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A B S T R A C T   

Maritime Autonomous Surface Ships have received a significant amount of attention in recent projects. They 
promise a reduction in marine accidents and mitigation of human errors. Most of the ongoing research effort is 
directed toward autonomous navigation and cybersecurity. However, the importance of a machinery plant in the 
engine room that can operate reliably without human attendance is hardly investigated. To prevent failures in 
such systems and extend the interval between required human interventions, it is essential to improve their 
reliability. This paper aims to present a systematic approach to evaluate the reliability of an autonomous system 
under the influence of uncertain disruptions and to predict failure rates of unattended machinery plants. A 
Multinomial Process Tree is used to model failures in the main failure-sensitive components. Hierarchical 
Bayesian Inference is adopted to facilitate the prediction of frequencies of disruptive events and estimate the 
entire system’s failure rate. The outcome of this research enables design strategies to improve the reliability of 
autonomous ships and prevent Fatal Technical Failure during the operation. This allows assessing whether a 
given machinery plant is sufficiently reliable to be used on unmanned ships. A case study is considered to 
demonstrate the application of the presented method.   

1. Introduction 

The concept of autonomous shipping has peaked considerable in-
terest in recent years due to the potential of reducing operational cost, 
removing the difficulties to hire personnel on board, and reducing the 
number of human error-induced incidents in marine transportation. 
According to the safety and shipping review presented by Allianz, be-
tween 75% and 96% of marine maritime accidents are caused by human 
errors [1]. This is mainly due to human exhaustion, the complexity of 
managing operational activities, and making complicated decisions 
based on the overall performance of the systems [2]. Autonomous ships 
should enable a reduction of the number of crew members and facilitate 
human decision-makers by providing reliable operational planning [3]. 
Examples of relevant projects include the Maritime Unmanned Navi-
gation through Intelligence in Networks (MUNIN) project [6], the 
Advanced Autonomous Waterborne Applications Initiative (AAWA) 
project [4], the recently initiated AUTOSHIP project [11] and the 
NOVIMAR project [12] to develop the concept of a vessel train con-
sisting of a manned lead ship and following ships with reduced crew. 
DNV GL has participated in several projects revolving around ship 

automation and autonomous control. The ReVolt project is one example 
of an autonomous ship designed as a proof of this concept [5]. The 
project investigates a wide array of aspects relevant to commercial un-
manned shipping from technical development to safety, legal and eco-
nomic aspects as well as societal acceptance [4]. These existing research 
projects are mainly focused on investigating advanced control systems 
[5-7], navigation, and communication [8-10] in autonomous ships. 
These projects provide several statements regarding the importance of 
researching predictive maintenance of unattended machinery and 
evaluating the performance of unmanned system, but they did not 
develop any predictive models to address these challenges. The ship 
systems contain many components that still require the hard-to-replace 
skills and expertise of experts. The higher dependencies of machinery on 
humans complicate the maintenance and repair of broken equipment in 
unmanned ships. By the absence of onboard experts, the operation will 
be susceptible to emerging risks, which will significantly impact the 
unattended machinery’s performance [4]. These unanticipated events 
will negatively impact the assets’ acceptability, thus hindering the 
widespread deployment of smart operations in future maritime trade. 

The AAWA project states that onboard systems of an autonomous 
ship “need to be resilient to failure and extend maintenance intervals” 
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[4]. The findings of MUNIN include that “Current preventative main-
tenance procedures should be able to ensure availability of unattended 
components during the voyage [8]. According to the MUNIN findings, 
the power plant, propulsion system, and its auxiliaries are the most vital 
systems onboard in ensuring the completion of autonomous missions 
that may extend to more than a month. A systematic approach is needed 
to provide sufficient information about an unmanned engine room’s 
availability and to reliably perform independent missions for 500 hours 
without human intervention [6,15]. As stated by [12], the major chal-
lenge is that the experience with autonomous ships is very limited to 
evaluate the performance of unattended machinery plants (UMP) the 
same as a manned system. Different studies have elaborated the safety 
and risk assessment challenges that autonomous ships will face. A 
system-theoretic process analysis (STPA) was recently proposed for 
hazard identification of UMPs in maritime transportation [18-20]. 
However, the STPA is mainly a qualitative-based approach that cannot 
model the operational uncertainty in an integrated framework. In [23] a 
supervisory risk control is developed for autonomous systems to inte-
grate STPA and Bayesian Belief Network to quantify the outcomes of 
STPA, though the demonstration of the model is limited to constructing 
uncertainty network. Some of the research is devoted to evaluating the 
risks for the general concept of autonomous vessels, identifying concrete 
challenging aspects for the execution of operations, and preventing 
collision accidents [11, 13, 14, 21-24]. 

