twitcident user interface,
a feedback mechanism is present: Tweets can be flagged as marked (relevant?) or
noise (Observation 1). We also observe that Twitcident Topic classification is currently
solely done by matching on predefined static keywords (Observation 2).

If the Twitcident Operator navigates to the Instellingen (Settings) pane, he can edit
keywords for each Twitcident Topic (Figure 2.4). We note that two wildcards ‘?’ and
‘*’ are currently supported. Furthermore, if a "‘keyword"’ consists of multiple words,
all words have to be present to be matched where the order in which they occur is not
taken into consideration (Observation 3).

Additionally, for each Twitcident Topic ignore terms can be specified (Figure 2.5).
We note that these are only used in conjunction with regular keywords (Observation 4).
Therefore, if a tweet would be classified according to a keyword, but a corresponding
ignore term is present, it won’t be classified as such.

16

Problem analysis 2.1 Twitcident

Figure 2.4: Twitcident Application: Keywords

Figure 2.5: Twitcident Application: Ignore terms

Figure 2.6: Twitcident Application: Ignore users

Twitcident Operators can ignore users by their Twitter usernames (Figure 2.6).
Tweets can be irrelevant based on the originating user (Observation 5), for example, if
the originating account is maintained by the Twitcident Client itself, or if the originat-
ing account is responsible for irrelevant data (noise). This observation is supported by
empirical evidence from Twitcident: the feature of ignoring certain users is used often
among most Twitcident Instances.

2.1.2 Pipe-App

The second part of the system is called the Pipe-App: it is the back-end application for
maintenance and instance configuration, and collects and processes incoming tweets.

17

2.2 An introductory case analysis: Project X, Haren Problem analysis

Figure 2.7: Twitcident Pipeline

Figure 2.7 illustrates its ‘pipeline’ flow. Incoming tweets are captured by the Twitci-
dent Stream keywords and an optional geographical bounding boxes (Observation 7).
In step 2, each tweet is matched against the topic keywords and if a match is found,
the topic is attached to the tweet. Finally, in step 3 topics may be detached based on
ignore terms or ignore users, and data is presented (through a middleware database).

2.2 An introductory case analysis: Project X, Haren

In the next few sections, we perform case studies and will make notice of relevant ob-
servations related to the data itself. For this we will use real world running Twitcident
Instances, and prefer those that are recurring throughout the thesis. We will analyze
some instances individually, but will also analyze generic properties empirically over
a large corpus. Our main aim is to observe what indicates relevant content: what prop-
erties of a tweet potentially distinguishes relevant content from irrelevant content and
vice versa? How can we define relevant? A secondary goal is to identify what exactly
makes the problem difficult, and why our problem could differentiate from existing
solutions.

For our initial analysis, we used the case “Project X, Haren”. Project X Haren was
an event that started out as a public invitation to a birthday party by a girl on Facebook,
but ended up as a gathering of thousands of youths causing riots on 21 September 2012
in the town of Haren, Groningen.

2.2.1 Background

On 6 September 2012, a 15 year old girl from Haren sent 78 friends a public invitation
to her 16th birthday via the social network site Facebook. She deliberately chose
the option ’public’, so that her friends could bring other friends. This way, the girl
hoped to obtain a head count. One of her friends’ friends misused the invitation and
invited 500 people himself. Through the notorious snowball effect thousands of people

18

Problem analysis 2.2 An introductory case analysis: Project X, Haren

were added to that number in a matter of days. In just two days, 16.000 people were
invited. The girl then deleted the event after consulting her parents. However, others
took command and quickly Twitter and Facebook were filled with terms like Project
X Merthe (the name of the girl), Project X Stationsweg (the street where the girl lived)
and Project X Haren.

On 18 September, the municipality Haren and the local police force agreed to act
strongly if the party would escalate. By then, the rumours had spread to the national
media. 55.000 people had been invited, 6.000 of them accepted. Local entrepreneurs
took advantage of the situation and organised afterparties in Groningen. Between 19
and 21 September, the expected attendance grew from 8.000 to 30.000. On the 21st
alone, around 400.000 Tweets were sent regarding Project X Haren.1

Figure 2.8: Project X

2.2.2 The case

This makes up for an interesting case for us to analyze, as it is a typical event that local
authorities would like to monitor using a Social Media analysis tool like Twitcident.
TNO, a research institute and partner of CrowdSense/Twitcident, analyzed this event
afterwards, primarily by using a modified Twitcident application. They analyzed and
annotated these tweets, manually classifying them as either:

Relevant Related to Project X Haren, and containing potentially valuable informa-
tion.

Irrelevant Related to Project X Haren, but not containing potentially valueable infor-
mation, for example sarcasm or jokes about it.

Noise Not related to Project X, for example when ‘Projext X’ or ‘Haren’ are used in
a different unrelated context.

Furthermore, they classified the annotating user as one of the following:

Eye witness (hard core), Eye witness (followers), Eye witness (potential),
Eye witness, Present (inflammatory), Present, Not present (inflammatory),
Not present, News media, Entertainment media, Authorities, Crisis pro-
fessional, Entrepreneur, Artist, Doubtful

1Source: http://en.wikipedia.org/wiki/Project_X_Haren

19

2.2 An introductory case analysis: Project X, Haren Problem analysis

This case differs from our other case studies, as the data was collected after the
event, instead of real-time. However, its setup does not differ significantly from other
instances. Furthermore, this is our only annotated case where part of the data is manu-
ally analyzed (by TNO). Therefore, we consider this case as our preliminary case and
entrypoint for our own further analysis.

2.2.3 Dataset properties

The provided dataset contains 740421 collected tweets from an interval between 17-
09-2012 11:37AM and 26-09-2012 06:23AM, acquired by searching for keywords like
‘projectx’, ‘projectxharen’, ‘haren’, . . . We have summarized this dataset by Table 2.1
and Figure 2.9, as well as which topics are configured with this instance.

Up front, we should notice this dataset that was provided for this research contains
two biases. First of all, due to the database structure a tweet can only be assigned one
topic. This means that if a tweet could be positively classified among multiple Twit-
cident Topics, only the latest (by program flow) classification topic is stored. Further-
more, the configuration was setup afterwards following the actual event, and therefore
the monitor was setup with prior knowledge of what one would be looking for.

On the other hand, we observe no pattern in the distribution of which tweets are
annotated: some topics have an annotation ratio as high as 10-11% of all topic clas-
sified tweets, while others have a ratio as low as 0.66%. Even 45 unclassified tweets
have been annotated. Therefore, we assume annotation has been done in a rather un-
structured way. Furthermore, we were given information that the annotations were not
done by a single person, but by a group of people, with potentially different views on
the data. Overall 0.76% of our dataset has been annotated.

However, yet with all this prior knowledge and biased configuration, only just 19%
of the tweets is judged relevant! This illustrates both the need for a more effective so-
lution as well as that we are dealing with low signal detection, as we will subsequently
notice among our next datasets (Observation 9). We also notice that the proportion of
irrelevant tweets with respect to the amount of noise is pretty high (Observation 10).

Although this dataset seems to be unreliable due to containing a few biases, it can
very well serve as an initial entry-point to discover specific properties of our problem,
primarily on the tweet content level itself. Therefore, we will proceed by analyzing
and discussing a selection of topics within the next few subsections.

2.2.4 Topic analysis: Bekogeling (Bombardment)

We will first take a look at the topic Bekogeling (Bombardment), as this topic discrim-
inates itself with the highest noise ratio among all topics, and the lowest relevant ratio.
To analyze a topic, we review the keywords associated with the topic, and the amount
of relevant and irrelevant matches. Table 2.2 lists all keywords, ordered by the amount
of relevant matches.

The intend of this topic is to identify if and where objects are thrown as bombard-
ment, for example towards police or other crowds. To resolve this, we observe that
the list of keywords is mainly composed of throwable objects like hekken (fences),
fietsen (bikes) and blikken (cans). These are actually hyponyms of ‘a throwable’ or
‘bombardables’ (Observation 11). However, these terms can be used in a lot of other

20

Problem analysis 2.2 An introductory case analysis: Project X, Haren

Topic #Tweets #Annotated Noise Irrelevant Relevant
Bekogeling
(Bombardment)

6820 (0.92%) 383 (5.62%) 249 (65%) 118 (31%) 16 (4%)

Brand
(Fire)

4044 (0.55%) 111 (2.74%) 23 (21%) 57 (51%) 31 (28%)

Communicatie
(Communication)

1534 (0.21%) 168 (10.95%) 6 (4%) 138 (82%) 24 (14%)

Drugs
(Drugs)

2303 (0.31%) 241 (10.46%) 13 (5%) 140 (58%) 88 (37%)

Drukte
(Overcrowding)

11080 (1.50%) 827 (7.46%) 10 (1%) 647 (78%) 170 (21%)

Geweld
(Violence)

96447 (13.00%) 1527 (1.58%) 201 (13%) 1134 (74%) 192 (13%)

Hulpdiensten
(Public Services)

2294 (0.31%) 33 (1.44%) 1 (3%) 25 (76%) 7 (21%)

Opvallend
(Striking)

1833 (0.25%) 55 (3.00%) 1 (2%) 46 (84%) 8 (15%)

Slachtoffers
(Casualties)

5380 (0.73%) 108 (2.01%) 6 (6%) 85 (79%) 17 (16%)

Vernieling
(Havoc)

16584 (2.24%) 110 (0.66%) 33 (30%) 62 (56%) 15 (14%)

Vervoer
(Transport)

23500 (3.17%) 1892 (8.05%) 32 (2%) 1352 (71%) 508 (27%)

Vuurwerk
(Fireworks)

2219 (0.30%) 164 (7.39%) 20 (12%) 115 (70%) 29 (18%)

Unclassified 566383 (76.49%) 45 (0.01%) 2 (5%) 32 (71%) 11 (24%)
Total 740421 5664 (0.76%) 597 (11%) 3951 (70%) 1116 (19%)

Table 2.1: Project X: General dataset properties

Figure 2.9: Project X: General dataset properties

21

2.2 An introductory case analysis: Project X, Haren Problem analysis

Keyword Count Noise Relevant Irrelevant
hekken 76 18 5 53
dranghek 42 11 4 27
dranghekken 40 11 4 25
fiets 164 144 4 16
blik 14 6 2 6
blikken 3 1 2 0
fles 30 9 2 19
flessen 20 3 2 15
verkeersbord 23 11 2 10
verkeersborden 18 8 2 8
fietsen 48 43 1 4
steen 22 17 1 4
bierblik 1 0 0 1
bierblikje 1 0 0 1
bierblikjes 1 0 0 1
blikje 5 1 0 4
blikjes 3 0 0 3
glas 6 4 0 2
glazen 4 0 1
stenen 10 1 0 9
stoeptegel 1 1 0 0
No matches for: baksteen, bakstenen, bierblikken, paaltjes, staaf, staven,
stoelen, stoeptegels, terrasmeubilair, trottoirband, trottoirbanden, trottoirtegel,
trottoirtegels, verkeersmeubilair

Table 2.2: Topic keywords for Project X: Bekogeling (Bombardment)

different contexts rather than only in the context of bombardment (Observation 12):
most occurences with ‘bike’ won’t be in the context of bombardment, as people might
also be traveling to Haren ‘by bike’. However, extracting the context of a term can
be difficult as illustrated by the most relevant examples, listed in Table 2.3: whereas
the first case the context could be identified through the word gooien (throwing), it is
much harder with the second example.

When we look at these tweets, we note that images can often provide additional
relevant information like the offending person (Observation 13). We also note that
another object is that is being thrown is mentioned: bloempotten (flowerpots). How-
ever, this keyword is not present in the topic keywords. We note that it is hard to be
comprehensive and manually think of all cases in advance (Observation 14).

Furthermore, we observe that some terms do not have matches, despite being po-
tentially relevant. For example bakstenen (bricks) are often used in bombardments
against police, but due to not occurring within our dataset, the relevancy of the term
cannot be measured (Observation 15).

2.2.5 Topic analysis: Brand (Fires)

The second topic we will take a look at is Brand (Fires), as this topic has one of the
highest relevance ratios, but still has a large proportion of noisy and irrelevant tweets.
Furthermore, this is a typical topic that is used commonly among various public service

22

Problem analysis 2.2 An introductory case analysis: Project X, Haren

Zit nu in #haren gaat helemaal los hier echt te gek mensen gooien met fietsen
bloempotten alles #gezellige zweer http://t.co/x9g6nSrS
I am in #haren now totally going crazy here really crazy people are throwing
bikes flowerpots everything #cozy atmosphere http://t.co/x9g6nSrS
Daar gaat weer een fiets #projectX #Haren #pa http://t.co/DUvhJsIN
There goes another bike #projectX #Haren #pa http://t.co/DUvhJsIN

Table 2.3: Examples of two relevant tweets relating to Bombardment with bikes

related instances, and was the leading topic in preceding work [56]. Table 2.4 and
Figure 2.10 lists all keywords, ordered by the amount of relevant matches.

First of all, we notice the main topic keyword is also the most frequent keyword,
containing most relevant but also most irrelevant tweets. However, we also notice a
few synonyms to it, some of which are slang, like fik, fikkie and hens (Observations
16 and 17), and the main topic keyword and its synonyms capture the biggest shares
within a topic.

We also note that most keywords are observatory keywords that could identify
fires: rook (smoke), brandalarm (fire alarm), gas, . . . (Observation 18).

We see that the Twitcident topic keywords also include common misspellings: both
wordt niet goed and word niet goed are defined, both gaslucht and gaslugt, both mis-
selijk and misselyk, etc. (Observation 19)

Furthermore, for some keywords, we observe that both the singular and plural
form are included (Observation 20). For English and some Dutch words this is easy
(brandstapel and brandstapels, but Dutch also contains a lot of irregular plural forms2,
for example: schip vs schepen, gelid vs gelederen, aanbod vs aanbiedingen, . . . In
general, Dutch is a more complex language than English (Observation 21).

This also reminds us of the tense in which a tweet is written: in present or past
tense. Most clients are only interested in current observations to act upon, and there-
fore past tense would be irrelevant. However, past tense may be relevant to other
instances, for example police tracking information around a case (Observation 22).

2http://nl.wikipedia.org/wiki/Meervoud_(Nederlands)#Onregelmatige_
meervoudsvorming

23

2.2 An introductory case analysis: Project X, Haren Problem analysis

Keyword Count Noise Relevant Irrelevant
brand 38 8 11 19
fik 22 0 9 13
vuur 10 1 4 5
autobrand 4 0 2 2
fikkie 3 0 2 1
vuurtje 5 0 2 3
autobranden 1 0 1 0
rook 6 2 1 3
brandalarm 4 4 0 0
brandweer 3 0 0 3
brievenbus 2 1 0 1
gas 10 4 0 6
hens 1 1 0 0
rookkolom 1 0 0 1
verbrand 3 2 0 1
verbranden 1 1 0 0
word niet goed 1 0 0 1
No matches for: brandstapel, brandstapels, brandweerauto, brandweerwagen,
brandwond, brandwonden, brievenbussen, dampoe, dokken, explosie, frisse
lucht, gaslucht, gaslugt, geen zuurstof, in de hens, krijg geen lucht, misselijk,
misselyk, neergaan, onwel geworden, postbussen, rookontwikkeling, rook-
wolk, rookwolken, ruik gas, stank, stinkt hier, stookcontainer, uitgebrand, ver-
branding, vlam, vlammen, vreemde geur, vreugdevuren, vreugdevuur, vuurtje
stoken, vuurton, vuurzee, vuutje, wolk, wordt niet goed

Table 2.4: Topic keywords for Project X: Brand (Fires)

Figure 2.10: Topic keywords for Project X: Brand (Fires)

24

Problem analysis 2.2 An introductory case analysis: Project X, Haren

1 Net Haren voorbij gereden. Nog geen rook te zien xD
Just drove past Haren. No smoke to be seen yet xD

2 Het loopt volledig uit de hand #autobrand #projectxharen ME gaat zo ingrijpen
#wegwezen
It’s totally getting out of hand #carfire #projectxharen Riot Police will act soon
#getoutofhere

3 Staat Haren al in brand? Of is het er gezellig?
Is Haren already on fire? Or is it friendly?

4 Lekker hang ik met me haren in een kaars nu zijn ze dus verbrand :””””’(
Great my hair got into candlefire en now they are burned :””””’(

5 ze hebben gewoon brand gemaakt op t gras hahaha #ProjectXHaren
they just made fire on a grassplot hahaha #ProjectXHaren

6 Haren gestyld en 10.000 x verbrand..
Hair styled and 10000 times burned..

7 Ok’e, eerste dingen gaan nu is brand hier bij #projectxharen
OK, first things happening now there is fire here at #projectxharen

8 Eerste brand gesticht. #projectxharen Dat wordt nog wat. http://t.co/4VpSjppz
First arson committed. #projectxharen That’s gonna be something.
http://t.co/4VpSjppz

9 Mijn haren stijlen =vingers verbranden </3
Styling my hairs =burning my fingers </3

10 Na beroving van de supermarkt ontstaat er nu ook brand in haren:
http://t.co/IjQk8XMD
After a supermarket robbery some fires are arising in haren:
http://t.co/IjQk8XMD

Table 2.5: Examples of interesting tweets matched by the keyword ’brand’ (fire)

Figure 2.11: A joke about ‘Haren’ (also: ‘Hair’) on ‘Fire’

Table 2.5 lists some interesting tweets matched by the keyword ‘brand’. Tweets 1
and 3 illustrate tweets containing a joke or question, but are irrelevant as they contain
no useful information. Tweets 4, 6 and 9 are irrelevant as the keyword ‘haren’ also has
another meaning: ‘hair’ (Observation 23). Tweets 5, 7 and 8 are relevant, while Tweet
10 seems to be relevant at first. However, taking a closer look, the image linked is
displayed in Figure 2.11: this tweet was obviously a joke. We also observe that some
tweets contain emoticons, which may indicate a joke (Observations 24, 25).

25

2.3 Observing a real world instance: Nationale Politie Limburg Problem analysis

2.3 Observing a real world instance: Nationale Politie
Limburg

In this section we will discuss and analyze a real world running Twitcident instance,
and prefer an instance that is recurring throughout the thesis: National Police Limburg.

National Police of the district Limburg is a typical public safety instance, interested
in what is currently happening in their district so they can act upon it if required. Figure
2.12 and Table 2.6 display the monitor setup and keyword configuration.

Figure 2.12: Twitcident Instance: National Police Limburg

Topic Keywords
Inbraak
(Burglary)

inbraak, inbraken, inbreker, inbrekers, ingebroken, breekt in, breek in, breken in, inbreken,
woninginbraak, huisbraak, inbraakgolf, rijden weg auto, rijden weg scooter, weggereden
auto, weggereden scooter, rijdt weg auto, rijdt weg scooter, reed weg auto, . . .

Overvallen
(Robbery)

beroof??, beroving, overval, overvallen, roofoverval, straatoverval, roofovervaller?, straa-
tovervaller?, overvaller?, plundering??, geplunder?, plunder?, roverij, tasjesdief, tasjesdieven

Ram & Plofkraak
(Ram- & Explo-
sive raids)

plof? pinautomaat, plof? ATM, plof? geldautomaat, plof? pin, plof? ing, plof? abn,
plof? rabobank, geploft? pinautomaat, geploft? ATM, geploft? geldautomaat, geploft?
pin, geploft? ing, geploft? abn, geploft? rabobank, ontplof??? pinautomaat, ontplof??? . . .

Geweld
(Violence)

bedreig?, elkaar geslagen, bedreiging??, bek verbouw??, ga je nakken, ga je timmeren, geef?
Klap???, hoofd afhakken, hoofd verbouwen, ik boek je, ik steek je, kom? Vechten, koud-
maken, doodmaken, krijg? Tikken, krijg?? Wat verdien??, maak? ??m kapot, . . .

Openbare orde
(Public order)

wanorde, illegaal feest, illegale afterparty, actievoerder?, demonstratie, demonstrant??,
demonstreren, gedemonstreer?, betoging??, manifestatie?, mileuactie, protest, protestactie,
spandoek, spandoeken, voert actie?, voeren actie, actievoerder?, actie gevoerd, . . .

Vuurwapens
(Firearms)

*buks, *geweer, geweren, vuurwapen, ak47, blaffoe?, blaffer, pipa, pistool, pistolen, wapen?,
revolver, schoten, geschoten, neergeschoten, doodgeschoten, schieten, vuurgevecht, schiet-
gevecht, *wapenhandel, *wapenhandelaar, *wapenhandelaren, . . .

Brand
(Fire)

brandstichting??, brand, brandje, branden, fikkie, rookontwikkeling, brandalarm, explosie*,
fik, fikkie?, pyromaan, piromaan, pyro, piro, ontploffing, rookmelder, uitgebran?, veen-
brand??, bosbrand??, verbran??, rookwolk, vlam*, vuutje, vuurtje, gaslek, gaslekkage, . . .

Table 2.6: Twitcident Instance: National Police Limburg

If we look at some tweets that have been classified as burglary (Table 2.7), we
observe that Tweet 1 is matched based on the keyword combination ‘breek in’ but

26

Problem analysis 2.3 Observing a real world instance: Nationale Politie Limburg

these words are not correlated and therefore not relevant. Some word combinations are
related as belonging to the same verb in which the order may be relevant (Observation
26). Furthermore, Tweet 2 and 3 are tweets from news media which are not relevant to
this instance as they do not provide new real-time information (Observation 27).

Table 2.8 contains some interesting examples of irrelevant tweets related to the
topic ‘schieten’ (‘Shooting’). In Tweet 1, we observe that compound forms of terms
can have a significantly different meaning, and therefore introduce noise (Observation
29). Tweet 2 is obviously related to soccer, and is another example in which our term
occurs in a different context than the intended context (Observation 12). Tweets 3–6
each contain our primary term within an saying or expression, which reminds us that
sayings, expressions and pronouns are likely to yield noise (Observation 30).

Sometimes, a term can also be used as an intensification of another term, yielding
the intensifying term to cause noise (Observation 31). Consider for example the search
term ‘dood’ (‘death’) and its usages as an intensifier: ‘dood lachen’, ‘dood vervelen’,
‘doodsbang’, ‘doodeng’, ‘doodzonde’, ‘dood schrikken’, . . .

Although we have made observations related to a specific Twitcident Instance in
this section, we can state that these observations are not instance-dependent, and also
present themselves among other instances like Nationale Spoorwegen and Gaswinning
Groningen. We chose not to elaborate on those instances, since there are few to none
new observations to be made with respect to the presented instance. However, there
may be some very distinctive aspects to an instance with respect to defining relevancy.
For example, most instances are not interested in tweets from news media, while others
actually primarily focus on Tweets by news media.

1 “@blvckyeezus_: @_Shannelle K was toen kk dun nu kan ik niet eens in een
boom klimmen ??” - nu breek ik sws me tand :s

2 14 jarige inbreker aangehouden http://t.co/XXbOrc958v #limburg #provincie
#maastricht

3 Drastische stijging auto-inbraken in Roermond http://t.co/8tRlngCagI

Table 2.7: Examples of noteworthy tweets classified as ‘Burglary’

1 Gelukkig is de Sint al aangekomen in Groningen....hij mag wel opschieten want
om 14.00 uur verwachten wij hem in Achterveld

2 Kostic laat na om Groningen op voorsprong te schieten. Hij raakt vanuit een
moeilijke hoek de buitenkant van de paal. #grozwo

3 Niets op Twitter, niets op tv, niets op Facebook of whatsapp, geen geld en niets
te roken. Wie schiet mij neer?

4 Schiet mij maar lek
5 Jongens file schiet me neer
6 Kromowidjojo laat sportgala schieten voor zwemtweestrijd

http t.comUD6s5To6k #grunnen #info #groningen

Table 2.8: Examples of noteworthy tweets classified as ‘Shooting’

27

2.4 General observations Problem analysis

2.4 General observations

We compiled an aggregated database of some Twitcident Instances to create one large
common dataset. This aggregated dataset include 6.951.693 tweets and 3.003.954
unique corresponding users, from an interval August 1st, 2013 to June 30th, 2014.
From this dataset we can deduct several instance-independent statistics based on some
additional fields Twitter provides.

If we take a look at the geo-availability, we observe that only 3.55% has attached
their geo-location (Observation 32), while 4.23% of the Dutch language tagged tweets
has an attached geo-location. We also observe that 10.3% of the tweets is a reply,
according to Twitter (Observation 33).

Furthermore, 40.2% of the tweets has the ‘lang’ field of the tweet set to ‘nl’ (which
is heuristically determined by Twitter), while the actual percentage of Dutch tweets is
significantly higher (Observation 34). However, language detection is relevant, since
a keyword can occur in multiple languages with different meanings. Consider for
example the keyword ‘brand’, which means ‘fire’, but can be used in the context of ‘a
popular brand’, ‘brand new’ or ‘brand-manager’ in English.

2.5 Challenges and difficulties

In the previous sections we analyzed the problem on a tweet level basis, and with that
answered the question "‘What properties or aspects of tweets (could) cause noise?"’.
The final question that we would answer in this Chapter was "‘What are the specific
problem properties and constraints imposed by the needs that Twitcident tends to ful-
fill?"’.

In this section, we will list some additional aspects of the problem that make it
particularly different and which define the differentiating uniqueness of our problem.
These are all derived from the needs that Twitcident tends to fulfill and its target do-
main (Twitter), and were encountered during our search for a solution.

Real-time The application operates real-time, and therefore data needs to be classi-
fied real-time, tweet by tweet. We can hardly calculate over datasets or a corpus
(groups of tweets), can hardly search for content (content just streams in) and
need to judge each tweets relevancy individually. This means it will be hard
to make use of Information Retrieval techniques. Also, if we want to involve
historical data or other processed information, we have to maintain a state. Fur-
thermore, processing speed is important, as our artifact should be able to process
faster than the input streams in. This also makes it harder to invest time on the
setup-phase of a system, like training a potential machine learning system.

Limited setup time Often, especially for events, a Twitcident Instance only has lim-
ited setup time and in some cases is required to be operational within just hours,
limiting the time available for configuration or potential machine learning.

Difficult domain We serve a specific, difficult domain with a difficult goal. Currently,
even for Twitcident Operators themselves it is hard to manually judge whether
a tweet is relevant or not, and they are considered the domain experts/oracles.

28

Problem analysis 2.5 Challenges and difficulties

Even more difficult is the determination of what the Twitcident Client actually
wants: it is hard to know a priori what we want or need to present. We are look-
ing for events and tweets that may be relevant to them, but we do not specifically
know what to search for in advance; which relates to the real-time aspect. This
makes it also harder to pre-train a machine learning system as we do not possess
training corpora.

Instance variety Each Twitcident Client has its own specific interests and needs for
their Twitcident Instance, and generally monitor a specific domain with no or
little correlation to other Twitcident Instances. For example, news articles may
be considered noise to one instance while it is the main source of information
for another. Or sentiment analysis, which may be irrelevant to one while it has a
special Twitcident Topic in another. Furthermore, each Twitcident Instance has
its own set of Twitcident Topics, making it harder to establish training corpora.

Low signal detection Only an extremely small fraction of the tweets is relevant (Ob-
servation 9), and they can hardly be found if one were to be looking for them:
this actually pretty much is the problem itself. This makes it very hard to collect
training data for machine learning systems, and also due to the low relevant/ir-
relevant ratio. Furthermore, recall is valued much higher than precision since
we do want to miss a potential relevant tweet.

Geo availability Only a limited amount of tweets contain a geo-location (Observation
32) which make it unreliable to merely collect tweets based on location, since we
do not want to miss potential relevant tweets without a geo location. Therefore,
we need to rely on other ways to collect our data stream.

Informal content Social Media contain informal content and do not apply punctua-
tion or other formalisms very well (for example: for some tweets it is very hard
to distinguish sentence boundaries), which make it harder to apply linguistic
analysis. Also, slang and street language should be taken into account.

Error-prone content Social Media content regularly contains typos and spelling mis-
takes, due to informality as well as the pace with which they want or need to be
presented.

Short content Tweets have a limited short length, which increases the difficulty of
analyzing and judging them. For example, linguistic analysis is much harder due
to a lack of context. When specific words have multiple meanings, it is harder
to extract the actual intended meaning. Furthermore, sarcasm and sentiment are
much harder to extract, again due the limited context.

Language Twitcident primarily serves Dutch organizations and therefore operates on
the Dutch language. Most scientific state of the art research is done for English,
and therefore most data sources, datasets and corpora are English. For Dutch or
other languages, this availability is significantly lower.

29

2.6 Summary: List of observations Problem analysis

2.6 Summary: List of observations

At the start of this chapter we casted three research questions to analyze our problem:

1. What characterizes Twitcident and what implications does that have?

2. What properties or aspects of tweets (could) cause noise?

3. What are the specific problem properties and constraints imposed by the needs
that Twitcident tends to fulfill?

In the previous we have addressed the third question and identified what aspects
make our problem unique, challenging and hard to solve. Furthermore, throughout
this chapter we have observed several phenomena and properties of tweets that we
expect to be relevant to our problem. We conclude this chapter with an overview of all
observations answering the other two research questions:

Observation 1. In the Twitcident user interface, a feedback mechanism is present:
Tweets can be flagged as marked (relevant?) or noise.

Observation 2. Twitcident Topic classification is currently solely done by matching
on predefined static keywords.

Observation 3. The matching mechanism of Twitcident Topic classification currently
supports wildcards. Searching for combination of words is possible, although the order
is considered insignificant.

Observation 4. Ignore terms are always used in conjunction with regular keywords,
and therefore serve as a post-classification filter.

Observation 5. A tweet can be irrelevant based on the posting user account.

Observation 6. Users are able to, and used to, alter (add, remove, modify) keyword,
ignore term and ignore user lists. Therefore, although these lists consist of static pre-
defined words, it can be dynamically altered during application usage with real-time
impact.

Observation 7. Tweets are captured from a stream by keywords and optional geo-
graphical bounding boxes.

Observation 8. Each Twitcident Instance is currently manually set up and preconfig-
ured by manually defining settings, streaming keywords, topic keywords, ignore terms
and ignore users; by CrowdSense employees.

Observation 9. The problem involves low signal detection: Only an extremely small
fraction of a very large dataset is relevant.

Observation 10. The proportion of irrelevant tweets with respect to the amount of
noise is high: 70% irrelevant vs 11% noise, for the Project X case. This phenomenon
can also be observed in all other Twitcident instances.

Observation 11. Some relevant keyword lists are composed of hyponyms of the main
topic keyword.

30

Problem analysis 2.6 Summary: List of observations

Observation 12. The context in which a word is used is relevant. For example, when
searching for bombardments with thrown ‘bike(s)’, simply searching for the keyword
‘bike’ introduces a lot of noise. One should look for the object in the context of ‘throw-
ing’, ‘tossing’, ‘bombarding’, . . .

Observation 13. Attached images can often improve the relevance of a tweet, and
provide additional information.

Observation 14. It is hard to be comprehensive when constructing a list of (poten-
tially) relevant search keywords, and manually think of all scenarios in advance.

Observation 15. Some terms may be relevant, despite not occurring in collected
datasets, and therefore the relevancy to the intended context of a search term can not
always be measured.

Observation 16. Regarding keywords: synonyms often are relevant and will decrease
the chance of missing relevant tweets.

Observation 17. Within tweets, some people use quite a bit of street language or
slang.

Observation 18. Human observations are relevant: see, hear, smell, notice, etc. . .

Observation 19. (Key)words in tweets are easily misspelled or contain typos, but
should be captured nonetheless.

Observation 20. (Key)words can be written in singular or plural form, both of which
could be relevant.

Observation 21. The problem involves language specific characteristics. Twitcident
mainly serves Dutch-focused instances.

Observation 22. Tweets can be written in present tense, past tense or no tense. Mostly
present tense is relevant, but past tense may be relevant to some instances too.

Observation 23. A word can have different meanings, based on its context. Often
only one of these definitions is intended to be captured, while the others introduce
noise.

Observation 24. While some issues are serious, there are people that make jokes about
it which introduce noise. Some of these jokes can be very hard to identify from the
textual content alone. The hardest jokes constitute sarcasm.

Observation 25. Tweets can contain textual emoticon representations, which might
(but not necessarily) indicate a joke.

Observation 26. For some keyword combinations, the order in which they occur may
be relevant.

Observation 27. Tweets from news media may not be relevant. These often contain
an URL to the news article.

31

2.6 Summary: List of observations Problem analysis

Observation 28. Tweets that contain a question often do not provide relevant infor-
mation to most instances. However, a tweet can contain multiple sentences, of which
at least one may provide relevant information.

Observation 29. Compound forms of terms may introduce noise.

Observation 30. Terms can occur within sayings, expressions and pronouns, which
are very likely to yield noise.

Observation 31. Keywords may be used as intensifications to other words, which
could render them noisy.

Observation 32. Only a fraction (3.55% in our aggregated sample) of the tweets have
a geo-location attached. This observation is also supported by Olteanu et al. [45].

Observation 33. In our aggregated sample, 10.3% of the tweets is a reply according
to Twitter.

Observation 34. According to Twitter’s heuristic language determination 40.2% of
the tweets in our aggregated sample is Dutch, while the actual fraction is a lot higher.
Nonetheless, identifying the right target language is relevant.

32

Chapter 3

Research

In Chapter 2 we explored where the noise comes from and what constraints are im-
posed by our specific problem. With this in mind, we can now perform rigorous re-
search and start the search for a fitting solution.

First, we want to elaborate on the research methodology that we applied. There-
fore, we start this chapter by answering the following question in Section 3.1:

What research methodology are we going to apply to solve our problem?

Next, we should check existing literature for related work and existing solutions to
parts of our problem and answer the next research question:

What related work has been performed? How does this work relate to our
problem? What are the relevant contributions that could be applicable to
our problem?

We will also explore and state what methodologies are suitable to solve our prob-
lem and address the final question for this chapter in Section 3.3:

What scientific methodologies and technologies are suitable to (partially)
solve our problem?

3.1 Methodology: Design Science Research

Design Science Research is a methodology based on the understanding of a problem
and focusing on utility, rather than behavior. Design-Science strives to expand the
borders of the human and organizational capacities by creating new, innovative and
meaningful artifacts [25]. It is essential that the artifact is new and has utility. After
all, the artifact must be a solution for a yet unsolved problem, or a more effective and
innovative solution for an already solved problem. March and Smith [38] identify two
processes: Building and Evaluating.

The process wherein the artifact is being created includes a search process wherein
the problem is analyzed and the artifact is being constructed. The creation of the
artifact should be based on existing theories. These theories are being applied on the
research and tested, adapted and extended by the experience, creativity and problem-
solving capacities of the researcher. The artifact itself should be rigorously defined,
formally presented, coherent and internally consistent.

33

3.1 Methodology: Design Science Research Research

The evaluation of the artifact then provides feedback information and a better un-
derstanding of the problem in order to improve both the quality of the product and
the design process. This build-and-evaluate loop is usually iterated a number of times
before the final design artifact is generated [25].

Artifacts created by means of Design Science Research are hardly ever full fledged
information systems. Rather, the artifacts are mostly just ideas and technical possi-
bilities by which implementation, design and the use of information systems can be
efficiently achieved [16].

Design Science Research addresses those problems characterized by [25]:

• unstable requirements and constraints based upon ill-defined environmental con-
texts,

• complex interactions among sub-components of the problem and its solution,

• a critical dependence upon human cognitive abilities (e.g., creativity) to produce
effective solutions

In Chapter 2 we have seen that our problem satisfies these characterizations, and
therefore will adopt this methodology. Hevner et al. [25] created seven guidelines
reflecting the most fundamental principles of the Design Science Research process.
Table 3.1 lists these guidelines, along with a short discussion how our research design
meets them.

34

Research 3.1 Methodology: Design Science Research

Guideline Discussion
1. Design as an Artifact: Design-
science research must produce a viable
artifact in the form of a construct, a
model, a method, or an instantiation.

