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Deflated Preconditioned Conjugate Gradient Methods for Noise
Filtering of Low-Field MR Images

Xiujie Shana,b,∗, Martin B. van Gijzenb

aHarbin Institute of Technology, School of Mathematics, 150001, Harbin, China
bDelft University of Technology, Delft Institute of Applied Mathematics, 2628 CD, Delft, The Netherlands

Abstract

We study efficient implicit methods to denoise low-field MR images using a nonlinear diffu-
sion operator as a regularizer. This problem can be formulated as solving a nonlinear reaction-
diffusion equation. After discretisation, a lagged-diffusion approach is used which requires a
linear system solve in every nonlinear iteration. The choice of diffusion model determines the
denoising properties, but it also influences the conditioning of the linear systems. As a solution
method, we use Conjugate Gradient (CG) in combination with a suitable preconditioner and de-
flation technique. We consider four different preconditioners in combination with subdomain de-
flation. We evaluate the methods for four commonly used denoising operators: standard Laplace
operator, two Perona-Malik type operators, and the Total Variation (TV) operator. We show that
a Discrete Cosine Transform (DCT) preconditioner works best for problems with a slowly vary-
ing diffusion coefficient, while Jacobi preconditioning with subdomain deflation works best for
a strongly varying diffusion, as happens for the TV operator. This research is part of a larger
effort that aims to provide low-cost MR imaging capabilities for low-resource settings. We have
evaluated the algorithms on low-field MRI images using inexpensive commodity hardware. With
a suitable preconditioner for the chosen diffusion model, we are able to limit the time to denoise
three-dimensional images of more than 2 million pixels to less than 15 seconds, which is fast
enough to be used in practice.

Keywords: Low-field MRI, DPCG, PDE, Image Denoising

1. Introduction

1.1. The Context of the Research

Many people benefit from the availability of MRI scanners for medical diagnostic purposes.
However, conventional MRI scanners are expensive and difficult to operate and maintain, and
therefore are out of reach in many low- and middle-income countries. To provide affordable
MRI systems, there has been an increase in research to develop low-cost MRI scanners [32, 24].
We are involved in a project [10, 23, 22, 9] that aims to design a low-field MRI device for
imaging the head, primarily to aid in the treatment of hydrocephalus, a condition that affects
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many newborns in Africa. The system [23] developed by the Leiden University Medical Center
(LUMC), uses a Halbach-array-based permanent magnet to eliminate the need for expensive
super-conducting magnets that are typically used in conventional MRI systems. In the same way
as for the traditional MRI systems, the inverse Fourier transform is applied to convert the k-space
signal into a complex-valued image.

For conventional general-purpose MRI systems, also the image processing software, and its
maintenance and improvement costs, are relatively high [32]. This cost can be reduced by us-
ing commodity hardware, i.e., standard laptop or desktop computers, and open-source software.
This, however, provides constraints on the processing algorithms that we can use: they should
require limited computational resources while still being efficient. Low-field MR images are
typically noisy and blurred. The focus of this paper is therefore on the development of effective
denoising and edge-preserving algorithms, that are suitable for commodity hardware.

1.2. Denoising Models

The maximum a posterior (MAP) model for image denoising is formulated as, see, e.g., [6]

u = argminuR(u) + µF (u, f ).

in which R(u) is the regularization term associated with an image prior, which promotes certain
regularity properties of the image, F (u, f ) is the fidelity term which guarantees the difference
between the denoised image u and the initial, noisy image f is not too big, such that the main
features of the image f are preserved, and the fidelity parameter µ determines the trade-off be-
tween the two terms. The well-known denoising Total Variation (TV) model, first proposed by
Rudin, Osher, and Fatemi [18], belongs to this class. The variational model can be minimized
by solving the diffusion equation using a gradient descent flow method. Chen et al. [8] study a
generalization of the TV functional with a variable exponent, which provides a model for image
denoising, enhancement, and restoration.

The diffusion model in image processing interprets pixel intensities as a diffusion process in
the image. Standard heat diffusion was the first model of this type used for image denoising. The
disadvantage of the method is that it smooths out image edges and therefore results in a blurred
image. In the early 90s, Perona and Malik [25] proposed a nonlinear diffusion model (PM model)
for image processing. The magnitude of the gradient of the image is assumed to be a good
indication of the location of the image edge. By replacing the constant-diffusion coefficient by a
gradient-based coefficient, the model is able to preserve edges while removing noise. However,
the PM model suffers from ill-posedness of the solution. To overcome the ill-posedness of the
PM model, Alvarez, Lions and Morel [1] have introduced a regularization PM model that makes
the problem well-posed. A general class of diffusivities for image denoising is proposed in [34]
and the authors further utilize a numerical method to avoid piecewise constant structures in the
numerical solution, which may happen when evolving the TV and other diffusion models.

Several papers have appeared on denoising of three-dimensional MR images. Considering
the original anisotropic diffusion PM model, Gerig et al. [12] proposed a PDE-based filter-
ing method. Golshan et al. [13] presented an LMMSE-based method for denoising of three-
dimensional images. In [16], the authors applied a three-dimensional anisotropic diffusion pro-
cess to MRI data and compared the efficiency and effectiveness of two parallel preconditioners:
sparse approximate inverse preconditioners and block-diagonal preconditioners in combination
with the General Minimal Residual method.
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1.3. Motivation
In [21], Nordström shows that a global edge detection algorithm based on variational regu-

larization can be seen as a biased anisotropic diffusion method. The problem can be formulated
as follows:

ut = ∇ · (cn(‖∇u‖)∇u) + µ( f − u) in Ω × (0,T ),
∂u
∂~n

= 0 on ∂Ω × (0,T ), (1)

u(x, 0) = f in Ω,

where Ω ⊆ Rd for d = 2 or 3, T is the stopping time, u is the pixel value (which is complex
for MR images), f is the noisy image, µ is the fidelity parameter and cn is a non-negative mono-
tonically decreasing function with cn(0) = 1 and cn(∞) → 0. The bias term ( f − u) (also called
fidelity term) ensures that the filtered image u does not drift too far from the original image f .
The author further states that because of the bias term, a steady state solution exists for the diffu-
sion model. In the remainder of the paper, we adopt this widely used model for image denoising
of low-field MR images. But instead of integrating the equation in time, we directly solve for
the steady state of the model. Formulated in this way, equation (1) can be interpreted as the
Euler–Lagrange equation of a variational model.