The above is a selection of recent works investigating the concern of 
reliability engineering and safety issues in autonomous shipping and 
remotely operating system. However, most of the research is mainly 
focused on investigating advanced control systems, navigation, and 
communication in the application of autonomous ships. The high de-
pendency of machinery on humans complicates the maintenance and 
repair of broken equipment in unmanned ships, but the challenge of 
ensuring sufficient reliability of this equipment is hardly addressed, 
making it an important knowledge gap in the development of autono-
mous ships. In the present study, a framework is proposed to enable a 
predictive tool for assessing the reliability of unattended machinery 
plants and estimating the trusted period of the unattended system. As an 
example, in works conducted by [14-16, 23, 33-36], different systematic 
and theoretical approaches are developed to identify the hazards in 
autonomous ships, but the y do not provide a solution for estimating the 
hazards rate in unmanned system. However, if the industry intends to 
convert the existing ships to unmanned vessel (such as AUTOSHIP 
Project [11] and NOVIMAR Project [12]), it is then essential to develop a 
quantitative model that can predict the performance of unattended 

machinery subject to operational uncertainty. The industry needs to 
know how long they can confidently leave out their system without 
human interventions and what the hazard rate of the unattended ma-
chinery to observe critical failures is. The answer to these questions is 
the main concern of present paper. The outcome of this study will help 
the industry with a quantitative representation of how to design or 
reconfigure their current system in a way provides confidence that a 
mission can reliably be executed without human attendance. This article 
provides a method to predict how long the machinery plant can operate 
without human intervention before reaching a reliability threshold for 
the entire system. The presented framework is able to evaluate trust-
worthiness of unattended engine room under different operational sce-
narios and predict the critical disturbances in an unmanned system that 
can put the operation in major risk of disruption. 

To this end, this research aims at demonstrating a proof-of-concept of 
a framework to estimate the reliability of UMPs in autonomous ships. To 
make sure that the machinery plant operates reliably without human 
intervention during a voyage, the developed framework will address the 
modeling of random failures in systems and the prediction of critical 
components’ reliability. The objective is then to understand how the 
frequency of disruptive events of critical components will change 
without human attendance and predict the entire system hazard rate. To 
overcome the lack of reliable failure data and anticipate a system’s 
failure; an integrated probability model is designed based on a Multi-
nomial Process Tree (MPT) and Hierarchical Bayesian Model (HBM). As 
stated by [3], this lack of reliable data is the “Achilles heel” of every 
autonomous system due to the large uncertainties that are involved in 
operation before a failure happens. The lack of informative historical 
data occurs because traditional ships are often designed for a specific 
application and produced in limited series, which creates a slow accu-
mulation of relevant failure data compared to other industries [3]. The 
model is able to consider uncertain factors in the operation that can lead 
to major failures in the system. It can also incorporate the scarcity of 
event data in MASS operation due to lack of historical data. The 
advantage of the model is demonstrated by predicting the period of safe 
operation and estimating the hazard rate function of UMP. To indicate 
the application of the framework, the ship’s main engine is considered as 
the case study, although the method is not limited to this area, and the 
approach can be used in other fields to estimate the reliability of com-
plex autonomous systems. 

Nomenclature 

MASS Maritime Autonomous Surface Ships 
UMP Unattended Machinery Plants 
AAWA Advanced Autonomous Waterborne Applications Initiative 
MUNIN Maritime Unmanned Navigation through Intelligence in 

Networks 
STPA system-theoretic process analysis 
MPT Multinomial Process Tree 
HBM Hierarchical Bayesian Model 
FI Frequency Index 
n Number of components in unmanned system 
θ Unknown parameter in the tree’s Branch 
Ii ith Path in MPT 
Bij Branch in MPT (start from ith Path to jth category) 
CFL Critical failure limit 
iid Independent and identically distributed 
Cjk jth Category in MPT for the kth observation 
C The set for categorical functions in the MPT for all 

activities, C = {C1,C2, ...,Ck}

Kn,k Observation matrix for number of critical and non-critical 
failures; for components j=1,…,n and frequency of k= 1, 
…,k 

K The frequency of observation for each activity (e.g. 
maintenance, repair and etc.) 

φsk Positive number in the function of P(Bij; θ)
αisk Non-negative integers in the function of P(Bij; θ)
bisk Non-negative integers in the function of P(Bij; θ)
P(Bij; θ) Probability of each branch in the MPT 
N Total number of trials in the simulation, t=1,…,N 

P(m(t)
j1 , ...,m

(t)
jk

⃒
⃒
⃒n,C) Updated categorical probability distribution 

P(Ck|θ) probability function for the category Ck 

m(t)
jk number of occurrences for an event in each trail t 

L(n,k|C,θ) Likelihood function in the HBM 
Beta(α,β) Beta prior distribution function  
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2. Problem definition and Solution Strategy 

The focus of this study is on the machinery plant used in merchant 
ships. An overview of the machinery of the power plant analyzed in this 
paper is illustrated in Fig. 1. The engine itself consists of many parts, 
however, not all the components will be weak points if they are left 
unattended. Therefore, a criterion should be established to identify weak 
points in unattended engine rooms and then build a reliability model to 
estimate the frequency of disruptive events and related failure rates. 
Therefore, the frequency of requested maintenance activities will play 
an important role in perceiving the health state of unattended 
machinery. 

Event-data are recognized as a source of failure data representing the 
time, place, and reason that a particular event occurred [3, 10]. The 
important thing with event-data is that it should always include the type 
of action performed as a part of the asset management strategy, such as 
the number of repairs of an item [7, 14-16]. The amount of time an 
engineer spends on specific equipment will give a good indication of a 
system’s health. As recommended by [3], event data will help predict 
failures in the design, especially if there is not much informative his-
torical data for autonomous ships [15, 16, 17]. In general, crew tasks can 
be divided into two major categories that can be used to identify and 
analyze weak points in the machinery plant:  

• Maintaining equipment, i.e., performing planned maintenance 

This action represents performing maintenance of equipment ac-
cording to the planning. Therefore, the frequency of ‘Maintenance’ will 
be used here as a conservative indication of non-critical failure in the 
system. This assumption implies that maintenance intervals are timed in 
such a way that maintenance is executed shortly before minor mal-
functions may occur. Due to a lack of run-to-failure data, this is the best 
available estimate.  