In Chapter 4 we provide our solution for the prob-
lem. Here we describe the artifact we produced to
solve the problem in detail.

2. Problem Relevance: The objective
of design-science research is to develop
technology-based solutions to impor-
tant and relevant business problems.

In Chapter 1 we introduced our problem. Our arti-
fact will contribute to the quality of information pre-
sented by Twitcident, which aids Twitcident Clients
in their operational processes and services.

3. Design Evaluation: The utility,
quality, and efficacy of a design arti-
fact must be rigorously demonstrated
via well-executed evaluation methods.

In Chapter 5 we demonstrate the performance of our
artifact and evaluate it. We describe rigorously how
we obtained and processed our datasets, and how we
executed the experiments and evaluation.

4. Research Contributions: Effective
design-science research must provide
clear and verifiable contributions in
the areas of the design artifact, design
foundations, and/or design methodolo-
gies.

In Chapter 6 we conclude with a discussion of our
work and reflect upon our contributions. We also
discuss areas for improvement and future research
to complete the research cycle.

5. Research rigor: Design-science re-
search relies upon the application of
rigorous methods in both the construc-
tion and evaluation of the design arti-
fact.

In the remainder of this chapter we discuss rel-
evant literature and related work. Furthermore,
our research relies on the Design Science research
methodology and we employ existing knowledge
(related work) as a foundation for our artifact and
its evaluation.

6. Design as a search process: The
search for an effective artifact requires
utilizing available means to reach de-
sired ends while satisfying laws in the
problem environment.

In Chapter 3 we search for utilizable technologies.
In Chapter 5 we will search for an effective con-
figuration of our artifact. Based on the results
and insights of our evaluation, we will also deduct
new goals and areas for improvement and future re-
search.

7. Communication of research: Com-
munication of Design-science research
must be presented effectively both Re-
search to technology-oriented as well
as management-oriented audiences.

Within this thesis it is assumed the reader is fa-
miliar with social-media, especially Twitter. For
the discussion of our solution we also assume a
background in Computer Science. However, if our
presented information would be relevant for more
management-oriented audiences, these findings will
be communicated appropriately (Chapters 1, 2 and
6).

Table 3.1: Design Science Research guidelines

35

3.2 Related work Research

3.2 Related work

In this section we will discuss related work. We will discuss the papers most resem-
bling our problem in detail in the following sections, where for each paper we will
answer the following questions using a consistent format: What? Why? How? Con-
clusions? Relation to our work? What technologies or conclusions our useful with
respect to our problem?

After the most resembling publications have been discussed, we will briefly discuss
other relevant related work in Section 3.2.6. Other research areas of interest are then
discussed in Section 3.3.

3.2.1 TwitterStand: News in Tweets

In [50] Sankaranarayanan et al. introduce a news processing system based on tweets,
called TwitterStand. Their aim is to capture tweets that correspond to late breaking
news, without relying on other sources. Their primary difficulties are noise within
tweet sets, and that contributors/reporters are not known in advance while there may
be many of them. They address issues like noise removal, determining tweet clusters
of interest and determining relevant locations associated with the tweet clusters; all
constrained by that methods must be online (not all data available at the start, but
gradually arriving).

Figure 3.1: Related work: TwitterStand system architecture

Figure 3.1 depicts the system architecture of TwitterStand. First, they gather tweets
from several sources. Seeders are a handpicked set of 2000 news accounts known to
publish news. GardenHose publishes a lot of tweets about diverse subjects. BirdDog
enables the authors to follow a set of up to 200.000 selected users: for this set they
select the followers of the Seeders set, based on the assumption that these are most
likely to tweet about the news.

Next, they classify tweets as either junk or news as to remove almost all noise (at
the cost of potentially losing news). They use a Naive Bayes classifier that is pre-
trained on an annotated corpus. This classifier operates on the set of words a tweet is
composed of, although more specifics are missing.

After classification, they use an online clustering algorithm (leader-follower clus-
tering) to detect topics and cluster tweets according to these topics, taking both the

36

Research 3.2 Related work

feature vector (weighted keywords using TF-IDF) as well as the tweet time into ac-
count.

They deal with noise based on the assumption that if you define quality clusters,
they will be relatively noise-free. Therefore, they only allow tweets from reputable
sources (Seeders) to form clusters.

They proceed with attaching geo-locations to each clustered tweet, based on two
methods. The first is trivially done by looking up a possibly attached geo-location
field of a tweet. The second method is toponym recognition and resolution of tweet
texts. The latter technique is partly performed with the use of two Natural Language
Processing (NLP) techniques: Part-of-Speech (PoS) tagging and Named Entity Reso-
lution (NER).

They conclude their paper by remarking that their system can easily be generalized
and applied to other concepts.

TwitterStand’s aim is similar to Twitcident’s: gathering news from tweets real-
time, although Twitcident has both a broader and narrower scope: broader in the sense
it can address any topic that not necessarily is news, but narrower in the sense that it
addresses a single topic of interest. The goals of this paper are also very similar to
ours, especially noise removal. Furthermore, they also focus on the same real-time
problem, limiting the scope to online methods, making their contribution relevant.

However, we note that nearly all parts of the system depend on the initial Seeders
set: the users to follow depend on this set, and the clustering quality completely relies
on this set. This set is pretty appropriate for news related content since it is a set of
news-accounts, but our application primarily aims at exploiting the crowd outside of
media. If none of the news-accounts tweets about a subject, it will not receive a cluster
and therefore not presented. Furthermore, their classifier is pre-trained on an available
news dataset, which we cannot apply due to our varying topics.

On the other hand, we can identify several techniques we could employ in our so-
lution: Classifiers (Naive Bayes being an instance of it), Clustering, Part-of-Speech
tagging and Geo-tagging are all viable (sub-)technologies we could use in our explo-
ration.

3.2.2 OMG Earthquake! Can Twitter Improve Earthquake Response?

In [18] Earle et al. explore the use of Twitter in detecting earthquakes as early as
possible, as they observed that in some case the first tweet about it was posted in 19
seconds. They search for all geo-coded tweets containing the word ‘earthquake’ and
plot the tweet frequency against time. They do note that the limitation to only geo-
coded tweets reduces the amount of tweets by 50%. After evaluating this approach
on various occasions of earthquakes, they observe mixed results. They observed their
approach had a lot of noise on some occasions due to the word ‘earthquake’ being used
in different contexts, a very limited availability of tweets in some areas and in some
cases missing most relevant tweets due to another phrase being used more often (‘Did
you feel that?!’).

First of all, this paper hits the mark with their topic, since earthquake detection is
one of our example instances. They limit their scope to geo-coded tweets, and state
this reduces the captured amount by 50%. By Observation 32 we have seen that in
our cases this reduction is even higher, up to as high a reduction as 96.45%, which

37

3.2 Related work Research

is confirmed by some cases in their evaluation making this approach not viable for
us. However, we do receive confirmation of earlier observations regarding multiple
contexts and other forms of phrasing.

3.2.3 Earthquake Shakes Twitter Users: Real-time Event Detection by
Social Sensors

Sakaki et al. [49] construct a system for real-time event detection, and use earthquake
detection as an application. To identify earthquake related tweets, they setup a Sup-
port Vector Machine (SVM) binary classifier based on three types of features: sta-
tistical features (number of words, position of keyword), keyword features and word
context features (the words directly preceding and succeeding a keyword). They then
construct a temporal model to detect earthquakes by monitoring the tweet distribution.
Observing that tweets tend to form an exponential distribution in case of an event, they
statistically determine the threshold to trigger an alarm for the specified event. They
also construct a spatial model using Kalman and particle filtering to estimate the event
location. After evaluation, they report that their system detected 96% of the earth-
quakes in Japan and that they are reported faster than traditional reporting methods.

This work is very similar to ours, in that it aims at real-time identifying events re-
lated to a given topic. Also, their illustrative case ‘earthquake detection’ is a real-world
Twitcident instance too. However, their work primarily aims at detecting a given event
based on a volume of collected data, but does not care about the quality of the collected
data itself. Our aim is to improve the quality of the collected data. Furthermore, their
work only applies to large-scale events a lot of people will Twitter about (as was one
of their assumptions) whereas we should also support low signal events.

3.2.4 Weak Signal Detection on Twitter Datasets

In [54] Song researches the detection of weak signals within Twitter data. In contrast
to most research done on event detection that relies on volumes of data to cluster,
this work is about collecting all (little) information about a topic. Given a topic, its
configuration and a pre-labeled dataset his system classifies tweets as ‘relevant’, i.e.
belonging to the given topic, or ‘irrelevant’. This is done by a two phase process: a
‘simple filter’ succeeded by an ‘advanced filter’. The first one performs normalization,
keyword filtering and tweet structure filtering, while the second filter consists of a
classifier with multiple types of features: Twitter function related, syntactic, semantic
and sentiment features. The advanced filter needs to be trained with the use of a pre-
labeled dataset for each topic.

Song evaluates multiple facets of his work. First he evaluates the performance
of his system with all features active, and achieves satisfactory results. Second, he
evaluates the impact of each feature-category on the performance by evaluating all
subsets of the four types, and concludes that the syntactic features set a baseline that is
improved with each category of features added. Finally, Song compares his approach
to the traditional approach.

This work very much resembles our work, in that we are trying to extract a weak
signal from a given topic, with a few differences: our problem is more specific (more

38

Research 3.2 Related work

constrained), and therefore his solution is not directly applicable to our problem. For
example, the real-time aspect has not been taken into account in his work.

Although the results presented are very satisfactory, these were obtained from a
single relatively simple target domain, and may not be as good on our difficult domain
instances. However, due to the few differences, we can implement parts of his contri-
bution in our work. We can take the defined features into account, as well as the results
about using multiple types of features. Furthermore, we can also consider his method
of feature selection.

3.2.5 CrisisLex: A Lexicon for Collecting and Filtering Microblogged
Communications in Crises

In [45] Olteanu et al. aim at locating tweets that contain crisis-relevant information
during mass emergency situations. Their goals are to improve query methods, and
return more relevant results than is possible using conventional manually-edited key-
words or location-based searches. They approach the problem from a perspective to
improve on the recall without significant loss of precision.

To achieve this they construct a generalized crisis lexicon of terms that frequently
occur during various crisis situations, and try to automatically identify terms using
pseudo-relevance feedback mechanisms. The lexicon is constructed through several
phases. During the first phase, candidate terms are selected from the complete dataset
(sampled based on rough keywords and/or location; equivalent to our input Twitcident
Stream). Candidate terms are all word uni-grams and bi-grams. They remove men-
tions, URLs, terms shorter than two characters, terms longer than 16 characters and
punctuation. The resulting set is stemmed using Porter’s stemmer and then filtered:
only entries that occur in at least 0.5% of the dataset are kept. This is followed by
a scoring phase using two statistical tests (chi-squared and point-wise mutual infor-
mation). The third phase consists of several ‘curation’ steps: they remove names and
identify the crisis-relevancy of each word. Both these phases involve CrowdSourc-
ing. The resulting crisis-independent lexicon is obtained by selecting the top K scored
tweets.

For each crisis, the lexicon is adapted to the specific crisis by employing pseudo-
relevance feedback (PRF): during the first hours of a crisis, tweets are sampled using
the generalized lexicon. The most frequent occurring word unigrams and bigrams not
already in the lexicon are added to it. Because hashtags may be widely adopted and
thus increasing recall, they also apply this process to hastags.

They experiment with varying scoring strategies and varying curation steps and
notice a clear trade-off between precision and recall with the varying configurations.
They also experiment with varying PRF-configurations, and notice a boost in recall
while precision remains stable. Their results are satisfying, with F-scores up to 0.6
and a recall up to 0.7.

The problem described in this paper is part of our problem too: creating an accurate
collection of words to specify a topic significantly affects the noise level, as we have
seen in Chapter 2. A well built lexicon could be extremely useful. However, we
observe a few problems of their approach if we were to apply it to our problem:

• They employ CrowdSourcing for every new instance. This requires the topic

39

3.2 Related work Research

and goal to be public, which is not suitable to every Twitcident Instance due
to confidentiality. We have also seen that even domain experts have difficulties
judging some tweets: only clients themselves accurately know what is relevant
and what is not. Furthermore, employing CrowdSourcing makes the setup pro-
cess dependent of other people which might be a problem: in urgent cases an
instance should be constructed very fast at any given time.

• Olteanu et al. measure the performance of their work using two joined classes
(directly and indirectly related tweets) as their positive class. However, indi-
rectly related tweets are often considered noise with respect to our problem.
Although we could modify this part, we expect the precision to drop. In our
opinion, further research on this part should first be performed to consider this
option.

• In our current terminology, we could state that their work focuses more upon
creating and building an effective Twitcident Stream, rather than effectively clas-
sifying for a specific Twitcident Topic which is our aim.

An interesting contribution presented in this paper is the observation that the pseudo-
relevant feedback (PRF) mechanisms increase recall without significant loss of preci-
sion, which is something we should really consider within our work.

3.2.6 Other related work

Stronkman’s thesis work [56] forms the foundation for our work as it introduces Twit-
cident, followed by the publication of additional papers [1, 2]. These all describe a
prior design of Twitcident that detects incidents using an emergency broadcast ser-
vice, aggregates data from social media (Twitter) to it, semantically enriches this using
Named Entity Recognition (NER) and then filters out noise. We should point out that
the current version of Twitcident mainly focuses upon detecting relevant ‘incidents’ of
a predefined topic, and effectively presenting the results for analysis.

Java et al. [26] explore and observe why people use Twitter, and how they adopt
it. It is useful for understanding the motivations of people using Twitter. Vieweg et
al. [59] analyze what Twitter may contribute to situational awareness during natural
hazardous events.

Becker et al. [6] explore a method for identifying real-world events by clustering
the stream of tweets, which may be useful for defining our Twitcident Stream. Walther
and Kaisser [61] detect geo-spatial events through a clustering approach, focussing
on geo-spatial properties by monitoring a specific area. They use a multiple types of
features for clustering, including word overlap, sentiment features, subjectivity, tense
and semantic categorization. Packer et al. [46] approach the problem from a different
angle, applying semantic query expansion.

Li et al. [32] present TEDAS to detect news events, analyze their spatial and tem-
poral patterns and identify the importance of the events. Interesting about their work is
that they attach a location to each tweet, by first sequentially looking at the geo-tag of
the tweet, location entities within the tweet text and geo-location of the user. If none
exist, they try to predict the users location by analyzing the tweet history and friends
of the user.

40

Research 3.3 Technologies

Culotta [14] explores multiple methods for detecting influenza epidemics by ana-
lyzing Twitter messages, and attempt to model influenza rates using regression mod-
els. However, they focus upon estimating the right quantities and epidemic intensities,
rather than presenting accurate substantial content. Lampos et al. [30] aim to solve the
same problem, by using a bootstrapped version of Lasso (Bolasso) to extract a set of
words to use as features and calculating a daily flu-score.

Mathioudakis and Koudas [41] present a system that identifies emerging topics
(trends) on Twitter in real-time, by detecting and analyzing ‘bursty keywords’. We
could take such keywords into account and analyze its effects on the relevancy of a
tweet.

Chen et al. [11] present CrowdE: a filtering system to collect user opinions about
brands, for direct customer engagements. They apply a machine learning classifier
trained using crowd-sourcing, and separate two levels of classification: tweets are first
classified on relevance to the brand, then by opinion.

3.3 Technologies

In this section, we will list technologies that may be useful to our work.

Machine Learning During our literature research, we often encountered the use of
Machine Learning classifiers. Machine learning explores the construction and
study of algorithms that can learn from and make predictions on data. Such
algorithms operate by building a model from example inputs in order to make
data-driven predictions or decisions rather than following strictly static program
instructions.

There are generally three subtypes of Machine Learning: classification, regres-
sion and clustering. Classification and regression are supervised learning prob-
lems [28]: the computer is presented with example inputs and their desired out-
puts (the training set), and the goal is to learn a general rule that maps inputs (the
features) to outputs. For classification, the output consists of one or more nomi-
nal classes which can be chosen from. For regression, the output is a numerical
value. Types of classifiers include Naive Bayes networks, Support Vector Ma-
chines (SVM), Neural Networks, tree-based classifiers, regression models and
rule-based classifiers.

Clustering usually is an unsupervised problem, i.e: the outputs of the training
data are not known in advance. The goal here is that a set of inputs is to be
divided into groups (clusters), that are to be determined by the Machine Learner.
Since in our problem the topics are defined in advance, we are not interested in
clustering, but rather in the other two types.

In Chapter 5 we will observe that three classifiers perform best on our problem:
REPTree, RIPPER and Random Forest. We will briefly discuss these a little
further.

Reduced Error Pruning Tree (REPTree) [55] is a fast decision tree learner which
builds a decision/regression tree using information gain as the splitting criterion,
and prunes it using reduced error pruning. REPTree uses the regression tree

41

3.3 Technologies Research

logic and creates multiple trees in different iterations. After that it selects best
one from all generated trees as the representative. The tree is then pruned based
on the mean squared error on the predictions made by the tree.

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) [13] was
proposed as an optimized version of IREP [21]. It is based in association rules
with reduced error pruning (REP), a common and effective technique found in
decision tree algorithms. IREP is used to determine an initial rule set. This rule
set is then simplified and optimized using a rule optimization heuristic, after
which new rules are added that cover remaining positive examples (again using
IREP). This process is repeated a number of times. At each stage of simplifica-
tion, the pruning operator chosen is the one that yields the greatest reduction of
error on the pruning set. Simplification ends when applying any pruning opera-
tor would increase error on the pruning set.

Random Forests [7] are an ensemble learning method that operate by construct-
ing a multitude of decision trees at training time and outputting the class that
is the mode of the classes (classification) or mean prediction (regression) of the
individual trees. Random forests correct for decision trees’ habit of overfitting
to their training set. The method combines the idea of ‘Bagging’ and the ran-
dom selection of features in order to construct a collection of decision trees with
controlled variance.

Natural Language Processing Natural Language Processing (NLP) [37] is a field
of computer science, artificial intelligence, and computational linguistics con-
cerned with the interactions between computers and human (natural) languages.
It is a research field to make computers able to process and understand natural
language in the form of text or speech. The research is based on many differ-
ent disciplines such as computer sciences, linguistics, mathematics, electrical
engineering and even psychology.

Some areas within NLP our useful to our work. Named Entity Recognition
(NER) [43] determines, given a stream of text, which items in the text map to
proper names, such as people or places, and what the type of each such name
is (for example, a person, a location or an organization). Part of Speech (PoS)
[22, 39, 60] determines, given a sentence, the part of speech for each word, like
‘noun’, ‘verb’ or ‘adverb’. Note that this is not a trivial task, since some words
can be of multiple parts of speech, like ‘book’: it can be the object book, or used
as verb in to book a flight. English as well as Dutch have many such ambiguities.
Sentence breaking is involved with the separation of whole sentences, while
tokenization is involved with the identification of boundaries between words.
Note that names of entities can consist of multiple words but should be regarded
as a single token.

Sentiment and sarcasm detection Sentiment analysis [3,5,27,34,42,47,58] aims to
determine the attitude of a speaker or a writer with respect to some topic or
the overall contextual polarity of a document. The attitude may be his or her
judgment, affective state or the intended emotional communication. Sarcasm
detection [23, 33] takes this one step further, by identifying sarcasm. These

42

Research 3.3 Technologies

are extremely hard and hot research areas, as even the US secret service issued
requests for such software 1.

String Similarity metrics A string similarity metric is a metric that measures dis-
tance (opposite of similarity) between two text strings for approximate string
matching. Most of these algorithms are closely related to sequence alignment
in bio-informatics. The most widely known string metric is the Levenshtein
Distance [31], returning a number equivalent to the number of substitutions and
deletions needed in order to transform one input string into another, known as
an edit distance. The Damerau-Levenshtein [8,15] distance also allows transpo-
sition operations. While these algorithms focus on minimizing the edit distance,
the Needleman-Wunsch [44] algorithm focuses on maximizing similarity which
turns out to be equivalent. Whereas the Needleman-Wunsch algorithm translates
to global sequence alignment, the Smith-Waterman [53] algorithm performs lo-
cal sequence alignment. Dice’s coëfficient [17] is a set similarity metric, which
can be applied on strings by splitting them in sets of n-grams.

Most of these metrics and algorithms calculate the similarity or distance be-
tween two strings, with a length difference also imposing a penalty. However,
when we want to know if a smaller string (i.e. a keyword) occurs misspelled
within a larger string (i.e. a tweet) we need to apply string approximation al-
gorithms for variable length, or approximate substring matching. A brute-force
approach would be to compute the edit distance (for example by applying Lev-
enshtein) to the smaller string for all substrings of the larger string, and then
choose the substring with the minimum distance. However, this algorithm would
have asymptotic running time O(n3m). Sellers [51] improves on this by apply-
ing dynamic programming (DP) while introducing a parameter k representing
the maximum amount of mismatches. Other techniques involve indexing. How-
ever, as we are not interested in the exact edit distance but rather in a lightweight
fast-performing algorithm measuring similarity, we have developed our own al-
gorithm by adapting Dice’s similarity coëfficient. This algorithm is presented in
Appendix B.

Performance metrics Many performance metrics exist to evaluate the performance
of a system. For comparing two binary classification outputs, of which one is
often considered the ground truth and the other the evaluated classification, most
performance metrics rely on a confusion matrix of true/false positives/negatives.
Considering a binary classification {relevant, irrelevant}, the number of true
positives is the amount of documents (tweets) in which the classifier correctly
classifies a tweet as relevant when it actually is relevant (according to ground
truth), while a true negative is an irrelevant tweet classified as irrelevant. A false
positive is an irrelevant tweet that has been classified as relevant (Type I error).
A false negative is a relevant tweet classified as irrelevant.

1http://www.theregister.co.uk/2014/06/04/secret_service_wants_twitter_sarcasm_
radar (requested July 14th, 2015)
https://www.fbo.gov/?s=opportunity&mode=form&id=8aaf9a50dd4558899b0df22abc31d30e&
tab=core&_cview=0 (requested July 14th, 2015)

43

3.3 Technologies Research

The most widely used performance metrics are accuracy, precision and recall.
Let us denote the amount of true positives by T P, the amount of false positives
by FP, and so on. Then these measures are defined by:

Accuracy =
T P+T N

T P+FP+T N +FN

Precision =
T P

T P+FP

Recall =
T P

T P+FN

Accuracy basically tells us the fraction of tweets that have been correctly iden-
tified. Precision tells us what fraction of tweets presented is actually relevant,
so it basically measures our noise. Recall tells us what fraction of the relevant
tweets have actually been identified as relevant, so its complement is actually the
amount of relevant tweets we are missing. Note that within our problem, while
our aim is to reduce noise and thus increase precision, it would be far worse to
lose on recall as the application would then disregard relevant information.

The most common measure that combines precision and recall into a single value
is the Fβ score, defined by:

Fβ-score = (1+β
2) · Precision ·Recall

β2 ·Precision+Recall

The most common variant is the F1-score, which weighs precision and recall
equally well, while a F2-score weighs recall twice as much as precision and a
F0.5-score weighs precision twice as much as recall. Since it is important not to
lose many relevant tweets while still reducing noise, we will primarily adopt the
F2-measure which weighs recall more.

An alternative to the F-score is the Matthews correlation coefficient, defined by:

MCC =
T P ·T N +FP ·FN√

(T P+FP) · (T P+FN) · (T N +FP) · (T N +FN)

This measure has been proposed to deal with classes of very different sizes. This
applies to our problem, since we have a low signal so the amount of relevant
tweets (positives) is far lower than the amount of irrelevant tweets (negatives).

Another measure we will list for completeness during our evaluation is Cohen’s
Kappa statistic, commonly used while evaluating classifiers. Cohen’s Kappa is
an inter-rater agreement statistic, and basically tells us how much two raters (in
this case ground truth and classifier) agree.

For regression (numerical output class), the above statistics do not apply, and
these problems have their own performance measures. The most commonly
used statistics are the Mean Absolute Error (MAE), Root Mean Squared Er-
ror (RMSE), Relative Absolute Error (RAE) and Relative Root Squared Error
(RRSE). Let us denote the ground truth value for tweet t by yt , the correspond-
ing predicted (classifier) output value by ŷt and the total amount of tweets by n,

44

Research 3.3 Technologies

then these measures are defined by:

MAE =
1
n ∑
∀t
|ŷt − yt |

RMSE =

√
1
n ∑
∀t
(ŷt − yt)2

RAE =
∑∀t |ŷt − yt |
∑∀t |ȳt − yt |

with ȳ =
1
n ∑
∀t

yt

RRSE =

√
∑∀t (ŷt − yt)2

∑∀t (ȳ− yt)2 with ȳ =
1
n ∑
∀t

yt

The MAE is basically the average error. The RMSE is similar, but larger indi-
vidual errors are weighed heavier. RAE and RRSE are respectively their similar
relative counterparts, calculating the error relative to the mean. In contrast to
the performance metrics for nominal classes, for these metrics a lower value is
better.

Query expansion Query expansion [9, 12, 40] is the process of reformulating a seed
query to improve retrieval performance in information retrieval operations. In
the context of web search engines, query expansion involves evaluating a user’s
input and expanding the search query to match additional documents. Query
expansion involves techniques such as finding synonyms and finding various
morphological forms.

45

Chapter 4

Design and Implementation of our
artifact

In Chapter 1 we introduced our case, which we analyzed and defined in depth through-
out Chapter 2 resulting in a list of observations. In Chapter 3 we performed research
over existing literature, methods and technologies. Now that we have our utilities
ready, we can design and compose our artifact. However, we will not be able to ap-
ply all suitable technologies and need to make some choices. Furthermore, we may
need to scope our problem and introduce some constraints or assumptions under which
we will design our artifact. Therefore, in this Chapter we will answer the following
questions:

What choices have been made towards a solution? What constraints or
which assumptions have we imposed while designing our artifact?

What artifact have we designed to solve our problem?

How does each of the components of this artifact work and why have we
designed it like that?

We will address the first question in Section 4.1, and by answering it, we implic-
itly restrict our solution space to search through and will therefore make it easier to
comprehend why we chose the approach presented in subsequent sections.

We will present an overview of our designed artifact in Section 4.2 and make a
decomposition of it. In subsequent Sections 4.3, 4.4 and 4.5 each major decomposed
part of the system is discussed and explained. We will conclude this chapter with
Section 4.6. Throughout this chapter we will tend to relate each choice or decision to
an observation. We will not discuss every line of code of our implementation, but will
elaborate on relevant specifics and choices.

47

4.1 Choices made towards a solution Design and Implementation of our artifact

4.1 Choices made towards a solution

Here we will list some ‘design’ choices that follow from observations (Chapter 2) and
challenges/difficulties (Section 2.5). They either explain why our artifact is designed
as it is, or scope the problem to a more specific version. Whereas the previous Chap-
ters were just collecting information, from this point onwards, we will be aiming at a
solution and making choices based on the collected information. This will also restrict
yet focus our search space for a solution. After this section, we will design and present
our artifact based on these choices.

Classifier System We have observed that our problem is complex due to many details,
and even domain experts have difficulties identifying what they are looking for,
or whether a tweet is relevant. Therefore, we will not rely on a static algorithm
but use the same calculated properties (features) within a Machine Learning
environment. We will be creating a system with a classifier component as its
heart. In our research we have seen that this is the most appropriate solution for
problems similar to ours. We also consider them to be most capable of handling
the problems diversity and complexity. Furthermore, this choice does not really
restrict our solution space since there are many types of classifiers and methods
of training them.

Two-fold problem We consider the main problem to be split into two major subprob-
lems (Figure 4.1). First of all, the domain expert configuring the instance must
think of a lot of scenarios and relationships manually, which makes missing
certain scenarios more likely. The properties extracted rely a lot on instance-
specific configuration and keywords. We observed that the composition of the
keyword lists significantly affects the amount of irrelevant tweets, and is prone to
human errors. Therefore, we want to guide the user through a process of setting
up the classifier component. Furthermore, we have observed that besides key-
word lists, many more factors and properties can affect the relevancy of a tweet,
which makes mere keyword matching insufficient. Therefore, we also want to
improve the actual classifier system and make it more robust, which makes are
problem two-fold with a) Developing a robust classifier, and b) Configuring the
classifier as automated and easy as possible.

Figure 4.1: Two-fold problem decomposition

Instance variety We observed a lot of variety among instances. However, we want to
design an artifact generic and instance-independent enough to be configured by
a domain expert, so that our solution is not limited to a specific case. This will
largely been taken into account by the aforementioned second part: configuring
the classifier.

48

Design and Implementation of our artifact 4.2 Artifact decomposition

Incoming streams Our problem involves low signal detection, with only an extremely
small fraction of the tweets being relevant. Therefore, missing a single item
significantly affects the performance. We also observed that only less than five
percent of the tweets have a geo-location attached, so we can and will not rely
on this feature (but may use it auxiliary). Furthermore, defining the incoming
data stream seems to be complex enough to be considered a separate problem,
and therefore we will assume an incoming data stream as precondition to our
solution. We will be focusing on optimizing a filtering system and output tweets
with relevancy scores to a certain topic. Our solution must correlate as little as
possible to the width of the incoming data stream.

IR engines Information Retrieval [4, 36] systems with document stores are not appli-
cable as main engine to solve our problem, since we will not be searching for
data, but classifying data. This is a direct consequence of the real-time aspect
of our problem. However, IR engines (for example Apache Lucene [24]) may
be used as supplementary systems, for example, to improve performance if we
would be looking within precalculated caches (recent tweets).

Dynamic keywords We have seen that defined keywords are key to the classification
performance, and new scenarios come up all the time. Furthermore, we have
observed that users are used to add/remove keywords based on their experiences.
Therefore, our artifact should support dynamic word-lists with users able to add,
alter and remove keywords during runtime.

Language We are not natural language or linguistic specialists, so we can’t dig into
language specifics too deep, but we could use existing stable implementations
(if available) to support our solution. Furthermore, we want our artifact to be
able to extend to multiple languages, we we want to clearly identify which parts
of our system our language specific. However, we will focus on Dutch as our
primary language and will only evaluate this language.

4.2 Artifact decomposition

In the previous section we stated that our problem is two-fold. Therefore, our designed
artifact consists of multiple core components, which are tightly coupled. Figure 4.2
illustrates an architectural overview and context of our artifact:

• Elliptical boxes indicate processes

• Rectangular boxes indicate data and/or input

• Unfilled boxes indicate initial input and final output

• Blue boxes indicate the current state of Twitcident, without our artifact

• Lighter green boxes indicate our artifact to be developed

• Darker green boxes indicate shared elements

49

4.2 Artifact decomposition Design and Implementation of our artifact

Figure 4.2: Architectural overview and context of our artifact

We can discern two separate tracks from start to end: a blue one and a lighter green
one, while both share a common darker green part. The blue part indicates the existing
solutions Pipe-App architecture, which we described thoroughly in Section 2.1 and
more specifically in Section 2.1.2. The lighter green track represents the high-level
architecture of our designed artifact, which we will discuss next. The common darker
green prefixed part is the shared part, and actually represents one of the scopes made
for our problem: we assume an incoming stream of data.

As our proposed track can be seen as an alternative path to the existing blue track,
and the blue track represents the Twitcident Pipe-App, we could say that our aim is
to replace and improve over the existing pipe-app, and we output tweets to the current
Web-App, which may be modified slightly with enhanced features to configure/drive
our solution.

If we take a closer look at our artifact’s architecture, we can see two processes
(two elliptical boxes), which represent our two-fold problem: a classifier system to
improve the actual filtering process, and a configuration approach to set-up, configure
and optimize our classifier.

The Classifier System consists of a machine learning classifier, and will be dis-
cussed in Section 4.3. A machine learning system relies on and is largely defined
by its Features: properties and attributes of the current “document” to be classified.
Examples of such properties in our case would be:

• Does the current tweet contain keyword X?

• Is the current tweet a retweet?

• What kind of user is posting our current tweet?

• How many similar tweets were posted within the last hour?

50

Design and Implementation of our artifact 4.2 Artifact decomposition

The values of these features have to be defined and calculated, which is one of the
main tasks of this thesis work. We will present our list of features in and will discuss
the implementation of these features. Finally, after the classifier itself has been dis-
cussed in Section 4.3.3, we will discuss the most important implementation specifics
in Section 4.3.4.

After the classifier part is clear, we will move on to the Configuration Approach.
Most features will need some sort of instance-specific input. Consider for example the
feature “Does the current tweet contain keyword X?”. In this case, X is an instance
specific keyword which needs to be configured. We will discuss this configuration ap-
proach in Section 4.4. To propose for example keywords, this approach relies on some
Data Sources like vocabularies, dictionaries, thesauri, . . . , which are also depicted in
Figure 4.2.

A second part of the Configuration Approach is teaching the classifier what is
relevant. This can be done through presenting a corpus of tweets of which the output
(relevancy) is known a priori. This process is called training the classifier. However,
as this is quite a challenge in our context, we consider this a separate “Part 3” of our
problem, which is discussed in Section 4.5.

Figure 4.3 depicts another representation of our artifact, from a more technical
point of view. The classifier system (1 - Section 4.3) does the actual work: filtering
the tweets by classifying them. However, this system is defined by configured features
(1a). This configuration is done by a Setup Approach (2 - Section 4.4). Finally, the
system needs to be trained in order to become operational, which is done through the
Training Approach (3 - Section 4.5). Note that the Setup Approach (2) and Training
Approach (3) together form the aforementioned Configuration Approach.

Figure 4.3: Artifact decomposition

51

4.3 Part 1: Classification Design and Implementation of our artifact

4.3 Part 1: Classification

Figure 4.4: Artifact decomposition: Classifier System & Features highlighted

In this section we will discuss the Classifier System, which is highlighted in Figure
4.4. This Machine Learning component will perform the actual filtering by classifying
a stream of raw input tweets resulting in a stream of classified tweets. However, as
some features will be limited to a single topic, each classifier will classify an incom-
ing tweet by attaching a relevancy score to the corresponding topic. If this relevancy
score passes a certain threshold, it can be considered relevant to the given topic. As a
result, the Classifier System actually consists of a set of parallel chained classifiers, as
depicted in Figure 4.5.

When we refer to a classifier within the next few sections, we actually refer to a
single topic classifier element that is designed to classify for a certain topic. The input
document for such a classifier is a tweet, over which its features will be calculated. This
vector of feature values is then fed to a Machine Learning component, that outputs a

Figure 4.5: Classifier System: Actually a set of parallel classifiers

52

Design and Implementation of our artifact 4.3 Part 1: Classification

relevancy score for the Tweet regarding the topic. This relevancy score can then be
interpreted by the Twitcident Web-App. The goal of this component is to improve
over the current Twitcident filtering mechanism (Pipe-App): it should produce more
accurate relevancy scores, as to increase the overall output relevancy.

The list of features will be presented in the next Section (4.3.1), after which they
will be discussed and explained in Section A.2. After the features are clear, we will
discuss the actual Machine Learning component (Classifier) in Section 4.3.3 and con-
clude with a rough overview of implementation specifics regarding this part of the
system in Section 4.3.4.

4.3.1 List of features

In this section we will present our initial and complete list of features, whereas we will
go into specifics in the next section. Note that not of all these features will actually
be implemented due to time constraints, but this serves as an extensive list of potential
features. Furthermore, not all features listed and implemented will be operational, as
a sub-selection will be made in Chapter 5 based on evaluations.

Tables 4.1, 4.2 and 4.3 list all potential features.