The numerical discretisation of our denoising model leads to a nonlinear system

A(u)u = b

where the operator A(u) depends on u if the diffusion coefficient is solution-dependent. This
system can be solved using the following Picard iteration

A(un)un+1 = b.

This iteration was first introduced by Vogel and Oman in [31], and is known as the lagged-
diffusion method. In each iteration a large sparse system of linear equations

Au = b (2)

needs to be solved. Here A is a symmetric and positive-definite matrix. For such systems, the
CG method is the method of choice. If A is ill-conditioned, i.e., has a large condition number κ,
convergence may be unacceptably slow. The standard way to improve the rate of convergence
is to apply CG to the preconditioned system M−1Au = M−1b, which yields the Preconditioned
CG (PCG) algorithm. The preconditioner M should be chosen such that it resembles A, and that
systems with M are easy to solve. A complementary way to speed up convergence is to combine
PCG with deflation. This method is called Deflated Preconditioned CG (DPCG). In 1987, Nico-
laides [20] chose the deflation vectors to be piecewise constant, where the nonzeros correspond
to a partitioning of the domain into subdomains. This technique is particularly efficient if the
spectrum of the preconditioned matrix contains a limited number of small eigenvalues.

1.4. Review of Preconditioners for the Lagged-Diffusion Linear System
Several preconditioners have been proposed for the linear system (2). Vogel and Oman [31]

combined PCG with a multigrid method as a preconditioner for solving the TV model. Our
approach is closely related to theirs. While they restricted themselves to the solution of the
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TV model with multigrid, we extend this by investigating different types of preconditioners in
combination with different diffusion models. In 2007, Duarte-Carvajalino et al. [11] considered
image denoising for hyperspectral images using the regularized PM model. They employed the
Additive Operator Splitting (AOS) [33] and Alternating Direction Implicit schemes [3] as pre-
conditioners for the PCG linear solvers. In 2010, Bertaccini et al. [4] proposed an updating
strategy for the (incomplete) Cholesky preconditioners for the sequence of lagged-diffusion lin-
ear systems. In [28], the authors presented a simple, directionally-split, semi-implicit method for
anisotropic diffusion which is linearly stable for large timesteps. The authors also suggested that
this method might be able to serve as an effective preconditioner to further accelerate an unsplit
iterative method. In 2013, a novel kind of regularization of the classical Perona–Malik model
was proposed in [14]. The authors used the Krylov subspace spectral methods to implement the
diffusion model. In 2014, Arridge et al. [2] derived a factorization-free preconditioned LSQR
algorithm for solving large-scale linear inverse imaging problems, regularized with a nonlinear,
edge-preserving penalty term such as Total Variation or the Perona–Malik technique. The method
is aimed at problems defined on unstructured meshes, where such regularizers naturally arise in
unfactorized form as a stiffness matrix of an anisotropic diffusion operator and factorization is
prohibitively expensive.

1.5. Contributions of this paper

The goal of this paper is to analyse and evaluate suitable preconditioners in combination
with deflation to solve equation (2). We consider three preconditioners that are representative
for different classes. The first is Jacobi preconditioning which is a classical preconditioner that
is based on a regular splitting of the matrix. The second is the AOS preconditioner, which is an
operator splitting method that splits the two- or three-dimensional problem into a sequence of
one-dimensional problems. The third preconditioner approximates the variable diffusion opera-
tor by the standard Laplace operator. The action of the inverse of the (shifted) Laplace operator is
computed using the Discrete Cosine Transform (DCT). All three methods are trivial to parallelize
and can be implemented matrix-free. For reasons of comparison, we also consider unprecondi-
tioned CG. We analyse the preconditioners for four different denoising models and provide upper
bounds on the number of CG iterations.

We combine the methods with deflation, which can be seen as a coarse-grid correction. We
have evaluated our methods on a wide range of low-field MR images. Our analysis and the
numerical results show that the best choice of preconditioner depends on the denoising model. If
the diffusion is modeled by a smoothly varying function, the DCT preconditioner is best, while
for a strongly varying diffusion, Jacobi preconditioning combined with deflation works best.

1.6. Structure of this paper

This paper starts in Section 2 with the description of the denoising models. It also explains the
structure of the linear system that has to be solved in every Picard iteration. Section 3 describes
the DPCG method that is used to solve these linear systems. It explains the deflation operation
and presents the preconditioners we consider: Jacobi preconditioning, AOS, and DCT. Section
4 gives numerical experiments on low-field MR images. We present the denoised images and
give the numerical results for CG, PCG, and DPCG for the different denoising models. These
results show that the relative performance of the preconditioners depends on the denoising model.
Finally, we end with conclusions in Section 5.
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1.7. Notation

We use the following notations. Vectors are denoted by bold characters, matrices by capitals,
and scalars by regular characters. The superscript H denotes the conjugate transpose, and T the
normal transpose. Norm is denoted by ‖ · ‖. ‖ · ‖ with a subscript denotes a specific norm. Norms
without subscripts are standard 2-norms. ⊗ stands for the Kronecker product.

