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Low-Frequency Model-Order Reduction of
Electromagnetic Fields Without

Matrix Factorization
Rob F. Remis

Abstract—In this paper, we develop a reduced-order modeling
technique, which is based on a low-frequency expansion of the elec-
tromagnetic field. The expansion can be written in terms of the
pseudoinverse of a so-called system matrix. This pseudoinverse is
given explicitly, and it is shown that it satisfies a reciprocity rela-
tion. Moreover, we show that computing matrix-vector products
with this pseudoinverse essentially amounts to repeatedly solving
Poisson’s equation. The latter two properties allow us to efficiently
compute reduced-order models via a Lanczos-type algorithm. The
proposed method is illustrated by a number of numerical exam-
ples.

Index Terms—Electromagnetic fields, Lanczos-type algorithms,
low-frequency expansion, model-order reduction.

I. INTRODUCTION

MODEL-ORDER reduction enables us to compute
approximate solutions of semidiscrete electromagnetic

systems on a frequency interval of interest essentially at the
cost of a single frequency (e.g., see [1] and [2]). Such systems
typically have a large number of unknowns. For example, the
order of the semidiscrete Maxwell system that arises after
discretizing Maxwell’s equations in space using a finite-differ-
ence or finite-element method easily runs into the millions for
three-dimensional problems. Even one-dimensional problems
may have hundreds or thousands of unknowns. The idea behind
model-order reduction is to replace the large system by a
much smaller one such that the solution of the smaller system
approximates the solution of the large system on a frequency
interval of interest.

The starting point of a model-order reduction method is the
expansion of a frequency-response function around a certain ex-
pansion point. If a finite expansion point is taken then, in gen-
eral, the factorization of a large matrix is required. Examples
of methods that follow this approach are given in [3]–[6]. The
factorization needs to be computed only once, but its computa-
tional costs are high and the factorization matrices need to be
stored as well. As pointed out in [2], the factorization is unde-
sirable if not prohibitive.

One way to avoid the computation of a matrix factorization is
to take the expansion point to infinity. The resulting expansion
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is often called a high-frequency or early-time expansion and no
matrix factorization is required in this case. The drawback is,
however, that the order of the reduced-order model may become
very large, especially if low frequencies are of interest (see [7]
for a discussion and a two-step solution to this problem).

In this paper, it is shown that no matrix factorization needs to
be computed (and, consequently, no factorization matrices need
to be stored) if frequency zero is taken as an expansion point.
More precisely, it is shown that the electromagnetic-field quanti-
ties can be expanded in terms of the pseudoinverse of a so-called
system matrix. An explicit expression for this inverse is pre-
sented and some of its properties are discussed. In particular,
we show that the pseudoinverse satisfies reciprocity and that its
action on a vector can be computed efficiently since it amounts
to solving Poisson’s equation twice. The latter two properties
allow the construction of low-frequency reduced-order models
in an efficient manner.

This paper is inspired by the results presented in [8], where
a low-frequency expansion of three-dimensional diffusive
electromagnetic fields (displacement current is neglected in
Maxwell’s equations) is constructed. Here, the full Maxwell
wave equations are considered and do not neglect the displace-
ment currents. However, in this analysis, we restrict ourselves
to one-dimensional configurations, not only because of sim-
plicity, but also because, for one-dimensional configurations,
Maxwell’s equations are very similar to transmission-line
equations and, consequently, the method proposed in this paper
can be used to model (multiconductor) transmission lines as
well. Furthermore, this formulation is such that the method is
not restricted to one-dimensional problems only. Everything in
this paper can be generalized to two and three dimensions.

This paper is organized as follows. In Section II, the semidis-
crete Maxwell system is introduced and this system is written
in terms of a so-called system matrix. A number of proper-
ties of this matrix are discussed in the Appendix. Subsequently,
the electromagnetic field is expanded around zero frequency in
terms of the pseudoinverse of the system matrix. The construc-
tion of the reduced-order models is based on this expansion.
These models can be computed via a Lanczos-type algorithm
since the pseudoinverse of the system matrix satisfies a reci-
procity relation. The construction of the models and a brief de-
scription of the Lanczos algorithm can be found in Section III,
and numerical results are presented in Section IV. Finally,
denotes the vector two-norm.
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II. SEMIDISCRETE MAXWELL SYSTEM

We consider a one-dimensional electromagnetic field that sat-
isfies the equations

on with , and where
denotes the right half of the complex -plane. Before pro-

ceeding, let us first normalize these equations. Let denote
a reference length and introduce the normalized coordinates

and

where is the electromagnetic-wave speed in vacuum. In ad-
dition, we introduce the normalized field quantities

and the normalized medium parameters

and

As is easily verified, these normalized quantities satisfy the
equations

on with , and where we have dropped
the primes. Finally, the computational domain is terminated by
perfect electrically conducting (PEC) material boundary condi-
tions given by

and for

We compute finite-difference approximations of the field
quantities and on a nonuniform grid. To demonstrate
certain symmetry properties of the finite-difference operators
and to show our notation, we briefly review the standard
finite-difference discretization of Maxwell’s equations (e.g.,
see [9] and [10]). We begin by introducing primary and dual
nodes. The primary nodes are given by for

, with , , and where
all step sizes are positive. The dual nodes are given by

for with for all .
Only staggered grids are considered for which the dual nodes
interlace with the primary nodes.