Feature summary Instance
dependent

Feature input Document input Discussion

1 Tweet, hard match, 1st degr. Yes Keywords, 1st degr. Tweet Section A.2.1
2 Tweet, hard match, 2nd degr. Yes Keywords, 2nd degr. Tweet Section A.2.1
3 Tweet, hard match, 3rd degr. Yes Keywords, 3rd degr. Tweet Section A.2.1
4 Tweet, compound match, 1st degr. Yes Keywords, 1st degr. Tweet Section A.2.1
5 Tweet, compound match, 2nd degr. Yes Keywords, 2nd degr. Tweet Section A.2.1
6 Tweet, compound match, 3rd degr. Yes Keywords, 3rd degr. Tweet Section A.2.1
7 Tweet, stemmed match, 1st degr. Yes Keywords, 1st degr. Tweet Section A.2.1
8 Tweet, stemmed match, 2nd degr. Yes Keywords, 2nd degr. Tweet Section A.2.1
9 Tweet, stemmed match, 3rd degr. Yes Keywords, 3rd degr. Tweet Section A.2.1

10 Tweet, approximate match, 1st degr. Yes Keywords, 1st degr. Tweet Section A.2.1
11 Tweet, approximate match, 2nd degr. Yes Keywords, 2nd degr. Tweet Section A.2.1
12 Tweet, approximate match, 3rd degr. Yes Keywords, 3rd degr. Tweet Section A.2.1
13 Hypernym, approximate match, 1st degr. Yes Hypernyms, 1st degr. Tweet Section A.2.2
14 Hypernym, approximate match, 2nd degr. Yes Hypernyms, 2nd degr. Tweet Section A.2.2
15 Hypernym, approximate match, 3rd degr. Yes Hypernyms, 3rd degr. Tweet Section A.2.2
16 Hyponym, approximate match, 1st degr. Yes Hyponyms, 1st degr. Tweet Section A.2.2
17 Hyponym, approximate match, 2nd degr. Yes Hyponyms, 2nd degr. Tweet Section A.2.2
18 Hyponym, approximate match, 3rd degr. Yes Hyponyms, 3rd degr. Tweet Section A.2.2
19 Username, hard match, 1st degr. Yes Keywords, 1st degr. User descr. Section A.2.3
20 Username, hard match, 2nd degr. Yes Keywords, 2nd degr. User descr. Section A.2.3
21 Username, hard match, 3rd degr. Yes Keywords, 3rd degr. User descr. Section A.2.3
22 Username, compound match, 1st degr. Yes Keywords, 1st degr. User descr. Section A.2.3
23 Username, compound match, 2nd degr. Yes Keywords, 2nd degr. User descr. Section A.2.3
24 Username, compound match, 3rd degr. Yes Keywords, 3rd degr. User descr. Section A.2.3

Table 4.1: List of features, part 1

53

4.3 Part 1: Classification Design and Implementation of our artifact

Feature summary Instance
dependent

Feature input Document input Discussion

25 Username, stemmed match, 1st degr. Yes Keywords, 1st degr. User descr. Section A.2.3
26 Username, stemmed match, 2nd degr. Yes Keywords, 2nd degr. User descr. Section A.2.3
27 Username, stemmed match, 3rd degr. Yes Keywords, 3rd degr. User descr. Section A.2.3
28 Username, approximate match, 1st degr. Yes Keywords, 1st degr. User descr. Section A.2.3
29 Username, approximate match, 2nd degr. Yes Keywords, 2nd degr. User descr. Section A.2.3
30 Username, approximate match, 3rd degr. Yes Keywords, 3rd degr. User descr. Section A.2.3
31 Ignore, Keyword Yes Ignore keywords Tweet Section A.2.4
32 Ignore, Username Yes Ignore users Username Section A.2.4
33 News and media No User-database Username Section A.2.5
34 Poster’s current tweet rate No List of users tweets Section A.2.6
35 Poster’s average tweet rate No List of users tweets Section A.2.6
36 Current stream rate No Processed tweet

cache
Section A.2.6

37 Positive sentiment No Research required Tweet Section A.2.7
38 Negative sentiment No Research required Tweet Section A.2.7
39 Subjectivity value No Research required Tweet Section A.2.8
40 Present tense No Research required Tweet Section A.2.9
41 Past tense No Research required Tweet Section A.2.9
42 Is retweet No Retweet attribute,

Tweet
Section A.2.10

43 #retweets No #retweets attribute Section A.2.10
44 Is reply No Reply attributes Section A.2.11
45 #pre-mentions No Mention attributes Section A.2.12
46 #inner-mentions No Mention attributes Section A.2.12
47 #news-mentions No Media usernames Mention attributes Section A.2.12
48 Tweet length No Tweet Section A.2.13
49 Images No Media attributes Section A.2.14
50 Links No Link attributes Section A.2.15
51 #inner-hastags No Hashtag attributes Section A.2.16
52 #post-hashtags No Hashtag attributes Section A.2.16
53 #list-hashtags Yes Hashtag list Hashtag attributes Section A.2.16
54 Prior similar tweets No Processed tweet

cache, Tweet
Section A.2.17

55 Has popular term No Processed tweet
cache, Tweet

Section A.2.18

56 Distance from hotspot Yes Hotspots Geo attributes Section A.2.19
57 Seems observation No Tweet, Geo at-

tributes
Section A.2.20

58 Contains street language/slang No Tweet Section A.2.21
59 #Nouns No Tweet Section A.2.22
60 #Verbs No Tweet Section A.2.22
61 #Adverbs No Tweet Section A.2.22
62 Future day mentioned No Tweet Section A.2.23
63 Past day mentioned No Tweet Section A.2.23
64 Contains special keyword 1 ?? Special keywords Tweet Section A.2.24

Table 4.2: List of features, part 2

54

Design and Implementation of our artifact 4.3 Part 1: Classification

Feature summary Instance
dependent

Feature input Document input Discussion

65 Contains special keyword 2 ?? Special keywords Tweet Section A.2.24
66 User language No Language attribute Section A.2.25
67 Tweet language No Tweet Section A.2.25
68 Question marks No Tweet Section A.2.26
69 Subsequent dots No Tweet Section A.2.26
70 Interpunction-ratio No Tweet Section A.2.26

Table 4.3: List of features, part 3

4.3.2 Feature discussions and implementations

In this section we will discuss some of the features that need some elaboration in our
opinion. All other features are discussed in Appendix Section A.2.

4.3.2.1 Keyword matches

Features 1–30 relate to keyword matches within tweets and usernames, whereas fea-
tures 1–12 specifically address keyword matches within tweets. This section will
mainly address the latter subset, but does also apply to the complete set of matcher
features. However, sections A.2.2 and A.2.3 will extend on this section for other sub-
sets of the matcher features.

The main mechanism of the existing Twitcident classification mechanism relies on
keyword matches (Observation 2), and we want to extend on this process. Therefore, a
core subset of features is dedicated to keyword matches. However, due to Observation
6 we consider it a high priority to support dynamic keyword lists that can be altered
during runtime. As Machine Learning classifiers depend on a fixed set of features
over which they are trained, we have chosen for an atypical alternative construction:
we define a set of fixed features that are configured with a keyword-list, rather than a
single keyword. We regard this as a potential new kind of Machine Learning setup:
features do not have to be static, but may be dynamic.

This way, the keyword list is extensible and adjustable during runtime, without
changing the machine feature and its meaning: this meaning can be interpreted as “rel-
evancy of this tweet with respect to keywords in keyword list KL”. The main drawback
is that all keyword matches are treated equally. For example, if a keyword list contains
both “throwing+a+bike” and “shooting+at+police”, and this features value tells the
classifier that there is a match, the classifier will not know which particular entry was
matched. However, we value the dynamic extensibility over this due to Observations 6
and 14, and will capture and resolve the consequences.

Each feature is configured with a keyword list KL= {KE1,KE2, . . .}with |KL| ≥ 0,
where each keyword-entry KEi consists of:

• A set of positive keywords PKEi = {PK1,PK2, . . .} with |P| ≥ 1. Each of the
individual keywords PK j must be present to result in a match for this entry.

• A set of negative keywords NKEi = {NK1,NK2, . . .} with |N| ≥ 0. If at least on
of the individual keywords NKk is present, this keyword entry KEi will never
result in a match.

55

4.3 Part 1: Classification Design and Implementation of our artifact

• A weight WKEi ∈ Z \ 0 for this keyword entry, that will be added to the final
output value for this feature for each match.

The set of negative keywords NK serves to restrict the space captured by PK, and
define its context (see Observation 12). An example of a very short keyword list KL
could be:

KL =

KE1 =

PK = {‘aardbeving’, ‘ in’}
NK = /0

W = 5

KE2 =

PK = {‘aardbeving’}
NK = {‘ in’}
W = 1

In this example, the additional word ‘in’ could indicate that the tweet contains
additional information like a place, which would increase the relevancy of the match.
Therefore, a match including ‘in’ will increase the feature output value more than
a match without an occurrence of ‘in’. Note that in this example, both entries are
mutually exclusive, but this does not necessarily be the case.

The final score S of this numerical feature is defined as the sum of keyword entry
match weights multiplied by the amount of matches for each entry:

S =
|KL|

∑
i=1

(WKEi ·#matchesKEi)

Note that if a keyword entry does not match, #matchesKEi will be zero and the
weight is not added to the output value. Also note, that an individual entry is thus
allowed to match multiple times.

Suppose another case, in which we are looking for the word ‘bank’. In Dutch this
word has multiple contexts, two of them literally translating to a ‘bench’/‘sofa’ and
the other one to a ‘bank’ associated with money. On the former one, you can sit. The
latter definition one is our intended context. We could now construct the following
definitions to more specifically address this context:

KL=

KE1 =

PK = {‘bank’}
NK = /0

W = 1

KE2 =

PK = {‘bank’}

NK =

{‘zit’, ‘tv’, ‘beeldbank’, ‘bloedbank’,
‘boekenbank’, ‘spermabank’, ‘kennisbank’,
‘achterbank’, ‘databank’, ‘zonnebank’, . . .

}
W = 5

KE3 =

PK = {‘bank’, ‘zit’, ‘tv’}
NK = /0

W = −1

The first entry defines a match on the raw target word ‘bank’, and adds 1 to the
output value for each match. The second entry also specifies negative keywords, to

56

Design and Implementation of our artifact 4.3 Part 1: Classification

eliminate all unintended meanings: if one of them does occur, this entry will not match.
If none of them occur but ‘bank’ does occur, it add 5 to the output value.

Because we do not want to put all keywords on a single pile due to some keyword
sets being more specific and relevant than others, we defined multiple identical features
of this type that will just be configured with their own keyword list. We chose to create
multiple degrees (levels) of keyword lists to support this. We will elaborate on this the
specific meanings of each degree later on in Section 4.4.

Finally, we also defined multiple matching schemes:

Hard match A hard match results in a match for a keyword if it is matched exactly
as a word, thus surrounded by spaces.

Compound match A compound match results in a match for a keyword if it is matched
exactly at either the beginning or the end of a word, thus has at least one space
on its boundaries.

Stemmed match A stemmed match results in a match for a keyword if its stemmed
form exactly matches the stemmed form of one of the words of the input docu-
ment (Tweet). A language specific stemmer [20, 35, 48] is required.

Approximate match To account for typos (Observation 19) and to compensate a
bit for the lack of wildcards (Observation 3), we also include an approximate
matcher that returns a similarity value in 〈0,1〉 for each keyword. If this ap-
proximation value exceeds a certain threshold (additional feature parameter), it
is counted as a match with the weight scaled by this approximation value. After
experimenting with well-known string approximation algorithms, we adapted
Dice’s similarity metric resulting in an algorithm that suits our problem better.
We elaborate on this in Appendix B.

Table 4.4 illustrates an example of the different matching schemes on input (as-
sume every keyword has weight 1):

“Vandaag is het weer kinderboekndag! De volgende boekjes zijn genomineerd: ...”
(The typo in ‘kinderboekendag’ is on purpose)

Keyword Hard Compound Stemmed Our approxima-
tion
algorithm

Approximate
Smith-Waterman

dag 0 1 0 1.00 1.00
boek 0 2 0 1.00 1.00
dagboek 0 0 0 0.00 0.57
kinderboekendag 0 0 0 0.84 0.90

Table 4.4: Illustration match value for different matching schemes

Although we think we have covered the core concepts with this feature, something
that remains open for further research is whether order may be relevant and how to
integrate that in the matching features (see Observation 26). Furthermore, we could
introduce additional constraints to keyword entries, for example, a maximum distance
between two individual words.

57

4.3 Part 1: Classification Design and Implementation of our artifact

4.3.2.2 Mentions

Mentions are special constructs in a tweet identified by an ‘@’ sign, indicating a re-
ferred user. This usually indicates retweets, replies (conversations) or notifications.
We distinguish three types of mentions:

• Pre-mentions: a mentioned user at the beginning of a tweet, excluding known
prefixes (for example ‘RT: ’). If a tweet starts with three consecutive mentions,
we consider all of these pre-mentions. These usually indicate retweet or reply
type mentions.

• Inner-mentions: a mentioned user that is NOT mentioned at the beginning of
a tweet, but in the middle or at the end. These usually indicate notification or
reference type mentions.

• News-mentions: More generalized a ‘list-mention’: the mention can be cross-
referenced to a precompiled list (parameter input) of usernames. In our case we
will it use this specifically to indicate mentions of news-media, because media-
tweets often mention themselves, and to identify newsmedia-retweets more ac-
curately.

We constructed three features (45–47) which respectively output the amount of
occurrences for each of the defined mention-types.

4.3.2.3 Hashtags

Hashtags are special constructs in a tweet identified by an ‘#’ sign, to put emphasis
on a word or to indicate a relation to a certain subject. We distinguish three types of
mentions:

• Post-hashtags: a hashtag at the end of a tweet. If a tweet ends with multiple con-
secutive hashtags, we consider all of these post-hashtags. These usually indicate
a relation to a certain subject, or express a conclusive feeling.

• Inner-hashtags: a hashtag occurring in the middle of a tweet. These usually
indicate emphasis on the word they are applied to.

• List-hashtags: the hashtag can be cross-referenced to a precompiled list (param-
eter input) of keywords. Implemented as additional feature that may provide to
be useful.

We constructed three features (51–53) which respectively output the amount of
occurrences for each of the defined hashtag-types.

4.3.2.4 Prior similar tweets

Often in case of special events or incidents, tweets can be extremely similar and have
only minor differences (if any) due to excessive retweeting and replying. Sometimes,
a tweet is retweeted multiple times in a chain-linked fashion, each only appending a
new ‘pre-mention’ at the start, but without actually providing any new content.

58

Design and Implementation of our artifact 4.3 Part 1: Classification

Therefore, we constructed a feature (54) that looks up the amount of similar prior
tweets. This is implemented by maintaining a processed tweet cache (bounded by
a maximum size), and attach this value to every processed tweet. This cache is the
same as mentioned in Section A.2.6. By traversing this cache from most recent to less
recent, we can stop traversing this list when we find the first similar tweet containing
such an attached precalculated value, and incrementing it by one. This feature outputs
the amount of prior similar tweets given a fixed time window (parameter).

4.3.2.5 Distance from hotspot

By Observation 32 we have seen that geo-information attached to a tweet can pro-
vide additional information, especially since most Twitcident Instances monitor a spe-
cific area. Therefore, Feature 56 outputs the straight line distance to the closest de-
fined hotspot: this feature requires a list of hotspots as configured input. If no geo-
information is attached this feature outputs a distance so large it cannot be relevant
to indicate this. We consider a value of 100 kilometers sufficient. For normalization
purposes, we also cap the maximum distance to this value; i.e. if someone tweets 250
kilometers away from the closest hotspot, this feature will still output 100 kilometers.

4.3.2.6 Part of Speech attributes

Part of Speech tagging [22, 39, 60] is a mechanism that provide additional useful in-
formation on how a tweet is composed. It identifies the part of speech of a word,
i.e. whether it is a noun, verb, adverb, . . . We constructed three features (59–61) that
count the amount of nouns, verbs and adverbs respectively. The ratio of nouns to verbs
may tell something about the usefulness of a tweet, while the amount of adverbs tells
us how descriptive a tweet is. These features are powered by the Apache OpenNLP
library1 for the actual Part Of Speech tagging.

4.3.2.7 Future or past days mentioned

Tweets posted by news media often mention a specific day, often a day in the past.
For example, on a Thursday, news media often mention ‘yesterday’, ‘Wednesday’ or
‘Tuesday’. Such a past day mentioned provides an additional indication that it may
be news related content. A future day mentioned on the other hand could indicate an
upcoming event, which may be relevant. Therefore, we constructed two features (62–
63) that detect days of week mentioned. When such a day is within the next four days
with respect to the tweet timestamp, we consider it a future day; a past day otherwise.

4.3.3 Classifier

In Figure 4.6 the actual Classifier System is highlighted. This can be any type of
Machine Learning classifier that, based on a feature vector of precalculated values of
a data-instance (Tweet), outputs a target value: a nominal class or a numeric value.
In our case, this can be a nominal set like {‘Irrelevant’, ‘Relevant’} or a value in <
0.000,1.000 > indicating the relevancy of the tweet; a value closer to one would be

1https://opennlp.apache.org/

59

4.3 Part 1: Classification Design and Implementation of our artifact

Figure 4.6: Artifact decomposition: Classifier System highlighted

more relevant. However, an output value Y twice that of X does not necessarily mean
that Y is twice as relevant, and therefore we should interpret the result on an ordinal
scale. The benefits of such a numeric ordinal scale are that:

• tweets can also be “a bit relevant” and “highly relevant”,

• these can be ordered,

• and that the application could feature a user specified threshold slider to give the
operator freedom in choosing when a tweet is actually relevant

Therefore, we will experiment with both output setups in our evaluation (Chapter 5).
For our experimental setup and evaluation we have chosen for the Open Source

Machine Learning framework WEKA. This Java package was primarily designed to
develop and test new Classifier schemes, but is nowadays also used in production envi-
ronments. It features a high number of existing Classifier implementations, including
the option to install new ones by using packages, and also features testing and evalua-
tion schemes built-in, which allow for more effective and standardized evaluation.

4.3.4 Implementation specifics

We have implemented the feature calculation and classifier system in Java, because the
original Twitcident was implemented in Java, the large support for libraries like WEKA
and the fact that the processes developed for this part run as consoled daemons. More
details about this implementation can be found in Appendix Section C.2.

This part of the system is fully database driven, meaning that about everything
is configurable through the MySQL databases, including settings, parameters, feature
definitions, feature inputs like word-lists, . . . We considered this the most robust form
of implementation, with other system parts being able to easily communicate with this

60

Design and Implementation of our artifact 4.3 Part 1: Classification

part of the system while still being completely separate modules. It also allows for
multiple programming languages to communicate through a shared interface.

The full database specification can be found in Appendix C.1.1. A noteworthy part
is the specification and configuration of features, which our dynamically loaded, as
depicted in Figure 4.7.

Figure 4.7: Database table: a random subset of a feature configuration

Every feature is instantiated by the class given by feature_class that is passed
four parameters: two optional variable field parameters and two optional FeatureIn-
put classes. Each such FeatureInput is also given two variable field parameters. The
interpretation of all variable field parameters depend on the feature class or the input
class. All FeatureInput classes load their data from a table as depicted in Figure 4.8.

The FeatureCalculator unit outputs its results in three specifiable ways: directly
as a return value for further real-time processing, as a CSV export file and/or as an
ARFF file. ARFF is the preferred dataset input format for WEKA. However, in the
original ARFF specification, it is very hard (impossible without pre-filtering) to attach
metadata like ID and tweet text to each feature vector without affecting the classifier.
In Appendix Section C.2 we explain how we resolved this issue.

61

4.4 Part 2: Setup Approach Design and Implementation of our artifact

Figure 4.8: Database table: a random subset of some feature inputs

4.4 Part 2: Setup Approach

Figure 4.9: Artifact decomposition: Setup Approach highlighted

In this section we will discuss the Setup Approach component, which is high-
lighted in Figure 4.9. This part consists of a graphical User Interface that interacts
with a domain expert as to setup and configure a new instance. In Section 4.3 we have
seen that several features require preconfigured instance-specific input. The aim of this
part of the system is to identify, determine and collect these inputs. In some cases, we
will need to collect such input (suggestions) from data sources.

Figure 4.10 illustrates how we will come up with our Setup Approach. At the
start of our project, there was no specific definition (Fig. 4.10: A) on how to setup a
Twitcident Instance, and it required a lot of creativity. During this project, we tried to

62

Design and Implementation of our artifact 4.4 Part 2: Setup Approach

Figure 4.10: Our working strategy to devise the Setup Approach

formalize this process by defining a guideline for it (Fig. 4.10: B), while it still needed
to be done by hand without the help of automated tools. We will present the result in
Section 4.4.1. By this, we will grasp the idea of what we want to achieve and how to
improve on it.

The goal of the Setup Approach is to setup and configure our Classifier System.
Basically, this comes down to defining all required Features (Section 4.3.1) inputs,
which we consider our needs (Fig. 4.10: C). We will explicate all these inputs required
in Section 4.4.2. To help and guide the user in this process, we want to implement
several tools that connect to existing data sources, like dictionaries, thesauri, etc. We
consider this the availability of input (Fig. 4.10: D), and have listed our analysis of the
availability of these sources in Appendix D.

After that, we will have an overview of the source availability, needs and pro-
cess definition. If we combine these, we can come up with our user-interacted Setup
Approach (Fig. 4.10: E) that will guide a domain expert through setting up and con-
figuring the new instance. This solution will be presented in Sections 4.4.3, 4.4.4 and
4.4.5, with its end result being a fully configured list of features.

4.4.1 Manual setup approach

In its former current state, Twitcident Instances were configured manually by defining
all keywords and ignore terms by hand. During our thesis work, we attempted to
formalize and define this process as a guideline, which could later be used to automate
this task.

We proposed the following method:

1. Choose an initial short descriptive topic keyword.

2. Think about observations related to this keyword: What do you see when . . . ?
What do you smell when . . . ? What do you hear when . . . ? What do you
feel when . . . ? Repeat step 2-5 for identifying keywords, or extend existing
keywords with such terms.

3. Think about the context of this keyword: How do you become a . . . ? (i.e. ‘vic-
tim’ or ‘casualty’)

4. For this keyword, generate keyword combinations that would be relevant.

63

4.4 Part 2: Setup Approach Design and Implementation of our artifact

5. For this keyword, obtain synonyms (Dictionary, Thesaurus, Synonym.com, Wik-
tionary, . . .). Generate keyword combinations with this synonym that would be
relevant.

6. For this keyword, obtain hyponyms and hypernyms (Wiktionary, . . .). If these
would be relevant, add keyword combinations for them

7. For this keyword, check street language or slang for it. If existing, add keyword
combinations for them.

8. For each of the generated keyword combinations, check whether both their sin-
gular or plural form are captured, either by adding both entries or with the use
of wildcards.

9. For each of the generated keywords, check if there are alternative spellings or
common misspellings (for example, by Googling it). If existing, make sure these
are captured, either by adding both entries or with the use of wildcards.

10. For each of the generated keywords, obtain their compound forms (Wiktionary,
. . .). For example ‘fire’ would among others yield ‘fireworks’, ‘campfire’, ‘fire-
man’, ‘fireball‘, ‘firefight’, ‘fireproof’, . . . Some of these will be relevant and
therefore should be added as additional keyword combinations, others will yield
noise and could be added as ignore terms.

11. For each of the keywords added in Step 10, repeat Steps 4–9.

12. For each of the generated keywords, obtain potential contexts/definitions. At
least one of them will be the intended context/definition, while others would
probably yield noise. Add identifying ignore terms in general or to each keyword
combination to eliminate irrelevant contents.

13. For each of the generated keywords, check whether there exist proverbs, jokes,
sayings and other uses that would introduce noise, and add ignore terms to ex-
clude those.

14. For each of the generated keywords, check and remove for compound entities.
For example, ignore ‘blood’ if it directly occurs after ‘true’: True Blood is a TV
series.

15. For each of the generated keywords, check for uses on other language, and try
to exclude these by adding common related terms from the unwanted language
as ignore terms.

16. For each of the generated keyword combinations, check and assess its tense.
Generally, only present/future tense will be relevant. Past tense forums may be
added as ignore terms.

17. For each of the generated keyword combinations, search for it on Twitter and
analyze its usage to gain additional insight. Add additional keywords or ignore
terms based on the results and repeat Steps 4–16, or remove the keyword com-
bination if it only yields undesired results.

64

Design and Implementation of our artifact 4.4 Part 2: Setup Approach

Note that Steps 1–11 are converging mechanisms that expand the amount of data
captured, while Steps 11–17 our diverging mechanisms that remove undesired uses
and irrelevant content by restricting the scope.

4.4.2 Required inputs

In Section 4.3, we listed and discussed the features that were defined as parts of our
artifact. Some of these features require input. In table 4.5 we list the features that
require input, and what input they require. This basically is a truncated list of Tables
4.1, 4.2 and 4.3.

Features Required input
1–12, 27–30 Three degrees of keyword lists
13–15 Three degrees of hypernym lists
16–18 Three degrees of hyponym lists
31 Ignore terms
32 Ignore users
53 Hashtag list
56 Hotspots
64–65 Two list extensions of special keywords

Table 4.5: List of required instance-dependent feature inputs

We have researched the availability of such input resources, and have listed the
outcome in Appendix D. Such resources include Dictionaries, Semantic sources, Syn-
onym sources, Encyclopedia, Proverb and saying listings and other sources.

4.4.3 Three levels of wordlists

In our feature list, we have noted that we have three levels of matching features cor-
responding to three wordlists. We also noted that we want to aggegrate keywords in
wordlists for a single feature, to be able to adjust the wordlists after training while
keeping the amount of features constant. Based on the following definitions of each
level, we consider three such levels a sufficient amount:

• The first level represents all words and word expansions that have been collected
and approved through the guided process, excluding all ignore terms (therefore
matching if the positive terms match).

• The second level represent all words and word expansions that have been col-
lected and approved through the guided process, including all ignore terms
(therefore, only matching if all positive terms match but none of the negative
terms match).

• Finally, the third level consists of words that are frequently correlated to the
words on the former two lists, both positively as well negatively correlated ones
(the latter have a negative entry weight).

Note that the second level list actually is our intended base list. However, as we
noticed that one can easily exclude relevant tweets by including an ignore term and

65

4.4 Part 2: Setup Approach Design and Implementation of our artifact

value the recall of our system the first level list is included. The third level list is
included to add extra contextual information (see Observation 12), and is similar to
the pseudo-relevance feedback (PRF) mechanism used by Olteanu et al. [45].

4.4.4 Word expansion

The most valuable and robust source is Wiktionary, and this is also the only source
which provides a publicly available API to obtain the content. All other sources need
to be scraped from their web-pages. Given a keyword, we request and scrape all in-
formation about the word we can possible obtain, like synonyms, definitions, usages,
proverbs, . . . We will call this word expansion.

Given a keyword, we first call the Wiktionary ‘parse’ API and request the ‘text’ and
‘templates’ section. Based on the available templates, we can deduct which sections
and formatted tables are available on the page. Using lots of regular expressions we
parse each such section to collect all available useful information. An overview of this
process is listed in Algorithm 3, located in Appendix Section C.3.

Similar processes are executed on the other data-sources to expand the word even
further, although we need to directly scrape those sources that do not have an API,
and most sources only expand parts of the return object R as they mostly focus on a
limited set of aspects. We call this process word expansion throughout the rest of this
chapter, and the function expandWord(W) will refer to this process with W being the
target word. An example output is listed in Figure 4.11. More examples of complete
expansions can be found in Appendix E.

66

Design and Implementation of our artifact 4.4 Part 2: Setup Approach

Figure 4.11: A truncated example word expansion of the word ‘brand’ (‘fire’)

67

4.4 Part 2: Setup Approach Design and Implementation of our artifact

4.4.5 Setup approach

Algorithm 1 (page 70) describes the process we propose to setup our instance with
features and their required inputs. Whenever an undefined variable is encountered,
assume an empty object or set. All line numbers mentioned in this section refer to
lines in this algorithm.

A PrimaryWord consists of three sets of words:

base terms Contain the first input PrimaryWord as well as its synonyms and conjuga-
tions

combo terms Contains words that may increase relevancy if it occurs together with a
base term

ignore terms Contains words that would yield the entry irrelevant: mostly because
the word is used in another context than the intended context

First, we collect some initial properties and user choices (lines 3–6), followed
by initial descriptive keywords (line 7). We will ask the user control questions, for
example what will be observed: what can be seen? or heard? or smelled? or felt? How
would Twitter users tweet about it?

We proceed to loop (lines 8–38), composed of a two-phase process for each key-
word (lines 17–37), preceded by preliminary word expansion (lines 10–16). The word
expansion function is called on all unexpanded base terms of each PrimaryWord. Dur-
ing this process, the words may be substituted if they are derived from a more common
base form, i.e. for verbs this would be the infinitive while for nouns it would most
likely be its singular form in case of plural input.

The first of these two phases performs a base term expansion by listing synonyms,
conjugations and diminutives (lines 17–23). Besides base term expansion, new Prima-
ryWords can also be added if desired. The two-phase processing is required because
the second phase processing of a word requires all base terms of the PrimaryWord to
be complete and expanded for further processing.

During the second phase (lines 24–37) the combo terms and ignore terms are
added, while also still enabling the user to add additional base terms of even new
PrimaryWords if encountered in the displayed contexts. This phase is split in two
separate views to increase user experience and efficiency: the first part (lines 25–29)
focuses upon contexts that are more likely to yield positive terms (combo terms) while
the second part (lines 30–34) is more likely to yield negative terms (ignore terms).

After all PrimaryWords have passed this two-phase process, we request the user
(line 40) to select all base and combo terms that would also be relevant as a hashtag
(and enable the user to specify new ones if desired), and attach a weight to all base and
combo terms (line 41).

After we have acquired weights for each word, we can start generating the first
two degrees of WordLists (lines 42–53), as explained in Section A.2.1. WordEntries
are generated by combining one of the base terms with all subsets of combo terms
and adding all ignore terms as negative entries. Recall that the second degree list
is composed of all regular WordEntries, while the first degree list is the same while
excluding all ignore terms. The WordEntry weight is calculated by

68

Design and Implementation of our artifact 4.4 Part 2: Setup Approach

Type Term(s) Weight Actual matching weight
Base-term aardbeving 5
Combo-term aardbeving 2
Combo-term aardbeving 1
WordEntry aardbeving d(5)1.0e= 5 5
WordEntry aardbeving + trillen d(5+2)1.1e= 9 5+9 = 14
WordEntry aardbeving + lawaai d(5+1)1.1e= 7 5+7 = 12
WordEntry aardbeving + trillen + lawaai d(5+2+1)1.2e= 11 5+9+7 = 21

Table 4.6: Example WordEntry weight calculation for base term ‘aardbeving’ and
combo terms ‘trillen’ and ‘lawaai’ using α = 1.0 and β = 10

⌈
(∑

w∈T+

weightw)
(α− 1

β
)+(|T

+|
β

)

⌉
where T+ is the set of positive matching terms and α and β are constant parameters

≥ 1. The sum of term weights is powered by the amount of terms in a WordEntry,
yielding a slightly exponential increase with more terms. This way, more specific
combinations are preferred over less specific combinations. Also keep in mind that the
matching features sum all match results together, so all less specific matches are also
matched and their weights added. Therefore, we consider a very slight exponential
increase sufficient, and chose α = 1.0 and β = 10. Table 4.6 illustrates an example
case.

After generating the first two degrees of WordLists, we construct the hypernym
and hyponym lists (lines 54–55). As the terms on these lists are all derived, there is no
need to make multiple lists for each degree.

Next, we obtain the final inputs from the user (lines 56–59) required for Features
31–32, 56, 64–65: ignore users, global ignore terms, hotspots, . . . These inputs are all
optional.

We continue with extracting correlated words that often co-exist when using the
currently defined matchers and seem to have a positive or negative impact (lines 60–
73). This process compensates for terms the current process did not propose and the
user did not think of, and for potential event detection (Appendices G and H). The
result is the third degree WordList.

Finally, we allow the user to disable some features if desired (line 74).

69

4.4 Part 2: Setup Approach Design and Implementation of our artifact

Algorithm 1 Setup approach
1: procedure SETUPINSTANCE

2: E ←{} . Eword will contain the word-expansion for word
3: Request instance properties (ID, Title, . . .) from user and create new instance
4: Request which verbal tenses may be relevant and should be retrieved
5: Request whether news is relevant
6: Request whether images and links would likely increase relevancy
7: Request initial descriptive topic terms and put them in PrimaryWords.
8: while ¬nothingDone do
9: nothingDone← true

10: for all W ∈ {PrimaryWords | ¬Wexpanded} do
11: if W is derived from another word D and user wants to replace it then
12: Substitute W by D in PrimaryWords
13: end if
14: E ← E]EXPANDWORD(W)
15: Wexpanded ← true
16: end for
17: if ∃W ∈ {PrimaryWords | ¬Wphase1_processed} then
18: Show the user a page with all synonyms, verbal conjugations,

plural forms and diminutives from EW and let the user attach a category
{irrelevant,relevant, primary} to each of these terms: we name this set T

19: PrimaryWords← PrimaryWords∪{t ∈ T | primary}
20: Wbase_terms←Wbase_terms∪{t ∈ T | relevant}
21: Wphase1_processed ← true
22: nothingDone← f alse
23: end if
24: if ∃W ∈ {PrimaryWords | ¬Wphase2_processed} and nothingDone then
25: Show a page of all entries

⋃
w∈Wbase_terms

(Ew
de f s∪Ew

usages∪Ew
hypernyms)

and make each word individually draggable to any of the following categories
{synonym,combo, ignore, primary}

26: PrimaryWords← PrimaryWords∪ primary
27: Wbase_terms←Wbase_terms∪ synonym
28: Wcombo_terms←Wcombo_terms∪ combo
29: Wignore_terms←Wignore_terms∪ ignore
30: Show a page of all entries

⋃
w∈Wbase_terms

(Ew
proverbs∪Ew

hyponyms) and
make each word individually draggable to any of the following categories
{synonym,combo, ignore, primary}

31: PrimaryWords← PrimaryWords∪ primary
32: Wbase_terms←Wbase_terms∪ synonym
33: Wcombo_terms←Wcombo_terms∪ combo
34: Wignore_terms←Wignore_terms∪ ignore
35: Wphase2_processed ← true
36: nothingDone← f alse
37: end if
38: end while

70

Design and Implementation of our artifact 4.4 Part 2: Setup Approach

Algorithm 2 Setup approach (continued, 1)
39: W ←

⋃
W∈PrimaryWords (Wbase_terms∪Wcombo_terms)

40: Present all W and let user identify which should be added to the Hashtags set.
Also allow creation of new hashtags.

41: Present all W and let user specify weights for all individual words
42: for all {W ∈ PrimaryWords} do
43: for all b ∈Wbase_terms do
44: for all {subset | subset ⊂Wcombo_terms do
45: WordEntrypositiveEntries← b ∪ subset
46: WordEntrynegativeEntries← /0

47: WordEntryweight←d(∑w∈WordEntrypositiveEntries weightw)1.0+(
|WordEntrypositiveEntries|

10)e
48: WordList1←WordList1]WordEntry
49: WordEntrynegativeEntries←Wignore_terms

50: WordList2←WordList2]WordEntry
51: end for
52: end for
53: end for
54: HyponymList←

⋃
W∈PrimaryWords (E

base_term
hyponyms)

55: HypernymList←
⋃

W∈PrimaryWords (E
base_term
hypernyms)

56: Request all users to ignore
57: Request all global ignore terms
58: Present a map and request the user to geo-tag all hotspots
59: Present two lists of default special keywords and let the user confirm/extend
60: for all W ∈WordList1∪WordList2 do
61: Sample a set of tweets matching W while filtering based on given proper-

ties (ignore terms, ignore users, news relevant, . . .) and append to T
62: end for
63: Extract most frequent co-occurring terms O in T that are not a term in

WordList1∪WordList2
64: Filter T : keep elements that contain a term ∈ O
65: Present T and let the user classify these tweets in {Tpositive,Tnegative}
66: for all o ∈ O do
67: Scoreo← |{t∈Tpositive|o∈t}|

|{t∈T |o∈t}|
68: if Scoreo > θ+ then . θ+ is a upper threshold 0.5 < θ+ < 1.0
69: WordList3←WordList3]< {o}, /0,1 >
70: else if Scoreo < θ− then . θ− is a lower threshold 0.0 < θ− < 0.5
71: WordList3←WordList3]< {o}, /0,−1 >
72: end if
73: end for
74: Present the list of features and let the user confirm it, or disable some of them
75: end procedure

71

4.5 Part 3: Training Approach Design and Implementation of our artifact

4.5 Part 3: Training Approach

Figure 4.12: Artifact decomposition: Training Approach highlighted

In Section 4.3 we discussed the actual classifier and all potential features. In Sec-
tion 4.4 we explained how we propose to setup an instance and its feature configura-
tion. With those parts setup, it is time to learn our classifier how to interpret the features
by training is on a dataset, so it can become operational. Figure 4.12 illustrates this
component.