2. Mathematical Model and Numerical Algorithms

2.1. The Denoising Models

The specific models we consider are formulated as follows:

∇ · (cn(‖∇u‖)∇u) + µ( f − u) = 0 in Ω × (0,T ),
∂u
∂~n

= 0 on ∂Ω × (0,T ), (3)

u(x, 0) = f in Ω,

where Ω ⊆ R2 or R3. Choices for the function cn we consider are:

c1 = 1, (4)

c2(‖∇u‖) =
1

1 +
(
‖∇u‖

K

)2 , (5)

c3(‖∇u‖) = e−(‖∇u‖/K)2
, (6)

c4(‖∇u‖) =
1
‖∇u‖

, (7)

where K is a damping parameter.
The above equations define four different denoising models, which we denote as Models 1-4

according to the coefficients c1-c4. Some of them have also been used in [26] for edge detections.
Choosing c1 yields the stationary standard heat equation with source term µ(u0 − u). It models
the stationary solution of heat flow, which makes it efficient in removing noise but tends to blur
the edges of the image. c2 and c3 are choices that were already proposed in the classic paper
by Perona and Malik [25]. c2 privileges wide regions over smaller ones and c3 privileges high-
contrast edges over low-contrast ones. Taking c4, (3) corresponds to the Euler-Lagrange equation
of the TV model [18]. In the original paper [18], the authors suggested to use the gradient descent
method to solve the evolution equation. Instead of using the gradient descent method, Chan et
al. [7] solved the steady state for the TV model directly, which is the approach we take in this
paper.

In [30], the authors explained in Section 2.7.6 that, under some assumptions, the solution
u(t, ·) of the time-dependent form of model (3) should approximate a minimizer u(·) of model
(3) as t increases. (3) can also be viewed as one time step of the implicit Euler time-integration
method applied to the diffusion equation ut = ∇ · (cn(‖∇u‖)∇u). A single implicit Euler time step
applied to the diffusion equation is given by u1−u0

τ
= ∇·(cn(‖∇u1‖)∇u1), which can be rewritten as

∇·(cn(‖∇u1‖)∇u1)+ 1
τ
(u0−u1) = 0. The initial value of u is f , which means we can choose u0 = f
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and we set u1 = u and µ = 1
τ
. This exactly matches the first equation in (3). Therefore, solving

the steady-state equation with the fidelity term is equivalent to applying one implicit Euler step
to the transient diffusion equation without fidelity term.

2.2. Numerical Discretization
We use the standard finite difference method to discretise (3) in space, see also [25]. For ease

of presentation, we assume that the number of pixels is equal to N in each direction and that the
images are defined on the unit domain. This implies that for the step size we have

h =
1
N
.

We first consider the one-dimensional case. The one-dimensional discretisation of ∇(cn · ∇u) at
point xi is given by

∇(cn · ∇u)xi ≈ ci+ 1
2

(ui+1 − ui)
h2 − ci− 1

2

(ui − ui−1)
h2 ,

where ci± 1
2

= ci±1+ci
2 . ci := c(|ux|i) = c(| ui+1−ui−1

2h |) for 0 ≤ i ≤ N−1. Due to the Neumann boundary
conditions, we have that u−1 = u0 and uN−1 = uN .

The one-dimensional diffusion matrix is given by

C1d =
1
h2



−c 1
2

c 1
2

c 1
2
−(c 1

2
+ c1+ 1

2
) c1+ 1

2

. . .
. . .

. . .

cN− 5
2
−(cN− 5

2
+ cN− 3

2
) cN− 3

2

cN− 3
2

−cN− 3
2


.

Note that the diffusion matrix is diagonally equivalent, which means that for every row the abso-
lute value of the main diagonal is equivalent to the sum of the absolute values of the sub-diagonal
elements. Moreover, the matrix is symmetric and negative definite.

For the two-dimensional case, we write our matrix as

C2d = Cx + Cy

where Cl describes the diffusion in the l direction, l = x, y. Cl is a block-diagonal matrix, in
which each block corresponds to a one-dimensional diffusion matrix. We refer to, e.g., [33] for
the precise definition of C2d. The resulting discretised equation is given by

C(u)u + µ(f − u) = 0. (8)

where

u = (u0,0, . . . , uN−1,0, . . . , u0,N−1, . . . , uN−1,N−1)T ,

f = ( f0,0, . . . , fN−1,0, . . . , f0,N−1, . . . , fN−1,N−1)T .

in two-dimensional case. The three-dimensional case can be defined similarly.
Equation (8) can be rewritten as

(I −
1
µ

C(u))u = f. (9)
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We solve the nonlinear system (9) with the lagged diffusion Picard iteration as proposed in [31]:

(I −
1
µ

C(un))un+1 = f. (10)

In every Picard iteration a linear system of the form

Au = b (11)

needs to be solved. The matrix A is symmetric and positive definite. However, because of
possible discontinuities in the diffusion parameter c, the matrix A may be ill-conditioned.

3. Linear System Solver

3.1. Deflated Preconditioned Conjugate Gradients

We use the DPCG to solve the system (11). We first explain the deflation technique as
proposed in [20]. This technique splits the solution u into two parts, one in the range of the
deflation subspace and another in its complement. To this end, we define the projector P by

P = I − AZ(ZT AZ)−1ZT , Z ∈ Rn×m

where I is the identify matrix, and Z = [z1 z2 · · · zm] is the deflation matrix of rank m. The
columns of Z span the deflation subspace. Since u = (I − PT )u + PT u and

(I − PT )u = Z(ZT AZ)−1ZT Au = ZA−1
c ZT b,

we only need to calculate PT u. We solve the deflated system as follows:

PAũ = Pb.

