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Abstract

The growth of renewable energy technologies is leading to energy systems that are more reliant than ever on re-
newables such as Wind and Photovoltaic (PV) power. Despite their obvious bene�ts in terms of sustainability, their
ubiquity poses challenges in the form of maintaining grid stability given their inherent intermittency, making the pre-
diction of power �uctuations more important. Physical models and statistical approaches, especially for nowcasting
(forecasting for 0-6 hours in the future), may have been superseded by Machine Learning (ML) methods in terms of
forecast accuracy (below 3% Root Mean Squared Error (RMSE)) [RSS15, ASMA20, RNE16]. Within ML, Arti�cial
Neural Network (ANN) methods have been shown to perform particularly well for nowcasting. This project focuses
not only on predicting solar and wind meteorology with that level of accuracy, but also on how to best use the
prediction to minimize the cost of maintaining a balanced energy system, i.e. one where electricity consumption
matches production at any moment. Producing accurate power predictions based on Multi-Modal (MM) data and
the extent to which prediction accuracy reduces system cost are challenges to be addressed in this thesis. MM and
End-to-End (E2E) training (with the system cost as the task of an ANN based algorithm) are investigated to this
end. MM learning involves handling information from multiple types of input (audio and visual, for example) for
performing a ML task such as regression or classi�cation [CPZ19]. It is of interest for this project because it has
been shown to outperform other Neural Network (NN) approaches in predicting sudden changes in solar irradiance
[LWL+19]. E2E learning entails an algorithm design which predicts the end goal of a ML process directly from the raw
inputs (directly predicting generation cost rather than a generation forecast in a power system from meteorological
data, for example) [DAK17]. This form of training is pursued because it addresses the true task (cost minimization)
of power plant operators as the focus of the ML algorithm.

The proposed method consists of a NN architecture that, through training, learns to fuse features from MM data
(sky imagery and meteorological sensor data) at intermediate layers of the network in order to predict PV or Wind
generation. This prediction is then used as an input to an Optimal Power Flow (OPF) problem (which seeks to
minimize generation costs in a power system, considering power balance and transmission network constraints to
ensure the twin goals of economic and secure system operation) [eco17]. The proposed model is trained E2E, there-
fore it is informed by the minimized cost solved by the optimization, rather than the intermediate power prediction
(as conventional approaches would involve). In an IEEE 6-bus power system with PV generation, it is found that
a sequential training approach (which trains a NN to predict PV generation and uses the prediction to solve the
OPF) results in costs 10% higher than a perfect forecast, while our proposed MM4-E2E approach achieves costs only
7% higher, a signi�cant improvement. This is explained by the added information about the system cost function
received by the NN during E2E training. The intermediate prediction of PV power by MM4-E2E is also improved,
with 18% lower RMSE by the proposed model compared to a Uni-Modal (UM) baseline, primarily explained by the
enhancement of features from one modality by those of the other through MM learning. In a power system with two
renewable sources (Wind and PV), costs are again reduced through the proposed model compared to a conventional
approach (4% excess cost compared to 7%, measured against a perfect forecast), but power prediction accuracy is
worse, demonstrating that, depending on the cost function, power prediction accuracy and cost minimization are not
necessarily aligned. Again, the improvement in cost optimization is attributed to the information of the cost function
provided to the NN through E2E learning. Power prediction accuracy may have been lost, in this case, because of
the NN not converging to a unique cost minimum during E2E training.

3



Acronyms

AI Arti�cial Intelligence

ANN Arti�cial Neural Network

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

CNN Convolutional Neural Network

DCOPF DC Optimal Power Flow

DL Deep Learning

E2E End-to-End

ED Economic Dispatch

FC Fully-Connected

FNN Feedforward Neural Network

GHI Global Horizontal Irradiance

HPO Hyperparameter Optimization

LSTM Long-Short Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLP Multilayer Perceptron

MM Multi-Modal

MSE Mean Squared Error

MT Multi-Task

MVR Multi-Variable Regression

NN Neural Network

NWP Numerical Weather Prediction

OPF Optimal Power Flow

PV Photovoltaic

ReLU Recti�ed Linear Activation

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

STC Standard Test Conditions

SVM Support Vector Machine

UM Uni-Modal

4



List of Figures

1 A threshold logic unit, or an arti�cial neuron which calculates its output by applying a step function
to the weighted sum of its inputs [Ger19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Plots of common activation functions and their derivatives [Ger19]. . . . . . . . . . . . . . . . . . . 12
3 A multi-layer perceptron network with 2 inputs, 1 hidden layer, and 3 outputs. . . . . . . . . . . . . 13
4 A typical CNN architecture [Ger19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Summary of backpropagation routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6 An under�tted, a well-�tted, and an over�tted model for the approximation of a function [sl14]. . . . 15
7 Learning curve depicting a NN being over�tted to the training set. . . . . . . . . . . . . . . . . . . . 15
8 The e�ects of a learning rate set too low (a), too high (b), or just about right (c). . . . . . . . . . . 16
9 All sky image captured by the camera at 11:00 on 01 May 2021 [Del22] . . . . . . . . . . . . . . . . 20
10 Dynamic load pro�le of household demand [BDE17] . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
11 Power curve of Vestas V112-3.45 turbine [win21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
12 Procedure followed for predicting GHI from imagery using a NN. . . . . . . . . . . . . . . . . . . . . 23
13 Pre-processed all sky image captured by the camera at 11:00 on 01 May 2021 [Del22] . . . . . . . . 24
14 The bottom half of the sky image from 11:00 on 01 May 2021 in 3 forms; (a) the pre-processed

image as shown in Figure 13, (b) the result of applying average pooling to this image (c) the result
of applying max pooling to the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

15 The CNN-base architecture investigated in Case Study 3. . . . . . . . . . . . . . . . . . . . . . . . . 26
16 Procedure followed for predicting GHI from meteorological sensor data using a NN. . . . . . . . . . . 28
17 The FNN-base architecture used for predicting GHI from meteorological sensor data. . . . . . . . . . 28
18 Proposed multi-modal learning architecture MM4 to predict GHI from imagery and meteorological

data, using a CNN for feature extraction from the imagery (and no NN for extracting features from
the meteorological data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

19 MM2 Multi-modal learning architecture to predict GHI from imagery and meteorological data, using a
CNN for feature extraction from the imagery and a FNN for feature extraction from the meteorological
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

20 Procedure followed for minimizing system cost from imagery and meteorological sensor data using
a NN. As before, GHI (and/or Wind power) is predicted, however, it is now only an intermediate
prediction. The model is trained on minimizing cost. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

21 The expected variation of system cost based on renewable power forecast accuracy. This plot is for a
system with 145 MW of load demand and 25 MW of PV generation. . . . . . . . . . . . . . . . . . . 34

22 Proposed MM4-E2E architecture to minimize system cost, using the MM4 architecture for PV fore-
casting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

23 Proposed MM4-PVWind-E2E architecture to minimize system cost, using the MM4 architecture for
PV forecasting and the FNN-base architecture for wind forecasting. . . . . . . . . . . . . . . . . . . 35

24 MM4-PVWind architecture to predict renewables generation, using the MM4 architecture for PV
forecasting and the FNN-base architecture for wind forecasting. . . . . . . . . . . . . . . . . . . . . 36

25 Line diagram of IEEE 6-bus system with PV (PPV ) and Wind (PW ) generation. The limits on
thermal generation are labelled at their resective nodes. Each of the lines has a limit of 100 MW. . . 37

26 Power curve of Vestas V112-3.45 turbine [win21] and a tanh approximation of it. . . . . . . . . . . . 38
27 MSE on test set for 10 di�erent trainings of CNN-base to predict GHI from images of either 64×64

or 128×128 resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
28 The combination of three images captured on 01 May 2021 using pixel-wise averaging. . . . . . . . . 41
29 MSE on test set for 10 di�erent trainings of CNN-base to predict GHI from either three or one previous

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
30 MSE on test set for 10 di�erent trainings of CNN-base and CNN-Alex. . . . . . . . . . . . . . . . . . 42
31 MSE on test set for 10 di�erent trainings of FNN-base to predict GHI from either three or one previous

instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
32 MSE on test set for 10 di�erent trainings of CNN-base (which predicts GHI from images) and FNN-

base (which predicts GHI from meteorological data). . . . . . . . . . . . . . . . . . . . . . . . . . . 44
33 MSE on test set for 10 di�erent trainings of CNN-base (which predicts wind power from images) and

FNN-base (which predicts wind power from meteorological data). . . . . . . . . . . . . . . . . . . . 44
34 MSE on test set for predicting GHI over 10 di�erent trainings of MM2 and MM4. . . . . . . . . . . . 45
35 MSE on test set for 10 di�erent trainings of MM4, using either bilinear pooling or concatenation for

joint representation of the features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
36 MSE on test set for 10 di�erent trainings of a persistence model, UM-base1, UM-base2, and MM4. . 46

5



37 MSE on test set for 10 di�erent trainings of a persistence model and UM-base2 (with GHI as a feature). 47
38 MSE on test set for 10 di�erent trainings of a persistence model, UM-base2, MM4, and MM4-Shallow. 47
39 System cost on test set for 10 di�erent trainings of four di�erent algorithms. . . . . . . . . . . . . . 49
40 Excess system cost compared to power forecast error. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
41 System cost on test set for 10 di�erent trainings of four di�erent algorithms. . . . . . . . . . . . . . 51
42 Excess system cost compared to power forecast error. . . . . . . . . . . . . . . . . . . . . . . . . . . 51
43 (Left) Theoretical variation of system cost against PV power prediction for a system with Pd = 145MW

and PPV,act
g = 25MW (repeated from Figure 21) and (Right) Minimized system cost by the MM4-E2E

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
44 (Left) The expected variation of system cost based on PV and Wind power forecast accuracy. This

plot is for a system with Pd = 145MW and PPV,act
g = PW,act

g = 25MW. (Right) Minimized system
costs predicted by MM4-E2E on test set against PV and Wind power forecast accuracy. . . . . . . . 53

45 Mean error gradients over all parameters within each FC layer of MM2 during training (left), and the
same plot with all except the output layer FNN-pred F4 (right). . . . . . . . . . . . . . . . . . . . . 55

46 The expected variation of system cost based on PV and Wind power forecast accuracy. This plot is
for a system with Pd = 145MW and PPV,act

g = PW,act
g = 25MW, with P f,lim

r reduced to 50%. . . . 57

6



List of Tables

1 Overview of the methodology, including the steps conducted to answer the respective research ques-
tions and the expected outcomes at each stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Variables involved in DCOPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 CNN-base architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 FNN-base architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 CNN-fe architecture used for feature extraction from imagery within the MM4 neural network. . . . . 30
6 FNN-pred network used for predicting GHI from multi-modal feature vector fimg within MM4 NN. . . 31
7 FNN-fe architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8 Variables involved in DCOPF-Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9 Additional variables involved in DCOPF-Redispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10 A summary of the case studies conducted, the research questions they address, and their respective

aims. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11 Values of essential parameters (�rst described in Tables 8 and 9) used in the optimization problems. . 38
12 Meteorological features used for predicting GHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
13 Training and testing settings for Case Study 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
14 Average and Standard Deviation of MSE on predicted GHI from the 10 trials presented in Figure 27. . 40
15 Average and Standard Deviation of MSE on predicted GHI from the 10 trials presented in Figure 29. . 41
16 CNN-Alex architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
17 Average and Standard Deviation of MSE on predicted GHI from the 10 trials presented in Figure 30. . 42
18 Average and Standard Deviation of MSE on predicted GHI from the 10 trials presented in Figure 31. . 43
19 Average and standard deviation of MSE on predicted GHI from the 10 trials presented in Figure 32. . 44
20 Average and standard deviation of MSE on predicted wind power from the 10 trials presented in Figure

33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
21 Average and standard deviation of MSE on predicted GHI from the 10 trials presented in Figure 35. . 45
22 Average and standard deviation of MSE on predicted GHI from the 10 trials presented in Figure 35. . 45
23 Average and standard deviation of MSE and %RMSE on predicted GHI over 10 trials presented in

Figure 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
24 Average and standard deviation of MSE on predicted GHI from the 10 trials presented in Figure 37. . 47
25 Average and standard deviation of MSE on predicted Wind Power over 10 trials presented in Figure 36. 48
26 Average and standard deviation of system cost Csys from the 10 trials presented in Figure 39. . . . . 49
27 Average and standard deviation of system cost Csys from the 10 trials presented in Figure 41. . . . . 51

7



1 Introduction

Sustainable energy systems of the future will be, in many regions, heavily reliant on Photovoltaic (PV) power, Wind
power, or both. These forms of energy generation are inherently uncontrollable due to their dependence on the local
weather. Therefore, to ensure a balanced electrical system, predicting the supply is essential. Conventional Numerical
Weather Prediction (NWP) models and statistical methods such as Autoregressive Moving Average (ARMA) and
Autoregressive Integrated Moving Average (ARIMA) do not always provide the most accurate forecasts, especially in
the short term, which has led to increased application of Arti�cial Intelligence (AI) and Machine Learning (ML) to
these predictions in recent years [RNE16]. The ability of Arti�cial Neural Network (ANN) approaches, in particular,
to capture the sharp changes in outputs compared to inputs with the help of intelligent training yields improved
performance. Adaptive and robust NN training methods improve the capability of the network to learn complex
relationships between input and output variables.

This thesis focuses not only on power prediction, but also the task of energy system optimization. The true task
for power plant and transmission network operators is not necessarily the prediction of PV/Wind power, but the
economic dispatch that minimizes generation costs given the predicted power. This opens the viability of End-to-End
(E2E) learning to minimize costs. The E2E approach combines weather prediction scenarios and an Optimal Power
Flow (OPF) calculation in a non-sequential way, such that the optimization informs the prediction [DAK17]. In
addition, the use of Multi-Modal (MM) data sources, namely imagery and sensor data, to improve E2E forecasts is
investigated in this study. The application of MM deep learning, which entails the combined use of data of di�erent
types (e.g. imagery and audio) to make predictions, to solar or wind forecasting is not yet ubiquitous. Its use has
been argued as a method to improve the prediction of severe short-term �uctuations that statistical and other ANN
approaches might miss [LWL+19]. The aim is to understand how to best combine MM data and E2E learning in
order to accelerate the energy transition by reducing the cost of operating renewable energy systems.

The report is structured as follows. Chapter 2 de�nes the central research focus, the research questions and their
respective sub-questions. This is followed by Chapter 3 which is a literature review focused on weather prediction,
machine learning, and energy system optimization methods relevant for the thesis. Chapter 4 describes the procedures
used, and the case studies designed to answer the research questions. Chapter 5 contains further details about the
settings of each case study, and their results. Those results are discussed in Chapter 6, along with an outlook on
further work; and the thesis is concluded with a summary Chapter 7.
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2 Research Objective

This thesis is focused on improving the current E2E approaches to intra-hour power balancing by incorporating MM
data sources for the intermediate power prediction, building on previous work done by the likes of Dariush Wahdany
[Wah21], who focused on E2E learning for a power system with Wind generation. This work is extended by, �rstly,
including MM data (imagery and meteorological sensor data, as opposed to only the latter), and secondly, testing on
systems with PV generation and systems with both PV and Wind generation. The main research question can thus
be formulated as follows:

How can multi-modal data be used to improve end-to-end learning for forecasting renewable generation and
minimizing costs in a power system with renewables such as PV or Wind?

The above cannot be answered directly, and is instead dissected into a list of sub-questions that are addressed over
the course of the thesis. The conclusions from each of the following are used to ultimately answer the main research
question.

1. How can Uni-Modal (UM) data, i.e. data of a single type such as imagery, be e�ectively applied to predicting
PV power?

(a) Which meteorological data are appropriate for prediction power injection?

(b) How many previous time instances should be included to predict the future?

(c) What are the requirements on using imagery, regarding computational load?

(d) How can a neural network be designed to predict Global Horizontal Irradiance (GHI) from the individual
modalities?

(e) How do the prediction performance compare for the di�erent modalities, to each other?

2. How can the multiple modalities be e�ectively combined to predict wind or PV power, and which data would
enable this combination?

(a) What are the methods for combining these modalities?

(b) How can a neural network be designed for MM learning to predict PV power?

3. How does multi-modal learning outperform trivial uni-modal learning baselines?

(a) Does MM learning produce more accurate power predictions than combining multiple uni-modal predictions
in an ensemble method?

(b) How much more or less accurate are predictions using MM learning compared to the ensemble method?

(c) How do these compare to a persistence prediction of GHI?

4. How does pairing multi-modal learning and E2E learning advance optimized cost prediction?

(a) How does a MM E2E trained model compare with a uni-modal sequential (conventionally trained) model
in terms of system cost minimized via an Optimal Power Flow (OPF) problem?

2.1 Overview of Methodology

The research is conducted in a stepwise manner to address the research questions above. The steps are outlined in
Table 1 and further described thereafter.
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Table 1: Overview of the methodology, including the steps conducted to answer the respective research questions
and the expected outcomes at each stage.

Stage
Research Questions

Addressed
Methods Outcomes

1 RQ1
- Data acqusition and pre-processing
- Literature review
- Training and testing di�erent models

- UM power forecasting baselines
- Assessment of predictions from imagery
and sensor data

2 RQ2 and RQ3
- Literature review
- Training and testing di�erent models

- Proposed MM model for PV/Wind
power forecasting
- Assessment against UM baselines

3 RQ4
- Data acquisition and pre-processing
- Implementation of OPF
- Training and testing di�erent models

- Proposed MM-E2E model for cost
minimization
- Assessment against sequentially trained
models

The stages listed above are further described as follows.

