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Abstract

We consider a simplified version of the Monte Carlo tree search (MCTS) problem, a problem
where, given a game tree with stochastic reward, one is tasked with finding the best move from
the root. This problem is well studied, and recently impressive results have been obtained.
For example, in 2016, when the AlphaGo program beat the professional Go player Lee Sedol.
Even though these results were spectacular, not much is known about the guaranteed accuracy
of these algorithms. In this work, we review the FindTopWinner algorithm for the MCTS
problem. The FindTopWinner algorithm is guaranteed to give an accurate result with high
probability, as is formalized in the (ε,δ)-PAC learning framework. However, its sample complexity
is not optimal. We improve FindTopWinner by introducing the Spherical Confidence Region-
MCTS (SCR-MCTS) algorithm, which operates by creating a spherical confidence region on the
joint values of the leaves in multiple iterations called epochs. We show that SCR-MCTS has
the (ε,δ)-PAC guarantee, and we show that empirically SCR-MCTS draws fewer samples than
FindTopWinner does on various benchmark trees.
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Chapter 1

Introduction

Achieving super-human performance in games has always been a prestigious goal for many com-
puter scientists. When in the ’90s the reigning chess world champion was beaten in a game of
chess by the Deep Blue computer, developed by IBM Research [2], this shocked the world. More
recently, AlphaGo managed to win four out of five games against one of the highest-ranked Go
players in the world, Lee Sedol [13]. This feat, which was unimaginable because of its computa-
tional complexity, was achieved by the DeepMind team in 2016. Even though these results are
impressive, we still lack a lot of understanding in this field. In particular, theoretical guarantees
on the accuracy of these algorithms are often absent.

Playing games is in many cases computationally a challenging problem. Algorithms that can
play sequential games like chess, checkers or Go work on mathematical structures known as game
trees. A game tree contains all states and moves of a game. In theory, it is possible to find the
best move in a game tree by applying the minimax algorithm. However, this algorithm requires
us to explore the complete tree. For many games, the game tree is so large, that it becomes
practically impossible to do so.

One method of finding the best next move is to use a heuristic method. Instead of exploring
all sequences of moves, we only try sequences of a fixed short length. After this small number
of moves, we cut off the game tree and then stochastically estimate the chance of winning if we
were to continue the game, starting from the cut-off point. This estimation is done by playing
the game following a specific randomized policy, until it terminates. This is also known as a
roll-out. The policy dictates how moves are made until a player wins or loses. By repeatedly
performing these roll-outs and averaging the result, an estimate for the probability of winning is
produced.

Another way of looking at this, is that instead of a large game tree with deterministic rewards,
namely ‘win’ or ‘lose’, we have a smaller tree with stochastic rewards that result from performing
roll-outs. Repeatedly performing roll-outs allows us to estimate the mean rewards at these
terminating nodes in the smaller game tree, also known as leaves. This gives us a general
framework, where we can replace roll-outs with any sort of distribution, while being agnostic
about the actual policy. For example, we can simply assume that the rewards are normally
distributed with some unknown mean.

Finding the next best move in this stochastic reward setting is sometimes also known as
the Monte Carlo tree search (MCTS) problem. Various algorithms exist that solve this MCTS
problem while having (ε,δ)-PAC guarantees. Roughly speaking, this means that the algorithm
outputs a move that is approximately optimal and that the algorithm does this with a high
probability. However, for the algorithms that are (ε,δ)-PAC, there is still a lot of ground to win
in terms of the sample complexity.

One attempt to solve the MCTS problem under (ε,δ)-PAC constraints is the FindTopWinner
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CHAPTER 1. INTRODUCTION 2

algorithm. This algorithm works in multiple iterations known as epochs. In each iteration, the
mean reward of the leaves are estimated, and confidence intervals are constructed on the mean
reward of each leaf by taking samples from their reward distribution. Based on these confidence
intervals, the FindTopWinner algorithm makes its decisions and ultimately outputs a move
that it believes is approximately correct.

As we will see, creating a confidence interval on each leaf is suboptimal. The algorithm
works in a way that it always believes that the true mean reward of each leaf is contained in
the confidence interval constructed for that leaf. Because these intervals are independent of each
other, it also believes that it is plausible that many leaves are over- or underestimated. As a
consequence, internal nodes of the game tree also have a wide range of plausible values. Ideally,
we want the range of plausible values to be as small as possible, as this would allow us to exclude
unfavorable moves early.

The approach with confidence intervals that FindTopWinner uses, can be greatly improved,
while keeping its theoretical (ε,δ)-PAC bounds. In this thesis, we construct a new algorithm,
called Spherical Confidence Region-MCTS (SCR-MCTS). In each epoch, instead of construct-
ing many one-dimensional confidence intervals, SCR-MCTS constructs one multidimensional
confidence region that is a hypersphere. This allows us to consider it implausible that many
leaves are simultaneously incorrectly estimated, as this configuration is likely outside the radius
of the hypersphere.

We will prove that SCR-MCTS is able to solve the MCTS problem while having (ε,δ)-PAC
guarantees. Furthermore, we will demonstrate empirically that SCR-MCTS takes orders of
magnitude fewer samples than FindTopWinner does in various benchmark game trees.

1.1 Related work

The Monte Carlo tree search problem that we solve in this thesis has analogies with the stochastic
multi-armed bandit (MAB) problem [11]. In the multi-armed bandit problem, the learner is given
multiple arms that stochastically give a reward when pulled. The learner is tasked with sampling
the arms and finding the arm with the best average reward. In our problem, each ‘arm’ is a
candidate next move, starting from the root of the game tree, with a reward based on the samples
taken at the leaves.

The bandit problem is well studied. In the 1930’s the method of Thompson sampling was
introduced as a strategy of allocating resources in clinical trials [16]. In particular, Thompson
sampling is concerned with regret minimization, a version of the MAB problem where the learner
should find the best arm, while pulling unfavorable arms as little as possible. It is a classic
example of the exploration/exploitation dilemma. Although Thompson sampling was initially
introduced for the MAB problem with specifically two arms and Bernoulli distributed rewards,
the technique has been generalized to work with any number of arms and without assumptions
on the reward distributions [11].

While Thompson sampling and the MAB problem remained mostly a theoretical exercise for
a large part of the 20th century, more recently it has found practical usage with the advance
of computers. For example, the MAB problem is frequently used in online advertising or A/B-
testing [14, 17]. With this renewed interest, a wealth of new algorithms has been developed
together with many variants of the MAB problem. One algorithm that has been particularly
influential is Upper Confidence Bounds (UCB) [1], that has been published in 2002. The UCB
algorithm works in the regret setting and uses upper confidence bounds on the values of the
arms to decide which arm to pull. In particular, it uses the principle of optimism in face of
uncertainty, meaning that, being optimistic about the reward, it pulls the arm with the highest
upper bound on its value.
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In this work, we do not use the notion of regret. Instead, we do not incur any loss when
we take samples in suboptimal arms. This setting is also known as pure exploration. In 2012
the LUCB algorithm [8] was published to solve the Explore-m problem, a variant of the MAB
problem where the learner is tasked to find the m best arms in a K-armed stochastic bandit
model. The LUCB algorithm makes decisions based on lower and upper confidence bounds on
the values of the arms.

We can view our MCTS problem as an MAB problem with an added tree structure. This
allows us to employ more tools to efficiently take samples and thus minimize the exploration. In
2017, Kaufmann and Koolen [9] introduced a class of algorithms, Best Arm Identification-MCTS
(BAI-MCTS), that combines existing best arm identification algorithms with Monte Carlo tree
search. It is shown that applying the LUCB algorithm to the BAI-MCTS framework, yields
the LUCB-MCTS algorithm for which an upper bound on the sample complexity that holds
with high probability is known.

Related is also the area of asymptotic best arm identification algorithms. These algorithms
are designed to efficiently sample in the regime where the allowed error rate asymptotically goes
to 0. In 2016, Garivier et al. [5] have shown that the Track-and-Stop strategy is optimal in an
asymptotic sense, if the objective is to find the optimal arm. Note that this is different from
the previous setting, where the objective was to find an arm that approximately optimal. Even
more recently, in 2019, Degenne et al. [4] have shown that an extension of the Track-and-Stop
strategy is optimal in the asymptotic regime when also allowing ε-suboptimal arms.

An early attempt of applying bandits on trees is the UCT (UCB applied to Trees) algorithm
[10]. It was introduced as an algorithm that applies the UCB algorithm recursively on each node
in a tree. Important to note, is that UCT works on Markovian Decision Processes, a different
class of problems, whereas our algorithm is designed specifically for game trees.

The FindTopWinner [15] algorithm solves our MCTS problem on trees of any depth. It
was published in 2014 by Teraoka et al. Besides solving the MCTS problem, the authors also
show an upper bound on the number of samples that FindTopWinner takes, that holds with
high probability.

1.2 Outline

In this work, we start by reviewing basic theory regarding game tree search in Chapter 2. In this
chapter we will also introduce the Monte Carlo tree search problem and formalize the (ε,δ)-PAC
framework. With this background information, we will review the FindTopWinner algorithm
in Chapter 3. This algorithm solves the Monte Carlo tree search problem with (ε,δ)-PAC guar-
antees.

Then, in Chapter 4, we will look at how FindTopWinner uses confidence regions to make
its decisions. As we will see, these confidence regions are rectangular. In the same chapter we
will argue why we can improve FindTopWinner by using confidence regions that have the
shape of a sphere.

In Chapter 5 we will generalize the FindTopWinner algorithm to a meta-algorithm that
works with confidence regions of any shape. We will then implement this algorithm for spherical
confidence regions, called SCR-MCTS.

Finally, in Chapter 6 we will test our algorithm on various benchmark trees and compare it
with the FindTopWinner, UGapE-MCTS and LUCB-MCTS algorithms.



Chapter 2

Theory

The current chapter introduces the Monte-Carlo tree search (MCTS) problem. This problem
concerns finding the best next move in a game tree with stochastic rewards. We will look at
the fundamentals needed to understand this problem fully. This includes basic game tree theory
and the (ε,δ)-PAC learning framework. Furthermore, we will place this problem in the context
of other current research.

2.1 Game trees

Let us consider a game played by two players, where the players take consecutive turns. In the
literature this is known as a sequential game. A game like this has a tree structure, where the
game starts in a certain state. Each move changes the state of the game to a new state. In a
game like chess, the state is a configuration of the board with pieces on certain positions. We
call this tree structure a game tree. Each state is called a node, and the set of nodes of a
game tree T is denoted nodes(T ). The moves between states are called edges. The set of nodes
that can be reached from a node n with one move are the children of n and this set is denoted
C(n). In that case, for each child m of n, the parent of m is n, written as parent(m). The set
of nodes that share the same parent as a node n but are not n, is called the siblings of n and is
denoted siblings(n). The initial state in which the game starts, is called the root node. When
we only look at a part of the game tree that can be reached by successive moves from a node
n ∈ nodes(T ), we call that a subtree of tree T that is rooted at n. The subtree rooted at n is
written as Tn. See Figure 2.1 for an example of a subtree of the game Tic-Tac-Toe.

. . .

. . . . . . . . .

Figure 2.1: The game of Tic-Tac-Toe can be represented as a game tree. Here a subtree of the entire
game tree is visualized. The full game tree has an empty board as its root node. This subtree continues
until leaves are reached, which is not illustrated in this figure.
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CHAPTER 2. THEORY 5

Reward 1

Reward −1

Figure 2.2: A subtree of the Tic-Tac-Toe game with
leaves. The left leaf has value 1 because the MAX
player (placing naughts) wins. The right leaf has re-
wards -1 because the MIN player (placing crosses)
wins. Because the root of this subtree is a max node,
the root of this subtree has value 1.

Especially interesting is what happens
once we reach the end of a game tree. In that
case, we reach a certain node that has no more
outgoing edges. We call a node without out-
going edges a leaf node. The set of all leaves
of a tree T is denoted leaves(T ). When after a
move a leaf node is reached, the winner of the
game gets a reward or payoff and the loser
has to pay exactly this amount to the winner.
This is known as a zero-sum game. We say
that a leaf has a value that is won when player
A wins. Since the game is zero-sum, this is the
value that player B loses. Therefore player A
wants the game to terminate in a high value
leaf and player B wants it to terminate in a low
value leaf. Consequently we call players A and
B theMAX andMIN players respectively. If
at a certain node the MAX player has to make
a move, we call that a max node. Otherwise
we call it a min node. See Figure 2.2 for an
example of an subtree with leaves and their
rewards.

If the game is played by players that are
perfectly rational and they know the leaf val-
ues, there is a best move from each node in
the tree. We say that each node has a value.
This is the guaranteed reward the players get from that node.

Definition 1. Let T be a game tree, n ∈ nodes(T ) and µ ∈ Rleaves(T ) the value of the leaves of
T . Then the value of node n, vn(µ), for leaf values µ, is defined by

vn(µ) =


µn if n is a leaf
maxm∈C(n) vm(µ) if n is a max node
minm∈C(n) vm(µ) if n is a min node.

(2.1)

Theminimax algorithm computes the values of all nodes in a tree. This is done by starting at the
root of the game tree and recursively applying Equation (2.1). To execute the minimax algorithm,
the entire game tree is visited. In practice however, game trees can become prohibitively large
to completely search. Indeed, the number of nodes in a game tree grows exponentially in the
number of steps that can be taken from the root node. The number of steps from the root node
to a node n is also called the depth of node n. The smallest number of steps from a node n
to a leaf is called the height of node n. In game trees with a high number of moves per node,
also known as the outdegree of a node, it can become intractable to search a tree just a few
moves into the game. Different methods exists to simplify this problem by reducing the number
of nodes that have to be visited.