We use the DPCG method to get ũ, and multiply ũ by PT to obtain PT ũ which is equal to PT u.
The initial residual is r0 = Pb − PAun. M is the preconditioner. Note that the matrices are

real-valued, and that the vectors are complex-valued.
k = 0.
while ‖rk‖ < ε‖r0‖ do

Solve zk = M−1rk

k = k + 1
if k = 1 then

p1 = z0
else

βk = rH
k−1zk−1/(rH

k−2zk−2)
pk = zk−1 + βkpk−1

end
αk = rH

k−1zk−1/(pH
k PApk)

ũk = ũk−1 + αkpk

rk = rk−1 − αkPApk
end
u = Z(Ac)−1ZT b + PT ũk.

Algorithm 1: The DPCG algorithm for solving (11).
7



In [20], Nicolaides defined Z based on a decomposition of the domain Ω. The idea is first to
decompose the domain Ω into m nonoverlapping subdomains Ωi, i = 1, 2, · · · ,m. Then choosing
vectors zi for i ∈ {1, 2, . . . ,m} such that zi = 1 on Ωi and zi = 0 on Ω j, j , i, j ∈ {1, 2, . . . ,m}.
With this choice of matrix Z, the resulting deflation technique is called subdomain deflation
[20]. It can be interpreted as a two-level multigrid method [15], where the projection matrix P
corresponds to a coarse-grid correction using a piece-wise constant interpolation with extreme
coarsening. In this paper, we use squares or cubes of equal size as subdomains for deflation.

3.2. Preconditioners

We consider four different preconditioning techniques. Each preconditioner has a low com-
putational complexity of (approximately) O(Nd), in which d is the dimension of the problem,
both to construct and to apply and is easily parallelisable. In this section, we will describe the
preconditioners and give for each preconditioner an upper bound on the condition number of the
preconditioned matrix. Since both M and A are symmetric positive definite, the condition num-
ber of the preconditioned matrix, κprec is equal to the ratio of the largest and smallest eigenvalue
of M−1A,

κprec =
λmax(M−1A)
λmin(M−1A)

.

Using our upper bounds on the condition numbers, we will derive upper bounds on the required
number of iterations for the different combinations of preconditioners and diffusion models. In
our analysis, we frequently need the absolute value maximum of main diagonal element of a
matrix B. To simplify notation we therefore define

r(B) = max
i
|Bi,i|

to denote this value.

3.2.1. No Preconditioning
In case no preconditioner is applied, we can simply bound the eigenvalues λ(A) of A using

Gershgorin’s theorem. By using that C(un) is diagonally equivalent, we know that the eigenval-
ues are bounded by

|λ(A) − (1 +
1
µ

r(C(un)))| ≤
1
µ

r(C(un))

and, by using that A is symmetric and hence has real eigenvalues, we obtain

1 ≤ λ(A) ≤ 1 +
2
µ

r(C(un)),

and hence that the condition number κunprec of the unpreconditioned matrix is bounded by

κunprec ≤ 1 +
2
µ

r(C(un)).

We furthermore can make use of the definition of the diffusion coefficients ci, j(un) for the different
models. Clearly

0 ≤ |ci, j(un)| ≤ 1 and hence r(C(un)) ≤
2d
h2
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for diffusion coefficients (4)-(6). Making use of this, we obtain that

κunprec ≤ 1 +
4d
h2µ

.

However, for c4, the entries of C(un) may become arbitrarily large for flat regions in an image,
and hence for the TV model r(C(un)) may become unbounded.

3.2.2. Jacobi Preconditioning
A simple and popular preconditioning method is to use the main diagonal of A as a precondi-

tioning matrix M. This technique is known as Jacobi preconditioning. The clear advantages are
that it is easy to implement, parallelize, and apply. Using Gershgorin’s theorem we obtain

|λ(M−1A) − 1| ≤
1
µ
r(C(un))

1 + 1
µ
r(C(un))

and hence

1 −
1
µ
r(C(un))

1 + 1
µ
r(C(un))

≤ λ(M−1A) ≤ 1 +

1
µ
r(C(un))

1 + 1
µ
r(C(un))

.

For the condition number of the Jacobi-preconditioned A, κJacobi, we obtain

κJacobi ≤ 1 +
2
µ

r(C(un))

which is the same as the bound for the condition number of the unpreconditioned matrix. How-
ever, an advantage of Jacobi preconditioning is that, in case of strongly varying coefficients, the
spectrum only contains a few small eigenvalues. When this is the case, Jacobi preconditioning
combined with deflation can be quite efficient, see for example [27].

3.2.3. AOS
Assuming the image domain to be d dimensional, we can rewrite equation (10) as[

1
d

Σd
l=1(I −

d
µ

Cl(un))
]

un+1 = f. (12)

In the one-dimensional case, (12) is a tridiagonal linear system that can be solved by the Thomas
algorithm in linear time. In [33], the authors proposed a method called Additive Operator Split-
ting to approximately solve equation (12) in the multi-dimensional case, by solving a sequence
of tridiagonal linear systems. The AOS method is defined by

un+1 ≈
1
d

Σd
l=1

[
I −

d
µ

Cl(un)
]−1

f.

The operators I − d
µ
Cl(un) describe the one-dimensional diffusion operators along the xl axes.