In this section, we will briefly discuss this component but will consider its con-
crete implementation outside the scope of this thesis work, as it is another quite com-
plex component requiring research and evaluation on its own. Furthermore, we will
not require this training component to evaluate our proposed system, as we will have
different means of gathering training data. We elaborate on this in Appendix F.

The problem at hand seems trivial at first, but is quite a complex one. The following
difficulties arise:

1. We cannot reasonably expect the configuring user to manually classify hundreds
or thousands of tweets, so the dataset should be as limited as possible. How can
we keep the amount of effort to a minimum?

2. If we would collect random tweets, we cannot reasonably expect to have any
relevant tweet due to the extremely low signal we are trying to detect. Even if
we would perform a targeted keyword search, the signal can still expected to be
very low. Furthermore, performing such a targeted keyword search is likely to
introduce a bias in our dataset. How could we prevent such a bias? How can we
sample a representative dataset? How can we balance between representativity
and the risk of a biased dataset?

3. From what time window to sample tweets? Some events and monitors may be
time-relevant while others are not. Sampling from a small window could also

72

Design and Implementation of our artifact 4.5 Part 3: Training Approach

introduce a bias if something special was happening at that time. Should the
sampling window be instance specific? How to determine such bounds?

4. We expect every feature needs its full output range to be represented in the
dataset in order to be accurately represented and interpreted by the classifier
system. For example, if a feature tells us how many links there are in a tweet
and no entry in our dataset contains a link, how can the classifier learn the sig-
nificance of that feature? Furthermore, if in the same case a single document
(tweet) contains a link and is classified as relevant, this could mislead the classi-
fier to learn that a link is always relevant, while this cannot be reasonably stated
based on a single document. If with our amount of features every feature has
its output range fully represented by a number of cases, the size of the dataset is
going to be enormous. This is contrasting to our first listed difficulty.

We propose the following conceptual approach, hereby assuming the output of the
classifier is a numeric value 0.000 ≤ out put ≤ 1.000 representing the relevancy of a
document (tweet):

1. For each feature, collect at least n≥ 10 samples for each of its output values. For
text matchers, this means n hits on each of its WordEntries on the given target
field. For Feature 50 regarding link occurrences, this means n hits on any amount
of links up to a certain value, i.e. up to 2 links. We should determine appropriate
values of n for each feature. For strings matchers, n = 10 may be sufficient,
whereas for the links features a much larger value n≥ 50 may be required. This
is directly related to the expected significance of the feature on its own: text
matchers are pretty domain-specific and can therefore be expected to be more
relevant than the amount of links, of which the impact is much harder to estimate
and which depends more on its context and thus surrounding features.

2. Apply a static manually constructed pre-training algorithm on this dataset pre-
classify these documents (tweets). This algorithm relies on the same calculated
feature vector, but we manually reason over it: we base this algorithm on what
we expect to be the significance of each feature. For example, we can expect
the significance of text matchers to be positive with a higher output, while we
expect links and images to be less relevant but still a positive impact, and the ‘Is
retweet’ or ‘Similar prior tweets’ features to have a negative impact.

This algorithm than aggregates the values and corresponding significances to-
gether. In its most simple form this could be by a linear regression formula:

∑
FeatureF ∈featurevector

out putF · signi f icanceF

However, we could also introduce some feature dependencies to relate feature
outputs, i.e. introducing conditional constructs between features. This also leads
us to think that Genetic Programming2 [29] may very well be of use in this
process.

2http://www.genetic-programming.org/
http://www.geneticprogramming.com/

73

4.6 Summary Design and Implementation of our artifact

The pre-training of this algorithm should be executed with a lot of uncertainty.
When the actual classifier output would be in the normalized range [0.000,1.000],
this pre-training algorithm should output values in [0.500− δ,0.500+ δ]. Our
initial thoughts are that δ = 0.100 would be a sufficient value.

3. We would then repeat the first step to acquire a much smaller dataset that can be
annotated by hand, let the user classify these as relevant or irrelevant and attach
values on a “more certain” range. For example, when we take δ = 0.250, a tweet
classified as irrelevant will receive a score of 0.250 while a relevant tweet would
receive a score of 0.750. We will save all classifications for later re-training.

4. Next, we should somehow collect the tweets the classifier is most uncertain
about, either where the output score is close to 0.500, or where the retrained
classifier differentiates from the pre-trained classifier, and let the user classify
these tweets more accurately. Example classifications could include the set
{Relevant(0.9),A bit relevant(0.7),A bit irrelevant(0.3), Irrelevant(0.1)}, with an
example score between parenthesis. We would need to research and explore the
possibilities of Semi-supervised learning [10,62] and Active learning [52] in this
case, because our idea seems to be very closely related to these concepts.

5. We could sample tweets from Twitter that the current classifier classifies as rel-
evant, and let the user judge the results. Based on all results (document-score
pairs) we could retrain the classifier, and repeat the process.

6. When the instance is operational, a user feedback mechanism should be imple-
mented such that the user can mark tweets as relevant or noise (irrelevant), and
use these classifications either to periodically retrain the system, or apply Online
learning [19] to it.

With this discussion of the training component, we have proposed an entry-point
for further research and a concrete implementation. For this thesis work, we do not
require this component to evaluate our prototype, and will use an alternative way to
obtain training data (Appendix F) for evaluating our prototype artifact.

4.6 Summary

In this Chapter, we tried to answer the following questions:

What choices have been made towards a solution? What constraints or
which assumptions have we imposed while designing our artifact?
What artifact have we designed to solve our problem?
How does each of the components of this artifact work and why have we
designed it like that?

We have discussed our designed artifact as a solution to the problem, which con-
sists of several components. Figures 4.13 and 4.14 represent the artifact’s architecture
and its context.

The artifact is a system that can be split into the following major components:

74

Design and Implementation of our artifact 4.6 Summary

Figure 4.13: Artifact decomposition

1a - Configured features These determine and calculate potentially relevant proper-
ties over each document, in our case tweets. Some of these features are Twitci-
dent Instance specific, and need to be configured by the Setup Approach.

1 - Classifier The Classifier system is the component that actually classifies the tweet.
Based on the pre-calculated vector of feature output values, it attempts to reason
over them to classify a tweet as relevant or irrelevant. However, in order to be
able to do this, the classifier needs to be trained to ‘learn’ the usability of each
feature. This is done by feeding a set of pre-annotated documents (tweets) of
which the output value (relevancy) is known a-priori. The Training Approach
realizes this part.

2 - Setup Approach Some features are instance-dependent, and therefore need con-
figuration input such as word lists. These configurations are also prone to error.
Therefore, the Setup Approach takes care of this by guiding the user through an
interactive approach that consults several Data Sources.

3 - Training Approach In order to learn what is relevant, the Classifier needs to be
trained with a dataset of which the outcomes are known a-priori. The Training
Approach is used to compose such a dataset.

75

4.6 Summary Design and Implementation of our artifact

Figure 4.14: Artifact overview: context

76

Chapter 5

Experiments and Evaluation

Let us recall our main research question:

How can we improve the results of real-time social media filtering with
respect to Twitcident?

In Chapter 4 we claimed to have an answer to this question by, and presented our
artifact. To validate whether this claim is true, we have to compare our results to the
existing Twitcident application in order to verify an actual improvement. We will start
by discussing how we collected our ground truth datasets in Section 5.1.1, which is de-
scribed in more detail in Appendix F. In Section 5.2 we will perform experiments with
our designed artifact in order to find a well performing configuration. In Section 5.3
we will compare the performance of our artifact to the existing Twitcident application.
Subsequently, this chapter will answer the following questions:

How can we obtain good representative ground truth datasets?

What is a good performing configuration of our artifact? How well does
it perform?

Does our artifact actually improve the results with respect to the existing
Twitcident application?

5.1 Datasets

5.1.1 Data Collection

To evaluate our Classifier performance, we need training and test data of which the
classifications our known a priori. In Appendix F we elaborate on this in detail. In
this section, we will give a brief summary of this appendix on how we obtained our
ground truth data, and how it is processed. The goal here is to acquire a fully classified
representative dataset to evaluate our classifiers.

We have used the existing Twitcident databases to obtain our data, due to the ex-
tremely low signal we are trying to detect (Observation 9). These databases contain
all tweets that have been streamed, even unclassified ones. Due to the hard problem

77

5.1 Datasets Experiments and Evaluation

domain and data sensitivity, we chose to do the annotation work ourselves within the
CrowdSense team, using a developed Data Annotation application, where each tweet
is annotated by multiple employees to achieve some consensus. In this application, a
tweet is annotated on relevancy (irrelevant, relevant, extremely relevant) on both tweet-
and topic-level. To construct a representative dataset, we have devised Algorithm 5
(page 147) to generate our annotation batches as balanced as possible.

Next we must process our annotation results to the normalized range 0-100, with
100 being most relevant. Therefore, we have developed a small algorithm that takes
into account the facts that a single tweet is always annotated by multiple users, that not
every annotating user is as knowledgeable and close to the client, and that each tweet
is both annotated on a tweet- and a topic-level. This is described in Section F.4.

In Appendix F we have justified all choices and have elaborated on the Data An-
notation in depth. We refer to this appendix for more details, and algorithm specifics.

5.1.2 Resulting datasets

After using this approach we selected all topics that had more than 30 relevant tweets
in their dataset, resulting in the following datasets (Table 5.1):

ID Instance Total Relevant
NPL_94 Nationale Politie Limburg

Brand (Fire)
600 103 (17.2%)

GG_57 Gaswinning Groningen
Aardbeving (Earthquake)

705 110 (15.6%)

NS_19-22 Nederlandse Spoorwegen
Storing & Vertraging (Failure & Delay)

629 304 (48.3%)

NS_16 Nederlandse Spoorwegen
Zitplaatsen (Seats)

629 35 (5.6%)

Table 5.1: Annotated datasets

Note that the “Storing & Vertraging” dataset has a significantly higher amount
of tweets judged relevant. This is due to the fact that tweets from several automatic
sources were judged slightly relevant, and these take up a certain proportion of the
dataset.

5.1.3 Dataset post-processing

Note that the base datasets all contain normalized numerical classifications. We chose
this approach because it maximizes the preservation of information detail, while it is
still flexible enough to be converted to other formats.

However, numerical values are only suited for regression testing, but not for binary-
or multi-class classification. Therefore, we also construct nominal datasets. The trivial
way to do this is to choose boundary values 0.000 < βc < 1.000 for each nominal class
c and assign classes based on this partitioning. For example, if we want a binary clas-
sification {good,bad} with the boundary at β0 = 0.4, we would assign the nominal
class ‘bad’ to all tweets with a score lower strictly than 0.4, and ‘good’ to all tweets
with a score of 0.4 and higher.

78

Experiments and Evaluation 5.2 Experiments

Using this format we constructed several pseudo-datasets for each base dataset that
we will experiment with, arbitrarily for exploration purposes. These are listed in Table
5.2:

Postfix ID Description
_NUM The original normalized integer class values ranging from 0 to 100.
_NOM_GB_25 A binary classification into {good,bad} with β0 = 0.25.
_NOM_GB_40 A binary classification into {good,bad} with β0 = 0.40.
_NOM_GB_60 A binary classification into {good,bad} with β0 = 0.60.
_NOM_GUB A multiclass classification into {good,use f ul,bad} with β0 =

0.35,β1 = 0.55.
_NOM_C15 A multiclass classification with five class levels {C1,C2,C3,C4,C5}

with β0 = 0.20,β1 = 0.40,β2 = 0.60,β3 = 0.80.

Table 5.2: Nominal classes

5.2 Experiments

In Chapter 4 we have designed our artifact: a solution consisting of multiple com-
ponents. One of these components was the classifier component; which role can be
carried out by a multitude of classifiers. Several questions arise about this component:

• What classifiers and configurations perform well on our problem?

• How do numerical and the different nominal classification schemes compare to
eachother?

• How does the amount of enabled features affect the classification performance?

By performing initial experiments we intend to answer these questions in this sec-
tion. Using these answers, we can then compare the performance of our artifact to the
existing Twitcident performance.

5.2.1 Suitable classifiers

We created our test instances as listed in Table 5.1 using the Setup Approach (Section
4.4), and ran our Java implementation for calculating the feature values and creating
the training sets. We then used the WEKA Experimenter tool to produce results for
each classifier in the package. We performed these experiments using 10-fold cross
validation with 16 runs (with unique seeding) for each combination of dataset and
classifier. We present the averaged results over all datasets for each classifier in Figures
5.1 and 5.2. Although we performed the experiments with all available classifiers and
varying options, we only list the top 12 performing configurations.

Figure 5.1 lists the results for all numerical classifiers using regression. We have
color-coded the results relative to the other classifiers (vertically) in such a way that
the for each measure the best value is marked green and the worst is marked red. Note
that we have only shown the best performing classifiers, so a red background does
not necessarily mean the classifier performs bad but rather that the others perform
relatively better.

79

5.2 Experiments Experiments and Evaluation

Figure 5.1: Classifier comparison for numerical output

From this figure, we observe that the Random Forest classifier performs best with
respect to all evaluation measures listed. Interestingly enough, Neural Networks (eval-
uated with various network configurations) and Support Vector Machines, two very
common types of classifiers are not present in the top performing classifiers.

Figure 5.2: Classifier comparison for nominal output

Figure 5.2 similarly lists the results for the nominal classifiers, with the corre-
sponding set of evaluation measures. Again, Random Forest is one of the best candi-
dates, seemingly followed by REPTree + Bagging and JRip (the WEKA name; more
commonly known as Ripper). However, if we remove all other classifier candidates
and zoom in (Figure 5.3) we can clearly see that REPTree does not outperform the
other two on any of the measures.

Figure 5.3: Classifier comparison between top three

80

Experiments and Evaluation 5.2 Experiments

This leaves us with Random Forest and JRip as best candidates. Although Random
Forest performs better on most measures, we may argue JRip to be the better candi-
date. The aim of this thesis is to filter out noise, which is equivalent to ruling out false
positives and thus increasing precision. However, considering our problem carefully,
we note that we want to detect a low signal of tweets relevant to the operator and miss-
ing tweets is more devastating than having some noise left. Therefore, it is essential to
keep the amount of false negatives as low as possible, and thus maintaining a recall as
high as possible. This is why we also list the F2-measure, which values recall twice as
much as precision. Re-evaluating the results with this in mind, leads us to observe that
JRip performs better with respect to reducing false negatives (consequently leading
to a higher recall and better F2-measure). Therefore, with Random Forest leading on
accuracy and precision and JRip leading with respect to recall, we will not rule out this
candidate and consider both classifiers in subsequent experiments.

5.2.2 Output format

In Section 5.1.3 we described how we produce datasets with nominal output classes
from the numerically annotated dataset, and mentioned multiple schemes to do so. We
are interested in how these schemes compare to eachother, and which one to use in
subsequent experiments and evaluation.

For each of the test instances, we produced five datasets corresponding to the nom-
inal class schemes described. For each of these combinations, we applied two classi-
fiers (JRip and Random Forest) using the WEKA Experimenter tool and applied 10-
fold cross validation. We repeated this for 16 runs, and averaged the results over these
16 runs. After observing that these values did not show considerable differences, we
then averaged the results of both classifiers to a single value for each measure. The
results are listed in Figure 5.4.

Figure 5.4: Comparison of nominal class output format

First of all, note that the measures output only apply to a single class against all
other classes. WEKA automatically only calculates these measures for the first class

81

5.2 Experiments Experiments and Evaluation

against the remainder classes. Therefore, we put our most relevant class (‘good’) first,
since we value the precision and recall of this class over the other nominal classes.

This is also the reason why the “_NOM_C15” entry (the one with five nominal
classes) is not listed: the ‘best’ class often had next to no positives in it, resulting in
divisions by zero or skewed results. After manually analyzing its output using WEKA
Explorer, we can conclude this scheme performs far worse than the listed classes. As
we can see in Figure 5.4, the “_NOM_GUB” multi-class scheme (with three classes)
also performs worse than the other three binary class schemes.

We can also observe that over all, the “_NOM_GB_25” and “_NOM_GB_40”
schemes generally perform best, but not with respect to the accuracy measure. This
can be explained by the large ratio of negatives: the “bad”-class is considerably more
populated than the “good”-class. Furthermore, after manually examining the datasets,
we can conclude that generally the “_NOM_GB_40” scheme with a β-boundary of
around 30−40 best represents the desired output with respect to how the instance was
configured, and this is also being represented by the classifier performance. Still, we
should note that this highly depends (and correlates) with which intent the instance
was constructed during the Setup Approach.

Recall that our initial focus was on constructing a classification scheme that outputs
a normalized value in the range [0.000− 1.000], so we could implement a threshold
value as a configuration option (slider) in the application (Twitcident). However, the
nominal classifiers seem to perform much better than the numerical classifiers. As an
alternative, we propose to train multiple binary classifiers with different β-boundary
values, and let the configuration option select the classifier based with the correspond-
ing boundary value.

5.2.3 Amount of features

Another question that arises is: How does the amount of enabled features affect the
classification performance? We have a long list of varying features. We could imagine
that adding additional (potentially irrelevant) features may reduce classification quality
due to limited training data, but also that removing some features may also reduce
classification quality. In Section 4.3.1 we proposed all features. We will perform
experiments with different subsets of features as listed in Table 5.3.

Subset ID Enabled features
48F 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 19, 20, 21, 22, 23, 24, 28, 29, 30,

31, 32, 33, 36, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 59, 60, 61,
62, 63, 64, 65, 67, 68, 69, 70

33F 1, 2, 4, 5, 10, 11, 31, 32, 33, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56,
59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70

26F 1, 2, 4, 5, 10, 11, 31, 32, 33, 44, 45, 46, 47, 49, 50, 51, 52, 53, 62, 63,
64, 65, 67, 68

Table 5.3: Subsets of enabled features

We consider the 48F-subset to be our full set as it includes all features that we have
currently implemented. For the 33F-subset we disabled some features that we do not
expect to contribute, for example features matching our keywords against usernames

82

Experiments and Evaluation 5.2 Experiments

and user descriptions. We consider the 26F-subset to be the minimal subset of essential
features, of which we are quite confident they are required.

For each of these subsets, we applied nominal as well as numerical classification
using the WEKA Experimenter tool and applied 10-fold cross validation. We repeated
this for 16 runs, and averaged the results over these 16 runs. The results are listed in
Figure 5.5 for numerical classification and Figure 5.6 for nominal classification.

Figure 5.5: Comparison of amount of enabled features for numerical classification

Figure 5.6: Comparison of amount of enabled features for nominal classification

The results reflect our expectations: the 26-feature subset of essential features is
always outperformed by the larger subsets that may have additional relevant features.
The 33-feature and 48-feature subsets are always very close to each other. Interest-
ingly, for the numerical classifiers the 33-feature subset generally performs slightly
better, while for nominal classifiers the 48-feature subset generally performs slightly
better. This leads us to hypothesize that the nominal classifiers are better capable of
handling additional low impact features. Ofcourse, this needs to be statistically verified
by more extensive experiments before we can assume it.

83

5.3 Results comparison Experiments and Evaluation

5.2.4 Classifier performance

Figure 5.7: Final performance measures for our artifact

Figure 5.7 lists our final performance measures, using the (roughly) best perform-
ing configurations we have determined in previous sections. We notice both classifiers
to perform similarly well, with JRip being slightly better at preventing false negatives,
and thus increasing recall and F2-score, while the Random Forest classifier performs
better on precision thus displaying less noise, at the cost of missing a few relevant
tweets.

Although the accuracy scores are very high, this is also largely due to the huge
amount of negatives in the dataset, and thus can be attributed to the low signal. How-
ever, considering the difficulty of our problem (Section 2.5), the current absence of
several important features1 and the low consensus among data annotators, we can con-
sider the performance of our artifact with an F2-score of 0.7 up to 0.9 very satisfying
and future results (with all features implemented) even more promising.

5.3 Results comparison

In Section 5.2 we have performed experiments to find the current most suitable clas-
sifier and configuration, and measured its performance. In this section, we will bridge
back to our thesis objective. Recall our research question:

How can we improve the results of real-time social media filtering with
respect to Twitcident?

In Chapter 4 we claimed to have an answer to this question, and presented an
artifact. To evaluate whether this claim is true, we have to compare our results to the
existing Twitcident application in order to verify an actual improvement.

Therefore, we will repeat the experiments for the existing Twitcident application
and measure its performance. We will then compare these results to our presented

1For example, the ‘sentiment’, ‘subjectivity’, ‘seems observation’, ‘present and past tense’, ‘poster
tweet rates’, ‘slang’ and ‘popular term’ features were all not implemented (and thus not enabled) yet
during these experiments

84

Experiments and Evaluation 5.3 Results comparison

artifact. Because Twitcident is a binary classifier, i.e. it displays a tweet or not, we can
only compare the results to the nominal output scheme.

Consider Θ+ to be the set of tweets displayed by the existing Twitcident appli-
cation, scoret the actual ground truth score of tweet t in our annotated dataset and a
boundary value β (similar to the one described in Section 5.1.1); we can then calculate
the amount of true/false positives/negatives using:

True Positives (TP) = ∑
t

{
1 if scoret ≥ β and t ∈Θ+

0 otherwise

False Positives (FP) = ∑
t

{
1 if scoret < β and t ∈Θ+

0 otherwise

True Negatives (TN) = ∑
t

{
1 if scoret < β and t /∈Θ+

0 otherwise

False Negatives (FN) = ∑
t

{
1 if scoret ≥ β and t /∈Θ+

0 otherwise

In Section 5.2.2 we have seen that a boundary value β = 0.4 (corresponding to
the _NOM_GB_40 output scheme) produces the most accurate results. If we want to
compare the classification performance of our artifact using this scheme, we should
ofcourse compare it to Twitcident’s results using the same boundary value. However,
we will first check whether this value also produces optimal results for Twitcident on
its own.

Figure 5.8: Comparison of existing Twitcident performance for various boundary val-
ues

Figure 5.8 shows the performance metrics of the existing Twitcident application
for various boundary values. Again we can see an improved accuracy as the amount of
positives decreases, which can be attributed to the high proportion of negatives in the
datasets. With respect to all other performance metrics, Twitcident seems to be most
accurate with β = 0.4, which is consistent with earlier findings. Therefore, we will
compare our designed artifact to Twitcident using β = 0.4.

Figure 5.9 present the comparison of performance between the designed artifact
presented in this thesis and the existing Twitcident application. Although the exist-
ing Twitcident application in some cases has a higher recall, we can see that our de-
signed artifact consistently outperforms it when we take precision into account within
the F-scores. Sometimes there is just a slight increase in performance (NPL_94 and

85

5.3 Results comparison Experiments and Evaluation

Figure 5.9: Comparison of performance between our designed artifact and existing
Twitcident application

NS_16 datasets), while sometimes the performance increase is remarkable (GG_57
and NS_19-22 datasets). On average, the F2-score is improved by 30%. In accor-
dance with these results, we can confirm that our designed artifact indeed improves
the filtering mechanism and reduces noise while maintaining a high recall.

86

Chapter 6

Conclusions and Future Work

We will conclude our work with this final chapter. We will summarize our thesis work
in Section 6.1 which answers the primary and all secondary research questions stated
in our introduction (Section 1.5). With our work summarized, how will it go from
there? We will address this by discussing future work to be done in Section 6.2. We
will discuss entry-points for future research and define potential areas for improvement
to follow up our work. Finally, we will list our contributions in Section 6.3.

6.1 Summary

Since the commencement of Web 2.0, people are able to contribute to the Web through
social services like Twitter. Such massive amounts of user generated content contains
a lot of valuable information for various interested parties. This enormous flow of in-
formation contains vital information which cannot be processed adequately by default
means.

To process and filter this information, CrowdSense developed Twitcident. This
technology is able to monitor a specific set of topics, events or areas in real-time, pro-
viding the monitoring client with potentially valuable information. It basically exploits
humans as sensors, filters the signal coming from all those sensors and attempts to ex-
tract the relevant meaningful information. An analysis of the relevant information by
an operator can result in an estimation of severity, and an operator can act accordingly.

However, among all relevant and useful content that is extracted, also a lot of
irrelevant noise is present. Our goal is to improve the filter in such a way that the
majority of information presented by Twitcident is relevant. In order to achieve this,
we must reduce the noise among presented tweets, resulting in the following research
question:

How can we improve the results of real-time social media filtering with
respect to Twitcident?

The last part of this question “with respect to Twitcident” imposes some additional
constraints on the problem, like real-time filtering, dynamic word-lists as a result of a
dynamic vague domain, multiple instances with limited setup time and Dutch tweets
as primary target (Section 2.5).

87

6.1 Summary Conclusions and Future Work

Figure 6.1: Artifact decomposition

In Chapter 2 we elaborate more on the Twitcident application (Section 2.1) and per-
form a problem analysis to identify where the noise originates from and what factors
may attribute to relevancy by observing real life instances. For example, we observe
the output quality is largely determined by the quality of the keyword combinations
defined, a very low signal of relevant tweets, the importance of synonyms and hy-
ponyms, misspellings, verbal tense, user types, and so on. The full list of observations
can be found in Section 2.6.

In order to solve this problem we apply the Design Science methodology (Section
3.1) and design an artifact that improves on the filtering mechanism (Chapter 4). The
artifact is a system composed of several major components, as illustrated by Figure
6.1.

Although our artifact is designed to improve Twitcident, its application is not lim-
ited to it but can be generalized to any real-time filtering system under the same con-
straints (i.e. assuming in incoming stream of tweets).

Assuming an incoming stream of raw tweets, the Classifier component (marked 1
in Figure 6.1) calculates the relevancy score of each tweet, which is the output of our
artifact. Twitcident can then use this score and display relevant tweets accordingly.
This Classifier component is composed of a two phase process for each single tweet.
During the first phase the score for each feature is calculated individually by our devel-
oped FeatureCalculator. After all scores are known, the feature vector containing all
values for the tweet is fed to a Machine Learning classifier. In Section 5.2 we have seen
that the JRip (Ripper) and Random Forest classifiers of the WEKA Machine Learning
package are very suitable for this task.

The features (marked 1a in Figure 6.1) are an essential part of the Classifier com-

88

Conclusions and Future Work 6.1 Summary

ponent. These are basically the attributes of a tweet that may have an impact on the
relevancy of a tweet, upon which the machine learning classifier will learn to reason.
Examples of such features include:

• Does the tweet contain keyword combination X and Y while keyword Z is not
allowed to be present?

• What is the geographical distance to the closest identified point of interest (hotspot)?

• Is the tweet posted by news media or not?

• Is the tweet written in present or past tense?

• Does the tweet have a positive or negative sentimental value?

• How many similar tweets to the current tweet were posted during the last hour?

• How many nouns/verbs/adverbs does the tweet contain?

• Is a future or past day mentioned?

We have composed an extensive list of 70 features based on our list of observations
and our literature study. The full list and their descriptions can be found in Appendix
A. We have implemented our Classifier system in Java in such a way that it is fully
configurable through a middle-ware database: settings can be configured, features can
be turned on or off and their parameters can be tuned. Specifics can be found in
Appendix C.

As part of one of the features we also designed an approximate string matching
algorithm by adapting Dice’s similarity metric, that suited our problem better than
other algorithms in this field. This algorithm is presented in Appendix B.

Some features are instance-dependent, and therefore need configuration input such
as word lists. These configurations are also prone to error. Therefore, in order to setup
such a configuration of features and their parameters for a Twitcident client, we have
designed the Setup Approach (marked 2 in Figure 6.1). This is an interactive pro-
cess that needs to be executed a single time for each topic to be classified and can
be performed by a CrowdSense employee as well as a domain expert (client opera-
tor). Besides guiding the user, the Setup Approach also aims at reducing setup errors,
performs some intensive tasks automatically (data collection, word expansion, combi-
nation generation, . . .) and helps the user think of scenarios by collecting data from
a lot of data sources (Appendix D). The Setup Approach is explained in detail in
Sections 4.4 and C.3.

Machine Learning classifiers need to be ‘trained’ on data of which the outcomes
(relevancy) are known a-priori in order to learn how to interpret each feature with
respect to the outcome. The Training Approach (marked 3 in Figure 6.1) constitutes
this part of our design, and is used to compose a dataset for the classifier component
to train on. It is a process directly preceded by the Setup Approach. We have only
briefly discussed our ideas on this component (Section 4.5) and considered its concrete
implementation outside the scope of this thesis work, as it is another quite complex
component requiring research and evaluation on its own.

89

6.1 Summary Conclusions and Future Work

In order to evaluate our artifact, we have designed an algorithm to collect and sam-
ple our ground truth dataset (Sections F.3 and F.4). The aim of this algorithm is to find
a suitable proportion of relevant tweets (due to the low signal) and create balanced
representative datasets. We also developed and designed a Data Annotation applica-
tion (Section F.2) to have domain experts annotate the collected datasets to obtain our
ground truth data. We have justified our choices with respect to data collection in
Section F.1.

The data collection resulted in four datasets (Section 5.1.2) with several different
output class formats: one with a numerical class and several nominal class schemes
(Section 5.1.3). We have evaluated the performance of our artifact using these datasets
(Chapter 5). We have performed initial experiments to find a suitable configuration for
our artifact (Section 5.2).

We first evaluated which Machine Learning classifier in the WEKA package was
most suitable to constitute the classifier component. We can conclude that the JRip
(Ripper) and Random Forest classifiers performed best for the nominal classification
schemes, while the Random Forest classifier also performed best on the numerical
classification scheme. Second, we have evaluated which nominal classification output
scheme best represents the client’s request intentions, and observed that binary classi-
fication with a specific threshold performed best. Finally, we have varied the amount
of features and observed which impact this had on the performance. We can conclude
that adding low impact features did never reduce classification performance, and that
increasing the amount of features always increased performance: sometimes slightly,
sometimes up to 10%.

Figure 6.2: Comparison of performance between our designed artifact and existing
Twitcident application

In Chapter 4 we claimed to have an answer with respect to our research question,
and presented an artifact. To evaluate whether this claim is true we compared our
results to the existing Twitcident application in order to verify an actual improve-
ment (Section 5.3). Figure 6.2 lists the final results. Although the existing Twit-
cident application in some cases has a higher recall, we can see that our designed
artifact consistently outperforms it when we take precision into account within the
F-scores. Sometimes there is just a slight increase in performance (NPL_94 and

90

Conclusions and Future Work 6.2 Future work

NS_16 datasets), while sometimes the performance increase is remarkable (GG_57
and NS_19-22 datasets). On average, the F2-score is improved by 30%. In accor-
dance with these results, we can confirm that our designed artifact indeed improves
the filtering mechanism and reduces noise while maintaining a high recall.

Although the accuracy scores are very high, this is also largely due to the huge
amount of negatives in the dataset, and thus can be attributed to the low signal. How-
ever, considering the difficulty of our problem (Section 2.5) and the current absence of
several important features1, we can consider the performance of our artifact with an F2-
score of 0.7 up to 0.9 very satisfying and future results (with all features implemented)
even more promising.

6.2 Future work

With our work we not only improved on the filtering and noise reduction mechanism,
but we also set up a robust framework that allows for many extensions and improve-
ments. In this section we will list and briefly discuss entry-points for future work and
research.

Repeating the search-process cycle In Chapter 2 we performed a problem analysis
by observing the starting system’s output. Based on these observations we de-
signed a system, and evaluated it. According to Guideline 6 of Design Science
Research (Section 3.1), the cycle is now complete and should repeat. By repeat-
ing a similar analysis on our new artifact’s output, making note of observations
and drawing ideas from it, the presented artifact may be improved.

Complete new feature implementations We have only implemented 48 of the 70
proposed features, due to several constraints. We expect that the unimplemented
features will have an additional positive impact on the performance of our sys-
tem, such as the sentiment, present or past tense and has-popular-term features.
Other ideas include profiling of users, and analyzing referenced entities like
URL targets and images in more detail. Appendix A lists all features as well as
the implementation status.

Feature improvements Some features have a basic implementation or function, and
can be improved upon. For example, consider feature 68 which counts the
amount of question marks. This could be improved by measuring the question
to sentence ratio, with only considering question marks at the end of a sentence.
This would involve a sentence detection mechanism for each language, which
is available in for example the OpenNLP library. Also the keyword combina-
tion generation scheme can be experimented with: are there better performing
alternatives still satisfying our constraints?

Study on feature relevancy It would be interesting to have a study on the impact of
each feature on the total performance, and how much each feature (combination)

1For example, the ‘sentiment’, ‘subjectivity’, ‘seems observation’, ‘present and past tense’, ‘poster
tweet rates’, ‘slang’ and ‘popular term’ features were all not implemented (and thus not enabled) yet
during these experiments

91

6.3 Contributions Conclusions and Future Work

contributes to it. This may involve evaluating all possible subsets of features
since there may be inter-feature relations. Consider for example the amount of
nouns, verbs, adverbs features. And is there an optimal subset of features that
generally performs better than the full set of features?

Study on the dynamism of features It would be interesting to have a study on the
impact of changing feature inputs without retraining the classifier. Does the
system handle it well when we would add new keywords to the word-lists, add
ignore users to lists, add hotspots, and so on. If this is not the case, as an al-
ternative, we may keep records of all training data and retrain the system after
changes to its input configuration.

Building an interface for reconfiguration After the previous point has been evalu-
ated (impact of reconfiguration), it would be useful to produce a tool for recon-
figuring the system. The Setup Approach now generates a complete configura-
tion which is often too large to manually alter. Consider for example a keyword
input of 5 synonyms and 20 combo terms; this would yield 5 ·

(20
3

)
= 5700 com-

binations when capped at at most 3 combo terms.

Training Approach The Training Approach has been discussed in a conceptual state,
and should be designed in detail. Section 4.5 presents our current ideas as a
starting point. How can we effectively train our system? How can we effectively
select the tweets for training? Closely related to this is the retraining of the
classifier: can we iteratively collect additional data and retrain the system on it?
Or apply online learning? As a result, we could implement user feedback loops
from the application.

Separate some features as stand-alone filters For some features, it is known a priori
what effect it should have. Consider for example the ‘global ignore term’ and
‘ignore user’ features: we could argue these should always prevent a tweet from
being judged relevant. According to this reasoning, we could remove the feature
from actual classification and use it as a pre- or post-classification filtering step
on its own. However, one could also argue that in some cases it should be
considered relevant nonetheless, in a potential exceptional case that all other
features strongly suggest the tweet is relevant.

Optimizing the artifact configuration We have performed initial experiments with
just a rough set of parameters. However, we could also apply another machine
learner (genetic programming?) to find the optimal configuration and chaining
of components, features and their parameters.

6.3 Contributions

During our work, we have made several contributions. We will conclude this thesis by
listing these.

• We have performed a thorough problem analysis resulting in a list of observa-
tions. Hereby we have shown that aside from simple string matching a lot of
other factors contribute to the relevancy of a tweet.

92

Conclusions and Future Work 6.3 Contributions

• We have designed an artifact with utility: it improves the filtering mechanism
of Twitcident by reducing noise, it enables clients to configure the system them-
selves through a user interacted approach and reduces the errors made during
this approach.

