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Abstract. In this paper, we give a constructive proof of the fact that
the treewidth of a graph is at most its divisorial gonality. The proof
gives a polynomial time algorithm to construct a tree decomposition of
width at most k, when an effective divisor of degree k that reaches all
vertices is given. We also give a similar result for two related notions:
stable divisorial gonality and stable gonality.

1 Introduction

In this paper, we investigate the relation between well-studied graph parameters:
treewidth and divisorial gonality. In particular, we give a constructive proof that
the treewidth of a graph is at most its divisorial gonality.

Treewidth is a graph parameter with a long history. Its first appearance
was under the name of dimension, in 1972, by Bertele and Briochi [4]. It was
rediscovered several times since, under different names (see e.g. [5]). Robertson
and Seymour introduced the notions of treewidth and tree decompositions in
their fundamental work on graph minors; these notions became the dominant
terminology.

The notion of divisorial gonality finds its origin in algebraic geometry. Baker
and Norine [2] developed a divisor theory on graphs in analogy with divisor
theory on curves, proving a Riemann–Roch theorem for graphs. The graph analog
of gonality for curves was introduced by Baker [1]. To distinguish it from other
notions of gonality (which we discuss briefly in Section 5), we denote the version
we study by divisorial gonality. Divisorial gonality can be described in terms of
a chip firing game. A placement of k chips on the vertices of a graph (where
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vertices can have 0 or more chips) is called an effective divisor of degree k. Under
certain rules (see Section 2), sets of vertices can fire, causing some of the chips
to move to different vertices. The divisorial gonality of a graph is the minimum
degree of an effective divisor such that for each vertex v, there is a firing sequence
ending with a configuration with at least one chip at v.

The treewidth of a graph is never larger than its divisorial gonality4. A non-
constructive proof of this fact was given by van Dobben de Bruyn and Gijswijt [10].
Their proof is based on the characterization of treewidth in terms of brambles,
due to Seymour and Thomas [13]. In this paper, we give a constructive proof of
the same fact. We formulate our proof in terms of a search game characterization
of treewidth, but with small modifications, we can also obtain a corresponding
tree decomposition. The proof also yields a polynomial time algorithm that, when
given an effective divisor of degree k, constructs a search strategy with at most
k + 1 searchers and a tree decomposition of width at most k of the input graph.

This paper is organized as follows. Some preliminaries are given in Section 2.
In Section 3, we prove the main result with help of a characterization of treewidth
in terms of a search game and discuss that we also can obtain a tree decomposition
of width equal to the degree of a given effective divisor that reaches all vertices.
An example is given in Section 4. In Section 5, we give constructive proofs that
bound the treewidth of a graph in terms of two related other notions of gonality.

2 Preliminaries

2.1 Graphs

In this paper, all graphs are assumed to be finite. We allow multiple edges, but no
loops. Let G = (V,E) be a graph. For disjoint U,W ⊆ V we denote by E(U,W )
the set of edges with one end in U and one end in W , and use the shorthand
δ(U) = E(U, V \U). The degree of a vertex v ∈ V is deg(v) = |δ({v})|, and given
v ∈ U ⊆ V we denote by outdegU (v) = |E({v}, V \U)| the number of edges from
v to V \U . By N(U) we denote the set of vertices in V \U that have a neighbor
in U . The Laplacian of G is the matrix Q(G) ∈ RV×V given by

Quv =
{

deg(u) if u = v,

−|E({u}, {v})| otherwise.

2.2 Divisors and gonality

Let G = (V,E) be a connected graph with Laplacian matrix Q = Q(G). A divisor
on G is an integer vector D ∈ ZV . The degree of D is deg(D) =

∑
v∈V D(v). We

say that a divisor D is effective if D ≥ 0, i.e., D(v) ≥ 0 for all v ∈ V .
The divisorial gonality can be defined in a number of equivalent ways. Most

intuitive is the definition in terms of a chip firing game. An effective divisor D
4 Conversely, graphs of treewidth 2 can have arbitrarily high divisorial gonality, which

can be seen by considering ‘chains of circuits’. See for instance [7,11].
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can be viewed as a chip configuration with D(v) chips on vertex v. If U ⊂ V is
such that outdegU (v) ≤ D(v) for every v ∈ U (i.e., each vertex has at least as
many chips as it has edges to vertices outside U), then we say that U can be fired.
If this is the case, then firing U means that every vertex in U gives chips to each
of its neighbors outside U , one chip for every edge connecting to that neighbor.
The resulting chip configuration is the divisor D′ = D −Q1U . The assumption
outdegU (v) ≤ D(v) guarantees that the number of chips on each vertex remains
nonnegative, i.e. that D′ is effective. Now, the divisorial gonality of a graph is
the minimum number k such that there is a starting configuration (divisor) with
k chips, such that for each vertex x ∈ V there is a sequence of sets we can fire
such that x receives a chip.