They are strictly diagonally dominant tridiagonal matrices (if properly ordered), hence systems
with these matrices can be solved with linear complexity using the Thomas algorithm. More-
over, the one-dimensional systems along the same direction can be solved in parallel. The AOS
preconditioner is then defined as

M−1 =
1
d

Σd
l=1

[
I −

d
µ

Cl(un)
]−1

.
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To bound the condition number κAOS for the AOS-preconditioner, we will again first bound
the eigenvalues of the preconditioned matrix M−1A. This matrix can be written as

M−1A =

1
d

Σd
l1=1

[
I −

d
µ

Cl1 (un)
]−1 (1

d
Σd

l2=1

[
I −

d
µ

Cl2 (un)
])

=
1
d2 Σd

l1=1Σd
l2=1

[
I −

d
µ

Cl1 (un)
]−1 [

I −
d
µ

Cl2 (un)
]

= I +
1
d2 Σd

l1=1Σd
l2=1,l2,l1

[
I −

d
µ

Cl1 (un)
]−1 [

d
µ

(Cl1 (un) −Cl2 (un))
]
.

We now use the Rayleigh quotient of the preconditioned matrix

RM−1A(x) =
xH Ax
xH Mx

to bound its eigenvalues

min
x

RM−1A(x) ≤ λ(M−1A) ≤ max
x

RM−1A(x),

by deriving upper and lower bounds on RM−1A(x). First we note that

d
µ
λmin(Cl1 (un))

1 − d
µ
λmin(Cl1 (un))

≤
xH( d

µ
Cl1 (un))x

xH(I − d
µ
Cl1 (un))x

< 0

and that

0 ≤ −
xH( d

µ
Cl2 (un))x

xH(I − d
µ
Cl1 (un))x

≤ −
d
µ
λmin(Cl2 (un)).

Here we used that Cl1 and Cl2 are negative semi-definite, and that

xH(I −
d
µ

Cl1 (un))x ≥ xHx.

Combining these bounds, we obtain

d
µ
λmin(Cl1 (un))

1 − d
µ
λmin(Cl1 (un))

≤
xH( d

µ
(Cl1 (un) −Cl2 (un)))x

xH(I − d
µ
Cl1 (un))x

≤ −
d
µ
λmin(Cl2 (un)).

We use this result to bound the Rayleigh quotient RM−1A(x), and with that the eigenvalues of the
preconditioned matrix:

1 +
1
d2 Σd

l1=1Σd
l2=1,l2,l1

d
µ
λmin(Cl1 (un))

1 − d
µ
λmin(Cl1 (un))

≤ λ(M−1A)

≤ 1 −
1
d2 Σd

l1=1Σd
l2=1,l2,l1

d
µ
λmin(Cl2 (un)).
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Applying Gersgorin’s theorem yields

1 −
1
d2 Σd

l1=1Σd
l2=1,l2,l1

2d
µ

r(Cl1 (un))

1 + 2d
µ

r(Cl1 (un))
≤ λ(M−1A)

≤ 1 +
1
d2 Σd

l1=1Σd
l2=1,l2,l1

2d
µ

r(Cl2 (un)).

For Models 1-3, for which the diffusion coefficients are given by (4)–(6), this can be simplified
to

1 − (d − 1)
4
µh2

1 + 4d
µh2

≤ λ(M−1A) ≤ 1 + (d − 1)
4
µh2 .

and for the condition number, we obtain

κAOS ≤
1 + (d − 1) 4

µh2

1 + 4
µh2

(1 +
4d
µh2 ) .

Note that this upper bound is sharp for d = 1, and for d = 2 it is the same as for no-preconditioning
and Jacobi preconditioning.

3.2.4. Discrete Cosine Transform Preconditioner
The standard Laplace operator for the Neumann problem can be diagonalised using the Dis-

crete Cosine Transform. This means that it is easy to solve a system involving the shifted standard
and scaled Laplace operator I− 1

µ
Cheat, where Cheat denotes the standard Laplace operator for the

Neumann problem. This operator is therefore potentially a good preconditioner for the varying-
coefficient matrix I − 1

µ
C(un), if the coefficients vary smoothly. The idea of exploiting DCT of

the standard Laplace operator as preconditioner was first proposed in [5].
The DCT preconditioner uses knowledge of the eigenpairs of the discrete Laplace opera-

tors Cheat, which we now briefly review. The one-dimensional standard Laplace operator with
Neumann boundary is given by

C1d
heat =

1
h2



−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1


.

The eigenvalues and eigenvectors of this matrix are well-known and can be found for example in
[29]. The eigenvalues matrix are given by

λi(C1d
heat) = −

1
h2 (2 − 2 cos

2iπ
N

)

for i = 0, . . .N − 1. The corresponding orthogonal eigenvectors are

vi = [vi], vi = cos( j +
1
2

)
iπ
N
, for j = 0, . . . ,N − 1.

11



The eigenvector matrix
V1d

heat =
[

v0, v1, · · · , · · · , vN−1
]

is exactly the one-dimensional DCT operator, and its adjoint [V1d
heat]

T the inverse DCT. Multipli-
cation with the matrices V1d

heat and [V1d
heat]

T only requires N · O(log(N)) operations.
We can express the two-dimensional standard Laplace operator in terms of one-dimensional

matrices by C2d
heat = (C1d

heat ⊗ IN) + (IN ⊗ C1d
heat), where IN is the identity matrix. The eigenvalues

are given by λ(i, j) = λi + λ j for all pairs (i, j). The corresponding eigenvectors are vi, j = vi ⊗ v j.
The eigenvalues and eigenvectors of the three-dimensional case can be obtained in the same way.

We can exploit the above theory by taking the matrix M = I − 1
µ
Cheat as a preconditioner.

This matrix has the same eigenvectors as Cheat. The eigenvalues are given by

λ(M) = 1 −
1
µ
λ(Cheat).

Operation with M−1 can be performed by taking sequences of N one-dimensional DCTs in the
x, y, and z directions, followed by multiplication with the inverse of a diagonal matrix with the
eigenvalues of M on the diagonal, followed by sequences of N one-dimensional inverse DCTs in
z, y, and x direction.

