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A General Convolution Theorem for Graph Data
Alberto Natali and Geert Leus

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, Delft, The Netherlands

Abstract—This paper focuses on the field of graph signal pro-
cessing (GSP) and studies the node-varying graph filter (NV-GF)
which has been proposed as a way to broaden the applicability of
the classical graph filter (C-GF). In particular, we state and prove a
new convolution theorem for a NV-GF which extends both the one
for a C-GF and the one for a time-varying filter. The theorem relies
on the definition of a so-called dual graph which characterizes
the support of the frequency domain. The dual graph concept
has been studied only very recently and many versions exist, yet
the proposed convolution theorem is independent of the particular
version. More interestingly, using non-stationary graph data on
the primal graph, we can use the proposed convolution theorem
to learn the dual graph and thereby introduce an innovative data-
driven dual graph estimation technique.

I. INTRODUCTION

Convolution is the central component of architectures such
as digital filters [1] and (convolutional) neural networks [2],
underpinning a multitude of applications including time series
prediction [3], speech recognition and computer vision [4], to
name a few. Even though the convolution among two functions
is usually defined in the Euclidean space, graph signal process-
ing (GSP) [5] effectively extends its shift-scale-sum principle
to data residing on non Euclidean domains, modeled by a
graph. This is possible through so called graph filters [6], [7],
architectures which are parametric on the mathematical structure
defining the shift operation, which brings the notion of proximity
and neighborhood among samples. While in signal processing
this shift operator is mathematically represented by the (lower)
shift matrix, in GSP the graph shift operator (GSO) depends
on the underlying network domain.

The notion of regularity in time and in space, which are two
very well structured domains, is reflected in the definition of
their frequency domain. Specifically, a signal in these domains
can be decomposed into elementary building blocks (such as
sine waves) which endow a physical interpretation with a well
understood meaning of variability. In a less structured domain
modeled by a graph, this definition is not tight and multiple
interpretations are possible. Nonetheless, a convolution in one
of these primal domains can be described as a pointwise
multiplication in the corresponding frequency (or dual) domains.

Motivated by a modern line of research [8] attempting to
model the support of the frequency domain with a so called dual
graph1, in this work we introduce a new convolution theorem
which generalizes the existing (graph) convolution theorem and
the one related to time-varying filters. In particular, by relying
on the notion of node-varying graph filters (NV-GFs) [6], we

E-mails: {a.natali; g.j.t.leus}@tudelft.nl
1Not to be confused with the dual graph notion in graph theory, as the graph

which has a vertex for each face of the original graph.

show how a NV-GF in one domain can be expressed as a NV-
GF in the other domain, remaining consistent with the already
known graph convolution theorem. We then discuss some of
its implications in terms of non-stationary graph signals and
delineate a possible dual graph learning method which will be
object of a future study.

II. PRELIMINARIES

Graphs and Graph Signals. We consider data residing on
a non Euclidean domain, which we formally model by a graph
G = (V, E ,S), where V = {1, . . . , N} is the set of nodes (or
vertices), E ⊆ V × V is the set of edges, and S is a symmetric
N × N matrix that represents the graph structure. The matrix
S is called the graph shift operator (GSO), since it plays a role
akin to the shift (delay) operator in classical signal processing.
Specifically, its entries [S]ij for i ̸= j are different from zero
only if nodes i and j are connected by an edge; typical examples
of such a matrix are the (weighted) adjacency matrix W [9] and
the graph Laplacian L [5].

In this manuscript, for the sake of generality, we consider
the shift operator S to be a normal matrix with eigenvalue
decomposition (EVD) written as S = VΛVH , with V a unitary
matrix collecting the eigenvectors and Λ a diagonal matrix
collecting the eigenvalues of S. A fundamental assumption in
GSP is that the matrix V provides a basis for expressing signals
living on S, and with favourable DFT-like properties providing
a notion of frequency similar to the ones in classical signal
processing. For this reason, the matrix VH is often referred to
as the graph Fourier transform (GFT) and the projection of x
into this basis, i.e., x̂ = VHx as the GFT signal.