We now give the more formal definition, that is needed in our proofs. Two divi-
sors D and D′ are equivalent (notation: D ∼ D′) if D′ = D−Qx for some x ∈ ZV .
Note that equivalent divisors have the same degree since QT 1 = 0. If D and D′

are equivalent, then, since the null space of Q consists of all scalar multiples of 1,
D′ = D−Qx has a unique solution x ∈ ZV that is nonnegative and has xv = 0 for
at least one vertex v. We denote this x by script(D,D′) and write dist(D,D′) =
max{xv : v ∈ V }. Note that if t = dist(D,D′), then script(D′, D) = t1 − x
and thus dist(D′, D) = dist(D,D′). If D,D′, D′′ are pairwise equivalent, then
we have the triangle inequality dist(D,D′′) ≤ dist(D,D′) + dist(D′, D′′) as
script(D,D′′) = script(D,D′) + script(D′, D′′)− c1 for some nonnegative inte-
ger c.

Let D be a divisor. If D is equivalent to an effective divisor, then we define

rank(D) = max{k ∈ Z≥0 : D − E is equivalent to an effective divisor
for every effective divisor E of degree at most k}.

If D is not equivalent to an effective divisor, we set rank(D) = −1. The divisorial
gonality of a graph G is defined as

dgon(G) = min{deg(D) : rank(D) ≥ 1}.

In the remainder of the paper, we will only consider effective divisors. If we
can go from D to D′ by sequentially firing a number of subsets, then clearly
D ∼ D′. The converse is also true (part (i) of the next lemma) as was shown in
[10, Lemma 1.3]. (The proof can also be found in [6].)
Lemma 1. Let D and D′ be equivalent effective divisors.

(i) There is a unique increasing chain ∅ ( U1 ⊆ U2 ⊆ · · · ⊆ Ut ( V of subsets on
which we can fire in sequence to obtain D′ from D. That is, setting D0 = D
and Di = Di−1 −Q1Ui for i = 1, . . . , t we have Dt = D′ and Di is effective
for all i = 0, . . . , t.

(ii) We have t = dist(D,D′) ≤ deg(D) · |V |.

We see that the two definitions of divisiorial gonality are equivalent. Lemma 1
shows that we even can require the sets of vertices that are fired to be increasing.

For a given vertex q, a divisor D ≥ 0 is called q-reduced if there is no nonempty
set U ⊆ V \ {q} such that D −Q1U ≥ 0.



4 Bodlaender, van Dobben de Bruyn, Gijswijt, Smit

Lemma 2 ([2, Proposition 3.1]). Let D be an effective divisor and let q be a
vertex. There is a unique q-reduced divisor equivalent to D.
Let D be an effective divisor and let Dq be the q-reduced divisor equivalent to
D. Suppose that D 6= Dq. By Lemma 1 we obtain Dq from D by firing on a
chain of sets U1 ⊆ · · · ⊆ Ut and, conversely, we obtain D from Dq by firing on
the complements of Ut, . . . , U1. Since Dq is q-reduced, it follows that q is in the
complement of Ut, and hence q 6∈ U1. It follows that x = script(D,Dq) satisfies
xq = 0 and Dq(q) ≥ D(q). In particular, a divisor D has positive rank if and only
if for every q ∈ V the q-reduced divisor equivalent to D has at least one chip on
vertex q.

Given an effective divisor D and a vertex q, Dhar’s algorithm [9] finds in
polynomial time a nonempty subset U ⊆ V \{q} on which we can fire, or concludes
that D is q-reduced.