2.1.1 Non-deterministic trees

One method of making game tree search feasible is by the use of heuristics. One heuristic is
known as Monte Carlo tree search (MCTS). This method has been successful in playing games
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such as Go, for example when in 2016 AlphaGo impressively won from a professional Go player
[13]. Instead of traversing the whole tree, we only visit all nodes up to a certain depth. At this
cut-off, we introduce oracles that estimate the values of the leaves. This can be done by doing
roll-outs. In a roll-out, the algorithm takes successive random moves until a game tree leaf is
reached. The oracle performs a roll-out and returns the reward that is associated with the leaf
that was reached at the last step of the roll-out. MCTS repeatedly samples from the oracles to
estimate values of the nodes that are associated with that oracle.

We call a game tree that has oracles at the leaves an oracle tree. See Figure 2.3 for an
example of an oracle tree constructed from a game tree. The leaves in an oracle tree have no
deterministic payoff like the leaves in a game tree do. Where before we said that the value of a
leaf in a game tree was the reward it gave, we will now say that the value of a leaf in an oracle
tree is the mean of the reward that the oracle at that leaf returns. The values of the rest of the
nodes are then recursively defined as in Equation 2.1 with µ being the vector of means of the
oracles.

T1 T2 T3 T4

Replace

subtrees

O1 O2 O3 O4

Figure 2.3: The game tree on the left has large subtrees T1, . . . , T4 indicated by the gray triangles. Each
of these subtrees are replaced by oracles O1, . . . ,O4. This creates the oracle tree on the right. Notice that
the leaves of the game tree are within the gray triangles. The leaves of the oracle tree are the nodes at
depth 2 in this figure.

Remark 1. Creating an oracle tree from a game tree may change the values of nodes that remain
in the oracle tree. This depends on the roll-out strategy of the oracles. Take for example Figure
2.2. Shown is a subtree of a game tree of Tic-Tac-Toe. If we replace the root of the subtree with
a single oracle and use a roll-out strategy that sequentially takes independent uniformly random
moves, then the value is 1/2− 1/2 = 0, even though clearly in Figure 2.2 the value is 1.

Oracle trees are interesting in their own right and are not only used as a way of making game
tree search tractable. Instead, oracle trees are the natural model if the reward is stochastic and
not deterministic like in game trees. Oracle trees of depth one are well studied in the literature
on multi-armed bandits (MAB), also known as bandits. Bandits form an interesting class of
problems that arise in topics such as medical trials and A/B-testing.

Remark 2 (Etymology of multi-armed bandits). The name multi-armed bandit comes from the
slot machine, also known as a single-armed bandit. Single-armed because it has a lever, or arm,
to pull and it’s called a bandit because it may ‘steal’ your money. In the MAB problem there are
multiple arms to pull from, and the goal is to find the best arm, typically using as few pulls as
possible.
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2.2 Monte-Carlo tree search problem

Having introduced the concept of oracles trees, we now formulate the Monte-Carlo tree search
problem. Given an oracle tree T , what is the best move from the root? In other words, given a
vector with the values of the leaves µ ∈ Rleaves(T ), which child of the root n ∈ C(root) has the
best value vn(µ) = vroot(µ)? Furthermore, we will permit an answer that is almost correct and
finally we also allow that with some probability we get an arbitrarily bad answer.

2.2.1 (ε,δ)-PAC learning

This idea of allowing approximately correct answers, and with some probability any answer, is
formalized in the PAC learning model. Here PAC stands for Probably Approximately Correct.

Definition 2 ((ε,δ)-PAC [12]). An algorithm is (ε,δ)-PAC if, with probability at least 1 − δ it
outputs an answer that is at most ε away from the optimal answer.

The definition contains two parameters, ε and δ. The accuracy ε indicates how far away from
the optimum the learner can return an answer. The confidence level δ determines with what
probability the returned child node is not ε-correct, i.e., the recommended node has a value that
is more than ε different from the value of the root node.

2.2.2 Problem formulation

We will now formally define the problem that is solved in this thesis. In the following problem
definition, we will call the entity interacting with the problem, the ‘learner’.

Problem 1: Monte-Carlo tree search problem

Input

– Oracle tree T with leaf values µ ∈ Rleaves(T ). The tree T is known to the learner, but
the vector of values µ is not known.

– Accuracy ε ≥ 0

– Confidence δ ∈ (0, 1)

Protocol
The learner is permitted the sample the oracles in rounds. The learner can stop at any time
and must output a node c ∈ C(root) on the condition that the algorithm is (ε,δ)-PAC, i.e.,

P(|vc(µ)− vroot(µ)| ≤ ε) ≥ 1− δ. (2.2)

Objective
Output with probability at least 1 − δ an at most ε−suboptimal node while taking as few
samples as possible.

We call the problem the Monte-Carlo tree search problem, following the FindTopWinner paper
[15]. However, we should note this is a term frequently used for algorithms that solve a similar
problem on game trees. In these algorithms, often the tree is expanded while being searched [3],
which is something we do not do in this thesis.

How well an algorithm solves this problem will be measured by the expected total number
of samples taken from the oracles. This is also known as the fixed-confidence setting [6].
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Alternatively, one might work in the fixed-budget setting, where the number of samples is
fixed and the learner has to optimize the probability of returning an ε-correct child node [6].

Having introduced the Monte-Carlo tree search problem, we will now review an existing
approach to solving this problem, namely the FindTopWinner algorithm. After introducing
FindTopWinner we will motivate a direction of improvement in Chapter 4.



Chapter 3

The earlier FindTopWinner algorithm

In this chapter we will review the FindTopWinner algorithm developed by Tereoka, Hatano
and Takimoto [15]. This algorithm is designed to efficiently solve Problem 1. We will state the
algorithm and sketch a proof of why FindTopWinner is (ε,δ)-PAC. Finally, we briefly look at
its sample complexity.

3.1 The FindTopWinner Algorithm

The FindTopWinner algorithm, which is shown in Algorithm 1, works in multiple iterations
called epochs. In each epoch m = 1, . . . , dlog 2/εe, all remaining oracles are sampled a fixed
and equal number of times. The number of samples taken per leaf is roughly exponential in the
number of epochs. With the resulting samples, the value of each leaf is estimated. Moreover, a
confidence interval is constructed on the value of each leaf. The estimates are used to estimate
the value of the internal nodes of the oracle tree. At the end of each epoch nodes from the oracle
tree are pruned if they are implausible to be considered winners, where a winner is defined as
in Definition 3 and we say a node u is implausible to be a winner if there is no plausible model
in the confidence region µ′ ∈ Cm for which node u is a winner. Finally, a child of the root is
returned with the best value estimate.

Definition 3 (Winner [15]). Let T be an oracle tree and let µ ∈ Rleaves(T ) be the vector of values
of the leaves. A node u ∈ nodes(T ) is a winner if

vu(µ) = vparent(u)(µ). (3.1)

Hence the name of the algorithm, FindTopWinner. As an example of winners, see Figure 3.1.

0.3

0.3

0.2

0.5 0.2

0.3

0.7

0.7

0.7 0.9

0.5

0.9 0.5

min

max

min

leaf

Figure 3.1: Shown is an oracle tree with the values of the nodes (oracles omitted). The filled nodes are
winners as defined in Definition 3.

9
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Below, the algorithm is explicitly stated.

Algorithm 1 The FindTopWinner algorithm solves the Monte Carlo tree search Problem 1
1: procedure FindTopWinner(ε, δ, T )
2: ε0 = 1
3: δ0 = δ/L
4: for m = 1 to dlog2(2/ε)e do
5: εm = εm−1/2 . Halves the interval size
6: δm = δm−1/2 . Doubles confidence of new interval
7: if |C(root)| = 1 then
8: break . Return only child remaining
9: end if

10: EstimateValues(root, εm, δm)
11: Prune(root, εm)
12: end for
13: return I = arg max

u∈C(root)
vu(µ̂)

14: end procedure

Algorithm 2 The EstimateValues subalgorithm samples the oracle leaves.
1: procedure EstimateValues(u, εm, δm)
2: if u ∈ leaves(T ) then
3: Sample oracle Ou until the total of calls of Ou reaches nm =

⌈
(1/(2ε2m)) ln(2/δm)

⌉
.

Let Su be the sum of output of Ou.
4: return Su/nm
5: end if
6: for v ∈ C(u) do . Recursively call EstimateValues to sample all leaves.
7: µ̂v = EstimateValues(v, εm, δm)
8: end for
9: if u is max node then . Return the value vu(µ̂)

10: return max
v∈C(u)

µ̂v

11: else
12: return min

v∈C(u)
µ̂v

13: end if
14: end procedure

Algorithm 3 The Prune subalgorithm prunes nodes that are implausible to be winners.
1: procedure Prune(u, εm)
2: for v ∈ C(u) do
3: if |µ̂u − µ̂v| > 2εm then
4: C(u) = C(u) \ {v} . Prune child v
5: else if v /∈ leaves(T ) then
6: Prune(v, εm) . Recursively prune the descendants of v
7: end if
8: end for
9: end procedure
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3.2 FindTopWinner is (ε,δ)-PAC

In this section, we will give a sketch of why the FindTopWinner algorithm is correct. The full
proof is constructed by Terraoka et al. [15].

First, it is shown that with probability at least 1 − δ, simultaneously in every epoch m, all
estimates of the values of the non-pruned leaves are at least εm-correct. This event is called
Event A. In some sense, this is the ‘happy’ event, if Event A happens everything goes well.

Definition 4 (Event A [15]). The event A is such that, simultaneously at each epoch m and
for each leaf ` ∈ leaves(T ), the estimate µ̂`,m obtained by EstimateValues(`, εm, δm) (see
Algorithm 2) satisfies |µ` − µ̂`,m| ≤ εm.

It can be proven that indeed Event A happens with probability at least 1− δ. We state this in
Lemma 1.

Lemma 1. [15] The event A occurs with probability at least 1− δ.

Proof. [15] With Hoeffding’s inequality we have for all epochsm and for all leaves ` ∈ leavesm(T )
that for the estimate µ̂`,m after m epochs holds

P(|µ` − µ̂`,m| > εm) ≤ 2 exp(−2ε2nm) ≤ δ

2mL
. (3.2)

Then using the union bound on all epochs and leaves we get

P(Event A does not occur) = P(∃m ≥ 1, ∃` ∈ leavesm(T ) : |µ` − µ̂`,m| > εm) (3.3)

≤ L
∞∑
m=1

δ

2mL
= δ. (3.4)

Hence the probability that event A occurs is at least 1− δ.

Next, Teraoka et al. show that when Event A happens, the estimates of the values of the
internal nodes are also εm-correct, i.e., we have for any node u that has not been pruned we
have,

|vu(µ)− vu(µ̂)| ≤ εm, (3.5)

where µ is the vector of leaf values and µ̂ is the estimate of µ. In other words, if our estimate on
the value of the leaves is good, then the estimate of the values on the internal nodes is also good.
Furthermore, it is shown that because each node is approximately correct, that only nodes that
are not winners are pruned.

Finally, because no winners are pruned, the values of all remaining nodes are unaffected by
pruning. Indeed, the value of a parent node is by definition equal to that of its winning children.
Since in the final epoch, εm equals ε, only ε-suboptimal arms remain.

Theorem 1. [15] With probability at least 1−δ, the FindTopWinner algorithm returns a node
u such that |vu(µ)− vroot(µ)| ≤ ε. In other words, FindTopWinner is (ε,δ)-PAC.

3.3 Sample complexity

The FindTopWinner algorithm has a upper bound on the number of samples taken. We will
review this bound and give some intuition behind it. Let us first define the parameter ∆`. As
we will see, the sample complexity will depend on this parameter.
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Definition 5. For each leaf ` we define the parameter ∆` as

∆` = max
u∈anc(`)\{root}

|vu(µ)− vparent(u)(µ)|. (3.6)

This parameter can be thought of as the largest gap between values above some leaf `. The value
of ∆` is determined by the most suboptimal move that has to be taken to reach the leaf ` from
the root node.

With this parameter, we state the sample complexity upper bound found by Teraoka et al.
in the following theorem.

Theorem 2. [15] With probability at least 1 − δ, the number of oracle calls of the FindTop-
Winner algorithm is at most∑

`:∆`>2ε

(
32

∆2
`

ln
16L

∆lδ
+ 1

)
+

∑
`:∆`≤2ε

(
8

ε2
ln

8L

εδ
+ 1

)
. (3.7)

Notice that Equation (3.7) contains two summations, the first sums over all leaves such that
∆` > 2ε and the second sums over all other leaves. It can be shown that if Event A happens and
if a leaf ` satisfies ∆` > 2ε, that the leaf ` is pruned at the latest in epoch

m` = blog2 4/∆`c+ 1. (3.8)

Leaves that do not satisfy the condition ∆` > 2ε are not guaranteed to be pruned in any epoch,
even if Event A happens. Consequently, the leaf is only guaranteed to be pruned in the last
epoch, M = dlog2(2/ε)e. Since the number of samples per leaf is deterministic in each epoch, it
is easily shown that the upper bound on the number of samples for these leaves is given by the
second term in Equation (3.7).