In order to bound the condition number κDCT for the preconditioned matrix M−1A, we first
write

A = I −
1
µ

(Cheat + C(un) −Cheat).

Therefore we have
M−1A = I +

1
µ

M−1(C(un) −Cheat).

We can bound the eigenvalues of the matrix (C(un) −Cheat) using Gershgorin’s theorem

0 ≤ λ(C(un) −Cheat) ≤ 2| − r(C(un)) +
2d
h2 |.

For Models 1-3, we know that 0 ≤ r(C(un)) ≤ r(Cheat) = 2d/h2, so

0 ≤ λ(C(un) −Cheat) ≤
4d
h2 .

Using the Rayleigh quotient to bound the eigenvalues of this matrix yields

1 ≤ λ(M−1A) ≤ 1 + max
x

1
µ
xH(C(un) −Cheat)x

xH(I − 1
µ
Cheat)x

.

Since xH(I − 1
µ
Cheat)x ≤ xHx, we obtain

κDCT ≤ 1 +
4d
h2µ

,

which is the same bound that we obtained for κunprec and for κJacobi. Of course this bound is very
pessimistic, when C(un)−Cheat is small. For Model 1, C(un) = Cheat, and we have κDCT = 1. For
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Models 2 and 3, the diffusion coefficients are close to 1, if ‖∇u‖2/K2 is small, in which case we
can expect fast convergence.

A bound on the number of iterations to reduce the residual norm below a certain tolerance ε
is given as below. A classical upper bound on the CG error is, see for example [19],

‖uk − u‖A ≤ 2
( √

κprec − 1
√
κprec + 1

)k

‖(un − u)‖A. (13)

By referring to [17] Lemma 2.3.2, we have

‖rk‖

‖r0‖
≤
√
κunprec

‖uk − u‖A
‖un − u‖A

. (14)

Giving the tolerance ε,

2
√
κunprec

( √
κprec − 1
√
κprec + 1

)k

= ε,

and taking the logarithm, we then obtain

k = ln
(

ε

2√κunprec

)
/ ln

( √
κprec − 1
√
κprec + 1

)
. (15)

4. Numerical Experiments

The numerical tests have been performed on a MacBook Air computer equipped with an
Apple M1 CPU and 16 GB of memory. The M1 chip contains 8 cores, four for performance and
four for energy efficiency. The algorithms have been implemented in F90/F95, and parallelized
using OpenMP. The numerical methods have been tested on a wide range of images. We discuss
the results for two representative images in this section. Appendix B presents the results for two
additional images.

4.1. Images

We show numerical results for two representative images: a two-dimensional Shepp-Logan
(SL) image of 128 × 128 pixels, and a three-dimensional melon of 128 × 128 × 128 pixels. Both
images have been obtained with the MRI scanner described in [23]. The image data are complex
valued, and we apply our algorithms directly to these complex data.

Figures 1 and 2 show the raw images and the denoised images for the four different diffusion
models. We have used K = 15 for the parameter in Models 2 and 3. For the fidelity parameter, we
have taken µ = 5e3 for Models 1-3, and for Model 4 we have taken µ = 2e3 for the Shepp-Logan
image, and µ = 1.5e3 for the melon. These parameters have been selected to give good visual
results and are used in all numerical experiments. The results show that all diffusion models
successfully denoise the images. Model 1, which is equivalent to a standard Gaussian filter, as
expected, does not preserve the edges well. The images become shaper from left to right. Model
4, Total Variation, gives visually the clearest images (see Figures 1 and 2).
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Figure 1: From left to right: Noisy image, Denoised images by Model 1 (µ = 5e3), Model 2 and Model 3 (K = 15,
µ = 5e3), and Model 4 (µ = 2e3) with 82 deflation vectors.

Figure 2: From left to right: Noisy image, Denoised images by Model 1 (µ = 5e3), Model 2 and Model 3 (K = 15,
µ = 5e3), and Model 4 (µ = 1.5e3) with 83 deflation vectors. From top to bottom: the center slices from x, y and z
directions.
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Figure 3: Measured Shepp-Logan (128 × 128). Picard and CG iteration numbers for different models with different
preconditioners.

14



PCG DPCG-4 DPCG-8 DPCG-16

1

2

3

4

·10−2 Time[s] for the Model 1

PCG DPCG-4 DPCG-8 DPCG-16

4

5

6

7

8
·10−2 Time[s] for the Model 2

PCG DPCG-4 DPCG-8 DPCG-16

0.1

0.2

0.3

Time[s] for the Model 3

PCG DPCG-4 DPCG-8 DPCG-16

0.2

0.4

0.6

Time[s] for the Model 4

None Jacobi AOS DCT
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4.2. Numerical Results

This section evaluates the numerical techniques on the two test images. For each image and
diffusion model, we report the number of Picard iterations to denoise the image, and for each
Picard iteration, we give the number of DPCG iterations. We present the results for the four
different preconditioners, and for 4× 4, 8× 8, and 16× 16 deflation vectors for the Shepp-Logan
image, and for 4× 4× 4 and 8× 8× 8 deflation vectors for the melon. As a convergence criterion
for DPCG we use

‖rk‖

‖r0‖
< 10−5.

The convergence criterion for the Picard iteration is

‖un − un−1‖

‖f‖
< 10−2.

We take the solution of the previous Picard iteration as an initial guess for DPCG.