Algorithm 1: Dhar’s burning algorithm
Input : Divisor D ≥ 0 on G and vertex q.
Output : Nonempty subset U ⊆ V (G) \ {q} s.t. D −Q1U ≥ 0 or U = ∅ if none

exists.
U ← V \ {q};
while outdegU (v) > D(v) for some v ∈ U do

U ← U \ {v}
end
return U

Lemma 3. Dhar’s algorithm is correct, and the output is the unique inclusion-
wise maximal subset U ⊆ V \ {q} that can be fired.
Proof. The set returned by Algorithm 1 can be fired, as it satisfies the requirement
outdegU (v) ≤ D(v) for every v ∈ U . To complete the proof it therefore suffices
to show that U contains every subset W ⊆ V \ {q} that can be fired.

Let W ⊆ V \{q} be any such subset. At the start of the algorithm U = V \{q}
contains W . While U ⊇W , we have outdegU (v) ≤ outdegW (v) ≤ D(v) for any
v ∈W , so the algorithm never removes a vertex v ∈W from U . ut

Note: in particular, Lemma 3 shows that the output of Algorithm 1 does not
depend on the order in which vertices are selected for removal.

If throughout the algorithm we keep for every vertex v the number outdegU (v)
and a list of vertices for which outdegU (v) > D(v), then we need only O(|E|)
updates, and we can implement the algorithm to run in time O(|E|).
Lemma 4. Let D be an effective divisor on the graph G = (V,E), let q ∈ V ,
and let Dq be the q-reduced divisor equivalent to D. Let U be the set returned
by Dhar’s algorithm when applied to D and q, and suppose that U 6= ∅. Let
D′ = D −Q1U . Then dist(D′, Dq) = dist(D,Dq)− 1.



Constructing Tree Decompositions of Graphs with Bounded Gonality 5

Proof. Let x = script(D,Dq). Since Dq is q-reduced, we have xq = 0. On the
other hand, since D 6= Dq (as we can fire on U), the number t = max{xv : v ∈ V }
is positive. Let W = {v ∈ V : xv = t}. By Lemma 1, we can fire on W , so by
Lemma 3 we have W ⊆ U .

Let x′ = script(D′, Dq) and let t′ = max{x′v : v ∈ V }. As Dq is q-reduced,
we have x′q = 0. Since there is a unique nonnegative y ∈ ZV with yq = 0 and
Dq = D −Qy, and we have D −Qx = Dq = (D −Q1U )−Qx′, it follows that
x = x′+ 1U . Since U ⊇W , it follows that x− 1W ≥ x′, and hence t− 1 ≥ t′. We
find that dist(D′, Dq) ≤ dist(D,Dq)− 1. Since dist(D,D′) = 1, equality follows
by the triangle inequality. ut

Since dist(D,Dq) ≤ deg(D) · |V (G)|, we can find a q-reduced divisor equivalent
to D using no more than deg(D) · |V | applications of Dhar’s algorithm.

2.3 Treewidth and tree decompositions

The notions of treewidth and tree decomposition were introduced by Robertson
and Seymour [12] in their fundamental work on graph minors.

Let G = (V,E) be a graph, let T = (I, F ) be a tree, and let Xi ⊆ V be a set
of vertices (called bags) associated to i for every node i ∈ I. The pair (T, (Xi)i∈I)
is a tree decomposition of G if it satisfies the following conditions:

1.
⋃

i∈I Xi = V ;
2. for all e = vw ∈ E, there is an i ∈ I with v, w ∈ Xi;
3. for all v ∈ V , the set of nodes Iv = {i ∈ I | v ∈ Xi} is connected (it induces

a subtree of T ).

The width of the tree decomposition is maxi∈I |Xi| − 1. The treewidth of a G is
the minimum width of a tree decomposition of G. Note that the treewidth of a
multigraph is equal to the treewidth of the underlying simple graph.

There are several notions that are equivalent to treewidth. We will use a
notion that is based on a Cops and Robbers game, introduced by Seymour and
Thomas [13]. Here, a number of searchers need to catch a fugitive. Searchers
can move from a vertex in the graph to a ‘helicopter’, or from a helicopter to
any vertex in the graph. Between moves of searchers, the fugitive can move with
infinite speed in the graph, but may not move over or to vertices with a searcher.
The fugitive is captured when a searcher moves to the vertex with the fugitive,
and there is no other vertex without a searcher that the fugitive can move to.
The location of the fugitive is known to the searchers at all times. We say that k
searchers can capture a fugitive in a graph G, if there is a strategy for k searchers
on G that guarantees that the fugitive is captured. In the initial configuration,
the fugitive can choose a vertex, and all searchers are in a helicopter. A search
strategy is monotone if it is never possible for the fugitive to move to a vertex
that had been unreachable before. In particular, in a monotone search strategy,
there is never a path without searchers from the location of the fugitive to a
vertex previously occupied by a searcher.