Filtering on Graphs. Given a graph S, a classical graph filter
(C-GF) of order L− 1 is the matrix polynomial:

H(p,S) =
L−1∑
l=0

plS
l, (1)

where p = [p0, . . . , pL−1]
⊤ collects the graph filter coefficients

(taps). The application of the filter H(p,S) on a signal x to
obtain a new signal y, i.e., y = H(p,S)x, is often referred to as
graph filtering or graph convolution, as it respects the scale-sum-
shift principle of convolution. With a few simple calculations,
it is easy to show that in the (graph) frequency domain, a graph
convolution is expressed as a pointwise multiplication; this is
the (graph) convolution theorem, which can be expressed as
follows:

y =
L−1∑
l=0

plS
lx ŷ =

L−1∑
l=0

plΛ
lx̂ (2)
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with ŷ = VHy the GFT of y.
In this paper, our focus is on a more flexible and expressive

version of (1), as we consider the node-variant graph filter [6],
which allows a per-node weighting scheme of each shifted
version of the input signal. Due to its relevance in this work, we
distinguish among two flavours of a NV-GF, henceforth referred
to as type-I and type-II, defined, for a given a graph S and fixed
order L− 1, respectively as:

HI(P,S) =
L−1∑
l=0

Diag(pl)S
l, (3)

HII(P,S) =
L−1∑
l=0

Sl Diag(pl), (4)

where P is the N×L matrix of coefficients P = [p0, . . . ,pL−1]
and pl := [pl1, . . . , plN ]⊤ is the l-hop filter tap vector. As a
short-hand notation, we will use HI and HII to refer to the
NV-GF in (3) and (4), respectively; when convenient for clarity
of exposition, we will explicitly write HI(P,S) or HII(P,S)
concordantly. The application of a NV-GF on a signal x to
obtain a new signal y will be referred to as node-variant graph
convolution. From a theoretical point of view, both NV-GF types
have the same expressive behavior, yet the order of shifting
and weighing is reversed. Specifically, in type-I, each node
performs a linear combination of the (shifted) signal value of
neighboring nodes, where the weights of the linear combination
are neighbor-specific; in type-II, each node performs a linear
combination of the (shifted) signal value of neighboring nodes,
which have been already scaled by such nodes. Nonetheless,
both can be implemented with the same complexity and in a
distributed manner [6].

Dual Graph. The support of the GFT signal x̂ is usually
assumed to be described by the eigenvalues λ := diag(Λ)
of S, which correspond to a discretization/sampling of a con-
tinuous domain, either the real line R or the complex plane.
This is consistent with the discrete signal processing notion
of frequency domain: when S represents a cycle graph (or
more generally, any circulant graph), possibly capturing the
time domain, its eigenvector matrix V coincides with the
discrete Fourier Transform (DFT) matrix, and its eigenval-
ues λ with the complex frequencies on the unit circle, i.e.,
λ = [1 e−j2π/N . . . e−j2π(N−1)/N ]. However, a modern line
of research attempts to model the (graph) frequency domain
with a graph [8]. The motivation behind this line of research
relies on the fact that classical signal processing tasks usually
performed in the frequency domain, such as frequency-shifting,
do not have their counterpart in GSP. Moreover, since a graph
signal resides on a graph, it would be appealing to have also
its Fourier counterpart to reside on a graph. This leads to the
notion of a dual graph Sf , which represents the support for the
frequency (GFT) signal x̂. Since x = Vx̂, i.e., x is expressed as
a linear combination of the eigenvectors of the graph on which
it resides, we expect our frequency graph signal x̂, residing on
a dual GSO Sf = VfΛfV

H
f , to be expressed as the linear

combination of its eigenvectors Vf , i.e., x̂ = Vfx. From the
definition of GFT it follows Vf = VH . Thus, the primal graph
provides spectral templates for the frequency domain, i.e., the
eigenvectors Vf for the dual graph Sf are known by knowing

those of S. The only unknown is then the eigenvalue matrix
Λf := Diag(λf ), which can be found, for instance, with an
axiomatic or an optimization approach [8].

III. AN ENCOMPASSING CONVOLUTION THEOREM

In this section we generalize the graph convolution theo-
rem [cf. (2)] and we show how a limited order NV-GF in the
primal domain can be expressed as a limited order NV-GF in the
dual domain through an appropriate parametrization of the filter
coefficients. This leads to a generalization of the well known
convolution theorem for a C-GF and the one related to time-
varying filters. The following theorem formally states this.