• Repairing equipment, i.e., performing unplanned maintenance 

This action represents performing major repairs before maintenance 
is planned. Therefore, the frequency of ‘Repair’ will be used here to 
indicate a critical failure in the system which leads to immediate 

stopping of the operation. 
The observation process structure for conducting the prediction will 

then be established according to the frequency of maintenance and 
repair activities observed for each component. To better represent the 
solution for the problem, an illustrative example is shown in Fig. 2. Let’s 
assume that from prior observations, it has been discovered that 
“Attached Pump” is the failure sensitive component. Now, the goal is to 
monitor system performance that its nominal condition changes to 
critical failure. For this example, two main paths stem from the top node 
(i.e., nominal condition) and end at the terminal nodes representing 
relevant action (coloured circles). The green circle is defined as 
“Continuing the operation since the system is performing according to 
the specs”. The yellow circle is defined as “Performing non-critical 
maintenance without an urgent stop of the operation”. The red circle 
is defined as “Do major repair and halt the operation as soon as 
possible”. All individual branches in the tree have a chance of occur-
rence. The issue is that not only the branch probabilities of a and b are 
unknown, but also the resulting probability functions are always 
nonlinear. These challenges can be addressed through a model that 
quantifies the uncertainty in which the outcome of each action is 
characterized in a categorical distribution [8, 14]. A Multinomial Pro-
cess Tree (MPT) is a right choice for modelling the categorical problem, 
and a Hierarchical Bayesian Model (HBM) is a strong predicting tool to 
estimate the uncertainty of random variables. The details for adopting 
these two models for confronting the problems will be elaborated in 
Section 3. 

2.1. MPT Model 

An MPT model is built out of a set of j>1 mutually exclusive and 
exhaustive observable categories, C = {C1, C2, …Cj}, and a set θ of S 
latent parameters arrayed in a vector θ = {θ1,θ2,…θs}representing for 
the tree’s branches [13]. Each parameterθsrepresents the probability of 
the occurrence, and (1 − θs) the non-occurrence of latent events. The 
processing tree consists of a single path and a collection of processing 
branches, each terminating in a particular response category [13, 48]. In 
general, an MPT model can haveIjpaths (denoted by Bij, i = 1, 2, …Ij) 
leading to category Cj. Each branch has a probability of occurrence that 
proceed to a new condition for the system, and these probabilities are 

Fig. 1.. General overview of Machinery Plant on-board.  
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required to satisfy a specific functional form underlying parameters [13] 
that lead to a particular form for the branch probabilities, given by 

P
(
Bij; θ

)
= cik Π

S

s=1
θaiks

s (1 − θs)
biks (1) 

Where Bij is the ith branch leading to category Cj, while cij is always a 
positive number, aijsand bijsare nonnegative integers [12,13]. Once the 
tree structure of the model has been established, the category proba-
bilities are given by 

P(C, θ) =
∑Ij

i=1
P
(
Bij; θ

)
(2) 

WhereIjis the number of branches terminating in category j, and j =
1,2,…J. The essential conditions for the final probabilistic structure of 
the model need to satisfy that 

∑

j
P(Cj, θ) = 1, for all processing 

branchesBij, which allows each parameter to vary independently be-
tween [0,1]. 

3. Methodology 

In the present study, a method is developed to adopt HBM as a 
prediction tool for modeling uncertainty involved in an MPT to estimate 
the probability of failure for unattended systems. The model serves as a 
frame of reference to predict failures of unattended machinery while 
there is no support from human intervention. This will enable evaluation 
of system availability connected with random failures, thus predicting 
how long a system can operate without calling for experts’ attendance. 
To this end, a dynamic reliability model is constructed to react as a 
function of failure that is capable of updating itself based on receiving 
feedback from new observed conditions (See Fig. 3). The classic fault 
tree analysis is a static approach dependent on an initial condition for 
performing reliability assessment. Static techniques normally refer to 
open-loop methods since they cannot update themselves if new obser-
vations become available [18-22, 31,33]. In static approaches, failure 
rates cannot be tracked over time, and they are considered as a partic-
ular type of failure that indicates the reliability of system behavior. 
However, by presenting a dynamic model, the failures can be catego-
rized as unwanted events or disturbances. The approach will be an 

Fig. 2.. An illustrative example for real-time risk-based approach on improving the reliability of machinery in autonomous ships.  
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assistive tool for future risk mitigation strategies and provide adequate 
resources to prevent disruptions through the system. 

Accordingly, the framework consists of four main parts; (Step 1) 
Consist of three parts to determine the failure of sensitive components 
for the application of unmanned operation. The number of sensitive 
components (n), subdivision of human activities (C) and the number of 
observations (K) for each human activity will be assigned accordingly. 
(Step 2) Consists of three parts for constructing the process tree for 
failure modeling of the system behavior. The unknown parameters (θ) 
for each branch (B) in the tree will be defined to model branch proba-
bilitiesP(B,θ). The accumulation of all branches for each specific path in 
trees will result in categorical failure probabilities P(C, θ). (Step 3) 
Consist of four parts to construct the hierarchical Bayesian model that is 
used to run MCMC and predict unknown parameters (θ) in the MPT. This 
step will result in estimating relevant posterior distribution functions for 
the categorical failures. Finally, (Step 4) Consist of one part for simu-
lating the model and predicting failure events in the UMP operation. 