The finite-difference approximations of and are de-
noted by and and satisfy the finite-difference equations

(1)

for , and

(2)

for . In (1), is a finite-difference approx-
imation of . The PEC material boundary conditions are

and for

Notice that this leaves us with unknowns for the electric-field
strength, and unknowns for the magnetic-field strength,
making a total of unknowns.

Introducing the vectors

the finite-difference equations, including the PEC material
boundary conditions, can be written as

(3)

where the differentiation matrix is given by

with

and

and the matrices and are given by

Furthermore, is -by- and upper bidiag-
onal with 1 on the diagonal and 1 on the upper diagonal.
An obvious, but important symmetry relation is

(4)

Returning to (3), the medium matrices are given by

and

where is the identity matrix of order , and

while

Finally, the field and source vector are given by

and

respectively.
As a next step, we rewrite (3) in a more convenient form. First,

let us introduce the diagonal matrix



2300 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 9, SEPTEMBER 2004

This matrix and the medium matrix are both diagonal and
positive definite so that we can rewrite (3) in the form

(5)

where is the identity matrix of order , and is the
system matrix given by

(6)

The scaled field and source vector are given by

and

respectively. Some important properties of the system matrix are
discussed in the Appendix.

In most practical cases, the -dependence of the external cur-
rent source can be factored out, i.e., can be written as

where is an -independent vector. The scalar function is
called the source wavelet or source signature. For source vectors
of the above form, the scaled source vector is given by

where vector is implicitly defined in the above equation.
Equation (5) now becomes

(7)

For , the above equation simplifies to

(8)

In the Appendix, it is shown that the system matrix is singular.
This implies that (8) does not have a solution or there are infin-
itely many solutions. No solution exists if vector is outside the
range of the system matrix. However, given the particular form
of vector , we can show that this vector is in the range of the
system matrix. One way of showing this is the following. Let

denote the pseudoinverse of matrix and recall that is
the orthogonal projection onto the range of matrix . Using the
expression for the pseudoinverse, as given in the Appendix, it is
easily verified that

(9)

Obviously, vector is in the range of matrix and we conclude
that (8) has infinitely many solutions. Of all these solutions, we
take the minimum norm solution, which is given by

(10)

The inverse of exists for nonzero and (7) can
be written as

With (9), this can be written as

and after a little manipulation, we obtain

(11)

which holds for . For , the above expression
for the scaled field vector can be taken as the solution of (8) as
well since (11) reduces to the minimum norm solution of (10)
for this particular value of .

Having found the scaled field vector in terms of the pseudoin-
verse of the system matrix, we can expand this vector around

to obtain

(12)

This is the low-frequency expansion we are looking for. In
analogy with continuous problems, we call it the Rayleigh
series for semidiscrete problems (see [11]) and it serves as a
basis for the construction of the reduced-order models, which
we describe in Section III.

III. REDUCED-ORDER MODELS

The construction of the reduced-order models is based on a
Lanczos-type algorithm. This algorithm can be derived from the
standard nonsymmetric Lanczos algorithm (e.g., see [12]) by
exploiting the reciprocity relation (see the Appendix)

and by making a suitable choice for one of the starting vectors in
the nonsymmetric Lanczos algorithm. Details of this procedure
are given in [13] and [14] (see also [15]). The resulting algo-
rithm is as follows.