1. Stage 1: the aim of this stage is to design NN-based models which make predictions of PV or Wind power from
UM data (imagery or metorological sensor data). To this end, �rstly, data of the two modalities are acquired
and pre-processed (so that each dataset has the same temporal resolution, for instance). Using literature
review, comparable existing models, and experiments, a variety of model con�gurations (for either modality)
is compared. The best performing models in terms of prediction error are considered as UM baselines for the
subsequent steps of the methodology.

2. Stage 2: here, MM learning for predicting PV or Wind power is investigated. The data used is the same as in
stage 1. MM methods are again studied through literature and experiments to yield the proposed MM model
for predicting power. This model is assessed against the UM baselines in terms of forecast error to answer
RQ3, quantifying the bene�t (or lacktherof) of MM learning for PV/Wind power prediction.

3. Stage 3: at this stage, E2E learning is to be incorporated with MM learning. E2E learning here involves solving
an OPF based on predicted power generation. To this end, energy load data is acquired and pre-processed.
Then, the OPF formulation is implemented as di�erentiable layers in the NN. The proposed MM-E2E model
is trained (to directly minimize system cost from imagery and sensor data) and tested, and the results are
compared to sequentially trained models (which are trained to predict PV/Wind power, and the predictions are
used outside the NN to solve the OPF).

Much of the literature used to study the questions at each stage of the methodology is summarized in Chapter
3. These stages are described in further detail in Chapter 4. The case studies used to investigate di�erent models,
and their results, are given in Chapter 5.
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3 Background

This chapter describes basic theory behind, and the current state of the relevant aspects of weather and energy
system prediction for this thesis. Section 3.1 brie�y summarizes several methods for weather prediction, followed by
Sections 3.2 to 3.4 which focus on deep machine learning methods for making predictions. Aspects related to energy
system optimization are described in Sections 3.5 to 3.8.

3.1 Weather Prediction

Several methods are used for forecasting renewable energy generation and the meteorology relevant to renewables.
These range from conventional applications of NWP models, to ML techniques and ANNs. Although this thesis
project will focus on the latter, it is worthwhile describing the methods generally used for solar and wind predictions.
The applicability of these methods depends on factors such as the time for which the forecast is required and the
data available. The main types can be summarized as follows [ASMA20, RNE16]:

� Persistence forecast: ideal for very short- and short-term forecasts, this method essentially assumes that recent
very data will be repeated in the near future. It is mostly used as a tool to benchmark other methods against.

� Physical models: these NWP models combine a large amount of meteorological data and atmospheric modeling
equations to retrieve solar and wind predictions. They are more suited to long-term, large-scale predictions,
and often miss the very short-term �uctuations in energy.

� Statistical techniques: these make extensive use of time series data from the past and real-time generated
data. The appeal of these methods is that they are far less computationally intensive than Deep Learning (DL)
approaches while also performing better than NWP models in short-term forecasts. Within this �eld there
exist methods with widely varying complexity, from basic time series methods like ARIMA to conventional
ML techniques such as support vector machine Support Vector Machine (SVM) and Multi-Variable Regression
(MVR).

� Deep learning: DL is an unsupervised form of ML which �nds patterns in its inputs to make predictions.
Amongst others, the Convolutional Neural Network (CNN) is a commonly used architecture for forecasting
which is particularly relevant [Edu20]. It usually consists of a convolutional layer (responsible for feature
extraction), a pooling or dimension reduction layer (which aggregates features), and a Fully-Connected (FC)
layer (used to transfer the learned distributed feature representations and perform classi�cation).

ML methods (including DL) are commonly applied to nowcasting (forecasting for up to a few hours ahead),
short-term forecasting (for up to a few days ahead), and aiding NWPs with certain tasks [ASMA20]. They do not
require any physical understanding of meteorological dynamics, and instead rely on resolving patterns from large
datasets for which the prediction target is known [Due19]. The data used are commonly meteorological data in the
form of time series, measuring variables such as air temperature, cloud opacity, humidity, surface pressure, and so
on. In addition, particularly for solar power, ground-based sky imagery is useful in nowcasting. These are images
taken of the sky from the ground. The ML algorithm perceives patterns from training sets of meteorological and/or
visual data, which it uses to make predictions on new samples for which the solar power is not known. In general,
the independence from rules and the understanding of governing equations allows ML approaches to have several
advantages over conventional modeling methods [Ger19]:

1. When applied to problems with for which model solutions require �ne-tuning or long lists of rules, an ML
algorithm can simplify code and perform better than the model approach.

2. In problems with �uctuating environments or situations, ML solutions will adapt to new data

3. ML solutions can yield insights from large amounts of data that may not have been noticed through conventional
models.

A study by Sabzehgar et al. has compared the performance of a number of techniques for making solar fore-
casts [SAR20]. Namely, a NN-based model is compared with SVM and MVR approaches. Using each of the three
statistical methods, the authors aim to forecast solar irradiance based on weather parameters. This forecast is then
used to predict the amount of generated power in a smart residential microgrid. The same data is used for the three
approaches: meteorological data for prediction from the National Renewable Energy Laboratory, and electrical power
data (for error estimation) from their local (San Diego) energy provider. The accuracy of the forecast models is
evaluated and compared using Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE). The study
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found the NN-based method to be signi�cantly more accurate than the other two methods (MVR and SVM). It
performed better in the prediction of solar irradiance and of power generated. Sobri et al. also conducted a review of
the state of solar forecasting techniques [SKKR18]. They reach a similar conclusion about the improvements of NN
models as compared to traditional methods. These �ndings are primarily explained by the ability of NNs to model
complex and non-linear functions, as its vast number of neurons can capture patterns relatively better than MVR or
SVM approaches.

Section 3.2 focuses on deep learning theory which is most relevant for this thesis.

3.2 Deep Learning

Deep Learning refers to the �eld of ML using of ANNs, or arti�cial neuron-based architectures that mimic the networks
found in brains. These tend to be much more e�ective with increasingly large datasets than other ML methods. Each
arti�cial neuron has a set of inputs and a single output. The output is calculated by applying a function, known as
an activation function, to the weighted sum of its inputs (plus a bias term). The weights are variable, which allows
the network to improve during training by updating the weights and biases. Equation 1 summarizes the function of
a neuron.

output = f(

ninputs∑
i=1

wi · xi + b) (1)

Here f is the activation function, ninputs is the number of inputs to the neuron, xi is each input value, wi is the
weight attributed to each input, and b is the bias term. Figure 1 visualizes the function of a type of arti�cial neuron
called a threshold logic unit, where the activation function is a step function.

Figure 1: A threshold logic unit, or an arti�cial neuron which calculates its output by applying a step function to the
weighted sum of its inputs [Ger19].

The step function, along with other commonly used activation functions are illustrated in Figure 2.

Figure 2: Plots of common activation functions and their derivatives [Ger19].

The properties of the activation functions are central to producing an e�ective ANN. Training the ANN requires
`backpropagating' gradients calculated on the outputs of the neurons (further described in Section 3.3), which are
directly dependent on the activation function. A few pertinent properties of the shown functions are mentioned
below.

� Step: the simplest one mentioned, but the lack of derivative means that this function is not e�ective when
working with backpropagation (further described in Section 3.3) and gradient descent.
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� Sigmoid: well-de�ned and di�erentiable everywhere, with non-zero derivatives; this makes it easy to calculate
gradients. However, the diminishing derivatives further from the origin make this function susceptible to the
vanishing gradients problem (further described in Section 3.3).

� Tanh: continuous and, like Sigmoid, di�erentiable everywhere, but also may su�er from vanishing gradients.

� Recti�ed Linear Activation (ReLU): continuous but not di�erentiable at the origin (which can hinder gradient
descent). It is very fast to compute and does not have a maximum output (which aids gradient descent), and
it does not have saturating gradients like Sigmoid or Tanh.

Neurons are commonly compiled in parallel in layers, which are then connected sequentially to produce a neural
network architecture. When the neurons of a layer are connected to each of the neurons in the layers above and
below it, the layer is called fully connected or dense. A Multilayer Perceptron (MLP) (also known as Feedforward
Neural Network (FNN)) is composed of exclusively FC layers. A basic MLP, with 2 inputs and 3 outputs, is shown
below.

Figure 3: A multi-layer perceptron network with 2 inputs, 1 hidden layer, and 3 outputs.

While MLPs only use FC layers, there are other types of NN such as the CNN, which use convolutional layers in
addition to FC layers of neurons.

Convolutional Neural Networks

CNNs, unlike FNNs, use convolutional and pooling layers in addition to FC layers, making them more suited to
certain applications, such as learning from visual data [NRB20]. A generic architecture is visualized in Figure 4; the
convolutional and pooling layers are useful at constructing higher dimension feature maps from the inputs, which are
used by the FC layers to predict a label. The feature maps, through training, extract information from the imagery
that is most relevant to the prediction.

Figure 4: A typical CNN architecture [Ger19].

When dealing with a 2-dimensional image, for instance, a convolutional layer within the CNN will contain a set of
kernels (2-dimensional maps with sizes smaller than the image) which pass over the width and height of the image.
As a kernel passes over a dimension, the dot product of the kernel and the image pixels is computed. The passing of
each kernel over the image, therefore, generates an activation map or feature map [KLB+18]. The feature maps for
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all the kernels are stacked to produce the output of the convolutional layer. The weights of each of the kernel matrices
are learnable parameters for the network during training. The kernel size, stride (steps taken in each direction by the
kernel), and padding (pixel distance from the edge of the image that is not covered by the kernel) are hyperparameters.

The pooling layers have the e�ect of `shrinking' the image by aggregating input pixels, most often by replacing
a set of pixels by their maximum or mean value. This practice reduces the number of parameters of the network,
therefore reducing the computational load of training it and the risk of over�tting (over�tting is described in Section
3.3). Again, the kernel size and stride are hyperparameters.

Using an architecture such as the one shown in Figure 4 will make an image smaller and smaller (because of
the pooling layers) as it progresses through the forward pass, while also making it `deeper' (due to each convolutional
kernel adding feature maps). After the last pooling layer, the feature stack is �attened to one dimensional, and
then passed through a FNN (the FC layers shown in the �gure), the last layer of which makes a prediction. A
particular advantage of CNNs is that once it has learned to recognize a pattern in one location, it can recognize it
in other locations as well. This is not immediately possible with an FNN [Ger19]. In the context of forecasting PV
power generation from imagery, as an example, the CNN's pattern recognition may enable it to associate certain
visual patterns with objects like clouds and others with the sun. In principle, given enough data with high enough
resolution, the NN can also di�erentiate between types of clouds. The recognition of such objects is correlated with
moments of relatively high or low solar irradiance through training, and therefore the NN `learns' to predict solar
power from an unseen image by recognizing the level of solar visibility or cloud coverage.

3.3 Training and Testing

Supervised learning for an ML algorithm follows a common methodology regardless of the chosen algorithm. To �t
an algorithm for the task at hand, given a set of data, commonly the data is split into a training set and a test set.
The former contains samples and their respective labels that the NN can learn from. The test set is used to check
the performance of the trained NN by comparing its predicted labels to the `true' labels.

During training, usually a labeled sample from the training data is provided as input to the algorithm, and the
prediction it makes is compared with the label. The error between the two is calculated (using a loss function suited
to the problem), and the parameters of the model are updated in order to reduce this error. The weight updates can
be calculated using gradient descent (or one of its variants), an optimization technique which seeks to �nd the values
of the weights that minimize the cost. In an ANN, where there are several layers of neurons and perhaps millions
of parameters to update, an algorithm called backpropagation enables a computationally e�cient weight update by
avoiding repeated gradient calculations [RHW86]. It is summarized in Figure 5 and described thereafter.

Figure 5: Summary of backpropagation routine.

Brie�y, it works as follows:

1. During the forward pass, each the inputs sample (x(1×k)) is passed through the layers of the ANN with
parameters θ. Here, k is the number of features in each input sample. The outputs and weights at each layer
are preserved.
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2. The error between the network's output (y(1×1)) and the true label (y
(1×1)
true ) is computed using a selected loss

function. This is L(y, ytrue).

3. The error contributions of each parameter in the output layer, as well as the hidden layers below are calculated
using partial derivatives ( ∂

∂θL(y, ytrue)). These gradients are calculated in reverse starting from the output layer
and applying the chain rule going backwards. This is the process to which the algorithm's name is attributed.

4. The error gradients are used by an optimization algorithm to update the weights such that the loss is minimized.
Notable methods are gradient descent, Stochastic Gradient Descent (SGD), Adam, and AdamW; these are
described in the following section.

5. The steps above are conducted for all training samples, which constitutes one training epoch. It is common
practice to also make predictions on a set of samples reserved as a `validation' set, from which the NN weights
are not updated. Monitoring the accuracy of predictions on the validation data allows the optimal model
con�guration to be found over dozens of epochs without under�tting or over�tting the training set (these are
explained ahead).

If a ML model performs exhibits a low prediction error with the training data, but then predicts with higher error
on unseen samples (i.e. does not generalize well), it is considered to be over�tted to the training set. This can be
a consequence of using a model that is too complex (too many trainable paramaters) for the size of the available
training set [Ger19]. On the other hand, an under�tted model is too simple (not enough trainable parameters) to
adequately recognize patterns in the data and therefore does not perform well enough on training or test data. This
can be understood visually from Figure 6 which shows an example of under�tted, well-�tted, and over�tted models
for approximating a given function.

Figure 6: An under�tted, a well-�tted, and an over�tted model for the approximation of a function [sl14].

Over the course of training a NN, as the model parameters are updated to better predict the training data, the
model is initially under�tted. If it is trained for too many epochs on the same data, it will eventually be over�tted.
An over�tted model will have a signi�cantly higher error when predicting unseen samples than it does on the seen
(training) samples. Continuously testing it (at every epoch) on a smaller set of data that it has not learned from
allows the onset of this phenomenon to be noticed, as visualized in Figure 7.

Figure 7: Learning curve depicting a NN being over�tted to the training set.
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This type of plot, known as a learning curve, shows the performance of a NN in terms of its prediction error. The
error on the training set continually decreases as the model parameters learn from it, however, it soon gets worse at
predicting the validation samples. This demonstrates over�tting; it can be avoided through hyperparameter choices
and the thoughtful design of the architecture, as well as by halting the training before the divergence of training and
validation error (known as early stopping). Early stopping can be implemented, for instance, by tracking whether the
validation error has decreased over the last 5 epochs, and if not, then training is stopped.

Optimizers

Minimizing the loss during training can theoretically be done directly by solving a matrix equation. When applying a
MSE loss function to �t a linear regression, for instance, the error of predictions on a training set X with m samples
is measured as follows:

MSE(X) =
1

m

m∑
i=1

(θTx(i) − y(i))2 (2)

Here, θ represents the trainable parameters of the linear regression, therefore θTx(i) is the prediction at instance
i, and y(i) is the true value at instance i. Minimizing this function yields the following closed-form solution for θ.

θ̂ = (XTX)−1XT y (3)

Equation 3 provides a solution that minimizes the loss for a training set, but in practice, this can be very compu-
tationally expensive to compute when dealing with many features. Matrix inversion and singular value decomposition
(an alternative method to solve the above equation using pseudoinverses instead) can be between O(n2) and O(n3)
to compute, where n is the number of features [Ger19]. In order to �nd minima and avoid the computationally
expensive solutions, the gradient descent algorithm can be employed. Considering the same example of an MSE loss
for training a linear regression, gradient descent would work as follows:

1. MSE(X, θ) is computed for a training set X and parameter vector θ.

2. The variation of the loss due to a change in each of the parameters, measured by the partial derivatives
∂

∂θj
MSE(X, θ) is computed. These gradients are collected in the vector ∇θMSE(X, θ).

3. In order to decrease the loss, the parameters should logically be shifted in the direction opposing their partial
derivatives, therefore they are updated by subtracting the gradient multiplied by a step ν (also called the
learning rate):

θupdate = θ − η · ∇θMSE(X, θ) (4)

The learning rate is an important hyperparameter when training, as it can cause the algorithm to converge very
slowly (η too low) or repeatedly overshoot the minimum (η too high). These phenomena are illustrated in Figure 8.

Figure 8: The e�ects of a learning rate set too low (a), too high (b), or just about right (c).

Given a convex loss function and su�ciently low learning rate, gradient descent is guaranteed to �nd the op-
timal parameter vector. However, this process may be slow because the entire training set X is used to update
the parameters. SGD improves on this by using only a single random sample of training data on each iteration of
the parameter update. This makes the `path' to the minimum more chaotic, but as long as the chosen samples
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are independent and identically distributed, the algorithm will reach the vicinity of the minimum. How close it
reaches depends on the number of allowed iterations. Another similar approach, mini-batch gradient descent, uses a
set of random samples rather than just a single one. This makes its path to the minimum less erratic than that of SGD.

More recent developments include the Adam optimizer, which uses varied learning rates for di�erent parameters
[KB14]. AdamW improves on it further by including weight decay to the parameter update, which seeks to avoid
over�tting by penalizing high parameter weights and has been shown to speed up training [GH18, LH17].

Normalization

An issue that commonly occurs while training NNs, and was eluded to previously, is that of vanishing gradients. This
occurs when the error gradients computed for all or many neuron parameters are 0 or close enough to 0 that the
weight update does not yield improvements in the network's predictive performance. The choice of activation func-
tions is central to avoiding this phenomenon; the ReLU and Leaky ReLU functions have been shown to be e�ective
in this sense thanks to their nonzero derivatives throughout the positive domain (positive and negative domain for
Leaky ReLU) [XWCL15]. Here, batch normalization and inputs normalization are explained as two techniques to
mitigate vanishing gradients.

Batch normalization addresses the high outputs of hidden layers which may contribute to vanishing gradients. When
dealing with layers with sigmoid or tanh activation functions, high values within the matrix of |x| = |(Wu + b)|
(where x is the output of the layer, u is its input, W is the weight vector, and b is the bias) would cause the
gradients to approach 0. This leads to the vanishing gradients problem and slow learning. With batch normalization,
a layer is included between the hidden layers of a network that normalizes the output from the layer below it. This
is advantageous because it ensures the input u to a hidden layer above a batch normalization layer will only contain
values within a controlled range, thereby avoiding the vanishing gradients [IS15]. In addition to alleviating the risk
of vanishing gradients, batch normalization has also been shown to reduce a NN's sensitivity to weight initialization
(described further in the following section).