The frequencies of human activities that serve as a crucial input for 
the model are defined using a frequency index. Recently, [32] and [7] 
created a Frequency Index (FI) that is used in the risk and reliability 
assessment of autonomous ships. The index is sorted in the frequency of 
an event per year per ship [32]. The FI will be used here to set up the 
reliability strategies and assist in the identification of the 
failure-sensitive components in the system. The range of FI is from 1 to 5, 
where 1 indicates a low frequency and 5 indicates a high frequency as 

defined by [7]. Table 1 shows the definition of each FI for three actions 
based on the number of occurrences per ship per year. To complete the 
definition, Table 2 describes how these frequencies relate to the fre-
quency of activities as defined by the ship’s engineers’ actions. 

For example, the failure-sensitive components of the main engine 
included in the assessment are selected according to their risk index. 
This is done by processing data acquired from several expert engineers 
by Colon [7]. The summary of the results is presented in Table 3. Sub-
sequently, the components are categorized from high risk to low risk, 
and the components with the highest risk index are included in the 
analysis. 

The concern is to estimate the failure events in a group of sensitive 
components in the system and predict the safe operation time that they 
can operate without human intervention needs. To do this, the MPT 
model is constructed to simulate the behavior of the system by 
addressing the categorial actions (i.e., planned maintenance or repair) 
for the unattended failure-sensitive components. To provide confidence 
in how this was done, the remainder of this section is dedicated to a 
detailed discussion of the model. 

The general overview of the MPT model for predicting the functional 
capacity of the system is shown in Fig. 4a. The unknown parametersθ =

{θ1,θ2, ...,θi,θi+1, ...}represent the probability of each processing branch 
P(Bij,θ)that will result in proceeding to the probability of a categoryP(C,
θ). The action categories C = {C1,C2, ...,Ck} are a nonlinear function 
that stands for the behavior of the system. As illustrated, in the MPT 
model, the right-hand side of the terminal categories of set C represents 
critical failures, and the rest of the set describes non-critical failures, and 
the Ck represents the condition that the operation can continue without 
any interruptions. 

Fig. 3.. Developed method for predicting operability of the autonomous system.  

Table 1 
Explanation of Frequency indexes value for expected maintenance performance 
(Values are in occurrence per ship year).  

FI Frequency Checking 
Equipment 

Performing 
Planned 
Maintenance 

Performing 
Unplanned 
Maintenance 

5 Frequent > 1000 > 100 > 10 
4 Reasonably 

Probable 
100 10 1 

3 Somewhat 
Probable 

10 1 0.1 

2 Remote 1 0.1 0.01 
1 Extremely 

Remote 
< 0.1 < 0.01 <0.001  

Table 2 
Explanation of Frequency Index.  

Frequency (Per ship per year) Definition 

>1000 Multiple times per day 
100 Once a day to once a week 
10 Once a week to once a month 
1 Once every 3 months to once a year 
0.1 Once every 5 to 10 years 
0.01 Once in a ships’ lifetime 
<0.001 Once in a fleets’ lifetime  
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The collected event-data from experts, i.e., frequencies of mainte-
nance and repair, are fed to the MPT model. To model the uncertainty, 
the associate directed acyclic graph of the Bayesian Inference network 
for uncertainty modeling of the process is depicted in Fig. 4b. In the 
figure, the circles show the uncertain parameters, double circles repre-
sent the uncertain categorial failure function and the square is related to 
the deterministic numbers. The probability model consists of two main 

steps (3) and (4) as illustrated in Fig. 3; firstly, predicting the failure by 
running the MCMC package for predicting unknown parameters from 
available observation event data, and secondly running Monte Carlo 
simulation for predicting the frequency of required actions (e.g., main-
tenance or repair) based on the posterior distribution derived from 
Bayesian Inference. Generally, a system may need a k number of activ-
ities to keep its components in a reliable condition. Therefore, the 
observation parameter will be a set of frequencies Kn,k for each action 
connected with the related critical component. Parameter n is defined as 
the total number of critical components. Each set of frequencies will 
describe the outcome of the required action as Cjk for a particular 
component j=1,…,n, and kth observation. Node C is the nonlinear 
function for predicting the probability of categorial actions P(C, θ), 
whileθis the unknown and unobservable parameters in the MPT. Then 
Monte Carlo Simulation will set for N trials to populate the posterior 
distribution obtained from MCMC for estimating failure events in each 
consecutive trial. Then the updated frequency of actions in each trial 
will be stored in a set of M(t)

n,k, where t = 1,...,N. The parameter definition 
and the structure of the observations for the proposed model are shown 
in Table 4. 

Table 3 
FI, SI and RI of the main engine according to the expert crews’ actions (taken 
from [7]).  

Maine Engine Frequency Index Check Maintain Repair 

Cylinder cover 4 2 1 
Gear box 3 2 1 
Stern tube Seal Cover 5 3 3 
Piston cylinder 1 2 1 
Manoeuvring system 4 2 1 
Clutch 2 2 2 
Attached pump 3 3 1 
Driving gears 2 2 1 
Turning gear and tuning wheel 1 1 1  