3.4 Working with normally distributed oracles

The algorithm that is introduced in Chapter 5 works primarily with normally distributed oracles.
To compare FindTopWinner to the algorithm introduced in Chapter 5, we can adjust the
sampling rule of FindTopWinner to work with any σ-sub-Gaussian random variables as defined
in Definition 6.

Definition 6 (σ-sub-Gaussian). Let X be a real-valued random variable with mean E[X] = µ.
X is σ-sub-Gaussian if there exists a σ > 0 such that

E [exp(λ(X − µ))] ≤ exp
(
σ2λ2/2

)
∀λ ∈ R. (3.9)

Note that a normally distributed random variable X ∼ N (µ, σ2) is σ-sub-Gaussian. Then the
mean of n i.i.d. copies of X is (σ/

√
n)-sub-Gaussian.

In the original paper, only in event A the fact that rewards are Bernoulli distributed is used.
Therefore, it is relatively straightforward to extend the algorithm to the sub-Gaussian case. If the
rewards are σ-sub-Gaussian distributed instead of Bernoulli, then instead of using the Hoeffding
bound in Eq (3.2), we use the Chernoff bound. Then Equation (3.2) becomes

P(|µ` − µ̂`| > εm) ≤ 2 exp(−ε2nm/(2σ2)) ≤ δ

2mL
. (3.10)

So to sample σ-sub-Gaussian random variables, we can set the number of samples taken, as can
be see in line 4 of Algorithm 2, to

nm = 4σ2dln(2/δm)/(2εm)e. (3.11)
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By applying the union bound on all epochs and leaves as in the proof of Lemma 1 we obtain
that event A occurs with 1− δ probability.

Now that we have reviewed the FindTopWinner algorithm, we will visit the concept of
confidence regions and we will see how FindTopWinner uses confidence regions.



Chapter 4

Confidence regions

In the bandit literature, confidence intervals are a regular theme. Usually, a confidence interval
is constructed on the values of nodes or leaves. These confidence intervals are then used to make
pruning, sampling, or recommendation decisions. In this chapter we will generalize confidence
intervals to multidimensional confidence regions. Furthermore, we will look at how FindTop-
Winner uses confidence regions. Finally, we will compare the performance of rectangular and
spherical confidence regions to motivate our new algorithm introduced in Chapter 5.

4.1 Confidence regions

A confidence region is the generalization of a confidence interval to multiple dimensions. Conse-
quently it does not only have a size but also a shape. Formally we define it as follows.

Definition 7. Let X be a RK-valued random variable with mean µ ∈ RK . A confidence region
C(X) ⊆ RK is a random set such that it contains the mean µ with confidence δ ∈ (0, 1). That is,

P(µ ∈ C(X)) ≥ 1− δ. (4.1)

Typically, we write C instead of X.

A confidence region should be interpreted as a set such that if an experiment or sample is
repeated, then in a fraction 1− δ of all the confidence regions, the true parameter is contained.
Note that for a random variable X it is possible to choose from different shapes of confidence
regions that have the same confidence δ. In principle, any shape is permissible as long as Equation
(4.1) is satisfied.

Remark 3. Confidence regions are frequently misunderstood. A common misinterpretation is
that after a confidence region C is created, it will contain a different estimate µ̂ with probability
at least 1− δ, but this is not true.

We call any µ′ ∈ C plausible and any µ′ /∈ C is called implausible. Furthermore, a plausible
vector µ′ not equal to the empirical estimate µ̂ is sometimes called an alternative model.

4.1.1 Confidence regions in FindTopWinner

In FindTopWinner, in each epoch and for each leaf, a confidence interval is constructed. In
each subsequent epoch, the size of the interval is halved. This can be seen in Algorithm 1, where
in line 5 the interval is halved. In the EstimateValues algorithm, as described in Algorithm
2, the confidence region is constructed by sampling the oracles in Line 4.

14
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In each epoch m, the union bound is applied over all confidence intervals created, and conse-
quently the confidence intervals are simultaneously true with a probability at least 1− δm. This
can be seen in Lemma 1. This creates a confidence region with the shape of a box as is shown
in Figure 4.1.

µ1

µ2

C

C2

C1

µ̂

Figure 4.1: FindTopWinner creates a confidence interval per leaf, C1 and C2. Because the union
bound is applied over all leaves, these confidence intervals will be simultaneously true with probability at
least 1− δm. Consequently, C = C1 × C2 is a confidence region with confidence δm.

The confidence regions in FindTopWinner are on the values of the leaves. But what does that
say about the values of the internal nodes? The fact that the confidence region is a hypercube
with sides of length 2ε, means that for all leaves ` ∈ leaves(T ) we can independently pick any
value µ` in the interval [µ̂` − ε, µ̂` + ε]. Now, pick any node u ∈ nodes(T ) of height one, so that
all its children are leaves. No matter if u is a min node or a max node, its value can attain
vu(µ̂) ± ε. Since u does not share any children with its siblings and we can independently pick
the value of the leaves, each sibling s ∈ siblings(u) can attain a value vs(µ̂) ± ε. We conclude
that the set of plausible values of height 1 nodes is a hypercube with sides of length 2ε. Using
an induction argument, we see that this happens at any height of the tree.

4.2 Motivation

In Definition 7 we defined the term confidence region. As mentioned, a confidence region can
have any shape. We have seen in the previous section that FindTopWinner uses a rectangular
confidence region, but nothing restricts us from creating a confidence region over the values of
the leaves that has a different shape. One problem of a rectangular confidence region, is that for
a parent node, the range of its values is still ±ε. However, if the parent node is a max node, this
seems a very wide range of values. Indeed, if the parent nodes achieves a low value, then all its
children must also attain a low value, which is unlikely.

To motivate why using a different shape of confidence region is advantageous for solving the
MCTS problem, Problem 1, we will investigate how well different shapes of confidence regions
perform in a similar but simplified problem. In this simplified problem, we have K arms that
give normally distributed rewards with mean µ ∈ RK and unit variance. Furthermore, we fix a
threshold γ ∈ R and assign a number of samples n that we take from each arm. We construct a
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confidence region C of some shape on the mean reward of these arms. We then ask: can we make
it plausible that none of the arms have a value that is above the threshold γ? This is similar
to a pruning operation, because when making a pruning decision, we also compare the values of
nodes with a threshold, namely the value of another node. We formalize this in Problem 2.

Problem 2: Pure exploration toy problem

Input

– Random variable X ∼ N (µ, IK), where µ ∈ RK and IK is the K×K identity matrix.

– Threshold γ ∈ R such that µk < γ for each k ∈ [K].

– Number of samples n ∈ N

– Confidence level δ ∈ (0, 1)

Protocol

– The algorithm must sample n i.i.d. copies of X to create a confidence region C for the
mean µ

– The confidence region C must have confidence δ

– The algorithm must return true if and only if for all µ′ ∈ C there exists an arm k such
that µ′k < γ. In other words, it must return true if and only if C ∩ R≥γ = ∅.

Objective
Minimize the probability P(C ∩ R≥γ 6= ∅).

In other words, the learner should choose a shape of the confidence region such that with high
probability it can show that in each plausible model µ′ ∈ C, not all arms pass the threshold γ.
This is illustrated in Figure 4.2.

µ1

µ2

γ1

C

Figure 4.2: If it is implausible that all arms pass the threshold γ, i.e., for all µ′ ∈ C we see that
mink µ

′
k < γ, then the confidence region C must be outside the shaded area R≥γ .

We want to compare two strategies that solve Problem 2. Because FindTopWinner uses
confidence regions with a box shape, we will construct confidence regions that are K-dimensional
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cubes. We will compare this with a K-dimensional sphere. This is illustrated in Figure 4.3

µ1

µ2

C

µ̂

γ1

(a)

µ1

µ2

C

C2

C1

µ̂

γ1

(b)

Figure 4.3: We will compare a spherical confidence region with a rectangular confidence region. In this
this example, both strategies would decide that yes, γ > mink µl, because both confidence regions do not
intersect with R≥γ .

We hypothesize that the sphere yields better results if the means µ1, µ2, . . . , µK are close to each
other, as in that case all arms need to be overestimated for mink µk > γ to hold. This is less
likely plausible in a spherical confidence region than it is in a box shaped confidence region.

4.2.1 Simplification

We would like to know the probability that a confidence region C intersects R≥γ in the case where
C is a sphere and when it is a box. However, it turns out that this is hard to explicitly compute
in the case that C is a sphere. To illustrate, to calculate this probability we have to integrate the
probability density function of the multivariate normal distribution over the domain in which
the sphere around µ̂ would intersect the threshold area. This is shown in Figure 4.4.

µ1

µ2

µ̂

γ1

ρ

Figure 4.4: The sphere B(µ̂, ρ) intersects R≥γ if and only if µ̂ is within the shaded region.

The result of this integral does not seem to have an answer that can be expressed in elementary
functions. Specifically because of the quarter (or rather 1/2K-th) sphere in the south-west
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quadrant. Since the center of this sphere is not at the center of the probability density function,
this integral becomes intractable. Therefore, we introduce a problem that is an analogous but
simplified version of Problem 2. Instead, the learner must try to create a confidence region C
that excludes the point γ with high probability.

Problem 3: Simplified pure exploration toy problem

Input

– Random variable X ∼ N (µ, IK), where µ ∈ RK and IK is the K×K identity matrix.

– Threshold γ ∈ RK such that µk ≤ γk for each k ∈ [K].

– Number of samples n ∈ N

– Confidence level δ ∈ (0, 1)

Protocol

– The algorithm must sample n i.i.d. copies of X to create a confidence region C for the
mean µ

– The confidence region C must have confidence δ

– The algorithm must return true if and only if for all µ′ ∈ C we have for each arm k
that µ′k ≤ γk. In other words, it must return true if and only if γ /∈ C.

Objective
Minimize the probability P(γ ∈ C).

In the rest of this section we will discuss the two strategies we introduced for Problem 2 and
how well they solve Problem 3. We argue that the output of the strategies is similar for both
problems, since it is unlikely that the means will be so overestimated that the estimate µ′ ends
up behind the threshold γ, as illustrated in Figure 4.5.

µ1

µ2

C

µ̂

µ

γ1

Figure 4.5: Because the mass of the density function is mostly concentrated near µ, it is unlikely for
the estimate µ̂ to attain a value such that mink µk > γ and the confidence region C does not contain γ1.

We will now compute the probability that the confidence region C contains γ ∈ RK , P(γ ∈ C).
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This is the probability that our algorithms return false in Problem 3 and the objective is to
minimize this value. In the following two settings, the number of samples taken is fixed at n,
the confidence level equals δ, we have threshold γ and the means of the arms is µ ∈ RK . The
estimate µ̂ is the arithmetic mean of n samples of i.i.d. copies of X.

Sphere

First, let us determine the radius ρ of the spherical confidence region C = B(µ̂, ρ) that we will
construct. Recall that X is a multivariate normal distribution with mean µ and unit variance,
so we have µ̂k ∼ N (µk, 1/n). Let Z = n||µ̂− µ||2. Then Z has a χ2

K-distribution. Indeed,

Z = n
K∑
k=1

(µ̂k − µk)2 ∼ χ2
K . (4.2)

By inverting the following equation we obtain the radius ρ of the confidence region.

P(µ ∈ C) = P(||µ̂− µ||2 ≤ ρ2) = P(Z ≤ nρ2) = 1− δ. (4.3)

We can numerically solve (4.3) for ρ by using the quantile function for the χ2
K-distribution. Now

that we know the radius, we can compute the probability that the sphere contains γ. We have,

Z ′ = n||µ̂− γ||2 (4.4)

= n
K∑
k=1

(µ̂k − γk)2 (4.5)

∼ χ′2K(λ), (4.6)

where χ′2K(λ) is the non-central χ2-distribution with parameter

λ = n
K∑
k=1

(µk − γk)2. (4.7)

This yields the probability

P(γ ∈ C) = P(||µ̂− γ||2 ≤ ρ2) = P(Z ′ ≤ nρ2) = FZ′(nρ2). (4.8)

Where FZ′ is the cumulative density function of the non-central χ2
K-distribution. We conclude

that we can compute the radius ρ of the confidence region C = B(µ̂, ρ), and the probability that
C contains is given by Equation 4.8.

Next, we will compute the same probability for C if it is a box.

Box

We start with the size of the box. We sample each arm n times and find an estimate µ̂. The
confidence region C is a box with center µ̂ and sides of length 2ε. The probability that µ is in
the confidence region C can be expressed in terms of ε and is set equal to 1− δ,

P(µ ∈ C) = P(∀k : |µ̂k − µ| ≤ ε) =

K∏
k=1

P(|µ̂k − µ| ≤ ε) (4.9)

=
K∏
k=1

(FX(µk + ε)− FX(µk − ε)) (4.10)

= 1− δ. (4.11)
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We numerically solve this equation for ε. Then we find that the probability that the threshold
γ is contained in the confidence region C equals,

P(γ ∈ C) = P(∀k : |µ̂k − γk| ≤ ε) =

K∏
k=1

P(|µ̂k − γk| ≤ ε) =

K∏
k=1

FX′
k
(ε), (4.12)

where X ′k ∼ N (µk − γk, 1/n).
Now that we have the probability of including the threshold γ in the confidence region C for

both strategies, we will show numerical results for both and compare them.