Another pertinent mechanism to avoid vanishing gradients is inputs normalization, or the scaling of data before
it enters the network. Min-max normalization and standardization are two common procedures for scaling inputs to
ML algorithms. The former ensures that the entire data set is bounded by 0 and 1, by applying the following formula
to each point x:

xnorm =
x− xmin

xmax − xmin
(5)

Standardization, on the other hand, ensures a unit variance but not a bounded data set by applying the following
(where µ is the mean of the data set and σ is its standard deviation):

xstd =
x− µ

σ

When working with NNs, since they expect input values between 0 and 1, min-max normalization is generally
preferred [Ger19].

Initialization

Another aspect to consider while training NNs is the weight initialization of the neurons. It has been shown that
to avoid vanishing or exploding gradients, the variance of the outputs of each layer should be equal to the variance
of its inputs (during the forward pass), and the variance of the gradients should be equal before and after �owing
through a layer (in the backwards pass) [GB10]. This can be explained by considering the sample during the forward
pass as a signal �owing towards the output; to make a sensible prediction, the signal should not die out, nor should it
be uncontrollably ampli�ed. Glorot et al., along with other authors, found that (depending on the chosen activation
function) the weights of a layer should be initialized by randomly sampling a uniform or normal distribution whose
parameters are dependent on the number of inputs (fanin) and neurons (fanout), or the average of these two
(fanavg) [HZRS15b]. For instance, for ReLU activation, the suggested initialization (dubbed He Initialization after
Kaiming He) is a random sampling from a uniform distribution with lower limit −r and upper limit +r, where:

r =

√
3

fanavg

17



While this initialization strategy is developed for the ReLU activation function, similar ones have been devised for
other functions such as sigmoid or tanh [LBBH98].

3.4 Multi-Modal Learning

MM learning involves combining di�erent data sources (or modalities) to predict a single concept, e.g. combining
meteorological data and sky imagery to forecast GHI [LWL+19]. Meanwhile, Spiess et al. have demonstrated the
applicability of the same modalities (sensor data and sky imagery) to predict an optimal control policy for battery
operation [SBPK18]. That research investigated the use of DL and MM data to minimize the stress on a battery
that is used to stabilize PV power �uctuations. The core appeal of MM, in general, is the enabling of learning from
heterogeneous data streams in a manner that the data from either modality enhance each other.

An overview of the primary steps in MM learning is provided by Baltrusaitis et al. [BAM19]. Particularly rele-
vant for this project is the approach to representing/fusing modalities (representation and fusion are sometimes
conducted as separate stages). This refers to the distillation of each modality to features which can then be com-
pared with one another. Coordinated representation is a method suited for a maximum of two modalities, whereby
the modalities would be separately projected to an abstract space within which the similarity of the modalities would
be maximized. The similarity can be quanti�ed by di�erent metrics, e.g. Euclidean distance in the abstract space.
Joint representation, on the other hand, relies on applying a common function to all the modalities together to
produce a single representation vector. The `function' in this context is often an ANN. Within joint representation,
a few di�erent fusion methods can be distinguished [LAJ15, Mor20].

� Early fusion: here, the raw or pre-processed data from di�erent modalities are fused (most simply by concate-
nation) before being used as inputs to an ML model. A challenge of this method is the loss of data from one
or more of the modalities that may be incurred in order to make common ground before fusion. Therefore it is
not well suited to using imagery and sensor data as modalities, since the latter cannot be directly concatenated
with the pixel values of an image.

� Late fusion: instead of combining the data before they are input to a model, when utilizing late fusion, a
prediction is made separately from modality, and these predictions are fused. There are several choices for how
to fuse the predictions; a basic approach such as a weighted ensemble could be used, or a more complex ANN
one such as a CNN or FNN.

� Intermediate fusion: late fusion introduced the idea of employing a multimodal layer to make predictions. This
MM layer could also instead be implemented lower in the NN, as a hidden layer. The position within the NN
of this layer (the layer index) therefore must be selected, keeping in mind that a MM layer can be implemented
multiple times, and at di�erent indices for the di�erent modalities.

Fusing di�erent modalities through joint representation, in practice, requires combining di�erent feature tensors
for each instance. This can be done simply by concatenating the features. Another suggested approach (for two
modalities) is bilinear pooling, where the outer product of the two feature tensors produces the MM feature tensor
[ZCP+17]:

hmm =

[
h1

1

]
⊗

[
h2

1

]
=

[
h1 h1 ⊗ h2

1 h2

]
(6)

Here hmm is the MM feature tensor, h1 is the feature tensor for the �rst modality, and h2 is the feature tensor
for the second. A potential disadvantage of this method is that it can result in a very large and imbalanced feature
tensor (if h1 is n dimensional and h2 is m dimensional, then hmm is (n+1) · (m+1) dimensional). However, it has
also been argued that imbalances in the tensor allow the network to identify important features more quickly.

The variety of methods described above opens a range of questions regarding design choices since there is no
universally preferred approach. The choice is dependent on factors such as the problem context (what the model is
tasked with predicting), types of modality (the available data), and computational requirements. It should be noted
that, particularly during training, the approaches to normalization become doubly important to consider when dealing
with MM learning. Fusing modalities, potentially at di�erent stages of the NN, must not cause the unintentional
loss or ampli�cation of features due to mismatched feature scaling.

3.5 Energy Systems

Energy systems generally consist of loads (which demand energy), generators (which supply energy), transmission
lines (either AC or DC) and distribution networks [eco17]. At times storage units are also included, which can act
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as loads or generators depending on whether there is a surplus or shortage of generation. The frequency of the grid
by which loads and generators are connected must maintain stability at all times, meaning that consumption and
generation need to be balanced in real-time. The increasing inclusion of renewable generation in European grids is
accompanied by increasing stochasticity, especially on the very short term (minutes to hours) due to the inherent
intermittency of renewable energy. Energy mismatches in real-time can be alleviated by exchanges in the intraday
spot market, where market participants can trade energy at up to 15 minute frequency [EPE22]. This form of trading
motivates the research into forecasting techniques for energy generators to run optimal schedules - for example, in
terms of minimal overall generation cost, speci�cally minimal cost of renewable generator operation, etc.

Economic Dispatch (ED) is the problem of determining the generation levels of the committed generators in a
power system to satisfy the load demand at the lowest possible cost, while considering the limits of the generating
units. Due to the nature of the cost functions of conventional thermal generation plants, the problem is canonically
nonlinear. Optimal Power Flow (OPF) formulations extend ED problems by including power balance and transmission
network constraints. These are therefore nonlinear problems which determine the control variables and state variables
that minimize generation costs and ensure secure system operation [eco17]. The DC approximation of this problem,
the DC Optimal Power Flow (DCOPF), given in Equations 7a through 7d, simpli�es the formulation by ignoring
reactive power balance and line power losses. The variables are described in Table 2.

minimize C(pg) =
∑
iϵG

ci(p
g
i ) (7a)

subject to −pg + pd + g(θ) = 0, (7b)

h(θ) ≤ s, (7c)

pg−i ≤ pgi ≤ pg+i , ∀iϵG. (7d)

Table 2: Variables involved in DCOPF

Variable Description
θ Vector of voltage angles of all nodes

g(θ) Real power �ow functions at all nodes
pg Vector of power injections at each node
cgi Cost of power generation at node i
pd Vector of power withdrawal at each node

pg−i Lower limit of generation at node i

pg+i Upper limit of generation at node i
h(θ) Real power branch �ow functions
s Vector of limits for real power branch �ows
G Number of generator nodes

Equation 7a represents the total generation cost from all generation units, which is the objective to be minimized.
The power balance constraint (Equation 7b) ensures that the power injected and withdrawn at each node is balanced.
Constraint 7c limits the power �ow in each branch of the network due to the thermal limits of the lines. Finally,
Equation 7d constrains the level of power generation at each generator node to its respective lower and upper limits.

3.6 E2E learning

End-to-end learning is a form of ML model training where the model is trained (or `learned') based on the ultimate
task of the user, as opposed to an intermediate output such as a loss function [DAK17]. In the context of this
research, this implies learning based on the ultimate value of an optimization operation (such as a monetary cost)
following a model prediction, rather than learning based only on the prediction. Applying E2E learning to energy
system dispatching involves the evaluation of a stochastic programming problem following the prediction of time
series variables such as wind power or energy demand. Let the variables and task be labeled as follows:

� Inputs to the predictive model are called X. These can include energy load in the past, meteorological data, or
other variables useful for predicting energy load.

� Output of the prediction is y. This can be energy load for the current problem description.
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� Optimized actions are Z. These are the results of the stochastic programming problem, and describe the energy
scheduling to solve the economic dispatch and unit commitment problem for the power plants.

� Task loss is a measure of the performance of the learned system, in this case, it can be considered the system
cost of the optimized actions Z.

The planned actions Z are the result of optimizing the problem described by Equation 8 (called the generator
problem by Donti et al.):

min
z∈R24

24∑
i=1

Ey∼p(y|x;θ)[γs[yi − zi]+ + γe[zi − yi] +
1

2
(zi − yi)

2]

s.t. |zi − zi−1| ≤ cr,∀i

(8)

This stochastic formulation is minimizing task loss (due to under- (γs) and over- (γe) deployment penalties) while
quadratically regularizing Z as close to y (energy demand) as possible. The planned actions Z* are calculated using
three ways and the task loss of each of the three results is compared:

1. Use an ANN to �rst forecast y for upcoming day based on the previous day's load, temperature, and other
meteorological variables. Then solve the generator problem for Z* using y such that task loss is minimized.
This is the implementation of E2E learning.

2. Use an ANN to �rst forecast y for upcoming day based on the previous day's load, temperature, other mete-
orological variables. Then solve for Z* just based on Root Mean Squared Error (RMSE) (i.e. last term of the
generator problem) of the di�erence between Z and y.

3. Use an ANN to �rst forecast y for the upcoming day based on the previous day's load, temperature, other
meteorological variables. Then solve for Z* just based on the cost-weighted RMSE of the di�erence between
Z and y. Here, the training samples are periodically reweighted given their task loss.

The results of method 1 produce the lowest mean and variance of task loss, indicating the value of E2E learning.
The same paper describes a similar implementation to battery arbitrage, whereby the user (a battery operator) must
decide on how much to charge and discharge for each hour of a day based on energy price predictions. Compared
to conventional RMSE loss learning, task-based learning produced somewhat lower losses and more reliability (less
variance).

3.7 Forecasting Data

Imagery Dataset

All sky images captured at TU Delft were used for making predictions of the GHI at the site [Del22]. The dataset
consists of images captured at a minute-frequency between 01 May 2021 and 24 February 2022. The images are
captured between 04:00 and 23:00 for every day of the dataset. Each image is in full color, with a resolution of
1536x1536. An example of an image, taken on 01 May 2021 at 11:00 is provided in Figure 9.

Figure 9: All sky image captured by the camera at 11:00 on 01 May 2021 [Del22]

20



Meteorological Dataset

A variety of meteorological variables can be used to predict GHI using ANNs. Demirtas et al., for instance, use air
temperature, humidity, and barometric pressure to forecast solar radiation 10 minutes ahead of time [DYSC12]. For
this project, meteorological data were acquired from Solcast, and all the available variables were included as features
used for forecasting, which are listed below, along with their respective units [Sol21]:

� Time [seconds]: the moment of the day when the instance was measured.

� Air Temperature [◦C]: measured at 2 meters above surface level.

� Cloud Opacity [%]: the attenuation of incoming sunlight due to cloud. Varies from 0% (no clouds) to 100%
(full attenuation of incoming sunlight).

� Relative Humidity [%]: measured at 2 meters above ground level. Relative humidity is the amount of water
vapor as a percentage of the amount needed for saturation at the same temperature. A value of 50% means
the air is 50% saturated.

� Wind Direction [◦]: measured at 10m altitude.

� Wind Speed [m/s]: measured at 10m altitude.

� Precipitable water [kg/m2]: a measure of the precipitable water of the entire atmospheric column.

� Surface Pressure [hPa]: air pressure measured at sea level.

Further details about each parameter and its measurement and processing can be found in the documentation of
the European Centre for Medium-Range Weather Forecasts database [ECM22].

Load Demand

For modeling load demand, the dynamic pro�le of a normal household in Germany is used [BDE17], which is available
at 15 minute temporal resolution. This is assumed to be a similar pro�le to that of a Dutch household. The pro�les
for 01 January and 01 June are shown in Figure 10.

Figure 10: Dynamic load pro�le of household demand [BDE17]

As can be expected for Germany, the energy consumption of a household is higher in the winter than in the
summer. It is a challenge in renewables-based energy systems to match the peaks in demand to intermittent supply.

3.8 Renewable Power Generation

Thus far the computational background for forecasting weather patterns has been described. Ultimately using these
forecasts in energy systems requires informing power calculations from the forecast conditions. This is done for
both PV and wind power generation at di�erent stages of the thesis; the basic theory for such power conversions is
described below.
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PV Power

The power output of a solar panel based on GHI can be simply estimated using the power rating of the panel.
Equation 9 provides the calculation, where PPV is the output of a panel in W and PRated is its power rating (in W )
at Standard Test Conditions (STC) [Isa21].

PPV =
GHI

1000W/m2
× PRated (9)

This is a simpli�ed formula for calculating the output and does not consider a variety of factors, for instance,
the e�ect of panel temperature on its output. Since this thesis project is focused on developing a methodology for
cheaper operation of renewable energy systems, this simpli�ed approach to power conversion is acceptable and does
not have a signi�cant e�ect on the investigation.

The panel used for the project is one that is commonly installed in Northern Europe, the LG NeON BiFacial 440. It
has a rated power of 440W and an area of 2.2m2 [LG 21].

Wind Power

The power generation from wind turbines has a somewhat less straightforward relationship with wind speed. Turbines
have a `cut-in' speed, the lowest speed at which they generate electricity, a `rated speed', which is the lowest wind
speed at which the turbine achieves its rated power, and �nally a `cut-out' speed, beyond which the turbine is
disconnected and produces no power in order to protect its components. Between the `cut-in' speed and rated
speed, the power generated follows a theoretically cubic relationship with wind speed. In practice, the curve is not
exactly cubic, to ensure smooth operation of the turbine as it transitions between non-operation, its non-rated wind
speed region, and rated wind speed region. For the Vestas V112-3.45 turbine, which has been used for farms in the
Netherlands and the rest of Northern Europe, the power curve is provided in Figure 11 [owe22].

Figure 11: Power curve of Vestas V112-3.45 turbine [win21]

The wind speed in this context refers to the wind speed at the hub height of the turbine. Measurements,
including the ones used for this thesis, are normally available for a height of 10m. The wind speed pro�le in a
statically neutral atmospheric boundary layer (as is assumed for this setting) is described by Equation 10, where M1

is the speed at height z1, M2 is the speed at height z2, and z0 is the surface roughness. The latter depends on
the type of surface, for instance, open sea or built environment, and is approximated by the Davenport-Wieringa
roughness-length classi�cation [Stu95]. A higher value for z0 implies a rougher surface.

M2 = M1 ·
ln (z2/z0)

ln (z1/z0)
(10)

The Vestas turbine, for example, has a hub height of 84m; applying Equation 10 implies that it faces higher wind
speeds than those measured at 10m.
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4 Methodology

To reiterate, this project aims to investigate the suitability of multi-modal learning for end-to-end learning for power
system cost minimization. This is carried out in a stepwise fashion (as outlined in Table 1) - �rst, the use of MM
learning compared to UM learning for `sequential' prediction (training to predict solar power output measured by
GHI) is analyzed (to answer research questions 1, 2, and 3). Then, research question 4 is addressed by using the
best-performing UM or MM algorithm for E2E learning. The e�ectiveness of E2E training for minimizing system
costs is compared to that of sequential training.

4.1 Uni-Modal Baseline Models

To ultimately develop a MM Learning model for forecasting power output and grid scheduling, it is worthwhile �rst
describing how a UM model is designed and implemented. This section describes the use of ANNs to predict GHI
from sky imagery and meteorological data individually.

4.1.1 Forecasting from Imagery

Imagery data described in Section 3.7 is used to forecast GHI by employing an ANN. The work�ow for forecasting
from imagery is summarized schematically in Figure 12.

Figure 12: Procedure followed for predicting GHI from imagery using a NN.

The model training procedure was described in Chapter 3 using Figure 5. The design of the NN is conducted
through literature review and experiments, this is detailed in later sections. Before training a model, the imagery is
pre-processed primarily to reduce computational load; this process is detailed below.

Imagery Pre-Processing

As can be seen in Figure 9, the sun and clouds are easily visible, which would (in concept) provide features for a ML
method to use to predict irradiation or solar power. Additionally, there are buildings and trees visible in the images -
since these are constantly in the same positions throughout the period of interest and thus throughout the dataset,
their presence should not interfere with the prediction.

To address research question 1, speci�cally 1(c), the following requirements are placed on the imagery dataset
due to the computational resources available:

1. The size of the original dataset must be limited to 100 GB due to the disk space available.

2. The size of the pre-processed dataset must be limited to 7 GB due to the limited memory that can be consumed
when subsequently processing the dataset in Python using NumPy.