Fig. 4.. Illustrative model for constructing (a) MPT and (b) HBM to enable the evaluation of failure events.  
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The first step in Bayesian Inference is to determine prior distributions 
of unknown parameters of process branches θ. Due to a shortage of 
engineering data and physical information regarding the entire process’s 
details, the best choice is to adopt a model with non-informative prior as 
recommended by [18-26, 41-46]. The non-informative prior is a type of 
data that can be directly derived from sampling distributions. Based on 
the suggestion of previously conducted research such as [27-29], the 
inference starts with non-informative uniform priors that allow the 
process free of bias. Bayes suggested that when nothing is known 
aboutθin advance, let the prior be a uniform distribution [36]. There is 
no informative prior knowledge for branch probabilitiesθin the MPT 
model in the present study, i.e., the model is not supported with either 
physical and engineering information or expert’s judgments and his-
torical data under the same or similar circumstances. The only available 
practical knowledge is the frequency of terminal nodes in the MPT, 
which is related to the final categories for critical or non-critical failures. 
Setting a non-informative uniform prior, means that the prior proba-
bility of occurrence for each unknown parameter θis equally distributed 
in the tree [30]. More importantly, when used for Bayesian updating, a 
non-informative prior does not strongly influence its posterior distri-
bution. This forces the Bayesian update to entirely depend on observa-
tion data [37]. Therefore, the predicted posterior distribution will 
consider the uncertainty in limited available observation data and 
accurately reflect their true nature [37]. The uniform distribution, Jef-
frey’s prior, diffuse gamma, and diffuse normal distribution are the 
typical choice of non-informative distribution for hyper-parameter 
suggested by previous researches [38,43,47]. According to the sugges-
tion made by [29-31], the Beta(α, β) prior distribution used with α = 1 
and β = 1 adopted, that simply represents uniform distribution. The 
uniform distribution is more suitable in inference solutions regarding 
employing external evidence through multinomial distribution. 
Assuming independent branches, the probability for a category Ck is 
given by the summation of branch probabilities terminating to its 
category [39], using Eq. (2) and Bayes’ Theorem: 

P(Ck|θ) =
∑Ik

i=1
cik Π

S

s=1
θaiks

s (1 − θs)
biks (3) 

In the case of categorical data, the multinomial distribution is the 
most general and neutral statistical distribution, which is a neutral 
generalization of the binomial distribution to more than two categories. 
In the multinomial distribution, observations are independent and 
identically distributed (iid) over the categories and each category has a 
parameter representing the probability that a random observation falls 
into it [13]. Therefore, the MPT will express the probability parameters 
as functions of the system behavior for different circumstances and 
re-parametrize the multinomial distribution for an objective situation. 
Each branch of the tree represents a different hypothesized sequence of 
the operation’s processing stages, resulting in a specific response cate-
gory regarding obtained knowledge over the system. The model’s like-
lihood function for the occurrence of disruptive events is simulated by 
inserting these category probabilities into the density function of 
multinomial distributions [40], given by 

L(n, k|C, θ) =
(

n
kj1, ..., kjk

)
∏k

k=1

[
P
(
Cjk
⃒
⃒θ
)njk
]

for Component jth (4) 

Finally, the marginalized posterior distribution P(θ) will be derived 
using Bayes’ Theorem. To perform Bayesian Inference, the open-source 
MCMC WinBugs software Package [29] is employed and predict mar-
ginal posterior distributions. Consequently, considering expected pos-
terior probabilities for each category, the number of occurrences of 
different actions will be defined in a specific period for a total number of 
N consecutive intervals. For the category kth a set of Mn,k can be created 
as shown in Table 4 where m(t)

jk is the number of occurrences for an event 
in each interval [37]; i.e... performing mjk numbers of action, observa-
tion type k for the component type j in tth trails. Therefore, the proba-
bility of occurrence for the frequency of m(t)

jk in the trial step t will be 
derived from the categorial probability distribution given by 

P
(

m(t)
j1 , ...,m(t)

jk

⃒
⃒
⃒n,C

)
=

n!
m(t)

j1 !...m
(t)
jk

p
(
Cj1
)
× ...× p

(
Cjk
)

where
∑N

t=1

×
∑n

j=1

∑k

i=1
m(t)

ij =N × n , t

= 1, ...,N
(5) 

Where the sum of the number of categorical occurrences 
∑N

t=1
∑n

j=1
∑k

i=1m(t)
ij for the whole simulation will end to N× noutcomes, 

no matter if the failure event happens or not. By setting up an objective 
Critical Failure Limit (CFL) according to the expected probability of 
critical and non-critical failures that perceived from predicted m actions, 
the system can be evaluated whether it passes the threshold for sufficient 
reliability. This will allow for estimating the target hazard rate function, 
which is essential in identifying the reliable period of UMP’s operation 
according to the standards of autonomous shipping, i.e. [32]. The 
promising framework will be demonstrated given a case study in the 
ensuing sub-sections. 

4. Setup of the case study 

To demonstrate the application of the framework, the failure- 
sensitive components of the Main Engine (ME) are considered as the 
case study. Table 3 showed which components are included in the 
analysis. The data is collected from short-sea ships in European waters. 
To model the MPT for evaluating the performance of a system, two 
scenarios are considered in this study. For this reason, top roots in the 
two scenarios are considered as “Functional capacity of the entire sys-
tem” and “Functional capacity of individual components” respectively. 

The MPT for the entire system is constructed based on the required 
expert actions for performing Repair (C1) and Maintenance (C2) that 
categorized as C = [C1, C2, C3], while category C3 represents a safe 
operation. The branch probabilities for deviating operation from normal 
condition to critical failure are labelled as θ1→θ2 : C1, the branches for 
observing non-critical failure in the system are labelled as θ1→(1 −

θ2) : C2 and (1 − θ1)→θ3 : C2 respectively. The final path for continuing 
the operation (1 − θ1) × (1 − θ3) : C3 is labelled as safe operation. 
Therefore, the only categorial functions P(C1) and P(C2) will contribute 
to predicting failures (i.e., critical and non-critical conditions) in the 
entire system. The developed MPT model illustrated in Fig. 5 and 
associated categorical functions are given by: 

Table 4 
Parameter definition for adopting in the proposed model.  