4.2.2 Strategy comparison results

We start by comparing the output of both strategies on Problem 2 and its simplified version,
Problem 3. In this particular case, we set γ = 0.1 · 1, δ = 0.01,µ = 0. It shows empirically that
the simplification of Problem 2 into Problem 3 is justified for the sphere and the box.
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Figure 4.6: It is shown that the probabilities P(γ ∈ C) and P(C ∩ R≥γ 6= ∅) are roughly equal for any
number of arms if C is a sphere. If C is a box, we see that the results are nearly indistinguishable. The
results for P(C ∩ R≥γ 6= ∅) were obtained using numerical integration. In all results we set n = 100,µ =
0, δ = 0.01 and γ = 0.1 · 1.

We will now compare the two strategies on the simplified problem. We look at the case of K = 10
arms, a mean of µ = 0 and threshold γ = 0.01·1. As can be seen in Figure 4.7, fewer samples are
needed to confidently exclude the threshold from the confidence region if the confidence region
is a sphere instead of a box.
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Figure 4.7: Comparison between P(γ ∈ Cbox) and P(γ ∈ Csphere). We see that for a small number of
samples per arm, it is very unlikely to find that γ is outside the confidence region Cbox or Csphere. This
probability quickly vanishes for both shapes. We see that for the box, this happens at a much later point
than for the sphere. In these experiments we fix K = 10, δ = 0.01,γ = 0.01 · 1 and µ = 0.

We also see that the difference becomes greater when the number of arms is increased. Below,
we run the same experiment but then for different numbers of arms. Specifically, we look at the
case with 10, 102, 103 and 104 arms.
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Figure 4.8: Comparison between P(γ ∈ Cbox) and P(γ ∈ Csphere) at different number of arms K. We
see that the probability vanishes rather quickly. For a high number of arms, this happens with fewer
samples per arm. This effect is greater for the sphere than for the box. In these experiments we fix
δ = 0.01,γ = 0.01 · 1 and µ = 0.

The results suggest that using a spherical confidence region has benefits over using a box shape,
like done in FindTopWinner. In particular, we see that fewer samples per arm are needed to
make it implausible that all arms cross a threshold γ if the confidence region is a sphere instead
of a box. Therefore, we believe that it is easier to make correct pruning decisions with a spherical
confidence region.
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4.2.3 Limitations

In the experiment we compared confidence regions that are either a sphere or a box. Even though
the set of plausible values of the leaves is a sphere, the set of plausible values of internal nodes
may not be. Let us start with an example of a tree of depth 2 and let the root node be a min
node. Because the tree has four leaves, we can construct a spherical confidence region C that is
the 4 dimensional sphere B(µ̂, ρ). Since C is the set of all plausible values of the nodes, one might
ask what is the set of all plausible values of the internal nodes? Let us assume for simplicity
that µ̂ = α1 for some real number α. We find that the plausible set of joint values for the two
nodes of depth 1 is not a sphere. This set is illustrated in Figure 4.9. We were able to compute
this set using tools introduced in Chapter 5. See Appendix B for details.

vn1

vn1

(vn1(µ̂), vn2(µ̂))

Figure 4.9: Plausible values for two max nodes n1 and n2, given some µ̂ = α1. These nodes have a
height of 1 and they both have 2 leaves. The confidence region of values of the leaves is C = B(µ̂, ρ) ⊆ R4.
Notice that the set illustrated here is not a sphere, even though the confidence region C is.

Interestingly, this shape is only visible at nodes of odd heights. If one considers a tree of depth
3, and looks at a node of depth 1, i.e. height 2, the set of plausible values for those nodes is
again a sphere. However, if µ̂ does not equal α1 for some α ∈ R, things become interesting.

Consider a tree of depth 3 and outdegree 2. The values of the leaves are uniformly sampled
from [0, 1]. In Figure 4.10 we plot the plausible joint values for the two children of the root n1

and n1. If all leaf values were equal, then we would expect a plot like in Figure 4.9. However, we
see that the set is more shaped like a box with rounded corners. When we increase the number
of leaves, the edges of this set become more defined. Let us replace the subtrees rooted at n1

and n2 by trees of depth 2 and outdegree 20. Again, we uniformly sample leaf values from [0, 1]
and assume µ̂ = µ.
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vn1
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(vn1(µ̂), vn2(µ̂))

(a) Outdegree 2

vn1
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(vn1(µ̂), vn2(µ̂))

(b) Outdegree 20

Figure 4.10: For an oracle tree of depth 3 we plot the plausible values of two nodes of depth 1, n1 and
n2 for two different outdegrees. Note that the number of leaves in the subtrees rooted at n1 and n2 is the
outdegree squared. Both are based on a spherical confidence region C with confidence δ = 0.01 and an
n = 100 samples. This creates a sphere of radius approximately 0.366 for the outdegree 2 case, whereas
the outdegree 20 case has a radius of approximately 2.92. We see that the set with a high outdegree has
straighter sides than the set with the low outdegree.

These results suggest that the comparison between spherical and rectangular confidence regions
might not hold up as well on internal nodes, especially if the outdegree is high. This is an
interesting result, as in the previous section we have seen in Figure 4.8 that increasing the
number of arms quickly decreases the number of samples per arms and that this effect is more
pronounced of there sphere. However, the results from this section suggest that this effect might
not as great for internal nodes.



Chapter 5

Building the SCR-MCTS algorithm

In this chapter we will introduce the SCR-MCTS algorithm with the goal of improving the
FindTopWinner algorithm, which we introduced earlier in Chapter 3. We start by introducing
the CR-MCTS meta-algorithm that works with confidence regions of any shape. In Chapter 4
we gave some motivation on why it is interesting to look at spherical confidence regions instead
of rectangular ones. With this meta-algorithm we will look at how to precisely implement
the sampling, pruning, stopping and selection rules when using spherical confidence regions.
Together, these will form the algorithm introduced in this thesis.

5.1 Generalization

Algorithms in the bandit literature typically consist of the following tree main rules:

– Sampling rule How many samples are taken from each leaf and when do we inspect the
samples?

– Stopping rule How and when do we return an answer?

– Recommendation rule What answer do we return?

With the added tree structure in the MCTS problem that we solve, we add a fourth rule:

– Pruning rule How do we decide which nodes to prune from the tree?

Our meta-algorithm, Confidence Region-MCTS, or CR-MCTS, implements these rules as can
be seen in Algorithm 4. The algorithm works in multiple iterations, which we will call epochs.
Furthermore, as can be seen in the Sample subalgorithm, in each epochm, we create a confidence
region with a certain confidence δm and a size parameter εm. For a sphere, this size parameter is
the radius of the sphere, whereas for a box it is the length of the sides. In the case of a sphere,
we will also denote this parameter as ρm. The confidence and size parameters must be known
beforehand and are thus not adaptive. They are the input sequence (δm)m≥1 and (εm)m≥1.

24
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Algorithm 4 The CR-MCTS algorithm is the main algorithm that calls the stopping, sampling,
pruning en recommendation rules.
1: function CR-MCTS(T , (εm)m≥1, (δm)m≥1)
2: m← 1
3: while not Stop() do
4: Sample(εm, δm)
5: Prune(root)
6: m← m+ 1
7: end while
8: return Recommend()
9: end function

Algorithm 5 The Sample subalgorithm samples leaves and constructs a confidence region.
1: procedure Sample(εm, δm)
2: Sample each leaf ` ∈ leavesm(T ) such that Cm is a confidence region with confidence δm

and size parameter εm.
3: end procedure

Algorithm 6 The Prune subalgorithm recursively traverses the tree, pruning nodes that are
implausible to be winners as defined in Definition 3.
1: procedure Prune(u)
2: for c ∈ C(u) do
3: if not exists µ ∈ Cm such that c wins then
4: C(u) = C(u) \ {c}
5: else
6: Prune(c)
7: end if
8: end for
9: end procedure

Algorithm 7 The Stop rule returns true if a node can be recommnded.
1: procedure Stop
2: return True iff Recommend() returns at least one node.
3: end procedure
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Algorithm 8 The Recommend subalgorithm returns nodes that are at most ε-suboptimal for
every plausible µ′ ∈ Cm
1: procedure Recommend
2: for u ∈ C(root) do
3: if for all k ∈ siblings(u) and all µ′ ∈ C : vu(µ′)− ε ≤ vk(µ′) then
4: return u
5: end if
6: end for
7: return Null
8: end procedure

Now that we have defined the meta-algorithm and its subalgorithms, we implement the meta-
algorithm for spherical confidence regions. This algorithm will be called SCR-MCTS. We will
start with the sampling rule, where the confidence regions are constructed. Then we will move on
to the pruning rule, where the essential problem is to determine whether there exists a plausible
model µ′ ∈ Cm such that a node u wins or not. Furthermore, we will look at the recommendation
rule. As we will see, this problem is quite similar to pruning. Finally, we will look at the stopping
rule and prove the correctness of the SCR-MCTS algorithm.

5.2 Sampling rule

The main constraint on the sampling rule is that we need to pick the sequence (δm)m≥1 such
that the algorithm has δ confidence. Since the algorithm will work with multiple epochs in which
we sample the leaves and then inspect them, we have to make sure that the confidence regions
created in each epoch, i.e. all Cm, will be simultaneously true with probability at least 1− δ. To
ensure this, we make use of the union bound. Indeed, for each epoch m, let Cm be the confidence
region created. Then we have the following constraint

P (∃m : µ 6∈ Cm) ≤
∞∑
t=1

(1− P(µ ∈ Cm)) =
∞∑
t=1

δm ≤ δ. (5.1)

As we will see in Section 5.6, this is the only constraint on the correctness of the algorithm.
However, it is not sufficient for sampling efficiently. The confidence region should likely at least
shrink in size each epoch. With a small confidence region, we can prune more nodes, meaning that
in future epochs, there are fewer leaves to sample. However, if we construct a small confidence
region, this will require more samples per leaf. This shows that there is a delicate balance
between the radius ρm of Cm, the number of samples taken nm, and the confidence level δm. Of
course, it is not allowed to take these values any way you like. For example, we cannot create a
confidence region using a small number of samples while having high confidence and small size.

However, we can fix two of the three variables. Let each oracle k sample from a normal
distribution with mean µk and variance σ2. We denote the estimate of each µk by µ̂k,m and the
vector of all estimates by µ̂m. Let Zm = nm/σ

2||µ̂m − µ||2. Then Zm is χ2
K-distributed where,

K is the number of leaves, and we have,

P(||µ̂m − µ||2 ≤ ρ2
m) = P(Zm ≤ nmρ2

m/σ
2) = FZm(nmρ

2
m/σ

2) = 1− δm, (5.2)

where FZm is the cumulative distribution function of the χ2
K-distribution. This gives us a method

to fix two of the variables, and get a valid value for the third variable.
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We have seen the constraints on picking the variables δm, ρm and nm. Let us now formulate
a strategy for selecting these values. The strategy we use is close to the FindTopWinner
strategy. Just like FindTopWinner, we will halve the confidence level each epoch m. That is,
δm = δ/2m. It is easily checked that this geometric sequence indeed sums up to δ for all m ≥ 1.
Next, let us pick the radii of all spheres Cm. We start with the unit sphere, so ρ1 = 1. Then
in each round we halve the radius, i.e., ρm+1 = ρm/2. This is closest to the sampling rule of
FindTopWinner, since in that algorithm the size of the intervals is halved each epoch. This
can be seen in line 5 of Algorithm 1. A small radius for the confidence region means that we
can prune more nodes, because fewer plausible models exist. However, this comes at a cost,
since more samples per leaf are required. Note that even though we fix the starting radius at 1,
any positive radius is allowed. It is possible that an other value is better, but this has not been
analyzed. In Chapter 6 we will show empirical results for different starting radii. These results
suggest that the starting radius does not gravely affect the total number of samples taken.

In conclusion, we have a confidence δm = δ/2m and radius ρm = 1/2m−1 in each epoch m,
which we use to solve for the number of samples,

nm = 4m−1σ2F−1
Zm

(1− δ/2m). (5.3)

This concludes the sampling rule. Next, we will look at the pruning rule.

5.3 Pruning rule

Typically a game tree contains many nodes that are states that would never be chosen by a
rational player. If we know that some node is not favorable, then we should not investigate it or
the subtree rooted at that node. But how do we know if a node is not favorable?

Recall that in the Sample subalgorithm (Algorithm 5) we construct a spherical confidence
region Cm for each epoch m. In this setting we say that a node u is not interesting if there is no
plausible µ′ in the confidence region Cm such that node u has a better value than its siblings.
In other words, we consider it to be implausible that u can win. In that case u is pruned by the
Prune subalgorithm.

If the parent of u is a max node, this means that we can prune u if there is no µ′ ∈ C such
that for all s ∈ siblings(n) we have vu(µ′) > vs(µ

′). This happens if and only if there is no
µ′ ∈ C such that vu(µ′) > maxs∈siblings(n) vs(µ

′). With this insight, we can replace the children
with a new max node, call it v, that contains all the original siblings of u as its children. This
will make it easier to decide if a node is interesting or not, since we now only have to compare it
with one other node, v, instead of with each of the siblings of u. See Figure 5.1 for an example
of replacing siblings with a new node.

max

min

max

n min, v max

min

p

u s1 s2 s3
rewrite

p

u v

s1 s2 s3

Figure 5.1: The tree rooted at p can be rewritten be replacing children s1, s2 and s3 by the max node v
that has s1, s2 and s3 as its children. Note that none of the values in the tree are altered by this operation.