The �rst requirement above is easily satis�ed since the dataset is 30 GB in its entirety. The second is satis�ed
by converting the images to grayscale from color. This conversion may also improve predictions as grayscale imagery
has been shown to be more e�ective for object recognition using CNNs than colored imagery [BLC+16]. In addition,
the resolution of the imagery is reduced from 1536×1536, also in order to satisfy the second requirement. A case
study was designed to compare the predictive performance of the model when using 64×64 resolution imagery, as
compared to 128×128. The results are presented in Case Study 1 in Chapter 5. The pre-processed image of 64×64
resolution captured on 01 May 2021 at 11:00 is provided in Figure 13.
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Figure 13: Pre-processed all sky image captured by the camera at 11:00 on 01 May 2021 [Del22]

The pixel values in images conventionally range from 0 (darkest) to 255 (brightest). As mentioned in Chapter 3,
ANNs perform better when dealing with feature values between 0 and 1 [Ger19]. Therefore, the images are normalized
using min-max normalization before being used as inputs to the ANN.

Time Horizon of Predictions

Since this project is focused on nowcasting, and given the highest frequency of data available is once every 10 minutes
(as mentioned in Chapter 3), this is also the frequency chosen to make predictions. However, another related question
is: how many data points in the past should be used to predict for the future? This is addressed through Case Study
2 in Chapter 5, where the performance of using three previous images (measured over 30 minutes) vs. only a single
image to predict GHI 10 minutes in the future is compared. Both Case Study 1 and 2 are conducted using a CNN
architecture for making the GHI prediction. The design of this network is discussed below.

Neural Network Architecture

As mentioned in Chapter 3, CNNs are adept at �nding patterns and making predictions from images. Therefore it is
chosen to develop a CNN to forecast GHI from the visual dataset. At this stage, there are a variety of design choices
to be made; a CNN architecture can be feasibly any NN containing convolutional layers. A typical architecture will
contain stacks of convolutional layers with an activation function, followed by a pooling layer, and optionally a batch
normalization layer [Ger19]. A FNN with multiple FC layers (each with a speci�ed activation function) is stacked on
top to make predictions. If a single value is to be predicted, as is the case in this study, the �nal layer will have only
1 output. A generic CNN is illustrated in Figure 4. For this project, certain aspects of the architecture were �xed
based on literature and best practices. These are detailed below:

� Choice of activation function: the ReLU function is chosen for the convolutional layers and the FC (except
for the �nal layer) due to its low computational requirements, faster training time, non-saturating nature which
prevents vanishing gradients, and ubiquity in image interpretation applications [Beh03, KSH12]. In the �nal
layer, a Sigmoid activation is used to ensure the output is within [0, 1], since the network is trained to make
min-max normalized predictions.

� Convolutional layer hyperparameters: there is a number of hyperparameters that can be set di�erently for
each convolutional layer in the network. Their choices are primarily justi�ed by an underlying principle of CNNs,
that the image should shrink but get `deeper' as it moves forward through the network [Ger19]. The depth
(or number of channels) initially for a colored image is 3 (RGB) and for a grayscale image is 1; increasing the
channels enables the network to notice more abstract features. Simultaneously, the image size should decrease
in order to reduce the number of overall features; therefore the most important ones are selected to be used
by the FNN at the top of the network. Thus it is advised that the size of the image generally decreases as it
progresses through the forward pass. The following hyperparameters were set based on this philosophy, and
taking inspiration from established architectures such as LeNet and AlexNet [LBBH98, KSH12].

� Kernel size: by convention, the kernel size is set to odd numbers. It is suggested to avoid using very large
kernels (especially when applied to relatively low resolutions such as 64×64) as this risks losing pertinent
features. Additionally, using multiple layers with smaller kernels is less computationally expensive than
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using a single layer with a large kernel [Ger19]. Therefore 3×3 kernels are used for the convolutional layer;
this also matches the choice made in AlexNet for layers dealing with comparable image sizes.

� Number of output channels: The number of channels (c) of a grayscale input image is 1, as mentioned
above, so a 64×64 resolution image is represented as a tensor with dimensions 64×64×1 (din × din × c).
A convolution layer makes the image deeper by adding channels, and this number of output channels (c′)
can be selected. As a result, a kernel of dimension k × k × c× c′ is applied to the input image, yielding
an output feature map of dimension dout × dout × c (the calculation of dout is described below).

� Stride and padding: setting these in a coordinated way makes it easy to control the size of the image
(not its depth) that is output from a layer relative to its input. Equation 11 de�nes this relationship.

dout =
[din + 2p− k

s

]
+ 1 (11)

Here dout is the output size (for a square image, this is the length of the side of the image), din is the
input size, p is the padding, k is the kernel size, and s is the stride. To preserve the edges of the image, a
low padding should be used; therefore p = 1 is chosen. In addition, dout = din can then be achieved with
s = 1. This is the con�guration used for all the convolutional layers except the �rst one, where s = 2 in
order to signi�cantly reduce the image dimension as it enters the network.

� Pooling layers: the two common methods for pooling are average pooling and max pooling. The former
entails pooling pixels together by replacing them with one pixel of their average brightness. The latter does
the same, but instead using the maximum brightness amongst the chosen pixels. Max pooling has been shown
to be generally more e�ective for image classi�cation [Cho17]. This can be understood through Figure 14.
The contrast between light and dark pixels, particularly around edges, is greater when using max pooling. By
replacing several pixels with their mean value, average pooling will `smoothen' the edges and textures present
in an image, losing potentially crucial features. Max pooling preserves such details and can therefore more
e�ectively extract extreme features. The pooling layers also include the hyperparameters of kernel size and
stride. To reduce the image size as it progresses through the network, a kernel size of 2×2 and a stride of 2
were chosen. This con�guration (which is also employed in Figure 14) decreases the length of the side of the
image by half when a pooling layer is applied.

Figure 14: The bottom half of the sky image from 11:00 on 01 May 2021 in 3 forms; (a) the pre-processed image as
shown in Figure 13, (b) the result of applying average pooling to this image (c) the result of applying max pooling
to the image.

Evidently, many factors can be �ne-tuned to con�gure the network architecture. A number of them, such as
the hyperparameters of the convolutional and pooling layers listed above, can be optimized through Hyperparameter
Optimization (HPO). This normally involves conducting either a grid search or a random search algorithm to �nd the
hyperparameter con�guration that leads to the best performance of the network. In order to avoid settling into local
optima during HPO, the ANN should be initialized according to the practices described above; then the network is
already con�gured in a theoretically appropriate way, although it has not been optimized for the speci�c problem.
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Due to time constraints, a systematic HPO was deemed out of the scope of this thesis, however, a case study was
conducted to justify the size of the CNN that is ultimately used.

Case Study 3 (with the results presented in Chapter 5) compares the performance of a relatively simple CNN
with 3 convolutional layers (hereafter referred to as CNN-base) to a more complex architecture (CNN-Alex) with 5
convolutional layers and 3 FC layers that mimics AlexNet [KSH12]. The architecture with better performance in this
comparison is selected to continue with for the remainder of the investigation. CNN-base is depicted in Figure 15
and Table 3.

Figure 15: The CNN-base architecture investigated in Case Study 3.

Table 3: CNN-base architecture.

Layer Type Input Size Kernel Size Stride Padding Activation Output Size
C1 Convolutional 64×64×1 3×3 2×2 1×1 ReLU 32×32×8
P2 Max. Pooling 32×32×8 2×2 2×2 0×0 - 16×16×8
C3 Convolutional 16×16×8 3×3 1×1 1×1 ReLU 16×16×32
P4 Max. Pooling 16×16×32 2×2 2×2 0×0 - 8×8×32
C5 Convolutional 8×8×32 3×3 1×1 1×1 ReLU 8×8×16
P6 Max. Pooling 8×8×16 2×2 2×2 0×0 - 4×4×16

Flatten
Layer Type Input Size Num. of Neurons - - Activation Output Size
F7 Fully Connected 256×1 64 - - ReLU 64×1
F8 Fully Connected 64×1 1 - - Sigmoid 1×1

Training is conducted using batches, where, as described in Chapter 3, the outputs (and prediction losses) of a
batch of samples is calculated before updating the model parameters. The training process of this network from a
batch GHIB of images and paired GHI labels is described as follows.

1. GHIB has a batch size SB , therefore the batched input has dimension SB × 64× 64× 1. Each image in this
batch (of dimension 64× 64× 1) is passed through the convolutional layer, followed by ReLU activation, and
�nally a max. pooling layer.

(a) Each neuron in the convolutional layer applies the function 12 to the input image.

zi,j,k = bk +

f−1∑
u=0

f−1∑
v=0

fn′−1∑
k′=0

xi′,j′,k′ · wu,v,k′,k with

{
i′ = i× s+ u
j′ = j × s+ v

(12)

zi,j,k is the output of the neuron at row i, column j in feature map k of the convolutional layer l. s is the
stride, considered identical for the horizontal and vertical directions for all the models in this thesis, and
f is the height and width of the receptive (again considered identical as 64 due to the square images).
fn′ is the number of channels in the image (fn′ = 1 in this case). xi′,j′,k′ is the output of the neuron at
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location row i′, column j′ in feature map k′ in layer l-1. bk is the bias applied to feature map k, in layer
l. Finally, wu,v,k′,k is the connection weight between a neuron in feature map k of layer l and its input
located at u, v in feature map k′.
With the hyperparameters given in Table 3, this results in a feature mapping of dimension 32 × 32 × 8
from the �rst convolutional layer C1.

(b) The ReLU activation function is visualized in Figure 2 and expressed in Equation 13.

ReLU(z) = max(0, z) (13)

This is applied to every output zi,j,k of a layer l as it enables fast computations and avoids vanishing
gradients. Therefore the dimension of the feature mapping is unchanged.

(c) The max pooling layer, as depicted in Figure 14 is subsequently applied and results in a feature mapping
of dimension 16× 16× 8.

The above three steps (convolution-activation-pooling) are applied two more times, resulting in a 4 × 4 × 16
mapping.

2. The feature space is then �attened from 4× 4× 16 to 256× 1 and used as input to a fully-connected network.
Layer F7 applies the ReLU activation to the weighted sum of the neuron inputs, as expressed in Equation 14.

zi = ReLU(
∑
k

wk,i · zk + bi) (14)

Here zi represents the output of neuron i in layer l, zk is the value of input feature with index k, and wk,i is
the connection weight between feature k and neuron i. In layer F7, for example, kϵ[1, 256] and iϵ[1, 64].

3. Layer F8 applies a similar procedure to the output features of layer F7, however applying the Sigmoid activation
instead, given by Equation 15.

z =
1

1 + e(
∑

k wk·zk+b)
(15)

Here, since only 1 neuron is employed, there is a 1×1 output which represents the GHI predicted by the NN,
GHIpred.

4. GHIpred is compared to the true GHI at that moment, GHItrue, using a loss function such as the MSE (given
in Equation 2). For a training batch GHIB , the MSE can be rewritten as follows:

MSE(GHIB) =
1

SB

SB∑
i=1

(GHIB,i
pred −GHIB,i

true)
2 (16)

Using Mean Absolute Error (MAE) as a loss function, on the other hand, would mean computing Equation 17
for the batch GHIB .

MAE(GHIB) =
1

SB

SB∑
i=1

|GHIB,i
pred −GHIB,i

true| (17)

5. With one of the above loss functions computed for a training batch, the backpropagation algorithm described
in Chapter 3 is applied for updating the model parameters (weights and biases in each layer). The AdamW
optimizer alluded to in Chapter 3 is employed to �nd the parameters that minimize the loss given by either
Equation 16 or 17. The NN then applies steps 1 to 5 for the next training batch, until the entire training set
has been used for updating the model parameters. This signi�es the end of one training epoch. This iterative
process is continued for several epochs, shu�ing the batches every time until an optimized model is found. At
the end of every epoch, the loss on a validation set is also calculated, to track the performance of the NN.
To avoid over�tting, early stopping is applied here, whereby training is halted if the validation loss does not
decrease for 5 consecutive epochs.

6. During testing, the NN that has been learned on the entire training set is �xed (model parameters are no longer
updated using backpropagation), and the predictive performance is quanti�ed using a loss function such as MSE
or MAE on the test set. Therefore Equations 16 or 17 are applied to the test set to compute MSE(GHItest)
or MAE(GHItest).
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4.1.2 Forecasting from Meteorological Data

The other modality that is employed in this thesis is numerical data measured by meteorological instruments. The
procedure for predicting GHI is summarized in Figure 16.

Figure 16: Procedure followed for predicting GHI from meteorological sensor data using a NN.

Eight di�erent variables (listed in Section 3.7) are used. Computationally, since each of these is just a single
�oat per instance, there is no strain on the requirements alluded to in Section 4.1.1. The samples are normalized as
before, using min-max normalization.

Neural Network Architecture

Forecasting from meteorological data is conducted using a FNN (hereafter referred to as FNN-base). Its architecture
is depicted schematically in Figure 17 and detailed in Table 4.

Figure 17: The FNN-base architecture used for predicting GHI from meteorological sensor data.

Table 4: FNN-base architecture.

Layer Type Input Size Num. of Neurons Activation Output Size
F1 Fully Connected ninputs×1 64 ReLU 64×1
F2 Fully Connected 64×1 128 ReLU 128×1
F3 Fully Connected 128×1 64 ReLU 64×1
F4 Fully Connected 64×1 1 Sigmoid 1×1

The functioning of this network is very similar to the process described for CNN-base. It is brie�y explained as
follows.

1. During the forward pass, the input features for a single sample are provided as a �at tensor of dimension
ninputs × 1. Here ninputs is the number of features; if 8 meteorological variables measured at 3 time instances
are used, for example, then ninputs = 24. Again, mini-batches are employed during training, so a batch of size
SB would have dimension SB × ninputs × 1.

2. The �rst layer contains 64 neurons with a weight for each input and a single bias term, therefore a (64×ninputs)
matrix transformation is applied to each sample. The following layer contains 128 neurons, then a layer of
64 neurons, and �nally the output layer of 1 neuron. This results in a single number as the predicted GHI
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perceived from the meteorological features. The neurons in each of the layers, except the output layer, uses
ReLU activation, applying Equation 14. The neurons in the output layer employ Sigmoid activation, given in
Equation 15, to ensure the prediction is within [0, 1].

3. The error of the prediction is computed using one of the loss functions expressed in Equations 16 and 17.

4. While training, backpropagation with AdamW is applied to update the weights in each neuron to minimize the
loss of a training batch. Once the algorithm goes through the entire training set, validation loss is calculated
on a reserved set of samples, and the next epoch is begun.

5. The above steps are repeated until the model validation loss no longer decreases, as determined by early
stopping.

This procedure yields the NN optimized to predict GHI. After training, the model is applied to the samples in the
test set. In the testing phase, no backpropagation is involved; the model is �xed. The predicted GHI can then be
used to calculate PV power output via Equation 9 and system costs by solving the DCOPF thereafter. Case Study
4 was conducted to analyze the e�ect of using 3 vs. 1 previous instances as meteorological features.

4.1.3 Uni-Modal Baselines

The described neural network architectures outlay a method for predicting GHI from two di�erent modalities (imagery
and sensor data). These predictions then can be compared to gain insight into which one performs better and thereby
answer Research sub-question 1(e); this is further elucidated in Case Study 5. To compare UM algorithms to MM
ones in other studies, two baseline models are developed from the UM methodology.

1. The naive ensemble baseline (UM-base1): here, the predictions from imagery and meteorological data are
combined as an average, exemplifying the simplest late fusion method to combine the two modalities. This is
summarized in Equation 18.

GHIUM =
1

2
· (GHIUM1 +GHIUM2) (18)

GHIUM1 and GHIUM2 are the predictions from the individual modalities, and GHIUM is their weighted
combination.

2. The weighted ensemble baseline (UM-base2): in this setting the predictions from the two modalities are used
to �t a linear regressor as described in Equation 19.

GHIUM = c1 ·GHIUM1 + c2 ·GHIUM2 (19)

This can therefore be considered a slightly more `intelligent' ensemble as compared to the naive method, due
to the variability of the weights c1 and c2 based on the predictive performance of either modality.

4.2 Multi-Modal Learning for Power Forecasting

Employing multi-modal learning in the context of power forecasting involves changing the neural network architecture
such that features from both modalities are used simultaneously to make, and learn from predictions. To e�ectively
answer Research Question 2, the features selected from each modality and the method used to combine these features
must be investigated. For the former topic, some possible options include:

1. Combine the images and meteorological data directly, without any feature extraction.

2. Use a CNN to extract features from the imagery and a FNN to extract features from the meteorological data
and combine these features.

3. Use a NN to extract features from the meteorological data and combine these with the image directly.

4. Use a NN to extract features from the imagery and combine these with the meteorological data directly.

Option 1 and 3 do not make sense in practice because of the nature of the images - they have a high dimensionality
and a often lot of irrelevant features. The value of CNNs is in extracting important aspects of an image such
as patterns and edges, and disregarding the rest. Therefore, to avoid the curse of dimensionality (whereby an
exponentially larger dataset would be required to learn from a large, sparse feature space), only options 2 and 4 are
pursued. Case Study 6 investigates the options in terms of their e�ectiveness at predicting GHI. Figure 18 depicts
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the proposed architecture used when features are only extracted from the images, and these are combined with the
meteorological data (hereafter referred to as the MM4 architecture).

Figure 18: Proposed multi-modal learning architecture MM4 to predict GHI from imagery and meteorological data,
using a CNN for feature extraction from the imagery (and no NN for extracting features from the meteorological
data).

The proposed MM4 architecture is described brie�y below.

1. A feature extraction network (denoted in Figure 18 as CNN-fe) is applied to an image input during the forward
pass. It consists of 3 stacks of convolutional, ReLU activation, and max pooling layers, followed by a FC layer
with ReLU activation and another with Sigmoid activation. This architecture is shown in detail in Table 5.

Table 5: CNN-fe architecture used for feature extraction from imagery within the MM4 neural network.