6 Bodlaender, van Dobben de Bruyn, Gijswijt, Smit

Theorem 1 (Seymour and Thomas [13]). Let G be a graph and k a positive
integer. The following statements are equivalent.

1. The treewidth of G is at most k.
2. k + 1 searchers can capture a fugitive in G.
3. k + 1 searchers can capture a fugitive in G with a monotone search strategy.

3 Construction of a search strategy

In this section, we present a polynomial time algorithm that, given an effective
divisor D of degree k as input, constructs a monotone search strategy with k + 1
searchers to capture the fugitive.

We start by providing a way to encode monotone search strategies. Let G be
a graph. For X ⊆ V (G), the vertex set of a component of G −X is called an
X-flap. A position is a pair (X,R), where X ⊆ V (G) and R is a union5 of X-flaps
(we allow R = ∅). The set X represents the vertices occupied by searchers, and
the fugitive can move freely within some X-flap contained in R (if R = ∅, then
the fugitive has been captured). In a monotone search strategy, the fugitive will
remain confined to R, so placing searchers on vertices other than R is of no
use. Therefore, it suffices to consider three types of moves for the searchers: (a)
remove searchers that are not necessary to confine the fugitive to R; (b) add
searchers to R; (c) if R consists of more than one X-flap, restrict attention to the
X-flap Ri ⊂ R containing the fugitive. This leads us to the following definition.

Definition 1. Let G be a graph and let k be a positive integer. A monotone
search strategy (MSS) with k searchers for G is a directed tree T = (P, F ) where
P is a set of positions with |X| ≤ k for every (X,R) ∈ P, and the following hold:

(i) The root of T is (∅, V ).
(ii) If (X,R) is a leaf of T , then R = ∅.
(iii) Let (X,R) be a non-leaf of T . Then R 6= ∅ and there is a set X ′ ⊆ X ∪ R

such that exactly one of the following applies:
(a) X ′ ⊂ X and position (X ′, R) is the unique out-neighbor of (X,R).
(b) X ′ ⊃ X and position (X ′, R′) is the unique out-neighbor of (X,R), where

R′ = R \X ′.
(c) X ′ = X and the out-neighbors of (X,R) are the positions

(X,R1), . . . , (X,Rt) where t ≥ 2 and R1, . . . , Rt are the X-flaps contained
in R.

If condition (ii) does not necessarily hold, we say that T is a partial MSS. Note
that we do not consider the root node to be a leaf even if it has degree 1.

It is clear that if T is an MSS for k searchers, then, as the name suggests, k
searchers can capture the fugitive, the fugitive can never reach a vertex that it
could not reach before, and a searcher is never placed on a vertex from which a
searcher was previously removed.
5 Here we deviate from the definition of position as stated in [13] in that we allow R

to consist of zero X-flaps or more than one X-flap.
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Lemma 5. Let G be a graph on n vertices and let T be a (partial) MSS with k
searchers for G. Then T has no more than n2 + 1 nodes.

Proof. For any position (X,R), define f(X,R) = |R|(|X|+|R|). For any leaf node
(X,R) we have f(X,R) ≥ 0. For any non-leaf node (X,R), the value f(X,R) is
at least the sum of the values of its children plus the number of children. Indeed,
in case (a) and (b) we have f(X,R) ≥ f(X ′, R′) + 1, and in case (c) we have
f(X,R) ≥ f(X,R1) + · · ·+ f(X,Rk) + k as can be easily verified. It follows that
f(X,R) is an upper bound on the number of descendants of (X,R) in T . Since
every non-root node is a descendant of the root, it follows that the total number
of nodes is at most 1 + f(∅, V ) = 1 + n2. ut

In the construction of an MSS we will use the following lemma.

Lemma 6. Let R be an X-flap. Let D be a positive rank effective divisor such
that X ⊆ supp(D) and R ∩ supp(D) = ∅. Then we can find in polynomial time
an effective divisor D′ ∼ D such that X ⊆ supp(D′), R ∩ supp(D′) = ∅, and
such that from D′ we can fire a subset U with U ∩R = ∅ and U ∩X 6= ∅.