We now keep u if there exists a plausible model µ′ ∈ C such that

vu(µ′) > vv(µ
′). (5.4)
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If not, then we prune node u. We now observe that µ′ ∈ C if and only if∑
`∈leaves(Tu)

||µ′` − µ̂`||2 +
∑

`∈leaves(Tv)

||µ′` − µ̂`||2 ≤ ρ2, (5.5)

where Tu and Tv denote the subtrees rooted at u and v respectively. From another point of
view, µu and µv can be seen as being lower dimensional vectors that live in spheres with each a
fraction of the total radius ρ. In other words, there is some α ∈ [0, 1] such that∑

`∈leaves(Tu)

||µ′` − µ̂`||2 ≤ αρ2 (5.6)

and ∑
`∈leaves(Tv)

||µ′` − µ̂`||2 ≤ (1− α)ρ2. (5.7)

We define the greatest or smallest value that a node u attains in a confidence region, as the
upper and lower confidence bounds on the value of u. We will use this definition to rewrite (5.4)
in terms of confidence bounds.

Definition 8. Let T be an oracle tree, n ∈ nodes(T ) and let C = B(µ̂, ρ) ⊆ Rm be a spherical
confidence region centered at the empirical estimate of the value of the leaves µ̂ with radius ρ.
Then the upper and lower confidence bounds on the value of u are defined by,

UCBu(ρ2) = max
µ∈B(µ̂,ρ)

vu(µ), (5.8)

LCBu(ρ2) = min
µ∈B(µ̂,ρ)

vu(µ). (5.9)

Consequently, if the confidence region is a sphere of radius ρ, to know if there is a plausible
µ′ ∈ C such that vu(µ′) > vv(µ

′), we can ask if there exists an α ∈ [0, 1] such that

UCBu(αρ2) = max
µ′∈B(µ̂,

√
αρ)

vu(µ′) > min
µ′∈B(µ̂,

√
1−aρ)

vv(µ
′) = LCBv((1− α)ρ2). (5.10)

If this α does not exist, we can prune node u. We employ a grid search to check if Equation
(5.10) holds for all α in [0, 1]. Note that this is not strictly safe, because it might be possible
that the expression is not true for some value we did not evaluate. We address this by measuring
the error rate in Chapter 6 and will see that the error rate indeed stays below the chosen δ.

We have now expressed the pruning decision in terms of confidence bounds. In the next
section we will develop a method of computing the confidence bound functions, allowing us to
decide which nodes have to be pruned.

5.4 Confidence bounds

In the previous section we briefly introduced the concept of confidence bounds on the value of
nodes in the oracle tree. Confidence bounds represent the range of values that are plausible for
a node in the oracle tree if the spherical confidence region that was constructed has radius ρ.

Remark 4. Note that even though for any node u ∈ nodes(T ) the interval [LCBu(ρ2),UCBu(ρ2)]
is a confidence interval with confidence at most δ, for any two nodes n 6= n′ ∈ nodes(T ),
[LCBu(ρ2),UCBu(ρ2)] × [LCBu′(ρ

2),UCBu′(ρ
2)] is not the optimal confidence region with con-

fidence δ. For example, take distinct u, u′ ∈ leaves(T ). The ball B(µ̂, ρ2) ⊂ R2 is a confidence re-
gion for these two nodes and is strictly contained in [LCBu(ρ2),UCBu(ρ2)]×[LCBu′(ρ

2),UCBu′(ρ
2)].

This is illustrated in Figure 5.2.
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µu

µu′

LCBu′(ρ
2)

UCBu′(ρ
2)

LCBu(ρ2) LCBu(ρ2)

µ̂

Figure 5.2: For any two leaves u, u′, the set [LCBu(ρ2),UCBu(ρ2)]× [LCBu′(ρ2),UCBu′(ρ2)] is not the
optimal confidence region. This region is illustrated by the light gray square. Instead, the sphere B(µ̂, ρ2)
is a better confidence region that is strictly included in the box.

In other words, it is plausible that either u or u′ deviates a lot from the empirical estimate, but
it is implausible that both do.

We have defined confidence bounds and in the previous section we have seen how they are used
in the pruning subalgorithm. But how do we compute the confidence bounds? In the next
subsection we will compute bounds of leaf nodes. In later sections we will compute confidence
bounds of internal nodes.

5.4.1 Confidence bounds on leaves

For a leaf it is possible to explicitly compute the confidence bounds on its value. Let ` ∈ leaves(T )
and let C a spherical confidence region. We have

UCB`(ρ
2) = max

µ∈C
v`(µ) (5.11)

= max
µ∈C

µ` (5.12)

= µ̂` + ρ. (5.13)

Similarly for the lower confidence bound, we get LCB`(ρ
2) = µ̂` − ρ. Visually, this corresponds

to Figure 5.3. We start in µ̂ and move towards the edge of the circle to maximize the value.
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C

µ̂

µ1

µ2

Figure 5.3: To calculate the maximum value of v1(µ) for µ ∈ C, we follow the blue arrow to the edge
of the sphere and find µ̂1 + ρ. Similarly for v2(µ) we follow the red arrow and find µ̂2 + ρ.

Now that we know how to compute confidence bounds on the values of leaves, let us look at how
to compute bounds for nodes in the rest of the tree.

5.4.2 Recurrence relation

For an internal node it is not as straightforward to find the confidence bounds on the value.
Luckily, it is possible to derive a recurrence relation. The confidence bounds of internal nodes
are defined as a function of the confidence bounds of their children. If we the compute the
confidence bounds on the leaves, we can compute the confidence bounds on nodes in the rest of
the tree.

As we will see, there are two different relationships. First, there is a ‘symmetric’ case, where
the upper bound is computed of a max node or the lower bound of a min node. And second,
there is the ‘asymmetric’ case for the lower bound on a max node or the upper bound on a min
node. In Lemma 2 we state the symmetric case and in Lemma 3 we state the asymmetric case.

Lemma 2. Let T be an oracle tree and let C = B(µ̂, ρ) ⊆ Rm be a confidence region centered
at the empirical estimate µ̂ with radius ρ. Let UCB and LCB be defined as in Definition 8. If
u ∈ nodes(T ) is a max node, then

UCBu(ρ2) = max
c∈C(u)

UCBc(ρ
2). (5.14)

If u is a min node, then
LCBu(ρ2) = min

c∈C(u)
LCBc(ρ

2). (5.15)

Proof. Assume that u is a max node. For brevity in notation, c ∈ C(u) is replaced with c in the
subscripts. We can write UCBu as

UCBu(ρ2) = max
||µ−µ̂||2≤ρ2

max
c
vc(µ) (5.16)

= max∑
c ρ

2
c≤ρ2

max
||µc1−µ̂c1 ||≤ρ2c1

. . . max
||µcK

−µ̂cK
||≤ρ2cK

max
c
vc(µc) (5.17)
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We can change the order of the maxima, which yields

= max∑
c ρ

2
c≤ρ2

max
c

max
||µc1−µ̂c1 ||≤ρ2c1

. . . max
||µcK

−µ̂cK
||≤ρ2cK

vc(µc) (5.18)

= max∑
c ρ

2
c≤ρ2

max
c

UCBc(ρ
2
c) (5.19)

= max
c

UCBc(ρ
2). (5.20)

For a min node the proof is similar.

Next, in Lemma 3 we state the asymmetric case.

Lemma 3. Let T be an oracle tree and let C = B(µ̂, ρ) ⊆ Rm be a confidence region centered
at the empirical estimate µ̂ with radius ρ. Let UCB and LCB be defined as in Definition 8. If
u ∈ nodes(T ) is a max node, then

LCBu(ρ2) = min∑
c∈C(u)

ρ2c≤ρ2
max
c∈C(u)

LCBc(ρ
2
c), (5.21)

where in the first minimum the variables are ρc for each c ∈ C(u). If u is a min node, then

UCBu(ρ2) = max∑
c∈C(u)

ρ2c≤ρ2
min
c∈C(u)

UCBc(ρ
2
c). (5.22)

Proof. Let u be a min node. Then we have for its upper confidence bound

UCBu(ρ2) = max
||µ−µ̂||2≤ρ2

min
c
vc(µc) (5.23)

= max∑
c ρ

2
c≤ρ2

max
||µc−µ̂c||≤ρ2c

∀c

min
c
vc(µc) (5.24)

= max∑
c ρ

2
c≤ρ2

min
c
vc(µ

∗(c)) (5.25)

= max∑
c ρ

2
c≤ρ2

min
c

UCBc(ρ
2
c), (5.26)

where
µ∗(c) = arg max

||µc−µ̂c||2≤ρ2c
vc(µc). (5.27)

For a max node, the proof is similar.

With these lemmas we have some insight into how to compute the confidence bounds on
internal nodes.

Furthermore, as we will see next, the function ρ 7→ UCBu(ρ2) is a piecewise continuous
function that consists of pieces with the same parametric form. We will prove this by showing
that leaves satisfy this lemma and then by showing that it holds by induction.

Lemma 4. Let T be an oracle tree and C = B(µ̂, ρ) ⊆ Rm a spherical confidence region centered
at the empirical estimate µ̂ with radius ρ and let u ∈ nodes(T ). Then ρ 7→ UCBu(ρ2) is a
piecewise continuous function where its pieces are given by

ρ 7→ M +
√
M2 − LN + Lρ2

L
, (5.28)
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for some M,N,L ∈ R. Analogously, the function ρ 7→ LCBu(ρ2) is parameterized by

ρ 7→ M −
√
M2 − LN + Lρ2

L
, (5.29)

for some M,N,L ∈ R. In both cases we have

M =
∑
`∈L′

µ̂`, N =
∑
`∈L′

µ̂2
` , L = |L′| (5.30)

for some subset L′ ⊆ leaves(T ).

Proof. We will present a proof by induction. We start with the base case.
Base case
We have seen that for any leaf ` ∈ leaves(T ), the confidence bounds are given by UCB`(ρ

2) =
µ̂` + ρ and LCB`(ρ

2) = µ̂` − ρ. Then the LCB and UCB satisfy Lemma 4 since substituting
M = µ̂u, N = µ̂2

u and L = 1 yields the correct confidence bounds. This proves the base case.

Inductive step
We continue with the inductive step. We only show the proof for upper confidence bounds, since
the proof for lower confidence bounds is analogous. Let u ∈ nodes(T ) be a node in the oracle
tree T . Assume that the lemma is true for all descendants of u. We will now prove the inductive
step for the symmetric case.

Assume that u is a max node. Then with Lemma 2 we see that UCBu is the pointwise
maximum of the upper confidence bound of its children. Then this directly implies that UCBu

has the same parametric pieces as UCBc for each child c of u. If u is a min node the proof is
similar, but then we take the pointwise minimum instead of the pointwise maximum. This shows
the inductive step for the symmetric case.

For the asymmetric case, assume that u is a min node. Then with Lemma 3 we see that
UCBu equals

UCBu(ρ2) = max∑
c∈C(u)

ρ2c≤ρ2
min
c∈C(u)

UCBc(ρ
2
c). (5.31)

Now let {ρ′c} be the set of optimizing radii in the first maximum. We then have for this set {ρ′c},

UCBu(ρ2) = min
c∈C(u)

UCBc((ρ
′
c)

2). (5.32)

Since the number of children of u is finite, there exists a child node c′ ∈ C(u) such that

UCBu(ρ2) = UCBc′((ρ
′
c′)

2). (5.33)

By the induction hypothesis, UCBc′((ρ
′
c′)

2) can be expressed in the parametric form (5.28).
Consequently, for each ρ ≥ 0, the confidence bound UCBu(ρ2) can be expressed in the parametric
form.

Since the inductive step holds for all internal nodes, and we have shown that the base case
holds for all leaf nodes, the result follows.

5.4.3 Confidence bounds on internal nodes

As mentioned before it is less straightforward to calculate the confidence bounds of internal
nodes. We have seen in Lemmas 2 and 3 that the bounds depend on all their descendants. We
made a distinction between two cases. First the symmetric case for calculating upper confidence
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bounds on max nodes and lower confidence bounds on min nodes. Secondly, the asymmetric
case for lower bounds on max nodes and upper bounds on min nodes.

An important insight is that for a max node to get a higher value, just one child has to
increase in value. On the other hand, for the same max node to get a lower value, all children
that attain the highest value, should decrease value. This is illustrated in Figure 5.4.

maxi λi
λ1

λ2

λ3

λ4

λ′4
maxi λ

′
i = λ′

(a) To increase maxi λi to λ′, only one of the lamb-
das has to increase. For the maximum the other
values are not important.

maxi λi
λ1

λ2

λ3

λ4

λ′4λ′1
maxi λ

′
i = λ′

(b) To decrease maxi λi to λ′, both λ1 and λ4 must
decrease by the same amount.

Figure 5.4: It is easier to increase a maximum than it is to decrease a maximum.

To see one consequence of this behavior, consider the following situation. We are given the oracle
tree illustrated in Figure 5.5.

0

0

0

0 0

0

0 0

0

0

0 0

0

0 0 0

0

0 0

max

min

max

leaf

Figure 5.5: An oracle tree. The root node is a max node and the leaves of the tree have values µ = 0.