Layer Type Input Size Kernel Size Stride Padding Activation Output Size
C1 Convolutional 64×64×1 3×3 2×2 1×1 ReLU 32×32×8
P2 Max. Pooling 32×32×8 2×2 2×2 0×0 - 16×16×8
C3 Convolutional 16×16×8 3×3 1×1 1×1 ReLU 16×16×32
P4 Max. Pooling 16×16×32 2×2 2×2 0×0 - 8×8×32
C5 Convolutional 8×8×32 3×3 1×1 1×1 ReLU 8×8×16
P6 Max. Pooling 8×8×16 2×2 2×2 0×0 - 4×4×16

Flatten
Layer Type Input Size Num. of Neurons - - Activation Output Size
F7 Fully Connected 256×1 64 - - ReLU 64×1
F8 Fully Connected 64×1 64 - - Sigmoid 64×1

The above structure mimics CNN-base, with the exception of the last layer, which has 64 neurons instead of
just 1. This results in an output feature vector (fimg) with dimension 64×1 for a single sample.

2. The meteorological features (fmeteo) are fused with fimg in joint representation either using concatenation or
bilinear pooling, depending on the case study. Concatenation is expressed in Equation 20 while bilinear pooling
is given by Equation 21.

fMM
((64+ninputs)×1) = fimg

(64×1) ⌢ fmeteo
(ninputs×1) (20)

fMM
((64+1)×(ninputs+1)) =

[
fimg

(64×1)

1

]
⊗

[
fmeteo

(ninputs×1)

1

]
=

[
fimg fimg ⊗ fmeteo

1 fmeteo

]
(21)

If the latter (bilinear pooling) is used, the resultant feature vector is �attened before continuing, since the FC
network that follows requires a one-dimensional vector. fMM in this context, therefore, ultimately has a size
of (65 · (ninputs + 1)× 1).
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3. GHI is predicted from the fused feature vector, fMM, using a FNN similar to FNN-base, referred to as FNN-pred
in Figure 18. It is detailed in Table 6.

Table 6: FNN-pred network used for predicting GHI from multi-modal feature vector fimg within MM4 NN.

Layer Type Input Size Num. of Neurons Activation Output Size
F1 Fully Connected Dependent on fusion method 64 ReLU 64×1
F2 Fully Connected 64×1 128 ReLU 128×1
F3 Fully Connected 128×1 64 ReLU 64×1
F4 Fully Connected 64×1 1 Sigmoid 1×1

The �rst layer notably receives inputs with size dependent on the fusion method (concatenation or bilinear
pooling) applied. As discussed above, these will result in di�erent sizes for fMM , which is the input to
FNN-pred. The proceeding layers F2-F4 function as previously described concerning FNN-base.

4. During training, the loss (computed by either MSE or MAE, speci�ed in the case studies) compares GHIpred to
GHItrue. This is then di�erentiated according to the backpropagation algorithm and the gradients are passed
backwards to update the weights of all parameters within CNN-fe and FNN-pred.

The MM2 architecture, which also uses a NN for feature extraction from the meteorological inputs, employs
a FNN between that modality and the joint representation stage. That is the only di�erence between the two
architectures. MM2 is illustrated in Figure 19.

Figure 19: MM2 Multi-modal learning architecture to predict GHI from imagery and meteorological data, using a
CNN for feature extraction from the imagery and a FNN for feature extraction from the meteorological data.

The FNN used for feature extraction from the meteorological data, FNN-fe, is identical in architecture to the �rst
three layers of FNN-base. This is described explicitly in Table 7.

Table 7: FNN-fe architecture.

Layer Type Input Size Num. of Neurons Activation Output Size
F1 Fully Connected ninputs×1 64 ReLU 64×1
F2 Fully Connected 64×1 128 ReLU 128×1
F3 Fully Connected 128×1 64 ReLU 64×1

Therefore, MM2 involves an equal number of features extracted from both the modalities (dim(fimg)= dim(fmeteo)
= (64 × 1)), however, this is not necessarily the optimal con�guration. In addition, as described in Chapter 3, fea-
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tures could be extracted from di�erent stages of the network and fused. There are, in this sense, unlimited design
tweaks to the MM learning architecture that can be investigated but are out of the scope of this thesis project.

Regarding the method used to combine the features from either modality, the two prevalent techniques for joint
representation identi�ed in Chapter 3 (concatenation and bilinear pooling) are compared in Case Study 7, within the
MM4 architecture.

Finally, the optimal MM model from these two studies (either MM2 or MM4) is tested in comparison to UM
learning. Case Study 8 includes the predictive performance of the two baseline ensemble UM methods (UM-base1
and UM-base2), a persistence forecast, as well as that of one of the MM methods. In order to comprehensively
answer Research Question 3 (speci�cally addressing 3c), Case Study 9 compares the persistence forecast against the
performance of one UM baseline (UM-base2) trained with past GHI data as a feature. Case Study 10 considers
the prediction of wind power in a similar manner to Case Study 8 - comparing the performance of UM and MM
algorithms.

4.3 Economically Optimized Predictions with End-to-End Learning

The methodologies presented thus far have investigated the e�ectiveness of di�erent neural network architectures at
predicting GHI. In order to use these predictions in an energy system, the GHI must be used to calculate PV power
output (in Watts) and an optimal power �ow problem must be solved using this value. This allows the focus of the
investigation to be shifted from power forecasting to the `task': the cost of running an energy system. The method
followed to predict the task from MM data is shown schematically in Figure 20.

Figure 20: Procedure followed for minimizing system cost from imagery and meteorological sensor data using a NN.
As before, GHI (and/or Wind power) is predicted, however, it is now only an intermediate prediction. The model is
trained on minimizing cost.

For the implementation of this phase of the project in Python, particular credit is given to Ali Rajaei, a researcher
at the IEPG group, TU Delft. The energy system costs can be solved via a pair of DCOPF formulations, given values
for load demand, PV, and wind power, as was brie�y introduced in Chapter 3. The �rst optimization, referred to as
DCOPF-Schedule, solves for a generation schedule (and its respective costs) using the forecasted renewable power
sources. This optimization is de�ned as follows.

minimize Csch = Cgen + Cinf =
∑
bϵB

(
cgb(P

g
b ) + γ1λ1b + γ2λ2b + γ3λ3b + γ4λ4b

)
(22a)

subject to −P d
b + P g

b + (PPV
b − λ3b) + (PW

b − λ4b) = λ1b − λ2b + P f
b ∀bϵB, (22b)

λ3b ≤ PPV
b , (22c)

λ4b ≤ PW
b , (22d)

|P f
r | ≤ P f,lim

r , (22e)

P f
r =

δr,i − δr,j
xr

∀rϵR, (22f)

P g−
b ≤ P g

b ≤ P g+
b (22g)
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Table 8: Variables involved in DCOPF-Schedule

Variable Description
Csch Scheduling cost
Cgen Generation cost
Cinf Infeasibility cost
R Number of lines
B Number of nodes
P g
b Thermal power injection at node b
cgb Cost of power generation at node b

λ1 & λ2 Auxiliary variables for imbalance
γ1 & γ2 Prices on thermal generation imbalance
λ3 & λ4 PV and Wind power curtailment
γ3 & γ4 Prices on PV and Wind curtailment

P d
b Power withdrawal at node b

PPV
b Predicted PV power generation at node b
PW
b Predicted Wind power generation at node b

P f
b & Net power �ow from all lines into node b

P f
r & P f,lim

r Power �ow and power �ow limit in line r
δr,i & δr,j Phase angles at line r

P g−
b & P g+

b Lower and upper limits of generation at node b

Equation 22b expresses the node balance at each of the buses in the power system - ensuring that power injection
and withdrawal (P g and P d) are balanced by the power �ows through lines connected to the respective bus. The
constraints given by Equations 22c and 22d express that renewables curtailment cannot be greater than the predicted
generation. Equation 22e represents the maximum thermal limit for the lines, and 22f relates power �ow in the
branches to the respective phase angles. Finally, equation 22g gives the generator limits.

When this DCOPF formulation is integrated as a layer in a NN, PPV
b and PW

b are included as learnable param-
eters. There are therefore varied by the NN during backpropagation according to the loss ultimately calculated
(which also depends on a subsequent optimization layer). Load demand (P d

b ) is always assumed to be deterministic
in this project. After solving DCOPF-Schedule for the various costs and the generation schedule (P g

d ), the true
values for renewable generation are compared to the forecast in order to quantify the cost of inaccurate predictions.
This leads to a redispatch of power sources to account for the mismatch between the predicted and actual renewable
generation. This redispatch is formulated in DCOPF-Redispatch given below.

minimize CRD = CRD,gen + CRD,inf =
∑
bϵB

(
cup(dP

g+
b ) + cdown(dP

g−
b ) + γ5λ5b + γ6λ6b + γ7λ7b + γ8λ8b

)
(23a)

subject to −P d
b + (P g

b +∆P g
b ) + (PPV,act

b − λ7b) + (PW,act
b − λ8b) = λ5b − λ6b + P f,RD

b ∀bϵB, (23b)

∆P g
b = dP g+

b − dP g−
b , (23c)

λ7b ≤ PPV,act
b , (23d)

λ8b ≤ PW,act
b , (23e)

|P f
r | ≤ P f,lim

r , (23f)

P f
r =

δr,i − δr,j
xr

∀rϵR, (23g)

P g−
b ≤ P g

b +∆P g
b ≤ P g+

b , (23h)

dP g+
b ≤ dP g+,max

b , (23i)

dP g−
b ≤ dP g−,max

b (23j)
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Table 9: Additional variables involved in DCOPF-Redispatch

Variable Description
CRD Redispatch cost

CRD,gen Generation cost in redispatch
CRD,inf Infeasibility cost in redispatch

dP g+
b Thermal power increase at node b

dP g−
b Thermal power reduction at node b

cup Cost of increasing thermal power generation at node b
cdown Cost of reducing thermal power generation at node b

λ5 & λ6 Auxiliary variables for imbalance
γ5 & γ6 Prices on thermal generation imbalance
λ7 & λ8 PV and Wind power curtailment
γ7 & γ8 Prices on PV and Wind curtailment

PPV,act
b Actual PV power generation at node b

PW,act
b Actual Wind power generation at node b

dP g−,max
b & dP g+,max

b Lower and upper rate limits at node b

This optimization is analogous to the one formulated in Equations 22a to 22g. However, the inclusion of ∆P g
b ,

cdown and cup facilitate corrections to the shortages or surpluses in power generation attributed to inaccurate pre-
diction. After solving DCOPF-Redispatch for minimized costs, the system cost Csys can be calculated via Equation
24.

Csys = Csch + CRD = (Cgen + Cinf ) + (CRD,gen + CRD,inf ) (24)

Csys is the cost that the neural network is now trained on using backpropagation. It is costly to both increase
or decrease generation in real-time to maintain grid stability, therefore CRD can be generally reduced by obtaining
accurate predictions of the renewable generation. Depending on the exact formulation of the redispatch cost relative
to scheduling cost (the values of γ1...γ8), however, minimizing prediction error may not universally minimize monetary
cost. Due to the linear cost functions used here (represented by γ), it can be expected that the relationship between
cost and prediction accuracy is linear. This curve is plotted in Figure 21.

Figure 21: The expected variation of system cost based on renewable power forecast accuracy. This plot is for a
system with 145 MW of load demand and 25 MW of PV generation.

The magnitude of the cost on the y-axis depends on the load demand and the amount of renewable generation
available in the system. The plot in Figure 21 is for a moment with 145 MW of load and 25 MW of PV generation.

4.3.1 Proposed MM E2E Architecture

A NN which predicts GHI using the MM4 architecture and subsequently solves the pair of DCOPF problems is
illustrated in Figure 22. This proposed architecture, named MM4-E2E, includes a single renewable generation source
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(PV).

Figure 22: Proposed MM4-E2E architecture to minimize system cost, using the MM4 architecture for PV forecasting.

On the other hand, Figure 23 depicts a system with PV and wind generation. PV power is forecast as in the
MM4-E2E architecture, using MM4, but now a wind forecast is also included using FNN-base.

Figure 23: Proposed MM4-PVWind-E2E architecture to minimize system cost, using the MM4 architecture for PV
forecasting and the FNN-base architecture for wind forecasting.

To assess this model against a sequential trained one, MM4-PVWind is designed. As above, it predicts PV from
the MM4 architecture, and Wind from FNN-base.
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Figure 24: MM4-PVWind architecture to predict renewables generation, using the MM4 architecture for PV fore-
casting and the FNN-base architecture for wind forecasting.

Case Study 11 compares E2E and sequential learning in terms of Csys. This study only considers PV generation,
so the MM4-E2E architecture is compared with MM4-Seq, where the MM4 network is trained as before, on making
predictions of GHI, and subsequently, the DCOPF is solved from the GHI forecast and load data. Also in this study,
the UM baseline algorithms UM-base1 and UM-base2 are compared to MM4-Seq and MM4-E2E. Case Study 12
investigates MM4-PVWind-Seq and MM4-PVWind-E2E, which use two renewable sources (PV and Wind) rather
than one. We expect that in both Case Studies 11 and 12, E2E learning bene�ts cost minimization, since it provides
the NN with information about the cost function. Case Study 13 investigates whether this expectation is validated
by the results of studies 11 and 12, and helps explain the bene�ts and pitfalls caused by E2E learning.
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5 Case Studies

This chapter presents the several case studies used to investigate di�erent aspects of the methodology and therefore
answer the research questions. Designing a neural network, the data preparation, and the training work�ow requires
making certain design choices. The studies are designed along the most important of these design choices. The
chapter begins with case studies that focus on the UM baseline models, then on the multi-modal ones, and �nally on
the end-to-end learning frameworks. A summary of the case studies and their respective aims is given in Table 10.

Table 10: A summary of the case studies conducted, the research questions they address, and their respective aims.

Case Study Research Questions Addressed Purpose

1 RQ1
Compare the error on predicting GHI from lower and higher
resolution images.

2 RQ1
Compare the error on predicting GHI from 3 or 1 recent
image.

3 RQ1
Investigate the optimal depth of CNN for predicting GHI
from imagery.

4 RQ1
Compare the error on predicting GHI from 3 or 1 recent
instance of sensor data.

5 RQ1
Compare the prediction of GHI and wind power from
imagery via a CNN vs. from sensor data via a FNN.

6 RQ2
Investigate the e�ectiveness of extracting features from
sensor data for making predictions with MM learning.

7 RQ2
Compare two methods for combining features from either
modality during MM learning.

8 RQ3
Compare proposed MM learning model for predicting
GHI against UM baselines.

9 RQ3
Investigate GHI forecasting using recent GHI sensor data
as a feature.

10 RQ3
Compare proposed MM learning model for predicting wind
power against UM baselines.

11 RQ4
Assess the proposed MM-E2E model (MM4-E2E) in terms
of system cost in a system with PV generation.

12 RQ4
Assess the proposed MM4-E2E model in a system with PV
and Wind generation.

13 RQ4
Compare the minimized costs from MM4-E2E to the expected
(true) cost function.

5.1 Settings and Test Network

5.1.1 Power System

A simple power system - the IEEE 6-bus system with 3 generator and 3 load buses - is employed to model the
functioning of a power system with renewable generation. The line diagram of this system is illustrated in Figure 25.

Figure 25: Line diagram of IEEE 6-bus system with PV (PPV ) and Wind (PW ) generation. The limits on thermal
generation are labelled at their resective nodes. Each of the lines has a limit of 100 MW.
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Thermal generators inject at buses 1,2,3, and load is drawn at buses 4,5,6. PV power is injected at bus 1, or Wind
is injected at bus 2, or both, depending on the case study. Details of the parameters used in the DCOPF-Schedule
and DCOPF-Redispatch optimizations are given in Table 11.

Table 11: Values of essential parameters (�rst described in Tables 8 and 9) used in the optimization problems.

Parameter Value Unit

P g−
1 0 MW

P g+
1 200 MW

P g−
2 0 MW

P g+
2 150 MW

P g−
3 0 MW

P g+
3 180 MW
cg1 12 Euro/MW
cg2 10 Euro/MW
cg3 8 Euro/MW

P f,lim
r 100 MW
R 11
B 6

γ1,2,5,6 10 Euro/MW
γ3,4,7,8 0.1 Euro/MW

The details of the scale of load demand, PV generation, and wind generation are given below.

� Load is modeled from the dynamic load pro�les of 1.5 million identical households (as described in Chapter 3),
distributed unevenly over 3 buses (48% at bus 4, 28% at bus 5, and 24% at bus 6). During the time period of
the available data (2021 and 2022) the maximum power load demand was 293MW.

� PV generation is based on the LG panel cited in Chapter 3, with a rated power of 440W and panel area of
2.2 m2. Equation 25 is used to approximate the PV power output of a solar farm with Npanels panels of area
Apanel, given their rate power Prated and the GHI.

PPV = GHI ×Npanels ×Apanel ×
Prated

1000W/m2
(25)

We assumed that 250,000 panels are used, resulting in a solar farm rating of 110MWp.

� Wind generation is based on the Vestas turbine also mentioned in Chapter 3, and on the existing OWEZ
o�shore farm [owe22]. The curve is approximated by a hyperbolic tangent function in order to calculate wind
power from wind speed. The power curve and its approximation are depicted in Figure 26.

Figure 26: Power curve of Vestas V112-3.45 turbine [win21] and a tanh approximation of it.
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Comparing the curves in Figure 26 and Figure 11, it is notable that the cut-out wind speed is not present in the
tanh approximation. Although this is not physically accurate, it does not a�ect the studies, since the maximum
wind speed occurring in the datasets is 23 m/s, well below the cut-out speed of 25 m/s. The model simulates
36 turbines of rating 3.45MWp, thereby implying a wind farm rated at 124MWp.

For prediction from the modality of meteorological data, the variables given in Table 12 are always used. Each
one is measured at a temporal resolution of 10 minutes.