• The artifact is developed within a robust architecture, enabling for many future
improvements and extensions. The existing Twitcident application was limited
to keyword and user filtering, whereas our architecture allows for all kinds of
future extensions (Section 6.2).

• We have developed a Data Annotation Application including a Data Collection
sampling algorithm as well as output processing schemes.

• We have extended the ARFF format with the possibility to add an unbounded
amount of meta data to each feature vector, for example to keep track of cor-
responding IDs to documents. We also implemented an extended interpreter
and loader for this format for use with WEKA. This allows for more in-depth
analysis of results.

• We have developed a secure SSH-tunneled MySQL database connection han-
dler.

• We have proposed a comprehensive feature list to consider while filtering social
media.

• We have coined the idea of having features with dynamic inputs.

• We have designed a very fast approximate string matching algorithm for variable
length strings (Appendix B) by adapting Dice’s similarity metric.

• We have presented ideas regarding event detection (Appendices G and H).

• We have proposed entry-points and ideas for future work and research to follow
up this work.

93

Bibliography

[1] Fabian Abel, Claudia Hauff, Geert-Jan Houben, Richard Stronkman, and Ke Tao.
Semantics+ filtering+ search= twitcident. exploring information in social web
streams. In Proceedings of the 23rd ACM conference on Hypertext and social
media, pages 285–294. ACM, 2012.

[2] Fabian Abel, Claudia Hauff, Geert-Jan Houben, Richard Stronkman, and Ke Tao.
Twitcident: fighting fire with information from social web streams. In Proceed-
ings of the 21st international conference companion on World Wide Web, pages
305–308. ACM, 2012.

[3] The Association for Computational Linguistics. Proceedings of the 4th Work-
shop on Computational Approaches to Subjectivity, Sentiment and Social Media
Analysis, 2013.

[4] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval,
volume 463. ACM press New York, 1999.

[5] Alexandra Balahur, Rada Mihalcea, and Andrés Montoyo. Computational ap-
proaches to subjectivity and sentiment analysis: Present and envisaged methods
and applications. Computer Speech & Language, 28(1):1–6, 2014.

[6] Hila Becker, Mor Naaman, and Luis Gravano. Beyond trending topics: Real-
world event identification on twitter. ICWSM, 11:438–441, 2011.

[7] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[8] Eric Brill and Robert C Moore. An improved error model for noisy channel
spelling correction. In Proceedings of the 38th Annual Meeting on Association
for Computational Linguistics, pages 286–293. Association for Computational
Linguistics, 2000.

[9] Claudio Carpineto and Giovanni Romano. A survey of automatic query expan-
sion in information retrieval. ACM Computing Surveys (CSUR), 44(1):1, 2012.

[10] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien, et al. Semi-supervised
learning. Adaptive computation and machine learning. MIT press Cambridge,
September 2006.

95

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Jilin Chen, Allen Cypher, Clemens Drews, and Jeffrey Nichols. Crowde: Filter-
ing tweets for direct customer engagements. In ICWSM. Citeseer, 2013.

[12] Ondřej Chum, Andrej Mikulik, Michal Perdoch, and Jiří Matas. Total recall ii:
Query expansion revisited. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 889–896. IEEE, 2011.

[13] William W Cohen. Fast effective rule induction. In Proceedings of the twelfth
international conference on machine learning, pages 115–123, 1995.

[14] Aron Culotta. Towards detecting influenza epidemics by analyzing twitter mes-
sages. In Proceedings of the first workshop on social media analytics, pages
115–122. ACM, 2010.

[15] Fred J Damerau. A technique for computer detection and correction of spelling
errors. Communications of the ACM, 7(3):171–176, 1964.

[16] Peter J Denning. A new social contract for research. Communications of the
ACM, 40(2):132–134, 1997.

[17] Lee R Dice. Measures of the amount of ecologic association between species.
Ecology, 26(3):297–302, 1945.

[18] Paul Earle, Michelle Guy, Richard Buckmaster, Chris Ostrum, Scott Horvath,
and Amy Vaughan. Omg earthquake! can twitter improve earthquake response?
Seismological Research Letters, 81(2):246–251, 2010.

[19] Óscar Fontenla-Romero, Bertha Guijarro-Berdiñas, David Martinez-Rego, Beat-
riz Pérez-Sánchez, and Diego Peteiro-Barral. Online machine learning. Efficiency
and Scalability Methods for Computational Intellect, page 27, 2013.

[20] William B Frakes. Stemming algorithms., 1992.

[21] Johannes Fürnkranz and Gerhard Widmer. Incremental reduced error pruning. In
Proceedings of the 11th International Conference on Machine Learning (ML-94),
pages 70–77, 1994.

[22] Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel
Mills, Jacob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A Smith. Part-of-speech tagging for twitter: Annotation, features,
and experiments. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies: short papers-
Volume 2, pages 42–47. Association for Computational Linguistics, 2011.

[23] Roberto González-Ibánez, Smaranda Muresan, and Nina Wacholder. Identifying
sarcasm in twitter: a closer look. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies:
short papers-Volume 2, pages 581–586. Association for Computational Linguis-
tics, 2011.

[24] Erik Hatcher, Otis Gospodnetic, and Michael McCandless. Lucene in action,
2004.

96

BIBLIOGRAPHY BIBLIOGRAPHY

[25] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science
in information systems research. MIS quarterly, 28(1):75–105, 2004.

[26] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter: un-
derstanding microblogging usage and communities. In Proceedings of the 9th
WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network
analysis, pages 56–65. ACM, 2007.

[27] Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and Tiejun Zhao. Target-
dependent twitter sentiment classification. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 151–160. Association for Computational Linguis-
tics, 2011.

[28] SB Kotsiantis. Supervised machine learning: A review of classification tech-
niques. In Proceedings of the 2007 conference on Emerging Artificial Intelligence
Applications in Computer Engineering: Real Word AI Systems with Applications
in eHealth, HCI, Information Retrieval and Pervasive Technologies, pages 3–24.
IOS Press, 2007.

[29] John R Koza. Genetic programming: on the programming of computers by means
of natural selection, volume 1. MIT press, 1992.

[30] Vasileios Lampos, Tijl De Bie, and Nello Cristianini. Flu detector-tracking epi-
demics on twitter. In Machine Learning and Knowledge Discovery in Databases,
pages 599–602. Springer, 2010.

[31] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[32] Rui Li, Kin Hou Lei, Ravi Khadiwala, and Kevin Chen-Chuan Chang. Tedas:
A twitter-based event detection and analysis system. In Data engineering (icde),
2012 ieee 28th international conference on, pages 1273–1276. IEEE, 2012.

[33] CC Liebrecht, FA Kunneman, and APJ van den Bosch. The perfect solution
for detecting sarcasm in tweets# not. In Proceedings of the 4th Workshop on
Computational Approaches to Subjectivity, Sentiment and Social Media Analysis,
pages 29–37. New Brunswick, NJ: ACL, 2013.

[34] Chenghua Lin, Yulan He, and Richard Everson. Sentence subjectivity detection
with weakly-supervised learning. In IJCNLP, pages 1153–1161, 2011.

[35] Julie B Lovins. Development of a stemming algorithm. MIT Information Pro-
cessing Group, Electronic Systems Laboratory, 1968.

[36] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduc-
tion to information retrieval, volume 1. Cambridge university press Cambridge,
2008.

[37] Christopher D Manning and Hinrich Schütze. Foundations of statistical natural
language processing. MIT press, 1999.

97

BIBLIOGRAPHY BIBLIOGRAPHY

[38] Salvatore T March and Gerald F Smith. Design and natural science research on
information technology. Decision support systems, 15(4):251–266, 1995.

[39] Angel R Martinez. Part-of-speech tagging. Wiley Interdisciplinary Reviews:
Computational Statistics, 4(1):107–113, 2012.

[40] Kamran Massoudi, Manos Tsagkias, Maarten de Rijke, and Wouter Weerkamp.
Incorporating query expansion and quality indicators in searching microblog
posts. In Advances in information retrieval, pages 362–367. Springer, 2011.

[41] Michael Mathioudakis and Nick Koudas. Twittermonitor: trend detection over
the twitter stream. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 1155–1158. ACM, 2010.

[42] Rada Mihalcea, Carmen Banea, and Janyce Wiebe. Multilingual subjectivity and
sentiment analysis. In Tutorial Abstracts of ACL 2012, pages 4–4. Association
for Computational Linguistics, 2012.

[43] David Nadeau and Satoshi Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[44] Saul B Needleman and Christian D Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
molecular biology, 48(3):443–453, 1970.

[45] Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Sarah Vieweg. Crisislex:
A lexicon for collecting and filtering microblogged communications in crises. In
In Proceedings of the 8th International AAAI Conference on Weblogs and Social
Media (ICWSM" 14), 2014.

[46] Heather S Packer, Sina Samangooei, Jonathon S Hare, Nicholas Gibbins, and
Paul H Lewis. Event detection using twitter and structured semantic query ex-
pansion. In Proceedings of the 1st international workshop on Multimodal crowd
sensing, pages 7–14. ACM, 2012.

[47] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment
classification using machine learning techniques. In Proceedings of the ACL-
02 conference on Empirical methods in natural language processing-Volume 10,
pages 79–86. Association for Computational Linguistics, 2002.

[48] Martin F Porter. Snowball: A language for stemming algorithms, 2001.

[49] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twitter
users: real-time event detection by social sensors. In Proceedings of the 19th
international conference on World wide web, pages 851–860. ACM, 2010.

[50] Jagan Sankaranarayanan, Hanan Samet, Benjamin E Teitler, Michael D Lieber-
man, and Jon Sperling. Twitterstand: news in tweets. In Proceedings of the 17th
acm sigspatial international conference on advances in geographic information
systems, pages 42–51. ACM, 2009.

98

BIBLIOGRAPHY BIBLIOGRAPHY

[51] Peter H Sellers. The theory and computation of evolutionary distances: pattern
recognition. Journal of algorithms, 1(4):359–373, 1980.

[52] Burr Settles. Active learning literature survey. University of Wisconsin, Madison,
52(55-66):11, 2010.

[53] Temple F Smith and Michael S Waterman. Identification of common molecular
subsequences. Journal of molecular biology, 147(1):195–197, 1981.

[54] Bihao Song. Weak signal detection on twitter datasets: a non-accumulated ap-
proach for non-famous events. PhD thesis, TU Delft, Delft University of Tech-
nology, 2012.

[55] B Srinivasan and P Mekala. Mining social networking data for classification
using reptree. International Journal, 2(10), 2014.

[56] R.J.P. Stronkman. Exploiting twitter to fulfill information needs during incidents.
Master’s thesis, Delft University of Technology, 06 2011.

[57] Teun Terpstra, A de Vries, R Stronkman, and GL Paradies. Towards a realtime
twitter analysis during crises for operational crisis management. In ISCRAM’12:
Proceedings of the 9th International ISCRAM Conference, 2012.

[58] Erik Tromp. Multilingual sentiment analysis on social media. Master’s Thei-
sis. Department of Mathematics and Computer Science, Eindhoven University of
Technology, 2011.

[59] Sarah Vieweg, Amanda L Hughes, Kate Starbird, and Leysia Palen. Microblog-
ging during two natural hazards events: what twitter may contribute to situational
awareness. In Proceedings of the SIGCHI conference on human factors in com-
puting systems, pages 1079–1088. ACM, 2010.

[60] Atro Voutilainen. Part-of-speech tagging. The Oxford handbook of computational
linguistics, pages 219–232, 2003.

[61] Maximilian Walther and Michael Kaisser. Geo-spatial event detection in the
twitter stream. In Advances in Information Retrieval, pages 356–367. Springer,
2013.

[62] Xiaojin Zhu. Semi-supervised learning literature survey. Computer Sciences
Technical Report 1530, 2005.

99

Appendix A

Features

A.1 Feature list

Feature summary Instance
dependent

Feature input Document input Discussion

1 Tweet, hard match, 1st degr. Yes Keywords, 1st degr. Tweet Section A.2.1
2 Tweet, hard match, 2nd degr. Yes Keywords, 2nd degr. Tweet Section A.2.1
3 Tweet, hard match, 3rd degr. Yes Keywords, 3rd degr. Tweet Section A.2.1
4 Tweet, compound match, 1st degr. Yes Keywords, 1st degr. Tweet Section A.2.1
5 Tweet, compound match, 2nd degr. Yes Keywords, 2nd degr. Tweet Section A.2.1
6 Tweet, compound match, 3rd degr. Yes Keywords, 3rd degr. Tweet Section A.2.1
7 Tweet, stemmed match, 1st degr. Yes Keywords, 1st degr. Tweet Section A.2.1
8 Tweet, stemmed match, 2nd degr. Yes Keywords, 2nd degr. Tweet Section A.2.1
9 Tweet, stemmed match, 3rd degr. Yes Keywords, 3rd degr. Tweet Section A.2.1

10 Tweet, approximate match, 1st degr. Yes Keywords, 1st degr. Tweet Section A.2.1
11 Tweet, approximate match, 2nd degr. Yes Keywords, 2nd degr. Tweet Section A.2.1
12 Tweet, approximate match, 3rd degr. Yes Keywords, 3rd degr. Tweet Section A.2.1
13 Hypernym, approximate match, 1st degr. Yes Hypernyms, 1st degr. Tweet Section A.2.2
14 Hypernym, approximate match, 2nd degr. Yes Hypernyms, 2nd degr. Tweet Section A.2.2
15 Hypernym, approximate match, 3rd degr. Yes Hypernyms, 3rd degr. Tweet Section A.2.2
16 Hyponym, approximate match, 1st degr. Yes Hyponyms, 1st degr. Tweet Section A.2.2
17 Hyponym, approximate match, 2nd degr. Yes Hyponyms, 2nd degr. Tweet Section A.2.2
18 Hyponym, approximate match, 3rd degr. Yes Hyponyms, 3rd degr. Tweet Section A.2.2
19 Username, hard match, 1st degr. Yes Keywords, 1st degr. User descr. Section A.2.3
20 Username, hard match, 2nd degr. Yes Keywords, 2nd degr. User descr. Section A.2.3
21 Username, hard match, 3rd degr. Yes Keywords, 3rd degr. User descr. Section A.2.3
22 Username, compound match, 1st degr. Yes Keywords, 1st degr. User descr. Section A.2.3
23 Username, compound match, 2nd degr. Yes Keywords, 2nd degr. User descr. Section A.2.3
24 Username, compound match, 3rd degr. Yes Keywords, 3rd degr. User descr. Section A.2.3

Table A.1: List of features, part 1

101

A.1 Feature list Features

Feature summary Instance
dependent

Feature input Document input Discussion

25 Username, stemmed match, 1st degr. Yes Keywords, 1st degr. User descr. Section A.2.3
26 Username, stemmed match, 2nd degr. Yes Keywords, 2nd degr. User descr. Section A.2.3
27 Username, stemmed match, 3rd degr. Yes Keywords, 3rd degr. User descr. Section A.2.3
28 Username, approximate match, 1st degr. Yes Keywords, 1st degr. User descr. Section A.2.3
29 Username, approximate match, 2nd degr. Yes Keywords, 2nd degr. User descr. Section A.2.3
30 Username, approximate match, 3rd degr. Yes Keywords, 3rd degr. User descr. Section A.2.3
31 Ignore, Keyword Yes Ignore keywords Tweet Section A.2.4
32 Ignore, Username Yes Ignore users Username Section A.2.4
33 News and media No User-database Username Section A.2.5
34 Poster’s current tweet rate No List of users tweets Section A.2.6
35 Poster’s average tweet rate No List of users tweets Section A.2.6
36 Current stream rate No Processed tweet

cache
Section A.2.6

37 Positive sentiment No Research required Tweet Section A.2.7
38 Negative sentiment No Research required Tweet Section A.2.7
39 Subjectivity value No Research required Tweet Section A.2.8
40 Present tense No Research required Tweet Section A.2.9
41 Past tense No Research required Tweet Section A.2.9
42 Is retweet No Retweet attribute,

Tweet
Section A.2.10

43 #retweets No #retweets attribute Section A.2.10
44 Is reply No Reply attributes Section A.2.11
45 #pre-mentions No Mention attributes Section A.2.12
46 #inner-mentions No Mention attributes Section A.2.12
47 #news-mentions No Media usernames Mention attributes Section A.2.12
48 Tweet length No Tweet Section A.2.13
49 Images No Media attributes Section A.2.14
50 Links No Link attributes Section A.2.15
51 #inner-hastags No Hashtag attributes Section A.2.16
52 #post-hashtags No Hashtag attributes Section A.2.16
53 #list-hashtags Yes Hashtag list Hashtag attributes Section A.2.16
54 Prior similar tweets No Processed tweet

cache, Tweet
Section A.2.17

55 Has popular term No Processed tweet
cache, Tweet

Section A.2.18

56 Distance from hotspot Yes Hotspots Geo attributes Section A.2.19
57 Seems observation No Tweet, Geo at-

tributes
Section A.2.20

58 Contains street language/slang No Tweet Section A.2.21
59 #Nouns No Tweet Section A.2.22
60 #Verbs No Tweet Section A.2.22
61 #Adverbs No Tweet Section A.2.22
62 Future day mentioned No Tweet Section A.2.23
63 Past day mentioned No Tweet Section A.2.23
64 Contains special keyword 1 ?? Special keywords Tweet Section A.2.24

Table A.2: List of features, part 2

102

Features A.2 Feature discussions and implementations

Feature summary Instance
dependent

Feature input Document input Discussion

65 Contains special keyword 2 ?? Special keywords Tweet Section A.2.24
66 User language No Language attribute Section A.2.25
67 Tweet language No Tweet Section A.2.25
68 Question marks No Tweet Section A.2.26
69 Subsequent dots No Tweet Section A.2.26
70 Interpunction-ratio No Tweet Section A.2.26

Table A.3: List of features, part 3

A.2 Feature discussions and implementations

A.2.1 Keyword matches

Features 1–30 relate to keyword matches within tweets and usernames, whereas fea-
tures 1–12 specifically address keyword matches within tweets. This section will
mainly address the latter subset, but does also apply to the complete set of matcher
features. However, sections A.2.2 and A.2.3 will extend on this section for other sub-
sets of the matcher features.

The main mechanism of the existing Twitcident classification mechanism relies on
keyword matches (Observation 2), and we want to extend on this process. Therefore, a
core subset of features is dedicated to keyword matches. However, due to Observation
6 we consider it a high priority to support dynamic keyword lists that can be altered
during runtime. As Machine Learning classifiers depend on a fixed set of features
over which they are trained, we have chosen for an atypical alternative construction:
we define a set of fixed features that are configured with a keyword-list, rather than a
single keyword. We regard this as a potential new kind of Machine Learning setup:
features do not have to be static, but may be dynamic.

This way, the keyword list is extensible and adjustable during runtime, without
changing the machine feature and its meaning: this meaning can be interpreted as “rel-
evancy of this tweet with respect to keywords in keyword list KL”. The main drawback
is that all keyword matches are treated equally. For example, if a keyword list contains
both “throwing+a+bike” and “shooting+at+police”, and this features value tells the
classifier that there is a match, the classifier will not know which particular entry was
matched. However, we value the dynamic extensibility over this due to Observations 6
and 14, and will capture and resolve the consequences.

Each feature is configured with a keyword list KL= {KE1,KE2, . . .}with |KL| ≥ 0,
where each keyword-entry KEi consists of:

• A set of positive keywords PKEi = {PK1,PK2, . . .} with |P| ≥ 1. Each of the
individual keywords PK j must be present to result in a match for this entry.

• A set of negative keywords NKEi = {NK1,NK2, . . .} with |N| ≥ 0. If at least on
of the individual keywords NKk is present, this keyword entry KEi will never
result in a match.

• A weight WKEi ∈ Z \ 0 for this keyword entry, that will be added to the final
output value for this feature for each match.

103

A.2 Feature discussions and implementations Features

The set of negative keywords NK serves to restrict the space captured by PK, and
define its context (see Observation 12). An example of a very short keyword list KL
could be:

KL =

KE1 =

PK = {‘aardbeving’, ‘ in’}
NK = /0

W = 5

KE2 =

PK = {‘aardbeving’}
NK = {‘ in’}
W = 1

In this example, the additional word ‘in’ could indicate that the tweet contains
additional information like a place, which would increase the relevancy of the match.
Therefore, a match including ‘in’ will increase the feature output value more than
a match without an occurence of ‘in’. Note that in this example, both entries are
mutually exclusive, but this does not necessarily be the case.

The final score S of this numerical feature is defined as the sum of keyword entry
match weights multiplied by the amount of matches for each entry:

S =
|KL|

∑
i=1

(WKEi ·#matchesKEi)

Note that if a keyword entry does not match, #matchesKEi will be zero and the
weight is not added to the output value. Also note, that an individual entry is thus
allowed to match multiple times.

Suppose another case, in which we are looking for the word ‘bank’. In Dutch this
word has multiple contexts, two of them literally translating to a ‘bench’/‘sofa’ and
the other one to a ‘bank’ associated with money. On the former one, you can sit. The
latter definition one is our intended context. We could now construct the following
definitions to more specifically address this context:

KL=

KE1 =

PK = {‘bank’}
NK = /0

W = 1

KE2 =

PK = {‘bank’}

NK =

{‘zit’, ‘tv’, ‘beeldbank’, ‘bloedbank’,
‘boekenbank’, ‘spermabank’, ‘kennisbank’,
‘achterbank’, ‘databank’, ‘zonnebank’, . . .

}
W = 5

KE3 =

PK = {‘bank’, ‘zit’, ‘tv’}
NK = /0

W = −1

The first entry defines a match on the raw target word ‘bank’, and adds 1 to the
output value for each match. The second entry also specifies negative keywords, to
eliminate all unintended meanings: if one of them does occur, this entry will not match.
If none of them occur but ‘bank’ does occur, it add 5 to the output value.

Because we do not want to put all keywords on a single pile due to some keyword
sets being more specific and relevant than others, we defined multiple identical features

104

Features A.2 Feature discussions and implementations

of this type that will just be configured with their own keyword list. We chose to create
multiple degrees (levels) of keyword lists to support this. We will elaborate on this the
specific meanings of each degree later on in Section 4.4.

Finally, we also defined multiple matching schemes:

Hard match A hard match results in a match for a keyword if it is matched exactly
as a word, thus surrounded by spaces.

Compound match A compound match results in a match for a keyword if it is matched
exactly at either the beginning or the end of a word, thus has at least one space
on its boundaries.

Stemmed match A stemmed match results in a match for a keyword if its stemmed
form exactly matches the stemmed form of one of the words of the input docu-
ment (Tweet). A language specific stemmer is required.

Approximate match To account for typos (Observation 19) and to compensate a
bit for the lack of wildcards (Observation 3), we also include an approximate
matcher that returns a similarity value in 〈0,1〉 for each keyword. If this ap-
proximation value exceeds a certain threshold (additional feature parameter), it
is counted as a match with the weight scaled by this approximation value. After
experimenting with well-known string approximation algorithms, we adapted
Dice’s similarity metric resulting in an algorithm that suits our problem better.
We elaborate on this in Appendix B.

Table A.4 illustrates an example of the different matching schemes on input (as-
sume every keyword has weight 1):

“Vandaag is het weer kinderboekndag! De volgende boekjes zijn genomineerd: ...”
(The typo in ‘kinderboekendag’ is on purpose)

Keyword Hard Compound Stemmed Our approxima-
tion
algorithm

Approximate
Smith-Waterman

dag 0 1 0 1.00 1.00
boek 0 2 0 1.00 1.00
dagboek 0 0 0 0.00 0.57
kinderboekendag 0 0 0 0.84 0.90

Table A.4: Illustration match value for different matching schemes

Although we think we have covered the core concepts with this feature, something
that remains open for further research is whether order may be relevant and how to
integrate that in the matching features (see Observation 26). Furthermore, we could
introduce additional constraints to keyword entries, for example, a maximum distance
between two individual words.

A.2.2 Hypernyms and hyponyms

By Observation 11 we have seen that hypernyms and hyponyms may be relevant.
Therefore, we add additional matching features to hyponyms and hypernyms of the

105

A.2 Feature discussions and implementations Features

corresponding keyword lists. However, as these are less crucial than our main key-
words, we only apply the approximate matching schema, as this also catches exact and
compound matches but at the cost of capturing ‘too much’. Features 13–18 cover this.

A.2.3 Username matches

Also usernames can contain a keyword. For example, the word ‘aardbeving’ (‘earth-
quake’) or ‘treinvertraging’ (‘train delays’) could be part of a username. These may
provide relevant information given a specific subject, as these are mostly very special-
ized accounts. Features 19–30 cover this.

A.2.4 Ignore features

By Observation 4 and 5 we have seen that it may be useful to ignore tweets if they
contain a certain keyword or are posted by a certain user. Features 31–32 cover this,
and are practically a negation of a regular matching feature, although it operates on a
simpler list just defining words, rather than word combinations with weights.

A.2.5 News and media

By Observation 27 we have seen that tweets posted by (news) media are often irrele-
vant to most instances, but may be relevant to a few. This feature (33) checks whether
the posting user is related to (news) media, based on a precompiled database of users.

A.2.6 Tweet and stream rates

When something ‘happens’, twitters usually start to tweet about it, causing an increase
in tweet rates (amount of tweets per interval). With Feature 34 we intend to measure
the user’s tweet rate, and with Feature 35 the average user’s tweet rate, both measur-
ing the amount of tweets over a fixed interval (parameter). Feature 36 measures the
incoming Twitter stream rate.

A combination of the output of these features may provide contextual information
for other features. For example, the amount of hits by match features can implicitly be
related to the stream rate. Also, sudden increases in stream volume can indicate some-
thing is happening, so we might add an additional feature that calculates the current
derivative of a normalized stream rate to detect and measure an increase or decrease in
stream volume.

However, to measure the user’s tweet rates, a call to the Twitter API is required for
each processed tweet which will significantly slow down the feature calculation part
of the classification process. Therefore, implementation of these features has been
postponed.

The Twitter stream rate feature is implemented by maintaining a look-up cache of
all prior processed tweets over the past time window (fixed parameter, actual value is
irrelevant), which is also used by some other features (for example, Feature 54, Section
A.2.17). The output value of this feature is then represented by the size of this cache.
As the look-up cache is bounded to a maximum size for performance reasons, we can
use this maximum value to normalize the output.

106

Features A.2 Feature discussions and implementations

A.2.7 Sentiment

Positive and negative sentiment could affect the relevancy of a tweet. For example,
in case of detecting earthquakes, an abundance of positive sentiment is highly likely
to yield the tweet irrelevant. On the other hand, we have that several instances have
a dedicated sentiment topic, including the earthquake instance. Features 37–38 cover
positive sentiment and negative sentiment respectively, and output a normalized value
indicating the sentiment likeliness.

Due to the large amount of research required, the complexity of these features
(think about detecting sarcasm) and the fact our target language is Dutch and most
research is done on English, these features have not been implemented yet, and are in
a conceptual state. Pointers for future research include the 4th Workshop on Computa-
tional Approaches for Subjectivity, Sentiment and Social Media analysis 2013 [3] and
the work of Tromp [58], Jiang et al. [27], Gonzalez et al. [23] and Liebrecht et al. [33].

A.2.8 Subjectivity

Some instances are interested in public opinion, whereas others are focused upon ob-
jective user observations (also see Section A.2.20). Therefore, the amount of subjec-
tivity could be of interest. Feature 39 covers this, and outputs a normalized ratio.

Due to the large amount of research required, the complexity of these features1

and the fact our target language is Dutch and most research is done on English, these
features have not been implemented yet, and are in a conceptual state. Pointers for
future research include the work of Mihalcea et al. [42], Balahur et al. [5] and Lin et
al. [34].

A.2.9 Tense

By Observation 22 we have seen that the verbal tense can have significant impact
on the relevancy of a tweet. For Real-Time social monitoring, present tense is most
important.

Due to the complexity of this feature and to maintain a scope on this thesis work,
this feature has not been implemented yet, and is in a conceptual state.

A.2.10 Retweet(s)

The retweet attribute of a tweet may be relevant, as well as the ‘RT: ’ prefix indicator of
a retweet. Feature 42 checks both and will output 1 in case of a retweet, 0 otherwise.
In general, retweets are not relevant as the original tweet should be present in our
incoming stream too. Feature 43 directly outputs the attribute of a tweet that indicates
the amount that tweet has been retweeted. This feature is expected to be obsolete,
since all tweets should be processed real-time and therefore can not be retweeted yet.
Included for completeness.

Only Feature 42 is implemented yet, while Feature 43 remains not implemented.

1In [34] Lin, He and Everson state that subjectivity classification is even harder than sentiment clas-
sification

107

A.2 Feature discussions and implementations Features

A.2.11 Reply

The reply attributes of a tweet may be relevant, indicating conversations or retweets
with additional appended information. Feature 44 checks the reply attributes of the
tweet object and outputs 1 if it is a reply, 0 otherwise.

A.2.12 Mentions

Mentions are special constructs in a tweet identified by an ‘@’ sign, indicating a re-
ferred user. This usually indicates retweets, replies (conversations) or notifications.
We distinguish three types of mentions:

• Pre-mentions: a mentioned user at the beginning of a tweet, excluding known
prefixes (for example ‘RT: ’). If a tweet starts with three consecutive mentions,
we consider all of these pre-mentions. These usually indicate retweet or reply
type mentions.

• Inner-mentions: a mentioned user that is NOT mentioned at the beginning of
a tweet, but in the middle or at the end. These usually indicate notification or
reference type mentions.

• News-mentions: More generalized a ‘list-mention’: the mention can be cross-
referenced to a precompiled list (parameter input) of usernames. In our case we
will it use this specifically to indicate mentions of news-media, because media-
tweets often mention themselves, and to identify newsmedia-retweets more ac-
curately.

We constructed three features (45–47) which respectively output the amount of
occurrences for each of the defined mention-types.

A.2.13 Tweet length

The length of the tweet may provide additional information on its relevancy. For ex-
ample, extremely short tweets are irrelevant, but also more complex cases: there may
be a correlation between the length of a tweet and the amount of URLs or mentions
with respect to its relevancy. Feature 48 outputs the length of the tweet.

A.2.14 Images

By Observation 13 we have seen that images may provide additional relevant informa-
tion. Feature 49 outputs the amount of images contained within the tweet.

A.2.15 Links

Web link occurrences may provide additional information about the relevancy of a
tweet, and are another indicator of potential news media related content, as news-
related tweets tend to always contain an URL. Feature 50 outputs the amount of images
contained within the tweet.

108

Features A.2 Feature discussions and implementations

A.2.16 Hashtags

Hashtags are special constructs in a tweet identified by an ‘#’ sign, to put emphasis
on a word or to indicate a relation to a certain subject. We distinguish three types of
mentions:

• Post-hashtags: a hashtag at the end of a tweet. If a tweet ends with multiple con-
secutive hashtags, we consider all of these post-hashtags. These usually indicate
a relation to a certain subject, or express a conclusive feeling.

• Inner-hashtags: a hashtag occurring in the middle of a tweet. These usually
indicate emphasis on the word they are applied to.

• List-hashtags: the hashtag can be cross-referenced to a precompiled list (param-
eter input) of keywords. Implemented as additional feature that may provide to
be useful.

We constructed three features (51–53) which respectively output the amount of
occurrences for each of the defined hashtag-types.

A.2.17 Prior similar tweets

Often in case of special events or incidents, tweets can be extremely similar and have
only minor differences (if any) due to excessive retweeting and replying. Sometimes,
a tweet is retweeted multiple times in a chain-linked fashion, each only appending a
new ‘pre-mention’ at the start, but without actually providing any new content.

Therefore, we constructed a feature (54) that looks up the amount of similar prior
tweets. This is implemented by maintaining a processed tweet cache (bounded by
a maximum size), and attach this value to every processed tweet. This cache is the
same as mentioned in Section A.2.6. By traversing this cache from most recent to less
recent, we can stop traversing this list when we find the first similar tweet containing
such an attached precalculated value, and incrementing it by one. This feature outputs
the amount of prior similar tweets given a fixed time window (parameter).

A.2.18 Contains popular term

We may extract additional information on the relevancy of a tweet if it contains a word
that suddenly became more popular. This is similar to the bursty keyword detection
presented in [41]. This can further be corroborated by the research presented in Ap-
pendices G and H. Therefore, we could construct a feature (55) that indicates whether
the tweet contains a suddenly popular term. However, to efficiently implement such a
feature, we would need to rely on an Information Retrieval engine that indexes prior
processed tweets, which we postponed for now. Furthermore, we should identify what
exactly defines a term as ‘popular’, and maintain the popularity of terms to detect
‘sudden’ increases.

A.2.19 Distance from hotspot

By Observation 32 we have seen that geo-information attached to a tweet can pro-
vide additional information, especially since most Twitcident Instances monitor a spe-

109

A.2 Feature discussions and implementations Features

cific area. Therefore, Feature 56 outputs the straight line distance to the closest de-
fined hotspot: this feature requires a list of hotspots as configured input. If no geo-
information is attached this feature outputs a distance so large it cannot be relevant
to indicate this. We consider a value of 100 kilometers sufficient. For normalization
purposes, we also cap the maximum distance to this value; i.e. if someone tweets 250
kilometers away from the closest hotspot, this feature will still output 100 kilometers.

A.2.20 Seems observation

Especially relevant are user observations: what do they notice? what do they see?
smell? hear? etc. We track special (combinations of) words that indicate observations,
and construct a feature (57) that outputs the likeliness that a tweet contains an observa-
tion. Furthermore, if a geo-location is available and the distance to the closest hotspot
exceeds a threshold, we will not consider it an observation.

A.2.21 Street language and slang

By Observation 17 we have seen that some people commonly use street language or
slang in their tweets. This could provide information about the type of user posting,
which may contribute to estimating the relevancy of a tweet. We precompiled a list of
common slang terms, which is cross-referenced by feature (58) outputting the amount
similar to the matching features.

A.2.22 Part of Speech attributes

Part of Speech tagging is a mechanism that provide additional useful information on
how a tweet is composed. It identifies the part of speech of a word, i.e. whether it is a
noun, verb, adverb, . . . We constructed three features (59–61) that count the amount of
nouns, verbs and adverbs respectively. The ratio of nouns to verbs may tell something
about the usefulness of a tweet, while the amount of adverbs tells us how descriptive a
tweet is. These features are powered by the Apache OpenNLP library2 for the actual
Part Of Speech tagging.

A.2.23 Future or past days mentioned

Tweets posted by newsmedia often mention a specific day, often a day in the past.
For example, on a Thursday, newsmedia often mention ‘yesterday’, ‘Wednesday’ or
‘Tuesday’. Such a past day mentioned provides an additional indication that it may
be news related content. A future day mentioned on the other hand could indicate an
upcoming event, which may be relevant. Therefore, we constructed two features (62–
63) that detect days of week mentioned. When such a day is within the next four days
with respect to the tweet timestamp, we consider it a future day; a past day otherwise.

A.2.24 Contains special keywords

During our analysis, we have observed that some words have a significant impact on
relevancy and to emphasize this, we constructed two additional features for these. The

2https://opennlp.apache.org/

110

Features A.2 Feature discussions and implementations

first feature (64) counts keywords (parameter) that have a highly likely positive effect
on relevancy like ‘help’, ‘gewond(e)’ (casualty), ‘foto(s)’ (photo), ‘wtf’, . . . , while the
second feature (65) counts keywords (parameter) that have a highly likely negative im-
pact on tweet relevancy, like ‘waarschijnlijk’ (probably), ‘incident’, ‘nieuws’ (‘news’),
. . .

A.2.25 Language

In general, most instances serve only a specific audience with a single language, in
our case mostly Dutch. Some ambiguous words are used in another language too, and
often cause noise. For example, the Dutch word ‘brand’ means ‘fire‘, but has a totally
different meaning in English, which also amplies to conjugations of it: brand-manager.