Proof. Let q ∈ R. Let U be the set found by Dhar’s algorithm. Since R is
connected and U does not contain R, it follows that U ∩ R = ∅ (otherwise
outdegU (r) ≥ 1 > D(r) for some r ∈ U ∩ R). If U ∩ X is nonempty, we set
D′ = D and we are done. Otherwise, we set D ← D − 1U . Then X ⊆ supp(D),
R ∩ supp(D) = ∅ and we iterate. We must finish in no more than deg(D) · |V |
iterations by Lemma 1 and Lemma 4. Hence, we can find the required D′ and U
in time |E(G)| · |V (G)|deg(D). ut

Construction of a monotone search strategy. Let G be a connected graph and
let D be an effective divisor on G of positive rank. Let k = deg(D). We will
construct an MSS for k+ 1 searchers on G. We do this by keeping a partial MSS,
starting with only the root node (∅, V ) and an edge to the node (X,V \X), where
X = supp(D). Then, we iteratively grow T at the leaves (X,R) with R 6= ∅ until
T is an MSS. At each step, we also keep, for every leaf (X,R) of T , an effective
divisor D′ ∼ D such that X ⊆ supp(D′) and R∩ supp(D′) = ∅. We now describe
the iterative procedure.

While T has a leaf (X,R) with R 6= ∅, let D′ be the divisor associated to
(X,R) and perform one of the following steps.

I. If R consists of multiple X-flaps R1, . . . , Rt, then we add nodes
(X,R1), . . . , (X,Rt) as children of (X,R) and associate D′ to each. Iterate.

II. If X ′ = N(R) is a strict subset of X, then add the node (X ′, R) as a child of
(X,R), associate D′ to this node and iterate.

III. The remaining case is that N(R) = X and R is a single X-flap. By Lemma 6
we can find an effective divisor D′′ ∼ D′ such that X ⊆ supp(D′′), R ∩
supp(D′′) = ∅ and from D′′ we can fire on a set U such that U ∩R = ∅ and
U ∩X 6= ∅. We set U ∩X = {s1, s2, . . . , st}. That we can fire on U implies
that

D′′(si) ≥ |N(si) ∩R| for i = 1, . . . , t. (1)
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For i = 1, . . . , t we define positions (Xi, Ri) and (X ′i, Ri) as follows:

Xi = X ′i−1 ∪ (N(si) ∩R), Ri = R \Xi, and X ′i = Xi \ {si},

where we set X ′0 = X. Using (1) and the fact that X ′0 ⊆ supp(D′′), it is
easy to check that |X ′i| ≤ k and |Xi| ≤ k + 1 for every i. Since every edge
in δ(R) has at least one endpoint in every X ′i, it follows that indeed Ri is a
union of X ′i-flaps (and of Xi-flaps). We add the path (X,R)→ (X1, R1)→
(X ′1, R1)→ · · · → (X ′t, Rt) to T (it may happen that (Xi, Ri) = (X ′i−1, Ri−1)
in which case we leave out one of the two). We associate D′′ −Q1U to the
leaf (X ′t, Rt).

By Lemma 5, we are done in at most |V (G)|2 steps. This completes the
construction. By combining the construction described above with that of the
lemma below, we obtain Theorem 2. Note that so far only a non-constructive
proof that the divisorial gonality of a graph is an upper bound for the treewidth
was known [10]. See [6] for the proof of the next lemma.

Lemma 7. Let T ′ = (P, F ) be a monotone search strategy for k searchers in
the connected graph G and let T be the undirected tree obtained by ignoring the
orientation of edges in T ′. Then (T, {X}(X,R)∈P) is a tree decomposition of G of
width at most k − 1.

Theorem 2. There is a polynomial time algorithm that, when given a graph G
and an effective divisor of degree k, finds a tree decomposition of G of width at
most k.

4 An example

We apply the constructions of the previous section to a relatively small example.
Let G be the graph as in Figure 1. Let D be the divisor on G that has value
3 on vertex a and value 0 elsewhere. If we follow the construction of Section 3,
we will end up with the monotone search strategy found in Figure 2. We start
with the root node (X,R) with X = ∅ and R = V and connect it to the node
(supp(D), V \ supp(D)). The three ways of growing the tree (steps I, II, III) are
indicated in the picture. The four occurrences of step III are explained below.

a

b c

d e f g

Fig. 1. An example graph G. It has divisorial gonality equal to 3.
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X

R abcdefg

a

bcdefg

abc

defg

bc

defg

bc

d

b

d

bd d

bc

efg

bcg

ef

bg

ef

befg efg ef

III
(1)

I II III
(2)

III
(3)

III
(4)

I

I

Fig. 2. The monotone search strategy obtained from G with divisor D = 3a. Each
node shows the corresponding pair (X, R) with the root being (∅, {a, b, c, d, e, f, g}).
The labels I–III refer to the steps in the construction.