4.2.1. Shepp-Logan
Figure 3 gives for each Picard iteration the number of DPCG iterations, and Figure 4 the

elapsed times for the Shepp-Logan image.
Model 1 is linear and therefore takes two Picard iterations to converge. This is the minimum

since the termination criterion is based on the change in the solution. The DCT preconditioner is
a direct method for this model. This is confirmed by the fact that DPCG immediately terminates
at the exact solution. For the other preconditioners, the number of PCG iterations is less or equal
to 30, which is in agreement with the upper bounds on the number of iterations which are given
in the previous section of 36 iterations. We furthermore notice that deflation does not give a
significant improvement. The DCT preconditioner without deflation is the fastest method for
this model and takes only 7 ms.

Of the three nonlinear diffusion models, Model 2, the rational Perona-Malik model, yields the
smoothest variations in the diffusion coefficient. Only four Picard iterations are needed to reach
convergence. Also for this model, the DCT preconditioner, although no longer a direct method,
yields the lowest number of iterations and computing time. For all preconditioners, the number
of iterations is below 30, which agrees with the upper bounds on the number of iterations. Also
for this model, deflation does not give a significant improvement.

Model 3, the exponential Perona-Malik model, yields larger variations in the diffusion coef-
ficient than Model 2, which translates into a higher number of seven Picard iterations to reach
convergence. Also, DCT preconditioner is no longer the best preconditioner. AOS takes the
least number of PCG iterations. In time, however, Jacobi preconditioning is the fastest method.
We remark that DCT becomes relatively better than the other preconditioners when the Picard
iterations proceed. This is because the images become smoother, and as a consequence, the dif-
fusion coefficients will be almost constant in large patches of the image, which favours DCT. As
was the case for Models 1 and 2, deflation does not give a significant improvement for Model
3. The convergence bounds are satisfied. The number of iterations for unpreconditioned CG is
even almost equal to the upper bound in the second Picard iteration, which shows that the upper
bounds are reasonably sharp.

Model 4, Total Variation, yields the largest variations in the diffusion coefficients, and for this
model, we do not have a priori bounds on the number of PCG-iterations. The performance of the
different techniques is quite different from the other models. For this model, the number of CG
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iterations sharply increases when the Picard iterations proceed, since the diffusion coefficients
become unbounded in flat regions. The combination of Jacobi preconditioning with deflation
gives the best performance. The increase in the number of DPCG-iterations is greatly reduced
by the use of deflation. In particular, in the last Picard iteration, a reduction of a factor of three in
the number of Jacobi-PCG iterations can be observed, if the method is combined with deflation.
Due to the computational overhead of deflation, however, there is no significant reduction of
computing time for this example.

4.2.2. Melon
Next, we consider the melon image. The main difference with the Shepp-Logan image is

that the melon image is three-dimensional. While for the two-dimensional Shepp-Logan im-
age, all computing times were in the order of seconds at most, and therefore more of academic
interest than of practical importance, we can expect much longer computing times for the three-
dimensional melon image. Figure 5 gives for each Picard iteration the number of DPCG itera-
tions, and Figure 6 the elapsed times for this image.

For Models 1-3 we can make the same observations as for the Shepp-Logan image. For
these models, the upper bound on the number of iterations for no-preconditioning, Jacobi pre-
conditioning, and DCT is 45, and for AOS 62. The observed number of PCG iterations to reach
convergence is always below 37. For Models 1 and 2 the DCT preconditioner is the most efficient
with computing times of less than half second for Model 1, and less than 4 seconds for Model
2. AOS is the most efficient for Model 3 and takes about 9 s. Deflation does not improve the
convergence. The numbers of iterations are basically the same with or without deflation.

For Model 4, however, the number of PCG iterations grows again for all methods to many
hundreds of iterations when the Picard iterations proceed. The resulting computing times are fac-
tors larger than for the other models. Jacobi preconditioning is the most efficient preconditioner,
and the combination with deflation speeds up the convergence, and also reduces the computing
time by a factor of two, to less than 15 seconds.

5. Conclusions

We have investigated an efficient implicit method for denoising using diffusion filtering. We
have considered four different models for the diffusion: constant diffusion, the rational and the
exponential diffusion models proposed by Perona and Malik [25], and the Total Variation model.
We solved the discretised equations using a lagged-diffusion Picard iteration. The linear systems
were solved with Preconditioned CG in combination with deflation. We have evaluated the nu-
merical methods on two noisy images that have been obtained with an inexpensive MRI scanner
based on permanent magnets. Also for the evaluation of our methods we used an inexpensive
computer.

Our conclusions are as follows. For models with constant or slowly varying diffusion co-
efficients (Models 1 and 2) the DCT preconditioner is most efficient. For Model 3, the AOS
preconditioner is best. For all these three models the diffusion coefficients have bounded values
between zero and one, which allowed us to give an upper bound on the number of PCG itera-
tions. For these models the computing times are low, a few seconds at most, low enough for
practical purposes. Model 4, Total Variation, gives the best image quality. However, denoising
with the TV model is computationally challenging, due to the much larger jumps in the diffusion
coefficients. For this model, it turns out that a simple Jacobi preconditioning combined with
subdomain deflation yields a fast and robust method.
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The techniques that we have described in this paper will be used for processing low-field
MRI images in low-resource settings. For this, we have focused on an implementation on the
inexpensive commodity hardware. On such hardware, we are able to denoise, with the techniques
that we have examined, images with a resolution of 1283 pixels in less than 15 seconds. This is
fast enough for operational purposes.

Appendix A. SSOR as a Preconditioner

Symmetric Successive Over Relaxation (SSOR) is a classical preconditioner based on a reg-
ular splitting of the matrix. It belongs to the same family as the Jacobi preconditioner. For many
problems the number of iterations for SSOR is smaller than for Jacobi preconditioning, in par-
ticular if the relaxation parameter is optimised. A drawback of the method is that it requires a
back- and forward substitution operation on triangular matrices to be applied. These operations
are not suited for parallel computing.