Table 12: Meteorological features used for predicting GHI

Meteorological Variable Description Unit
Time The moment of the day when the instance was measured seconds
Air temperature Measured at 2 meters above surface level ◦C
Cloud opacity The attenuation of incoming sunlight due to clouds. Varies from 0%

(no cloud) to 100% (full attenuation of incoming sunlight)
%

Relative humidity Measured at 2 meters above ground level. Relative humidity is the
amount of water vapour as a percentage of the amount needed for
saturation at the same temperature. A value of 50% means the air is
50% saturated

%

Wind direction Measured at 10m altitude ◦

Wind speed Measured at 10m altitude m/s
Precipitable water A measure of the precipitable water of the entire atmospheric column kg/m2

Surface pressure Air pressure measured at sea level hPa

Depending upon the case study, a single or multiple previous instances of these features are included. Additionally,
Case Study 9 also includes previous GHI measurements as features to compare the predictive performance of a NN
to a persistence forecast. Each of the above variables is normalized using min-max normalization (Equation 5) before
being used by a NN such that they are within [0,1].

5.1.2 Training and Testing

The hyperparameters settings that are common to all case studies are listed in Table 13.

Table 13: Training and testing settings for Case Study 1.

Hyperparameter Value
Training set size 6750
Validation set size 750

Test set size 2500
Learning rate 0.0025
Mini-batch size 64

Maximum training epochs (if not early stopped) 100
Number of train and test trials 10

During training, early stopping is implemented so that if the validation error does not decrease for 5 consecutive
epochs, training is halted. The test set used is the same for all trials. Between trials, the separation of the validation
and training split is varied, as is the mini-batch shu�ing. The plots and tables in each case study that summarize
the results show the distribution of test set predictions over the 10 separate trainings. The boxplots show a line at
the median of the results, the box extends from the lower to the upper quartile of the data, and the whiskers extend
to indicate the range of the results.

5.1.3 Computational Setup

The various NN models described in Chapter 4 are implemented in PyTorch version 1.10.2. For the formulation of the
DCOPF with di�erentiable parameters, CVXPY 1.1.18 and cvxpylayers 0.1.4 were used. Other important packages
for data processing are Pandas 1.3.5 and NumPy 1.21.5. The computer used for training and testing the case studies
is equipped with an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz with 8 GB of RAM.
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5.2 Uni-Modal Baseline Models

These case studies (1-5) are designed to �nd e�ective NN model settings to predict PV power, represented by
GHI. As such, the loss function that the models are trained on (which is the same for all Case Studies 1-5, except
for 5b) is MSE(GHIpred, GHItrue) (Equation 16). Study 5b investigated wind power prediction, therefore it uses
MSE(PW

g , PW,act
g ) as a loss function. Here, PW

g is the predicted wind power, and PW,act
g is the true value, calculated

from wind speed using Figure 26. The target variables GHItrue and PW,act
g are min-max normalized (Equation 5)

such that they are within [0,1].

5.2.1 Case Study 1: Image Resolution

This case investigates the e�ect of using images of di�erent resolution for predicting GHI using a convolutional neural
network with the CNN-base architecture described in Figure 15 and Table 3. The MSE measured on the test set on
each trial is presented in Figure 27, and the summary of these trials is given in Table 14.

Figure 27: MSE on test set for 10 di�erent trainings of
CNN-base to predict GHI from images of either 64×64 or
128×128 resolution.

64×64 128×128
Average MSE 0.0078 0.0071
STD MSE 0.00040 0.00026

Table 14: Average and Standard Deviation of
MSE on predicted GHI from the 10 trials pre-
sented in Figure 27.

Using the higher resolution images shows a marginal improvement in predictive performance (9% lower MSE),
however, this improvement also comes at the cost of increased computational demands. The memory and time
required during training were both about 4× higher when using images of 128×128 resolution as compared to
64×64. Despite the improvement in prediction, to facilitate the rest of the investigation, the 64×64 resolution
imagery is used for the remainder of the case studies. Nevertheless, this comparison gives an idea of the sensitivity
of this model to image quality, should it be employed in a real setting.

5.2.2 Case Study 2: Time Horizon of Imagery

This study investigates the timing of taking images before predicting PV power. Here, the performance of using
three previous images (measured over 30 minutes) and using a single image to predict GHI 10 minutes in the future
is compared. As in Case Study 1, the CNN-base architecture is used. The combination of three images was done by
calculating the average pixel value at each location of the image. Figure 28 demonstrates this image combination
for three images captured consecutively on 01 May 2021. The results of the study are summarized in Figure 29 and
Table 15.
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Figure 28: The combination of three images captured on 01 May 2021 using pixel-wise averaging.

Figure 29: MSE on test set for 10 di�erent trainings of
CNN-base to predict GHI from either three or one previous
images.

1 Image 3 Images
Average MSE 0.0107 0.00836
STD MSE 0.000675 0.000682

Table 15: Average and Standard Deviation of
MSE on predicted GHI from the 10 trials pre-
sented in Figure 29.

This method of combining the three images (with pixel-wise averaging) does not change the data volume when
comparing the use of three or one previous images (since the input at one instance is still of dimension 64×64×1),
however, it does arguably sacri�ce information in each of the three images by only considering the mean value of
each pixel. Still, the predictions show consistent improvement when using multiple previous images (about 17%
lower MSE over the 10 tests), at no additional computational cost since the image dimensionality is identical. The
improvement could indicate that losing some feature information in the pixels, in favor of a `smoothing' e�ect, is
advantageous for making predictions using CNN-base. However, this cannot be conclusively stated without further
comparison with other methods of combining the images. For example, an alternative approach could be to stack
three images for each instance, such that the input is of dimension 64×64×3; thereby not compromising any pixel
information from the separate images (but this would also involve slightly altering the CNN architecture, speci�cally
the input layer hyperparameters). Additionally, investigating the e�ect of using more than three images could yield
an optimal number of images; this would be a form of hyperparameter tuning.

Aspects such as the method used to combine the images, and the choice of the number of images employed are also
closely related to the problem setting; in a location with di�erent meteorology or di�erent temporal frequency of the
imagery dataset, the ideal hyperparameters could be di�erent from the optimal set for this project.

In summary, this case study has demonstrated that averaging sky images from the recent past (30 minutes) en-
ables the CNN-base architecture to make more accurate predictions than if only the most recent image were used.
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In light of this result, for the remainder of the case studies, three superimposed images are used, as opposed to a
single image.

5.2.3 Case Study 3: CNN Depth

Case study 3 focuses on investigating the depth of convolutional layers for which we compare a deep neural network
(CNN-Alex) with the CNN-base. Since the CNN-Alex architecture has more convolutional and pooling layers, along
with more channels within the convolutional layers as compared to CNN-base, there is a large discrepancy in the total
number of trainable parameters in either one - CNN-base has about 20,000 while CNN-Alex has over 1,000,000. The
architectures are summarized in Tables 3 and 16.

Table 16: CNN-Alex architecture.

Layer Type Input Size Kernel Size Stride Padding Activation Output Size
C1 Convolutional 64×64×1 7×7 4×4 1×1 ReLU 15×15×96
P2 Max. Pooling 15×15×96 3×3 2×2 1×1 - 8×8×96
C3 Convolutional 8×8×96 5×5 1×1 0×0 ReLU 8×8×128
P4 Max. Pooling 8×8×128 3×3 2×2 1×1 - 4×4×128
C5 Convolutional 4×4×128 3×3 1×1 1×1 ReLU 4×4×256
C6 Convolutional 4×4×256 3×3 1×1 1×1 ReLU 4×4×256
C7 Convolutional 4×4×128 3×3 1×1 1×1 ReLU 4×4×128
P8 Max. Pooling 4×4×128 3×3 2×2 1×1 - 2×2×128

Flatten
Layer Type Input Size Num. of Neurons - - Activation Output Size
F9 Fully Connected 512×1 512 - - ReLU 512×1
F10 Fully Connected 512×1 64 - - ReLU 64×1
F11 Fully Connected 64×1 1 - - Sigmoid 1×1

For either architecture, the top layer represents the input, and the bottom one represents the output. Layers
C1-P6 are the feature extractive layers of CNN-base and F7-F8 perform regression. Regarding CNN-Alex, C1-P8
perform feature extraction. Here the network constructs much deeper feature maps than CNN-base (the maximum
depth is 256, compared to 32 in CNN-base). CNN-Alex therefore also contains far more trainable parameters, as
previously noted. Fully connected layers F9-F11 conduct regression in CNN-Alex.

Figure 30: MSE on test set for 10 di�erent trainings of
CNN-base and CNN-Alex.

CNN-base CNN-Alex
Average MSE 0.00836 0.01172
STD MSE 0.000682 0.000732

Table 17: Average and Standard Deviation of
MSE on predicted GHI from the 10 trials pre-
sented in Figure 30.

The deeper NN, CNN-Alex, yields consistently worse predictions (about 22% higher MSE as compared to CNN-
base). This may be explained by the CNN-Alex having surpassed a critical depth, beyond which performance declines
(for the given input data). This phenomenon is investigated by Nichani et al., who �nd that CNNs that are too deep
may not generalize well [NRU21]. Provided with larger datasets and higher resolution imagery (which contain more
features), the CNN-Alex may be able to outperform CNN-base, but that investigation is out of the scope of this
thesis. In response to the results of this case study, the subsequent case studies use the CNN-base architecture (if
imagery is involved).
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5.2.4 Case Study 4: Time Horizon of Meteorological Data

Case Study 4, much like Case Study 2, investigates whether including recent meteorological data measurements
over multiple time steps bene�ts prediction, as compared to including only the most recent set of measurements.
The FNN-base architecture illustrated in Figure 17 and Table 4 is trained to predict GHI, with the hyperparameters
as shown in Table 13. When using a single previous instance, eight meteorological features are used (as given in
Table 12), therefore, ninputs = 8. For the case where three previous instances are used as features, ninputs = 24.
This changes the input layer of FNN-base; no other alterations to the network are required. The results for making
predictions on the test set after 10 di�erent trainings are presented in Figure 31 and Table 18.

Figure 31: MSE on test set for 10 di�erent trainings of
FNN-base to predict GHI from either three or one previous
instances.

1 Instance 3 Instances
Average MSE 0.00201 0.00177
STD MSE 0.000208 0.000134

Table 18: Average and Standard Deviation of
MSE on predicted GHI from the 10 trials pre-
sented in Figure 31.

Using three previous instances consistently enables the network to make more accurate (by 11% lower MSE) solar
forecasts. This is not a surprising result, since the provision of more instances directly means more features (and
therefore more relevant information) for the network to perform regression with. It would be an interesting study to
also continually include more instances until there is no (or very marginal) corresponding improvement in predictive
performance. This time horizon may also di�er for the individual meteorological variables (for example the NN may
bene�t from knowing a longer history of wind speed rather than cloud opacity). Such a study could provide insight
into how long certain aspects of the weather can be predicted with a network as simple as FNN-base.

In response to the results of Case Study 4, three previous instances were used for all case studies that follow.

5.2.5 Case Study 5: Forecasting from Imagery vs. Meteorological Data

The prediction of GHI (and subsequently wind power) from two distinct modalities - imagery and meteorological
sensor data - is compared in this study. The former modality is used in the CNN-base architecture, while the latter
is employed by the FNN-base architecture. The results are shown in Figure 32 and Table 19.
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Figure 32: MSE on test set for 10 di�erent trainings of
CNN-base (which predicts GHI from images) and FNN-
base (which predicts GHI from meteorological data).

Imagery Meteorology
Average MSE 0.00836 0.00177
STD MSE 0.000682 0.000134

Table 19: Average and standard deviation of
MSE on predicted GHI from the 10 trials pre-
sented in Figure 32.

Figure 33: MSE on test set for 10 di�erent trainings of
CNN-base (which predicts wind power from images) and
FNN-base (which predicts wind power from meteorological
data).

Imagery Meteorology
Average MSE 0.00867 0.00011
STD MSE 0.00131 0.00013

Table 20: Average and standard deviation of
MSE on predicted wind power from the 10 trials
presented in Figure 33.

Forecasting from meteorological data clearly outperforms forecasting from images. This can be explained by the
fact that images do not contain as many obvious and distinct features, such as wind speed and humidity, as are
directly present in the meteorological data. Some of those features (such as wind speed) can possibly be inferred
by the NN as it retrieves patterns, but that process cannot be as e�ective as instrument measurements. This is
exacerbated by the fact that the images used in this study are of 64×64 resolution; further limiting the ability of the
NN to recognize deeply embedded atmospheric features.

When forecasting wind power, meteorological data is still more e�ective as a modality than imagery. This result
is also in�uenced by the fact that previous wind speeds (which directly related to wind power via the plot in Figure
26) are included as meteorological features, whereas previous GHI data was not included for predicting GHI.

5.3 Multi-Modal Learning for Power Forecasting

Case studies (6-10) investigate the use of MM learning for power prediction, both for PV and Wind. Studies 6 through
9 use the same loss function as Case Studies 1 through 5, i.e. MSE(GHIpred, GHItrue) (Equation 16). Case Study
10 focuses on Wind prediction, therefore the loss function that is used to train the model is MSE(PW

g , PW,act
g ).

Here, PW
g is the predicted wind power, and PW,act

g is the true value, calculated from wind speed using Figure 26.

PW,act
g is normalized using min-max normalization (Equation 5) such that it is within [0,1].
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5.3.1 Case Study 6: Meteorological Feature Extraction

The MM2 and MM4 architectures de�ned in Chapter 4 provide two alternatives for the feature extraction process of
a MM learning NN. The former includes a network for extracting features from both modalities separately (MM2),
before combining them, whereas the latter only uses a network to extract features from imagery (MM4), and then fuses
them with the meteorological data. The method used for fusion in both architectures for this study is concatenation,
given by Equation 20. Figure 34 and Table 21 present the results of this study.

Figure 34: MSE on test set for predicting GHI over 10
di�erent trainings of MM2 and MM4.

MM2 MM4
Average MSE 0.00143 0.00129
STD MSE 0.00058 0.00031

Table 21: Average and standard deviation of
MSE on predicted GHI from the 10 trials pre-
sented in Figure 35.

Despite the added complexity of the MM2 architecture (more layers and therefore trainable parameters), there
is no improvement in predictive performance. MM4 produces forecasts with 10% lower MSE and a lower variance.
Both of these results may be attributed to the fact that there are few meteorological features to begin with (ninputs

= 24), thus the added FNN-fe network that is included in MM2 only over�ts the training data, without revealing
new information from the features. This e�ect may be alleviated with much larger sets of training data, or the use
of more previous instances of meteorological features (also mentioned as an extension to Case Study 4); both would
require extensive investigation that was not conducted during this thesis [Ipp19]. For the subsequent studies, in light
of these results, the MM4 architecture has been selected.

5.3.2 Case Study 7: Joint Representation Method

This study investigates bilinear pooling and concatenation for feature fusion within the MM4 architecture. This fusion
occurs, as shown in Figure 18, after feature extraction from the imagery modality. The results are shown in Figure
35 and summarized in Table 22.

Figure 35: MSE on test set for 10 di�erent trainings of
MM4, using either bilinear pooling or concatenation for
joint representation of the features.

Bil. Pooling Concatenation
Average MSE 0.00144 0.00109
STD MSE 0.00033 0.00024

Table 22: Average and standard deviation of
MSE on predicted GHI from the 10 trials pre-
sented in Figure 35.

The NN performs considerably more accurately (about 24% lower MSE) and more consistently (lower variance of
error) over these 10 trials using concatenation. Bilinear pooling includes, by de�nition, all the features represented
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in the fused feature space of concatenation. However, it results in a quadratically larger feature space with greater
sparsity and more irrelevant features than implied by concatenation. This may partially explain the poorer performance
of using bilinear pooling - the NN could be missing important information amongst the vast feature space. Selecting
the right features for a regression problem has been shown to not only improve computational times and e�ciency but
also predictive performance [Ole22]. Feature selection improves performance as it enables the NN to avoid making
spurious correlations between irrelevant features and the target (a form of over�tting) during training.

5.3.3 Case Study 8: Comparison of Methods for PV Forecasting

This case study is central to quantifying the utility of MM learning for power forecasting. A naive UM baseline
(UM-base1, which predicts GHI as an average of the prediction from the imagery and sensor data modality), a more
intelligent UM baseline (UM-base2, which uses a linear regression-based weighted average of the two predictions), the
proposed MM learning model MM4, and a persistence forecast are compared in terms of prediction error. Regarding
the MM4 architecture, the features from imagery are fused with the meteorological ones via concatenation. The
results are presented below.

Figure 36: MSE on test set for 10 di�erent trainings of a persistence model, UM-base1, UM-base2, and MM4.

Table 23: Average and standard deviation of MSE and %RMSE on predicted GHI over 10 trials presented in Figure
36.

Persistence UM-base1 UM-base2 MM4
Average MSE 0.0008 0.00294 0.00151 0.00109
STD (MSE) 0 0.000157 0.000179 0.000242
Average %RMSE 2.8% 5.4% 3.9% 3.2%
STD (%RMSE) 0 0.14% 0.23% 0.34%

The 10 di�erent trained models clearly show that MM learning improves predictions. Given the same input data,
the NN can combine information from either modality in a way that neither a naive ensemble nor a regression can
achieve. Possible explanations for why this behavior occurs, considering that the same data are made available to all
three NNs, are that MM4 has far more trainable parameters for combining the modalities, and that the intermediate
stage feature combination enables the imagery to enhance the sensor data. These theories are discussed in greater
depth in Chapter 6. The prediction performance of UM-base1, UM-base2 and MM4, in terms of %RMSE, is in line
with state-of-the-art NN-based methods for predicting solar power [RNE16]. The persistence forecast outperforms
the other 3 methods consistently, however, it must be noted that this is because it is predicting GHI using the GHI
from 10 minutes prior, assuming it is known. With the NN methods, the GHI from 10 minutes before is not used as
a feature, to test their applicability in environments where the GHI data is not continuously available.