For compactness of notation, we write the divisors as a formal sum. For
instance, if D′ has 2 chips on b and 1 chip on g, we write D′ = 2b+ g.
(1) Divisor D′ is equal to 3a. We fire the set {a} and obtain the new divisor

a+ b+ c.
(2) Divisor D′ is equal to a+ b+ c. We fire the set {a, b, c, e, f, g} and obtain the

new divisor a+ c+ d.
(3) Divisor D′ is equal to a + b + c. We fire the set {a, c} and obtain the new

divisor 2b+ g.
(4) Divisor D′ is equal to 2b+ g. We fire the set {a, b, c, d, g} and obtain the new

divisor e+ 2f .

5 Other notions of gonality

5.1 Stable divisorial gonality

The stable divisorial gonality of a graph G is the minimum of dgon(H) over all
subdivisions H of G (i.e., graphs H that can be obtained by subdividing zero or
more edges of G). The bound for divisorial gonality can easily be transferred to
one for stable divisorial gonality. If G is simple, then the treewidth of G equals
the treewidth of any of its subdivisions. (This is well known.) If G is not simple,
then either the treewidth of G equals the treewidth of all its subdivisions, or G
is obtained by adding parallel edges to a forest (i.e., the treewidth of G equals
1), and we subdivide at least one of these parallel edges (thus creating a graph
with a cycle; the treewidth will be equal to 2 in this case.) In the latter case, the
(stable) divisorial gonality will be at least two. Thus, we have the following easy
corollary.

Corollary 1. The treewidth of a graph G is at most the stable divisorial gonality
of G.

Standard treewidth techniques allow us to transform a tree decomposition
of a subdivision of G into a tree decomposition of G of the same width. (For
each subdivided edge {v, w} replace each occurrence of a vertex representing a
subdivision of this edge by v in each bag.)
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5.2 Stable gonality
Related to (stable) divisiorial gonality is the notion of stable gonality; see [8].
This notion is defined using finite harmonic morphisms to trees.

Let G and H be undirected nonempty graphs. We allow G and H to have
parallel edges but not loops. A graph homomorphism from G to H is a map
f : V (G) ∪E(G)→ V (H) ∪E(H) that maps vertices to vertices, edges to edges,
and preserves incidences of vertices and edges:
– f(V (G)) ⊆ V (H),
– if e is an edge between vertices u and v, then f(e) is an edge between f(u)

and f(v).
A finite morphism from G to H (notation: f : G→ H) is graph homomorphism
f from G to H together with an index function rf : E(G)→ Z>0.

A finite morphism f : G→ H with index function rf is harmonic if for every
vertex v ∈ V (G), there is a constant mf (v) such that for each edge e ∈ E(H)
incident to f(v), we have ∑

e′ incident to v;f(e′)=e

rf (e′) = mf (v)

If H is connected and |E(G)| ≥ 1, then there is a positive integer deg(f), the
degree of f , such that for all vertices w ∈ V (H) and edges e ∈ E(H), we have

deg(f) =
∑

v∈V (G);f(v)=w

mf (v) =
∑

e′∈E(G);f(e′)=e

rf (e′);

see [14, Lemma 2.12] and [3, Lemma 2.3]. In particular, f is surjective in this
case.

A refinement of a graph G is a graph G′ that can be obtained from G by zero
or more of the following two operations: subdivide an edge; add a leaf (i.e., add
one new vertex and an edge from that vertex to an existing vertex).

The stable gonality of a connected non-empty graph G is the minimum degree
of a finite harmonic morphism of a refinement of G to a tree.
Lemma 8. Let G be an undirected connected graph without loops and at least
one edge. Given a tree T and a finite harmonic morphism f : G→ T of degree k,
a tree decomposition of G of width at most k can be constructed in O(k2|V (G)|)
time.