We sample the leaves and we find that the estimate of the values of the leaves is the origin
µ̂ = 0. The number of samples taken allow us to create a spherical confidence region C with
radius

√
2 and center 0. Next, we want to know what the upper bound is on the value of the

root node in this tree. In other words, we need to find a plausible model µ′ ∈ C such that the
value of the root vroot(µ

′) is maximized. We can do this by adjusting the values of the leaves,
subject to the constraint that ||µ̂− µ′||2 ≤ ρ2. This yields an optimal µ′ that takes the value 1
on two of the leaves and the value of 0 on the rest of the leaves, as illustrated in Figure 5.6. We
see the same asymmetry as in Figure 5.4. Indeed, at depth 1 we see that just one node has its
value changed since their parent is a max node. Conversely, at depth 2 we see that both node
values are changed.
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1

1

1

0 1

1

0 1

0

0

0 0

0

0 0 0

0
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leaf

Figure 5.6: When finding a µ′ ∈ C that maximizes the value of the root, the filled nodes must attain
the same value. If any of them would be lower than 1, the value of the root would be lower than 1 too.
Notice the asymmetry between min and max nodes. Min nodes activate all their children, but max nodes
only have to activate one child.

Symmetric case

We use these insights to interpret the recursion relations from Lemma 2. We relate Figure 5.4a
with the symmetric case in Lemma 2. Lemma 2 states that to find the upper bound on a max
node u, we should take the maximum value of the upper confidence bounds of its children. If we
know the full function UCBc for each c ∈ C(u), then by taking the pointwise maximum of this
set of functions, we obtain UCBu.

This new function, UCBu, can be expressed in pieces with the same parametric form, as is
stated in Lemma 4. We express each piece as a triple, (ρstart, ρend,L), consisting of the start
and end of the interval on which the pieces is defined, and all leaves that determine the M,N,L
parameters of the piece in Equation (5.30). For course, the start of the interval ρstart is less than
the end of the interval ρend, and the end of the interval can be at infinity.

The entire function is then expressed as a vector of pieces. The central idea behind finding
this explicit form is that we keep track of which piece is the greatest at some point ρ. By
increasing ρ, either this piece stays the largest or it is overtaken by another piece. This can
only happen if there is an intersection. By finding all interesting points such as intersections
and endpoints of pieces, we can find the pointwise maximum function. At each interesting point
ρ we check which pieces are defined on ρ and then we take the piece with the highest function
value on ρ. If multiple pieces attain this function value, we keep the piece with the highest slope.
Again, if this piece is not unique, we look at the piece with the highest second derivative value
at ρ.

This is formalized in the Maximum algorithm (Algorithm 9). It has two UCB functions as
input. If the maximum of more functions needs to be taken, it is either trivially extendable to
more input functions, or one can successively apply the Maximum algorithm over all children.
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Algorithm 9 The Maximum algorithm takes two upper confidence bounds functions as input
and returns the pointwise maximum function of the input functions.
1: function maximum(UCBa,UCBb)
2: ρ← FindIntersections(UCBa,UCBb)
3: ρ← ρ ∪GetEndpoints(UCBa) ∪GetEndpoints(UCBb)
4: pieces← {}
5: for ρ ∈ ρ ascending do
6: p← All pieces of UCBa and UCBb that have ρ in their domain
7: p← p where p(ρ) is maximal . Remove pieces with low function values at ρ
8: p← p where p′(ρ) is maximal . Remove pieces with a low slope
9: p← p where p′′(ρ) is maximal

10: newPiece← p1

11: newPiecestart ← ρ
12: if prevP iece exists then . The previous piece ends where the new piece starts
13: prevP ieceend ← ρ
14: end if
15: pieces← pieces ∪ {newPiece}
16: prevP iece← newPiece
17: end for
18: return pieces
19: end function

The Maximum algorithm has two subalgorithms. The GetEndpoints subalgorithm only out-
puts the endpoints of the domains of all the pieces of the confidence bounds functions it takes
as input.

FindIntersections subalgorithm The FindIntersections subalgorithm that finds in-
tersections boils down to solving for ρ in the equation

M1 +
√
M2

1 − L1N1 + L1ρ2

L1
=
M2 +

√
M2

2 − L2N2 + L2ρ2

L2
. (5.34)

We start with some small substitutions,

a = M2
1 − L1N1 (5.35)

b = M2
2 − L2N2, (5.36)

and we multiply by L1L2. This yields

L2M1 + L2

√
a+ L1ρ2 = L1M2 + L1

√
b+ L2ρ2 (5.37)

L2M1 + L2

√
a+ L1ρ2 − L1M2 = L1

√
b+ L2ρ2. (5.38)

Now we apply another substitution

c = L2M1 − L1M2. (5.39)

At this point we make a case distinction between c 6= 0 and c = 0, because later we have to
divide by c.
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Assume that c 6= 0 We collect the terms and square the expression to get,

c2 − 2cL2

√
a+ L1ρ2 + L2

2(a+ L1ρ
2) = L2

1(b+ L2ρ
2) (5.40)

2cL2

√
a+ L1ρ2 = −L2

1(b+ L2ρ
2) + c2 + L2

2(a+ L1ρ
2) (5.41)

2cL2

√
a+ L1ρ2 = c2 − L2

1b+ L2
2a+ (L2

2L1 − L2
1L2)ρ2. (5.42)

We apply the substitution

d = c2 − L2
1b+ L2

2a (5.43)

e = (L2
2L1 − L2

1L2). (5.44)

Again, we collect terms and square the expression to get rid of the last square root,

2cL2

√
a+ L1ρ2 = d+ eρ2 (5.45)

4c2L2
2(a+ L1ρ

2) = d2 + 2deρ2 + e2ρ4 (5.46)

0 = d2 − 4c2L2
2a+ (2de− 4c2L2

2L1)ρ2 + e2ρ4. (5.47)

To solve this equation for ρ, we have to divide by e. Therefore we make a case distinction between
e 6= 0 and e = 0.

Assume that e 6= 0 Collecting terms we get

4c2L2
2(a+ L1ρ

2) = d2 + 2deρ2 + e2ρ4 (5.48)

ρ2 = ABC(e2, 2de− 4c2L2
2L1, d

2 − 4c2L2
2a) (5.49)

ρ = ±
√
ABC(e2, 2de− 4c2L2

2L1, d2 − 4c2L2
2a) (5.50)

Note the abuse of notation, since the quadratic equation has multiple solutions. This means that
in total there are 4 solutions for ρ. Since we are only concerned with non-negative values there
are at most 2 feasible solutions.

Assume that e = 0 Continuing from (5.47), we get

2cL2

√
a+ L1ρ2 = d (5.51)

ρ2 =

((
d

2cL2

)2

− a

)
/L1 (5.52)

If d/2CL2 < 0 then there are no solutions.

Assume that c = 0 Continuing from (5.39)

L2
2(a+ L1ρ

2) = L2
1(b+ L2ρ

2) (5.53)

ρ = ±

√
bL2

1 − aL2
2

(L2 − L1)L2L1
(5.54)

So we conclude that there are three interesting cases, where there is an intersection. Further-
more is it possible that the two pieces are equal. In that case we ignore that they technically
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intersect, since the algorithm would have to choose between two identical pieces, so no matter
which piece is chosen, the Maximum algorithm returns the same function.

Summarizing, we created the Maximum subalgorithm that uses FindIntersections as a
subalgorithm. Maximum find the pointwise maximum for a pair of piecewise functions as in
Lemma 4. This algorithm allows us to obtain the upper confidence bound in the symmetric case.
Equivalently, we could create a Minimum subalgorithm to find the lower confidence bound in the
symmetric case. This shows how to completely solve the symmetric case. In the next subsection
we show how confidence bounds can be found in the asymmetric case.

Asymmetric case

The asymmetric case corresponds to Figure 5.4b and Lemma 3, that is, upper confidence bounds
on values of min nodes or lower bounds on values of max nodes. Recall that Lemma 3 states
that the lower confidence bound function of a max node u is given by

LCBu(ρ2) = min∑
c∈C(u)

ρ2c≤ρ2
max
c∈C(u)

LCBc(ρ
2
c). (5.55)

First, note that since LCBu is a decreasing function in ρ for each node c. Indeed, the larger the
radius of the spherical confidence region, the lower value node c can attain. We therefore conclude
that the condition

∑
c ρ

2
c ≤ ρ2 holds with equality. We can view this problem as distributing the

total radius ρ over all the children of node u. Since we want the lowest value for maxc LCBc(ρ
2
c),

we increase ρm for some child m until LCBm(ρ2
m) = maxc LCBc(ρ

2
c).

Two leaves example As an example, let us have a look at the lower confidence bounds of a
max node u with two leaves as children. Suppose we sample the oracles at the leaves and find
the estimate µ̂ = (1, 0). We want to know the smallest attainable value of u, given a confidence
region with radius ρ. At ρ = 0, the bound clearly is 1 since the whole confidence region is {µ̂},
and the only value we attain is vu((1, 0)) = max{1, 0} = 1. For ρ ∈ (0, 1] the confidence region
is B(µ̂, ρ), and the best plausible model we can find is µ′ = (1 − ρ, 0). With this plausible µ′,
the max node u attains at the lowest a value of 1 − ρ, so in the domain ρ ∈ [0, 1] we find that
LCBu(ρ2) = 1− ρ.

For the whole domain ρ ≥ 0 the plausible model µ′ = (1 − ρ, 0) is insufficient, because
vu(µ′) = max{1 − ρ, 0} equals 0 for any ρ ≥ 1. Instead, to find a better µ′ ∈ C, we first note
that both leaf values are necessarily the same. This means we have to solve,

µ1 = µ2 (5.56)

subject to

||µ− µ̂||2 ≤ ρ2. (5.57)

Expanding the last equation, and subtituting µ1 = µ2 yields,

2µ2
1 − 2

2∑
i=1

µ̂iµ1 +
2∑
i=1

µ̂2
i = ρ2. (5.58)

We solve for µ1 and find

µ1 = −
M +

√
M2 − 2(N − ρ2)

2
, (5.59)
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with M =
∑2

i=1 µ̂i = 1 and N =
∑2

i=1 µ̂
2
i = 1. Hence, on the complete domain ρ ≥ 0 we find

that the lower confidence bound for max node u is

LCBu(ρ2) =

{
1− ρ for ρ < 1

−1+
√

2ρ2−1
2 for ρ ≥ 1

. (5.60)

This function is illustrated in figure 5.7 together with the optimal µ.

µ̂0
µ1

µ2

1 2 3 4 5

−3

−2

−1

1

ρ

LCB

Figure 5.7: Illustrated is how we can find the lower confidence bound on a node with two children.
The empirical estimate is µ̂ = (1, 0). In the range ρ ∈ [0, 1] the confidence bound scales linearly with
slope 1. This corresponds with the red lines in both subfigures. For ρ > 1 both leaves are active and the
confidence bound grows slower, asymptotically having slope 1/

√
2. This corresponds with the blue lines in

both subfigures.

The asymmetric case for a min node u, that is, the upper confidence bound of u, has a
similar derivation. Indeed, we still have a region ρ ∈ [0, 1] where only one leaf attains the value
of u, followed by a region where both leaves attain the value. It is easily verified that the upper
confidence bound in this case equals

UCBu(ρ2) =

{
ρ for ρ < 1
−1+
√

2ρ2+1
2 for ρ ≥ 1

. (5.61)

General case We have seen how to compute the confidence bounds in a simple case with two
leaves. Let us now generalize this approach to any internal node u. We can determine the value
of LCBu(ρ2) for any ρ ≥ 0, by using a sweeping approach. At ρ = 0, clearly LCBu(ρ2) = vu(µ̂)
since then the confidence region is the singleton set {µ̂}. When we increase ρ, it is possible to
lower the confidence bound. By how much depends on the behavior of the lower bound on the
value of the child nodes of u. As we have seen before, the confidence bounds functions consist of
pieces, where each piece has a set of leaves that are active.

From these pieces it is clear at what value of LCBu(ρ) which leaves are active. Indeed, if we
fix the lower bound at α, then all the children should attain a value of at most α. By intersecting
ρ 7→ LCBc(ρ

2) by α we either find a piece that intersects α, so these leaves are active, or we find
no intersection, meaning that the child c is not active and so none of its children are.

Using this method we have a function τc : R → 2L that tells us at what value of u which
leaves are active. Since the confidence bound function is monotone, we know in which order
all pieces are, we only have to figure out the domain of each piece. We can do this with a
sweeping strategy. We know that the first piece starts at LCBu(0) = µ̂u. By intersecting the
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parameterization of the first piece with the value of the start of the second piece, we can find out
the endpoint of the first piece. This equals the starting point of the second piece. We repeat this
process until there is only one piece left. This piece starts at the endpoint of the penultimate
piece and its endpoint is at infinity.

With this procedure, we conclude the asymmetric case and therefore we are able to calculate
the confidence bounds on any node in the tree. In the next section, we will look at the stopping
and recommendation rules.

5.5 Stopping and recommendation rule

In this section we will develop the stopping rule and recommendation rule simultaneously. Indeed,
we will stop once there exists an arm that can be recommended. But when can an arm be
recommended? This happens when there exists an arm u ∈ C(root) such that for all plausible
models µ ∈ C, the arm u is the best arm with some slack ε. This slack is always in favor of u.
Assuming the root node is a min node, we can recommend it if the following holds

∀µ′ ∈ C ∀k ∈ siblings(u) : vu(µ′)− ε ≤ vk(µ′). (5.62)

Using a similar trick as used in the pruning section (Section 5.3), we introduce a virtual node v
that has all siblings of u as children. Instead of comparing with all siblings k ∈ siblings(u), we
now only compare with the virtual node v. This yields the following recommendation condition

∀µ′ ∈ C′ : vu(µ′)− ε ≤ vv(µ′). (5.63)

With a similar analysis as in Section 5.3 we can express this condition using confidence bounds.
That is, we recommend u if for every α ∈ [0, 1] the following holds,

UCBu(αρ2)− ε ≤ LCBv((1− α)ρ2). (5.64)

We can check this using a simple grid search. We let A ⊂ [0, 1] be a finite subset and check
if for all α ∈ A equation (5.64) holds. Note that this is not strictly safe, as there might be an
α ∈ A \ [0, 1] such that (5.64) does not hold, but then the algorithm erroneously stops.