5.3.4 Case Study 9: Forecasting using GHI Features

Case Study 8 has compared the performance of neural networks predicting GHI from UM and MM data, where GHI is
not included as a predictive variable, against a persistence forecast of GHI. It is worth investigating how the NN-based
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algorithms perform if GHI data is also made available to them. Case Study 9 investigates this, looking at the same
persistence forecast as before and UM-base2 with a previous GHI as a feature (in addition to those in Table 12).
Three previous instances are used again for the NN, therefore ninputs = 27. Figure 37 and Table 24 summarize the
results.

Figure 37: MSE on test set for 10 di�erent trainings of a
persistence model and UM-base2 (with GHI as a feature).

Persistence UM-base2
Average 0.0008 0.00073
STD 0 0.000046

Table 24: Average and standard deviation of
MSE on predicted GHI from the 10 trials pre-
sented in Figure 37.

Using the NN-based UM algorithm UM-base2 improves upon the persistence forecast by a 9% reduction in MSE,
if GHI is included as a feature. This result demonstrates that whether GHI sensor data is available or not, a NN can
predict better than the simplest persistence approach. Although the multi-modal models were not included in this
case study, MM4 would also presumably improve upon persistence considering the relative performance of UM-base2
and MM4 in Case Study 8. Thus, in response to Research Question 3c, it can be concluded that UM and MM
methods can achieve better forecasts than a persistence model.

5.3.5 Case Study 10: Comparison of Methods for Wind Forecasting

This case study is conducted in a similar manner to Case Study 8, as several forecast models are compared in terms
of their error in predicting wind power. Due to the relatively weak performance of UM-base1 in Case Study 8, it is
disregarded in this comparison. Instead, an alternative MM learning neural network model is included, MM-Shallow,
which contains only one neuron for forecasting.

Figure 38: MSE on test set for 10 di�erent trainings of a persistence model, UM-base2, MM4, and MM4-Shallow.
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Table 25: Average and standard deviation of MSE on predicted Wind Power over 10 trials presented in Figure 36.

Persistence UM-base2 MM4 MM4-Shallow
Average 0.0001 0.000053 0.000090 0.000060
STD 0 0.000019 0.000018 0.000009
Average %RMSE 1% 0.7% 0.9% 0.8%
STD (%RMSE) 0 0.11% 0.10% 0.05%

It is visible that MM learning does not bene�t wind power forecasting. This behavior may be explained by the
fact that, during training, the features are amalgamated through layers and, due to vanishing gradients, only the
last couple of layers are e�ectively updated. As a result, the less useful imagery features cannot be discarded as
easily as when using UM-base2. This hypothesis is also supported by results from the single neuron MM model
(MM4-Shallow), which performs as well or better than MM4. Therefore, perhaps there is a threshold beyond which,
if one modality is more useful than the other, MM learning will be detrimental to overall performance.

It is also possible that no strong conclusion can be made from this study since the level of prediction error is very low
compared to other studies. Thus, the di�erences between the various models may not be signi�cant enough to be
explained by methodological aspects. Again, each of the NN-based models (UM-base2, MM4, and MM4-Shallow)
perform similar to recent studies applying NNs for short-term wind forecasting in terms of RMSE [SZMM10]. Due
to di�erences in input data, geographical location, model complexity, and time horizons, it is di�cult to make exact
benchmarks.

5.4 Economically Optimized Predictions with End-to-End Learning

The following case studies focus on system cost minimization. Enabling cheap and stable distribution is central to the
design of any energy system forecasting methodology. Implementing E2E learning with the system cost as the task
objective can be expected to reduce costs compared to methods which are trained to predict power and subsequently
solve the cost minimization. Case Studies 11 through 13 investigate four distinct algorithms for predicting system
cost Csys from MM data.

1. UM-base1-Seq: this model consists of the UM UM-base1 model to predict power, and the predicted value is
used to solve for system cost Csys in a 6-bus system.

2. UM-base2-Seq: this model consists of the UM UM-base2 model to predict power, and the predicted value is
used to solve for Csys in a 6-bus system.

3. MM4-Seq: here the multi-modal MM4 model is trained to predict power, and subsequently this prediction is
used to solve for Csys in a 6-bus system. When predicting for a system with PV and Wind, as in Case Study
12, the MM4-PVWind-Seq is used.

4. MM4-E2E: the model is now trained directly on Csys, as shown in Figures 22 and 23. When predicting for a
system with PV and Wind, as in Case Study 12, the MM4-PVWind-E2E is used.

Case Study 11 only considers PV generation in the power system. As such, UM-base1-Seq, UM-base1-Seq and
MM4-Seq are trained on MAE(PPV

g , PPV,act
g ). MAE is used as opposed to MSE because of the linear nature of the

system cost function (explained by the constant values for cg1,2,3 and γ1,...,8 in Table 11 and the plot in Figure 21).
A similar procedure is followed for Case Study 12, where Wind generation is also included. Here a pair of UM-base1
models (trained on MAE(PPV

g , PPV,act
g ) and MAE(PW

g , PW,act
g )) are used by UM-base1-Seq to predict PV and

Wind, a pair of UM-base2 models is used by UM-base2-Seq, and the MM4-PVWind model (Figure 24) is used by
MM4-PVWind-Seq. MM4-PVWind-E2E, as before, is trained directly on Csys.

The results from the algorithms listed above are compared with a hypothetical Perfect Forecast scenario, where the
system cost is calculated using the known PV and Wind power as the prediction (therefore MAE(PPV

g , PPV,act
g ) =

MAE(PW
g , PW,act

g ) = 0). This simulation, therefore, calculates the minimum system cost against which the various
algorithms may be assessed. We expect that E2E learning, with the added information about the system cost func-
tion, would enable the prediction of lower costs by the NN. From Figure 21, it is clear that a perfect forecast would
enable the lowest cost. Amongst the predictive models, MM4-E2E (and MM4-PVWind-E2E) may be expected to
sacri�ce some power prediction accuracy to achieve more consistently reduced costs.
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5.4.1 Case Study 11: Minimized System Cost; only PV Generation

This study compares the system costs minimization by E2E learning against the baselines for predicting PV power
which are established already. The results for cost minimization are given in Figure 39 and Table 26.

Figure 39: System cost on test set for 10 di�erent trainings of four di�erent algorithms.

Table 26: Average and standard deviation of system cost Csys from the 10 trials presented in Figure 39.

Perfect Forecast UM-base1-Seq UM-base2-Seq MM4-Seq MM4-E2E
Average Csys [Euro] 1122.4 1516.7 1489.9 1240.3 1205.6
STD of Csys [Euro] 0 24.3 11.4 36.3 22.6

Here multi-modal learning is shown to not only improve power output prediction but also bene�t power system
planning in terms of system cost as both the MM models outperform the UM ones. E2E training (MM4-E2E)
seems to yield marginally improved results in terms of system cost (about 1.5% lower) when compared to sequential
training (MM4-Seq). However, comparing the results of MM-Seq and MM-E2E with the Perfect Forecast indicates
that E2E training makes a signi�cant improvement. Csys is increased by 10.5% when training sequentially, and
increased by only 7.4% when training E2E. This `excess cost' is plotted against power prediction accuracy (measured
by MAE(GHIpred, GHItrue)) in Figure 40 for the various models in Table 26.
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Figure 40: Excess system cost compared to power forecast error.

A conventional approach, represented by UMbase2-Seq, where PV power is predicted from two modalities sep-
arately and subsequently combined with a linear regression to solve for system costs results in a 32% cost increase
compared to a perfect knowledge scenario. The proposed model, MM4-E2E, which uses MM and E2E learning only
increases the cost by 7%, which is a signi�cant performance improvement. Much of this cost reduction, it can be
argued from the di�erence between UMbase2-Seq and MM4-Seq in Figure 40, is due to the intelligent combination
of MM features using a NN. E2E learning also contributes a clear reduction in cost (comparing the 10% excess cost
from MM4-Seq to 7% from MM4-E2E). In addition, E2E training enables a more consistently reduced cost, shown by
the lower variance in cost. This improved performance of MM4-E2E can be explained by the fact that E2E training
provides the MM4 NN with information about the generation cost functions (cgb) of the various thermal generators,
as well as the infeasibility costs (γ1...γ8). The test in Case Study 11 can also be conducted in a power system with
multiple renewable generation sources that need prediction.

5.4.2 Case Study 12: Minimized System Cost; PV and Wind Generation

Case Study 12 investigates the cost minimization in a system with PV and Wind. The results of training and testing
the models previously described 10 separate times are depicted below.
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Figure 41: System cost on test set for 10 di�erent trainings of four di�erent algorithms.

Table 27: Average and standard deviation of system cost Csys from the 10 trials presented in Figure 41.

Perfect Forecast UM-base1-Seq UM-base2-Seq MM4-PVWind-Seq MM4-PVWind-E2E
Average Csys [Euro] 965.5 1112.9 1053.5 1029.3 1001.5
STD of Csys [Euro] 0 34.7 21.7 20.8 15.1

The minimized system cost is plotted against prediction error in Figure 42. In this plot, the error is measured as
the average of MAE(PPV

g , PPV,act
g ) and MAE(PW

g , PW,act
g ).

Figure 42: Excess system cost compared to power forecast error.

While E2E (represented by MM4-E2E) training results in lower system costs than sequential learning (represented
by MM4-Seq), it is notable that the power prediction error is signi�cantly greater in the former. This result is in
contrast to the results of Case Study 11, where MM4-E2E also reduces prediction error in comparison to MM4-Seq.
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The magnitude of prediction error (between 10 and 15% MAE on PV and Wind power prediction) is also starkly
higher than the errors seen in any model from other case studies, which is a surprising result.

Another interesting feature from the results is that the standard deviation on system cost is lowest from the MM4-E2E
predictor, however, the standard deviation on the power prediction is the largest for MM4-E2E. The �rst observation is
logical because E2E learning trains the NN to predict minimized system cost, therefore the model should consistently
�nd costs. The second observation indicates that perhaps the NN often �nds the minimized cost by overestimating
PV and underestimating Wind, or vice versa, ultimately `balancing' the error on both such that the power grid is
stable without redispatch. This hypothesis could therefore explain the relatively high power prediction error, and it
is further investigated in Case Study 13.

5.4.3 Case Study 13: System Cost Functions

Rather than comparing the performance of di�erent model con�gurations, as the majority of the above case studies
have done, Case Study 13 seeks to explain why E2E learning outperforms conventional learning in terms of minimizing
system cost. In particular, the results found in Figures 40 and 42 are worth investigating as they both show MM4-E2E
achieving the lowest costs but at varying levels of power prediction accuracy. MM4-E2E achieves low prediction error
compared to other models in a system with one renewable generation source (Figure 40), but much higher error when
there are two renewable generators (Figure 42). To understand why this may be the case, the system cost functions
under either power system setting (single and dual generators) are plotted along with the predicted minimized cost,
against prediction accuracy. The following levels of load and generation in System 1 (single generator) and System
2 (dual generators) are applied to produce the theoretical system cost graphs.

System 1 (single PV generator):

� Load (Pd) = 145 MW

� True PV generation (PPV,act
g ) = 25 MW.

� Test samples with Pd in the range [100, 190] MW are plotted to have su�cient instances.

System 2 (PV and Wind generators):

� Load (Pd) = 145 MW

� True PV generation (PPV,act
g ) = 25 MW.

� True Wind generation (PW,act
g ) = 25 MW.

� Test samples with Pd in the range [100, 190] MW are plotted to have su�cient instances.

Figure 43 illustrates the theoretical and predicted costs for System 1.

Figure 43: (Left) Theoretical variation of system cost against PV power prediction for a system with Pd = 145MW
and PPV,act

g = 25MW (repeated from Figure 21) and (Right) Minimized system cost by the MM4-E2E network.
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The distribution of minimized costs from the test set follows a somewhat similar pattern to the theoretical system
cost, showing that the NN mimics the expected cost function after being trained. The magnitude of costs on the
two plots is di�erent because the results on the right are for instances with Pd in [100, 190] MW, and any level
of PV generation, however, the shape is still well replicated. The minimal solution is clearly achieved by perfectly
forecasting power, but when this is not possible, it is valuable to know the cost of over- or underestimating. Herein
lies the utility of E2E learning - considering the cost shown in Figure 43, E2E learning enables the information about
the relatively expensive underestimation to be used to train the NN. Sequential learning lacks this facility as common
loss functions such as MAE and MSE are symmetric.

The same comparison, between theory and practice, can be made for System 2. Figure 44 illustrates the theo-
retical and predicted costs for the system with PV and Wind generation.

Figure 44: (Left) The expected variation of system cost based on PV and Wind power forecast accuracy. This plot
is for a system with Pd = 145MW and PPV,act

g = PW,act
g = 25MW. (Right) Minimized system costs predicted by

MM4-E2E on test set against PV and Wind power forecast accuracy.

Focusing �rst on the left plot, this three-dimensional system cost does not have a clearly de�ned minimum as
there is in Figure 43. Instead, it seems possible to achieve similar low costs (along the blue valley) by overestimating
PV and underestimating Wind, or vice-versa. In such a scenario (where one source is overestimated and the other is
underestimated), it is possible to incur errors such that the power system is balanced and therefore no (or very low)
redispatch costs are incurred by the forecast errors. This behavior explains the results in Figure 42, where relatively
large prediction errors are not seriously detrimental to system cost minimization.

The linear valley of optimal solutions is somewhat visible on the right graph of Figure 44. There is a discrep-
ancy in the magnitude of costs (lower system costs are present in the latter plot) and in the location of minimized
solutions along the axes. This di�erence can be explained by the fact that the plot on the left of Figure 44 is for a
speci�c test setting (Pd = 145MW and PPV,act

g = PW,act
g = 25MW), whereas the one on the right includes instances

with any level of PPV,act
g or PW,act

g , and Pd in [100, 190] MW. Instances from this range of power combinations are
included because there are not enough test set instances with values close to Pd = 145MW.
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6 Discussion

In this chapter, the results from the various case studies are analyzed and commented upon in the context of the
research questions written in Chapter 2. The analysis of the results and answers to our research questions is followed
by a set of recommendations for further work.

6.1 Answering the Research Questions

How can uni-modal data be e�ectively applied to predicting PV power?

Establishing e�ective models to predict power from UM data was an important step in the project to, �rstly, under-
stand the suitable NN methods for the given modalities, and secondly, to have appropriate baselines against which
the proposed models can be assessed. Two modalities of data, sky imagery and meteorological sensor data, were
used separately to predict power, and several insights were drawn from the case studies that investigated their use in
NNs.

Sky Imagery: The sky imagery modality was used by a CNN to predict power. It was found, through Case Study
1, that higher resolution imagery, as can be expected, enabled more accurate forecasts. This is explained �rst by
the higher number of features available to the algorithm, and second by the greater potential for the NN to retrieve
higher-level features (such as objects, patterns) within the image. A deep CNN is adept at detecting higher-level
features and is therefore used for making predictions from imagery. Although images with greater resolution enable
better forecasting, their use comes at the cost of computational time and requirements. Depending on the practical
setting of using such algorithms, these restrictions vary, therefore the resolution used can be �tted to the practical
context. It has also been found that when using a CNN, combining multiple recent images (captured over 30 min-
utes) into a single one via pixel-wise averaging improves forecasts. This implies that, although some level of detail
is lost in the combined image from each of the individual ones, a form of temporal smoothing is bene�cial, which
can indicate that very short term (10 minutes) �uctuations in the condition of the sky are not as valuable as slightly
longer term (30 minutes) trends. Between 10 minute intervals, the position of the sun is virtually unchanged (and
its position would not have a great e�ect on the function of a CNN, since it learns to detect objects regardless of
where they are in the image), but cloud conditions can vary greatly. The temporal variation of cloud cover is visible
in Figure 28, where 3 sky images captured at a 10 minute interval are shown. The solar position in the same images
is virtually stationary. The results of Case Study 2 show that providing the CNN with the mean sky conditions of
the recent past mitigates the inaccurate predictions that may be caused by very short term aberrations in cloud cover.

Meteorological Sensor Data: For this modality, a FNN is used as opposed to a CNN. The FNN is a simpler
NN architecture which is commonly used for regression problems based on numerical data [WLB+14]. Similar to the
conclusion about the e�ectiveness of using multiple images for forecasting, it was found in Case Study 4 that the
use of multiple recent meteorological data (from the previous 30 minutes) produced more accurate forecasts than
using only the most recent (from 10 minutes prior). However, it is unclear how much of the improvement can be
attributed to the NN achieving a better understanding of the trends in meteorology, and how much of it is due to
simply having more features to forecast from. Regarding both Case Studies 2 and 4, the optimal number of recent
samples has not been found (nor investigated, due to time constraints). Three previous ones were used in both (in
comparison to a single one), but more than three may yield still better results.

The results of Case Study 5 demonstrate that more accurate predictions of PV power can be made from the modality
of meteorological data than from sky imagery. As mentioned, this may be because the latter modality does not
have important features as clearly available to the NN, while the former consists of explicit measurements of those
features. In summary, it has been found that a FNN is suitable for predicting PV power from numerical sensor data.
Using a CNN is more suitable for the sky imagery modality, and averaging multiple recent images produces better
forecasts than only using the most recent one.

How can the multiple modalities be e�ectively combined to predict wind or PV power, and which data

would enable this combination?

The proposed MM learning model utilized intermediate fusion of features from either modality before making a power
prediction. Feature extraction from the imagery is necessary, as mentioned in Chapter 4 because pixel values cannot
be directly combined with sensor data [LLXN18]. Case Study 6 investigated the e�ectiveness of a NN for feature
extraction from the sensor data. The outcomes of this case study assert that using a FNN (in this case FNN-base)
for feature extraction from the meteorological data was not bene�cial to forecasting performance. This may be due,
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as mentioned, to the over�tting of a training set with few (24) features [Ipp19]. Another explanation could be related
to the vanishing gradients problem, which disproportionately a�ects early layers of an NN [BJZP20]. Examining the
mean (over the parameters) of the backpropagated error gradients of each layer within the MM2 network during
training shows that this is a relevant phenomenon. Figure 45 captures these means for the layers of FNN-fe and
FNN-pred of the MM2 architecture.