Theorem 1 (Node-variant convolution theorem). Consider a
type-I NV-GF HI defined over the graph S with filter taps
{pl}L−1

l=0 , i.e., HI(P,S), and assume that a dual graph Sf

describing the dual domain is given. Assume also that each
filter tap vector pl can be expressed as a polynomial of order
K−1 in the dual graph frequencies λf . Then, there exists a set
of coefficients {p̂k}K−1

k=0 for which the type-I NV-GF HI(P,S)
in the primal domain corresponds to a type-II NV-GF HII on
the dual graph Sf with filter taps {p̂k}K−1

k=0 , i.e., HII(P̂,Sf ).

Proof. By multiplying both sides of (3) with the GFT matrix
VH , we have:

ŷ = VH
L−1∑
l=0

Diag(pl)S
lx = VH

L−1∑
l=0

Diag(pl)VΛlx̂. (5)

Next, inspired by time-varying communication systems, where
the time-varying filter taps are smooth over time and/or ex-
pressed through a basis expansion model (BEM) [10], we
introduce a similar construction for the NV filter coefficients
{pl}L−1

l=0 . In particular, we express each pl through powers of
the dual eigenvalues λf , representing our basis expansion; that
is:

pl =
K−1∑
k=0

clkλ
k
f = Ψfcl (6)

with Ψf the Vandermonde matrix Ψf := [1 λf . . .λ
K−1
f ] and

cl := [cl0, . . . , cl(K−1)]
⊤ the expansion coefficients for the l-

th primal filter tap vector pl. With this choice, substituting (6)
in (5), we have:

ŷ = VH
L−1∑
l=0

Diag(

K−1∑
k=0

clkλ
k
f )VΛlx̂

=

K−1∑
k=0

VH Diag(λk
f )VDiag(

L−1∑
l=0

clkλ
l)x̂

=

K−1∑
k=0

Sk
f Diag(p̂k)x̂ (7)

where p̂k :=
∑L−1

l=0 clkλ
l = Ψc(k) is the kth hop filter tap vec-

tor on the dual graph, Ψ := [1 λ . . .λL−1] is the Vandermonde
matrix of primal eigenvalues, and c(k) := [c0k, . . . , c(L−1)k]

⊤

are the expansion coefficients for the k-th dual filter taps vector
p̂k. We denote as HII =

∑K−1
k=0 Sk

fdiag(p̂k) a NV-GF on the
dual graph and, whenever the dependency on the dual coeffi-
cients and shift operator is necessary, we use HII(P̂,Sf ), where
P̂ is the N×K matrix of coefficients P̂ = [p̂0, . . . , p̂K−1].
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With this notation in place, we can now delineate a general con-
volution theorem which relies on node-variant graph filtering,
also pictorially described in Fig. 1, as follows:

y=

L−1∑
l=0

Diag(pl)S
lx ŷ=

K−1∑
k=0

Sk
f Diag(p̂k)x̂ (8)

pl = Ψfcl p̂k = Ψc(k) (9)

The connection between the primal and the dual node-variant
graph filters defined in (8) is given by the K×L expansion coef-
ficients conveniently stored in the matrix C = [c0, . . . , cL−1] =
[c(0), . . . , c(K−1)]⊤. This enables also to concisely express the
node-variant coefficients in the primal and dual domain as
P = ΨfC and P̂ = ΨC⊤, respectively.

Remark 1. As pointed out in [6], the filter HII defined by (7)
is by all means a node-variant GF and can be implemented in a
distributed and sequential fashion. Precisely, the equation on the
right in (8) can be implemented through the following recursion
tk = Sftk−1 + Diag(p̂K−k)x̂ for k > 0 and initializing with
t0 = 0; finally ŷ = tK .