The user has an attribute indicating his language set, which is captured by Feature
66. However, this is not very reliable, since this is a profile setting which is set to
English by a lot of Dutch people. Therefore, we provide an additional feature (67)
that attempts to identify a match to the target language by checking for specific words
(parameter) indicating one of the target languages, or contra-indications due to words
from another language (parameter).

A.2.26 Interpunction

Interpunction within a tweet can also provide additional information about the rele-
vancy of a tweet. For example, a question mark usually indicates a question which
in turn might indicate that the tweet does not necessarily provide relevant information
itself. Therefore, we constructured three features (68–70) that respectively output:

• The amount of question marks in a tweet,

• The amount of subsequent dots in a tweet (i.e. ‘...’ counts as 2, while ‘....’
followed by ‘..’ counts as 3+1=4),

• The interpunction-ratio: the amount of non-interpunction characters divided by
the amount of interpunction characters

111

Appendix B

Approximate String Matching
algorithms

During our work on the approximate keyword match and similar prior tweets features,
we encountered the problem of approximate string matching, involving string similar-
ity metrics. Given a set of keywords, we wanted to know whether this combination
occurs within a tweet, taking potential typos, misspellings or alternative forms into
account. We are looking for a lightweight fast performing algorithm outputting a score
representing the likelihood that a given string occurs within a larger string. To this end,
we present our algorithm in this Appendix, which is an adaptation of Dice’s similarity
measure [17].

B.1 Related work

Most algorithms are closely related to sequence alignment in bio-informatics. The
most widely known string metric is the Levenshtein Distance [31], returning a number
equivalent to the number of substitutions and deletions needed in order to transform
one input string into another, known as an edit distance. The Damerau-Levenshtein
[8, 15] distance also allows transposition operations. While these algorithms focus
on minimizing the edit distance, the Needleman-Wunsch [44] algorithm focuses on
maximizing similarity which turns out to be equivalent. Whereas the Needleman-
Wunsch algorithm translates to global sequence alignment, the Smith-Waterman [53]
algorithm performs local sequence alignment. Dice’s coëfficient [17] is a set similarity
metric, which can be applied on strings by splitting them in sets of n-grams.

Most of these metrics and algorithms calculate the similarity or distance between
two strings, with a length difference also imposing a penalty. However, when we want
to know if a smaller string (i.e. a keyword) occurs misspelled within a larger string
(i.e. a tweet) we need to apply string approximation algorithms for variable length,
or approximate substring matching. A brute-force approach would be to compute the
edit distance (for example by applying Levenshtein) to the smaller string for all sub-
strings of the larger string, and then choose the substring with the minimum distance.
However, this algorithm would have asymptotic running time O(n3m). Sellers [51]
improves on this by applying dynamic programming (DP) while introducing a param-
eter k representing the maximum amount of mismatches. Other techniques involve

113

B.2 Problem definition Approximate String Matching algorithms

indexing. However, as we are not interested in the exact edit distance but rather in
a lightweight fast-performing algorithm measuring similarity, we have developed our
own algorithm by adapting Dice’s similarity coëfficient.

After experimenting with dozens of string metrics from two commonly used li-
braries, SecondString1 and SimMetrics2, we concluded that the Smith-Waterman and
Monge-Elkan algorithm performed best in terms of matching quality yet not satisfy-
ing enough with respect to speed. Monge-Elkan also performed extremely slow. The
fact that most of the algorithms or metrics was able to perform satisfying enough can
be attributed to the variable length of the strings: we actually want to check for an
approximate substring match. Smith-Waterman is able to handle this best because it
searches for an optimal local sequence alignment.

B.2 Problem definition

Given a set of n keywords K0 . . .Kn and a string T , our task is to output a normalized
approximation score 0.000≤ S ≤ 1.000 representing the likeliness that string T con-
tains (approximations of) all keywords K . A score of S = 1 should indicate a perfect
match.

Note that K can also be a single ‘keyword’ that may be even longer than T , in the
case of comparing two tweets.

B.3 Our solution

We have developed several algorithms to solve this task covering a wide range of ideas.
While several of them outperform metrics from both libraries, we will only discuss our
best performing solution. It also sparkles of simplicity, being based on a well known
metric: Dice’s coefficient. We basically adapt this metric to suit our needs.

Given two sets of samples A and B, Dice’s coefficient is defined by:

S =
2 |A∩B|
|A|+ |B|

When applying this to strings, it is common to define both sets by the sets of
bigrams of both strings. Let us consider two sample strings ‘night’ and ‘nacht’, then
sets A and B will be:

A = {ni, ig,gh,ht}
B = {na,ac,ch,ht}

and Dice’s coefficient will be:

S =
2 |A∩B|
|A|+ |B|

=
2 ·1
4+4

= 0.25

Now consider the case we have a single keyword K0 = ‘aardbeving’ and a string
T = ‘Vanmorgen aardbeving gevoeld in Middelstum e.o. Sterkte nog niet bekend,

1http://secondstring.sourceforge.net/
2https://github.com/Simmetrics/simmetrics

114

Approximate String Matching algorithms B.4 Demonstration

maar een bewoner schat tussen 2,5 en 3 op Richter.’, we would end up with S ≈ 0.095,
although we are looking to achieve a perfect score of 1.000 here.

We therefore adapt this metric to suit our needs. First we introduce a parameter N
indicating the n-gram size, so if N = 2 we would be using bigrams. Now let us define
the function ngrams(s,N) as returning all N -grams of string s. Then the sets A and B
are defined as:

A =
n⊕

i=1

(ngrams(Ki,N))

B = ngrams(T ,N)

We now define our approximation score by:

S =
|A∩B|

min(|A| , |B|)

B.4 Demonstration

Although we have performed extensive experiments, we will only present a demon-
stration of results here. Although there are many other (edge) cases we can think of,
we can state that results below reflect other cases too.

Figure B.1: Approximate substring matching: Test cases

Figure B.1 lists our demonstration cases. Cases A to F will be targeted by the
keywords ‘aardbeving’ and ‘beving’. Now note that A to F are ordered with respect to
desired output value according to the first keyword ‘aardbeving’: Cases A to D should
receive high scores, case E a doubtful score and F should be as low as possible. The
results for the second keyword ‘beving’ should be similar, although case E should be
ranked higher than C and D due to containing a perfect match.

Cases M, N, O and P all contain similar strings and will all be matched against
eachother. The difference here is that one string is not considerably shorter than the
others, which yields a different use-case (similar tweet matching). Our aim is that all
of these strings should be considered somewhat similar.

Figure B.2 lists the results of our test cases with various algorithms and metrics.
Tables 1 and 2 are vertically color-coded since we want to compare the values relatively
to eachother as the cases differ. Table 3 is horizontally color-coded since all cases

115

B.5 Performance considerations Approximate String Matching algorithms

Figure B.2: Approximate substring matching: Results on test cases

match positively against eachother, so we want to compare the different metrics against
eachother.

The results show that our algorithm works as intended and performs competitively
to or better than well-known algorithms. Based on these results and extensive experi-
ments, we haven chosen to use our algorithm using trigrams (N = 3) and a threshold
value of 0.6, i.e: we consider something an approximate match if it scores above 0.6
and return the score, otherwise we return 0.

B.5 Performance considerations

N -grams can be obtained in linear time (O(n), where n = max(|A|, |B|)). To calculate
the intersection, we first apply a sorting algorithm and then make a single pass through
the single list (linear time). Sorting algorithms can run in O(n · log(n)) time, yielding
an asymptotic time complexity for our algorithm of O(n · log(n)).

Furthermore, we have implemented this algorithm in a highly optimized way by
noting the fact that N -grams of up to 4 characters can be stored in a single unsigned
integer. Using this implementation resulted in a 300 times faster performance than
using the conventional libraries, which is useful in our case of comparing tweets to
many prior tweets.

Finally, we also implemented this algorithm using precalculated caches, by ex-
ploiting the fact that the lookup keywords remain the same. Therefore, we calculate
the set of N -grams A only once and caching it. Since we only store integers for each
N -gram, the maximum memory usage is linear (O(n)).

116

Appendix C

Reproducibility information

C.1 SQL statements

C.1.1 Database structure, schema: Classification

CREATE DATABASE IF NOT EXISTS ‘Classification ‘
USE ‘Classification ‘;

-- Default data for features that are not instance-specific, for example lists
-- of proverbs, default words for features (i.e. special keywords features), etc
CREATE TABLE ‘preconfig_featureinput ‘ (

‘id_entry ‘ int(11) NOT NULL AUTO_INCREMENT ,
‘id_instance ‘ varchar(10) NOT NULL,
‘id_featureinput ‘ varchar(50) NOT NULL,
‘entry1 ‘ varchar(255) NOT NULL,
‘entry2 ‘ varchar(255) NOT NULL,
‘meta1 ‘ varchar(255) NOT NULL,
‘meta2 ‘ varchar(255) NOT NULL,
PRIMARY KEY (‘id_entry ‘),
KEY ‘INDEX‘ (‘id_instance ‘,‘id_featureinput ‘)

) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

-- List of features for each instance
CREATE TABLE ‘tbl_config_feature ‘ (

‘id_instance ‘ varchar(10) NOT NULL,
‘id_feature ‘ varchar(30) NOT NULL,
‘feature_order ‘ tinyint(4) NOT NULL DEFAULT ’0’,
‘feature_enabled ‘ tinyint(1) NOT NULL DEFAULT ’1’,
‘feature_class ‘ varchar(60) NOT NULL,
‘feature_param1 ‘ varchar(50) NOT NULL,
‘feature_param2 ‘ varchar(50) NOT NULL,
‘featureinput1_class ‘ varchar(100) NOT NULL,
‘featureinput1_param1 ‘ varchar(50) NOT NULL,
‘featureinput1_param2 ‘ varchar(50) NOT NULL,
‘featureinput2_class ‘ varchar(100) NOT NULL,
‘featureinput2_param1 ‘ varchar(50) NOT NULL,
‘featureinput2_param2 ‘ varchar(50) NOT NULL,
PRIMARY KEY (‘id_instance ‘,‘id_feature ‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

-- Input data for each feature, for example lists of words, hotspots, etc.
CREATE TABLE ‘tbl_config_featureinput ‘ (

‘id_entry ‘ int(11) NOT NULL AUTO_INCREMENT ,
‘id_instance ‘ varchar(10) NOT NULL,
‘id_featureinput ‘ varchar(50) NOT NULL,
‘entry1 ‘ varchar(255) NOT NULL,
‘entry2 ‘ varchar(255) NOT NULL,

117

C.1 SQL statements Reproducibility information

‘meta1 ‘ varchar(255) NOT NULL,
‘meta2 ‘ varchar(255) NOT NULL,
PRIMARY KEY (‘id_entry ‘),
KEY ‘INDEX‘ (‘id_instance ‘,‘id_featureinput ‘)

) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

-- Settings for each instance
CREATE TABLE ‘tbl_config_setting ‘ (

‘id_instance ‘ varchar(10) NOT NULL DEFAULT ’’,
‘key‘ varchar(50) NOT NULL,
‘value‘ varchar(200) DEFAULT NULL,
PRIMARY KEY (‘id_instance ‘,‘key‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

-- Instances, in which each instance is a single topic classifier
CREATE TABLE ‘tbl_instance ‘ (

‘id_instance ‘ varchar(10) NOT NULL,
‘name ‘ varchar(50) DEFAULT NULL,
PRIMARY KEY (‘id_instance ‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

-- Our buffer, for application restarts
CREATE TABLE ‘tbl_processedtweets ‘ (

‘id_instance ‘ varchar(10) NOT NULL,
‘dt_tweet ‘ varchar(50) DEFAULT NULL,
‘id_tweet ‘ bigint(20) NOT NULL,
‘text ‘ varchar(150) NOT NULL,
‘prior_similar ‘ int(11) NOT NULL DEFAULT ’0’,
‘serialized_feature_vector ‘ varchar(500) NOT NULL,
‘classifier_output ‘ varchar(10) NOT NULL,
PRIMARY KEY (‘id_instance ‘,‘id_tweet ‘),
KEY ‘dt_tweet ‘ (‘dt_tweet ‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

C.1.2 Database structure, schema: DataAnnotator

CREATE DATABASE IF NOT EXISTS ‘DataAnnotator ‘
USE ‘DataAnnotator ‘;

-- Relates which batches our linked to which user, and additional state props.
CREATE TABLE ‘lnk_user_batch ‘ (

‘id_user_batch ‘ int(10) unsigned NOT NULL AUTO_INCREMENT ,
‘id_user ‘ int(10) unsigned NOT NULL DEFAULT ’0’,
‘id_batch ‘ int(10) unsigned NOT NULL DEFAULT ’0’,
‘userbatch_state ‘ enum(’OPEN’,’DONE’,’HIDDEN_OPEN’,’HIDDEN_DONE’) NOT NULL DEFAULT ’OPEN’,
‘userbatch_dt_complete ‘ datetime DEFAULT NULL,
PRIMARY KEY (‘id_user_batch ‘),
KEY ‘INDEX‘ (‘id_user ‘,‘id_batch ‘,‘userbatch_state ‘)

) ENGINE=MyISAM AUTO_INCREMENT =2321 DEFAULT CHARSET=utf8;

-- The actual annotations. Tweet- and topic-levels our stored as 0, 1 or 2.
CREATE TABLE ‘tbl_annotation ‘ (

‘id_annotation ‘ int(10) unsigned NOT NULL AUTO_INCREMENT ,
‘id_tweet ‘ int(10) unsigned DEFAULT NULL,
‘id_user ‘ int(10) unsigned DEFAULT NULL,
‘id_topic ‘ int(10) unsigned DEFAULT NULL,
‘tweet_level ‘ tinyint(4) DEFAULT NULL,
‘topic_level ‘ tinyint(4) DEFAULT NULL,
PRIMARY KEY (‘id_annotation ‘),
KEY ‘INDEX‘ (‘id_tweet ‘,‘id_user ‘,‘id_topic ‘,‘tweet_level ‘,‘topic_level ‘)

) ENGINE=MyISAM AUTO_INCREMENT =107988 DEFAULT CHARSET=utf8;

-- Batches. Usually a batch consists of 15 tweets of tbl_tweet
CREATE TABLE ‘tbl_batch ‘ (

‘id_batch ‘ int(10) unsigned NOT NULL AUTO_INCREMENT ,
‘id_instance ‘ int(10) unsigned DEFAULT NULL,

118

Reproducibility information C.1 SQL statements

‘dt_start ‘ datetime DEFAULT NULL,
‘dt_end ‘ datetime DEFAULT NULL,
‘sample_ratio ‘ double DEFAULT NULL,
‘dt_due ‘ datetime DEFAULT NULL,
PRIMARY KEY (‘id_batch ‘),
KEY ‘INDEX‘ (‘id_instance ‘)

) ENGINE=MyISAM AUTO_INCREMENT =280 DEFAULT CHARSET=utf8;

-- Topics to be annotated for each instance and their names
CREATE TABLE ‘tbl_topic ‘ (

‘id_topic ‘ int(10) unsigned NOT NULL AUTO_INCREMENT ,
‘id_instance ‘ int(10) unsigned DEFAULT NULL,
‘topic_name ‘ varchar(45) DEFAULT NULL,
‘topic_sourceschema_id ‘ int(10) unsigned DEFAULT NULL,
PRIMARY KEY (‘id_topic ‘),
KEY ‘INDEX‘ (‘id_instance ‘)

) ENGINE=MyISAM AUTO_INCREMENT=97 DEFAULT CHARSET=utf8;

-- The tweets to be annotated for each batch. May contain duplicates, if
-- several instances share a tweet. This removes the need for a separate
-- link table, and enables the use of instance-specific properties.
CREATE TABLE ‘tbl_tweet ‘ (

‘id_tweet ‘ int(10) unsigned NOT NULL AUTO_INCREMENT ,
‘id_batch ‘ int(10) unsigned DEFAULT NULL,
‘tweet_id_twitter ‘ bigint(20) DEFAULT NULL,
‘tweet_content ‘ varchar(255) DEFAULT NULL,
‘tweet_postuser ‘ varchar(80) DEFAULT NULL,
‘tweet_created ‘ datetime DEFAULT NULL,
‘was_marked ‘ bit(1) NOT NULL DEFAULT b’0’,
‘was_noise ‘ bit(1) NOT NULL DEFAULT b’0’,
‘was_archived ‘ bit(1) NOT NULL DEFAULT b’0’,
PRIMARY KEY (‘id_tweet ‘),
KEY ‘INDEX‘ (‘id_batch ‘,‘tweet_id_twitter ‘)

) ENGINE=MyISAM AUTO_INCREMENT =4198 DEFAULT CHARSET=utf8;

-- The annotating users.
CREATE TABLE ‘tbl_user ‘ (

‘id_user ‘ int(10) unsigned NOT NULL,
‘user_name ‘ varchar(45) DEFAULT NULL,
‘user_email ‘ varchar(45) DEFAULT NULL,
PRIMARY KEY (‘id_user ‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

C.1.3 Database structure, schema: TwitterBase

CREATE DATABASE IF NOT EXISTS ‘TwitterBase ‘
USE ‘TwitterBase ‘;

-- A huge base for tweets
CREATE TABLE ‘TweetBase ‘ (

‘id‘ bigint(20) unsigned NOT NULL,
‘is_processed ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘process_result ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘in_annotation ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘in_gg ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘in_npl ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘in_tno2 ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘in_ns ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘themed_gg ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘themed_npl ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘themed_tno2 ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘themed_ns ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘created_at ‘ datetime DEFAULT NULL,
‘text ‘ varchar(145) NOT NULL,
‘source ‘ varchar(60) NOT NULL,
‘truncated ‘ tinyint(1) NOT NULL DEFAULT ’0’,

119

C.1 SQL statements Reproducibility information

‘in_reply_to_status_id ‘ bigint(20) NOT NULL DEFAULT ’0’,
‘in_reply_to_user_id ‘ bigint(20) NOT NULL DEFAULT ’0’,
‘in_reply_to_screen_name ‘ varchar(40) NOT NULL,
‘user_id ‘ bigint(20) NOT NULL DEFAULT ’0’,
‘longitude ‘ varchar(20) NOT NULL,
‘latitude ‘ varchar(20) NOT NULL,
‘place ‘ varchar(550) NOT NULL,
‘retweet_count ‘ int(11) NOT NULL DEFAULT ’0’,
‘favorite_count ‘ int(11) NOT NULL DEFAULT ’0’,
‘ent_hashtags ‘ varchar(1000) NOT NULL,
‘ent_symbols ‘ varchar(255) NOT NULL,
‘ent_urls ‘ varchar(2000) NOT NULL,
‘ent_user_mentions ‘ varchar(2000) NOT NULL,
‘ent_media ‘ varchar(2000) NOT NULL,
‘lang ‘ varchar(10) NOT NULL,
PRIMARY KEY (‘id‘),
KEY ‘is_processed ‘ (‘is_processed ‘),
KEY ‘in_annotation ‘ (‘in_annotation ‘),
KEY ‘in_gg ‘ (‘in_gg ‘),
KEY ‘in_npl ‘ (‘in_npl ‘),
KEY ‘in_tno2 ‘ (‘in_tno2 ‘),
KEY ‘in_ns ‘ (‘in_ns ‘),
KEY ‘themed_gg ‘ (‘themed_gg ‘),
KEY ‘themed_npl ‘ (‘themed_npl ‘),
KEY ‘themed_tno2 ‘ (‘themed_tno2 ‘),
KEY ‘themed_ns ‘ (‘themed_ns ‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

-- All users that have a tweet posted in TweetBase
CREATE TABLE ‘UserBase ‘ (

‘id‘ bigint(20) unsigned NOT NULL,
‘is_processed ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘process_result ‘ tinyint(4) unsigned NOT NULL DEFAULT ’0’,
‘created_at ‘ datetime DEFAULT NULL,
‘name ‘ varchar(30) NOT NULL,
‘screen_name ‘ varchar(20) NOT NULL,
‘location ‘ varchar(50) NOT NULL,
‘description ‘ varchar(100) NOT NULL,
‘url‘ varchar(100) NOT NULL,
‘ent_url ‘ varchar(500) NOT NULL,
‘ent_description ‘ varchar(500) NOT NULL,
‘protected ‘ tinyint(1) NOT NULL DEFAULT ’0’,
‘followers_count ‘ int(11) NOT NULL DEFAULT ’0’,
‘favorites_count ‘ int(11) NOT NULL DEFAULT ’0’,
‘friends_count ‘ int(11) NOT NULL DEFAULT ’0’,
‘listed_count ‘ int(11) NOT NULL DEFAULT ’0’,
‘utc_offset ‘ varchar(50) NOT NULL,
‘time_zone ‘ varchar(30) NOT NULL,
‘geo_enabled ‘ tinyint(1) NOT NULL DEFAULT ’0’,
‘statuses_count ‘ int(11) NOT NULL DEFAULT ’0’,
‘lang ‘ varchar(10) NOT NULL,
‘is_translator ‘ tinyint(1) NOT NULL DEFAULT ’0’,
PRIMARY KEY (‘id‘),
KEY ‘is_processed ‘ (‘is_processed ‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- All IDs of tweets that have been annotated, primarily used as a temporary
-- table to construct MissingAnnotatedTweetIDs
CREATE TABLE ‘AnnotatedIDs ‘ (

‘id‘ bigint(20) NOT NULL,
PRIMARY KEY (‘id‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

-- All IDs of tweets that were unable to be enriched because they have been
-- deleted or are protected.
CREATE TABLE ‘MissingAnnotatedTweetIDs ‘ (

120

Reproducibility information C.2 Implementation specifics

‘id‘ bigint(20) NOT NULL,
PRIMARY KEY (‘id‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

-- A table of Twitter tokens to rotate on when importing and enriching large
-- amounts of data.
CREATE TABLE ‘Tokens ‘ (

‘id‘ int(11) NOT NULL AUTO_INCREMENT ,
‘consumer_key ‘ varchar(100) NOT NULL,
‘consumer_secret ‘ varchar(100) NOT NULL,
‘bearer_token ‘ varchar(150) NOT NULL,
‘owner ‘ varchar(50) NOT NULL,
PRIMARY KEY (‘id‘)

) ENGINE=MyISAM AUTO_INCREMENT =183 DEFAULT CHARSET=utf8;

C.1.4 Initial Project X analysis

USE twitcident_projectx;

CREATE OR REPLACE VIEW AnnotatedData AS
SELECT tweet.text ,

tweet.fromUser ,
tweet.createdAt ,
tweet.toUser ,
tweet.source ,
CONCAT(IF (tweet.latitude , tweet.latitude , ’’),

IF (tweet.longitude , CONCAT(’ - ’, tweet.longitude), ’’),
IF (tweet.location , CONCAT(’ - ’, tweet.location), ’’),
IF (tweet.placeName , CONCAT(’ - ’, tweet.placeName), ’’),
IF (tweet.placeCountry , CONCAT(’ - ’, tweet.placeCountry), ’’)) AS location_data ,

tweet.isoLanguageCode ,
tweet.stream AS stream_id ,
streamingrequest.name AS stream ,

theme.name AS theme ,
tweetLabels.name AS tweetLabel ,
userLabels.name AS userLabel

FROM ((((tweet
LEFT JOIN label AS tweetLabels ON tweet.label = tweetLabels.id)
LEFT JOIN label AS userLabels ON tweet.userLabel = userLabels.id)

LEFT JOIN theme ON tweet.theme = theme.id)
LEFT JOIN streamingrequest ON tweet.stream = streamingrequest.id)

WHERE (tweet.label IS NOT NULL)
ORDER BY tweet.createdAt;

SELECT * FROM AnnotatedData LIMIT 50000;

C.2 Implementation specifics

We have implemented the feature calculation and classifier system in Java, because the
original Twitcident was implemented in Java, the large support for libraries like WEKA
and the fact that the processes developed for this part run as consoled daemons. This
part of the project has the following package structure:

TestBench This packages contains most classes with a main() routine to run the parts
of the project, for development, example and evaluation purposes. Most parts
of the project can individually be started, like the FeatureCalculator, Classifica-
tionTest, DataFinder and TrainingSetCreator, but some classes are also used for
library evaluation (for example SimMetrics1, SecondString2, OpenNLP3, . . .)

1https://github.com/Simmetrics/simmetrics
2http://secondstring.sourceforge.net/
3https://opennlp.apache.org/

121

C.2 Implementation specifics Reproducibility information

as well as our own project parts (for example our own String Approximation
algorithms).

MyShared This package contains generic classes, like our internal input Tweet rep-
resentations, a Twitcident Data Connector that tunnels the database connection
over SSH-tunnels and VPNs to access our data and the main project helpers with
some configuration parameters like default settings and globally available helper
functions.

WekaClassification This package contains are WEKA-extensions and wrappers to
connect and transform our input representations to WEKA’s desired representa-
tion.

FeatureCalculation This package contains the actual Feature Calculation engine, its
support classes, feature representation classes and the following subpackages:

Features This packages includes all the features we implemented for this project.

FeatureHelpers This packages includes support classes used by features, like
stemmers, tense helpers, tokenizers, POS-taggers, . . . These are often lan-
guage specific (and thus configurable).

StringApproximationHelpers This contains a special subset of feature
helpers regarding string approximation. It contains wrappers for the
SimMetrics and SecondString libraries, as well as our own three string
approximation algorithms.

FeatureInputs This package contain the feature input classes and their repre-
sentations, like our word lists (and their parsers and database loaders) and
hotspot lists.

This part of the system is fully database driven, meaning that about everything
is configurable through the MySQL databases, including settings, parameters, feature
definitions, feature inputs like word-lists, . . . We considered this the most robust form
of implementation, with other system parts being able to easily communicate with this
part of the system while still being completely separate modules. It also allows for
multiple programming languages to communicate through a shared interface.

The full database specification can be found in Appendix C.1.1. A noteworthy part
is the specification and configuration of features, which our dynamically loaded, as
depicted in Figure C.1.

Every feature is instantiated by the class given by feature_class that is passed
four parameters: two optional variable field parameters and two optional FeatureIn-
put classes. Each such FeatureInput is also given two variable field parameters. The
interpretation of all variable field parameters depend on the feature class or the input
class. All FeatureInput classes load their data from a table as depicted in Figure C.2.

122

Reproducibility information C.2 Implementation specifics

Figure C.1: Database table: a random subset of a feature configuration

Figure C.2: Database table: a random subset of some feature inputs

123

C.2 Implementation specifics Reproducibility information

The FeatureCalculator unit outputs its results in three specifiable ways: directly
as a return value for further real-time processing, as a CSV export file and/or as an
ARFF file. ARFF is the preferred dataset input format for WEKA. However, in the
original ARFF specification, it is very hard (impossible without pre-filtering) to attach
metadata like ID and tweet text to each feature vector without affecting the classifier.
As we would really appreciate this for more in depth-analysis during experiments, we
put additional effort in extending the ARFF format as well as the WEKA code:

ARFF Format Each data instance line is now followed by a meta-attribute line, as
illustrated by Figure C.3.

ARFF Data Writer We implemented our own ARFF output writer.

ARFF Data Loader We extended all WEKA Core data loaders with our ExtendedArf-
fLoader class, to be able to interpret and load our meta attributes.

Instance We extended the WEKA Core Instance class with our ExtendedInstance
class to be able to store and maintain our meta-attributes.

Figure C.3: Extended ARFF format

124

Reproducibility information C.3 Word Expansion Algorithm

C.3 Word Expansion Algorithm

Algorithm 3 Expanding a word using Wiktionary API
1: procedure EXPANDWORDUSINGWIKTIONARY(W,R, [D = true]) . W = Word

, R is an expandable return object
2: S← text for W
3: S← find Dutch section using regular expressions in S
4: T ← templates for W
5: if ‘nld’ /∈ T ∧ ‘=nld=’ /∈ T then
6: return R . No Dutch section, so return R unaffected
7: end if
8: R[word]←W . Add word to output object
9: if D ∧ (‘noun-pl’ ∈ T ∨ ‘noun-dim’ ∈ T ∨ ‘noun-dim-pl’ ∈ T ∨

‘conjugtable’ ∈ T) then . This word is a conjugated form of another base word
10: A← obtain the base word this word is derived from using regular expressions
11: R[derived_from]← EXPANDWORD(A, [], false) . This is partially

recursive
12: end if
13: if ‘verb’ ∈ T then . This word is a verb
14: R[type]← R[type]∪{‘verb’}
15: if ‘conjugtable’ /∈ T then
16: R[verbal_forms]← scrape from ‘/vervoeging’ and parse verbal forms using reg. expr.
17: end if
18: Section← extract content for section ‘Werkwoord’ from S using regular expressions
19: A← parse definitions from Section using regular expressions
20: R[defs]← R[defs]∪A
21: end if
22: if ‘noun’ ∈ T then . This word is a noun
23: R[type]← R[type]∪{‘noun’}
24: if ‘noun-pl’ ∈ T ∨ ‘noun-dim’ ∈ T ∨ ‘noun-dim-pl’ ∈ T then
25: R[plural]←R[plural]∪parse plural form from S using regular expressions
26: R[dim.][sing.]←R[dim.][sing.]∪parse diminutive singular form from S using reg. expr.
27: R[dim.][plur.]←R[dim.][plur.]∪parse diminutive plural form from S using reg. expr.
28: end if
29: Section← extract content for section ‘Zelfstandig naamwoord’ from S using reg. expr.
30: A← parse definitions from Section using regular expressions
31: R[defs]← R[defs]∪A
32: end if
33: if ‘-syn-’ ∈ T then . This word has synonyms
34: Section← extract content for section ‘Synoniemen’ from S using regular expressions
35: A← parse definitions from Section using regular expressions
36: R[synonyms]← R[synonyms]∪A
37: end if

125

C.3 Word Expansion Algorithm Reproducibility information

Algorithm 4 Expanding a word using Wiktionary API (continued, 1)
38: if ‘-rel-’ ∈ T then . This word has related terms
39: Section← extract content for section ‘Verwante begrippen’ from S using reg. expr.
40: A← parse definitions from Section using regular expressions
41: R[related]← R[related]∪A
42: end if
43: if ‘-hypo-’ ∈ T then . This word has hyponyms
44: Section← extract content for section ‘Hyponiemen’ from S using regular expressions
45: A← parse definitions from Section using regular expressions
46: R[hyponyms]← R[hyponyms]∪A
47: end if
48: if ‘-hyper-’ ∈ T then . This word has hypernyms
49: Section← extract content for section ‘Hyperniemen’ from S using regular expressions
50: A← parse definitions from Section using regular expressions
51: R[hypernyms]← R[hypernyms]∪A
52: end if
53: if ‘-typ-’ ∈ T then . This word has typical usages
54: Section← extract content for section ‘Typische woordcombinaties’ from S using reg. expr.
55: A← parse definitions from Section using regular expressions
56: R[usages]← R[usages]∪A
57: end if
58: if ‘-expr-’ ∈ T then . This word has expressions
59: Section← extract content for section ‘Uitdrukkingen en gezegden’ from S using reg. expr.
60: A← parse definitions from Section using regular expressions
61: R[proverbs]← R[proverbs]∪A
62: end if
63: if ‘-prov-’ ∈ T then . This word has proverbs
64: Section← extract content for section ‘Spreekwoorden’ from S using regular expressions
65: A← parse definitions from Section using regular expressions
66: R[proverbs]← R[proverbs]∪A
67: end if
68: return R
69: end procedure

126

Appendix D

Potential data sources

Name Why useful / Description
Van Dale Woordenboek + Thesaurus Provide not only a few synonyms and related words, but

also instances in which the word can be used. At least one
such instance defines the semantic relation and/or order
of words we are looking for. Also useful if the singular
form is not contained in the plural form: both are listed.

http://www.mijnwoordenboek.nl/ww.php This source is able to conjugate verbs to all applicable
forms, which might be very useful due to the irregularity
of some verbs.

woorden.org Another public online dictionary.

Table D.1: Setup sources: dictionaries

Name Why useful / Description
nl.wiktionary.org A very special and important source. Can be used as a

dictionary like described above, but also provides seman-
tic relations to other words like synonyms, hyponyms,
antonyms and derived compound words. Licensed under
Creative Commons.

Cornetto Dutch alternative to WordNet. Only free for non-
commercial academic purposes.

WikiPedia The category structure and semantic relationships may be
exploited in some way or another.

Table D.2: Setup sources: semantic sources

127

Potential data sources

Name Why useful / Description
synoniemen.net Provides synonyms, but also reversed: words that contain

the input word as a synonym. This feature could be used
to enhance the confidence in returned synonyms.

puzzelwoordenboek.nl/woordenboek/ A puzzle dictionary for synonyms. Given a word, this
source returns all similar words / synonyms ordered by
the number of letters in the returned word.

mijnwoordenboek.nl/puzzelwoordenboek This is another puzzle dictionary, but does not return ac-
tual synonyms, but more very closely related words.

Table D.3: Setup sources: synonyms

Name Why useful / Description
WikiPedia General encyclopedia. Word frequency of related content

might be useful.
DBPedia More structured version of Wikipedia. We might be able

to identify certain relationships or certain types of rela-
tionships we could exploit.

Encyclo.org Another encyclopedia.

Table D.4: Setup sources: encyclopedia

Name Why useful / Description
spreekwoord.nl A source of proverbs.
woorden.org/spreekwoord.php Another source of proverbs .
dbnl.org/tekst/stoe002nede01_01/ Another proverb source; with all proverbs listed on a sin-

gle page.

Table D.5: Setup sources: proverbs

128

Potential data sources

Name Why useful / Description
woordenlijst.org Contains valid word listings; we could use this to identify

terms.
Google Translate Google Translate provides machine-learned alterna-

tives/synonyms that we could use. Furthermore, it pro-
vides several example cases in which the word is used.
We could also translate back-and-forth to obtain alterna-
tives. We could also exploit Google Translate to get the
English version, consult major English dictionaries like
we use the Dutch (i.e. thesaurus.org), and translate the
results back to Dutch.

Twitter Although it seems a bit paradoxical, we might search the
current term on Twitter to obtain related terms / terms the
our often used if our current term is used, and ‘verify’
the usability and context of these terms using our other
source-types. Twitter also provides related terms, but this
seems to be very limited and not useful enough.

Google Images I noticed that when I was searching for a keyword I was
looking for on Google Images, that most of the time
the keyword appears in the context we are looking for.
This makes sense, since we are mostly looking for dis-
turbances and discrepancies to which some party has to
respond; something that people find most interesting. We
might acquire relevant tags/terms from those images?

taalkabaal.nl/scheldwoorden/indexa.php Contains a list of invectives and abuse words. These
maybe could be used for sentiment analysis.

voorbeginners.info/bargoens/alfabetisch-a-m.htm Contains a list of Dutch Slang words and their descrip-
tions.

chatwoordenboek.nl Contains chat slang and abbreviations. Might be useful
for interpreting tweets.

taalkabaal.nl/turbotaal Contains modern slang proverbs; can be used in the same
way as ‘official’ proverbs.