Figure 45: Mean error gradients over all parameters within each FC layer of MM2 during training (left), and the
same plot with all except the output layer FNN-pred F4 (right).

The left plot of Figure 45 shows the vast di�erence in gradients over the layers. The output layer FNN-pred F4
has, by far, the largest magnitude error gradients during training. The diminished magnitudes for the layers before the
output demonstrate the vanishing gradients problem. The plot on the right shows that, although they are relatively
small in magnitude, the gradients of the other layers do vary during training. This behavior shows that the design of
the NN architecture may need to be varied to mitigate the vanishing gradients (perhaps using batch normalization,
other activation functions, or fewer hidden layers) and fully utilize the sensor data modality. In addition, the archi-
tecture could be altered by using features from di�erent stages (higher and lower) of the network in the MM joint
representation. This could enable the backpropagation algorithm to more e�ectively update parameter weights, as
error gradients for the various layers could be expected to have larger magnitudes. From Case Study 6 it has been
found that feature extraction is not useful for the given set of meteorological data, because there are relatively few
features to begin with, and due to the vanishing gradients problem. Therefore, combining the data directly with the
imagery features is found to be a more appropriate form of MM fusion.

After having shown which features are most useful to fuse, another open question is how they should be fused.
The results of Case Study 7 found that concatenating the features produced better predictions than using bilinear
pooling. This is explained by the large and mostly impertinent set of features produced by bilinear pooling (fBP

MM ).
While fBP

MM contains all the features that the concatenated feature space (fCC
MM ) does, it also contains several others

which are less relevant (for instance the cloud cover % multiplied with a high-level imagery feature). This irrelevance
causes the model to learn spurious correlations during training and therefore ultimately has a detrimental e�ect on
predictive performance [Ole22]. The results of Case Study 7 established concatenation as the preferred method to
combine features from separate modalities.

To summarize, the results of Case Studies 6 and 7 addressed research question 2 by investigating di�erent feature
extraction and feature fusion techniques. We found that feature extraction from the imagery modality exclusively,
along with concatenation for fusing visual and sensor features, produced the most e�ective MM architecture (MM4)
for forecasting PV power.

How does multi-modal learning outperform trivial uni-modal learning baselines?

As shown in the results of Case Study 8, there is potential to enhance prediction accuracy by intelligently combining
the modalities. The most naive way, using a simple average of the prediction from meteorology and imagery (UM-
base1) severely lacks in performance compared to using a linear regression of the two predictors (UM-base2, which
yields a 50% reduction in MSE). UM-base1 also performs worse than using UM learning with the meteorological
data, proven by comparing the errors in Figure 31 and 36. This is due to the signi�cantly worse performing imagery
modality (also shown in Figure 31) being equally weighed with the sensor data in UM-base1.
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Employing a NN to combine the features from either modality before making the PV power forecast, i.e. using
multi-modal learning via the MM4 architecture, improved on the performance of UM-base1 by 40% and upon UM-
base2 by 18% in terms of RMSE. The linear regression algorithm that UM-base2 is reliant upon to make combined
predictions has only two trainable parameters (as given in Equation 19), while the NN-based method MM4 has thou-
sands. This added complexity, given enough training data and features, partially explains why MM learning produces
better performance. A second factor that explains the performance di�erence is the stage at which the modalities are
being fused in the two algorithms: UM-base2 employs the latest possible fusion, only combining the predicted GHI
from either modality, while MM4 employs intermediate fusion, concatenating features from meteorological data and
imagery and subsequently using this joint representation as input to FC layers. Importantly, the MM4 architecture
includes a CNN (CNN-fe) for feature extraction from the imagery, the outputs of which are fused with the sensor data
modality. During training, this architecture enables CNN-fe to learn not only which visual features are most important
for accurately predicting GHI (therefore attributing the respective parameters with higher weights) but also which
ones are most bene�cial to be considered alongside the sensor data for forecasting. While CNN-base is informed on
how to best forecast GHI, CNN-fe within the MM4 architecture learns how to best enhance the meteorological data
in order to forecast GHI.
It is di�cult to ascertain the extent to which each of these two factors (increased complexity and intermediate feature
fusion) bene�ts the performance. For instance, a study could be designed where the predicted outputs from each
modality in UM-base2 (GHIUM1 and GHIUM2) are fused and used as inputs to a NN; comparing the results to those
of MM4 would isolate the e�ect of intermediate fusion. However, such a study would likely yield trivial results because
of the minimal features in the joint representation (if using concatenation for feature fusion, [GHIUM1 ⌢ GHIUM2]
has dimension (2×1)) made available to the NN.

When forecasting wind power instead of GHI, MM learning does not make a signi�cant improvement. This may
be because the less useful features from the imagery are amalgamated with the more useful sensor data through the
layers and, due to vanishing gradients, e�ectively are detrimental to performance. In this context, the implementation
of feature selection would be a possible improvement. This could be done, for instance, by calculating the correlation
between each feature and the prediction target, and only including features which achieve a certain threshold of
correlation.

In summary, MM learning improved upon UM baselines by providing a larger number of trainable parameters, and
enabling one modality to enhance the other in the context of predicting PV power. For prediction wind power, MM
learning is not signi�cantly bene�cial. This is likely due to the greater relative underperformance of one modality
(imagery) compared to the other (meteorological sensor data).

How does pairing multi-modal learning and E2E learning advance optimized cost prediction?

Aside from the prediction of renewable generation, the use of MM data for reducing energy system costs is of interest
in this thesis. Case Study 11 �nds that MM learning can drastically reduce Csys, as MM4-Seq lowers cost by 16%
compared to UM-base2-Seq. Incorporating E2E learning with MM learning (through the MM4-E2E architecture)
modestly reduced this by a further 1.5%. However, as mentioned, the bulk of Csys is Csch, which could not be
reduced even with perfect renewables forecasting. The MM4-E2E architecture yields system costs 7% higher than
perfect forecasting, whereas MM4-Seq is about 10% higher, demonstrating the utility of E2E learning in reducing
redispatch cost. Simultaneously, in Case Study 11, we �nd that E2E learning makes more accurate power predictions.
This paired behavior is logical given the unique minimum present in the system cost function illustrated in Figure 21.

On the other hand, Case Study 12 �nds that when minimizing costs in a system with PV and Wind generation
(both unknowns to be predicted by the NN), E2E reduces cost while making less accurate power predictions. The
performance improvement achieved by E2E learning, for both types of systems (single renewable generator or two
renewable generators), can be explained by the information about the cost function that is made available to the NN,
which would not be true for sequential learning. The counterintuitive outcome of Case Study 12, whereby costs are
reduced despite power prediction errors increasing, exempli�es the contrasting nature of E2E and sequential learning.
The singular aim of E2E learning to optimize a task has been shown to improve performance, but if the intermediate
power prediction is also of importance in the given problem setting, this form of training may not be ideal. For
example, in a scenario where System 2 (with two renewable sources) from Case Study 13 has power limits in branches
(P f,lim

r ) reduced to 50%, the dependence of system cost on prediction performance is drastically altered.
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Figure 46: The expected variation of system cost based on PV and Wind power forecast accuracy. This plot is for a
system with Pd = 145MW and PPV,act

g = PW,act
g = 25MW, with P f,lim

r reduced to 50%.

Figure 46 shows a clearly di�erent plot to Figure 44 as the set of minimal solutions is no longer linear. There
is a minimum at perfect power forecasting (PPV

g /PPV,act
g = PW

g /PW,act
g = 1), and apparently a local minimum

when PV is underestimated (PPV
g /PPV,act

g < 1) and Wind is overestimated (PW
g /PW,act

g > 1). E2E training in this
context would enable the learning of a more complex cost function, but would also risk often �nding solutions in
the local minimum. In this sense, it is a double-edged sword. E2E o�ers the possibility of learning such a function
which would not be possible by just training on forecast accuracy. This variety of cost functions also demonstrates
that when using an E2E trained algorithm in practice, the objective of the minimization should be carefully decided
depending on the problem context. For example, if forecast accuracy needs to be prioritized, a multi-objective cost
function could be considered (combining system cost and power prediction). Additionally, in an energy system where
the levels of more renewable generators need to be independently forecasted, e.g. a system with PV, Wind, and
concentrated solar power, the plot in Figure 44 would be extended to four dimensions. Similarly, a system with 10
generators at di�erent locations would incur local cost minima in an 11 dimensional space.

Considering the viability of MM and E2E learning together, we can conclude that in the context of an optimization
with a clearly de�ned unique optimum (as in Case Study 11), MM learning enhances the intermediate prediction,
and therefore enables improved cost minimization results. However, if the cost function lacks a unique optimum
(as in Case Study 12), then the E2E trained model is no longer necessarily aligned with prediction accuracy. MM
learning is useful for enhancing prediction accuracy, and would therefore be less consequential in an E2E problem
with non-unique optima.

6.2 Limitations

Through the analysis of the results from the case studies, several limitations of the methodology can be identi�ed.
Some of these are aspects that could be improved upon without drastically extending the scope of the project.

� Method of combining multiple images: the current methodology utilizes pixel-wise averaging to combine
multiple images, thereby applying a form of temporal smoothing. This has not been compared with other
methods, such as making a larger image out of multiple smaller ones, i.e. three 64×64 could become one
64×192 image. Alternatively, a deeper image could be constructed (with each one as a channel, therefore with
an ultimate dimension of 64×64×3). Studying these alternatives would provide insight into the value (or lack
thereof) of temporal smoothing.

� Shallower networks: the insights provided in Figure 45 show that, at least for some of the model architectures,
the neuron weights of early layers are not e�ectively updated during training. This observation, along with the
result of Case Study 10, where linear regression and MM4-Shallow outperformed MM4, indicates that a deeper
network is not necessarily always better. It has been generally established that deeper networks have improved
representational ability as they can detect more abstract features [HZRS15a]. But, in a setting where only
low-resolution imagery and a fairly small set of sensor data is available, it is possible that abstract features are
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lacking and therefore a less network with fewer parameters may train better [GBDK21]. This hypothesis could
be studied by testing NNs with only 1 or 2 layers for feature extraction and prediction. On the other hand,
experiments could be done with higher resolution imagery (if greater computational facilities are available) and
in that scenario, we could expect deeper networks to generally outperform shallower ones.

� Feature selection: as mentioned previously, intelligent feature selection would be a possible improvement
[Ole22]. Calculating the correlation between each feature in Table 12 and each other, as well as with the
prediction target, would yield keen insights into the relevance and redundancy of each one. For instance,
only including features which achieve a certain threshold of correlation with the target could be included, and
features with too high correlation with each other cannot both be included. This is a valuable part of the
data exploration phase which could later enable more e�cient training of the NNs, as spurious correlations are
avoided.

� E2E cost function de�nition: MM4-E2E is currently trained directly on minimizing the system cost, but this
may not be the ideal training objective. An analogous metric, designed through normalizing costs, for instance,
could yield better outcomes. It has been shown that the absolute di�erence between the perfect forecast cost
and the E2E training cost is relatively small (965.5 vs. 1001.5, or about 7%). The perfect forecast cannot
be improved upon, so perhaps training the network on the `excess cost' would yield larger error gradients and
more e�ective parameter update.

� Computational time: although E2E learning has been shown to produce better outcomes in terms of cost
minimization, training the MM4-E2E NN takes about 80× longer than training MM4-Seq. This discrepancy
should be considered in the context of the problem setting; if the model needs to be frequently re-trained,
sequential learning may be more suitable.

The subsequent section describes broader improvements or extensions to the methodology.

6.3 Further Work

There are several extensions that can be made from this work concerning the broad scope of E2E learning from MM
data for energy system optimization. Case Studies 2 and 4 demonstrated the added bene�t of using several recent
subsequent measurements as inputs to a NN for forecasting renewable generation, regardless of the modality of data.
This observation could be developed by employing a Recurrent Neural Network (RNN) architecture, for instance,
which takes advantage of the sequential nature of its inputs for forecasting the future. The Long-Short Term Memory
(LSTM) RNN architecture may be particularly e�ective as it enhances the ability of the NN to capture long-term
trends by mitigating the vanishing gradient problem [GSC99]. With or without a RNN, a deeper investigation into
the optimal number of previous instances of data could be considered (only the uses of three and one previous
instances were studied thus far). This would be a form of HPO which should be conducted in general for a vari-
ety of hyperparameters such as learning rate, batch size, number of visual modality features extracted by CNN-fe, etc.

Regarding the fusion of MM features, the outcome of Case Study 6 asserted that a FNN for feature extraction
from meteorological sensor data was not bene�cial for GHI forecasting. Figure 45 exhibits the possible prevalence of
the vanishing gradients problem during the training of the MM2 architecture, which may also occur while training
the MM4 network. Mitigating this issue could involve changing the design of the NNs, for instance by including
batch normalization, and should be further investigated. In addition, pre-training the feature extraction networks
CNN-fe and FNN-fe to predict GHI may also improve the ultimate performance of MM2 and MM4. MM2 may also
perform better with a larger training set and longer time horizon (thereby more features), since the NN parameters
are likely over�tting the current training set. The added complexity of the network, compared to MM4, probably
requires more data to show its value. Another improvement to both MM2 and MM4 could be the inclusion of features
from di�erent stages of the network architectures in the MM joint representation [Mor20]. For example, involving
early features from the images in the MM4 architecture would e�ectively bring them closer to the prediction and
loss function calculation. This change could increase the magnitudes of error gradients of the early layers during
backpropagation, thereby mitigating the vanishing gradients problem and enabling more e�ective parameter update.

Looking ahead from Case Study 11 and 12, it has been demonstrated that E2E learning reduces costs compared to
sequential learning. The e�ect of E2E training when applying a variety of cost functions within DCOPF-Schedule
and DCOPF-Redispatch is also an interesting avenue of research. In practical energy systems such cost functions
may be quadratic as opposed to linear, and (speci�cally for infeasibility costs) may not be symmetric for positive
and negative redispatch. Given this knowledge of more complex cost functions, it is foreseeable that E2E learning
would again outperform sequential learning, but this cannot yet be ascertained. In addition, it is worth reminding
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that proportion of Csch/Csys (= 1 for the Perfect Forecast) and the reduction of redispatch cost is dependent on
the setting of thermal generation cost parameters (cgb , cup, cdown) and the infeasibility costs (γ1...γ8). In a context
where cgb are increased relative to other costs, the ratio Csch/Csys can be expected to increase, and as a result, E2E
learning may have an even smaller e�ect on reducing Csys. However, in an energy system where renewable generators
represent a growing portion of total power generation (as is the case in many Northern European countries), sched-
uled thermal generation is less signi�cant. This can be expected to increase the scope for E2E learning to reduce costs.

Finally, the scope of the research may be expanded by including Multi-Task (MT) learning in addition to MM
and E2E learning. In this domain, multiple tasks are predicted simultaneously, and the similarities between the dif-
ferent prediction problems are leveraged to improve each of them. For this reason, the methodology is also referred
to sometimes as `hints' [Car97, Rud17]. MT learning could, in the context of this thesis, incorporate the tasks of
minimizing system cost and maximizing renewable power prediction accuracy.
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7 Conclusion

This thesis has investigated the use of Multi-Modal (MM) data alongside End-to-End (E2E) learning in the context of
energy system optimization. The modalities studied are sky imagery and meteorological sensor data. The optimiza-
tion seeks to minimize the total monetary cost of meeting power load while maintaining grid stability in a system with
thermal generators and at least one renewable generator (either Photovoltaic (PV) or Wind). A conventional Machine
Learning (ML) based approach would involve training an algorithm to forecast renewable generation, and use the pre-
diction as one of the inputs to the optimization, thus solving for the minimized cost. The training of a Neural Network
(NN) for such a task entails quantifying the error of the predicted power against the true power using a loss function,
and di�erentiating this error with respect to the model's parameters. These parameters are then updated over several
iterations (based on the error gradient) to minimize the error. Employing E2E learning involves training instead on
the `true' task, i.e. minimizing the system cost, rather than the intermediate task of predicting power. We expected
that using MM data enhances power predictions and therefore also bene�ts E2E learning. Our proposed methodology
involves using a Convolutional Neural Network (CNN) to extract relevant features from the sky imagery, followed by
a MM learning approach to fuse those with the sensor data. The fused features are used by a Feedforward Neural
Network (FNN) to predict power, and this prediction is used as an input to the E2E-based power system optimization.

To test the methodology, several case studies were designed. These case studies investigate the optimal design
of the NNs, as well as the suitability of di�erent models for E2E economical optimization. It is found that, in a
system with a single renewable source (PV), using the proposed MM4 architecture for forecasting power reduces
RMSE by 18% compared to a linear regression approach for combining the MM data. We explain this improved
performance by the ability of MM learning to enhance one modality with the other; since the features are combined
at an intermediate stage before predicting, the NN learns to optimally weigh the diverse features to predict power. A
linear regression approach only learns to make optimal predictions from each modality separately, and subsequently
weighs the predictions. In addition, the proposed MM4-E2E approach outperforms a conventional training approach,
as it yields system costs 7% higher than a perfect forecast, while the conventional approach yields costs 10% higher
(for the system with PV generation). When testing in a system with two renewable sources (PV and Wind), the
proposed model (MM4-E2E) again results in the lowest costs (4% higher than perfect forecasting, compared to 7%
from a sequential training approach). However, in this setting, power predictions by MM4-E2E were less accurate,
indicating that, depending on the power system and its cost functions, minimal costs can be achieved without neces-
sarily predicting power more accurately. This result demonstrated the keen dependence of E2E learning performance
on the nature of the system cost function.
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