Before proving the lemma, we make some simple observations. Recall that
indices rf (e) are positive integers. We thus have for each edge e ∈ E(T ):

|{e′ ∈ E(G) | f(e′) = e}| ≤
∑

e′∈E(G);f(e′)=e

rf (e′) = deg(f).

Since G is connected and has at least one edge, it follows that mf (v) ≥ 1 for
every v ∈ V (G). Hence, for each vertex i ∈ V (T ):

|{v ∈ V (G) | f(v) = i}| ≤
∑

v∈V (G);f(v)=i

mf (v) = deg(f).
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Proof (of Lemma 8). We build a tree decomposition of G in the following way.
For each edge e ∈ E(T ), we have that |{e′ ∈ E(G) | f(e′) = e}| ≤ k. Call this
number `(e). We subdivide e precisely `(e) times; that is, we add `(e) new vertices
on this edge. Let T ′ be the tree that is obtained in this way.

To the nodes i of T ′, we associate sets Xi in the following way. If i is a node
of T (i.e., not a node resulting from the subdivisions), then Xi = f−1(i), i.e., all
vertices mapped by the morphism to i. By the observation above, we have that
|Xi| ≤ deg(f) = k.

Consider an edge {i, j} in T . Write k′ = `({i, j}). Recall that there are k′ ≤ k
edges of G that are mapped to {i, j}. Suppose these are e1 = {v1, w1}, . . . , ek′ =
{vk′ , wk′} with f(v1) = f(v2) = · · · = f(vk′) = i and f(w1) = f(w2) = · · · =
f(wk′) = j. Let i1, i2, . . . , ik′ be the subdivision nodes of the edge {i, j}, with i1
incident to i and ik′ incident to j. Set Xir = {vs | r ≤ s ≤ k′} ∪ {wt | 1 ≤ t ≤ r}
for r ∈ {1, . . . , k′}. The construction is illustrated in Figure 3. We claim that this
yields a tree decomposition of G of width at most k.

v1

v2

v3

v4

w1

w2

w3

w4

i j

v1
v1 v2 v3 v4v2 v2 v3 v4

v3
v3 v4

v4 v4

w1w1
w2w2w1

w3w3w2w1
w4w4w3w2w1

i ji1 i2 i3 i4

Fig. 3. Example of a step in the proof of Lemma 8. Here k′ = 4. Left: four edges are
mapped to the edge {i, j} by the finite harmonic morphism. Right: the corresponding
bags in the tree decomposition.

For all edges {v, w} ∈ E(G), we have {f(v), f(w)} ∈ E(T ). Suppose without
loss of generality that f(v) has the role of i, f(v) the role of j, v = vr and w = wr

in the construction above. Then v, w ∈ Xir .
Finally, for all v ∈ V , the sets Xi to which v belongs are the following: v is

in Xf(v), and for each edge incident to f(v) ∈ T , v is in zero or more successive
bags of subdivision nodes of this edge, with the first one (if existing), incident to
f(v). Thus, the bags to which v belongs form a connected subtree.

The first condition of tree decompositions follows from the second and the
fact that G is connected. Hence T ′, with bags as defined above, yields a tree
decomposition of G.

Finally, note that each set Xi is of size at most k + 1: vertices in T have a
bag of size k and subdivision vertices have a bag of size k′ + 1 ≤ k + 1. So, we
have a tree decomposition of G of width at most k.

It is straightforward to see that the construction in the proof can be carried
out in O(k2|V (G)|) time. (Use that |V (T )| ≤ |V (G)|, since f is surjective.) ut
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Theorem 3. Let G be an undirected connected graph without loops. Suppose that
G has stable gonality k. Then G has treewidth at most k. Given a refinement G′
of G and a finite harmonic morphism f : G′ → T of degree k, a tree decomposition
of G of width at most k can be constructed in O(k2|V (G′)|) time.
Proof. The degenerate case that G has no edges must be handled separately;
here we have that the treewidth of G is 0, which is equal to its stable gonality.

Suppose G has at least one edge. By Lemma 8, we obtain a tree-decomposition
of G′ of width k in O(k2|V (G′)|) time. Standard treewidth techniques allow us
to transform a tree decomposition of a refinement of G into a tree decomposition
of G of the same or smaller width. Added leaves can just be removed from all
bags where they occur. For each subdivided edge {v, w}, replace each occurrence
of a vertex representing a subdivision of this edge by v in each bag. ut
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