Table D.6: Setup sources: miscellaneous

129

Appendix E

Example word expansions

E.1 Aardbeving

word = aardbeving
type = [0 = noun]
defs = [0 = keer dat de grond schudt]
plural = [0 = aardbevingen]
dimunitive = [

singular = [0 = aardbevinkje]
plural = [0 = aardbevinkjes]

]
synonyms = [

0 = aardschok
1 = beving

]
related = [0 = aarde]
usages = [0 = grote verwoestingen door een zware aardbeving]

E.2 Auto

word => "auto"
type => [0 => "noun"]
defs => [0 => "motorrijtuig op vier wielen"]
plural => [0 => "auto ’s"]
dimunitive => [

singular => [0 => "autootje"]
plural => [0 => "autootjes"]

]
synonyms => [

0 => "automobiel"
1 => "wagen"

]
hyponyms => [

0 => "afroepauto"
1 => "bankauto"
2 => "bedrijfsauto"
3 => "bestelauto"
4 => "blusauto"
5 => "boemauto"
6 => "bomauto"
7 => "boodschappenauto"
8 => "botsauto"
9 => "brandweerauto"
10 => "bromauto"
11 => "conceptauto"
12 => "deelauto"

131

E.2 Auto Example word expansions

13 => "dienstauto"
14 => "dieselauto"
15 => "driedeursauto"
16 => "geldauto"
17 => "gezinsauto"
18 => "huurauto"
19 => "hybrideauto"
20 => "inruilauto"
21 => "kampeerauto"
22 => "kiepauto"
23 => "koelauto"
24 => "koersauto"
25 => "kraanauto"
26 => "ladderauto"
27 => "leaseauto"
28 => "lesauto"
29 => "lijkauto"
30 => "loopauto"
31 => "luxeauto"
32 => "maanauto"
33 => "melkauto"
34 => "miniatuurauto"
35 => "modelauto"
36 => "pantserauto"
37 => "personenauto"
38 => "politieauto"
39 => "postauto"
40 => "raceauto"
41 => "rallyauto"
42 => "ruimteauto"
43 => "rupsauto"
44 => "sleepauto"
45 => "sloopauto"
46 => "speelgoedauto"
47 => "sportauto"
48 => "stadsauto"
49 => "strooiauto"
50 => "takelauto"
51 => "tankauto"
52 => "terreinauto"
53 => "testauto"
54 => "trapauto"
55 => "tweedeursauto"
56 => "verhuisauto"
57 => "vervangauto"
58 => "vijfdeursauto"
59 => "vluchtauto"
60 => "volgauto"
61 => "vrachtauto"
62 => "vuilnisauto"
63 => "waterstofauto"
64 => "zakenauto"
65 => "zandauto"
66 => "ziekenauto"
67 => "zonneauto"
68 => "zwerfauto"

]
usages => [

0 => "met de auto naar je werk rijden"
1 => "een auto huren op het vliegveld"
2 => "de auto parkeren"
3 => "leaseauto"

]
proverbs => [

0 => "de auto is voor velen een heilige koe. (=iets heiligs , waar je niet aan mag komen.)"
1 => "een vogel in de auto rijden (=elk geval kan overal mee leven)"

132

Example word expansions E.3 Bank

]

E.3 Bank

word => "bank"
type => [0 => "noun"]
defs => [0 => "zitmeubel voor meer dan één persoon"]
plural => [0 => "banken"]
dimunitive => [

singular => [0 => "bankje"]
plural => [0 => "bankjes"]

]
synonyms => [

0 => "canapé"
1 => "divan"
2 => "sofa"
3 => "zandbank"
4 => "zitbank"

]
related => []
hyponyms => [

0 => "aanrechtbank"
1 => "ab-bank"
2 => "achterbank"
3 => "adressenbank"
4 => "afstootbank"
5 => "afvoerbank"
6 => "arbeidersbank"
7 => "asbank"
8 => "bedbank"
9 => "beeldbank"
10 => "beenmergbank"
11 => "beklaagdenbank"
12 => "beleenbank"
13 => "bidbank"
14 => "bierbank"
15 => "bijbank"
16 => "bloedbank"
17 => "boorbank"
18 => "bosbank"
19 => "botralibank"
20 => "circulatiebank"
21 => "communiebank"
22 => "databank"
23 => "depositobank"
24 => "discontobank"
25 => "doggersbank"
26 => "donorbank"
27 => "draaibank"
28 => "driezitsbank"
29 => "effectenbank"
30 => "eurobank"
31 => "europabank"
32 => "financieringsbank"
33 => "folterbank"
34 => "freesbank"
35 => "gegevensbank"
36 => "genenbank"
37 => "geselbank"
38 => "getuigenbank"
39 => "glijbank"
40 => "grindbank"
41 => "grondbank"
42 => "hakbank"
43 => "hakselbank"

133

E.3 Bank Example word expansions

44 => "handelsbank"
45 => "herenbank"
46 => "hersenbank"
47 => "hoekbank"
48 => "holbank"
49 => "houtdraaibank"
50 => "hypotheekbank"
51 => "incassobank"
52 => "informatiebank"
53 => "informatiseringsbank"
54 => "investeringsbank"
55 => "kaaimanbank"
56 => "kannenbank"
57 => "kennisbank"
58 => "kerfbank"
59 => "kerkbank"
60 => "klachtenbank"
61 => "klapbank"
62 => "knielbank"
63 => "koeienbank"
64 => "koorbank"
65 => "koraalbank"
66 => "kotterbank"
67 => "kredietbank"
68 => "kruispuntbank"
69 => "landbouwbank"
70 => "lattenbank"
71 => "leenbank"
72 => "ligbank"
73 => "loungebank"
74 => "mastbank"
75 => "melkbank"
76 => "mestbank"
77 => "mistbank"
78 => "modderbank"
79 => "mosselbank"
80 => "nagelbank"
81 => "nevelbank"
82 => "oerbank"
83 => "oesterbank"
84 => "onderbank"
85 => "ontwikkelingsbank"
86 => "oppositiebank"
87 => "organenbank"
88 => "pandenbank"
89 => "parelbank"
90 => "pijnbank"
91 => "Postbank"
92 => "pottenbank"
93 => "rabobank"
94 => "raiffeisenbank"
95 => "rechtbank"
96 => "regeringsbank"
97 => "rekbank"
98 => "reservebank"
99 => "retailbank"
100 => "richtbank"
101 => "roeibank"
102 => "rolbank"
103 => "rollenbank"
104 => "rollerbank"
105 => "rotsbank"
106 => "rustbank"
107 => "schaafbank"
108 => "schelpenbank"
109 => "schepenbank"

134

Example word expansions E.3 Bank

110 => "schommelbank"
111 => "schoolbank"
112 => "schroefbank"
113 => "slaapbank"
114 => "slachtbank"
115 => "slagersbank"
116 => "sneeuwbank"
117 => "snijbank"
118 => "sollicitantenbank"
119 => "spaarbank"
120 => "speelbank"
121 => "spelersbank"
122 => "spermabank"
123 => "staatsbank"
124 => "stadsbank"
125 => "strafbank"
126 => "systeembank"
127 => "tekstbank"
128 => "thuisbank"
129 => "tijdbank"
130 => "tijgerbank"
131 => "toonbank"
132 => "trekbank"
133 => "tuinbank"
134 => "tweezitsbank"
135 => "vacaturebank"
136 => "vandiktebank"
137 => "vensterbank"
138 => "verdachtenbank"
139 => "verzekeringsbank"
140 => "visbank"
141 => "vlakbank"
142 => "vleesbank"
143 => "voedselbank"
144 => "voetbank"
145 => "volkskredietbank"
146 => "waterbank"
147 => "weefselbank"
148 => "Wereldbank"
149 => "werkbank"
150 => "wisselbank"
151 => "wolkenbank"
152 => "zaadbank"
153 => "zaagbank"
154 => "zadenbank"
155 => "zakenbank"
156 => "zandbank"
157 => "zeebank"
158 => "zetbank"
159 => "zitbank"
160 => "zodenbank"
161 => "zondaarsbank"
162 => "zonnebank"

]
hypernyms => []
usages => [

0 => "tv kijken op de bank"
1 => "kerkbank"
2 => "een bankje op een mooi punt van het wandelpad"

]
proverbs => [

0 => " op de bank zitten"
1 => "als een lam ter slachtbank geleid worden (=weerloos zijn)"
2 => "als warme/hete broodjes over de toonbank gaan. (=zeer goed verkopen)"
3 => "door de bank genomen. (=gemiddeld; meestal; gewoonlijk.)"
4 => "het is kruis of munt , zei de non en ze trouwde de bankier. (=een keuze voor het materiële kan ten koste gaan van het spirituele.)"

135

E.4 Brand Example word expansions

5 => "het niet onder stoelen of banken steken (=je niet stil houden , maar je mening openlijk uiten)"
6 => "iemand achter de bank schuiven (=iemand minachtend behandelen)"
7 => "iemand op de pijnbank leggen (=iemand het moeilijk maken en daarmee dwingen iets te doen)"
8 => "je mening niet onder stoelen of banken steken. (=je mening niet verbergen , openlijk voor je mening en standpunten uit durven komen , bij voorbeeld van afkeuring van iets.)"
9 => "niet onder stoelen en banken steken (=er rond voor uitkomen)"
10 => "niet onder stoelen en of banken steken (=er rond voor uitkomen)"
11 => "onder stoelen of banken steken (=verbergen)"
12 => "op het zondaarsbankje zitten (=schuld bekennen)"
13 => "voor stoelen en banken praten (=maar weinigen die naar iemands verhaal luisteren)"
14 => "zo zeker als de bank (=iemand die in alles te vertrouwen is)"

]

E.4 Brand

word => "brand"
type => [

0 => "verb"
1 => "noun"

]
defs => [

0 => "eerste persoon enkelvoud tegenwoordige tijd van branden
Ik brand."

1 => "gebiedende wijs van branden
Brand!"

2 => "(bij inversie) tweede persoon enkelvoud tegenwoordige tijd van branden
Brand je?"

3 => "keer dat vuur iets verbrandt"
]
derived_from => [

word => "branden"
type => [

0 => "verb"
1 => "noun"

]
defs => [

0 => "(absoluut) verteerd worden door vuur
De kaars brandde de hele nacht"

1 => "(overgankelijk) aan vuur blootstellen , roosteren
De koffie werd er vrij licht gebrand."

2 => "(overgankelijk) als brandstof gebruiken
De olie die daar gebrand wordt , stinkt."

]
verbal_forms => [

0 => "gebrand"
1 => "brandend"
2 => "branden"
3 => "brand"
4 => "brandt"
11 => "brandde"
16 => "brandden"

]
related => [0 => "verbranden"]

]
plural => [0 => "branden"]
dimunitive => [

singular => [0 => "brandje"]
plural => [0 => "brandjes"]

]
synonyms => [

0 => "fik"
1 => "hens"

]
related => [0 => "vuurzee"]
hyponyms => [

0 => "aardbrand"

136

Example word expansions E.5 Bureau

1 => "bedrijfsbrand"
2 => "bermbrand"
3 => "binnenbrand"
4 => "boombrand"
5 => "bosbrand"
6 => "builenbrand"
7 => "duinbrand"
8 => "haardbrand"
9 => "heidebrand"
10 => "Hildebrand"
11 => "IJsbrand"
12 => "natuurbrand"
13 => "rijstbrand"
14 => "roggebrand"
15 => "schipholbrand"
16 => "schoorsteenbrand"
17 => "stadsbrand"
18 => "steenbrand"
19 => "stokebrand"
20 => "stuifbrand"
21 => "veenbrand"
22 => "voorbrand"
23 => "vriesbrand"
24 => "wereldbrand"
25 => "wortelbrand"
26 => "zeebrand"
27 => "zonnebrand"
28 => "zuurbrand"

]
hypernyms => []
usages => [

0 => "in brand staan"
1 => "Er is brand uitgebroken."
2 => "bosbranden"

]
proverbs => [

0 => "as is verbrande turf. (=aan een belofte (as = als) heb je niets)"
1 => "bang zijn zich aan koud water te branden (=erg voorzichtig zijn)"
2 => "beter hard geblazen dan de mond gebrand. (=het is beter dat men zich inspant dan dat er door slordigheid of luiheid iets fout gaat)"
3 => "branden als een (tiere)lier (=een heel erg hevige brand)"
4 => "branden als een fakkel (=zeer fel branden)"
5 => "brandende kwestie (=een dringende , actuele zaak)"
6 => "de schepen achter zich verbranden (=een besissing nemen en niet meer terug kunnen)"
7 => "dominee brand je bekje niet (=pas op! Het eten of de drank is heet!)"
8 => "ergens op gebrand zijn (=iets heel erg fijn vinden en er naar streven)"
9 => "gauw aangebrand zijn (=gauw geïrrteerd zijn)"
10 => "het geld brandt hem in de zak. (=hij geeft zijn geld graag en gemakkelijk uit.)"
11 => "iemand uit de brand helpen (=iemand uit de nood helpen)"
12 => "kijken of men water ziet branden (=heel erg verbaasd kijken)"
13 => "moord en brand schreeuwen (=uiterst verontwaardigd zijn)"
14 => "niet brandschoon zijn (=dingen misdaan hebben)"
15 => "ook tussen de mooie bloemen groeien brandnetels. (=de schoonheid van de omgeving biedt geen garantie voor onaangename zaken)"
16 => "te veel vuur in een stoof doet ze branden (=teveel is schadelijk)"
17 => "uit de brand helpen (=uit de nood helpen)"
18 => "uit de brand zijn (=geholpen zijn , problemen opgelost)"
19 => "wie zijn billen brandt , moet op de blaren zitten. (=als je iets doms doet , moet je de gevolgen dragen (liefst zonder klagen))"
20 => "wie zijn gat brandt , moet op de blaren zitten. (=wie een risico neemt , moet de gevolgen dragen.)"
21 => "zijn kaars aan twee kanten branden (=zijn krachten of mogelijkheden al te vroeg verspillen)"
22 => "zijn schepen achter zich verbranden (=obstinaat doorgaan , zodanig dat men niet meer terug kan)"
23 => "zijn vingers aan iets branden (=zich in iets vergissen , nadeel aan iets ondervinden)"

]

E.5 Bureau

word => "bureau"

137

E.5 Bureau Example word expansions

type => [0 => "noun"]
defs => [

0 => "tafel met laden om aan te werken"
1 => "kantoor van de politie of andere organisatie"
2 => "werkkamer"

]
plural => [0 => "bureaus"]
dimunitive => [

singular => [0 => "bureautje"]
plural => [0 => "bureautjes"]

]
synonyms => [

0 => "schrijftafel"
1 => "schrijfbureau"
2 => "kantoor"

]
hyponyms => [

0 => "adresbureau"
1 => "advertentiebureau"
2 => "adviesbureau"
3 => "arbeidsbureau"
4 => "architectenbureau"
5 => "atoombureau"
6 => "bagagebureau"
7 => "bedrijfsbureau"
8 => "bemiddelingsbureau"
9 => "classificatiebureau"
10 => "consultatiebureau"
11 => "detacheringsbureau"
12 => "districtsbureau"
13 => "escortbureau"
14 => "evenementenbureau"
15 => "gastouderbureau"
16 => "headhuntersbureau"
17 => "hoofdbureau"
18 => "incassobureau"
19 => "informatiebureau"
20 => "ingenieursbureau"
21 => "interimbureau"
22 => "kamerverhuurbureau"
23 => "mailbureau"
24 => "merkenbureau"
25 => "modellenbureau"
26 => "persbureau"
27 => "plaatsingsbureau"
28 => "planbureau"
29 => "politbureau"
30 => "politiebureau"
31 => "projectbureau"
32 => "reclamebureau"
33 => "reisbureau"
34 => "relatiebureau"
35 => "schrijfbureau"
36 => "stembureau"
37 => "terugkeerbureau"
38 => "toeristenbureau"
39 => "vaccinebureau"
40 => "zorgbureau"

]
usages => [

0 => "aan/achter je bureau zitten schrijven"
1 => "politiebureau"
2 => "adviesbureau"
3 => "Komt u even langs op mijn bureau."

]

138

Example word expansions E.6 Regen

E.6 Regen

word => "regen"
type => [

0 => "verb"
1 => "noun"

]
defs => [

0 => "meervoud verleden tijd van rijgen
Wij regen.
Jullie regen.
Zij regen."

1 => "gebiedende wijs van regenen"
2 => "water dat in druppels uit de lucht valt"
3 => "regenbui"

]
derived_from => [

word => "rijgen"
type => [0 => "verb"]
defs => [0 => "(overgankelijk) met een naald een draad ergens doorvoeren

Ze reeg eerst de zoom om te kunnen zien of deze op de juiste lengte was."]
verbal_forms => [

0 => "geregen"
1 => "rijgend"
2 => "rijgen"
3 => "rijg"
4 => "rijgt"
11 => "reeg"
14 => "reegt"
16 => "regen"

]
related => [0 => "rijgnaald"]

]
plural => [0 => "regens"]
dimunitive => [

singular => [0 => "regentje"]
plural => [0 => "regentjes"]

]
hyponyms => [

0 => "druilregen"
1 => "goudenregen"
2 => "goudregen"
3 => "ijsregen"
4 => "lintjesregen"
5 => "motregen"
6 => "prijzenregen"
7 => "slagregen"
8 => "sterrenregen"
9 => "stofregen"
10 => "stortregen"
11 => "vonkenregen"
12 => "zandregen"
13 => "zwavelregen"

]
proverbs => [

0 => "Van de regen in de drup."
1 => "Regen in mei, dan is april voorbij."
2 => "als het in de kajuit regent druipt het in de hut (=als de baas problemen heeft , krijgen ook de ondergeschikten hun deel)"
3 => "als het melk regent , staan mijn schotels omgekeerd. (=wanneer ergens iets voordeligs te verkrijgen valt , loop ik het steevast mis.)"
4 => "als honden konden bidden zou het kluiven regenen. (=als is een niet ter zake doende opmerking.)"
5 => "Avondrood , mooi weer aan boord , morgenrood , regen in de sloot (=Eerste deel is 60% waar , tweede deel is onbetrouwbaar (KNMI))"
6 => "de boon van de koek gekregen hebben (=geluk gehad hebben)"
7 => "de regen schuwen en in de sloot vallen (=door iets onaangenaams te ontwijken in nog groter problemen komen)"
8 => "het regent bakstenen (=gezegd van een hevige hagelbui)"
9 => "het regent pijpestelen (=het regent heel hard)"
10 => "hij heeft een klap van de molen gekregen. (=hij is niet goed meer bij zijn verstand)"

139

E.7 Trillen Example word expansions

11 => "na regen komt zonneschijn. (=na een periode van tegenslag , komt er een betere tijd.)"
12 => "regen in mei, dan is april voorbij. (=de natuur kiest vanzelf de goede volgorde.)"
13 => "van de regen in de drup (=niet veel opschieten , van moeilijke omstandigheden in nog moeilijkere omstandigheden terecht komen)"
14 => "verrijzen als paddestoelen na een regenachtige dag (=plots tevoorschijn komen)"

]
usages => [

0 => "in de stromende regen"
1 => "tropische regens"

]

E.7 Trillen

word => "trillen"
type => [0 => "verb"]
defs => [

0 => "(inergatief) snel heen een weer bewegen
De snaar trilde totdat de harpist deze met zijn hand afdempte."

1 => "heel snel met kleine bewegingen heen en weer gaan"
]
verbal_forms => [

0 => "getrild"
1 => "trillend"
2 => "trillen"
3 => "tril"
4 => "trilt"
11 => "trilde"
16 => "trilden"

]
synonyms => [

0 => "vibreren"
1 => "bibberen"
2 => "beven"
3 => "rillen"

]
usages => [0 => "trillen van woede"]

E.8 Veeg

word => "veeg"
type => [

0 => "verb"
1 => "noun"

]
defs => [

0 => "eerste persoon enkelvoud tegenwoordige tijd van vegen
Ik veeg."

1 => "gebiedende wijs van vegen
Veeg!"

2 => "(bij inversie) tweede persoon enkelvoud tegenwoordige tijd van vegen
Veeg je?"

3 => "beweging waarbij je langs iets strijkt"
4 => "vlek in de vorm van een streep die je maakt door ergens langs te vegen"

]
derived_from => [

word => "vegen"
type => [

0 => "verb"
1 => "noun"

]
defs => [

0 => "(overgankelijk) zonder water schoonmaken met een borstel
Vergeet niet de vloer nog te vegen!"

1 => "(figuurlijk) door ergens langs te strijken verplaatsen of verwijderen"
]

140

Example word expansions E.8 Veeg

verbal_forms => [
0 => "geveegd"
1 => "vegend"
2 => "vegen"
3 => "veeg"
4 => "veegt"
11 => "veegde"
16 => "veegden"

]
related => [0 => "opvegen"]
usages => [

0 => "de vloer vegen"
1 => "een schoorsteen vegen"
2 => "je voeten aan de deurmat vegen"
3 => "de tranen van je wangen vegen"

]
proverbs => [

0 => " een voorstel van tafel vegen"
1 => " onder het tapijt vegen"
2 => " van de kaart vegen"

]
]
plural => [0 => "vegen"]
dimunitive => [

singular => [0 => "veegje"]
plural => [0 => "veegjes"]

]
usages => [

0 => "Met één veeg alles uitwissen"
1 => "Er zit een zwarte veeg op je mouw."

]
proverbs => [

0 => "een veeg uit de pan krijgen (=een klap incasseren / op zijn donder krijgen / een standje krijgen)"
1 => "een voetveeg zijn. (=iemand zijn die voor minderwaardige klusjes gebruikt wordt.)"
2 => "iemands voetveeg zijn (=iemands slaaf zijn (zich alles moeten laten welgevallen))"
3 => "zo veeg als een luis op een kam (=in groot gevaar verkerend)"

]

141

Appendix F

Data Collection

To evaluate our Classifier performance, we need training and test data of which the
classifications our known a priori. This section describes how we obtained our clas-
sified data, and how it is processed. Section F.1 will go more into the problem, and
discusses the choices we made. Section F.2 will be dedicated to the Data Annota-
tion Application. Next, in Section F.3 we will discuss the Data Collection algorithm.
Finally, in Section F.4 we will discuss our output processing algorithm on how we
aggregated our results.

The goal here is to acquire a fully classified representative dataset to evaluate our
classifiers. We will use the terms classify and annotate interchangeably.

F.1 Strategy Considerations

F.1.1 What?

With Observation 9 we have noticed that the signal we are trying to detect is extremely
low, so the first question to arise is: How are we going to construct our dataset if the
relevancy ratio is so low? If we would perform a random unbiased search, we cannot
expect to have any relevant entries in our dataset.

That is why we will use the existing Twitcident databases to obtain our data. These
databases contain all tweets that have been streamed, even unclassified ones (recall
Section 2.1). And even among the originally classified data, the relevancy ratio is
very low (hence our thesis work). This also enables us to evaluate real-life operational
instances, rather than some random generated instance.

F.1.2 Who?

In Section 2.5 we have seen that the problem involves a very difficult domain. Even
domain experts have difficulties annotating a tweet and judging whether it is relevant.
Furthermore, detailed knowledge of what the client wants with a Twitcident Instance
is extremely important and often hard to grasp. Without this knowledge, it is even for
CrowdSense employees nearly impossible to annotate.

Due to this fact in combination with the data sensitivity (client data may not be
published) we were unable to employ CrowdSourcing, and lead us to do the annotation

143

F.2 Data Annotation Application Data Collection

work ourselves within the CrowdSense team. After having our internal annotation
consensus analyzed, we consider this choice justified.

F.1.3 How much?

The maximum allowed effort available per employee was about ten hours, or five min-
utes per day over a period of half a year, with an average of six employees. Further-
more, we wanted each tweet to be annotated by at least three to four employees, due
to the problem being hard and to achieve some consensus aggregation.

Our five minutes per day restriction translates to annotating a batch of about 15
tweets to be annotated. Therefore, we split up our work in packages of 15 tweets
called batches. A batch always relates to a single instance to focus on the instance
goal. Every tweet presented must be annotated for all Twitcident Topics within the
instance: we will elaborate on this process in Section F.2.

Because the amount of work that can be done is limited, we had to set our dataset
limits as low as possible where we can. Therefore, we aimed at the following minimum
target sizes, which is also the maximum we could ask for:

• Each annotation instance should have at least 500 tweets

• Each annotation instance should have at least 200 relevant tweets

• Each annotation topic within an instance should have at least 50 relevant tweets

When we take all those factors into account, we were able to create four or five of
such datasets.

F.2 Data Annotation Application

Figure F.1: Data Annotation Application: first annotation phase

144

Data Collection F.2 Data Annotation Application

We implemented the acual Data Annotation Application in which users annotate
in a combination of web-languages: PHP, HTML, JavaScript, CSS, MySQL, jQuery
and Twitter Bootstrap. After users login, they are presented with their batch overview,
and can choose a batch to start annotating. Each batch consists of 15 tweets that are
sequentially annotated in a two-phase process, as the Data Annotation application was
designed for fast and efficient annotation.

Figure F.1 illustrates the first annotation phase: a user is presented with a tweet and
given three options: the tweet is irrelevant (red button), the tweet might be relevant
(orange button) or the tweet is relevant (green button). When a tweet is considered
irrelevant, a user is immediately presented the next tweet. Any of the other two options
initiate the second annotation phase for a tweet.

Figure F.2: Data Annotation Application: second annotation phase

Figure F.2 illustrates the second annotation phase, which is initiated when a tweet
is annotated as (potentially) relevant. In this phase, we go a level deeper and annotate
on a Twitcident Topic level. The user now identifies to which topics this tweet is
relevant, and to what degree. By default, all topics are set to irrelevant (marked by
an X). For each topic, the user can mark it relevant to the tweet (marked by a V) or
extremely relevant to a tweet (marked by a star). The last category is used for tweets
the Twitcident Operator can attach a direct action or response to, and are considered
the actual tweets a Twitcident Client is looking for.

When the user presses the blue button (Next), the next tweet is displayed. Using
the navigation bar at the top, a user can jump to a any other (previous) tweet. As
soon as a tweet is annotated, it is marked green on this bar. As soon as all tweets are
annotated, the user is prompted with a dialog whether to save the annotations and is
returned to the batch overview screen. The annotations are then stored in a MySQL
database (schema specification can be found in Appendix C.1).

145

F.3 Data Collection Algorithm Data Collection

F.3 Data Collection Algorithm

To construct a representative dataset, we have devised an algorithm. The Twitcident
databases contain a few interesting fields we could exploit. For each tweet we exploit
the following fields from the available databases:

id Twitter Tweet ID

text Tweet text

fromUser Username

fromUserId Twitter Username ID

createdAt Date of tweet

stream The incoming stream that collected the tweet

theme The classification the current state of Twitcident attached based on theme key-
words. Is zero for tweets that were not classified.

isMarked Boolean indicating whether the tweet is marked in Twitcident. This can
roughly be translated to being an interesting/relevant tweet. However, we have
to remark that very few Twitcident Operators ever mark a tweet, so this field is
just a ‘bonus’.

isNoise Boolean indicating whether the tweet is marked as noise in Twitcident, and
thus irrelevant. Same as with isMarked, we have to remark that very few Twit-
cident Operators ever mark a tweet as noise, so also this field is just a ‘bonus’.

Using these fields, we devised Algorithm 5 to generate our annotation batches: T
is the set of tweets in the target instance database, W is the time window we want to
collect our tweets from, η is the batch size we want to generate, µ is the maximum
amount of marked tweets, ν is the maximum amount of tweets marked as noise and ρ

is the desired ratio of pre-classified tweets (theme is not zero).
In lines 2–4 we generate four sets of tweets. Note that these are, under the assump-

tion a tweet is not both marked as relevant and noise, mutually exclusive sets, such that
no tweet exists in more than one set. Furthermore, it holds that T ⊆ (Tmarked ∪Tnoise∪
Tthemed ∪Tunthemed) if W = ∞, and under the same assumption even equals T . These
sets are created by MySQL queries to the targeted Twitcident Instance database.

In lines 7–9 we initially determine how many tweets we want to fetch from each
set. However, as this does not always sum up to the desired batch size η (for example,
when every tweet is marked or noisy), lines 11–18 attempt to fill up by loosing the
restriction parameters. The execution of these lines will be extremely rare, but just in
case.

In lines 20–32 the sizes of the remaining sets are calculated according the to the
themed ratio parameter ρ. Note that these calculations are done under the assumption
that all marked and noisy tweets are also themed, which is always the case in the
Twitcident Instance databases.

146

Data Collection F.3 Data Collection Algorithm

Algorithm 5 Generating a data annotation batch
1: procedure BATCHGENERATION(T ,W ,η,µ,ν,ρ)
2: Tmarked ←{t ∈ T | tcreatedAt ∈W ∧ tisMarked}
3: Tnoise←{t ∈ T | tcreatedAt ∈W ∧ tisNoise}
4: Tthemed ←{t ∈ T | tcreatedAt ∈W ∧ ttheme 6= 0 ∧ ¬tisMarked ∧ ¬tisNoise}
5: Tunthemed ←{t ∈ T | tcreatedAt ∈W ∧ ttheme = 0 ∧ ¬tisMarked ∧ ¬tisNoise}
6: Nmarked ← min(|Tmarked |,µ)
7: Nnoise← min(|Tnoise|,ν)
8: Nremainder← min(|Tthemed |+ |Tunthemed |,η)
9: N f ill ← η− (Nmarked +Nnoise +Nremainder)

10: if (N f ill > 0)∧ (|Tnoise|> ν) then
11: Nnoise← min(|Tnoise|,ν+N f ill)
12: N f ill ← η− (Nmarked +Nnoise +Nremainder)
13: if (N f ill > 0)∧ (|Tmarked |> µ) then
14: Nmarked ← min(|Tmarked |,µ+N f ill)
15: end if
16: end if
17: Nthemed ← max(0,d(ρ ·η)− (Nmarked +Nnoise)e)
18: Nthemed ← min(|Tthemed |,Nthemed)
19: Nunthemed ← Nremainder−Nthemed
20: Nunthemed ← min(|Tunthemed |,Nunthemed)
21: if Nthemed +Nunthemed < Nremainder then
22: if (Nunthemed = |Tunthemed |)∨ (Nthemed < |Tthemed |) then
23: N f ill ← min(Nremainder−Nunthemed−Nthemed , |Tthemed |−Nthemed)
24: Nthemed ← Nthemed +N f ill
25: else if (Nthemed = |Tthemed |)∨ (Nunthemed < |Tunthemed |) then
26: N f ill ← min(Nremainder−Nunthemed−Nthemed , |Tunthemed |−Nunthemed)
27: Nunthemed ← Nunthemed +N f ill
28: end if
29: end if
30: Bmarked ← Randomly sample Nmarked tweets from Tmarked
31: Bnoise← Randomly sample Nnoise tweets from Tnoise

32: Bthemed ← Randomly sample Nthemed tweets from Tthemed
33: Bunthemed ← Randomly sample Nunthemed tweets from Tunthemed return

shu f f le(Bmarked ∪Bnoise∪Bthemed ∪Bunthemed)
34: end procedure

In lines 34–38 the batch gets sampled from the sets and returned after being ran-
domly shuffled.

We performed this batch generation process every week for over half a year. For
every instance one batch with η = 15 tweets was sampled with the window W set
to three weeks ago. This was to ensure clients had the opportunity to mark tweets as
relevant or noise, which would increase our dataset quality, but also to fetch pretty
recent tweets so the annotating user was relatively context-aware at the moment.

After initial experiments, we used the following values for the other parameters to
get representative balanced datasets: µ = 8,ν = 4,ρ = 0.85. The latter themed ratio

147

F.4 Output Processing Algorithm Data Collection

value of 0.85 seems high at first, but this is largely due to the fact that the ‘themed’
tweets also have a large proportion of noise. Generally speaking, if there were no
marked tweets (often the case), the themed set would contain a single potentially rel-
evant tweet on average out of 15 tweets, and the unthemed set none. However, we
still wanted a 15% fraction of tweets that were not classified by the current Twitcident
application as to remove its bias a bit.

F.4 Output Processing Algorithm

The aim of our classifier is to output a value in the normalized range [0.000,1.000].
This means that we must process our annotation results to this range. Furthermore,
a single tweet is always annotated by multiple users, and we need to aggregate these
annotation together to a single classification score.

We must also note that not every annotating user is as knowledgeable and close to
the client, and therefore, for each instance I , we attached a confidence weight CI,U ∈
Z+ to each user U.

Recall that for every annotated tweet we have a relevancy of the tweet which we
will denote by Rtweet,U ∈ {0,1,2} for every user U, where 0 means irrelevant and 2
relevant. We also have a relevancy for each topic T which we will denote by R T

topic,U ∈
{0,1,2} for every user U. Then for each tweet, we calculate its score SU,T,R ,C by:

SU,T,R ,C = α · ∑∀U (Rtweet,U ·CI,U)

∑∀U (2 ·CI,U)
+(1−α) ·

∑∀U

(
R T

topic,U ·CI,U

)
∑∀U (2 ·CI,U)

The first part of this formula calculates the partial tweet score, whereas the second
part calculates the partial topic score. These are both normalized weighted averages
of the annotations. These are then merged together using a ratio parameter α ∈<
0.00,1.00 >, which indicates to which extend the tweet relevancy must be taken into
account when calculating for this topic score. An example value would be α = 0.2,
indicating that the tweet relevancy would account for 20% and the topic relevancy
for 80%. In our opinion, the tweet relevancy should be taken into account because
Twitcident topics can be pretty similar and annotating users can easily miss a topic
when the tweet is relevant to multiple topics.

148

Appendix G

Analysis of Prinsjesdag 2013

149

1

Analyse data Prinsjesdag

De volgende analyse is gedaan met behulp van Kibana op de data van Prinsjesdag. Deze data is
afkomstig uit een vooraf geconfigureerde Twitcident monitor, en met enige pre-processing
geëxporteerd: de themas zijn geherclassificeerd om alle matchende thema’s aan de tweet
gekoppeld te hebben in plaats van alleen het eerste matchende thema.

Relatie tussen streams en themas:
Op streams worden tweets gezocht en binnengehaald. Daarna wordt de tweet geclassificeerd
met een of meerdere themas’s.

Algemene dataset statistieken

De volgende statistieken zijn, zonder enige configuratie, direct afleesbaar:

Monitoring-periode

Start: 13-09-2013 00:00
Eind: 28-10-2013 21:00

Aantallen tweets

Totaal: 617700 tweets
Classificaties met thema: 74214 tweets
Markeringen: 21 tweets

Configuratie

Streams: 20 streams
Themas: 6 themas

Inhoud

Analyse data Prinsjesdag ... 1

Algemene dataset statistieken .. 1
Streams en themas .. 2
Ongeclassificeerde data (in het kader van Event Detection) ... 3

Case: Zwerfkatten ... 4
Case: Zwarte Piet... 6
Case: Windmolens, Windenergie .. 9
Conclusie ongeclassificeerde data .. 12

Interessante markeringen (9/21) .. 13
Zoom-in op specifieke periode’s ... 14

Timeline overzicht ... 14
De aanloop naar prinsjesdag ... 15

Zoom-in op relevante dossiers .. 18
Klimaat .. 18
Innovatie ... 19
Kernenergie ... 20

Bouwsteen ‘Milieu & duurzaamheid’ .. 22

Analysis of Prinsjesdag 2013

150

2

Streams en themas

De aantallen per stream en per thema zijn ook direct afleesbaar, en geven een beeld van de
configuratie en relatieve verdeling:

Streams

Themas

Analysis of Prinsjesdag 2013

151

3

Ongeclassificeerde data (in het kader van Event Detection)

Om mogelijk nieuwe interessante thema’s te vinden waarover

veel getweet wordt, kunnen we de term frequenties van de

ongeclassificeerde tweets bekijken. Dit kan interessant zijn in

het kader van event-detection.

Door een filter te maken waardoor alleen tweets zonder gekoppeld thema getoond worden, een
en vervolgens de term-frequenties inzichtelijk te maken waarbij we alle stream-zoektermen en
algemene termen wegfilteren, krijgen we het volgende beeld:

Opvallendheden:

 Syrië wordt vaak genoemd. Blijkbaar staat deze niet op zichzelf staand in de streaming
keywords, anders zou deze uit de lijst gefilterd worden.

 Provider

 Kinderopvang

 Energie en CO2

 Windmolens en windenergie

 Geld

 Abortus

 Zwerfkatten

 Zwarte piet

 John Kerry / Russia (buitenland)

 Honger

We kunnen elk van deze opvallendheden dieper analyseren, door de ongeclassificeerde data te
filteren op deze veel voorkomende woorden. Op die manier krijgen we een beeld van wát er
precies over gezegd wordt, maar ook wanneer. We illustreren dit aan de hand van 3 cases:
Zwerfkatten, Zwarte Piet en Windmolens/windenergie/energie/CO2.