Prior Observation for Frequency Matrix Posterior Frequency of Categorial Actions in Trial 1  Posterior Frequency of Categorial Actions in Trial N 

Cj1 Cj2 ⋯ Cjk j = 1, ..., n
⇓ ⇓ ⇓

Kn,k =

⎡

⎣
k11 k12 ⋯ k1k
⋮ ⋱ ⋮

kn1 kn2 ⋯ knk

⎤

⎦
⇐

⇐

⃒
⃒
⃒
⃒
⃒
⃒

Component 1
⋮

Component n

⃒
⃒
⃒
⃒
⃒
⃒ M(1)

n,k =

⎡

⎢
⎣

m11 m12 ⋯ m1k

⋮ ⋱ ⋮
mn1 mn2 ⋯ mnk

⎤

⎥
⎦

(1)
… 

M(N)

n,k =

⎡

⎢
⎣

m11 m12 ⋯ m1k

⋮ ⋱ ⋮
mn1 mn2 ⋯ mnk

⎤

⎥
⎦

(N)
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P(C1 : Repair) = θ1 × θ2

P(C2 : Maintenance) = θ1 × (1 − θ2) + (1 − θ1) × θ3

= θ1 − θ1θ2 + θ3 − θ1θ3

P(C3 : Continue) = 1 −
∑i=2

1
P(Ci)

(8) 

The MPT model for the individual components is constructed ac-
cording to the fact that none of the sensitive components should be 
disrupted when left unattended. Components should be reliable enough 
that the chances for requesting either “Repair” or “Maintenance” below 
a given threshold during the operation. Therefore, the observation 
process is performed based on the accumulated frequencies of repair and 
maintenance of the components. This will help to consider the system 
performance for reliable design and minimize the risk of system failure 
due to unexpected disruptions. The related MPT model illustrated in 
Fig. 6, and associated categorical functions are given by: 

P(Ci : Repair or Maintenance) = θi × θi+9 where i = 1, ..., 8

P(C9 : Repair or Maintenance) =

(

1 −
∑8

i=1
θi

)

× θ18

P(C10 : Continue) =
∑8

i=1
θi(1− θi+9)+

(

1 −
∑8

i=1
θi

)

× (1 − θ18)

(9) 

Where the categorical failures are selected as C = [C1, …C9,

C10]according to the sensitive components listed in Table 3. The arrays 
C1,…C9 account for the failure in the items from “Cylinder cover” to 
“Turning gear and tuning wheel” respectively, categorized as immediate 
Repair or Maintenance, while C10 is the safe condition where the com-
ponents can continue the operation. The branches’ probability of devi-
ating from its nominal condition is labelled as θi→θi+9 : Ci where i = 1,...,
9; and the branches for staying in nominal condition are labelled as 
θi→(1 − θi+9) : C10. 

The observations are entered into the HBM to develop likelihood 
functions and estimate random variables’ posterior distributions. Two 
chains are considered in the MCMC simulation using WinBUGS to 
calculate the probabilities of processing branches θ. Each simulation is 
performed with a total of 300 E+03 iterations to predict the posterior 
distributions. It should be noted that θ is an operational predictive 
parameter for the system that helps to model the associate uncertainty in 
the operation and stand for predicting the behaviour of the system that 
deviates from its nominal condition; i.e. observing the conditions that 
lead to either repair or maintenance. To show the uncertainty involved 
in the frequency of actions for performing repair and maintenance a 
kernel distribution is represented as the probability density function 
(pdf) of random variables. The kernel distribution is useful when a 
parametric distribution cannot properly describe data, or when it is 

intended to avoid making assumptions about the distribution of data 
[49]. 

5. Results and discussion 

Using the model and case study setup that discussed in the previous 
section, it can now analyse the reliability of the investigated main en-
gine. The required actions of the sensitive components in the entire 
system are plotted in Fig. 7. The graph shows the probability density 
functions for the maintenance and repair of the system. It reveals the 
importance of maintenance compared to repair to prevent disruption in 
the operation, since repair is located more to the left side of the figure. 
The more significant the planning for preventive maintenance of sensi-
tive components is the smaller requests for repair actions. The safe 
scenario for the machinery’s overall performance is when the number of 
required repair and maintenance actions moves toward the left tail (i.e., 
low frequency of occurrence) to minimize the risk of operational 
downtime. From the graph, it can be concluded that the most probable 
frequency index for occurrence of Repair is estimated as two, which 
means the chance of critical failure in the system is anticipated to be 
remote, i.e., approximate once in the ship’s lifetime. However, the 
average frequency index of a failure that requires maintenance is four. 
Referring to Tables 1 and 2, this means that the considered main engine 
MAN B&W K98MC-C7-TII has the highest chance to require planned 
maintenance for non-critical failures at least ten times per year, but 
there is a significant chance that such failures will occur more 
frequently. By looking at the collected data from [7], the cylinder cover 
and maneuvering system are more likely to observe a higher rate of 
critical failure events. In contrast, the clutch system, gearbox, and stern 
tube seal cover have needs for more frequent planned maintenance and 
repair. 