Reciprocity Based Lanczos-Type Algorithm

1) Given the starting vector ,
2) Set and ,
3) For , compute

end for
Some remarks about this algorithm. First, observe that the

pseudoinverse appears in a matrix-vector product only. In the
Appendix, it is shown that computing this product amounts to
solving Poisson’s equation twice. Efficient Poisson solvers are
available for this purpose (e.g., see [16]). Second, the algorithm
cannot continue if or vanishes since division by these
coefficients is required. A vanishing is a happy event since
this indicates that vanishes, which means that we have com-
puted a basis of an -invariant subspace. This is referred to as
a regular termination of the algorithm. Unfortunately, such ter-
minations almost do not occur in practice. More severe is a van-



REMIS: LOW-FREQUENCY MODEL-ORDER REDUCTION OF ELECTROMAGNETIC FIELDS WITHOUT MATRIX FACTORIZATION 2301

ishing for a nonzero vector . The algorithm stops without
having constructed a basis for an -invariant subspace. This is
referred to as a breakdown of the algorithm. Just as bad are near
breakdowns for which . Breakdowns may be avoided
by so-called look-ahead techniques (see [17] and the references
cited therein), but we do not discuss these techniques in this
paper since we have never detected a breakdown of the algo-
rithm in practice. We stress, however, that we cannot guarantee
that no breakdowns will occur during the iteration process.

Assuming now that steps of the reciprocity-based
Lanczos-type algorithm have been carried out successfully, we
have

(13)

where the -by- matrix is given by

and is the th column of the -by- identity matrix. Fur-
thermore, matrix is a real and tridiagonal matrix of order
given by

Having the Lanczos decomposition of (13) at our disposal, it can
be shown by induction that we also have (e.g., see [18])

for . Using this result in the low-frequency
expansion given by (12), we can write the scaled field vector as

where we have introduced the reduced-order model

This model approximates the scaled field vector with an error
given by

Notice that the error vector vanishes for as it should, of
course. Finally, matrix is computed for all
frequencies of interest by first computing the Schur decompo-
sition of matrix and, subsequently, backsubstitution is used
for each frequency.

IV. NUMERICAL RESULTS

To illustrate the performance of the model-order reduction
technique, we present some numerical examples. The first con-
figuration consists of a homogeneous medium characterized by

Fig. 1. Static minimum norm magnetic field. Source is located at z = 1=4.
Solid line signifies exact result. Symbols show the finite-difference
approximation of (10).

a conductivity mS m, and a relative permittivity .
We take , with , and consider frequencies in the
range Hz. We use a uniform grid with a step sizes
such that we have 31 points per smallest wavelength . The
size of the total domain is . We set the reference length
equal to the domain size and take for the external current source
a planar electric-current sheet represented by

where is the source location, and we set, without loss of gen-
erality, for all frequencies of interest. The order of the
system for this particular configuration is 599.

Before showing any reduced-order models, let us first com-
pute the minimum norm static field. As is easily verified, the
static electric-field strength vanishes, and if the external elec-
tric-current source is located at , the minimum norm
static magnetic field is given by

if

if

Computing now the minimum norm static field according to
(10), we obtain the results shown in Fig. 1. Only the magnetic-
field strength is shown since the static electric-field strength
vanishes. The minimum norm static field is computed exactly
at the dual nodes of the grid.

To study the convergence behavior of the reduced-order
models, we show in Fig. 2 the relative error

(14)

as a function of frequency. Frequency zero is excluded from this
figure since we have already seen that it is computed exactly.
Furthermore, is a vector containing all magnetic-field
strength approximations of order , and is a vector
containing the exact magnetic-field strength values at the dual
nodes of the grid. We observe that the magnetic-field strength
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Fig. 2. Normalized error E of (14) on the frequency interval of interest for
models of order 20 (star), 40 (circle), 60 (square), 80 (plus), and 100 (solid line).

Fig. 3. Absolute value of the reduced-order models for the magnetic-field
strength obtained after 15 iterations (dashed line), and 50 iterations (solid line)
of the Lanczos algorithm. Frequency is 5 � 10 Hz.

for low frequencies is approximated first. Also note that
convergence slows down as frequency increases. No significant
improvements were observed on this frequency interval after
100 Lanczos iterations.

In our second example, we consider the same frequency in-
terval as in the previous example. The configuration consists
of a vacuum domain in which a homogeneous slab is present.
The slab has a relative permittivity and a conductivity

mS m. We use a nonuniform grid such that we locally
have 31 points per smallest wavelength. This implies that the
grid is refined by a factor 2 inside the slab since the wavelength
is two times smaller in the slab compared with the wavelength in
the surrounding vacuum domain. A dual node is placed halfway
two primary nodes, i.e.,

for

The size of the total domain is , where is the
smallest wavelength in the slab. Again, we set the reference

Fig. 4. Absolute value of the reduced-order models for the magnetic-field
strength obtained after 25 iterations (dashed line), and 50 iterations (solid line)
of the Lanczos algorithm. Frequency is 5 � 10 Hz.

Fig. 5. Absolute value of the reduced-order models for the magnetic-field
strength obtained after 50 iterations (dashed line), and 80 iterations (solid line)
of the Lanczos algorithm. Frequency is 10 Hz.

length equal to the domain size. In normalized coordinates, the
slab occupies the domain , and the electric-cur-
rent source is the same as in the previous example, except
that it is located at . The order of the system for this
particular configuration is 359.