In this part, we present the result for DPCG with SSOR as a preconditioner. We present the
results for relaxation parameter ω = 1, and for the average optimized value ω = 1.5. Our results
show that, although the number of iterations is reduced considerably in comparison to Jacobi
preconditioning, the timings for SSOR are slightly worse due to the poor parallel performance
of the method.

Image Preconditioner Method
Picard

1 2 Time[s]

Shepp-Logan

SSOR(ω = 1)

PCG 11 2 0.019
DPCG-4 11 2 0.022
DPCG-8 10 2 0.034
DPCG-16 9 2 0.026

SSOR(ω = 1.5)

PCG 8 2 0.016
DPCG-4 8 2 0.021
DPCG-8 8 2 0.018
DPCG-16 8 2 0.027

Melon

SSOR(ω = 1)
PCG 13 2 2.093

DPCG-4 13 2 2.198
DPCG-8 13 2 2.201

SSOR(ω = 1.5)
PCG 9 2 1.591

DPCG-4 9 2 1.682
DPCG-8 9 2 1.690

Table A.1: SSOR for Model 1

Image Preconditioner Method
Picard

1 2 3 4 Time[s]

Shepp-Logan

SSOR(ω = 1)

PCG 8 9 8 7 0.049
DPCG-4 8 9 8 7 0.056
DPCG-8 8 9 7 6 0.052
DPCG-16 8 8 7 6 0.070

SSOR(ω = 1.5)

PCG 8 7 6 5 0.046
DPCG-4 8 7 6 5 0.052
DPCG-8 8 7 6 5 0.049
DPCG-16 8 7 6 5 0.072

Melon

SSOR(ω = 1)
PCG 8 11 10 8 5.408

DPCG-4 8 11 10 8 5.659
DPCG-8 8 11 10 8 5.692

SSOR(ω = 1.5)
PCG 8 7 6 5 4.069

DPCG-4 8 7 6 5 4.299
DPCG-8 8 7 6 5 4.320

Table A.2: SSOR for Model 2

Appendix B. Additional Experimental Results

We present additional experiments on two three-dimensional images of 64 × 64 × 64 pixels.
The first image is of an apple, and the second of a bell pepper. The second image has a very poor
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Image Preconditioner Method
Picard

1 2 3 4 5 6 7 Time[s]

Shepp-Logan

SSOR(ω = 1)

PCG 8 9 8 8 7 7 - 0.071
DPCG-4 8 9 8 8 7 7 - 0.081
DPCG-8 8 8 8 7 7 7 - 0.078

DPCG-16 7 8 7 7 6 6 - 0.105

SSOR(ω = 1.5)

PCG 8 7 7 6 6 5 - 0.067
DPCG-4 8 7 7 6 6 5 - 0.079
DPCG-8 8 7 7 6 6 5 - 0.074

DPCG-16 8 7 7 6 6 5 - 0.094

Melon

SSOR(ω = 1)
PCG 8 10 11 10 10 9 9 9.654

DPCG-4 8 10 11 10 10 9 8 10.00
DPCG-8 8 10 10 10 9 9 8 9.801

SSOR(ω = 1.5)
PCG 8 8 7 7 6 6 6 7.348

DPCG-4 8 8 7 7 6 6 6 7.747
DPCG-8 8 8 7 7 6 6 6 7.800

Table A.3: SSOR for Model 3

Image Preconditioner Method
Picard

1 2 3 4 5 6 7 Time[s]

Shepp-Logan

SSOR(ω = 1)

PCG 7 12 20 31 45 - - 0.145
DPCG-4 7 12 18 26 32 - - 0.133
DPCG-8 7 11 16 21 26 - - 0.118
DPCG-16 6 10 13 17 19 - - 0.124

SSOR(ω = 1.5)

PCG 8 10 17 28 36 - - 0.130
DPCG-4 8 10 16 23 28 - - 0.126
DPCG-8 8 10 15 21 24 - - 0.122
DPCG-16 7 10 13 16 18 - - 0.124

Melon

SSOR(ω = 1)
PCG 7 12 21 34 49 63 72 32.81

DPCG-4 7 12 20 29 37 42 45 25.86
DPCG-8 7 12 18 23 26 28 30 20.09

SSOR(ω = 1.5)
PCG 8 9 14 22 32 41 46 22.42

DPCG-4 8 9 14 19 25 28 30 18.42
DPCG-8 8 9 12 16 18 21 24 15.39

Table A.4: SSOR for Model 4

signal-to-noise ratio, and without noise filtering it is impossible to recognize the bell pepper. The
results, given in Figure B.7–B.12, confirm the conclusions that we drew before.
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Figure B.7: From left to right: Noisy image, Model 1 (µ = 2e3), Model 2 and Model 3 (K = 10 and µ = 2e3). Model 4
(µ = 1e3), Residual image (Noisy image - Model 4 image) calculated by DPCG with deflation vector number 83. From
up to down: the center slices from x, y and z directions.

Figure B.8: From left to right: Noisy image, Model 1 (µ = 2e2), Model 2 and Model 3 (K = 10 and µ = 2e2). Model
4 (µ = 4e2) calculated by DPCG with deflation vector number 83. From up to down: the center slices from x, y and z
directions.
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Figure B.9: Apple (64 × 64× 64). Picard and CG iteration numbers for different models with different preconditioners.
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Figure B.10: Apple (64 × 64 × 64). Run time for different models with different preconditioners.
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Figure B.11: Bell pepper (64 × 64× 64). Picard and CG iteration numbers for different models with different precondi-
tioners.
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Figure B.12: Bell pepper (64 × 64 × 64). Run time for different models with different preconditioners.
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