Corollary 1. Given a graph signal x, the application of a node-
variant graph filter HI(P,S) in the primal domain followed
by the GFT VH is equivalent to the application of the GFT
followed by a node-variant graph filter HII(P̂,Sf ) in the dual
domain. In other words, it holds (see also Fig. 1):

VHHI(P,S) = HII(P̂,Sf )V
H . (10)

In classical signal processing, the frequency representation of
windowing in the time domain is the convolution between the
spectra of the signal and the window. Because a node-variant
convolution of order L− 1 is nothing else than the application
of L windows on shifted versions of the input graph signal x, a
similar result can be derived in the graph setting; the following
corollary expresses this.

Corollary 2. Given an input graph signal x and a type-I NV-
GF HI(P,S), with each {pl}L−1

l=0 parametrized as in (9), a
node-variant graph convolution of order L−1 in one domain is
equivalent to the sum of L classical graph convolutions in the
other domain, each one with input a (modulated) version of x̂;
that is:

ŷ =

L−1∑
l=0

H(cl,Sf )(λ
l ⊙ x̂) (11)

= H(c0,Sf )x̂+ . . .+H(cL−1,Sf )(λ
L−1 ⊙ x̂) (12)

Proof. From the first equality of (7), we have:

ŷ =
L−1∑
l=0

K−1∑
k=0

clkV
H Diag(λk

f )VΛlx̃

=
L−1∑
l=0

(
K−1∑
k=0

clkS
k
f

)
Λlx̂

=
L−1∑
l=0

H(cl,Sf )(λ
l ⊙ x̂) (13)

Figure 1. General convolution theorem. A node-variant graph convolu-
tion in the primal domain followed by a GFT is equivalent to a GFT
followed by a node-variant graph filtering in the dual domain.

Notice how the filter coefficients in (13) are the expansion
coefficients cl associated to the primal filter coefficients pl.

A. Consistency with the graph convolution theorem

Because a C-GF is a NV-GF with constant filter taps, we
expect that our introduced theory encompasses the existing
one. Indeed, we can formally show that the graph convolution
theorem (2) falls within the introduced theory. To see this,
consider pl = pl1 ∀ l, i.e., the case in which each vector of
filter taps pl is constant over the nodes, thus corresponding
to (1). From (9), we then have that cl necessarily needs to be
cl = [pl,0

⊤]⊤, and overall:

[p11, . . . , pL−11] =


1 · · · λK−1

0,f
...

. . .
...

1 · · · λ
(K−1)
f,N−1



p1 · · · pL−1

0 · · · 0
...

. . .
...

0 · · · 0


(14)

meaning that only the first row c(0) of C is different from zero.
In particular, from the right equation in (9) this implies that:

ŷ = S0
fdiag(p̂0)x̂ = diag(Ψp)x̂. (15)

This shows how the proposed theory fits within the principle that
a classical graph convolution (node-invariant GF) is a pointwise
multiplication in the frequency domain.

B. Relationship with time-varying channel propagation

The proposed theory generalizes, to the graph setting, con-
cepts which are familiar in the context of time-varying channel
propagation [11], arising for instance in mobile communication
scenarios. In that case, the received signal y at time n, i.e.,
y[n]2, is modeled as:

y[n] =
L−1∑
l=0

p[n, l]x[n− l], (16)

where p[n, l] denotes the channel impulse response of the l-th
path at the n-th time instant, and x[n − l] is the transmitted
signal at the (n− l)-th time instant. The gains associated to the

2We use square brackets to indicate that the argument is a time index and
not a graph node.
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different paths are assumed to be time-varying and approximated
by a basis expansion model [10]; specifically:

pl =

K−1∑
k=0

clkbk, (17)

where pl = [p[0, l], . . . , p[N − 1, l]]⊤ stores the evolution of
the filter impulse response over the N time instants, bk ∈ RN

is the k-th basis function, and clk is the coefficient associated
to the l-th path and the k-th basis function. This alleviates the
effort of having to deal with NL channel coefficients (usually
a very high number), and converts the model into a simpler one
with only LK BEM coefficients.