The predicted random process for the frequency of disruptionsm(t)(i. 
e., events leading to required Repair and Maintenance for all sensitive 
components) is plotted in Fig. 8. The plots demonstrate the stochastic 
behavior of disruptions. The results plotted in Fig. 8 are a cumulative 
number of repair and maintenance activities per day, i.e., critical and 
non-critical failures in the sensitive components of the main engine. It 
should be noted that the plot represents the number of failure events that 
are derived from the multinomial process. For instance, the “stern tube 
seal cover” has the average number of failure events equal two 
(E[m3(t)] = 2), the categorial probability of the occurrence for this 
failure event for the whole simulation isP(C3) = 9.693%, while the 

average daily failure occurrence is estimated as P(m3

⃒
⃒
⃒
⃒C3) = 1.5e − 04. 

Attached pumps m7(t) and Clutch m6(t) are also prone to interrupt the 

process with the average daily probability of P(m7

⃒
⃒
⃒
⃒C7) = 5e − 5and 

P(m6

⃒
⃒
⃒
⃒C6) = 1e − 4respectively; while the categorial failure probabilities 

over the whole simulation for these two components are estimated as 
P(C7) = 7.52%and P(C6) = 7.930%. To better explain of the number of 
occurrences, the random set of outcomes predicted demonstrates the 
uncertainty of disruptions in the system per day. The simulation is 
compiled for 1000 days of operation, and the cumulative percentages for 
the whole operation predict that 20.97% of the outcomes lead to critical 
failure and 38.67% lead to non-critical failure, while 40.37% leads to 
nominal operation. The results will assist in predicting the hazard rate 
function of a process degradation. The probability of occurrence for each 
set of outcomes per day is illustrated in Fig. 9. Each line shows the 
probability, denoted as a percentage per day, that the main engine ob-
serves critical failure, non-critical failure events. The results prove that 
the chance of observing non-critical failures in the system is always 
higher than critical events, though it will not cause the operation being 
stopped. To predict the most expected interval of disruptions in the 
system, the relative frequency of each event regarding the required Fig. 5.. MPT model for performance analysis of the entire system (the letter ‘p’ 

underlines in each branch represents for the path labels). 
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Fig. 6.. MPT model for performance analysis of individual components (The letter ‘p’ underlines in each branch represents for the path labels).  

Fig. 7.. Probability density function for performing Repair and Maintenance for the sensitive components in the entire system. It should be noted that according to 
the guidelines for Autonomous Shipping presented by Bureau [32], the highest value of FI = 7 represents an occurrence of once per month on one ship, and the value 
ofFI = 6represents for likely to occur once per year on one ship. For the value, less than FI ≤ 5 refers to Tables 2 and 3 described in Section 3.2. 

Fig. 8.. Random distribution of cumulative actions for the repair (i.e. critical failure) and maintenance (i.e. non-critical failure) perceived from categorical failure 
analysis of the MPT model designed for the individual components (Figure 6). 
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actions for repair and maintenance for the entire process is plotted in 
Fig. 10. The categorical probability of occurrence for different combi-
nations of failure outcomes is also presented in the same plot to highlight 
the possibility of each event. The combinatory plot for different possible 
actions demonstrates that the number of requests for planned mainte-
nance of failure-sensitive components is always higher than repairing. 
This confirms that most of the disruptions in the main engine will result 
in non-critical failures. The plot also quantifies how the probability of 
observing both critical and non-critical failures increase by consecutive 
days. However, the first time to failure is expected to occur in specific 
uncertain intervals during the operation. The first interval for observing 
failure is predicted as [31,56] days with an expected probability of 
0.028, while the most expected failure events are estimated to occur 
during days [173, 191] with a cumulative probability of 0.225. The 
possible intervals of the first time to failures’ occurrence are shaded with 
grey colour, demonstrating four major disruption intervals are expected 
to occur in the first 200 days of operation. These separate intervals occur 
mainly due to the previous observations for failure events in the system. 

To define the instantaneous rate of failure for the process at a given 
time, the Hazard Rate Function (HRF), H(t) is predicted for the entire 
system. Four different Critical Failure Limits (CFL) considered observing 
the time of disruptive events from the simulations and defined as CFL =
[

2
100,

5
1000,

3
1000,

2
1000

]

. Each limit represents an allowable threshold; e.g., 5/ 

1000 means that the machinery is safe if it has less than five failures over 
1000 days. If the system exceeds the CFLs, it means that the probability 
that the operation will encounter major disruptions that will halt the 
whole system is unacceptably high. These safety thresholds are selected 
to show the effectiveness of the framework to derive time-depended 
failure rates, and they can be regarded as a real case according to the 
autonomous shipping standards [32]. The challenge is to change the 
operation of the manned vessel to an unmanned level without altering 
the design of the components. Therefore, before making any radical 
changes to a ship’s engine room, the system’s reliability should be 
evaluated to understand whether the existing machinery is reliable 
enough to be left unattended for a longer time. The simulation presented 

Fig. 9.. Probability of process randomness of experiencing non-nominal and nominal operation for different types of disruption (critical, non-critical, and wrong 
malfunction of the main engine’s components). The result perceived from the MPT model for the entire system. 