At this point we have introduced all rules needed to implement the algorithm fully. In the
next section, we will prove the correctness of the algorithm.

5.6 Correctness

In this section we will prove correctness of the algorithm, that is, we show that it is (ε,δ)-PAC
and that the algorithm terminates.

Lemma 5. The SCR-MCTS terminates at the latest in epoch M such that 2ρM < ε.

Proof. Observe that for each node u and in each epoch m we have that the range of plausible
values is bounded as follows,

{vu(µ′)|µ′ ∈ Cm} ⊆ [LCBu(ρ2
m),UCBu(ρ2

m)] ⊆ [vu(µ̂m)− ρm, vu(µ̂m) + ρm], (5.65)

where the first inclusion follows from the definition of the confidence bound functions and the
second inclusion holds because the sphere CM = B(µ̂, ρM ) is contained in the box {µ′ ∈ RK :
|µ′k − µ̂k| ≤ ρM∀k ∈ [K]}. Now, assume without loss of generality that the tree T has a root
node that is a min node. Furthermore, assume that the algorithm has not terminated yet, and
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is in an epoch M such that 2ρM < ε. Let u be the node such that its estimated value vu(µ̂′M )
is not greater than any of its siblings, in other words, it has the best estimated value. Then, by
Equation 5.65 we have for any u′ ∈ siblings(u), that if

vu(µ̂)− ε+ ρM ≤ vu′(µ̂)− ρM , (5.66)

then we have that for all plausible µ′ ∈ CM , vu(µ′)− ε ≤ vu′(µ′). By our choice of epoch M and
child node u, we have for all u′ ∈ siblings(u),

vu(µ̂)− ε+ 2ρ < vu(µ̂) ≤ vu′(µ̂). (5.67)

Therefore, we find that in epoch M , the node u must be recommended and the algorithm
terminates. The result follows.

Note that a consequence of Lemma 5 is that the total number of samples is bounded. Indeed,
each epoch a finite number of samples is taken per leaf, and since the number of epochs is finite,
so is the total number of samples. We have seen that the SCR-MCTS algorithm always returns
a node. In the following lemma, we will show that this node is at most ε-suboptimal with a
probability of at least 1− δ.

Lemma 6. Let T be an oracle tree with µ ∈ Rleaves(T ) as values of oracles at the leaves and let
ε, δ ∈ (0, 1). The algorithm outputs a node u ∈ C(root) such that

|vu(µ)− vroot(µ)| < ε (5.68)

with probability at least 1− δ.

Proof. Since the algorithm only accepts a sequence (δm)m≥1 such that

∞∑
m≥1

δm ≤ δ, (5.69)

we have that with probability at least 1− δ that simultaneously for each epoch m the confidence
region Cm contains µ. For the rest of the proof, we will assume that this happens.

The pruning rule only prunes a node u if no plausible model µ′ ∈ C exists such that u wins.
Since we assume that in each epoch m the true value µ is in the confidence region Cm, the node
u is never incorrectly pruned.

As a consequence, in a pruned tree the value of any node n, vu(µ) is never altered, as either
u is an internal node and its value equals the value of a winning child node, or u is a leaf node
and its value is not dependent on other nodes.

Finally, we prove the correctness of the stopping and recommendation rule. Recall that we
recommend a node u if for each plausible µ′ ∈ Cm and each node k ∈ siblings(u) the node u wins
with some slack, i.e., vu(µ′) − ε ≤ vk(µ

′). Since we only recommend u if this holds for every
µ′ ∈ Cm, u is only recommended if the condition also holds for the true µ which we assume to
be in Cm. Therefore, only ε-suboptimal nodes are returned by the algorithm. Since this happens
with probability at least 1− δ, we conclude that the algorithm is (ε,δ)-PAC.



Chapter 6

Results

In this chapter we present experimental results of the SCR-MCTS algorithm we introduced in
Chapter 5 and compare it with FindTopWinner and two other algorithms from the literature.
We are interested in comparing the empirical results on the sample complexity. Furthermore, we
examine whether SCR-MCTS is empirically (ε,δ)-PAC. Finally, we will look at how choosing a
different starting radius affects the number of samples taken.

6.1 Depth 2 tree benchmark

We start by running a set of algorithms on an oracle tree that was used in experiments in a paper
by Koolen and Kaufmann [9]. This paper introduces a class of algorithms BAI-MCTS and two
algorithms within this class, namely LUCB-MCTS and UGapE-MCTS. These algorithms are
designed to solve Problem 1 and are known to be (ε,δ)-PAC. The algorithms in this class use
an adaptive approach, where each sample is inspected directly after the sample is taken. This is
in contrast to our algorithm and FindTopWinner, where we take a batch of samples in each
epoch and only inspect the samples at the end of the epoch.

The experiments we perform use stochastic rewards that are normally distributed with vari-
ance σ2 = 1/4. We want to benchmark this tree with (ε,δ)-PAC with ε = 0, δ = 0.1. However,
we follow [9] and set the (ε,δ)-PAC parameters to ε = 0 and δ = 0.1 · 9 for the FindTopWin-
ner, LUCB-MCTS and UGapE-MCTS algorithms. In [9] the δ parameter is multiplied by
the number of leaves to undo the union bound over all leaves, which is considered to be too
conservative. Recall that this union bound occurs when we upper bound the probability that
event A occurs, as defined in Definition 4. Since we do not apply a union bound over all leaves
in SCR-MCTS, we do not multiply the confidence level with the total number of leaves and we
set δ = 0.1 for our algorithm.

Note that setting ε = 0 requires a minor adjustment to FindTopWinner, by allowing it
to run any number of epochs, whereas before the number of epochs was at most dlog2(2/ε)e,
as can be seen on line 4 in Algorithm 1. One consequence of this, is that the reasoning behind
FindTopWinner and SCR-MCTS terminating does not hold. However, in practice both
algorithms always terminate.

We present the results in Figure 6.1 below. The values in the leaves are the mean rewards.
Below each leaf, we state the number of samples taken by each algorithm.

41
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0.45

0.45

0.45 0.50 0.55

0.35

0.35 0.40 0.60

0.30

0.30 0.47 0.52

LUCB-MCTS 849 210 91 688 252 21 207 43 19

UGapE-MCTS 785 207 90 723 256 21 211 42 19

FTW 2,890 2,871 2,448 2,876 2,873 423 1,158 746 568

SCR-MCTS 192 124 87 166 144 48 122 79 63

Figure 6.1: Empirical results averaged over 10,000 runs. The rewards are normally distributed with
variance σ2 = 1/4. We set ε = 0 for all algorithms and δ = 0.1 · 9 for all algorithms except SCR-
MCTS, where we set δ = 0.1. Shown is the average total number of samples taken per leaf by LUCB-
MCTS (2,415 samples and 0.43% error rate), UGapE-MCTS (2,395 samples and 0.44% error rate),
FindTopWinner (16,853 samples, 0% error rate) and SCR-MCTS (1,025 samples, 2.73% error rate).

We observe that our algorithm draws fewer samples in total than all competing algorithms by a
significant margin. Furthermore, we see that the error rate of SCR-MCTS is also significantly
higher than the other algorithms. Even though our error rate is higher, the error rate of 2.73%
is well within the allowed error budget of δ = 0.1. Another clear difference is that FindTop-
Winner does not seem to be able to choose between the four leaves with value 0.45, 0.50, 0.35
and 0.40. This is in contrast with out own algorithm, which is mostly sampling from the nodes
with values 0.45 and 0.35.

Since the SCR-MCTS error rate is relatively high, we also kept track of the number of times
each child is picked. We see that over 10,000 runs the 0.45 arm is picked 9,727 times, the 0.35
arm is picked 197 times and the worst arm with value 0.30 is picked 76 times.

6.2 Depth 3 tree benchmark

We further test our algorithm on the depth 3 tree used in [9]. Similar as in the depth 2 tree in the
previous section, we set the confidence level δ to 0.1 · 27 for FindTopWinner, LUCB-MCTS
and UGapE-MCTS to cancel the union bound, and set δ = 0.1 for SCR-MCTS. See Figure 6.2
on page 44 for the results. We again find that on this larger tree, we observe that our algorithm
draws a significantly smaller number of samples from the leaves than FindTopWinner does.
Furthermore, we observe that FindTopWinner does not make any mistakes, even though we
set the confidence level to δ = 0.1 · 27. The SCR-MCTS does make mistakes, but it does so at
a significantly lower rate than in the depth 2 tree. In the next section we will see that this is not
necessarily specific to these two benchmark trees.

Notice that setting the confidence level δ to a value greater than 1, entails that there is no
(ε,δ)-PAC guarantee on FindTopWinner. Also note that even though this value for δ is not a
valid confidence level, all operations within the FindTopWinner algorithm are still valid.

Interestingly, SCR-MCTS samples the leaf with value 0.76 more than it samples the leaf
with value 0.86. It is likely that the 0.86 leaf is pruned a bit more often than the 0.76. However,
this does not directly lead to an incorrect answer. Indeed, if the parent of the 0.86 leaf is pruned,
then the parent still has a sibling with the value of 0.87. If this sibling has not been pruned,
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then the algorithm still outputs the correct value.
Furthermore, we see that the BAI-MCTS algorithms take fewer samples from most leaves

than SCR-MCTS. Interestingly, in many runs they even take zero samples from some unpromis-
ing leaves. In particular, this happens when a sibling leaf has a relatively high value. This is not
possible in SCR-MCTS, since we take a higher number of samples from each leaf in the first
epoch before the samples are inspected. Taking a single sample is likely not worthwhile, as this
would create such a large confidence region that no pruning decisions can be made. Conversely,
the algorithms in the BAI-MCTS class take an adaptive approach, where after each sample the
sample is inspected.

Even though SCR-MCTS cannot achieve very low sample counts on these leaves, this is not
necessarily a problem, as these leaves together receive only a small fraction of the total number
of samples.
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6.3 Randomly generated trees

We also run the algorithms on randomly generated trees. The results of the experiment are
shown in Tables 6.1, 6.2 and 6.3. We construct trees with depths 2 to 4 and various outdegrees.
The oracles are normally distributed with a variance of σ2 = 1/4 and a mean that is uniformly
sampled from [0, 1]. This resembles the experiment done in the original FindTopWinner paper
[15], where 10,000 runs are done on a depth 3 outdegree 10 oracle tree, with leaf values uniformly
drawn from [0, 1]. We formalize this procedure in Algorithm 10.

Algorithm 10 The RandomTree procedure creates a random oracle tree T of depth d and
outdegree w. The root node is a max node if and only if the boolean value isMax equals true.
The oracles at the leaves are normally distributed with a randomly chosen mean and variance
σ2 = 1/4.

1: procedure RandomTree(isMax, d, w)
2: T ← an oracle tree of depth d and outdegree w. The root node is a max node if and only

if isMax is true.
3: Sample U(0, 1)leaves(T ) and observe µ ∈ [0, 1]leaves(T ).
4: return Oracle tree T with leaf values µ. For each leaf ` the associated oracle samples

from N (µ`, 1/4).
5: end procedure

In the original experiment, the samples are taken from a Bernoulli distribution, but since our
algorithm works on the normal distribution we use normally distributed payoffs. In the following
tables, the average total number of samples taken are denoted by nFTW and nSCR for the Find-
TopWinner algorithm and the SCR-MCTS algorithm respectively. Furthermore errFTW and
errSCR indicate the average error, |vroot(µ) − vi(µ)|, where i is the returned arm and µ is the
vector of values of the leaves. Finally, mFTW and mSCR indicate the fraction of runs where the
error passes the accuracy threshold ε. If the error is greater than ε we also call this a mistake.

Outdegree nFTW nSCR Improvement errFTW errSCR mFTW mSCR
2 38027 165 ×229.9 0.00009 0.00484 0.000 0.067
3 71230 612 ×116.4 0.00011 0.00269 0.000 0.059
4 99960 1425 ×70.1 0.00017 0.00168 0.000 0.046
6 189707 4937 ×38.4 0.00030 0.00081 0.000 0.031
8 263534 12715 ×20.7 0.00033 0.00064 0.000 0.023

10 362861 26867 ×13.5 0.00040 0.00044 0.000 0.017
12 475649 49726 ×9.6 0.00040 0.00026 0.000 0.007
14 614996 84896 ×7.2 0.00048 0.00023 0.000 0.006

Table 6.1: Depth 2 tree with varying outdegree. ε, δ = 0.01, 0.1. Average over 5000 runs.
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Outdegree nFTW nSCR Improvement errFTW errSCR mFTW mSCR
2 42623 423 ×100.8 0.00007 0.00256 0.000 0.041
3 109309 3242 ×33.7 0.00013 0.00067 0.000 0.022
4 202309 13649 ×14.8 0.00020 0.00059 0.000 0.026
6 600572 114530 ×5.2 0.00044 0.00019 0.000 0.004
8 1242682 548808 ×2.3 0.00070 0.00011 0.000 0.000
10 2243143 1871750 ×1.2 0.00082 0.00010 0.000 0.001

Table 6.2: Depth 3 tree with varying outdegree. ε, δ = 0.01, 0.1. Average over 2500 runs.