It is easy to show that we can write (16) in matrix-vector
form, by taking into account (17), as:

y =
K−1∑
k=0

Diag(bk)

(
L−1∑
l=0

clkD
l

)
x (18)

where x = [x[0], . . . , x[N − 1]]⊤ and D is the N × N lower
shift matrix; notice how the matrix

∑L−1
l=0 clkD

l implements a
standard convolutional filter in time and observe its similarities
with the left equation in (8). Next, denote with F ∈ CN×N

the normalized DFT matrix, and with fk its kth column; the
classical complex exponential BEM uses the Fourier basis as
the basis functions in (17), i.e., bk = f∗k , with ∗ the complex
conjugate. With these choices, (18) can be expressed in the
frequency domain as:

ŷ = Fy =
K−1∑
k=0

FDiag(f∗k )
L−1∑
l=0

clkF
HDlFx

=
L−1∑
l=0

(
K−1∑
k=0

clkD
k

)
Diag(fl)x̂. (19)

While in (18) the matrix D shifts in the time domain, in (19)
shifts in the frequency domain; however, such shift matrix is
the same in both domains. This is different from the graph
counterpart in (7), where the two shifts matrices might be
different. All in all (19) is the time domain counterpart of (7),
by choosing the primal eigenvector matrix V to be V = FH

and the basis functions bk to be bk = f∗k .

IV. OUTLOOK AND FUTURE RESEARCH

In the previous section, we laid down a duality theory which
is consistent with the existing body of knowledge. In this section
we delineate possible future research directions.
Non-Stationarity. The dual graph concept is closely related to
the one of (non-)stationarity. From [12] we know that a process
y is said to be weakly stationary on a GSO S if the covariance
matrix Σy := E[yyH ] commutes with S or, equivalently, if y
can be written as the output of a C-GF H [cf. (1)] when excited
with a white input x, i.e., y = Hx. However, if H = HI , i.e.,
it is a type-I NV-GF as in (3), and the covariance matrix:

Σy = E[(HIx)(HIx)
H ] = HIE[xxH ]HH

I = HIH
H
I , (20)

does not commute in general with the GSO S. This implies that
the GFT signal ŷ is correlated, and its covariance matrix

Σŷ = E[ŷŷH ] = HIIH
H
II = VfΣyV

H
f (21)

is not diagonal. These observations reveal that filtering a white
input with a NV-GF gives us a non-stationary signal. The inverse
problem is also true. If we expect our signal to be non-stationary,
we should be able to find a NV-GF that transforms a white input
into our non-stationary signal.

Dual Graph Learning. Another interesting line of research en-
tails learning in a data driven manner the dual graph Sf (which
is tantamount to learning its eigenvalues λf ) in such a way that
it is consistent with the theorem we proposed . Specifically, by
assuming that observed graph signals Y = [y1, . . . ,yT ] can be
modeled as the output of a NV-GF HI(P,S) when excited with
some input data X = [x1, . . . ,xT ], i.e., Y = HI(P,S)X, the
following two-step approach can be put forth:

1) first, we learn the graph filter coefficient matrix P in a
data driven manner, for instance as the solution of the
optimization problem:

P̂ := argmin
P

∥Y −HI(P,S)X∥2F , (22)

which can be solved with standard convex optimization
machinery;

2) then, we find the dual eigenvalues λf by exploiting (9),
i.e., fit the model P̂ ≈ ΨfC, which is a specific structured
matrix factorization with a Vandermonde factor, where only
its second column is needed. A possible way to solve this
problem is by following the recently proposed approach
in [13], which relies on a subspace method. In there, it is
shown how each solution of the problem is identifiable
up to a shift and scale of the unknown vector (here
representing the graph eigenvalues), thus maintaining the
same topological structure of the original graph (removing
the self loops caused by the shift).

V. CONCLUSIONS

In this manuscript, by relying on the concepts of node-varying
graph filters, which allow a node-specific filtering scheme,
and the dual graph, which allows to represent the support of
the frequency domain as a graph, we generalize the standard
(graph) convolution theorem, as well as the convolution theorem
for time-varying filters. Specifically, we show how a node-
varying graph filter in one domain can be expressed as another
node-varying graph filter in the other domain. We show how
such theory is consistent with classical graph filtering in graph
signal processing as well as with the time-varying channel
propagation literature, where each path is modeled with a basis
expansion model. Finally, we delineate research directions worth
to investigate, namely the role of node-varying graph filters and
the dual graph to model non-stationary graph signals, as well
as data driven procedures to learn the (eigenvalues of the) dual
graph.
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