In Figs. 3 and 4, we show the absolute value of the normalized
magnetic-field strength on the total computational domain at a
frequency of 5 10 Hz. The solid vertical lines in these figures
show where the slab is located, while the dashed vertical line
indicates the location of the planar current sheet. The dashed
line in Fig. 3 shows the reduced-order model obtained after 15
iterations and, in Fig. 4, after 25 iterations of the Lanczos-type
algorithm. The solid line in these figures is the reduced-order
model obtained after 50 iterations. We observe that the results
improve as the number of iterations increases. Also note that the
magnetic-field strength jumps across the source location.
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Fig. 6. Absolute value of the reduced-order models for the magnetic-field
strength obtained after 70 iterations (dashed line), and 80 iterations (solid line)
of the Lanczos algorithm. Frequency is 10 Hz.

If we now fix the order of the model to 50 and increase the
frequency to 10 Hz, we obtain the results shown in Fig. 5.
The dashed line in this figure shows the reduced-order model
of order 50, while the solid line is the reduced-order model ob-
tained after 80 iterations. Increasing the order of the model from
50 to 70, we arrive at the results shown in Fig. 6. It is clear that
more iterations are required to obtain reliable results at higher
frequencies. Fifty iterations are sufficient for a frequency of
5 10 Hz, but insufficient for a frequency of 10 Hz.

V. CONCLUSIONS

In this paper, we have described a reduced-order modeling
technique, which is based on a low-frequency expansion of the
electromagnetic field. We showed that this expansion can be
written in terms of the pseudoinverse of the system matrix and
no matrix factorization is required.

The system matrix is singular because PEC material
boundary conditions are imposed at the boundary of the com-
putational domain. If a problem with a PEC material boundary
condition at one end, and a perfect magnetically conducting
boundary condition (PMC material boundary condition) at
the other end is considered, it can be shown that the system
matrix is no longer singular. For a problem with this type of
boundary conditions, the inverse of the system matrix can be
written in terms of inverse Laplace operators as well and the
analysis is essentially the same as the analysis presented in this
paper. Furthermore, we can analyze a configuration with PMC
material boundary conditions at both ends of the domain by
simply reversing the roles of the electric- and magnetic-field
strength in our formulation.

Future research will focus on the extension of the method to
two- and three-dimensional configurations. Loosely speaking,
the only problem is to find the (pseudo) inverse of the system
matrix in these cases since the construction of the low-frequency
expansion is essentially the same as the one presented in this
paper.

APPENDIX

PROPERTIES OF THE SYSTEM MATRIX

Property 1: The system matrix is skew symmetric for lossless
media. Matrix vanishes for lossless media, and the system
matrix simplifies to

Furthermore, from (4), it follows that

(15)

which shows that the differentiation matrix is -skew sym-
metric. Using (15), it is easily verified that the system matrix
is skew symmetric.

Property 2: The system matrix is singular for lossless media.
This property follows directly from the fact that is skew sym-
metric for lossless media and its order is odd. Another way of
showing that matrix is singular is the following. First, observe
that the null space of matrix is one-dimensional and spanned
by the -by-1 vector . This should not be
a surprise since the PEC material boundary conditions specify
the static magnetic-field strength up to an additional constant.
Now let

where is the -by-1 zero vector. Computing the matrix-vector
product shows that this product vanishes, and since does
not, we conclude that matrix is singular for lossless media.
Loosely speaking, the static magnetic field lives in the null space
of the system matrix. For completeness, we mention that the null
space of matrix is trivial.

Property 3: The system matrix is singular for lossy media.
For lossy media, the system matrix is given by (6). Let be as
above, and compute

This shows that the system matrix is singular for lossy media as
well.

Property 4: The pseudoinverse of the system matrix is given
by

where

with

and

The proof consists of verifying the Moore–Penrose condi-
tions (see [12]) using (4). Note that matrix is the discretized
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Laplacian with Dirichlet boundary conditions. This matrix sat-
isfies the symmetry relation

(16)

and it can be shown that all its eigenvalues are simple and
negative.

Property 5: Introduce the signature matrix

The pseudoinverse satisfies the reciprocity relation

This property is straightforward to verify using (4) and (16).
Property 6: Computing the matrix-vector product

for a given vector essentially amounts to solving Poisson’s
equation twice.

To see this, first set and , then
. The only nontrivial part is the computation

of vector . Partition this vector and in the same way as the
field vector. Using the definition of matrix , we obtain

In other words, for , we have

which is Poisson’s equation. Similarly, for , we have
, where satisfies

This is the second Poisson equation that needs to be solved.
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