Fig. 10.. Expected frequency of critical and non-critical along with the categorical probability of occurrence, perceived from the MPT model for the entire system.  
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in Fig. 11 shows that the whole Main Engine is prone to fatal technical 
failures with a probability of occurrence in the range of 0 to 0.025 for 
200 days. This means that the highest probability of failure is between 
[0.020,0.025] in the first 200 days of operation; therefore, the CFL =
2/200 is set up for all critical systems related to the main engine to cover 
all possible rare disruptive events that may affect the performance of the 
current engine. This will help predict the time of safe operation and the 
time of starting degradation in the system that will cause failures. The 
HRFs for all limits are illustrated in Fig. 11. The graphs demonstrate the 
increasing hazard rates for the process. The system’s degradation for all 
safety levels starts from days 95, 88, 84, and 38, respectively. This means 
that the reliability of unattended machinery should always be higher 
than the minimum accepted safety limit, thus keeping the vessel oper-
ational for more extended period without human interaction. According 
to the MUNIN project for autonomous commercial ships “An engine 
should operate reliably at least for 500 hours (equal to 21 days) without 
physical interference from a person”. Within MUNIN objective and 
following the present method, the results of the case study emphasize 
that even if the main engine and associated systems of a UMP are 
designed based on the HFR with a safety limit of 2/1000, then the ex-
pected time for starting the degradation and exceeding the safety 
threshold is predicted at 912 hours (38 days) which is almost twice the 
MUNIN limit. By considering the first 100 days of the operation, the 
expected failure rates for the system’s critical disruptions are predicted 
asE[λ100] = [49.80e − 05, 14.80e − 04, 18.0e − 04, 94.00e − 04] respec-
tively. These results show that the current main engine is reliable 
enough to pass the MUNIN objective for leaving a machinery plant un-
attended. It should note that the current case study is only considered 
the main engine, and the other failure sensitive systems such as auxiliary 
engines are not included. Therefore, the current results do not guarantee 
that the overall engine room meets the reliability threshold. To keep the 
manuscript readable and demonstrate the application of the methodol-
ogy, the complexity of the entire engine room is excluded in the case 
study. 

6. Conclusion and future work 

In this paper, a categorial failure model is developed to predict 

failure probabilities in the system that will lead to interruption of the 
operation of UMPs. First, an MPT model is adopted to model the sys-
tem’s behavior in terms of categorical failure functions with other 
equivalent critical levels. Second, HBM is employed to model the un-
certainty of failure events in the unattended system. The event fre-
quency data were obtained from the expert engineers (Repair, 
Maintenance for the failure-sensitive components). The results are 
summarized for a real case study of the main engine. Based on the 
available data and considered safety threshold, for this particular main 
engine, the critical components of the system are reliable enough to be 
left unattended since the probability of a critical failure in 500 hours of 
continuous operation is below the assigned thresholds. For the present 
case study, 912 hours is estimated as the time until the safety limit zone 
in the system for the CFL=2/1000 is exceeded, which is well beyond the 
MUNIN reliability standard that requires the machinery to operate 
reliably for 500 hours without human interference. It should be noted, 
however, that not only a selection of the ship’s machinery has been 
modeled. 

Due to the scarcity of operational data for autonomous shipping, the 
present work is set up based on the three main assumptions described in 
Section 2 for evaluating the performance of the unattended machinery. 
As the limitation of the current work, the planned maintenance is used as 
an indicator of failure intervals. However, it is conservative since it does 
not represent the actual failures. This limitation can only be solved if 
more actual failure data becomes available. Also, the present model does 
not consider the recovery for the UMP after observing critical failures, 
which will affect the operation conditions. As a part of this model, 
redundancy engineering should also be included to evaluate the sys-
tem’s state after encountering significant disruption while suggesting 
recovery solutions to make it more realistic for the unattended engine 
room. 

The method presented in this study is developed for failure model-
ling of unattended systems and evaluating the whole operation’s func-
tional capacity. This leads to an estimate of how long the machinery 
plant can operate without human intervention before reaching a reli-
ability threshold for the entire system. The presented framework, which 
is one of the first attempts to evaluate UMP’s performance, may bring 
new insights into understanding the trustworthiness of an unattended 

Fig. 11.. Hazard rate function H(t) of fatal technical failure for the entire system.  
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engine room under different operational scenarios and considering the 
impact of redundancy to improve the resilience of the system. The 
method may be used to support decision-making concerning the 
designing engine room for autonomous shipping purposes and per-
forming asset integrity assessment to meet future goals for increasing the 
operation time of unmanned systems. The outcomes of this study 
demonstrated that the method can predict the trusted period without 
human intervention, which is an essential step for improving the reli-
ability of autonomous systems. For future work, the approach can be 
integrated with the practical Prognostic Health Monitoring (PHM) 
techniques and design of Digital Twins (DT) of autonomous systems. To 
build up the recovery strategy, redundancy can be adopted with the 
model to increase the functional capacity of the system for unattended 
operation. To incorporate the uncertainty quantification into redun-
dancy modelling, such as adopting a multi-state system level by inte-
grating HBM with Markov cell-to-cell mapping techniques. Moreover, 
the optimization of a redundant system can be included in the last step as 
a framework for minimizing the associated cost and weight in the 
implementation of k out of n components in the unattended engine 
room. The future work of the authors will include these crucial actions 
for further addressing the challenges of the safety in autonomous 
shipping. 
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[49] Horová I, Koláček J, Zelinka J. Kernel Smoothing in MATLAB: Theory and Practice 
of Kernel Smoothing. Singapore: World Scientific Publishing; 2012. ISBN 978-981- 
4405-48-5. 

M.M. Abaei et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0046
http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0046
http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0046
http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0047
http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0047
http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0047
http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0049
http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0049
http://refhub.elsevier.com/S0951-8320(21)00050-8/sbref0049

	A multinomial process tree for reliability assessment of machinery in autonomous ships
	1 Introduction
	2 Problem definition and Solution Strategy
	2.1 MPT Model

	3 Methodology
	4 Setup of the case study
	5 Results and discussion
	6 Conclusion and future work
	Declaration of Competing Interest
	Acknowledgment
	References