Outdegree nFTW nSCR Improvement errFTW errSCR mFTW mSCR
2 74279 1352 ×54.9 0.00010 0.00112 0.000 0.034
3 242368 20703 ×11.7 0.00024 0.00035 0.000 0.011
4 562534 163797 ×3.4 0.00035 0.00013 0.000 0.002

Table 6.3: Depth 4 tree with varying outdegree. ε, δ = 0.01, 0.1. Average over 5000 runs.

First, we observe that our algorithm improves the sample complexity of FindTopWinner by
a large margin. The improvement is especially apparent for trees with low depth and a low
outdegree. One possible explanation was touched upon in Section 4.2.3, where the limitations
were discussed of the toy problem that was introduced to compare spherical and cubic confidence
regions. When the number of leaves is higher, the set of plausible values of internal nodes becomes
less sphere-shaped and looks more like a box. This could explain how in trees with more leaves,
the sample complexity of FindTopWinner and our algorithm look more alike.

Furthermore, we observe that FindTopWinner never makes an error that is greater than
the permitted accuracy ε = 0.01. This is in agreement with the results from the experiments by
Teraoka et al. [15]. The average error made by FindTopWinner does seem to increase with
the outdegree. One possible explanation could be that with a higher outdegree, there are more
arms for the algorithm to choose from. In that case, it is more likely that there exists another
arm within the permitted accuracy ε. This would cause a higher average error, but does not
affect the number of mistakes.

On the other hand, we observe that our algorithm does make mistakes and this happens
especially on smaller trees, both in depth and in outdegree. Even though there is a clear difference
with FindTopWinner in this regard, the observed mistake rate is well below the permitted
confidence δ = 0.1. Indeed, for the smallest tree we find that the error rate is mSCR = 0.067.
Furthermore, we can show that this is a significant result. Since a mistake either happens or not,
the estimate mSCR is a random variable bounded in [0, 1]. Therefore, we can apply Hoeffding’s
inequality (Corollary 1) on the estimate mSCR. Indeed, for any [0, 1]-valued random variables
X1, X2, . . . , Xn, we have,

P(|X̄ − E[X̄]| ≥ ∆) ≤ 2 exp(−2n∆2), (6.1)

where X̄ is the empirical mean X̄ = 1/n
∑n

i=1Xn. Equating the right hand side to 0.01, we find
that for the depth 2 tree with outdegree 2, that the error rate is mSCR = 0.067±0.023 with 99%
confidence.

Finally, we remark that possibly the more conservative results are due to a starting radius
that is rather small for a high number of leaves. Currently we fix the starting radius at 1, as
FindTopWinner similarly starts with ε = 1 to construct a confidence region that is a cube
with sides of 2ε. However, we note that in volume it is not similar. Indeed, in high dimensions
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the volume of a sphere is very small compared to the volume of a hypercube [7]. As we will see
in the next section for small trees this does not seem to have a major effect.

The general conclusion is that our algorithm empirically samples more efficiently than Find-
TopWinner in all our test cases. Furthermore, our algorithm seems to make better use of the
confidence level δ = 0.1. Indeed, it makes more mistakes but the fraction of mistakes is well
within the error budget.

6.4 Starting radius

The sampling strategy used by SCR-MCTS in all experiments constructs a spherical confidence
region in the first epoch with a radius ρ1 = 1, as this is similar to FindTopWinner. We would
like to know what the effect is of taking a different starting radius ρ1. To answer this question,
we run our algorithm on randomly generated trees of depth 2 and outdegree 2 to 4 and trees of
depth 3 and outdegree 3. These trees are generated using the procedure described in Algorithm
10. We run the SCR-MCTS algorithm 200 times for starting radii between 0.1 and 10 and take
the average total number of samples taken. We use an accuracy of ε = 0.01 and a confidence of
δ = 0.1. The result is illustrated below in Figure 6.3.
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Figure 6.3: The average number of samples taken by SCR-MCTS on various randomly generated trees
with ε = 0.01 and δ = 0.1. We see that when the starting radius is small, the number of samples taken
becomes large. The number of samples taken is averaged over 200 runs for each starting radius ρ1.

We find that there is a certain sweet spot at which the number of samples is minimized. For the
small trees that we tested this optimal starting radius ρ1 seems to be quite close to the starting
radius of ρ1 = 1 that was used in previous results. Starting with a too small radius quickly
increases the number of samples taken. In this regime the first confidence region estimates the
values of the leaves very precisely. However, this requires us to take a lot of samples that are only
inspected at the end of the epoch. The extra samples do not add much benefit if the required
precision has been met. Therefore we expect this graph to continue rising rapidly as ρ1 goes to
0.

On the right hand side of the graph we see that the average number of samples also increases.
For large radii no pruning decision can be made as there is only a very inaccurate estimation of
the value of the leaves. Consequently, we spend our δ-budget on confidence regions that do not
shrink the oracle tree and confidence regions that prune more leaves will have a greater sampling
cost. We therefore expect that the sample complexity will rise.
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Conclusion

The introduced SCR-MCTS algorithm shows a significant improvement on small trees, taking
an order of magnitude fewer samples than FindTopWinner. On larger trees, our algorithm
still outperforms FindTopWinner, but while the number of samples taken is still significantly
less, the difference is relatively smaller than for small trees. On a small benchmark tree of depth
2 we have also seen that SCR-MCTS outperforms other algorithms from the literature.

Furthermore, we observe that the number of mistakes made by our algorithm is significantly
below the δ-confidence in experiments on larger trees. This suggests there is still room for
improvement here. In practice, this might mean that a user of this algorithms could consider
using a larger δ while not losing much precision, but at the expense of losing theoretical (ε,δ)-PAC
guarantees.

We suggest various possible new extensions of this research. First, the use of different shapes
of confidence regions might yield interesting results, improving the current algorithm. Using a
different shape could lead to better pruning decisions, although it is currently unclear what the
effect would be. Different shapes might also allow for tighter confidence regions for oracles that
are not (sub-)Gaussian.

Second, one might try and use multiple confidence regions per epoch for subtrees, instead of
creating one large confidence region containing all nodes. A consequence is that we effectively
apply SCR-MCTS on smaller subtrees and something more like FindTopWinner on the larger
tree. To illustrate, imagine a tree with two childs node below the root, both containing a,
possibly large, subtree each. If we construct two separate spherical confidence regions on the
value of the leaves in these subtrees, then we have a square of possible values on the children of
the root. The decisions that our algorithm would make on this square are equivalent to what
FindTopWinner would do. Since SCR-MCTS seems to perform relatively better on small
trees, this might improve the sample complexity.

Third, it might be possible to inspect samples directly after taking a single sample, instead
of inspecting the samples after a batch of exponentially many samples have been taken. This
could lead to earlier pruning decisions. To keep the (ε,δ)-PAC property, one would have to work
with for example any-time valid confidence bounds. In a practical sense, for the algorithm to
run, the pruning and confidence bound computation should be significantly sped up.

Fourth, to improve the run time of the algorithm, it is possible to compute the confidence
bounds differently. It is relatively easy to compute the radius needed to attain a certain value for
a node. This technique was briefly touched upon in Appendix B. Although this does not change
sample complexity, improving runtime complexity could be an advantage for some practical
applications.

Finally, it might be possible to construct an upper bound on the sample complexity of our
algorithm using a similar approach to the approach taken by Teraoka et al. [15] We believe this
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is feasible, at least in a crude way. Since a spherical confidence region of radius ρ is contained
in a box with sides 2ρ, we think that their approach could be applied to the the box containing
the confidence region. Because the containing box is much larger than the sphere it contains,
the upper bound found using this method would likely be worse than the upper bound for
FindTopWinner. Nevertheless, we believe that it is possible to improve this crude upper
bound. One of the reasons the proof by Teraoka et al. works well, is because their confidence
region projected to the values of internal nodes is again a box. In our case, the confidence
region is a sphere B(µ̂, ρ) ⊆ Rleaves(T ), but when we map it to the values of internal nodes, this
property is lost, as we have seen in Figure 4.10. However, it can be shown that this projected
set is contained in a sphere of radius ρ in a lower dimensional space. We speculate that given
this, it is possible to develop a tighter upper bound on the sample complexity than the crude
strategy described above.
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Probability theory

A.1 Probability bounds

Proposition 1. Union bound For a countable set of events A = {A1, A2, A3, . . .} we have

P

( ⋃
A∈A

A

)
≤
∑
A∈A

P(A). (A.1)

Proof. This directly follows from the σ-subadditivity of the probability measure.

Proposition 2 (Hoeffding’s inequality). Let X1 . . . , XT be [0, 1]-valued independent random
variables such that E(Xt) = µ for t ∈ [T ]. Then for any c > 0

P

(
1

T

T∑
t=1

Xt > µ+ c

)
≤ exp

(
−2c2T

)
(A.2)

P

(
1

T

T∑
t=1

Xt < µ− c

)
≤ exp

(
−2c2T

)
. (A.3)

Corollary 1. Let X1 . . . , XT be [0, 1]-valued independent random variables such that E(Xt) = µ
for t ∈ [T ]. Then for any c > 0

P

(∣∣∣∣∣ 1

T

T∑
t=1

Xt − µ

∣∣∣∣∣ > c

)
≤ exp

(
−2c2T

)
. (A.4)

Proposition 3 (Chernoff bound). Let X be a random variable. The for any η > 0 we have

P(X ≥ a) ≤ E[exp(ηX)]

exp(ηa)
. (A.5)

Proof. By applying Markov’s inequality to exp(ηX) the result immediately follows.
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Plausible values of internal nodes

In Section 4.2.3 we showed the set plausible values of leaves and the set of plausible values of
internal nodes of the tree. The first plot is relatively easy to obtain, indeed, this is precisely
equal to the confidence region. The second plot however, is less straightforward. In this appendix
chapter, we will derive the methods that were used to obtain this plot.

In Section 5.3 we introduced the concept of upper and lower confidence bounds on the value
of any node, and we computed these bounds in Section 5.4. In the last section, we also saw a
technique of ‘distributing’ the radius of the spherical confidence region over two nodes.

Assume that we have an oracle tree with leaf values µ̂ ∈ Rleaves(T ). What is the smallest
radius ρ such that a node n attains value at most γ = vn(µ′) for some µ′ ∈ B(µ̂, ρ)? If n is a
leaf node, this is clear. Let clow(n, γ, µ̂′) be the squared radius ρ2. Then if n is a leaf we make
a distinction between two cases. If the value is less than γ, then the leaf already attains a value
at most γ. Otherwise, the squared radius has to be at least (γ − µ̂n)2. We have,

clow(`) =

{
(γ − µ̂`)2 if γ ≥ µ̂`
0 otherwise.

(B.1)

If n is a min node, it takes the value of its child with the smallest value. Therefore, only one
child has to attain a value of at most γ. Therefore, we have,

clow(n, γ, µ̂) = min
c∈C(n)

clow(c, γ, µ̂). (B.2)

If n is a max node, it takes the value of its child with the greatest value. Therefore, all
children have to attain a value of at most γ. The set of leaves below any child node c has no
leaves in common with a set of leaves below any other child node c′. Consequently, we have the
followingen,

clow(n, γ, µ̂) =
∑

`∈leaves(T )

(µ′` − µ̂`)2 (B.3)

=
∑

c∈C(n)

∑
`∈leaves(Tc)

(µ′` − µ̂`)2 (B.4)

=
∑

c∈C(n)

clow(n, γ, µ̂) (B.5)

We can now compute clow(n, γ, µ̂) for any node in an oracle tree. Analogously we can derive
chigh(γ, n, µ̂), which returns the radius squared needed to increase the value of a node n with
estimate µ̂ to γ. With clow, chigh and the confidence bounds UCB and LCB we can now compute
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n1 n2

T1 T2

Figure B.1: The tree T with two children at the root, both having an unspecified subtree.

the set of plausible values for internal node. Assume that we have a tree T , with two children at
the root n1 and n2. Both children root some subtree T1 and T2. This is illustrated in the figure
below.

Next, assume that the confidence region C is a sphere centered at µ̂ ∈ Rleaves(T ) and has radius
ρ. Let us assume that n1 has value γ ∈ [LCBn1(ρ2),UCBn1(ρ2)]. Then the values that n2 can
attain depends on γ. Indeed, for any µ′ ∈ C we have ||µ′−µ̂||2 = ||µ′n1

−µ̂n1 ||2 + ||µ′n2
−µ̂n2 ||2 ≤

ρ2, where µ′n1
and µ′n2

are the lower dimensional vectors of leaves that exist below n1 and n2

respectively. Since ||µ′n1
− µn1 ||2 is at least max{clow(n, γ, µ̂), chigh(n, γ, µ̂)} = ρ1, we find that

the vector µ′n2
is in the sphere with center µ̂′n2

and squared radius ρ2
2 = ρ2 − ρ2

1. We then
conclude that the plausible range of values of node n2 is LCBn2(ρ2

2),UCBn2(ρ2
2)].

Now that for any value n1 we can compute the range of values of n2, we can construct the set
of all plausible pairs of values (vn1 , vn2) by using a scanning approach, scanning over all plausible
values of n1.
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