Analysis of Prinsjesdag 2013

152

4

Case: Zwerfkatten

Hieruit kunnen we opmaken dat er een petitie
circuleert tegen het afschieten van zwerfkatten.
Dit wordt ondersteunt door de eerste tweets
die getoond worden:

Als we naar de tijdsverdeling van deze tweets
kijken, zien we het onderstaande beeld
verschijnen. Het wordt hieruit duidelijk dat deze
petitie op 29 september of al eerder (vóór de
start van de dataset) gestart werd, en langzaam
aandacht verliest.

Opvallend zijn de 2 gemarkeerde
piekjes die later terugkomen. Na
hierop in te zoomen (tijdsfilter) zien
we dat de eerste set piekjes nieuwe
aanwakkeringen met nieuwe
tweetteksten zijn.

De 2e set piekjes blijken een retweet
te zijn over het feit dat de petitie is
gesloten:
“RT @Dierbescherming: Zojuist is de
petitie #zegnee tegen het afschieten
van zwerfkatten gesloten op een
eindstand van 136.113. Geweldig,
bedankt!”

Analysis of Prinsjesdag 2013

153

5

https://twitter.com/Dierbescherming/status/384592372417699840

https://twitter.com/Dierbescherming/status/391218082028322817

Analysis of Prinsjesdag 2013

154

6

Case: Zwarte Piet

Het eerste dat hierbij sterk opvalt is het grote verband tussen Zwarte Piet, Cola, Abortus en
alcoholgrens. Na inzoomen op de data blijkt dit door de zeer grote populariteit van de volgende
tweet te komen: (2011 retweets)

RT @Rosssen: Zwarte Piet weg, alcoholgrens naar 18. Nu alleen nog een gratis abortus bij een
sixpack cola en dan zijn we volledig anti-kind…

We kunnen na filteren op deze tweet ook eenvoudig zien dat deze tweet voor het eerst
gelanceerd is op 24 oktober en daarna razend populair werd. Gezien de eerdere piekjes is het
ook interessant te kijken wat zich juist buiten deze tweet om speelde: daarom draaien we het
filter om, zodat ‘de rest’ rondom zwarte piet overblijft. Verder filteren we alle tweets met cola en
abortus er ook uit:

Analysis of Prinsjesdag 2013

155

7

Heersende en populaire tweets hierbij zijn de volgende:

RT @NegaNindo: en terwijl wij zeiken of zwarte piet is er oorlog in Syrië maar owwww nee
zwarte piet is echt erg FOK OFF MAN

RT @Koning_NL: Liefst 4 VN-rapporteurs buigen zich over #zwartepiet. Oorlog en honger in de
wereld zijn blijkbaar opgelost. Hoera!

Dit impliceert dat naast alle ophef de publieke opinie ook met name relativerend tegenover het
Zwarte Piet verhaal staat.

Als we de originele tweeters van deze 3 berichten bekijken, kunnen we het volgende opmerken:

@Rosssen

Als we het Twitter gebruikersprofiel bekijken, zien we dat deze gebruiker veel ‘originele’ en
‘rakende’ tweets tweet met soms een vleugje humor, maar vaak met een kern van inhoud.
Verder geeft hij veel zijn mening in reacties op andere tweets. Zijn tweets worden regelmatig
geretweet. Als we kijken naar de gegevens in onze dataset, zien we de volgende tweets:
Zwarte Piet weg, alcoholgrens naar 18. Nu alleen nog een gratis abortus bij een sixpack cola en dan zijn
we volledig anti-kinderen. Mooi.
Flikker lekker op met je filmpjes van dierenleed, dierenmishandeling en andere onzin. Iedereen is zich er
al bewust, en ondertussen moe van.
Hoi ik ben rossen, werk fulltime met een bovengemiddeld inkomen en hoef dat niet met foto's van geld te
bewijzen zoals jij @KushingBubble
Leer het verschil tussen een boven gemiddeld inkomen, en uursalaris. In een callcenter kan je zelfs 20
euro per uur maken. @kisseskyra
"De VS zit achter 9/11 want ze wilden Irak binnenvallen voor de olie en winst maken."
Denk eens na. Die oorlog KOSTTE de VS 3000 miljard..
Morgen tijdens #prinsjesdag is de wederopstanding van Prins Friso omdat hij GTA V wilt spelen
Als je productiemedewerker bent van Nickelsonjassen maak je het soms wel iets te bont
@Heteroald: Ik wacht op de derde wereldoorlog.”
Jonge doe normaal mijn opa gaat dood in de derde wereld oorlog #niet #grappig #receptloos
Je zou vandaag maar investeren in windenergie..
Amerika haalde geen winst uit die oorlog. Het KOSTTE ze 3000 miljard en veroorzaakte de crisis. Oorlog
is nooit winstgevend. @Tunahanerd
RT @Insayno: Ooit opgevallen? Mag wel eens veranderen, vind je niet? #Prinsjesdag
http://t.co/CvtyOvIepU
Morgen is het #prinsjesdag Niemand boeit die shit. Morgen komt ook GTA V uit.

@NegaNindo

Dit blijkt een ‘gewone grootgebruiker’ van Twitter, met geen hoog inhoudsgehalte. Tweet vaak
per dag, en geeft regelmatig zijn mening, zo ook over Zwarte Piet, welke dit keer al snel populair
werd. Als we in onze dataset kijken, blijkt dit ook de enige tweet van hem.

@Koning_NL

Een fake-account van Willem-Alexander, vooral gericht op satire. Enkele tweets die in onze
dataset voorkomen:
Wij zijn even luid blazend op Onze vuvuzela met de Gouden Koets door de Schilderswijk aan het racen,
Landgenoten. #turned
Verdraaid! Er is een velletje in de Gouden Koets blijven liggen! Over privacy en dat het briefgeheim ook
voor mail en zo geldt. #Prinsjesdag
De A'tjes begrijpen niet dat de #PvdA tegen #JSF kan zijn. Al die zingende kinderen, daar wordt een mens
toch alleen maar vrolijk van?
Fijn dat u Ons nu al complimenteert met de inhoud van Onze eerste #Troonrede, mijnheer Obama, maar
#Prinsjesdag is morgen pas. #nsa

Analysis of Prinsjesdag 2013

156

8

https://twitter.com/TijlMTBeckand/status/390052663150133248

https://twitter.com/Rosssen/status/393033106631835648

https://twitter.com/Koning_NL/status/391492832483352576

Analysis of Prinsjesdag 2013

157

9

Case: Windmolens, Windenergie

Deze woorden blijken duidelijk niet in het actieve zoekbestand te staan (bijv bij Energie), anders
zouden zij weggefilterd worden. Dit geeft in eerste instantie aanleiding deze woorden als
zoekwoorden te overwegen.

Na een eerste blik op de termfrequenties blijken er veel Duitse woorden in voor te komen. Dit
was te verklaren door een populaire recruiting tweet rondom windenergie in Duitsland. Na het
wegfilteren van deze specifieke tweet, blijft het volgende beeld over:

Verder heeft deze selectie van tweets
een opvallende gebruikersdistributie:

Op basis van de veel voorkomende gerelateerde woorden zien we als interessant:

 Kosten

 Wetenschappers

 Energieakkoord

 Miljard

We voeren nu 2 wijzigingen in de filters door:

1. We filteren de tweets op bovenstaande
4 woorden, om het beeld te focussen
op de interessante woorden, en te
achterhalen wat hierover gezegd wordt.

2. We voegen de geclassificeerde data
weer toe, omdat dit wel binnen de
vooraf vastgestelde thematiek valt, om
zodoende het beeld volledig te maken.

Wat dan direct opvalt is de distributie over tijd:
We passen dan ook direct een tijdsfilter op deze periode toe, om de omliggende ‘ruis’ weg te
nemen.

Analysis of Prinsjesdag 2013

158

10

Als we vervolgens naar de tweets kijken die aan deze criteria voldoen, zien we de volgende
tweets overheersen:
Wetenschappers: windmolens kosten miljarden meer: De plannen van de overheid om flink meer
windenergie te winnen, k... http://t.co/RNSe8kfOuq
'Windmolens kosten veel meer dan in Energieakkoord staat': http://t.co/NFDjWNuQNd
Dus die lelijke dingen staan alleen maar geld te kosten? Groene Rekenkamer windenergie |
http://t.co/V0EbMM1Ke2: http://t.co/YqMnIfdrhR
RT @kritischewind: Windenergie: een 'rekenfoutje' van 15 miljard | http://t.co/uDzHmTnmZR:
http://t.co/Auzv3mqmHa

En:
RT @janpaulvansoest: Na enig gepuzzel werd duidelijk wie de 'wetenschappers' zijn die
betogen dat windenergie te duur is: http://t.co/IJdUa

Opnieuw blijkt het retweet-gedrag leidend, en werd dit getriggerd door een nieuwsbericht
(enkele media wakkerden het waargenomen fenomeen aan).

We zien dat laatstgenoemde tweet tegen de eerdere 4 van de media ingaat. Om te achterhalen
hoe de verhoudingen hiertussen zijn, zetten we deze tweet af tegen de rest, en zien dan het
volgende:

De lichtblauwe lijn geeft het
totaal aantal tweets weer, de
paarse lijn de tweet die tegen de
nieuwsberichten ingaat.

We zien dat dit ene tegenbericht
gelijk de heersende opinie
overneemt, het de retweets van
de nieuwsmedia stillegt.

Later zien we echter dat er
opnieuw enkele schommelingen
zijn, en zoomen daarom ook op
dat tijdinterval in, en halen
vervolgens de tweet van
@janpaulvansoest uit de selectie.

De tweets die overblijven gaan opnieuw over ‘het rekenfoutje’, en gezien de bovenstaande trend
is dit uiteindelijk ‘de winnaar’ die de laatste activiteit vertoond.

Analysis of Prinsjesdag 2013

159

11

https://twitter.com/BartTrouw/status/386387916110299136

https://twitter.com/janpaulvansoest/status/386571556937138176

https://twitter.com/BasEickhout/status/386422758462468096

Analysis of Prinsjesdag 2013

160

12

Conclusie ongeclassificeerde data

Onvoorziene ‘events’ zijn te identificeren door naar term-

frequenties te kijken van ongeclassificeerde data, en daarbij

de termen waarop gezocht wordt weg te laten. Voorwaarde is

wel dat de data binnenkomt via gerelateerde zoekwoorden.

Dit kan zowel achteraf, als real-time, zolang er gebruik wordt

gemaakt van een IR-engine.

Tevens hebben we aangetoond dat we, met deze manier van

benaderen, naast ‘trending topics’ ook snel meer informatie

inzichtelijk kunnen maken, zoals welke specifieke tweets

populair zijn, hoe populair, en wanneer.

Het retweet-gedrag lijkt daarbij leidend om snel en efficiënt

de publieke opinie te peilen.

Analysis of Prinsjesdag 2013

161

13

Interessante markeringen (9/21)

Goed, we hebben de JSF. Laten we er dan in godsnaam ook maar blij mee zijn. Wanneer is de
eerstvolgende oorlog?
Leg mij logica uit: we bestellen 37 JSF's voor liefst 4 miljard euro. 4000 kamervragen erover kostte 15
miljoen. En 2300 man defensie er uit
Ik heb zojuist met pijn in mijn hart lidmaatschap van de PvdA opgezegd. JSF krijg ik mezelf niet
uitgelegd!
@APechtold met mijn inkomen van 1200 euro leef ik heel krap nu moeten de ouderen nog meer
bezuinigen dat kan niet meer
Defensie wil bezuinigen door o.a. de kazerne in #Assen te sluiten. En dan toch besluiten om de #JSF aan
te schaffen??
Kabinet weet wat er leeft in Nederland. Schaffen de #jsf aan en burgers leveren weer koopkracht in.
#zalwelaanmijliggen
Weten we eindelijk waar al die extra bezuinigingen toe leiden: aanschaf 37 JSF straaljagers voor 4,5
miljard euro #miljoenennota #defensie
In tijden van Crisis waar je amper nog je Brood kan betalen Schaft ONS kabinet 37 JSF vliegtuigen aan!
#VVD #PVDA <<<< #wegermee !!!!!
Iets wat ik niet begrijp, en waarschijnlijk nooit zal begrijpen: 6 miljard bezuinigen, maar wél 37 JSF's
kopen? #miljoenennota #prinsjesdag

Ten opzichte van ‘trending topics’ kan innovatief real-time

monitorren (Twitcident) meer context aan een topic geven:

wat wordt er precies over gezegd, hoeveel, en door wie?

Er heerst veel onbegrip over de samenhang tussen de JSF en

bezuinigen. Doel van JSF niet duidelijk?

Analysis of Prinsjesdag 2013

162

14

Zoom-in op specifieke periode’s

Timeline overzicht

Analysis of Prinsjesdag 2013

163

15

De aanloop naar prinsjesdag

Boven zien we de geclassificeerde data. Onder zien we alle streams, waarbij de bovenste blauwe
lijn het totaal aantal tweets omvat. Het eerste dat opvalt is het enorme aandeel dat ‘Syrië’ heeft.
Op basis van dit patroon zullen we achtereenvolgens inzoomen op de volgende momenten, om
te zien wat er toen gebeurde (dit kon toen ook real-time):

 13 september 08:00-23:59, op basis van de piekjes in geclassificeerde data

 14 september 12:00-15:00, op basis van sterke piek in de Syrië-stream

 15 september 16:30-21:00, op basis van de grote spike

 16 september 12:00-18:00, op basis van het gerommel in de geclassificeerde data

Analysis of Prinsjesdag 2013

164

16

13 september 08:00-23:59

We zoomen in op deze periode, en filteren op geclassificeerde data (dat gedeelte gaf aanleiding
deze periode nader te bekijken).

Als we verder kijken valt ook de gebruikersdistributie op:

Als we deze gebruiker nader bekijken, zien we dat deze actief een demonstratie in Amsterdam
aan het aanwakkeren is voor zaterdag 21 september (1 week later):

Door het actief real-time monitorren, kunnen we al vroeg

inspelen op bepaalde gebeurtenissen (demonstraties).

Na diepere analyse op deze periode zien we dat er veel verschillende uitspraken gedaan worden
in reactie op uitspraken van kabinetsleden. Met name Rutte en Pechtold worden aangehaald.
Verder wordt er ook veel getweet dat ‘het vertrouwen in het kabinet historisch laag is’, naar
aanleiding van een startend bericht op Geen Stijl dan regelmatig ge-retweet werd.

14 september, 12:00-15:00

Deze piek in de streaming-data werd met name veroorzaakt door veel tweets vanuit Frankrijk
omtrent Syrië, chemische wapens en een uitspraak van John Kerry. In Nederland speelde hier
niet veel omheen.

Analysis of Prinsjesdag 2013

165

17

15 september, 16:30-21:00

Op basis van de enorme piek, en het patroon in termdistributie (groot aantal gelijken, gevolgd
door een significante daling), kunnen we stellen dat deze piek veroorzaakt wordt door een erg
populaire tweet, waarbij Geert Wilders en Rutte centraal staan in het kader van bezuinigingen,
koopkracht en onderzoek van CPB. Na zoeken op deze termen gaat het concreet om de volgende
tweet van Wilders welke erg populair is en leeft onder de bevolking:

16 september

Er blijkt veel getweet te worden over het kabinet in relatie tot oorlog en de JSF, in het kader van
prinsjesdag. Na filteren op deze woorden, blijkt er niet een duidelijk verband te zijn. Daarom
bekijken we de woorden apart met een filter.

Analysis of Prinsjesdag 2013

166

18

Het woord ‘Oorlog’ blijkt die dag populair, maar we waren niet in staat een duidelijke oorzaak
daarvan aan te wijzen. Het wordt in verbandt gebracht met een boek met oorlog in de titel, de
uitkomst van het computerspel GTA5 en wat zich afspeelt in Syrië. Veel verschillende tweets.

Verder zijn er veel vragen rondom de JSF en bezuinigingen in de aanloop naar prinsjesdag.

Zoom-in op relevante dossiers

Klimaat

Op basis van de gerelateerde woorden zien we dat ‘schaliegas’ centraal staat bij het thema
Klimaat. Verder kunnen we zien hoeveel het publiek tweet over klimaat-gerelateerde woorden,
en in welke mate.

Verder zien we een aantal pieken, waar we op in willen zoomen: 2 rond prinsjesdag, en 1 rond 9
oktober 15:00.

De eerste prinsjesdag-piek wordt veroorzaakt door de volgende populaire tweet:
RT @weermanreinier: Mogelijke dreiging milieuramp door overstroomde boorputten
#schaliegas in Colorado. http://t.co/vy9Th7HoL9

De tweede prinsjesdag-piek wordt veroozaakt door de volgende populaire tweet:

Analysis of Prinsjesdag 2013

167

19

Innovatie

De eerste piek boven de 20 wordt veroorzaakt door de volgende 2 tweets:
Topinstituut Amsterdam gericht op stedelijke innovatie: Het nieuw op te richten
internationaal technologisch i... http://t.co/yJmoVDvKDo
Denk je aan een tweede inkomen test Free http://t.co/c44nWVjXFo Geen $$ investering wel
kortingprodukten enveiling

De tweede serie pieken valt samen met prinsjesdag, waar de datastroom groter is. De volgende
tweets schetsen het beeld gedurende prinsjesdag:
BREKEND: Koning schijnt hele blz niet uitgesproken te hebben. Ging over perspectief,
innovatie, duurzaamheid. #troonrede #Prinsjesdag
RT @deVSNU: Per saldo geen investeringen in wetenschappelijk onderzoek en onderwijs
#Prinsjesdag http://t.co/oSFSCqMHg6

De piek op 3 oktober om 23:00 wordt veroorzaakt door de volgende populaire tweet:
RT @APechtold: Heb kabinet gezegd: D66 blijft streven naar samenhang hervormingen,
lastenverlichting en investeringen. Kabinet nu aan zet.

De kleinere piekjes hieromheen worden veroorzaakt door de volgende tweet:
Shell probeert investering schaliegas in VS terug te
draaien:http://www.ft.com/cms/s/0/c2298e46-29ae-11e3-9bc6-
00144feab7de.html#ixzz2gYFTb5sD … (paywall) Goed, nu in EU nog het licht zien #schalieflop

De laatste piek op 7 oktober wordt veroorzaakt door de volgende tweets:
RT @deWindvogel: Met de 24 miljard investering van Shell in schaliegas hadden alle
huishoudens in NL zonnepanelen kunnen plaatsen. #keuzes
Shell topman Peter Voser heeft spijt van investeringen in schaliegas in VS #newslocker
http://t.co/5xg3qz44YN

Analysis of Prinsjesdag 2013

168

20

Kernenergie

Het volgende woorden komen relatief het meeste voor in verband met ‘kernenergie’:

‘baseickhout’ blijkt de gebruiker ‘Bas Eickhout’, met de volgende 2 populaire tweets:

Je moet maar durven: zelf overcapaciteit bouwen, subsidie voor kernenergie aanvragen,
staatsteun krijgen en dan dit: http://ow.ly/2ADpKk
Deze verklaart de piek rond 11 oktober.

Dus 100 miljard naar fossiel + kernenergie. 30 miljard naar duurzaam. Daar hoor je de 10
fossiele CEO's dan niet over http://www.sueddeutsche.de/wirtschaft/foerderung-der-
energiebranche-oettinger-schoent-subventionsbericht-1.1793957
Deze verklaart de piek rond 15 oktober.

De andere kleinere piekjes worden veroorzaakt door de volgende tweets:
Niet moeilijk doen over dier&milieu, kernenergie, asielbeleid &opkomend fascisme, dan doet de
AIVD ook niet moeilijk. -
http://www.volkskrant.nl/vk/nl/3184/opinie/article/detail/3522726/2013/10/07/De-AIVD-
jaagt-op-anarcho-extremistische-spoken.dhtml

Goedkope eletriek hé, die kernenergie?

10 #energiereuzen tegen steun duurzame energie, maar #kolen en #kernenergie krijgen
tientallen miljarden subsidie #telegraaf

Analysis of Prinsjesdag 2013

169

21

https://twitter.com/BasEickhout/status/388615951597707265

https://twitter.com/JFdeHaas/status/390364663453478912

https://twitter.com/BasEickhout/status/389703262783672320

Analysis of Prinsjesdag 2013

170

22

Bouwsteen ‘Milieu & duurzaamheid’

Must include at least one of: (pure terms, may be extended with wildcards)

"Milieu" "Duurzaam" "Duurzame" "Energie" "Windmolen" "Windmolens" "Windenergie"
"Kernenergie" "Uitstoot" "Schaliegas" "Wind" "Hernieuwbare" "Stroom" "Gas" "Zon"
"Zonnepanelen" "Boringen" "Elektriciteit" "Zonneenergie" "Biomassa" "Bioenergie" "Fossiele"
"Proefboringen" "Winning"

Must exclude any one of: (containing one should filter tweet away)

"braunkohle" "steinkohle" "summe" "gesamt" "windkraft" "der" "infolengkap" "für" "donde"
"hubo" "fuego" "una" "oxidación" "violenta" "combustible" "con" "calor" "vapor" "agua" "el"
"emissor" "emissions" "kerja" "que"
(om andere talen buiten de deur te houden)

Zie:

http://149.210.130.23/kibana/index.html#/dashboard/elasticsearch/TNO%20Prinsjesdag%20-
%20Bouwsteen%20Mileu-duurzaamheid

Tijdslijn met deze bouwsteen:

De pieken rond 5-6 oktober komen overeen met onze casus windmolens.

Analysis of Prinsjesdag 2013

171

Appendix H

Setup for Event Detection

173

Proces:

1. Data inladen

2. Dashboard configureren.

a. Zie voorbeelden:

i. http://149.210.130.23/kibana/index.html#/dashboard/elasticsearch/TNO%20Prinsjesdag%20-

%20Nick%20-%202

ii. http://149.210.130.23/kibana/index.html#/dashboard/elasticsearch/Monaco%20FO

b. Grotendeels naar eigen wens. Met name belangrijk: blok met term frequencies.

3. Queries definiëren, nu:

a. All tweets, marked tweets, noisy tweets, archived tweets

b. Thema’s

4. Filters instellen:

a. Exclude geclassificeerde data (optioneel)

b. Tijdsfilter (optioneel)

5. Configureren van term frequency blok

a. Bekijken van terms, en vervolgens ignoren wat je eruit wilt hebben, in paar deelstappen:

b. Algemene en generieke ignore terms toevoegen. Nu voorlopig:
i. http,t.co,de,van,het,een,op,voor,en,bij,nederland,met,nieuws,niet,heeft,fd,anp,aan,zijn,over,naar

,dat,die,amsterdam,te,rt,na,om,geen,wil,uit,er,meer,tegen,persbericht,als,cultuurenmedia,ook,nog,
hebben,moet,gaat,twee,nu,tot,wordt,man,je,we,al,dan,maar,ik,video,af,den,kan,worden,veel,grote,zo
,ze,dit,kunnen,onder,zich,ndnl,door,vandaag,wat,via,maandag,dinsdag,woensdag,donderdag,vrijdag,za
terdag,zondag,krijgt,live,moeten,wat,weg,vanaf,komt,rond,wel,tussen,mogelijk,vanwege,staat,dag,va
,terug,een,twee,drie,vier,vijf,zegt,v,1,2,3,4,5,6,7,8,9,0,onze,neemt,los,doet,ziet,uur,s,mee,lees
,hier,extra,blijven,volgens,alle,opnieuw,hij,der,willen,toch,gaan,n,sinds,week,zeker,komen,ex,dez
e,tijdens,per,niets,groot,goed,hun,blijft,bijna,mag,steeds,alleen,geeft,t,hoe,e,rtl,zit,ons,noord
,oost,zuid,west,nooit,new,even,mogen,maken,zoekt,nieuwe,aantal

ii. Deze woorden zouden in een GUI on-the-fly ‘weggeklikt’ kunnen worden. Nu is het voorlopig

kwestie van zien wat je niet wilt en toevoegen aan ignore-list.

c. Monitor-specifieke ignore terms toevoegen. Voor Monaco FO gedaan door alle thema-keywords uit

database samen te voegen, en toe te voegen als ignores, dus:

i. De volgende queries zijn hierbij handig:

1. SET group_concat_max_len=204800;

2. SELECT REPLACE(GROUP_CONCAT(`value` separator ','), '*', '') FROM Theme;
ii. afgeranseld, afgerosd, afgerost, bossen, afgeslacht, afgesnauwd, afranselen, afrossen, afslacht,

afsnauwen, agressie, calamiteit, agressief, agressieve, ak 47, appelwek afsloan, bakka, batten,

bedreiging, chieren, bedrijgt, bek verbouwen, bivak muts, bivakmuts, blaster, blemmen, diddih,

djo eken, djoeke, doden, dokken, doodschieten, doodschoppen, doodslag, doodsteken, doodt, doowd,

elkaar rossen, ellende, ernstig, opstootje, escalatie, escaleert, escaleren, fighty, fitta,

fitti, fitty, flash banger, ga je nakken, ga je timmeren, gaat eraan, gedjoekt, geef je klappen,

geef klappen, gepopt, geschoten, gevaar, gevaarlijk, gevaren, gevecht, gewapend, geweer, geweld,

gewelddaad, gewelddadig, geweldplegen, geweldpleger, hak je, hameren, heibel, hengsten, hoeken,

hoofd afhakken, hoofd verbouwen, hooligan, iemand gestoken, ik boek je, ik steek je, in elkaar

geslagen, in elkaar slaan, incident, incidenten, jonko, kapot slaan, keel doorsnijden, klappen

geven, knokken, knokpartij, knuppel, koffoe, kom vechten, kopstoot, koud gemaakt, koudmaken,

krijgen tikken, krijgt tikken, loezoe, maak haar kapot, maak hem kapot, maak je af, matten,

mishandeld, mishandeling, mishandelt, mollen, moordaanslag, moorden, nacken, neer geslagen,

neergestoken, neerschieten, neersteken, neerstorten, niffi, noodsituatie, oproer, niffie, nivi,

overval, pistool, popo, poppen, popte, ram je, rellen, ruzie, schieten, schietpartij, schop je

dood, sgoppen, slaan, smack, smacken, snij je keel, snijwond, spikri, steek jullie, steekpartij,

steekwapen, stoffelijk overschot, stroggel, tantoe, tapanahoni, thopen, tikken uitdelen, torri

leggen, tuig, tuig van de riggel, van kant gemaakt, van kant maken, vechten, vechtpartij,

verdiende loon, vermoord, vermoorden, vijandelijk, vijandig, vittie, vuurwapen, wapen, vijand,

pistolen, rusland, ontvoer, NSS,activist,269,manco,strooizout tekort, bevriezing, gladheid,

hitte, ijsregen, ijzel, meteoalarm, onweer, orkaan, regen, sneeuwstorm, stormachtig,

stormwaarschuwing, waterhozen, watersnoodramp, weeralarm, windhozen, windstoten,

windwaarschuwing, zware storm, overstroming, hoosbuien, dichte mist,chaos op het spoor, druk op

de weg, file, filevorming, geen trein, geen treinen, geen treinen, gratis koffie, kut ns, kutns,

ns fail, ns kut, nsfail, perron uitgevallen, trein rijdt niet, trein rijdt weer niet, trein

uitgevallen, tunnel, verkeersinfarct, vervangend vervoer, zet bussen in, ontsporen, ontsporen

trein,kettingbotsing,alcyonsecurity, anonops, anonymous, anonyops, antisecnl, brenno, c2000,

cryptoron, cyber, ddos, digid, gehackt, hack, ictfaal, legosteentje, ncsc, ntisec, operations,

opeurope, pastebin, spiritusnl, sql, tango down, tangodown,

trojan,snowden,nsa,cyberspionage,cyberspionage,cyberaanval,cybercrime,3g, 4g, acceptgiro, geen

telefoni, afgetapt elektriciteit, afgetapt stroom, aftappen elektriciteit, aftappen stroom,

alvira, atos worldline, bankieren, bereik mobiel, bereik smartphone, bereik telefoon, geen

verbinding, betalingsverkeer, bic, ccv, chipknip, currence, dataverkeer, een verbinding,

Setup for Event Detection

174

elektriciteit, geenstroom, energie storing, energiestoring, geen bereik, geen telefonie, geen

data, geen euri, geen euro, geen internet, geenelektriciteit, geen licht, geen ligt, geen stroom,

geen stroom, geskimd, geskimed, geskimmed, getapt elektriciteit, getapt stroom, gsm bereik, gsm

ontvangst, gsm storing, iban, icp companies, ideal, ik zie niks, incasso, inkomen, internet

verbinding, internetbankieren, internetverbinding, kabelbreuk, kortsluiting, lampen vallen uit,

lening, licht uit, licht valt uit, machtigen, machtiging, machtigingen, meterkast, mobiel

ontvangst, mobiel storing, netwerk bereik, pas ingeslikt, pasje ingeslikt, pik donker, pin

automaat, pin automaten, pinautomaat, pinautomaten, pinnen, pinpas, pinpas ingeslikt, rabopas,

scherm valt uit, sepa, sepay, skim, skimmen, slecht bereik, slecht bereik, slechte verbinding,

smartphone ontvangst, smartphone storing, sparen, stoppe liggen eruit, stoppen gesprongen,

stoppen liggen eruit, stoppengesprongen, storing energie, storing pin, storing telefonie, stroom

is eraf, stroom uitgevallen, stroom uitval, stroom weg, stroomnet, stroomstoring, stroomuitval,

stroomvoorziening, studentenlening, swift code, tapt af elektriciteit, tapt af stroom, tarief

payroll, telebankieren, telefonie ontvangst, telefoon ontvangst, telefoon storing,

telefoonmasten, telefoonpalen, trage verbinding, viel het licht uit, werd het donker, zie geen

steek, zie niks,betal probleem,betalings probleem,gaslek,alexander pechtold, andre elissen, arie

slob, barry madlener, bram van oijk, co verdaas, danai van weerdenburg, dick schoof, diederik

samsom, dion graus, edith schippers, emile roemer, fleur agema, fractievoorzitter cda,

fractievoorzitter christenunie, fractievoorzitter d66, fractievoorzitter groenlinks,

fractievoorzitter pvda, fractievoorzitter pvv, fractievoorzitter sgp, fractievoorzitter sp,

fractievoorzitter vvd, frans timmermans, frans weekers, fred teeven, geert wilders, geertwilders,

halbe zijlstra, harm beertema, henk kamp, ino van den besselaar, ivo opstelten, jeanine hennis-

plasschaert, jeroen dijsselbloem, jet bussemaker, jetta klijnsma, johan driessen, joram van

klaveren, karen gerbrands, kees van der staaij, leon de jong, lilian helder, lilianne ploumen,

lodewijk asscher, louis bontes, machiel de graaf, mark rutte, martin bosma, martin van rijn,

melanie schultz, melanie schultz van haegen maas geesteranus, minister algemene zaken, minister

binnenlandse zaken, minister buitenlandse handel, minister buitenlandse zaken, minister cultuur,

minister defencie, minister defensie, minister economische zaken, minister financien, minister

financin, minister infrastructuur, minister koninkrijkrelaties, minister koninkrijksrelaties,

minister milieu, minister onderwijs, minister ontwikkelingssamenwerking, minister rijksdienst,

minister sociale zaken, minister sport, minister van algemene zaken, minister van binnenlandse

zaken, minister van binnenlandse zaken en koninkrijksrelaties, minister van buitenlandse zaken,

minister van bzk, minister van cultuur, minister van defencie, minister van defensie, minister

van economische zaken, minister van financien, minister van financin, minister van

infrastructuur, minister van koninkrijkrelaties, minister van koninkrijksrelaties, minister van

milieu, minister van onderwijs, minister van ontwikkelingssamenwerking, minister van sociale

zaken, minister van sport, minister van veiligheid en justitie, minister van volksgezondheid,

minister van welzijn, minister van werkgelegenheid, minister van wetenschap, minister veiligheid

en justitie, minister volksgezondheid, minister voor buitenlandse handel, minister voor

economische zaken, minister voor infrastructuur, minister voor milieu, minister voor

ontwikkelingssamenwerking, minister voor rijksdienst, minister voor sociale zaken, minister voor

sport, minister voor veiligheid en justitie, minister voor volksgezondheid, minister voor

welzijn, minister voor werkgelegenheid, minister voor wonen, minister welzijn, minister

werkgelegenheid, minister wetenschap, minister wonen, ministerpresident, minpres, raymond de

roon, reinette klever, roland van vliet, ronald plasterk, sharon dijksma, sietse fritsma,

staatssecretaris sander dekker, stef blok, sybrand van haersma buma, tony van dijck,

viceminister, viceminister president, viceministerpresident, vicky maeijer, wilma

mansveld,actievoerders, adbust, anarchiel, belastingstaking, betoging, bezetting, boycot,

calamiteitenroute, dds, demonstratie, dutchrevolution, freecb3rob, geen schoning, geen woning,

graffiti, huurstaking, nlrevolution, leve de republiek, levederepubliek, picketing, project x,

protest, protestkanaal, protestlied, publiciteitsactie, publiciteitsstunt, publiciteitstund,

raasta roko, republiek, revolutie, samizdat, sitin, staking, stakingen, teachin, vlagverbranding,

vredeskamp, terreur, anarchist, extremist, diein, aardbeving, aardschok, drone, schutter,

volkert,cbrn, ammoniak, ammoniumnitraat, bacillus antracis, biologisch, borsele, borssele,

botuline toxine, cesium, chemisch, cobalt, cyanide, dengue, ebola, explosie, fosgeen, fukushima,

gifgas, iridium, kerncentrale, kernreactor, kernreactor petten, lewisiet, marburg, mosterdgas,

neutronengif, nitromethaan, nucleair, nucleair transport, nusog, pokken, radiologisch, ricine,

sarin, straling, strontium, tabun, waterstofperoxide, yersinia pestis, chemische

aanval,yperiet,NSS,verdacht pak,verdacht pak,mexicaanse griep, pandemie, q-koorts, sars, virus,

mers, griep, H5N1, vogelgriep, H7N1, ziekte, ZoÃ¶nose, bacterie, schimmel, prion, mrsa,

pathogenen, virulentie, influenza,H7N9,corona,MERS-CoV,aanrijden, aanslag, ak 47, al kaida,

noodlot, al-qaida, al-queda, bom bij, bom in, bom op, bomaanslag, bomb, bommelding, da bomb, de

bom, oerknal, doodslag, doodt, doowd, een bom, extremist, geweer, pistool, ill shit, karst t,

terrorisme, knal, koets aanrijden, koud gemaakt, krijgen wat ze verdienen, oranjes aanrijden,

moordaanslag, nctv, scarp, six feet, slagveld, terrorisme, terrorist, van kant gemaakt, van kant

maken, verdiende loon, moslimrebellen, Al-Shabaab, vliegtuigkaping, kapen, kaping, krijgt wat ze

verdient, krijgt wat hij verdient, Volkert, van der G.

d. Eventueel stap 4b herhalen met andere parameters (tijdsfilter, classificatie-flag).

Setup for Event Detection

175

6. We krijgen het de volgende beelden:

a. Alleen tijdsfilter (27-10 t/m – 05-11), dus inclusief al geclassificeerd:

b. Tijdsfilter (27-10 t/m – 05-11) en exclusief al geclassificeerde data:

c. Met deze gegevens kunnen we 2 dingen:

i. Overwegen als mogelijke zoekwoorden / thema’s

ii. Dieper inzoomen

Setup for Event Detection

176

Om dieper in te zoomen, kunnen we het betreffende woord als filter toevoegen, en vervolgens de tweets bekijken. Voor

enkele voorbeelden:

Storm of weer

Mali

Setup for Event Detection

177

Rabobank

Neuroloog

Setup for Event Detection

178

